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CHAPTER I 

 

INTRODUCTION 

 

he athleticism of the horse has been both admired and exploited for millennia.  To our 

eyes there can be no doubt that the equine musculoskeletal system represents an elegant 

phylogenic solution to the problem of rapid and efficient locomotion.  Through the process of 

selective breeding, humankind has modified the prehistoric equine form to fulfill our militaristic, 

agrarian and recreational endeavors. However, this relationship cannot be considered completely 

altruistic. Along with the benefits of careful husbandry have come disease processes that have 

never been observed in wild equids.  

Of considerable importance amongst these afflictions has been musculoskeletal injury (MSI). 

Having recognized the detrimental effect of equine MSI on the endeavors of man, considerable 

resources have been invested in the treatment, prevention and understanding of these conditions.  

In fact, the historical development of the veterinary profession closely parallels society’s need for 

educated professionals familiar with the diagnosis and treatment of equine MSI.1  

The use of musculoskeletal allografts to facilitate healing has a long history in human 

orthopedic surgery. 2  Recent advances in the physico-chemical techniques used to process 

connective tissue allografts have dramatically enhanced their clinical utility. Dedicated human 

tissue banks now provide appropriately sourced and processed cadaveric tissue for 

allotransplantation.3 In the United States, connective tissue allograft distribution from tissue 

banks increased from 7,525 tendons in 1993 to approximately 750,000 tendons in 1999.4  

Allograft tendons which are commonly sourced and supplied include: bone-patellar tendon-bone 

T 
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(BPTB), Achilles tendon, semi-tendinosis, gracillis and posterior tibialis tendons.5 These 

materials have found a wide variety of clinical applications, including: anterior cruciate ligament 

(ACL) reconstruction, collateral ligament repair, proximal hamstring reconstruction, Achilles 

tendon repair and reconstruction of the rotator cuff of the shoulder.6-9  

Despite numerous extensive experimental studies utilizing allograft techniques in companion 

animal species, the use of musculo-skeletal allografts in clinical veterinary orthopedic surgery 

has been limited. Commercial organizations exist to supply canine tendon, fascia and BPTP as 

well as equine osteoinductive demineralized bone matrix (DBM) and osteoconductive cancellous 

bone chips.10 Soft tissue for equine allotransplantation is not yet clinically available. To date, no 

study has evaluated processing techniques that might enable successful allotransplantation of 

equine tendon. If achievable, this type of biomaterial may have clinical utility.  

In horses, lacerations of the flexor tendons are common, potentially career ending injuries.11,12 

Primary suturing of transected flexor tendons has been advocated by some authors.13,14 In vitro 

studies have indicated improved healing characteristics after primary suture repair.15 Clinically, 

necrosis or surgical debridement may result in significant tendon defects that are not amenable to 

primary suture repair. In the equine FDS tendon, endogenous repair tissue lacks the 

biomechanical characteristics of normal tissue.16 This functional disparity is believed to make the 

affected region susceptible to re-injury. A variety of synthetic materials have been proposed to 

augment tendon healing.17-19 None of these have gained widespread clinical acceptance. Using an 

equine model, Reiners et al (2002) demonstrated the potential for autograft extensor digitorum 

lateralis (EDL) tendon to augment healing of transected flexor digitorum profundus (FDP) 

tendon.20 Clinically, this approach would necessitate a second surgical site and may not provide 

an adequate amount of tissue of inappropriate dimensions. These problems would be solved by 

the availability of an appropriate allogeneous biomaterial.  
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Recently, Whitlock et al (2007) described a physico-chemical process for the decellularization 

and architectural optimization of avian FDP tendon.126 This particular protocol included: 

immersion in hypotonic solution, trypsin digestion, peracetic acid and non-ionic surfactant 

treatment followed by freezing and lyophilization. Tendon tissue treated using this method 

exhibited excellent in vivo biocompatibility and retained 75% of its ultimate tensile strength.   

We hypothesized that, with modification, a similar protocol could be used to process cadaveric 

equine FDS tendon and produce an equine-specific biomaterial for clinical use.  The objective of 

this study was to employ two variations of this physico-chemical protocol to process equine FDS 

tendon in order optimize its biocompatibility when implanted into normal equine subjects.  
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CHAPTER II 

 

LITERATURE REVIEW 

2.1 The gross anatomy of the equine forelimb flexor digitorum superficialis tendon  

The equine FDS tendon is an elegant refinement of form and function, the anatomy of which 

has been well described.21 In the forelimb, the FDS tendon originates from the medial epicondyle 

of the humerus and inserts on the scutum medium; a fibro-cartilaginous plate palmar to the second 

phalanx. In a cadaveric study of forelimb muscles in seven thoroughbred horses, Brown et al 

(2003), reported an average FDS tendon length of 549.4mm, a muscle volume of 227.4 cm3  and a 

resting muscle length of 356mm.22 This compared with the neighboring humeral head of the FDP 

which had a length of 481.6mm, a muscle volume of 524.5cm3 and a resting muscle length of 

354.3mm. The FDS tendon shares a number of muscle fascicles with the humeral head of the 

FDP as well as a common short tendon of origin.22 

In the region of the antebrachium, the muscular portion of the FDS adopts a more caudal and 

medial position to the more substantial musculature of the FDP. In contrast to the humeral head 

of the FDP, the single headed FDS muscle is exceedingly fibrous and highly pennate, having 

eight to twelve strong longitudinal aponeuroses running through the length of its substance.21 

Seven to eleven centimeters proximal to the antebrachiocarpal joint, a tendinous band known as 

the superior or proximal check ligament arises from the caudo-medial aspect of the radius. This 

structure courses caudo-distally to insert on the medial aspect of the FDS  just proximal to the 

antebrachiocarpal joint.23  In the proximal carpus, a tendinous band unites the FDS and FDP 

tendons near the musculo-tendinous junctions in an unknown proportion of horses.24  
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Extending from near the origin of the superior check ligament, both the rounded FDS and FDP 

tendons and the median nerve pass within the synovial structure known as the carpal canal. At 

this point muscular tissue may still be evident within the tendinous FDS structure.  In the mid-

metacarpal region the FDS tendon emerges distally from beneath the thick fascia associated with 

the palmar carpus and is enveloped within a thin paratenon. In the mid-metacarpal region, the 

tendon is somewhat crescent shaped with its medial border being more blunt and rounded.25  In 

the distal third of the metacarpal region, the FDS and FDP tendons become enveloped in a second 

synovial structure, the digital sheath.  Just proximal to the metacarpophalangeal joint the FDS 

tendon elaborates a ring-like extension which encircles the FDP tendon. Known as the manica 

flexoria, this structure ensures anatomic alignment of the tendons as they pass over the proximal 

sesamoid bones.23  At this level the FDS tendon is thinner, broader and concave on its dorsal 

aspect.  From the proximal sesamoid bones distally, the FDS tendon becomes thinner axially 

before bifurcating and becoming two discrete tendons inserting abaxially on the fibro-

cartilaginous structure on the palmar aspect of the second phalanx.  

The blood supply to the FDS tendon has been well described.27 Like other musculo-tendinous 

structures, important nutrient vessels arise proximally within the musculature and distally at the 

insertion.  In a cadaveric study Kraus-Hansen et al (1992) demonstrated an anastomosing network 

of vessels within the mid-metacarpal region of the FDS tendon supported by two major abaxial 

longitudinal arteries giving a ladder-like arrangement of vasculature.27 A key finding was the 

relatively avascular nature of the core of the FDS tendon in the mid-metacarpal region. In the 

same paper, the authors demonstrated in vivo that the contribution of vasculature associated with 

the mid-metacarpal paratenon was negligible. The authors also identified a third nutrient arterial 

branch of the median artery running in the distal third of the accessory ligament.  Distally, near 

the distal border of the palmar annular ligament, a branch of each abaxially located digital artery 
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also supplies the FDS tendon.24 Within the digital tendon sheath a sagittal adhesion to the 

proximal digital annular ligament also carried branches of the digital artery. 

In contrast to the arterial supply, the innervation of the FDS tendon has not been well 

described. Like other forelimb flexors the FDS musculature receives innervation from the median 

nerve (C8-T2) and ulnar nerve (T1-2).21 The relative importance of each remains undetermined. 

