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CHAPTER I 
 

INTRODUCTION AND LITERATURE REVIEW 

Introduction 

Anaplasma phagocytophilum (Order Rickettsiales, Family Anaplasmataceae) is a 

pathogen transmitted by ticks, most notably of the genus Ixodes, to a wide range of hosts, 

including birds, small and large mammals and humans (Goodman 2005; Woldehiwet 

2010).  This organism is the etiologic agent of a febrile illness of humans (human 

granulocytic anaplasmosis, HGA), ruminants (tick-borne fever, TBF), horses (equine 

granulocytic anaplasmosis) and dogs (canine granulocytic anaplasmosis, CGA).  A. 

phagocytophilum is a well established pathogen of small ruminants in Europe (Stuen 

2007) and, more recently has been shown to be the cause of an emerging tick-borne 

disease of humans in the United States, Europe and Asia (Goodman 2005). The wide host 

range of A. phagocytophilum and the extensive distribution of tick vectors will likely 

contribute to an increase in the number of reservoir hosts. In addition, the expanding 

range of tick vectors and the movement of human populations from urban to rural areas 

will also impact reservoir host and human contact with infected ticks, all of which will 

likely increase the risk of acquiring A. phagocytophilum infections. Therefore, the 

continued emergence of diseases associated with A. phagocytophilum infection is a 

growing concern for human and animal health in the United States and other parts of the 

world.  The recognition of the broad distribution of A. phagocytophilum and it emergence
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as a tick-borne pathogen has created renewed interest and has accelerated research on this 

organism, particularly on the molecular relationship of the pathogen with it’s vertebrate 

and tick hosts (Woldehiwet 2010).    

Literature Review 

Historical Background   

 A. phagocytophilum was first recognized over 70 years ago in Europe as the 

causative agent of tick-borne fever (TBF) in domestic ruminants, primarily sheep 

(Gordon et al. 1940; Woldehiwet 2010). The prototype of A. phagocytophilum, the agent 

of TBF in ruminants, was first named Rickettsia phagocytophila (Foggie 1949), only to 

be subsequently renamed Cytoecetes phagocytophila (Foggie 1962) based on 

morphological similarities to Cytoecetes microti (Tyzzer 1938).  The organism was then 

listed in the tribe Ehrlichieae as a separate species, E. phagocytophila, by Ristic and 

Huxsoll (1984), but this designation was not adopted by researchers in Europe who 

continued to refer to the pathogen as C. phagocytophila (Woldehiwet and Scott 1993).   

In the United States, the first case of equine granulocytic anaplasmosis (EGA) in 

horses was reported in California in 1969 (Gribble 1969) and was presented as a separate 

species, E. equi. Canine granulocytic anaplasmosis (CGA), another emerging disease 

caused by A. phagocytophilum, was first detected in a German shepherd dog in Arkansas 

in 1971 (Madewell and Gibble 1982). At this time the pathogen was thought to be 

maintained in a transmission cycle between domestic animals and free-living reservoirs 

(Ogden et al. 1998 a,b).  

During the early 1990’s, an emerging disease of humans in the United States was 

found to be caused by a granulocytic agent similar to A. phagocytophila and E. equi 
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(Chen et al. 1994). The disease caused by this newly-discovered organism was named 

human granulocytic ehrlichiosis (HGE) but was later designated human granulocytic 

anaplasmosis (HGA) after the pathogen was classified in the genus Anaplasma and 

named A. phagocytophilum (Dumler et al. 2001).  

Through the comprehensive reclassification of the Family Anaplasmataceae in 

2001, these organisms were all classified as A. phagocytophilum (Dumber et al. 2001). 

Since that time, the number of strains of A. phagocytophilum that vary in host preferences 

and other aspects are continuing to increase in the U.S. and Europe and are considered to 

be variants of the same organism. 

Classification 

  The reclassification of A. phagocytophilum (Table 1), in which three previous 

species (Ehrlichia phagocytophilia, Erhlichia equi and the previously unnamed agent of 

HGA) were combined as one, was part of a comprehensive review of the families 

Rickettsiaceae and Anaplasmataceae (Dumler et al. 2001).  This reclassification was 

based on genetic and antigenic similarities, a preference for granulocytes as host cells, 

development of the organism within parasitophorous vacuoles, similar developmental 

cycles involving reticulated and dense forms and by being vectored by ticks.  In this 

reorganization, the tribes Rickettsieae, Ehrlichieae, Wolbachieae, and Anaplasmataceae 

were eliminated and the species were moved to the family level based on their molecular 

and phenotypic similarities (Dumler et al. 2001). Therefore, the family Anaplasmataceae 

was broadened to include all species of the α-Proteobacteria listed previously in the 

genera Ehrlichia, Anaplasma, Cowdria, Wolbachia, and Neorickettsia (Dumler et al. 

2001). This reorganization was based on biological characteristics and genetic analyses of 
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16S rRNA genes, groESL, and surface protein genes (Dumler et al. 2001). These 

phylogenetic analyses consistently supported the formation of four distinct genera within 

the family Anaplasmataceae: (i) Anaplasma, with a 96.1% minimum similarity; (ii) 

Ehrlichia, with a 97.7% similarity; (iii) Wolbachia, with a 95.6% similarity; and (iv) 

Neorickettsia, with a 94.9% similarity (Table 2). While organisms placed in the family 

Anaplasmataceae are obligate intracellular organisms, they are found exclusively within 

membrane-bound vacuoles in the host cell cytoplasm. Furthermore, most all organisms in 

the family Anaplasmataceae multiply in both vertebrate and invertebrate hosts (primarily 

ticks or trematodes).  In contrast, organisms classified within the family Rickettsiaceae 

(genera Rickettsia and Orientia) are obligate intracellular bacteria that grow freely within 

the cytoplasm of eukaryotic cells. A. phagocytophilum was grouped with the organisms 

that infect ruminants (Cytocecetes phagocytophila, Ehrlichia phagocytophila) and horses 

(Ehrlichia equi) (Dumler et al. 2001). A common feature is that bacterial survival of 

organisms in the genera Anaplasma and Ehrlichia depends on mammalian hosts because 

transovarial transmission does not occur. 

Epidemiology, geographic distribution and emergence of granulocytic anaplasmosis 

in the United States and other areas of the world 

   Anaplasma phagocytophilum has been detected in mammals and ticks 

throughout the United States and in nearly all-European countries, but the strains or 

variants and the resulting diseases vary with the geographic location (de la Fuente et al. 

2005b; Stuen 2007; Woldehiwet 2010).   

 Anaplasma phagocytophilum has been reported to be the most widespread tick-

borne infection in animals in Europe (Stuen 2007) and is an emerging tick-borne 
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pathogen of humans in the U.S.  Sequence analysis of the A. phagocytophilum msp4 gene 

that was performed on 50 samples from the United States, Germany, Poland Norway, 

Italy, and Switzerland and 4 samples of A. phagocytophilum-like organisms obtained 

from white-tailed deer in the United States provided evidence of sequence variation that 

was higher than observed among A. marginale strains (de la Fuente et al. 2005b).  The 

overall analysis did not provide phylogeographic information but did differentiate strains 

of A. phagocytophilum obtained from ruminants, horses and dogs. The organisms from 

white-tailed deer were found to be more diverse.  These results were corroborated by 

similar phylogenetic studies using the msp2 gene.   It is therefore likely that the strains 

from humans, which differ from ruminant strains, may be maintained in nature in 

different reservoir hosts (de la Fuente et al. 2005e). 

Among free-living ruminants in the U.K., A. phagocytophilum was detected in 

feral goats and in red, fallow and rose deer (Foster and Greig 1969; McDiarmid 1965; 

Alberdi et al. 2000).  In Norway, Slovenia, Switzerland and Austria A. phagocytophilum 

was detected in a variety of cervid ruminants, including roe deer, moose and chamois (as 

reviewed by Woldehiwet 2010).  The epizootiology of A. phagocytophilum has also been 

reported to involve wild rabbits, birds and cats (Bjoersdorff et al. 2001; Daniels et al. 

2002; Goehert and Telford, 2003; Lappin et al. 2004; de la Fuente et al. 2005c). 

Recent studies have contributed to the understanding of the epidemiology of A. 

phagocytophilum in southern Europe.  Throughout Sicily, which represents a typical 

Mediterranean ecosystem, A. phagocytophilum was detected by PCR of the 16S rRNA 

gene in a broad host range including cattle, goats, sheep horses, dogs and mice (de la 

Fuente et al. 2005d; Torina et al. 2008a; 2010). Five genotypes of the pathogen were 
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identified: two were found in various hosts only the western region, one with 98.9% 

identity to a sequence isolated from a human case was identified only in cattle in the 

eastern region and two genotypes were found in sheep or mice in the eastern region. 

Higher host and regional specificity was found for A. phagocytophilum than for A. 

marginale and A. ovis, which was most likely related to the pathogen’s wider host range 

(Torina et al. 2008a). Domestic animals, such as cattle, horses, donkey sheep, dogs and 

cats may serve as reservoir hosts for A. phagocytophilum, but ruminant variants were 

found to differ from human ones (Torina et al. 2008b). The low abundance of the I. 

ricinus in these areas suggests that other ticks may be involved in transmission of A. 

phagocytophilum. 

In central Spain, A. phagocytophilum infections occur in humans and are 

maintained in cattle, donkeys, deer and birds.  The presence of concurrent infections of A. 

marginale and A. phagocytophilum in cattle and deer suggests that these pathogens may 

multiply in the same reservoir host and also illustrates the complexity of the 

epidemiology of bovine and human anaplasmosis in the country (Naranjo et al. 2006). In 

Northern Spain, A. phagocytophilum infections were demonstrated in cattle, sheep and 

humans, while in central and southern Spain, wild rabbits, birds and cats were also been 

implicated in the epizootiology of A. phagocytophilum (de la Fuente et al. 2005c).   In 

southern Spain, European roe deer were found by PCR analyses and serologic studies to 

be infected with A. phagocytophilum (de la Fuente et al. 2008d). Two different A. 

phagocytophilum msp4 genotypes were identified in the roe deer that were 99.5-99.9% 

identical to sequences reported previously from northern Spain, while 89.9-90.1% of the 

sequences were identical to roe deer from Germany (de la Fuente et al. 2008d). Roe deer 
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are, therefore, likely to be involved in the natural cycle of A. phagocytophilum in Spain 

by serving as reservoir hosts.  

Canine granulocytic anaplasmosis has a wide geographic distribution, and has 

also been reported throughout Europe, Australia and Canada and in all states of the U.S., 

except Mississippi and Nebraska (as reviewed by Tsachev 2009; Woldehiwet 2010).  

              Since the first report of HGE in horses in California, the emergence of 

Anaplasma phagocytophilum-associated diseases has continued to spread throughout the 

United States and other countries.  Equine granulocytic anaplasmosis was subsequently 

reported in horses from Florida, Colorado, New Jersey and Connecticut (as reviewed by 

Woldehiwet 2010). E. equi was also reported in horses from areas in Europe, including 

Scandinavia (Engvall and Egenvall 2002), Switzerland (Pusterla et al. 1998) and the UK 

(McNamee et al. 1989; Korbutiak and Schneiders 1994; Shaw et al. 2001). Canine 

granulocytic anaplasmosis (CGA) was also first recognized in the USA before its more 

recent discovery in Europe.   