In the metacarpal region large medial and lateral palmar nerves (originating primarily from the 

median nerve) course distally, dorsally to the deep digital flexor tendon.  A communicating 

branch crosses obliquely over the palmar aspect of the FDST in the mid-metacarpal region.24   

In the distal limb, palmar branches of the medial and lateral digital nerves supply innervation 

to the FDS tendon. Although likely to follow the path of accompanying vessels, the exact nature 

of this innervation has not been described. The relative importance of intra-tendinous 

innvervation versus paratendinous innervation remains to be determined. However, the use of 

perineural analgesia to locally desensitize FDS tendon would suggest that unlike vasculature, 

extra tendinous nerves play a more important role.27  

2.2 The microscopic anatomy of the equine forelimb flexor digitorum superficialis tendon 

Tendon exhibits a hierarchical micro-anatomic structure.29 Currently the nomenclature 

assigned to each subdivision lacks standardization and varies between authors.30,31 Generally, 

sub-microscopic aggregations of collagen fibrils become visible microscopically as fibril bundles 

are separated from each other by an investment of endotenon (40-500nm). Fibril bundles are 

aligned with the long axis of the tendon. When viewed using polarized light microscopy, fibril 

bundles exhibit an in-phase waveform known as crimp.30 This waveform is believed to straighten 

with mechanical loading, thereby contributing to tendon elasticity and potentially acting as a 

mechanical safeguard to excessive loading.31 The fiber bundle crimp pattern is most prominent in 
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neonatal equine FDS tendon and has been observed to decline with age and exercise, especially in 

the central core region.32-34 

The endotenon elaborates a thin reticular network within the tendon delineating individual 

fiber bundles and macroscopically visible tendon fascicles (50-300μm).29 The connective tissue 

framework of the endotenon distributes limited blood vessels, lymphatics and nerves to central 

regions from the peripheral tendon where they are comparatively well developed. The endotenon 

is believed to allow fiber bundles and fascicles to slip relative to one another, thereby contributing 

to the overall elasticity of the tendon structure.29 Superficially, the endotenon is contiguous with 

the enveloping epitenon on the tendon surface. The relatively disorientated, crisscrossing fiber 

bundles of the epitenon form a dense connective tissue sleeve.  In the carpal sheath proximally, 

and in the digital sheath distally, the epitenon is enclosed within true synovial structures. In the 

mid-metacarpal region, a fine connective tissue sleeve called the paratenon facilitates gliding 

function.30  

Tenocytes are the fibroblast-like cells responsible for production of extra-cellular tendon 

matrix.35 They are arranged longitudinally between collagen fibril bundles within fascicles.29  

Most tenocytes are situated remote from blood vessels located within the endotenon. Elaborate 

cytoplasmic processes afford connections with matrix components and other tenocytes.36 Gap 

junctions between tenocytes may facilitate the transfer of nutrients and coordinate synthetic 

responses to mechanical stimuli.37 Webbon (1978) classified tenocytes on the basis of their 

nuclear morphology.26 Type-1 tenocytes have elongate spindle shaped nuclei while type-2 

tenocytes have more rounded nuclei. Ultra-structural examinations of type-2 tenocytes have 

found a greater amount of rough endoplasmic reticulum and Golgi apparatus indicative of a 

greater synthetic capacity37. Immuno-histochemical studies have also indicated higher levels of 

expression of certain proteins including pro-collagen.38  
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With age and exercise there is an increase in the proportion of type-1 tenocytes. This coincides 

with an overall reduction in cellularity.39 It is assumed that type-2 tenocytes convert to quiescent 

type-1 phenotype. However the evidence for this conversion is only indirect. Type 3 tenocytes are 

cartilage like cells with round nuclei and prominent nucleoli. This cell type is a normal finding 

close to the fibro-cartilaginous FDS tendon insertion.24 However with age, chondroid metaplasia 

may develop with tendinous compression in the metacarpal region and where the FDS tendon 

traverses the palmar aspect of the metacarpo-phalangeal joint.26 A separate population of 

fibroblastic cells is associated with the paratenon, epitenon and endotenon. These cells are 

believed to play important roles in maintaining tendon extra cellular matrix (ECM).  Using in situ 

immunohistochemical techniques, Cauvin (2001) revealed transforming growth factor beta-3 

(TGF-β3) associated with endotenon fibroblasts and not intra-fascicular tenocytes themselves.41  

 

2.3 Ultra-structure and biochemistry of the equine flexor digitorum superficialis tendon  

The primary biochemical components of tendon are water, collagen fibers, and 

proteoglycans.29 In tendon, collagen is the most abundant protein of the ECM comprising 

approximately 75% of its dry weight.30 Collagens are a diverse super-family of proteins which 

possess a characteristic quaternary structure consisting of three polypeptide α-chains arranged in 

a right-handed triple helix.41 Each α-chain is itself arranged in a left handed helix with a pitch of 

18 amino acid residues per turn. Assembly of the triple helical quaternary structure requires an 

amino acid sequence in which every third residue is glycine (Gly-X-Y)n.42  The internal 

positioning of small glycine residues allows for their close packing in the center of the triple 

helix. The bulky side chains of the X-Y residues, principally prolene and lysine, are arranged 

eccentrically on the outside of the helix.  
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Collagen is divided into various types on the basis of its structure, splice-variants, non-helical 

domains, assembly and function.43 The fibril forming collagens (types I, II, III, V and XI) form 

the structural building blocks of tissues.41,42 In tendon fascicles, type I collagen predominates.29,44 

Collagen types III, IV and V function primarily as components of the reticular endotenon and 

basement membranes.44 The triple helix of type I collagen consists of two identical α1(I) chains 

and an α2(I) chain.  The rod-like triple helical core, 300nm in length and 1.5nm in diameter, is 

flanked by non-helical, extended n-terminal and c-terminal telopeptides.43 Telopeptides lack the 

triple helical conformation but are important in fibril formation.  

Collagen is synthesized intra-cellularly as pro-collagen which contains N-terminal and C-

terminal globular pro-peptides.42 These peptides contain asparagine linked oligosaccharide units 

composed of N-acetylglucosamine and mannose that may function in secretion or in prevention 

of premature (intracellular) fibril formation.46 The coordinated removal of propeptides by termini 

specific metallo-proteinases (procollagen aminoprotease and procollagen carboxypeptidase) is a 

requirement for fibril formation to occur.47 

Positive staining of fibrillar collagen molecules with phosphotungstic acid followed by uranyl 

acetate gives a characteristic banding pattern visible with electron microscopy.48 This technique 

and modeling studies have identified rigid and flexible domains in collagen types I, II and III.49 

Regions of high flexibility appear to coincide with sequences devoid of proline and 

hydroxyproline.50,51 This would suggest that the collagen triple helix can be considered a 

composite with regions of varying stiffness.  This variation may be important for fibril formation, 

final fibril diameter and crimp formation.   

The assembly and maintenance of tendon collagen as network of cross-liked fibrils is believed 

to require cellular regulation and is responsive to mechanical stimuli.52 The degree of adaptive 

response however, may be dependant upon tendon function and species.53 In vivo fibrillogenesis 

in developing tendon has been extensively studied in the chick embryo. The early stages of 
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molecular assembly occur within intra-cellular vesicles which are secreted into deep cytoplasmic 

recesses.56 N-propeptides remain attached until fibril segments with diameters of 20-30nm are 

formed.56 N-propetide cleavage coincides with an increase in fibril diameter. The C-propeptide 

has been observed in fibrils of between 30-100nm and appears to play a role in the initiation and 

growth of fibrils. Later removal of the C-propeptide is also accompanied by further lateral fibril 

growth.54,55 In 14 day old chick embryos, Birk et al (1997) observed fibril segments in 

extracytoplasmic channels that were 10-30µm in length.57   Mature fibrils then grow in length at a 

constant diameter by end to end fusion of the intermediate species.  

The assembly of collagen molecules into fibrils under physiologic conditions is entropically 

favorable.58 The interaction between the non-polar surfaces of collagen molecules extrudes water 

molecules from the interior of the super-molecular assembly. Within the fibrils, collagen 

molecules are aligned parallel to each other and exhibit a characteristic 67nm periodicity (D 

period) when collagen fibrils are negatively stained with phosphotungstic acid and examined 

using electron microscopy.59 This observation is a function of a gap region of 40nm between axial 

collagen molecules and a quarter stagger arrangement between each molecule and those adjacent 

to it.  

Collagen cross-linking provides tensile strength and resistance to proteolysis.60 Cross-linking 

of nascent fibrils requires deamination of lysine or hydroxylysine residues by lysyl oxidase 

forming allysine  (2-amino-6-oxo-hexanoic acid)  and hydroxyallysine (2S,5R)-2,6-diamino-5-

hydroxyhexanoic acid).61 Divalent cross links are formed between the telopeptide region of one 

collagen molecule and the helical region of an adjacent molecule.57 The quarter stagger model of 

fibril arrangement indicates that aldehydes within N and C terminal telopeptides cross-link with 

(hydroxy)lysine residues at positions 930 and 87 respectively.48 A variety of divalent and trivalent 

cross links can be formed dependant on the reacting species. In fetal equine FDS tendon two 

forms of reducible cross-link hydroxylysinonorleucine (HLNL) and dihydroxylysinonorleucine 
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(DHLNL) predominate. HLNL is undetectable a few months after birth but DHLNL remains 

detectible, albeit at low levels, up to 3 years of age.62 These reducible bonds are intermediates that 

mature into non reducible stable forms.63 Limited studies suggest that the primary mature cross-

link of the equine FDS tendon appears to be the trivalent hydroxypyridinum compound, 

hydroxylysyl pyridinoline (HP).64 This is similar finding to other load bearing tendons such as 

human patella tendon and rabbit Achilles tendon.60  

In the equine FDS tendon, collagen fibril diameter varies spatially. Watanabe et al (2007) identified 

small fibrils (<100nm) predominating in the musculo-tendinous junction and large fibrils (>200nm) at 

the tendino-osseous insertion.66 In the mid-metacarpal region collagen fibrils exhibited an intermediate 

distribution between these two extremes.  The exact mechanism by which collagen fibril diameter is 

regulated is not well understood. One proposed mechanism involves the timing of extra-cellular 

enzymatic cleavage of amino-propeptides from pro-collagen.43 Proteoglycans (see below) may act to 

shield amino-propeptides on the fibril surface from amino-propeptidases.67 Other hypotheses implicate 

other fibrillar collagen types, such as III and V, as potential regulators of fibril diameter. Type V 

collagen filaments may act as nucleation sites for type I collagen fibrillogenesis.68 Alternatively, due its 

longer helix or because of uncleaved terminal propeptides, critical concentrations of type V collagen in 

a fibril may inhibit further lateral additions of type-1 collagen. Similarly, the delayed cleavage of the 

amino propeptide of type III collagen present in embryonic tendon may slow lateral fibril growth. An 

interesting observation in the Equine FDS tendon is that type V collagen distribution appears 

heterogeneous.66 The highest concentrations of type V collagen are found at the  myotendinous junction 

where the smallest collagen fibrils are located. The fibril associated collagens (Types XII and XIV) may 

also play a role in regulation of type I collagen fibril diameter in tendon.  

Despite comprising less than 1% of tendon dry weight proteoglycans are believed to be very 

important in the structure and function of tendon.69 Proteoglycans (PGs) are complex molecules 

consisting of a protein core to which a glycosaminoclycan (GAG) moiety is covalently attached.  Two 
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families of PG, based on molecular weight, have been identified in tendon.70 The small PGs (~40kDa) 

of tendon include decorin, biglycan, fibromodulin and lumican. These molecules are characterized by 

leucine rich repetitive (LRR) sequences through which small PGs interact with cells, collagen fibrils or 

other ECM molecules such as epidermal growth factor (EGF) and transforming growth factor-beta 

(TGF-β).71 Small PGs are divided into four classes based on, amongst other characteristics,  the number 

of LRR sequences present.  The N-terminal domain of small PGs is usually substituted with either one 

(decorin) or two (biglycan) chondroitin/dermatan sulfate side chains, giving the molecule polyanionic 

properties. The primary functions of the small PGs specific to tendon can be defined as (1) regulators of 

collagen fibril diameter and (2) contributors to tendon mechanical properties by providing interfibrillar 

linkages.72  

The role of small PGs as determinants of collagen fibril size has been examined in gene-knockout 

studies in mice. Decorin, the primary small PG of tendon,  has been hypothesised to inhibit the lateral 

fusion of fibrils and organize fibril orientation within the ECM.73 Danielson et al (1997) reported large 

coarse irregular collagen fibrils with axial variations in diameter in tail tendons from decorin deficient 

mice.74 When Zhang et al (2005) examined the weight bearing flexor digitorum longus (FDL) tendon in 

the same decorin deficient murine model, a population of abnormally large fibrils was observed.75 The 

small PGs display a high degree of homolgy in their respective primary structures. The results of small 

PG gene knockout studies suggest that a degree of functional overlap exists between these molecules, 

especially within classes. Tendons from decorin deficient mice, for example, displayed an enhanced 

expression of biglycan as measured by semi-quantitve immunoblot analysis.76 Similar compensations 

have been observed between the class 2 small PGs, fibromodulin and lumican.77 However, the 

phenotypic effect of specific small PG deficieny is not consistent. For example, in a population of 

fibromodulin deficient mice, Ezura et al (2002) identified an increased frequency of small diameter 

fibrils (<65nm) and enhanced lumican expression.78 The relative importance of these four small PGs in 

the equine FDS tendon is not well understood. In a small sample of young adult thoroughbreds, 
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Watanabe et al (2005) identified the highest concentrations of decorin in the proximal part of the mid 

metacarpal region of the FDS tendon.79 This finding corresponded with an increase in the mass average 

diameter of collagen fibrils and a decrease in the collagen fibril index in the decorin poor distal 

metacarpal region.   

Scott (1992) described a model of structural interaction between the GAG side-chains of small PGs 

and collagen.80 Subsequent in vitro ultra-structural studies have demonstrated a specific periodic 

interaction of decorin and its GAG side-chain with type I collagen fibrils.81,82 The GAG side-chains of 

decorin may extend away from the fibril surface and connect with GAGs of adjacent small PGs on other 

collagen fibrils or even the surface of adjacent fibrils themselves. These linkages are non covalent in 

character and involve hydrogen bonding, hydrophobic and electrostatic interactions. Small PGs have 

been identified as providing the visco-elastic properties characteristic of the initial deformation of 

tendon with load.73,80  However, examination of this hypothesis is problematic as removal of specific 

proteoglycans also alters collagen fibril morphology. In an in vitro model of self-assembling type-1 

collagen, the addition of decorin increased the tensile strength of un-cross-linked fibrils.81  Zhang et al 

(2006) reported a reduction in strength and stiffness of decorin deficient flexor digitorum longus (FDL) 

tendons harvested from gene-knockout mice.73 The role of small PGs in the mechanical properties of 

the equine FDS tendon is not clear.  

Of the large proteoglycans (~200kDa), aggrecan and versican are the most abundant in tendon.72 

These molecules consist of complex core proteins with multiple central globular domains extensively 

liked to chondroitin or dermatan sulphate. The N-terminal G1 globular domain interacts with the free 

GAG hyaluronan.83 Abundant GAGs provide large anionic surfaces resulting in a stiff extended 

molecular form that retains large amounts of water. These molecules primarily provide resistance to 

compressive forces and as such are concentrated in areas of tendon compression. In a biochemical 

analysis of bovine flexor tendons, Vogel et al (1985) identified only 10% of PGs isolated from the 
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tensile region as being large PGs.84 Furthermore, the aggrecan of the tensile region of bovine flexor 

tendon appears to lack the G1 globular domain and lacks keratan sulphate side-chains, indicating a 

different function from the agreccan of compressed tendon or articular cartilage.  

Cartilage oligomeric matrix protein (COMP) is a non-collagenous glycoprotein that is found 

in abundance in the tensile region of the equine FDS tendon.85 Like other members of the 

thrombospondin group of proteins, COMP exhibits a pentameric structure with 5 identical arm-

like sub-units united by a coiled coil domain at their N-termini.86 The C-terminal globular 

domains on each subunit binds type I collagen in tendon as well as type II and type IX collagen in 

cartilage.87 The role of COMP in tendon remains uncertain although, a role in fibril formation has 

been proposed.88 The distribution of COMP in the equine FDS tendon has been well described.85 

The highest concentrations are found in the tensile (mid-metacarpal) region. COMP levels peak at 

2 years (~10mg/kg wet weight) and then decline after 5 years of age (~2mg/kg wet weight). The 

relationship between COMP levels and mechanical properties of the equine FDS tendon however 

is not completely clear.  In horses of the same age, a positive correlation was found between 

COMP levels and mechanical properties.89 In foals, COMP appears to be up-regulated in response 

to mechanical load and exercise.90 However, this effect does not seem to occur in juvenile or 

adult horses. These findings would suggest a role for COMP as an organizer of fibril structure in 

the ECM of the developing equine FDS tendon. 

 2.3 Allograft processing techniques associated with tendon tissue 

The post-harvest processing of tendon allograft tissue has several functions. Of primary 

importance are those processing techniques designed to decrease the antigenic stimulus of the 

allograft to the host.91 Also important are processing techniques that ensure allograft sterility and 

facilitate storage.92 Additional steps  may be taken  to improve the architectural and bio-

integrative qualities of the allograft tissue.93 A key consideration is that the methods employed do 
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not significantly alter those key properties of the native allograft that make it a desirable 

biomaterial in the first place.  

Deep freezing is the most common form of connective tissue processing and storage used in 

tissue banks.4 Grafts treated by deep-freezing can reportedly be stored for up to 5 years.94 

Freezing of connective tissue to -80°C destroys significant numbers of donor cells and denatures 

MHC antigens.95 In a canine model of ACL repair, Arnoczky et al (1986) demonstrated that fresh 

patella tendon allografts from subjects with dissimilar MHC antigenic profiles incite a significant 

intra-articular inflammatory response.96  When the patella tendon allograft was frozen to -196°C 

for a minimum of four weeks prior to implantation, the allograft treated joints healed in a similar 

manner to those joints receiving an autograft control. Despite its apparent effectiveness and 

widespread use, protocols for the freeze treatment of connective tissue allografts vary widely. 97-99 

Several experimental studies report histological evidence of residual cellular material in freeze-

treated tendon tissue. This may explain instances where, despite freezing, allografts appeared to 

elicit deleterious immunological reactions.100  

Deep freezing alters the architecture of native tendon tissue. As well as denaturing tendon 

cells, ice crystals that form during the freezing process expand the interfibrillar space.99 In an in 

vitro evaluation of human posterior tibial tendons, Giannini et al (2008) demonstrated that tendon 

tissue frozen at -80C for 30 days exhibited increases in mean fibril diameter and cross sectional 

area and a decrease in collagen fibril density as measured by calorimetric analysis.101 These 

structural changes corresponded with changes in the biomechanical properties. Freeze treated 

tendons exhibited a decrease in ultimate load, ultimate tensile stress and ultimate tensile strain. 