 Prior to discovery of human granulocytic anaplasmosis in the United States, the 

disease was thought to be limited to domestic and wild animals. Since the early 1990s 

when a Wisconsin patient with the index case of HGA died with a severe febrile illness 

after a tick bite, the yearly incidence of HGA in one Wisconsin county increased by 1995 

to approximately 58 cases per 100,000 in one county (Dumler et al. 2005). Many of these 

newly described strains may be distinct and prove to have a limited host range. For 

example, the variant (Ap-variant 1) was shown to be infective for goats and deer but was 

not associated with human disease or infective for hamsters, mice and gerbils (Massung 

et al. 2006b; Reichard et al. 2009). Furthermore, ticks that were allowed to feed on deer 
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inoculated with the Ap-1 or the NY-18 isolate only became infected on deer inoculated 

with the Ap-1 variant (Reichard et al. 2009). These and other studies   suggested that 

strains from ruminants might share common characteristics, which differ from strains that 

infect humans (Reichard et al. 2009; de la Fuente et al. 2005b). While most all strains of 

A. phagocytophilum identified thus far appear to be serologically cross-reactive, 

phylogenetic analysis of major surface protein (MSP) sequences, primarily msp4, 

provided strain differentiation (de la Fuente et al. 2005b).  

The majority of human granulocytic anaplasmosis cases in the United States have 

been reported in the northeastern and upper mid-western states including Massachusetts, 

Connecticut, New York, Minnesota and Wisconsin (Rikihisa 2006). The yearly incidence 

rate in Connecticut from 1997 to 1999 was 24 to 51 cases per 100,000 population 

(Dumler et al. 2005).  A total of 3,637 cases of HGA have been reported in the USA from 

2003 to 2008, with most case reports (834) occurring in 2007 (Thomas et al. 2009). Cases 

of HGA have been reported in areas with a high incidence of human babesiosis and Lyme 

disease and also have coincided with the distribution of the tick vector, Ixodes spp.  

(Goodman 2005; Nadelman et al. 1997). Sero-epidemiology studies have suggested that 

many infections may not be diagnosed and that an estimated 15% to 36% of the 

population may have been infected (Aguero-Rosenfeld et al. 2002; Bakken et al. 1998).  

The incidence of A. phagocytophilum was recently reported to have increased between 

2000 and 2007 from 1.4-to 3.0-cases/million persons/year (Dahlgren et al. 2011). 

 In Europe, the first cases of HGA were reported in Slovenia in 1997. The first 

human case of HGA was documented in Sicily, Italy, in 2005 (de la Fuente et al. 2005d). 

In Canada, the first case of HGA was reported in 2009 in an 82-year old man in which 
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infection was demonstrated by PCR and morulae were also identified in peripheral 

neutrophils (Parkins et al. 2009).  Subsequently, HGA has been reported in The 

Netherlands, Spain, Sweden, Norway, Croatia, Poland, Slovenia and Greece (Thomas et 

al. 2009). Studies done in Europe suggest that the pathogen is an important tick-borne 

disease in Slovenia, Denmark and Sweden (Goodman 2005). Serologic studies also 

support the presence of HGA infection in potentially exposed adults in Germany, 

Bulgaria, Spain, Italy, Estonia and Greece but these cases were more likely to be 

asymptomatic (Woldehiwet 2010).   

Tick vectors, transmission and the tick developmental cycle 

 Ticks, the arthropod vector of Anaplasma spp., are ectoparasites of wild, domestic 

animals and humans which transmit pathogens that impact human and animal health, and 

are considered to be the most important arthropod vector in some regions (de la Fuente et 

al. 2008b; Dumler et al. 2001). Ticks are classified in the subclass Acari, order 

Parasitiformes, suborder Ixodida and are dispersed worldwide from arctic to tropic areas 

(de la Fuente et al. 2007a).  A. phagocytophilum is transmitted primarily by ticks of the 

Ixodes persulcatus complex, which are distributed mainly in the northern hemisphere 

(Woldehiwet 2010). In Europe I. ricinus appears to be the main vector of A. 

phagocytophilum (Strle 2004).  However, several other ticks may also be vectors, 

including Haemaphysalis punctata, I. persulcatus, I. trianguliceps and Rhipicephalus 

sanguineus (as reviewed by Stuen 2007). 

 Ticks are a necessary biological vector of the A. phagocytophilum life cycle. The 

transmission of A. phagocytophilum was first studied experimentally in I. ricinus during 

the 1930s by MacLeod (MacLeod and Gordon 1933; MacLeod 1932; 1936). While 
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transmission of A. phagocytophilum was shown to be transstadial, in which infection is 

acquired by the feeding of larvae or nymphs on infected hosts and transmission occurring 

by the next tick stage, nymphs or adults, transovarial transmission was not demonstrated 

from the female adult tick to her progeny. Therefore, transmission of A. phagocytophilum 

within a generation of ticks is dependent on acquisition of the pathogen by feeding on an 

infected host (Hodzic et al. 1998a). 

The tick species that vector A. phagocytophilum varies with the geographic 

region. In Europe, I. ricinus has been shown to be the main vector of A. phagocytophilum 

(Blanco and Oteo 2002; as reviewed by Thomas et al. 2009). Two Ixodes sp. are vectors 

of A. phagocytophilum in the United States:  I. scapularis is the tick vector in the eastern 

and midwestern states (Pancholi et al. 1995; Goodman 2005), while I. pacificus is the 

vector in the western coast and mountain areas (Richter et al. 1996; Reubel et al. 1998).  

While Ixodes ticks are considered to be the primary vectors of A. 

phagocytophilum, use of molecular technologies has provided evidence that other tick 

species are also infected with this pathogen and may therefore be involved in the 

pathogen transmission cycle.   In a study of ticks collected in central Spain from 

European wild boar (Sus scrofa) and Iberian red deer (Cervus elaphus hispanicus), A. 

phagocytophilum was detected in D. marginatus, Rhipicephalus bursa and Hyalomma m. 

marginatum (Naranjo et al. 2006; de la Fuente et al. 2004; de la Fuente et al. 2005c,f). 

The low abundance of I. ricinus in areas of central and southern Spain suggests that other 

tick species are likely to be vectors of A. phagocytophilum and therefore could likely 

contribute to increased risk of the emergence and spread of granulocytic anaplasmosis. 

Tick transmission of the pathogen therefore may occur in the absence of adequate 
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populations of Ixodes sp. Other studies demonstrated A. phagocytophilum in 

Dermacentor, Hemaphysalis and Rhipicephalus ticks (MacLeod 1962; Holden et al. 

2003; Alberti et al. 2005, Cao et al. 2006; Barandika et al. 2008). Tick transmission of A. 

phagocytophilum variants by these tick species may have different transmission patterns 

and target hosts which have not been reported thus far.  Notably, Baldridge et al. (2009) 

demonstrated transovarial transmission of A. phagocytophilum variants in D. albopictus, 

which is of interest because this mode of transmission is not considered to occur with 

other Anaplasma spp. Transovarial transmission of A. phagocytophilum variants in 

nature, would reduce their dependence on mammalian reservoirs.  Continued studies on 

tick transmission patterns of A. phagocytophilum strains and variants are needed to more 

fully define the role of ticks in the transmission of these variants. However, for the 

purpose of this review, transovarial transmission will not be considered as a characteristic 

of A. phagocytophilum. 

Mammalian host infection levels at the time of tick feeding were found to 

influence tick infection rates.  The transmission rate of A. phagocytophilum in nymphal I. 

scapularis from mice correlated with the bacteremia level in the mouse blood (Hodzic et 

al. 1998b). During the early stages of infection when infection of peripheral blood 

granulocytes was detected, ticks readily acquired the infection.  Later in infection the 

number of ticks that became infected was reduced when the parasitemias were low 

(Hodzic et al. 1998a,b). However, once ticks become infected, even with a low number of 

bacteria, biological replication of the agent in tick appeared to compensate for the low 

infection rates and enhanced transmission which has also been shown with A. marginale 

(Eriks et al. 1993; Hodzic et al. 1998a). Transmission of A. phagocytophilum by ticks was 



 

12 
 

shown to occur between 24 and 48 h after tick attachment (Sukumaran at al. 2006).  

Hodzic et al. (1998b) reported that approximately one-third of the ticks became infected 

within 24 hours of attachment and that the frequency of tick infections and the tick 

infection rates increased over time. Ticks that were allowed to feed for over 48 hrs 

transmitted infection to mice, and ticks that fed to repletion proved to have higher 

infection rates which most likely resulted from both acquiring a great number of 

organisms and from replication of the pathogen within ticks during feeding (Hodzic et al. 

1998b; Katavolos et al. 1998).  

Vertebrate hosts, reservoir hosts and transmission cycle 

  Although A. phagocytophilum transmission was thought previously to be 

primarily between ticks and ruminants (Woldehewit 2010), this host range is now known 

to vary with the geographic region and includes various hosts such as rodents, birds, cats, 

deer, humans, horses, cattle, dogs, and sheep.  However, only those hosts that develop 

persistent infections have been considered as a potential reservoir species (as reviewed by 

Woldehiwet 2010).  In some regions small mammals may be less important reservoirs 

hosts because they develop low-level infections and have short life cycles while in other 

areas, rodents are important reservoir. The occurrence and severity of disease caused by 

A. phagocytophilum variants in hosts also appears to vary with the geographic region, 

which is thought to be influenced by a combination of factors including the variant, 

incidental and reservoir hosts, tick vectors and their capacity to transmit the pathogen 

(Woldehiwet 2010).   

 Reservoir hosts of A. phagocytophilum in Europe have been more completely 

defined than those in the United States. In Europe wood mice, yellow-necked mice, 
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voles, roe and red deer are the major reservoirs (Liz et al. 2000; Petrovec et al. 2002; 

Silaghi et al. 2008).  In the U.S. reservoirs of A. phagocytophilum are hosts parasitized by 

I. scapularis, and include white-tailed deer (Odocoileus virginianus), raccoons 

(Procyonw lotoa), while footed mice (Peromyscus leucopus), gray squirrels (Sciurus 

carolinensis) and chipmunks (Levin et al. 2002; Nieto and Foley 2009; Telford et al. 

1996; as reviewed by Woldehiwet 2010).  In the eastern United States the major reservoir 

host is the white-footed mouse, while in the western part of the country wood rats and the 

Western gray squirrel serve as reservoir hosts (Nicholson et al. 1999; Foley et al. 2002; 

Nieto and Foley 2008; 2009).  Other closely related species, including Douglas squirrels, 

flying squirrels and chip-monks, become infected with A. phagocytophilum and harbor 

ticks that may be capable of transmitting the pathogen to other wildlife species and 

humans (Foley et al. 2007; 2008 a,b; Nieto and Foley 2009).  

 While birds have not been clearly implicated as reservoir hosts of A. 

phagocytophilum, two species of birds in the U.S. may be hosts for variants and a source 

for infection for larval ticks (Daniels et al. 2002). Infected nymphal I. ricinus collected 

from migrating birds in Sweden were also shown to be infected with A. phagocytophilum 

(Bjoersdorff et al. 2001). Birds could contribute to the epidemiology of HGA by both 

serving as reservoir hosts and by spreading infected ticks during migrations. In Spain, A. 

phagocytophilum was detected in birds by PCR, with high prevalence in blackbirds 

(n=3), and Turdus spp. has been suggested previously to play a role in the epidemiology 

of HGA (de la Fuente et al. 2005c). In a study conducted on a 900-hectare hunting estate 

in the province of Ciudad Real, Castilla-La Mancha, central Spain of the bird species 
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analyzed, the highest prevalence of A. phagocytophilum infection was detected in 

blackbirds by PCR (de la Fuente et al. 2005c). 

Pathogenesis and clinical presentation 

   In the mammalian host, A. phagocytophilum is one of only four bacteria known 

to survive within human neutrophils where it multiplies within parasitophorous vacuoles 

called “morulae”, a designation that was derived from the Latin word ‘morus’, meaning 

mulberry.  Morulae of A. phagocytophilum are approximately 1.5 µm to 2.5 µm in 

diameter but have been reported to be as large as 6 µm (Popov et al. 1998).   A. 

phagocytophilum infection of mammalian cells is mediated by pathogen recognition of a 

host cell receptor.  However, the mechanisms by which the organism infects vertebrates 

at dermal tick bite site, the cells in which it multiplies, the cause of clinical symptoms or, 

in the case of severe illness, the duration of tissue damage, are not well understood 

(Goodman 2005).   