These findings are in agreement with other studies of human biceps brachii tendon and rabbit 

patella tendon.102,103 Conversely, other studies comparing the mechanical properties of fresh and 

freeze treated anterior cruciate ligament tissue in dogs and monkeys respectively report no 
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significant differences.104 Discrepancies in the rate of freezing, rate of thawing, duration of 

freezing and the type of tissue make direct comparisons difficult.  

In vivo studies examining only the effect of freezing on the incorporation of allograft tendon 

tissue are uncommon. Most studies choose to compare a fresh-frozen allograft to a fresh autograft 

control. This type of experimental investigation attempts to answer the clinical situation that 

arises in human orthopedic surgery. In a rat patella hemi-tendon transplantation model utilized by 

Maeda et al (1997), the tensile strength of patella tendons implanted with fresh autografts was 

significantly greater than those receiving freeze treated autografts at 8 weeks.105 Using the same 

model with radio-isotope labeled tendon (3H-proline) Nagano et al (1996) determined that, at 12 

weeks, the amount of old collagen in the frozen autograft treated tendons was significantly lower 

than tendon receiving the fresh autograft.106 These findings suggest that freezing facilitates 

collagen turnover resulting in a functionally weaker construct initially. This may have 

implications for the healing and rehabilitation of clinical cases where frozen connective allografts 

are used.  

Freeze drying (lyophilization) in a physical process in which a material is frozen, the 

atmospheric pressure is then lowered and sufficient heat is added to allow water molecules to 

directly sublime from the solid to the gas phase. Freeze drying protocols are reportedly more 

complicated than deep-freezing and require prior ethanol treatment for blood/lipid removal.92 

Subsequent lyophilization reduces tissue moisture to around 5%. This allows the graft to be 

vacuum packed and stored at room temperature for a period of between 3-5 years.94 In a cadveric 

study of human patella tendon tissue, Bechtold et al (1994) reported greater ultimate tensile stress 

and strain values for frozen than for freeze-dried tendon.107 Whether this difference is clinically 

significant is not known. The lengths of time freeze dried allografts are left to re-hydrate likely 

influences the subsequent biomechanical properties of the graft. Few studies have examined the 
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immunological effects of lyophilization. Arthroscopic biopsy samples from a group of 21 human 

patients receiving a freeze dried fascia lata allograft ACL replacement revealed a progression of 

biologic incorporation very similar to that seen with fresh-frozen allograft ACL replacement.108 

Studies of cortical bone allografts would suggest that the process of lyophilization further 

decreases antigenicity beyond that which is achieved with freeze treatment alone.92  

One of the most potentially significant disadvantages to allograft usage is the risk of disease 

transmission. Freezing techniques are not effective in eradicating viral pathogens such as human 

immunodeficiency virus (HIV) and hepatitis.109 The disease transmission implications of the use 

of equine allograft technologies as yet remain unexamined. Gaseous ethylene oxide (EO) is an 

alkylating agent that kills micro-organisms through the inactivation of DNA, RNA and protein.110 

The clinical use of EO for allograft sterilization has been anecdotally associated with 

accumulation of toxic by-products, ethylene chlorohydrin and ethylene glycol. In a case series of 

109 patients receiving an EO sterilized BPTB allograft, Jackson et al (1990) reported a cellular 

intrasynovial inflammatory reaction in 7 patients (6.4%)111  Removal of the allografts resulted in 

resolution of the reaction. In the one graft that was subsequently analyzed, high levels of ethylene 

chlorohydrin were detected using gas chromatography.  Roberts et al (1991) reported complete 

graft dissolution in 8 of 36 patients (25%) receiving a freeze dried EO sterilized BPTB 

allograft.112 The authors’ clinical assessment was that EO treatment of the allograft tissue was the 

cause. Unfortunately, no analysis of EO residues was carried out.  A subsequent in vitro study 

demonstrated synoviocyte production of interleukin-1 in response to exposure to EO sterilized 

BPTB wear particles.113 These findings are in disagreement with earlier clinical reports of safe, 

effective bone and fascia lata sterilization with EO.114 These discrepancies are probably due to 

differences in EO processing techniques, the allograft material involved and the pre-operative 

aeration and rehydration or rinsing techniques employed.  
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Gamma irradiation alters nucleic acid resulting in genomic dysfunction and generates free 

radicals from water molecules.115 The bactericidal properties of gamma irradiation are currently 

utilized in the United Kingdom in allograft processing.109 The latter effect is diminished if 

lyophilization has been carried out prior to irradiation.95 A practical result of this is that much 

higher doses of radiation are required to achieve sterility if the allograft is in a frozen or freeze-

dried state. Fideler et al (1995) reported statistically significant reductions in ultimate tensile 

stress, strain energy, and Young’s modulus in fresh-frozen allografts after 2.0 Mrad of 

radiation.116 Doses of 4.0 Mrad have been reported as necessary to inactivate HIV from BPTB 

allografts.117 For this reason gamma irradiation is not recommended where allograft mechanical 

strength is a critical issue.  

Per acetic acid (PAA) has several ideal qualities for allograft sterilization. The bactericidal 

qualities of PAA are due to generation of the hydroxyl radical (HO·) in solution which oxidizes 

cellular carbohydrates, lipids and catalyses hydroxylation of phenylalanine to 3-

hydroxyphenylalanine (m-tyrosine).118 The break-down products of PAA are relatively 

innoccuous (hydrogen peroxide and acetic acid).  A PAA treated small intestinal submucosa 

allograft retained its native GAG as well as the resident growth factors; tumor necrosis factor-beta 

(TNF-β), basic fibroblast growth factor (BFGF) and vascular endothelical growth factor 

(VEGF).119 While this has not been determined for tendon, this may help retain desirable 

biomechanical and bio-intetegrative properties of the allograft. Starke (1984) initially established 

the suitability of PAA for the sterilization of Achilles tendon allografts.120 Subsequent studies 

have demonstrated no effect on in vitro biocompatibility and only limited detrimental effects on 

tendon biomechanical properties.121 In an ovine model of ACL replacement, Scheffler et al 

(2008) reported delayed remodeling of a PAA treated FDS allograft compared to non PAA 

sterilized allografts and autografts.122 An inferred consequence of this was the inferior 

biomechanical properties observed at 3 months. For the reasons outlined previously, these 
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findings are unlikely to be the result of toxic by-products. The authors suggested that unspecified 

ultrastructural (possibly oxidative) graft changes may have delayed the bio-integrative process. 

Further investigation is required to determine the exact ultrastructural changes that result from 

PAA treatment.  

Non-ionic detergents are desirable decellularization agents because of their effect on ECM is 

purportedly limited to lipid-lipid and lipid-protein interactions. The most studied non-ionic 

detergent is polyethylene glycol p-(1,1,3,3-tetramethylbutyl)-phenyl ether, known commonly by 

its trade name, Triton X-100 (Triton X-100, Sigma-Aldrich Corporation, St. Louis, MO). The 

effectiveness of Triton X-100 as a decellularization agent appears to be dependant upon the type 

of tissue and the duration of its exposure. Cartmell and Dunn (2000) examined the effectiveness 

of Triton X-100 treatment using rat-tail tendon.123 Treatment of tendons with 1% Triton X-100 

for 24 hours did not effectively remove cells. In rat tail tendon, Hu et al (1997) demonstrated 

disruption of the normal collagen D-period and a 50% reduction in tensile strength after Triton X-

100 treatment.124 In contrast, treatment of porcine ACL with Triton X-100 suffered no significant 

loss of biomechanical properties.114 Triton X-100 may function most effectively as part a multi-

step decellularization process. Using avian FDP tendon tissue, Whitlock et al (2007) reported 

excellent decellularization utilizing a protocol that included immersion in hypotonic solution, 

trypsin digestion and a PAA-Triton X-100 solution. Tendon tissue treated using this method 

exhibited excellent biocompatibility and retained 75% of its ultimate tensile stress.126  In contrast 

to non-ionic detergents, ionic detergents such as sodium dodecyl sulphate (SDS) and Triton X-

200 are highly effective at removal of cellular components. However, such compounds are 

associated with loss of collagen integrity and removal of GAG.127  

Enzymatic protocols for allograft decellularization commonly include a combination of 

proteases, nucleases and chelating agents.127 Trypsin is a proteolytic enzyme that cleaves the 
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peptide bond on the C terminal side of arginine and lysine, provided the next residue is not 

proline.128 Trypsin cannot cleave intact helical collagen and as such has been used as an indicator 

of collagen degradation. The addition of chelating agents such as ethylenediaminetetra-acetic acid  

(EDTA), will bind the divalent cations (Ca2+, Mg2+) necessary for cellular attachment to the 

ECM.129 The addition of nucleases to a decellularization protocol may facilitate the removal of 

DNA and RNA. Trypsin has been used as part of a multi-step decellularization tendon allograft 

processing technique. Chong et al (2009) reported the complete decellularization of rabbit flexor 

tendons using a freeze-thaw cycle followed by trypsin and Triton X-100 treatment.130 Tensile 

testing showed no effect on biomechanical properties.  While not specifically examined in 

tendons, prolonged exposure of porcine heart valve tissue to Trypsin/EDTA resulted in 

substantial loss of GAG and fibronectin resulting in a decrease in tissue ultimate tensile 

strength.131 In a tendon derived allograft where biomechanical strength may be important, it 

would be desirable to determine ideal exposure times to ensure decellularization without adverse 

biomechanical effects.  

2.4 The immunology of musculoskeletal allograft transplantation  

In transplantation medicine, the transfer of cellular allogenic tissue between genetically 

dissimilar individuals will usually elicit an immunologic rejection response.132 Despite the advent 

of highly effective surgical transplantation techniques, this remains a significant clinical 

impediment. In solid organ transplantation the most vigorous rejection reactions are associated 

with donor-host disparity within the major histocompatibility complex (MHC) antigens.133 

Currently, the evidence for the presence of MHC antigens on tenocytes is indirect. Using two 

strains of inbred rats, Minami et al (1982) demonstrated that the cellular component of tendon 

was the primary determinant of immunological reactivity.134 A further finding was that, after 

freezing, tendon cells lost their ability to elicit an immune response as measured by a complement 
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dependant cytotoxicity test. These observations further illuminated histological studies in which 

allotransplantation of fresh tendon resulted in immunologic rejection and implant failure while 

deep-freezing prior to implantation was associated with remodeling and incorporation by the 

host.135   

Upon implantation, decellularized tendon allografts can be infiltrated by cells with a 

fibroblastic morphology and subsequently remodeled.136 For this reason tendon allograft materials 

are commonly decellularized and implanted as ECM. Collagen itself is considered to be a weak 

antigen.137,138 However, the interpretation of immunological reactions to collagenous implants is 

often complicated by the presence of non-collagenous proteins, cells and cell-remnants.  

Immunologic reactions to decellularized tendon allografts have been reported. In an experimental 

study of ACL replacement, Vasseur et al (1987) reported the presence of anti-donor dog 

leukocyte antigen in the synovial fluid but not in the serum of all subjects receiving a BPTB ACL 

allograft.139 Thompson et al (1992) identified a humoral immune response characterized by 

production of antidonor IgG in 38% of human subjects receiving a BPTB allograft for ACL 

reconstruction.140 However, when this group was compared with autograft recipients, no 

significant difference in clinical outcome was identified.  This type of occult immune response 

may be why some studies report delayed remodeling of allograft tissue when used for ACL 

replacement.142,143  

Lynn et al (2003) identified three classes of antigenic determinants in collagen as (1) epitopes 

associated with the intact collagen triple helix; (2) epitopes associated with the amino-acid 

sequence rather than the 3 dimensional conformation; and (3) epitopes associated with the 

terminal telopeptide sequences.138 The helical component of the tropocollagen is believed to be 

highly conserved, with amino acid sequences varying only by a small amount, even between 

species.43 Centrally located epitopes in the helical region may be hidden from the immune system 
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and only become exposed to interacting antibodies when the triple helix is unwound. This may 

have an immunological implication if allograft collagen is degraded during processing. In 

contrast, the terminal telopeptide regions may exhibit considerable heterogeneity and as such 

have been implicated in some studies as major antigenic determinants.144 However, in order to 

maximize any immune response to transplanted ECM, most reported studies involve 

xenotransplantation and therefore the true situation with regards to allotransplantation remains 

unclear.  

Chemical cross-linking of allograft collagen, using isocyanate, glutaraldehyde or cabodiimide, 

has been proposed as a method for enhancing allograft biomechanical properties and slowing its 

rate of degradation.145,146 Subsequent studies have identified an unspecified yet detrimental 

immunological response to chemically cross-linked collagen. Valentin et al (2006) examined 

porcine small intestinal submucosa (PSIS) ECM based xenografts in a rodent abdominal wall 

defect model.147 Xenografts derived from acelluar porcine small intestinal submucosa (PSIS) 

cross-linked with either isocyanate or carbodiimide exhibited low grade inflammation, minimal 

scaffold degradation and fibrous encapsulation. Conversely non cross-linked PSIS xenografts 

exhibited rapid remodeling with minimal inflammation resulting in improved biomechanical 

characteristics in the repair tissue.  

The host immune response to allotransplantation is regulated by specific phenotypes of T-

lymphocytes. These sub-populations are believed to determine graft acceptance or rejection based 

upon the prevailing cytokine profile.148 Currently three helper T-lymphocyte phenotypes have 

been identified and have been designated Th1, Th2 and Th17.149 Classically, allograft rejection 

involved a predominance of Th1 derived cytokines (IL-2, IFN-γ, TNF-α).150 Aggarwal et al 

(2003) reported the expression of IL-17 in response to IL-23 by a separate T–lymphocyte lineage 

designated Th-17.151  IL-17 has been implicated in rejection of solid organ transplants. Th2 
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derived cytokines (IL-4,IL-5, IL-6 and IL-10) are believed to inhibit Th-1 mediated cytotoxic T-

lymphocyte and delayed type hypersensitivity responses.152 However, this paradigm is likely 

overly simplistic. For example, the prototypic Th-2 cytokine, IL-4, can be both 

immunosuppressive and immunostimulatory.153  

Few studies have examined the effect of allograft ECM scaffolds in terms of the host 

Th1/Th2/Th17 lymphocyte response.  Allman et al (2001) examined the cytokine response to 

subcutaneously implanted acellular xenogenic PSIS.154 Graft site cytokine analysis showed an 

increase in IL-4 and an absence of IFN-γ as measured by reverse transcriptase PCR.  The 

predominant antibody response was of the non complement fixing IgG1 isotype. Furthermore, 

sequential implantation of PSIS xenografts 28 days apart did not elicit a second set rejection 

reaction. No evidence of Th1 cytokines at the secondary graft site was found and the antibody 

response remained exclusively the IgG1 isotype. Unfortunately, similar studies examining 

cytokine profiles associated with allotransplantation (decellularized ECM) are not readily 

available. 

Macrophages play a key role in ECM degradation and by extension allograft remodeling.152 

As with lymphocytes, macrophages phenotypes have been identified on the basis of their 

functional properties, cell surface markers and the prevailing cytokine products.155 The M1 

macrophage phenotype produces the pro-inflammatory cytokines IL-12 and TNF-α. Conversely 

the M2 macrophage phenotype produces the Th-2 limited cytokine IL-10 as well as TGF-β. Using 

a rodent abdominal wall defect model, Valentin et al (2009) identified diverging macrophage 

phenotypes in response to chemical cross linkage of collagen in a PSIS derived xenograft.156 At 

both graft sites, a CD68+ population of mononuclear cells was present during the first 4 weeks. 

However, at 16 weeks, the non-cross linked xenograft exhibited a predominantly CD163+ 

response (M2 profile). In contrast, the cross linked xenograft exhibited a predominant CD80+ and 
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CCR7+ response (M1 profile).  Knowledge of the specific cell surface markers for different 

phenotypes of equine macrophages and lymphocytes would be useful in evaluation of host 

response to allotransplantation. 
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CHAPTER III 

 

 

METHODOLOGY 

3.1 Experimental subjects 

Ten horses (7 mares and 3 geldings) were obtained for the purposes of this study. Based on dental 

examination the experimental subjects were aged between 5 and 15 years. All experimental 

subjects weighed between 445 and 520 kilograms. A physical examination carried out on each 

experimental subject prior to the commencement of the study revealed no abnormalities.  

3.2 Allograft preparation  

Two unrelated quarter-horse mares of approximately 10 years of age acted as donors for 

allogenous tendon tissue. Euthanasia was carried out by barbiturate overdose. 

Immediately after death, the distal forelimbs were clipped and aseptically prepared. The 

forelimb FDS tendons were surgically excised from the level of the accessory carpal bone 

to the level of pastern. Once removed, the FDS tendons were stripped of all paratenon 

and extraneous tissue and shipped overnight on dry ice to the Wake Forest Institute for 

Regenerative Medicine (Wake Forest University, Winston-Salem, NC).  

All harvested tendon tissue was stored at −80°C until processing. Two variations of a 

previously published protocol were employed to carry out tendon decellularization and 

oxidation.126  Tendon tissue from the first donor horse (denoted type-1 allografts) was 

processed according to the following protocol: Each FDS tendon was sectioned 

transversely  in half prior to processing. One liter of DNase-free/RNase-free, distilled 
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water was added to each sample. After 24 hours, the water was discarded and the cycle 

was repeated. At the conclusion of the second cycle, the water was discarded and 500ml 

of 0.05% trypsin (Sigma-Aldrich Corporation, St. Louis, MO), 4.0mmol sodium 

bicarbonate, and 0.5mmol ethylenediaminetetraacetic acid (EDTA) (Sigma-Aldrich 

Corporation, St. Louis, MO), prepared in Hank's balanced salt solution was added. After 

1 hour, the trypsin solution was discarded and 500 ml of Dulbecco's modified Eagle's 

medium high-glucose containing 10% fetal bovine serum (DMEM-FBS) (Valley Labs, 

Winchester, VA) and an antibiotic cocktail of 100IU/ml penicillin, 100μg/ml 

streptomycin, 0.25μg/ml amphotericin B was added in order to halt trypsin digestion of 

the sample and eliminate any microbial contamination.  