 A. phagocytophilum’s strict intracellular location provides a mechanism for 

evading host defenses and also promotes chemotactic mechanisms (IL-8) that assist the 

attraction of neutrophils to the tick bite site (Granquist at al. 2010).  Neutrophils have 

been thought to be a poor host cell for intracellular bacteria because they are short-lived 

and are a principal defense cell involved in natural immunity by their ability to ingest and 

kill invading microorganisms. However, A. phagocytophilum infection changes 

neutrophil functions, which, in turn, contribute to the clinical disease. Apoptosis of 

infected cells is an immune response against most intracellular pathogens, including 

viruses, bacteria, and parasites. Neutrophils typically undergo spontaneous apoptosis 

within 6-12 h after being released into the peripheral blood from the bone marrow, and 
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this is an important process in the maintenance of homeostatic levels of neutrophils and 

resolution of inflammatory responses.  However, A. phagocytophilum isolated in human 

peripheral blood neutrophils was shown to inhibit spontaneous and induced apoptosis of 

neutrophils for up to 48 h. This effect was also demonstrated by morphological 

evaluation for up to 96 h of neutrophils from peripheral blood leukocyte cultures (Niu et 

al. 2010). After infection of neutrophils within A. phagocytophilum morulae, as seen in 

stained blood smears, the organism proceeds to divide with the parasitophorous vacuole 

until the cell lyses and the released organisms infect other cells.   

 The early development of A. phagocytophilum pathogenesis in mammalian hosts 

remains to be clearly elucidated. A prepatent period of 4-7 days occurs between 

transmission from the tick bite and development of rickettsemia during which the host 

cell and site of development during this time have not been described.  When susceptible 

animals are inoculated intravenously (IV) with infective blood, rickettsemia was not 

detected for up to 72-96 hours post inoculation (PI) (Woldehiwet 2010). Therefore, prior 

to the appearance of morulae, the organism remains undetectable and could possibly 

replicate in a different host cell. Evidence has suggested that A. phagocytophilum may be 

present in the lungs and spleen prior to being detected in blood, but the host cells during 

this time have not been identified (Snodgrass 1974; Woldehiwet 2010).   A. 

phagocytophilum has been reported to likely infect myeloid precursors in the bone 

marrow rather than mature neutrophils (Walker and Dumler 1996; Woldehiwet 2010). 

However, an earlier study on A. phagocytophilum-infected sheep failed to provide 

evidence that immature neutrophils from the bone marrow were infected (Woldehiwet 

and Scott 1982; Woldehiwet 2010). When sheep infected with a variant of TBF were 
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treated with dexamethasone during the peak period of rickettsemia, the proportion of 

circulating granulocytes rose to over 90% within 2 hours, but the percentage of infected 

neutrophils was reduced. These results suggested that immature neutrophils mobilized 

from the bone marrow reserve were not infected prior to entering peripheral blood 

(Woldehiwet 2010).  

During the rickettsemia, the main targets for A. phagocytophilum infection 

include the eosinophils, monocytes, and primarily neutrophils, and infection of these cells 

occurs by the end of the initial rickettsemia (Woldehiwet 1987; 2010). In A. 

phagocytophilum infection in sheep, goats and cattle, as many as 90% of the granulocytes 

may become infected, but the severity of infection and the febrile reaction is influenced 

by the A. phagocytophilum strain and the susceptibility and immune status of the host  

(Foggie 1951; Tuomi 1967a,b; Woldehiwet and Scott 1982; 1993; Woldehiwet 2010). In 

sheep, cattle and horses rickettsemia is accompanied by fever that can last for 7 days or 

longer (Tuomi 1967a,b; Gribble 1969; Woldehiwet 1987; Woldehiwet 2010). The first 

indication of TBF in animals that have been moved into tick-infested pastures is presence 

of high fever. However, other clinical signs, such as pyaemia in lambs, respiratory signs 

in cattle and secondary infections that appear days after being introduced to tick-infested 

pastures are good indicators of TBF (Woldehiwet 2006). A drop in milk yield is another 

clinical sign in dairy cattle. The severe leukopenia and especially the prolonged 

neutropenia that accompanies the disease are also good indicators of TBF. In some cases 

abortions may occur, especially when pregnant ewes or cows are moved to tick-infested 

pastures during the last stages of their pregnancy (Woldehiwet 2006). Equine and canine 
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infections are characterized by fever, depression, anorexia, leukopenia, and 

thrombocytopenia (Dumler et al. 2005).  

 The symptoms of A. phagocytophilum infection most commonly demonstrated by 

human patients are fever; chills, headache and myalgias (Bakken and Dumler 2006), but 

the duration and magnitude of the initial A. phagocytophilum infection in human patients 

have not been clearly established.  The clinical presentation of HGA ranges in severity 

from asymptomatic, mild or a severe acute febrile illness that lead to death in some cases 

(Goodman 2005). Most HGA patients have reported exposure to tick bites 1 to 2 weeks 

prior to the onset of symptoms (Bakken and Dumler 2006). Infection of humans may not 

be apparent, and Dumler et al. (2005) estimated that as much as 15% to 36% of the 

population in endemic areas may have been infected without apparent clinical symptoms.  

 When A. phagocytophilum was propagated in the human promyelocytic cell line,  

HL-60 cells, the heavy infection developed   rapidly and after 4 dpi most of the host cells 

died or were degenerating (de la Fuente et al. 2005a).  While the host cellular 

mechanisms involved in A. phagocytophilum infection in vivo delays neutrophil 

apoptosis, infected HL-60 cells were found to be considerably more apoptic than 

uninfected cells. Thus, the A. phagocytophilum induced apoptosis delay appears to be a 

neutrophil-specific process and not a global consequence (de la Fuente et al. 2005a). 

Clinical and Laboratory Diagnosis 

  In clinical human A. phagocytophilum infections, morulae can often be 

demonstrated in peripheral blood neutrophils. While A. phagocytophilum infection can be 

confirmed in stained blood smears by demonstration of morulae, these infected cells are 

often not easily seen in some hosts. Therefore, both serology and polymerase chain 
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reaction (PCR) amplification of A. phagocytophilum DNA from acute-phase blood 

analysis may be required to provide diagnosis in both early and late infections. Diagnosis 

can also be done by isolation of A. phagocytophilum in HL-60 cultured cells inoculated 

with acute-phase blood. However, tests done using blood samples must be conducted 

before patients begin antibiotic therapy because treatment will rapidly reduce the 

rickettsemia (Bakken and Dumler 2006). The ability to accurately and rapidly determine 

exposure to a tick-borne pathogen may improve the understanding of the clinical signs 

presented by a patient (Chandrashekar et al. 2010). 

For serologic diagnosis, Chandrashekar et al. (2010) evaluated a commercially 

available cELISA for the detection on A. phagocytophilum. The A. phagocytophilum 

antigen used in the cELISA was a peptide derived from the immunodominant P44 

protein. Experimentally infected dogs were found to be seropositive as early as 8 days PI 

(Chandrashekar et al. 2010). However, while these dogs remained persistently infected, 

morulae were not observed in neutrophils and these dogs did not show clinical signs 

(Chandrashekar et al. 2010). A positive ELISA was an indicator that the dog was exposed 

to A. phagocytophilum but did not confirm active infection. Therefore, PCR was required 

for confirmation of an infection through amplification of A. phagocytophilum DNA 

(Chandrashekar et al. 2010). These experimentally infected dogs also had A. platys 

antibodies that cross-reacted with the A. phagocytophilum ELISA  (Chandrashekar et al. 

2010). The cELISA was 99.1% specific for the detection of A. phagocytophilum, but it 

was important to note that the cELISA could be serorologically cross-reactive with 

antibodies to other Anaplasma spp. (Chandrashekar et al. 2010). In general, the serologic 

cross reaction of Anaplasma spp was shown to result from the presence of conserved 
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proteins, most notably major surface protein 5 (MSP5). A monoclonal antibody against 

MSP5 is a component of the A. marginale cELISA currently approved for use in the 

United Stated and Canada (Dreher et al. 2005; Strik et al. 2007). The A. marginale 

cELISA is cross-reactive with A. phagocytophilum antibodies. 

Serologic diagnosis of A. phagocytophilum can also be done by indirect 

fluorescent antibody (IFA) tests at most reference laboratories (Chandrashekar et al. 

2010).  By use of IFA dogs were found to seroconvert as early as 2 to 5 days after morula 

appear in the blood (Chandrashekar et al. 2010).  

Propagation in cell culture 

   A. phagocytophilum has been propagated in human, monkey and bovine 

capillary endothelial cell lines (Munderloh 2004).  The human promyelocytic leukemia 

cell line, HL-60, allows for direct isolation and cultivation of A. phagocytophilum from 

humans and mice (Goodman et al. 1996; Blas Machado et al. 2007).  In addition, two tick 

cell lines, IDE8 and ISE6, isolated originally from embryos of I. scapularis, have been 

used for propagation of human and variant strains of A. phagocytophilum (Woldehiwet 

and Horrocks 2005; Munderloh et al. 1996a,b; 1999; Massung et al. 2006a; Reichard 

2009). These cell culture systems have been used for research on elucidating mechanisms 

of adhesion and for identification of A. phagocytophilum receptors  (Goodman et al. 

1999; Herron et al. 2000) and pathogen gene expression (Jauron et al. 2001; Woldehiwet 

and Horrocks, 2005), as well as gene expression in human and tick cells in response to A. 

phagocytophilum infection (de la Fuente et al. 2010; Villar et al. 2010; Zivkovic et al. 

2009; 2010; de la Fuente et al. 2007b).  

Genetic variants of A. phagocytophilum 
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  Many variant strains of A. phagocytophilum occur in nature and have been 

described, most of which are serologically cross-reactive because serologic tests are often 

group-specific for highly conserved outer membrane proteins (Dumler et al. 1995; Zhi et 

al. 1997; 1998). A. phagocytophilum variants can be differentiated by sequence analysis 

of key genes. Variants of TBF were differentiated from HGA ones by comparing the 

sequences of the 16S rRNA gene, in which TBF variants differ in three positions (Chen et 

al. 1994). HGA variants that cause disease in humans in the United States were reported 

to have identical 16S rRNA sequences (Belongia et al. 1997; Massung et al. 2002; 2003; 

2005).   de la Fuente et al. (2005b) differentiated A. phagocytophilum variants from 

different hosts, including dogs, horses and humans by sequencing the msp4 gene that 

encodes for the major surface protein 4. Five distinct variants of A. phagocytophilum 

were described in dogs.  In Norway, Stuen et al. (2002) demonstrated that multiple 

variants of A. phagocytophilum occurred in the same flock of sheep.   

 Variants of A. phagocytophilum differ in their ability to infect hosts (Gabriel et al. 

2009; Madigan et al. 1995; Morissette et al. 2009; Foley et al. 2002; 2007; 2008 a,b; 

Nieto and Foley 2008;  2009; Goodman 2005). Many of the factors that influence host 

and host cell specificity are yet to be identified (Rikihisa 2011). These differences are 

important to determine in order to define the epidemiology and ecology A. 

phagocytophilum variants in nature and to predict the risk of disease outbreaks.  

Genomics 

 The A. phagocytophilum genome, as determined by use of the human HZ isolate, 

was found to be 1.47 Mb, which is approximately one fourth the size of the Escherichia 

coli genome (Rikihisa et al. 1997).  The number of open reading frames (ORFs; 1,369) is 
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also proportionately the same in comparison with E. coli (Dunning Hotopp et al. 2006).  