After 24 hours, the DMEM–FBS solution was discarded and 1L of the DNase-

free/RNase-free distilled water was added. After 24 hours, the washing solution was 

discarded and 500 ml of 1.5% peracetic acid (PAA) solution with 2.0% non-ionic 

detergent (Triton X-100) (Sigma-Aldrich Corporation, St. Louis, MO) in distilled, de-

ionized water (diH2O) was added for 2 hours. The solution was discarded and three 12 

hour immersions with 1L of diH2O were performed. At the end of the third immersion, 

the sample was removed and placed into a clean, sterile polyethylene container and 

frozen for 24 hours at −80°C. The sample then was removed from the −80°C freezer and 

freeze-dried (Labconco, Freeze Dry System, Kansas City, MO) for 24 hours before being 

returned to the freezer and stored at −80°C prior to shipment to the Oklahoma State 

University College of Veterinary Medicine at room temperature.  
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Tendon tissues from the second donor horse donor horse (denoted type-2 allografts) were 

processed with the following modifications to the previously described protocol: 

1. The period of immersion in PAA-Triton X-100 solution was increased 

from 2 to 4 hours. 

2. The total number of 12 hour washes in diH2O after PAA-Triton X-100 

treatment was increased from 3 to 6. 

3.3 Surgical technique of allograft implantation 

The surgical technique employed was based on a technique previously described by 

Fackelman (1973).167 All experimental subjects received pre-operative broad spectrum 

antimicrobials (potassium penicillin; 22,000IU/kg IV and gentamicin; 6.6mg/kg IV) as well and 

NSAID analgesia (flunixin; 1.1mg/kg IV). General anesthesia was induced with ketamine 

(2.2mg/kg IV) and diazepam (0.1mg/kg IV) after pre-medication with xyalzine (1.1mg/kg IV) 

and was maintained using isoflurane delivered in 100% oxygen. The experimental subjects were 

randomly assigned to either right lateral or left lateral recumbency prior to surgery. Both 

forelimbs distal to the accessory carpal bone were clipped, aseptically prepped and draped prior 

to surgery. A 15cm skin incision, orientated proximo-distally was made on the palmaro-medial 

aspect of the proximal metacarpus (Figure 1). A 10cm longitudinal incision was then made in the 

paratenon exposing the epitenon of the FDS tendon. Using a number 11 scalpel blade the palmar 

midline of the FDS tendon was scored to a depth of 2mm for approximately 6cm in length.  With 

a #11 scalpel blade orientated at 45 degrees to the palmar aspect of the tendon, a longitudinal 

incision was made into the tendon from the palmar midline, 6cm in length. A second incision, 

orthogonally orientated, was then made in a similar fashion. The resulting effect was to create an 

envelope within the FDS tendon. 
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Figure 1: Intra-operative photographs demonstrating the surgical approach to implantation. 
Top: A 15cm incision orientated proximo-distally on the proximal palmar metacarpus 
through skin and paratenon. Middle: A longitudinal incision is made with a #10 blade 
orientated 45 degrees to the sagittal plane. Bottom: Positioning graft in the pocket created 
within the FDS tendon. Closing sutures have been pre-placed at the margins of the tendon.   
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Prior to implantation, tendon allografts were soaked for 12 hours in a solution of 250ml of 

isotonic saline with 1000mg of amikacin at room temperature. Allografts were trimmed intra-

operatively to dimensions of 60mm by 2mm by 6mm. The sized allograft was then placed in the 

pocket within the FDS tendon. The epitenon on the palmar aspect was then closed with 6 simple 

interrupted sutures of 3-0 (USP) polyglactin-910. The paratenon was then closed with 3-0 

polyglactin-910 using a simple continuous suture pattern. The skin margins were opposed using 

2-0 nylon in a simple interrupted suture pattern. Half-limb bandages were placed on both 

operated limbs prior to recovery.  

In the first 4 experimental subjects operated upon, one limb received a type-1 allograft while 

the contra-lateral limb functioned as a sham-operated control.  In the second group of 4 

experimental subjects, one FDS tendon received a type-2 allograft and the contra-lateral limb 

received an autograft harvested from the EDL tendon of the uppermost hindlimb at the level of 

the tarsus according to a previously published surgical technique.110 Prior to implantation the 

paratenon was removed and the autograft was trimmed to the same dimensions as the allograft.  

3.4 Post-operative management of experimental subjects  

All experimental subjects recovered from anesthesia without complication. Intravenous 

potassium penicillin at the previously mentioned dose-rate was given every 6 hours for 24 hours 

post-operatively. For analgesia and anti-inflammatory effects, flunixin was administered 

(1.1mg/kg IV q12hrs for 3 days followed by 1.1mg/kg IV q24hrs for 3 days) for 6 days post-

operatively. Half limb bandages were maintained on operated limbs for two weeks and were 

changed every second day. Skin sutures were removed from all surgery sites at 10 days post-

operatively. No complications relating to healing of surgical sites were observed.  All 

experimental subjects were confined to a hospital stall until bandages were removed. After this 
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time, the experimental subjects were housed in 3 meter by 3 meter stalls until the conclusion of 

the study.  

3.5 Ultrasonographic examination of treated tendons 

All ultrasonographic examinations were carried out using a MyLab® 30 CV ultrasound system 

(Biosound Easote, Inc. Indianapolis, IN) with a 15MHz linear tendon probe. Ultrasonographic 

cross-sectional images of the forelimb FDS tendons were obtained prior to study commencement 

and then at 2 weekly intervals for the duration of the study. Digital images were obtained from 

the transverse level of the accessory carpal bone at 2cm intervals to the level of the 

metacarpophalangeal joint. Cross sectional area (CSA) measurements of FDS tendons were made 

using an integrated software package (Biosound Easote, Inc. Indianapolis, IN). In all 

experimental subjects, images obtained at 12cm and 14cm distal to the base of the accessory 

carpal bone (DACB) corresponded to the proximal and distal aspects of the implantation site. 

These two locations were used to obtain CSA measurements for comparison between treatment 

groups.  

3.6 Gross and histological examination of treated tendons 

Twelve weeks postoperatively, all experimental subjects were euthanized by barbiturate 

overdose and the forelimbs were sectioned at the level of the radiocarpal joint. After removal of 

the skin, any adhesions between the paratenon and FDS tendon were documented 

photographically. The FDS tendons were then excised from the level of the accessory carpal bone 

to the metacarpo-phalangeal joint and the amount of tendinous reaction was documented 

photographically. Full thickness longitudinal sections were made corresponding to transverse 

levels 12 and 14cm DACB respectively. These sections were embedded in paraffin and cut to a 

thickness of 5μm using an ultramicrotome and mounted on glass slides. The mounted sections 

were then stained with hematoxylin and eosin (H&E, Sigma-Aldrich Corp. St. Louis, MO).  
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A subjective scoring system was utilized to examine the effects of sham surgery, 

allotransplantation and autotransplantation on the FDS tendon. Each slide was scored by two 

pathologists blinded to the treatment groups.  

3.7 Statistical analysis 

All statistical analyses were carried out using PC SAS Version 9.2 (SAS Institute, Cary, NC). 

For ultrasonographic (CSA) data, analysis of variance assuming a repeated measures model with 

an autoregressive covariance structure was carried out. A comparison of means was done using 

protected pair-wise t-tests. For histological scores from the subcutaneously implanted allograft-

autograft pair data, two factor analysis of variance was undertaken, examining the effect of 

treatment (allograft versus autograft) at given time period (1, 5 or 10 weeks). For histological 

scores from tendon implanted allografts and autografts, data were also assessed using a two factor 

analysis of variance. All data were considered significant at P≤0.05. 
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CHAPTER IV 
 

 

FINDINGS 

4.1 Ultrasonographic examination of treated tendons  

The CSA of all operated tendons was observed to increase post-operatively. (Figure 2) At 2 

weeks, there was no significant difference in CSA between treatment groups (sham surgery, 

autograft, type-1 allograft and type-2 allograft). By 6 weeks, a significant difference in CSA was 

observed between all treatment groups. This difference between groups was present at every 

observation from this time-point forwards. From the 4 week time-point, the sham-operated 

tendons decreased in size until by the conclusion of the study, they were approximately 10% 

larger than their pre-operative measurements.  At this point no tendon lesion was identifiable 

ultrasonographically. 

The greatest increase in size was observed in the tendons implanted with the type-1 allograft. 