The G-C content of the DNA of this strain is 41.6 mol%.  Plasmid, intact prophage or 

transposable elements were not found in the genome (Rikihisa 2011). Genes required for 

the biosynthesis of lipopolysaccharide and peptidoglycan are also absent from the 

genome (Lin and Rikihisa 2003; Dunning Hotopp et al. 2006).  

The genome of A. phagocytophilum contains numerous repeats with over 100 p44 

/msp2 genes, and genes containing tandem repeats (Dunning Hotopp et al. 2006; Storey 

et al. 1998; Zhi et al. 1999). The 44-kDa immunodominant major surface proteins of A. 

phagocytophilum are encoded by the p44/msp2 multi-gene family (Wurytu et al. 2009), 

and the Omp-1/P44/Msp2 superfamily has been the most intensively studied outer 

membrane protein. P44 and MSP2 proteins are homologous yet distinct groups of 

proteins (Lin et al. 2004).  The transcription of the various p44 genes allows for antigenic 

variation of A. phagocytophilum. P44 proteins play an important role in the pathogenesis 

of A. phagocytophilum in the mammalian host. The diversity of these genes and the 

surface protein they encode for may also reflect differences among variants in geographic 

regions and host specificities (Lin et al. 2004).  

The genetic basis of the ability of A. phagocytophilum to adapt to different 

environments is by gene duplications that contribute to the diversification of the genes, 

often from development of novel gene function or pseudogenes (Lin et al. 2004). The A. 

phagocytophilum genome has 121 genes belonging to this superfamily: one msp2, two 

msp2 homologs, one msp4, 113 p44, and three omp-1 genes. A. phagocytophilum genes 

are differentially expressed in HL-60 and ISE6 cultured cells (Wang et al. 2007; Nelson 
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et al. 2008; Galindo et al. 2008; Zivkovic et al. 2009), suggesting that the host cell 

environment regulates the transcription of A. phagocytophilum. 

Molecular interactions of A. phagocytophilum and vertebrate host cells 

  Intracellular pathogens, through a long-term association with host cells, have 

developed mechanisms that allow them to survive within the hostile environment of the 

host cells (Galan and Cossart 2005; Garcia-Garcia et al. 2009). These mechanisms have 

resulted in   transcriptional changes in the infected host cells and regulation of cell 

functions, both of which have the potential to eventually contribute to disease (Garcia-

Garcia et al. 2009). Major pathways affected during infection have been identified by 

global analysis of mammalian gene expression in response to infection with intracellular 

bacteria (Bryant et al. 2004; Garcia-Garcia et al. 2009).  Intracellular bacteria have 

limited genetic and metabolic resources and therefore most likely have evolved global 

and efficient mechanisms for host cell gene regulation. 

The first studies reported on the impact of A. phagocytophilum infection on host 

cell gene expression were done using the human promyelocytic cell line, HL-60.  

Microarrays of synthetic polynucleotides of 21,329 genes were studied in order to 

identify genes differentially expressed in response to pathogen infection, and the 

microarray results were then confirmed by RT-PCR (de la Fuente et al. 2005a). Genes 

found to be differentially regulated infected cells were those essential for cellular 

mechanisms including growth and differentiation, cell transport, signaling and 

communication, protection and some of these genes may be required for infection and 

multiplication with the host cell (de la Fuente et al. 2005a).  
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 The presence of morulae of A. phagocytophilum within the cytosol of peripheral 

granulocytes is the hallmark of an HGA infection (Troese and Carlyon 2009). The 

infection and multiplication of   A. phagocytophilum in human neutrophils results in 

changes of this host cell’s function which contributes to cell longevity, thus maintaining 

the pathogen’s niche within the parasitophorous vacuole by delaying apoptosis, inhibiting 

NADPH oxidase activity, and subverting phagolysome biogenesis in order to reside in an 

inclusion that does not fuse with lysosomes (Caryon and Fikrig 2003a; Sultana et al. 

2010). The A. phagocytophilum AnkA protein is tyrosine phosphorylated by Abl-1 kinase 

to facilitate infection (Lin et al. 2007; IJdo et al. 2007; Sultana et al. 2010). A. 

phagocytophilum AnkA protein also binds to granulocytic DNA as well as nuclear 

proteins, and this interaction leads to speculation about the functional nature of AnkA-

host cell DNA interactions (Park et al. 2004; Sultana et al. 2010).  The agent of HGA also 

induces the tyrosine phosphorylation of ROCK1 in human neutrophils, which aids in 

intracellular survival (Thomas and Fikrig, 2007; Sultana et al. 2010). The studies done by 

Sultana et al. (2010) demonstrated the uniqueness of A. phagocytophilum as an obligate 

intracellular pathogen because of the development of mechanisms for persistence within 

mammalian cells. Tyrosine phosphorylation of proteins appears to play a significant role 

in the manipulation of host cellular events that promotes the survival of A. 

phagocytophilum.  

 The A. phagocytophilum infection cycle in mammalian host cells is initiated when 

the organism binds to the host cell receptor, Sialyl Lewis x (sLe×) – modified P-selectin 

glycoprotein ligand 1 (PSGL-1) (Yago et al. 2003; Carlyon and Fikrig 2006; Sukumaran 

et al. 2011).  The binding to PSGL-1 requires cooperative recognition of the N-terminal 
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primary amino acid sequence as well as the α2,3-linked sialic acid and α1,3 linked 

fructose of sLex (Carlyon et al. 2003b; Yago et al. 2003; Troese and Carlyon 2009). 

Infection of bone marrow progenitors and myeloid cell lines occurs after A. 

phagocytophilum binds to the host cell receptor   (Goodman et al. 1999; Herron et al. 

2000; Troese and Carlyon 2009).  Once within the parasitophorous vacuole, A. 

phagocytophilum undergoes a two-phase developmental cycle.  The first intracellular 

stage is the reticulated form, which is a larger, pleomorphic, electron-lucent form that has 

a dispersed nucleoid.  The reticulated form subsequently transforms into a smaller, round 

electron dense form, which has a dense nucleoid (Heimer et al. 1997; Munderloh et al. 

1999; Munderloh et al. 2004; Munderloh et al. 1996b; Popov et al. 1998; Rikihisa et al. 

1997; Webster et al. 1998; Troese and Carlyon 2009). The dense form is eventually 

released from the host cell and then is infective for other susceptible cells.  

Sp110, which is a member of the nuclear body (NB), functions as a nuclear 

hormone receptor transcriptomal co-activator (de la Fuente et al. 2007b; Bloch et al. 

2000). Sp110, as well as other NB proteins, play a role in IFN response and virus 

replication (de la Fuente et al. 2007b; Regad and Chelbi-Alix 2001). The expression of 

Sp110 is induced in human peripheral blood leukocytes and the spleen and is not seen in 

any other tissues (de la Fuente et al. 2007b; Regad and Chelbi-Alix 2001). Recently 

Sp110 was shown to control susceptibility to Mycobacterium tuberculosis in the mouse 

Sp110 homologue (de la Fuente et al. 2007b; Pan et al. 2005). de la Fuente et al. (2007b) 

hypothesized that Sp110 may be involved in the infection of Hl-60 cells with A. 

phagocytophilum. Sp110 mRNA levels were found to increase in HL-60 cells after 24 hr 

PI. This increase in Sp110 mRNA levels coincided with pathogen multiplication and 
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increasing infection levels (de la Fuente et al. 2007b). The silencing of Sp110 by RNAi 

resulted in decreased infection levels and suggested that Sp110 was required for A. 

phagocytophilum infection and or multiplication in the HL-60 cells (de la Fuente et al. 

2007b).  

The over expression of host PLIN in HL-60 cells infected with A. 

phagocytophilum suggested a mechanism by which lipolysis and cholesterol synthesis are 

affected during pathogen infection and multiplication within human cells (Manzano-

Roman et al. 2008). The total cholesterol content was also found to be higher in A. 

phagocytophilum infected cells as compared to the uninfected (Manzano-Roman et al. 

2008). The hormone-sensitive lipase (HSL) catalyses the formation of cholesterol in 

macrophages and other cells (Manzano-Roman et al. 2008; Yeaman 2004). PLIN was 

shown recently to promote HSL-mediated adipocyte lipolysis (Moore et al. 2005; 

Miyoshi et al. 2006; Granneman et al. 2007; Manzano-Roman et al. 2008).  

 The binding of A. phagocytophilum to HL-60 cells is dependent on the expression 

of PSGL-1 and α1-3 fucosyltransferase (Herron et al. 2000; Rikihisa 2010). Troese and 

Carlyon  (2009) tested the bacterial populations enriched with dense and reticulated 

forms for their abilities to adhere to HL-60 cells and these studies demonstrated that only 

the dense form of A. phagocytophilum was able to bind to and infect HL-60 cells. After 

infection of cells, the reticulated forms became apparent within the morula, which initiate 

intracellular multiplication of the organism and subsequently transform into dense forms. 

Studies using Chinese hamster ovary cells that were transfected with PSGL-1 further 

confirmed that only the dense forms were able to bind to the PSGL-2 receptor further 

confirming their role as the infective stage (Troese and Carlyon 2009).  
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Following binding to the host cell receptor, A. phagocytophilum enters into the 

cell by caveolae/lipid raft-mediated endocytosis, a vesicle trafficking system used for cell 

entry by a wide variety of pathogenic microorganisms which bypasses phagolysosmal 

pathways (Lafont and van der Goot 2005; Rikihisa 2010). Lipid rafts are located on the 

cell surface and are specialized lipid microenvironments that are enriched with 

cholesterol, glycosphingolipid, GM1 ganglioside, glycosylphosphatidylinositol-anchored 

proteins (GAPs) and several other types of membrane proteins involved in signal 

transduction including receptors, signal transducers and membrane transporters 

(Simmons and Toomre 2000; Rikihisa 2010). Another important part of internalization of 

A. phagocytophilum is ROCK1 phosphorylation-induced signaling (Thomas and Fikrig 

2007; Sukumaran et al. 2011). Gaps are required for the internalization of A. 

phagocytophilum (Rikihisa 2010). Lipid rafts form caveolae when caveolae-specific 

proteins or caveolins accumulate (Anderson 1998; Rikihisa 2010). Caveolae are also 

involved in compartmentalization of signaling activities (Anderson 1998; Simmons and 

Toomre 2000; Rikihisa 2010).   

Neutrophils function to kill invading microorganisms by a variety of processes 

(Cohen 1994). A. phagocytophilum infection interferes with vesicular trafficking for 

avoidance of lysosomes. The inclusion compartment is not acidic, does not undergo 

lysosomal fusion or acquire late endosomal/lysosomal markers (Webster et al. 1998; Mott 

et al.1999).  The parasitophorous vacuole avoids fusion with secretory vesicles and 

specific granules containing NADPH oxidase and proteolytic enzymes (Mott et al. 1999; 

IJdo and Mueller 2004; Carlyon et al. 2004). Cholesterol is required by A. 

phagocytophilum for survival and infection, which is incorporated from the host into its 
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membrane (Lin and Rikihisa 2003). The expansion of the parasitophorous membrane 

during infection also requires lipid, including cholesterol (Xiong et al. 2007).    

Infection of A. phagocytophilum also results in inhibition of apoptosis, an 

important mechanism for killing intracellular pathogens.  Peripheral blood neutrophils 

normally undergo apoptosis spontaneously or after being induced by the phagocytosis of 

microorganisms (DeLeo 2004; Scaife et al. 2003; as reviewed by Rikihisa 2011).  

Molecular interactions of A. phagocytophilum and tick host cells 

Ticks and the pathogens that they vector have evolved molecular interactions that 

benefit their mutual survival (Dale and Moran 2006; Kikuchi et al. 2007; Neelakanta et 

al. 2010).  Evidence of co-evolution of ticks and tick-borne pathogens includes pathogen 

ligands and tick receptors which enable pathogens to infect tick cells (Pal et al. 2004; de 

la Fuente et al. 2010). Some microbes have been found to favor the host survival, while 

many are parasitic or commensal (Braendle et al. 2003; Kikuchi et al. 2007; Paris et al. 

2008; Koropatnick et al. 2004; Baumann 2005; Hurst and Werren 2001; Scarborough et 

al. 2005; Hance and Bolvin 1993; Block et al. 1987; Neelakanta et al. 2010). Infection of 

ticks with most pathogens does not appear to be detrimental to the tick’s survival and the 

tick immune response may function to limit pathogen infection levels to promote tick 

survival. Recent evidence suggests that pathogen infection may enhance tick fitness and 

survival (Busby et al. 2011). Characterization of molecular mechanisms that mediate 

tick-pathogen and tick-host interactions are important to identify because they will likely 

provide new targets for vaccines for control of tick infestations and for reduction of the 

tick vector competency (de la Fuente et al. 2008b; Kocan et al. 2008). 
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The interactions of A. phagocytophilum and tick host cells are not as well 

described as those between the organism and vertebrate host cells. While A. 

phagocytophilum has been shown to infect I. scapularis gut muscle cells Ap-V1 variant 

(Reichard et al. 2009) and salivary glands (Sukumaran et al. 2006; Kocan, unpublished 

results), the developmental cycle of this pathogen has not been completely described in 

ticks.    

Transstadial transmission of the organism occurs but transovarial transmission 

does not appear to be a major means of transmission for most A. phagocytophilum 

variants. Uninfected larval I. scapularis can acquire infection within 2 days of tick 

feeding on an A. phagocytophilum infected mouse, and infection persists to the nymphal 

and adult stages (Hodzic et al. 1998a; Katavolos et al. 1998; Sultana et al. 2010).  Once 

the infected tick feeds, transmission of A. phagocytophilum occurs between 24 to 48 

hours (Hodzic et al. 1998a; Katavolos et al. 1998; Sultana et al. 2010).  

 Salp proteins were shown to be required for infection of I. scapularis with A. 

phagocytophilum (Schwalie and Schultz 2009). While proteins of the salp 15 family were 

found to be involved in Borrelia burgdorferi (the Lyme disease agent) tick infections, A. 

phagocytophilum was found to induce expression of Salp 16 in tick salivary glands 

(Sukumaran et al. 2006) and the protein was up-regulated in tick salivary glands during 

tick feeding  (Sukumaran et al. 2006; Sultana et al. 2010). Silencing of the salp 16 gene 

by RNA interference (RNAi) resulted in a significant decrease in salivary glands 

infections (Sukumaran et al. 2006; Sultana et al. 2010). While A. phagocytophilum 

infected tick guts in the salp-silenced ticks, most of the organisms that infected the gut 

cells were unable to migrate to, infect or be transmitted from the salivary glands.  A. 
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phagocytophilum therefore has a specific requirement for this salivary gland protein in 

order to complete its developmental cycle. 

 A. phagocytophilum selectively altered tick gene expression to promote its 

survival and transmission. In I. scapularis, the pathogen was found to induce the 

phosphorylation of actin and to selectively regulate gene transcription (Sultana et al. 

2010). The phosphorylation of actin inhibited the nucleation and elongation of actin 

filaments, thus reducing actin polymerization. Pathogen induced actin phosphorylation 

was shown to be dependent on the p21activated kinase (IPAK1) –mediated signaling. 

The pathogen stimulated IPAK1 activity by G protein-coupled receptor Gβγ subunits, 

which mediates phosphoinositide 3-kinase (P13K) activation. Disruption of these 

pathways was found to impact the salp 16 gene which was shown to be crucial for A. 

phagocytophilum survival in tick salivary glands.   

 Infection of ticks with A. phagocytophilum also causes upregulated expression of 

alpha1, 3-fucosyltransferease. Interestingly, while the silencing of this gene was found to 

reduce   infection of ticks with A. phagocytophilum, transmission was not affected (Pedra 

et al. 2010).  Therefore, expression of this gene appears to be targeted to colonization of 

ticks with A. phagocytophilum.  

 Studies done by Neelakanta et al. (2010) identified an arthropod antifreeze 

glycoprotein, IAFGP which is involved in a mutualistic interaction between the A. 

phagocytophilum and I. scapularis and facilitates tick survival at cold temperatures 

(Neelakanta et al. 2010).  In A. phagocytophilum over-wintered in ticks, a significant 

increase in the expression of the iafgp gene was observed at cold temperatures as 

compared with uninfected ticks that were allowed to over winter.  The interaction 
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between IAFGP and A. phagocytophilum therefore may enhance the long-term 

coexistence of both the pathogen and the vector (Neelakanta et al. 2010). 

 The gene expression responses of ticks and cultured tick cells in response to 

infection with A. phagocytophilum and A. marginale were recently studied by microarray 

and real time RT-PCR analysis (Zivkovic et al. 2009).  The results demonstrated the 

modulation of tick cell gene expression by A. phagocytophilum that proved to differ from 

A. marginale.  Genes differentially expressed in I. scapularis nymphs and tick ISE6 cells 

infected with A. phagocytophilum, included GST and ferritin, were also shown previously 

to affect A. marginale infection and/or multiplication in ticks and/or tick cells (de la 

Fuente et al. 2007a). GST, ferritin, and aspartic protease (C3B2), also found to be 

differentially expressed in A. phagocytophilum-infected ISE6 cells, have been reported to 

be regulated by tick feeding or infection with other pathogens (Blouin et al. 2003; 

Macalusa et al. 2003) GST, ferritin, and aspartic protease (C3B2), also found to be 

differentially expressed in A. phagocytophilum-infected ISE6 cells, have been reported to 

be regulated by tick feeding or infection with other pathogens (de la Fuente 2005e; 

2008c). Other genes differentially expressed after A. phagocytophilum infection included 

U2A8 (signal sequence receptor delta), 1I5B9 (ixodegrin-2A RGD containing protein), 

2I3A7 (NADH-ubiquinone oxidoreductase), 2IP10 (ubiquitin C variant 5-like), 2I3A3 

(gamma actin-like protein), C4B10 (von Willebrand factor), C2E6 (troponin I), and 

R1E12 (ribosomal protein L32) and may be involved in infection and/or multiplication of 

the pathogen in ticks or may be part of tick cell immune response to moderate pathogen 

infection levels. 
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 Expression of heat shock proteins (HSPs) and other stress response proteins 

(SRPs) was characterized in ticks and cultured tick cells in response to Anaplasma spp. 

infection by proteomics and transcriptomics analyses. Heat shock demonstrated that the 

stress response was activated in ticks and cultured tick cells after A. phagocytophilum 

infection (Villar et al. 2010). However, in the natural vector-pathogen relationship, HSPs 

and other SRPs were not strongly activated, which likely resulted from tick-pathogen co-

evolution. These results also demonstrated pathogen- and tick-specific differences in the 

expression of HSPs and other SRPs in ticks and cultured tick cells infected with 

Anaplasma spp. and suggested the existence of post-transcriptional mechanisms induced 

by Anaplasma spp. to control tick response to infection. 

 The differential expression of the tick protective antigen, subolesin, in response to 

infection of HL-60 and the ISE6 cultured tick cells and nymphal ticks with A. 

phagocytophilum was also reported (de la Fuente et al. 2008a).  While A. 

phagocytophilum infection did not affect the expression of subolesin in cultured tick cells 

or human HL-60 cells, other genes were differentially regulated. Subolesin levels were 

similar for I. scapularis nymphs and the HL-60 cells, which suggest that the mechanism 

by which subolesin is regulated is after infection with A. phagocytophilum (de la Fuente 

et al. 2008a).  

Summary 

 Although A. phagocytophilum has been recognized as a pathogen of veterinary 

importance in Europe for over 70 years, the emergence of human granulocytic 

anaplasmosis in the United States, Europe and Asia has created renewed interest and 

accelerated research on this pathogen.  Although the A. phagocytophilum infection cycle 
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was thought previously to be primarily between ticks and ruminants (Woldehewit 2010), 

this host range now includes a variety of pathogen variants and hosts including various 

rodents, birds, cats, deer, horses, cattle, dogs, sheep and humans.  

  Many variants of A. phagocytophilum have been described, and the occurrence 

and severity of the disease caused by these variants in their respective hosts appears to 

vary with the geographic region. A. phagocytophilum variants are not easily differentiated 

because they are serologically cross-reactive due to the presence of conserved and group 

specific proteins expressed on the bacterial outer membrane. Variant identification is 

therefore most accurately done by PCR and sequence analysis of key genes. In contrast to 

A. marginale which is host specific for ruminants, the wide host range of A. 

phagocytophilum and the expanding populations and distribution of Ixodes sp. vectors 

will likely contribute to the increasing risk of acquiring A. phagocytophilum infection and 

thus the spread of granulocytic anaplasmosis is a growing concern for human and animal 

health in the United States.    

     In the vertebrate host, A. phagocytophilum infects granulocytes where it multiplies 

in the cytoplasm in parasitophorous vacuoles known as “morulae”. The early stages of A. 

phagocytophilum pathogenesis in mammalian hosts remain to be clearly elucidated. 

During early infection the organism remains undetectable and could possibly replicate in 

other host cells. The infection and adaptation of A. phagocytophilum to vertebrate host 

cells has resulted in transcriptional changes and in disregulation of cell functions, both of 

which may contribute to   the disease process. 

     Ticks are the necessary biological vectors for the A. phagocytophilum life cycle. 

The developmental cycle of A. phagocytophilum in ticks has not been fully described.  
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While recent research has contributed to our understanding of these tick cell/pathogen 

interactions, continued studies are needed on the molecular interactions at the tick-

pathogen interface in order to identify the tick genes that are required for tick vector 

competency and pathogen transmission.  

      Recent research on A. phagocytophilum has been focused on the molecular 

relationship of the pathogen with its host cells.  As an intracellular pathogen with a long-

term association with both vertebrate and tick host cells, A. phagocytophilum has 

developed mechanisms for survival within the hostile environment of the host cells. 

Research done using the human promyelocytic leukemia cell line, as well as two tick cell 

lines, ISE6 and IDE8, have provided insight on mechanisms of adhesion and 

identification of receptors for A. phagocytophilum and pathogen antigen expression, as 

well as the gene expression of human and tick cells in response to A. phagocytophilum 

infection.  

 Characterization of the molecular interactions involved in the host-tick-pathogen 

interface which will likely provide new targets for vaccine development which would 

likely provide effective strategies for disease prevention and control. Vaccine 

development strategies targeted toward the pathogen-tick interface could result in both 

reduced tick vector competency and control of tick infestations. 

 

 

 

 

 



 

34 
 

RESEARCH PROBLEM 

 Anaplasma phagocytophilum, the focus of this research, is the causative agent 

human granulocytic anaplasmosis, which is an emerging tick-borne disease of humans in 

the U.S. (Dumler et al. 2001; Stuen 2007). Control of this and other pathogens will be 

enhanced by development of vaccines that avoid the drawbacks of tick control by 

acaricides and, in addition, which are designed with the dual effect of targeting a broad 

range of tick species and reducing the tick vector competency for pathogens.  Definition 

of the molecular interactions between pathogens and tick host cells is required in order to 

discover antigens for vaccine development. While A. phagocytophilum is known to be 

transmitted by Ixodes spp., information on the tick development cycle and 

pathogen/vector interactions is lacking.   Therefore, this research is focused on 

development of model systems for characterization of the interactions of a human isolate 

of Anaplasma phagocytophilum and its tick vector, Ixodes scapularis. The overall 

hypothesis for this research is that genes expressed in tick cells in response to A. 

phagocytophilum infection will include those required for pathogen infection, 

development and transmission. The first part of this research involved use of a tick cell 

line in order to obtain preliminary data on tick gene expression in response to infection 

with a human NY-18 isolate of A. phagocytophilum.  Genes of interest, identified 

previously in proteomic studies, were tested in gene expression studies and in gene 

silencing studies using RNA interference (RNAi) in order to determine whether they 

were involved in pathogen infection. In the second part of this research a sheep tick 

model system was developed to allow infection of ticks in order to characterize the 

molecular interactions between ticks and the human isolate of A. phagocytophilum. The 
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results of these studies will contribute to our understanding of molecular interactions at 

the host-tick-pathogen interface, and definition of genes involved in these interactions 

will be fundamental toward development of new and novel vaccines for control of both 

tick infestations and prevention of the transmission of pathogens.   