At the conclusion of the study tendons in this group were over 100% larger than their pre-

operative measurements. In this group, the CSA did not appear to have stabilized by the 

conclusion of the study. Ultrasonographically, the type-1 allograft remained clearly visible within 

the host tendon, surrounded by a well demarcated zone of hypoechogenicity (Figure 3). From the 

initial observation at 2 weeks, the allograft itself was not observed to change in size. The allograft 

remained more echogenic than peripheral areas of host tendon throughout the study. Marked 

thickening of the paratenon and subcutaneous tissues was also evident.  
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Figure 2: Bar graph showing mean ultrasonographic cross-sectional area values obtained for 
treatment groups, measured at two week intervals. Lines on bars indicate 1 standard deviation 
above and below mean values. 
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Figure 3: Transverse sonograms taken from the proximal palmar metacarpus (12-14cm 
DACB) of implanted limbs at 12 weeks. Red arrows indicate the location and appearance of 
each type of implant within the FDS tendon. Top: Autograft. Middle: Type-2 allograft. Bottom: 
Type-1 allograft. 
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Tendons which received an EDL tendon autograft also decreased in CSA from the 4 week 

time point onwards. By the conclusion of the study, the autograft group was the closest in CSA to 

the sham-operated group although still significantly larger in CSA. Ultrasonographically, the 

implanted autografts appeared uniformly hypoechoic relative to the surrounding host tendon. A 

similar degree of paratendinous and subcutaneous reaction was observed to that observed in the 

type-1 allograft group. However, they were more similar in size to the autograft group than the 

type-1 allograft group although still significantly larger. Ultrasonographically, the type-2 

allografts appeared incorporated into the host tendon to a degree similar to that seen in the 

autograft group. Similar to the autograft and type-1 allograft, the type-2 allograft was not 

observed to change in size significantly for the length of the study.  Of the implanted tendons, the 

type-2 allograft group appeared to have the smallest amount of paratendinous reaction and that 

respect was most similar ultrasonographically to the sham-operated group.   

4.2 Gross pathological examination of treated tendons 

All operative sites healed uneventfully and no evidence of post-operative complications was 

found at necropsy. Sham operated limbs exhibited subtle tendinous and paratendinous thickening 

in the proximal metacarpal region. Dissection of the skin and subcutaneous tissues revealed mild 

thickening of the paratenon associated with the surgical site.  In all sham-operated limbs a small 

number of focal adhesions were present between the paratenon and the epitenon. When the 

tendon was sectioned, the operative site was difficult to locate grossly. 

Implantation of type-1 allografts was associated with marked paratendinous and tendinous 

thickening (Figure 4). Extensive paratendinous fibrosis resulted in large substantial adhesions 

between the palmar aspect of the FDS tendon and the paratenon. The tendon itself exhibited 

marked fibrosis around the allograft which remained discernable as a whitish structure within the  
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Figure 4: Post mortem photographs of the implanted regions of the FDS tendons harvested 
12 weeks post-operatively. Top: Autograft. Middle: Type-2 allograft. Bottom: Type-1 
allograft. A significant amount of tendinous and paratendinous reaction is associated with 
the type-1 allograft.  
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host tendon when sectioned (Figure 5).  The allograft was adherent to the surrounding fibrous 

tissue and tendon but could be separated from the host tendon with minimal force.  

Grossly, limbs implanted with type-2 allografts exhibited a similar amount of paratendinous 

thickening and fibrosis to the sham-operated tendons.  Adhesion formation between the paratenon 

and epitenon was mild and considerably less extensive than the adhesions observed in limbs 

receiving the type-1 allograft.  On transverse section, the allograft could be visualized as a white 

region within the cream colored surrounding host tendon. In contrast to the type-1 allograft, the 

type-2 allograft appeared well integrated and required dissection to remove it from the 

surrounding host tendon.  

Limbs implanted with autografts exhibited a similar amount of paratendinous thickening and 

fibrosis to the limbs implanted with the type-2 allograft. Adhesion formation between the 

epitenon and paratenon at the surgical site appeared intermediate between that seen in limbs 

receiving the type-1 allograft and sham-operated limbs. On transverse section, the autograft could 

be consistently visualized as an area of reddish discoloration within the host tendon that 

corresponded with the ultrasonographic images of the area obtained ante-mortem, post-

operatively.  In contrast to the type-1 and 2 allograft treated limbs, the autograft tissue could not 

be readily dissected from the host tendon.  
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Figure 5: Transverse sections of implanted FDS tendons corresponding to regions 12-14cm 
DACB. Arrows indicate the location and appearance of each implant in situ. Top: Autograft. 
Middle: Type-2 allograft. Bottom: Type-1 Allograft.   
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4.3 Histological scoring of treated tendons  

The highest scores for lymphocyte density were given to implanted tendons receiving the 

type-1 allograft (Table 1). Lymphocyte density scores for type-2 allografts and autografts were 

not significantly different. Conversely, the highest scores for neutrophil density and macrophage 

density were given to the autograft implanted tendons. No difference in score for macrophage 

density was recorded between type-1 and type-2 allograft implanted tendons. Type-1 allograft 

implanted tendons scored higher for neutrophil density than type-2 allograft implanted tendons. 

Autograft treated tendons received the highest scores for degree of neo-vascularization while 

tendons implanted with the  type-2 allograft scored higher in this characteristic than those 

receiving the type-1 allografts, although this finding was only significant in the distal location of 

the implantation site. The greatest scores for reactivity (width of reaction) were consistently 

assigned to the type-1 allograft treated tendons. No significant difference was found in scores for 

width of reaction between type-2 allograft treated tendons and autograft treated tendons.  
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4.4 Descriptive histological analysis of treated tendons   

By 12 weeks post-operatively, the sham-operated tendons appeared to have returned to a near 

normal histological appearance. Subtle loss of normal fascicular architecture (fascicular 

thickening and inter-fascicular fibrosis) was apparent at the surgical site. A mild increase in the 
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cellularity and vascularity within the operated region was also apparent. The predominant cell 

type exhibited a fibroblastic morphology. Small numbers of lymphocytes were also present.  

In the autograft implanted tendons, the normal linear fascicular arrangement of tendon ECM 

was largely replaced by randomly orientated highly cellular fibrous connective tissue (Figure 7). 

However, small regions retaining the linear fiber orientation of the original allograft could be 

observed, scattered randomly throughout the autograft. Significant numbers of macrophages and 

lymphocytes were observed throughout the autograft and at the graft-host interface. Abundant 

diffuse neovascularization was observed.   

Histologically, the type-1 allograft implanted tendons exhibited a marked fibrous reaction that 

surrounded the allograft within the host tendon and proliferated through to the surface of the 

adjacent palmar epitenon. This tissue appeared to be an encapsulating reaction around the 

implanted allograft. At the graft-host interface abundant cellular infiltration, composed primarily 

of lymphocytes, and smaller numbers of macrophages, with the occasional multi-nucleate giant 

cells was observed. Within the graft itself, few strands of linearly arranged infiltrating fibrous 

tissue could be observed accompanied by very limited neovascularization. Where the 

neovascularization was present it was invariably associated with lymphocytic infiltration. 

However, the center of the graft appeared largely acellular and uninfiltrated.  

In contrast to the type-1 allograft, the type-2 allograft elicited a fibrous reaction of similar 

width to that seen in the autograft treated tendons. However, the reaction around the type-1 

allograft appeared more organized and non-encapsulating, with linearly arranged bundles running 

parallel to the fiber-bundles within the graft itself (Figure 9). In contrast to the autograft, the 

implanted type-1 allograft retained its fascicular architecture of linearly arranged fiber bindles, 

similar to normal tendon. At the graft-host interface a cellular infiltration consisting of moderate 

numbers of lymphocytes and macrophages was observed. Within the substance of the graft, small 
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numbers of cells with well defined fibroblastic morphology, intimately associated with the fiber-

bundles of the allograft, were present (Figure 9, insert). As with the type-1 allograft, limited 

neovascularization of the graft had occurred.   
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Figure 6: Photomicrograph of longitudinally sectioned FDS tendon taken from site of 
sham surgery. Arrow indicates a region of increased cellularity and vascularity (20x, 
H&E stain). 
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Figure 7: Photomicrograph of longitudinally sectioned FDS tendon taken from a 
site of autograft implantation. T: A region of host tendon. G: A region of 
autograft demonstrating breakdown of the graft and its replacement by 
disorganized collagen fibrils. (20x, H&E stain) A: High power magnification of 
region corresponding to G (200x, H&E stain).  
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Figure 8: Photomicrograph of longitudinally sectioned FDS tendon taken from a site of 
Type-1 allograft implantation. T: Region of host tendon. Top arrow: A region at the center 
of the allograft. Bottom arrow: A region at the graft-host interface. A: High power 
magnification of region corresponding to top arrow. The allograft exhibits no cellular 
infiltration whatsoever in this region (200x, H&E stain). B: High power magnification of 
region corresponding to bottom arrow. A predominantly lymphocytic infiltration is seen in 
this area (200x, H&E stain). 
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Figure 9: Photomicrograph of longitudinally sectioned FDS tendon taken from a site of 
type-2 allograft implantation. T: A region of host tendon. G: A region of type-2 autograft 
in situ. Arrow: A region of the graft-host interface. A: A high power magnification of 
region corresponding to the area indicated by the arrow. A predominantly lymphocytic 
reaction at graft-host interface is visible. The small arrows indicate cells with tenocytic 
morphology intimately associated with the allograft (200x, H&E).  
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CHAPTER V 
 

CONCLUSIONS  

5.1 Study limitations  

This study has several limitations that prevent strong conclusions from being made from the 

available data. The ante-mortem effects of surgery, as well as allo and auto transplantation were 

assessed using the modality of ultrasound. Ultrasonographic examination is a clinically useful, 

non-invasive technique for assessment of tendon injury.157,158 CSA is a key objective 

measurement made as part of a complete ultrasonographic examination.159 Other potentially less 

objective measurements, such as fiber alignment score and degree of echogenicity, could have 

been utilized for a more complete ultrasonographic assessment.  However these parameters have 

a higher degree of inherent subjectivity in comparison to CSA measurement.  