 The specific objectives of the research proposed herein are:   

Part I: Studies of the human NY-18 isolate of A. phagocytophilum in cultured tick cells.  

(1) To characterize the differential expression of selected tick genes in cultured cells in 

response to A. phagocytophilum infection. 

(2) To characterize the effect of gene silencing by RNAi of these selected genes on A. 

phagocytophilum infections in cultured tick cells; and  

Part II:  Development of a sheep model for studying the molecular interaction between   

the human NY-18 isolate of A. phagocytophilum and tick cells:  

(3) Test whether the human NY-18 isolate of A. phagocytophilum is infective for sheep. 

(4) Define the infection parameters of this human isolate in sheep. 

(5) Test whether tick stages will feed and acquire A. phagocytophilum infection from 

the experimentally-infected sheep.  

(6) To test for transstadial transmission of A. phagocytophilum by adult ticks acquired 

infection as nymphs on an experimentally-infected sheep. 
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CHAPTER II 
 

 

ANAPLASMA PHAGOCYTOPHILUM INHIBITS IXODES SCAPULARIS                 

TICK CELL GROWTH AND TRANSPORT THROUGH PROTEINS      

INVOLVED IN PATHOGEN INFECTION/MULTIPLICATION                                 

AND TICK RESPONSE TO INFECTION 

Ann T. Busby1,§, Nieves Ayllón2,§,Margarita Villar2, Katherine M. Kocan1, Edmour F. 

Blouin1, Elena Bonzón-Kulichenko3, Ruth C. Galindo2, Atilio J. Mangold4,                    

Jesús Vázquez3, José de la Fuente1,2. 

Abstract    

 In this research we characterized the proteome of the Ixodes scapularis-derived 

cell line, ISE6, after infection with the tick-borne pathogen, Anaplasma 

phagocytophilum. Proteomics results were correlated with mRNA levels by real-time RT-

PCR. Gene silencing studies were conducted using RNA interference (RNAi) in order to 

characterize the function of genes differentially expressed in the cultured tick cells in 

response to A. phagocytophilum infection. The quantitative proteomics analysis 

demonstrated that expression of proteins involved in cell growth and transport were 

significantly reduced in A. phagocytophilum-infected cells, thus reflecting the effect of 

pathogen multiplication on these cell processes. The results of this study identified new 

genes, including spectrin alpha chain or alpha-fodrin and Voltage-dependent anion-
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selective channel or mitochondrial porin, to be involved in the tick cell 

infection/multiplication of A. phagocytophilum and the tick cell response to infection, 

thus contributing to our understanding of molecular events at the tick-pathogen interface. 

These results have increased our understanding of the role of tick genes in A. 

phagocytophilum infection and multiplication, and constitute a fundamental contribution 

toward the development of novel tick control measures. 

Introduction 

 Ticks are ectoparasites of animals and humans and are considered to be the most 

important arthropod vector of pathogens in some regions (de la Fuente et al., 2008a). 

Ixodes scapularis Say (Acari: Ixodidae) is an important vector of pathogens that infects 

and cause disease in humans and domestic animals in the United States. Anaplasma 

phagocytophilum (Rickettsiales: Anaplasmataceae), the focus of this study, is the 

causative agent of human, canine and equine granulocytic anaplasmosis and tick-borne 

fever of ruminants (Dumler et al., 2001; Stuen, 2007).  

 Anaplasma phagocytophilum is an intracellular bacterium that infects vertebrate 

host neutrophils where it multiplies within a parasitophorous vacuole, thus evading host 

defenses while promoting chemotactic mechanisms that contribute to the attraction of 

neutrophils to the tick bite site (Popov et al., 1998; Granquist at al., 2010). Tick-A. 

phagocytophilum interactions are not as well characterized as those between A. 

phagocytophilum and vertebrate host cells (Rikihisa, 2011). While this pathogen has been 

shown to infect I. scapularis gut muscle cells (Ap-V1 variant) (Reichard et al., 2009) and 

salivary glands (Sukumaran et al., 2006; our unpublished results), the developmental 

cycle of this pathogen has not been described in ticks. Tick proteins such as Salp 16, 
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subolesin, antifreeze glycoprotein IAFGP and alpha1-3-fucosyltransferease were shown 

to be differentially regulated and required for infection of I. scapularis by A. 

phagocytophilum (Sukumaran et al., 2006; de la Fuente et al., 2006a; 2008b; 2010; 2011; 

Zivkovic et al., 2009; 2010; Schwalie and Schultz, 2009; Sultana et al., 2010; Pedra et al., 

2010; Neelakanta et al., 2010). Expression of heat shock proteins and other stress 

response proteins was also characterized by proteomic and transcriptomic analyses in 

ticks and cultured tick cells in response to Anaplasma spp. infection. The stress response 

was activated in I. scapularis tick cells after A. phagocytophilum infection but at a lower 

level when compared with non-natural tick-pathogen relationships, probably reflecting 

tick-pathogen co-evolution (Villar et al., 2010a).  

 Tick cell lines were developed at the University of Minnesota, USA, in the 1990s 

(Munderloh et al., 1996; 1999) that were derived originally from I. scapularis embryos. 

These cell lines, particularly the IDE8 and ISE6 cell lines, were subsequently found to 

support the growth and multiplication of several tick-borne pathogens, including A. 

phagocytophilum (Munderloh et al., 1996; 1999; Woldehiwet and Horrocks, 2005; 

Woldehiwet et al., 2002; Massung et al., 2006; Bell-Sakyi et al., 2007; Reichard et al., 

2009). Despite differences reported in the expression of some tick genes between in vitro 

and in vivo studies, cultured tick cells rapidly became a valuable tool for the study of 

tick-pathogen interactions (Bell-Sakyi et al., 2007; de la Fuente et al., 2007; 2010; 

Zivkovic et al., 2009; Villar et al., 2010a). 

 The overall goal of our research is to characterize molecular interactions at the 

vector-pathogen interface and then to use these results to develop vaccines for the control 

of tick infestations and pathogen infection/transmission. Proteomics studies provide 
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information on the cell protein content that may differ from results at the transcriptomic 

level and may be more relevant for tick vaccine antigen discovery (Villar et al., 2010a). 

Our hypothesis was that tick proteins differentially expressed in response to pathogen 

infection would include those involved in pathogen infection, multiplication and 

transmission, as well as being involved in the tick protective response against infection.  

Few studies have characterized tick proteome in response to pathogen infection 

(de la Fuente et al., 2007; Villar et al., 2010a; 2010b; Stopforth et al., 2010). Herein, we 

characterized the I. scapularis proteome in early and late A. phagocytophilum infections 

of ISE6 tick cells. The proteomics results were correlated with mRNA levels by real-time 

RT-PCR. Functional studies were then conducted by RNA interference (RNAi) in order 

to characterize the function of differentially expressed genes in response to A. 

phagocytophilum infection of ISE6 tick cells. These experiments are a fundamental 

contribution towards the understanding of the tick-pathogen interface and may contribute 

to the development of new generation pathogen transmission-blocking vaccines designed 

to prevent transmission and reduce exposure of vertebrate hosts to A. phagocytophilum.  

Materials and methods 

Cultured tick cells 

 The ISE6 tick cell line, derived originally from I. scapularis embryos (provided 

by U.G. Munderloh, University of Minnesota, USA) was cultured in L15B medium as 

described previously (Munderloh et al., 1999). The ISE6 cells were inoculated with the 

NY-18 isolate of A. phagocytophilum propagated in HL-60 cells and maintained 

according to the procedures of de la Fuente et al. (2005). Uninfected cells were cultured 

in the same way, except with the addition of 1 ml of culture medium instead of infected 
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cells. Uninfected and infected cultures (five independent cultures with approximately 107 

cells each) were sampled at 6 days post-infection (dpi) (early infection; percent infected 

cells 11-17% (Ave±SD, 13±2)) and 13 dpi (late infection; percent infected cells 26-31% 

(Ave±SD, 28±2)). Collected cells were centrifuged at 10,000 x g for 3 min and cell 

pellets were frozen in liquid nitrogen until used for protein, DNA and RNA extraction. 

Proteomics analysis of infected and uninfected ISE6 tick cells 

 Proteomics analysis of I. scapularis ISE6 tick cells in response to A. 

phagocytophilum infection was done using protein one-step in-gel digestion, peptide 

iTRAQ labeling, IEF fractionation, LC-MS/MS analysis and peptide identification. Five 

independent cultures with approximately 107 ISE6 cells were pooled from each condition 

and lysed in 350 µl lysis buffer (PBS, 1% Triton X-100, 1 mM sodium vanadate, 1 mM 

NaF, 1 mM PMSF, 1µg/ml leupeptin, 1µg/ml pepstatin) for 30 min at 4ºC. Total cell 

extracts were centrifuged at 200×g for 5 min to remove cell debris. The supernatants 

were collected and protein concentration was determined using the Bradford Protein 

Assay (Bio-Rad, Hercules, CA, USA) with BSA as standard. 

 Protein extracts from the four experimental conditions (100 μg each): control 

early (CE), infected early (IE), control late (CL) and infected late (IL) were resuspended 

in up to 300 µl of sample buffer and applied using a 5-well comb on a conventional SDS-

PAGE gel (1.5 mm-thick, 4% stacking, 10% resolving). The run was stopped as soon as 

the front entered 3 mm into the resolving gel, so that the whole proteome became 

concentrated in the stacking/resolving gel interface. The unseparated protein bands were 

visualized by Coomassie Brilliant Blue R-250 staining, excised, cut into cubes (2 x 2 

mm) and digested overnight at 37ºC with 60 ng/µl trypsin (Promega, Madison, WI, USA) 
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at 5:1 protein:trypsin (w/w) ratio in 50 mM ammonium bicarbonate, pH 8.8 containing 

10% (v/v) ACN and 0.01% (w/v) 5-cyclohexyl-1-pentyl-ß-D-maltoside (CYMAL-5) 

(Katayama et al., 2004; Shevchenko et al., 2006). The resulting tryptic peptides from 

each proteome were extracted by 1hr incubation in 12 mM ammonium bicarbonate, pH 

8.8. TFA was added to a final concentration of 1% and the peptides were finally desalted 

onto C18 OASIS HLB Extraction cartridges (Waters, Milford, Massachusetts, USA) to 

remove the amine-containing buffers and dried-down.  

 Dried peptides were taken up in 30 µl of iTRAQ dissolution buffer provided with 

the kit (Applied Biosystems, Madrid, Spain) and labeled by adding 70 µl of the 

corresponding iTRAQ reagent in ethanol and incubating for 1hr at room temperature in 

70% ethanol, 180 mM triethylammoniumbicarbonate (TEAB), pH 8.53. CE was labeled 

with 114, IE was labeled with 115, CL was labeled with 116 and IL labeled with 117 

iTRAQ tags. After quenching the reaction with 100 µl 0.1% formic acid for 30 min, 

samples were brought to dryness to completely stop the labeling reaction. This quenching 

process was repeated once more to promote TEAB volatilization. The four labeled 

samples were resuspended in 100 µl 0.1% formic acid and combined into one tube. The 

mixture was dried down, redissolved in 3.3 ml 5 mM ammonium formiate, pH 3, cleaned 

up with SCX Oasis cartridges (Waters) using as elution solution 1 M ammonium formiate 

pH 3, containing 25% ACN, and dried down. The peptide pools were resuspended in 0.5 

ml 0.1% TFA, desalted onto C18 Oasis cartridges using as elution solution 50% ACN in 

5 mM ammonium formiate, pH 3 and dried down.  

 The sample was taken up in focusing buffer (5% glycerol and 2% IPG buffer pH 

3-10 (GE Healthcare, Madrid, Spain) loaded onto 24-wells over a 24 cm-long Immobiline 
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DryStrip, pH3-10 (GE Healthcare) and separated by IEF on a 3100 OFFgel fractionator 

(Agilent, Santa Clara, CA, USA), using the standard method for peptides recommended 

by the manufacturer. The recovered fractions were acidified with 20 μl of 1 M 

ammonium formiate, pH 3, and the peptides were desalted using OMIX C18 tips (Varian, 

Palo Alto, CA, USA). After elution with 50% ACN in 5 mM ammonium formiate, pH 3, 

the peptides were dried-down prior to RP-HPLC-LIT analysis. 

 All samples were analyzed by LC-MS/MS using a Surveyor LC system coupled 

to a linear ion trap mass spectrometer model LTQ (Thermo-Finnigan, San Jose, CA, 

USA) as described previously (Lopez-Ferrer et al., 2004; Ortega-Perez et al., 2005). The 

LTQ was programmed to perform a data-dependent MS/MS scan on the 15 most intense 

precursors detected in a full scan from 400 to 1600 amu (3 µscans, 200 ms injection time, 

10,000 ions target). Singly charged ions were excluded from the MS/MS analysis. 

Dynamic exclusion was enabled using the following parameters: 2 repeat counts, 90 s 

repeat duration, 500 exclusion size list, 120 s exclusion duration and 2.1 amu exclusion 

mass width. PQD parameters were set at 100 ms injection time, 8 microscans per scan, 2 

amu isolation width, 28% normalized collision energy, 0.6 activation Q, 0.3 ms activation 

time. For PQD spectra generation 10,000 ions were accumulated as target and automatic 

gain control was used to prevent over-filling of the ion trap. 

 Protein identification was carried out as described previously (Lopez-Ferrer et al., 

2004) using SEQUEST algorithm (Bioworks 3.2 package, Thermo Finnigan), allowing 

optional (Methionine oxidation) and fixed modifications (Cysteine 

carboxamidomethylation, Lysine and N-terminal modification of +144.1020 Da). The 

MS/MS raw files were searched against the alphaproteobacteria combined with the 
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arachnida Swissprot database (Uniprot release 15.5, 7 July, 2009) supplemented with 

porcine trypsin and human keratins. This joint database contains 638,408 protein 

sequences. The same collections of MS/MS spectra were also searched against inverted 

databases constructed from the same target databases. The alphaproteobacteria Swissprot 

database was used to identify and discard Anaplasma and possible symbiotic bacterial 

sequences from further analyses.  

RNA interference in ISE6 tick cells 

 Oligonucleotide primers homologous to I. scapularis genes containing T7 

promoters (Table 1) were used for in vitro transcription and synthesis of dsRNA as 

described previously (de la Fuente et al., 2006b), using the Access RT-PCR system 

(Promega, Madison, WI, USA) and the Megascript RNAi kit (Ambion, Austin, TX, 

USA). I. scapularis subolesin (de la Fuente et al., 2006a) and the unrelated Rs86 (de la 

Fuente et al., 2006c) dsRNAs were synthesized using the same methods described 

previously and used as positive and negative controls, respectively. The dsRNA was 

purified and quantified by spectrophotometry. 

 RNAi experiments were conducted in cell cultures by incubating ISE6 tick cells 

with 10 µl dsRNA (5x1010-5x1011 molecules/µl) and 90 µl L15B medium in 24-well 

plates using 10 wells per treatment (de la Fuente et al., 2008b). Control cells were 

incubated with subolesin and the unrelated Rs86 dsRNAs. After 48 hours of dsRNA 

exposure, tick cells were infected with cell-free A. phagocytophilum (NY-18 isolate) 

obtained from approximately 5x106 infected HL-60 cells (90-100% infected cells) and 

resuspended in 24 ml culture medium, resulting in 1 ml/well (Thomas and Fikrig, 2007) 

or mock infected by adding culture medium alone. Cells were incubated for an additional 
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72 hours, collected and used for DNA and RNA extraction. RNA was used to analyze 

gene knockdown by real-time RT-PCR with respect to Rs86 control. DNA was used to 

quantify the A. phagocytophilum infection levels by msp4 PCR.  

Real-time RT-PCR 

 Total RNA was extracted from cultured ISE6 tick cells using TriReagent (Sigma, 

St. Louis, MO, USA) following manufacturer’s recommendations. Real-time RT-PCR 

was performed on tick RNA samples with gene specific primers (Table 2) using the 

iScript One-Step RT-PCR Kit with SYBR Green and the iQ5 thermal cycler (Bio-Rad, 

Hercules, CA, USA) following manufacturer's recommendations. A dissociation curve 

was run at the end of the reaction to ensure that only one amplicon was formed and that 

the amplicons denatured consistently in the same temperature range for every sample 

(Ririe et al., 1997). The mRNA levels were normalized against tick 16S rRNA (Zivkovic 

et al., 2009) using the genNorm method (ddCT method as implemented by Bio-Rad iQ5 

Standard Edition, Version 2.0) (Livak and Schmittgen, 2001).  

Determination of A. phagocytophilum infection levels 

 DNA was extracted from cultured tick cells using TriReagent (Sigma, St. Louis, 

MO, USA) following manufacturer’s recommendations. A. phagocytophilum infection 

levels were characterized by msp4 real-time PCR normalizing against tick 16S rDNA as 

described previously (de la Fuente et al., 2006a) but using oligonucleotide primers 

MSP4-L (5’-CCTTGGCTGCAGCACCACCTG-3’) and MSP4-R (5’-

TGCTGTGGGTCGTGACGCG3’) and PCR conditions of 5 min at 95°C and 35 cycles 

of 10 sec at 95°C, 30 sec at 55°C and 30 sec at 60°C.  

 



 

73 
 

Sequence analysis 

 Protein ontology for biological process (BP) of differentially expressed proteins 

was done using the human protein databases at http://www.hprd.org/ and 

http://www.ebi.ac.uk/interpro/. Blasting against nonredundant sequence database (nr) and 

databases of tick-specific sequences (http://www.ncbi.nlm.nih.gov and 

http://www.vectorbase.org/index.php) was done using tblastx and blastn 

(http://blast.ncbi.nlm.nih.gov/Blast.cgi). Nucleotide sequences were aligned using the 

program AlignX (Vector NTI Suite V 5.5, InforMax, North Bethesda, MD, USA) and 

protein sequences were aligned using the CLUSTAL 2.1 multiple sequence alignment 

tool (EMBL-EBI; http://www.ebi.ac.uk/Tools/). Conserved protein domains (cd) were 

analyzed using Conserved Domains and Protein Classification at ncbi 

(http://www.ncbi.nlm.nih.gov/Structure/cdd/cdd.shtml; Marchler-Bauer et al., 2009). 

Phylogenetic analyses of protein sequences were conducted in MEGA5 (Tamura et al., 

2007) using the Neighbor-Joining (Saitou and Nei, 1987), Maximum Likelihood (Jones et 

al., 1992) and Minimum Evolution (Rzhetsky and Nei, 1992) methods. A bootstrap 

analysis with 1,000 replicates was conducted to calculate the percentage of replicate trees 

in which the associated taxa clustered together (Felsenstein, 1985).  

Statistical analysis 

 Statistical analysis of proteomics data and determination of error rates were 

performed with the Probability Ratio Method (Martínez-Bartolomé et al., 2008). False 

Discovery Rate (FDR) was used as a measure of statistical significance of peptide 

identification and was calculated using the refined method proposed by Navarro and 

Vázquez (2009) and Jorge et al. (2009). Differential protein expression in early versus 
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late infections was compared using Venn diagrams to demonstrate shared and distinct 

protein expression. Significance of overlaps was calculated using hypergeometric 

distributional assumption (Ivanova et al., 2002) and P-values were adjusted using 

Bonferroni correction for multiple comparisons (Schaffer, 1995). The proportion of up 

and down represented proteins was statistically analyzed separately for early and late 

infections and between early and late infections for each BP protein ontology category by 

a Fisher two tailed test (P=0.05) using Statistica 6.0 software (StatSoft Inc., Tulsa, OK, 

USA). To analyze gene expression and A. phagocytophilum infection levels, normalized 

Ct values were compared between test dsRNA-incubated tick cells and controls incubated 

with Rs86 dsRNA or between infected and uninfected tick cells by Student's t-test 

(P=0.05).  

Results 

Proteomics analysis of I. scapularis ISE6 cells infected with A. phagocytophilum 

 A total of 83 proteins were identified as being differentially expressed in I. 

scapularis ISE6 cells infected with A. phagocytophilum (Fig. 1A). Of them, 50 proteins 

were under-represented and 33 over-represented in infected cells. Early stages of 

infection (11-17% infected cells) resulted in 13 and 8 under- and over-represented 

proteins, respectively, while as infection advanced to 26-31% infected cells, the number 

of differentially expressed proteins increased to 50 and 31 under- and over-represented 

proteins, respectively (Fig. 1B). Comparison of differential protein expression in early 

and late infections with Venn diagrams demonstrated a significant overlap (Fig. 1A). 

Most of the proteins differentially expressed during early infection were also found 

during late infection. However, the number of differentially expressed proteins increased 
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as infection proceeded. Analyses of protein ontology for differentially expressed proteins 

demonstrated that biological processes (BP) such as cell growth, protein and nucleic acid 

metabolism, and transport were affected during early and late infections (Fig. 1B). 

However, significant differences were observed between under- and over-represented 

proteins in both early and late infections for cell growth and transport BP and between 

early and late infections for cell growth BP (Fig. 1B). While cell growth proteins were 

significantly over-represented during early infection, they were under-represented in late 

infected cells. Transport was significantly under-represented during both early and late 

infections (Fig. 1B). Proteins in cell growth and transport BP were selected for the 

characterization of mRNA levels during A. phagocytophilum infection in I. scapularis 

ISE6 tick cells (Table 3).  

Changes in mRNA levels of genes encoding for I. scapularis cell growth and 

transport proteins affected in response to A. phagocytophilum infection 

 The mRNA levels of genes encoding for proteins in cell growth and transport BP 

were analyzed by real-time RT-PCR in early and late-infected cells and compared with 

the proteomics results (Table 4). The results showed differences between protein and 

mRNA levels. However, in 6 of the analyzed genes (CG1, CG8, CG10, T1, T2, T3), 

differential expression in late-infected cells was similar at the protein and mRNA levels, 

and these results were also similar for T1 and T2 genes in early-infected cells (Table 4). 

The genes with significant differences in protein and mRNA levels between infected and 

uninfected cells (CG2, CG8, CG10, T1, T2 and T3) (Table 4) were selected for analysis 

of mRNA levels in ISE6 cells and for functional studies by RNAi. 

mRNA levels of selected genes in I. scapularis ISE6 cells  
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 The mRNA levels of CG2, CG8, CG10, T1, T2 and T3 genes were characterized 

in ISE6 tick cells (Fig. 2). The results revealed differences in mRNA levels between 

genes. Lowest and highest mRNA levels were found for CG2 and T1 genes, respectively 

with 400-fold difference between them (Fig. 2). CG8 mRNA levels were only 10-fold 

higher than CG2 mRNA levels (Fig. 2). The mRNA levels for CG10, T2 and T3 were 

similar between them and approximately 100-fold higher than CG2 mRNA levels (Fig. 

2).  