Other ante-mortem analyses may have helped to characterize the host response to 

allotransplantation. In solid organ transplantation, measurable serum markers of rejection include: 

C-reactive protein, tumor necrosis factor alpha (TNF-α), and interleukin-6 (IL-6).160 It is possible 

that transplantation of an inadequately decellularized allogenic tendon-derived biomaterial may 

have resulted in measurable serum increases in these markers. Similarly, where musculo-skeletal 

allografts have been implanted in an intra-articular environment, synovial fluid markers of 

inflammation have been measured.139 In this study, the relatively small amount of tissue 

transplanted and the site of transplantation (non-articular) may have resulted in changes in these 

systemic parameters that were too small to measure. As outlined previously, the host immune 

response to musculoskeletal allotransplantation is believed to be regulated by specific phenotypes 

of T-lymphocytes.147 These sub-populations are believed to determine graft acceptance or 

rejection and can be differentiated by the prevailing local cytokine profile and their surface 

antigens. Analysis of the mRNA profiles of lymphocytes and macrophages at the graft-host 
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interface could have been useful in characterization of the host response to the two 

allotransplantation protocols used in this study. 

In this investigation, post-mortem evaluation of tendon tissue was limited to gross 

examination and histological analysis. Histology provides an effective evaluation of the host 

cellular and tissue architectural responses to surgery and/or transplantation. Subjective scoring 

systems of the type employed in this study have been utilized in previously published 

investigations of tendon healing.161,162 While subjective scoring systems lack the rigor of 

objective numerical data, they represent an attempt to quantify otherwise subjective broad 

histological observations. For these reasons, two veterinary pathologists blinded to treatment 

groups were used in this study. As good correlation was achieved between observers, their scores 

were pooled for subsequent statistical analyses. 

A further limitation to this study was its length. Clinical cases of FDS tendon injury may take 

15 to 18 months to heal fully.17 For this reason, it was possibly unreasonable to assess allograft 

incorporation after only 12 weeks. Ideally, the experimental subjects would have been maintained 

for at period of at least 15 months. However, the duration of this particular study is longer than 

other previously published investigations of tendon healing.162,164-166 

5.2 Conclusions based on ultrasonographic data 

The response of equine FDS tendon to surgical insult alone was a 10% increase in CSA at 12 

weeks post-operatively. The tendon response to allo or auto transplantation however, varied 

significantly between the three treatment groups receiving implants. The type-1 allograft treated 

tendons continued to increase in CSA at every time-period and had not stabilized 

ultrasonographically by the conclusion of the study. A reduction in CSA would have been have 

been an in vivo indication of a healing and remodeling response to implantation. The hypoechoic 
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zone surrounding the type-1 allograft at 12 weeks combined with the observed increase in tendon 

CSA suggests delayed or impaired healing in response to the presence of the type-1 allograft.  

In contrast, the CSA of the type-2 allograft and autograft treated tendons appeared to have 

stabilized by the conclusion of the study period. For both of these two groups, the 

ultrasonographic appearance of the engrafted tissue was one of incorporation into the host tendon. 

For the type-2 allograft, and the EDL autograft, the lack of a hypoechoic zone surrounding the 

implant and progressive reductions in CSA are in vivo indications of tendon remodeling and 

healing in the presence of the implant. The relatively hypoechoic appearance of the autograft 

within the host tendon at 12 weeks is a characteristic that correlates with the documented 

ultrasonographic appearance of immature reparative tendon tissue.159 This ultrasonographic 

finding is suggestive of  a more rapid remodeling of the autograft tissue in comparison to either 

the type-1 or type-2 allografts. Unfortunately, no previously published reports of the 

ultrasonographic evaluation of tendon allografts are available for comparison. While 

transplantation of fresh, autologous LDE tendon tissue has been evaluated as a potential treatment 

for FDS tendon injury, the ultrasonographic appearance of this transplanted tissue has not been 

documented.167 Rapid remodeling of a tendon bioscaffold may result in a construct that is unable 

to withstand normal mechanical forces early in the healing process. This may explain why 

autograft facilitated repair of FDS injury failed to demonstrate clinical efficacy when evaluated 

by Grant et al (1982).168    

5.2 Conclusions based on histological data 

Surgical insult to the FDS tendon without implantation resulted in the loss of normal 

fascicular architecture, and a mild increase in vascularity and cellularity. In none of the treatment 

groups was normal tendon architecture restored by the end of the 12 week post-operative period. 

Histologically, fresh autograft EDL tendon was observed to lose almost all of its native fascicular 
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architecture when transplanted. The higher histological scores for macrophage and neutrophil 

densities in the autograft implanted tendons provides evidence for the ongoing and extensive 

nature of this remodeling process 12 weeks after implantation. Conventional paradigms 

concerning inflammation indicate that neutrophils are associated with an active, acute or 

persistent inflammatory response while macrophages are associated with sub-acute or chronic 

inflammation.169 The degradation products of any biomaterial can function as chemoattractants 

for a variety of cell types.152 In the absence of clinical, pathological and histological evidence of 

infection it is likely that the extensive degradation of unmodified autogenous tendon provides the 

bioactive constituent molecules for the cell population observed.  An important clinical 

implication for this finding is that an implant derived from autogenous tendon, rapidly broken 

down in vivo, is unlikely to provide a scaffold for infiltration by fibroblastic cells.  

In contrast to the autograft, both the type-1 and type-2 allografts sustained only limited 

remodeling by the conclusion of the 12 week study period. For both autologous biomaterials, the 

remodeling process was not histologically complete by the conclusion of the study. However, in 

each case, differences were observed in the character and extent of the cellular response at the 

graft host-interface. A greater degree of lymphocytic infiltration and a significantly greater width 

of reaction were observed at the graft-host interface in the type-1 allograft implanted group. An 

interpretation of this observation would be that the local cytokine profiles at the graft host 

interface differ between the two allograft treated groups. Similar studies investigating 

acellularized musculo-skeletal biomaterials have attributed a Th-1 cytokine response to the type 

of fibrous encapsulation and marked lymphocytic infiltration seen in the type-1 allograft treated 

group.147  

The different protocols used in the production of the type-1 and type-2 allografts may, in part, 

explain the histological differences observed.  In the evaluation of any novel biomaterial, the 

interpretation of an immunological response can be complicated by the presence other antigenic 
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stimuli such as: non-collagenous proteins, cells and cell-remnants.126 It is possible that the 

protocol used to process the type-1 allograft was less effective in removing these types of residual 

donor antigens. If present in sufficient quantity, such antigens could provoke a spectrum of 

response from delayed incorporation to overt graft rejection.  

As mentioned, PAA treatment of collagen is associated with the cross-linking of collagen 

molecules through the generation of oxidative hydroxyl radicals.123 Excessive chemical cross-

linking has been associated with adverse immunological responses to decellularized xenogenic 

and allogenic collagen derived biomaterials. In addition, chemical cross-linking associated with 

PAA treatment has been implicated in the delayed remodeling of BPTB allografts.122 In this 

study, preparation of the type-2 allograft involved a prolonged exposure to PAA and additional 

washing steps relative to the type-1 allograft protocol.  It is possible that these additional 

treatments were more effective in removal of antigenic material, and did not modify native 

collagen to an extent that would elicit an undesirable host response. Evidence of this is provided 

by the small number of fibroblastic cells intimately associated with the type-2 allograft that were 

not present within the type-1 allograft.  

It is also possible that PAA-Triton X-100 residues in the type-1 allograft were responsible for 

the more extensive inflammatory reaction observed. As mentioned previously, PAA rapidly 

breaks down to acetic acid and liberates oxygen and heat.120  In an in vitro study, treatment of 

tendon with 0.1% PAA for 3 hours followed by 3, fifteen minute washes with PBS did not elicit 

any cytotoxic response from human fibroblasts.170 This finding is in agreement with in vivo 

studies of PAA treated heart valves and human skin allografts.127 In theory, emulsification of 

cellular phospholipids by residual non-ionic surfactants could have led to cellular damage and 

subsequent release of inflammatory mediators. In vitro studies of Triton X-100 have detected 

cytotoxicity in human fibroblasts at concentrations of not more than 10-1-10-2 g/L.171 However, 

Triton X-100 has been evaluated in numerous decellularization protocols with tissue exposure 
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periods from several hours to up to 14 days with no deleterious in vivo effects being attributed to 

this chemical.127  

5.2 Final remarks  

This study has identified a physico-chemical process that may lead to the production of 

an “off-the shelf” biomaterial for use in equine orthopedic surgery. Additional studies are 

needed to further characterize the cellular response of horses to this type of biomaterial 

and evaluate its biomechanical properties. If effective, an allogenic biomaterial of this 

type may develop widespread clinical applications in the field of equine tendon and 

ligament repair.  
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