Effect of gene knockdown on A. phagocytophilum infection of I. scapularis ISE6 cells  

 Gene knockdown by RNAi was used for functional characterization of CG2, 

CG8, CG10, T1, T2 and T3 genes during A. phagocytophilum early infection of ISE6 tick 

cells (Table 5). Significant gene knockdown was obtained for 4 genes, CG2, CG8, T2 and 

subolesin (Table 5). However, gene knockdown produced significant differences in A. 

phagocytophilum infection levels only for CG8, T2 and subolesin. Pathogen infection 

levels were lower and higher in CG8 and T2 knockdown cells, respectively (Table 5). 

Subolesin knockdown also resulted in higher pathogen infection levels in ISE6 tick cells 

(Table 5). 

Sequence analysis of I. scapularis genes functionally relevant for A. phagocytophilum 

infection of ISE6 tick cells 

 Additional sequence analysis was conducted on I. scapularis genes affecting A. 

phagocytophilum infection after gene knockdown in ISE6 tick cells. The I. scapularis 

spectrin alpha chain or alpha-fodrin (CG8) sequence contained 24 spectrin (cd00176) 

repeats. The I. scapularis voltage-dependent anion-selective channel (VDAC) or 

mitochondrial porin (T2) contained one VDAC (cd07306) domain. Sequence databases 
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were searched for CG8 and T2 orthologs. Sequences homologous to I. scapularis CG8 

(Genbank accession number XP_002433506) were not identified in other tick species but 

I. scapularis T2 (XP_002408065) orthologs were found in Rhipicephalus (Boophilus) 

microplus (ADT82652) and Amblyomma variegatum (DAA34069). Phylogenetic analysis 

of CG8 (Fig. 3) and T2 (Fig. 4A) sequences showed that tick sequences clustered 

together in a clade close to water flea Daphnia pulex (Arthropoda: Crustacea) and insect 

sequences. Similar results were obtained with all methods used to infer evolutionary 

histories (data not shown). Alignment of T2 tick ortholog protein sequences revealed 

differences in sequence length that could be due to incomplete sequence information or 

result of evolution with a 79% homology in shared 234 amino acids (Fig. 4B). 

Discussion 

 In this work we characterized I. scapularis proteins differentially expressed in 

response to A. phagocytophilum infection by proteomic analysis of infected and 

uninfected ISE6 tick cells. The quantitative proteomics analysis demonstrated that 

expression of proteins involved in cell growth and transport were significantly reduced in 

A. phagocytophilum-infected cells, thus reflecting the effect of pathogen multiplication 

on these cell processes. Proteins in the two most affected BP, cell growth and transport, 

were further characterized at the mRNA level by real-time RT-PCR. Genes confirmed as 

differentially expressed in infected tick cells at both protein and mRNA levels were 

functionally characterized by RNAi to analyze their role during pathogen infection of 

ISE6 tick cells. Several studies have characterized the A. phagocytophilum-tick interface 

at the molecular level (Sukumaran et al., 2006; de la Fuente et al., 2006a; 2008b; 2010; 

2011; Zivkovic et al., 2009; 2010; Schwalie and Schultz 2009; Sultana et al., 2010; Pedra 
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et al., 2010; Neelakanta et al., 2010; Villar et al., 2010a). However, this appears to be the 

first report of the analysis of global protein changes in tick cells in response to A. 

phagocytophilum infection. Furthermore, genes confirmed to be differentially expressed 

at both protein and mRNA levels with predicted function suggested that these genes are 

involved in pathogen infection/multiplication and tick response to infection. 

Spectrin alpha chain or alpha-fodrin (CG8). 

  The spectrin repeats in I. scapularis spectrin alpha chain or alpha-fodrin (CG8) 

sequence are found in several proteins involved in cytoskeletal structure (Pascual et al., 

1997; Viel, 1999). CG8 is an actin cross linking and molecular scaffold protein that links 

the plasma membrane to the actin cytoskeleton and functions in the determination of cell 

shape, arrangement of transmembrane proteins and organelles organization, all necessary 

for cell growth and/or maintenance. In other systems, fodrin-mediated actin 

rearrangements occur during pathogen infection of host cells (Shimada et al., 1999) but 

fodrin activation could result in cell apopotosis (Dhermy, 1991). These results suggested 

a dual role for CG8 by inducing cytoskeleton rearrangements necessary for pathogen 

infection while at the same time acting as a host cell defense mechanism to control 

pathogen infection through induction of cell apoptosis.  

 This dual effect of CG8 was also suggested in tick cells infected with A. 

phagocytophilum. CG8 was downregulated in infected tick cells, likely manipulated by 

the pathogen, because the gene is involved in host cell response to infection. However, 

CG8 knockdown resulted in lower A. phagocytophilum infection levels because CG8 is 

also required for pathogen infection. In fact, downregulation of CG8 was more 

pronounced in late A. phagocytophilum-infected tick cells (Table 4), when inhibiting cell 
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apoptosis is crucial to increase infection but rearrangement of actin filaments that are 

required for pathogen infection may be less relevant at this infection stage. When RNAi 

produced gene knockdown before infection, the effect on cytoskeleton rearrangement 

occurred at early infection stages and thus resulted in lower pathogen infection levels. 

Interestingly, certain spectrin mutations or polymorphisms have been shown to constitute 

new factors of innate resistance to malaria in vitro (Dhermy et al., 2007). 

Voltage-dependent anion-selective channel (VDAC) or mitochondrial porin (T2).  

 The VDAC domain present on I. scapularis voltage-dependent anion-selective 

channel (VDAC) or mitochondrial porin (T2) suggested that this molecule is the channel 

known to guide the metabolic flux across the mitochondrial outer membrane that plays a 

key role in mitochondrially-induced apoptosis (Colombini et al., 1996; Bayrhuber et al., 

2008). T2 is the most abundant protein in the mitochondrial outer membrane and 

regulates the flux of mostly anionic metabolites through the outer mitochondrial 

membrane, which is highly permeable to small molecules (Colombini et al., 1996; 

Bayrhuber et al., 2008). T2 binds to and is regulated in part by hexokinase, an interaction 

that renders mitochondria less susceptible to pro-apoptotic signals, most likely by 

interfering with T2's capability to respond to Bcl-2 family proteins (Colombini et al., 

1996; Bayrhuber et al., 2008). However, while T2 appears to play a key role in 

mitochondrially-induced cell death, a proposed involvement in forming the mitochondrial 

permeability transition pore, which is characteristic for damaged mitochondria and 

apoptosis, has been challenged by more recent studies (Colombini et al., 1996; Bayrhuber 

et al., 2008). Epithelial cell invasion by Group A Streptococcus pyogenes results in 

downregulation of VDAC1 and VDAC2 genes, apoptosis and stress (Nakagawa et al., 
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2004). Upon viral infection, cells undergo apoptosis as a defense against viral replication 

and viruses have evolved mechanisms to subvert apoptotic processes through expression 

of viral proteins that interact with Bcl-2 and VDAC1 (Feng et al., 2007).  

 T2 was downregulated in both early and late A. phagocytophilum-infected tick 

cells (Table 4), and was likely manipulated by the pathogen because the gene is involved 

in cell response to infection as knockdown resulted in higher infection levels. These 

results suggested that T2 downregulation in tick cells was produced by A. 

phagocytophilum infection to induce mitochondrial dysfunction and inhibit mitochondrial 

apoptosis-mediated intracellular innate immunity as a mechanism to subvert host cell 

defense against pathogen infection. 

 Subolesin is a candidate tick protective antigen initially discovered in I. 

scapularis and subsequently found to be conserved in many tick species and other 

eukaryotes where it is the ortholog of insect and mammalian akirins (Almazán et al., 

2003; Goto et al., 2008; Galindo et al., 2009; Mangold et al., 2009; de la Fuente et al., 

2011). Subolesin plays an important role in tick immune response to pathogen infection 

through the regulation of genes involved in innate immunity (Galindo et al., 2009; 

Mangold et al., 2009; Zivkovic et al., 2010). Subolesin expression is induced in response 

to pathogen infection in ticks (Zivkovic et al., 2010; Merino et al., 2011). As in previous 

experiments, subolesin knockdown resulted in higher A. phagocytophilum infection 

levels in tick cells (Busby et al., 2011).  

 Functional studies are essential to understand the role of differentially expressed 

genes. dsRNA-mediated RNAi was used in this study to analyze the effect of knockdown 

of selected genes on A. phagocytophilum infection in ISE6 tick cells. The possibility of 
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RNAi off-target effects (Scacheri et al., 2004) could not be ruled out in our gene 

knockdown experiments. Although off-target effects may be minimal for some genes in 

ticks (de la Fuente et al., 2008c), their effect has been documented in R. microplus (Lew-

Tabor et al., 2011). Additionally, due to differences between in vitro and in vivo studies 

(de la Fuente et al., 2008b; Villar et al., 2010a; Busby et al., 2011), results in cultured tick 

cells should be corroborated in ticks. 

Conclusions 

 The present study had allowed for identification of new genes involved in the tick 

infection/multiplication of A. phagocytophilum, thus advancing our understanding of the 

molecular events at the tick-pathogen interface. The results reported herein contribute to 

our understanding of the role of tick genes in A. phagocytophilum 

infection/multiplication, which is fundamental toward development of novel tick control 

measures.   
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Figure 1. Overlapping protein expression in early versus late A. phagocytophilum 

infection of ISE6 tick cells. (A) Venn diagram detailing shared and distinct protein 

expression (*indicates significant overlaps (p<106)). (B) A summary of biological 

process (BP) protein ontology of differentially expressed proteins between infected and 

uninfected tick cells during early and late infections (* and ** indicate significant 

differences (p<0.05) between under- and over-represented proteins in both early and late 

infections and between early and late infections, respectively).  
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Figure 2. Gene expression in I. scapularis ISE6 cells. The CG2, CG8, CG10, T1, T2 and 

T3 mRNA levels were determined by real-time RT-PCR in ISE6 cells (three independent 

cultures). Amplification efficiencies were normalized against tick 16S rRNA and 

normalized mRNA levels were expressed in arbitrary units. 
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Figure 3. Phylogenetic analysis of spectrin alpha chain or alpha-fodrin (CG8) protein 

sequences. The evolutionary history was inferred using the Neighbor-Joining method. 

The optimal tree with the sum of branch length = 1.08474862 is shown. The percentage 

of replicate trees in which the associated taxa clustered together in the bootstrap test 

(1,000 replicates) are shown next to the branches. The tree is drawn to scale, with branch 

lengths in the same units as those of the evolutionary distances used to infer the 

phylogenetic tree. The evolutionary distances were computed using the Poisson 

correction method and are in the units of the number of amino acid substitutions per site. 

The analysis involved 17 amino acid sequences. All ambiguous positions were removed 

for each sequence pair. There were a total of 2,495 positions in the final dataset. 

Sequences included in the analysis corresponded to I. scapularis (XP_002433506), 
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Pediculus humanus corporis (XP_002430009), Daphnia pulex (EFX88672), Tribolium 

castaneum (XP_973750), Solenopsis invicta (EFZ23210), Camponotus floridanus 

(EFN61994), Bombus terrestris (XP_003394286), Harpegnathos saltator (EFN85586), 

Apis mellifera (XP_623691), Aedes aegypti (XP_001650465), Culex quinquefasciatus 

(XP_001865112), Nasonia vitripennis (XP_001601352), Acromyrmex echinatior 

(EGI62932), Anopheles gambiae (XP_316724), Drosophila melanogaster (AAA28907), 

and Homo sapiens (NP_001182461) and Mus musculus (NP_001171139) as outgroups. 

 

 

 

 



 

98 
 

 

Figure 4. Analysis of voltage-dependent anion-selective channel (VDAC) or 

mitochondrial porin (T2) protein sequences. (A) Amino acid sequence alignment of tick 

T2 ortholog sequences in I. scapularis (XP_002408065), R. microplus (ADT82652) and 

A. variegatum (DAA34069). Asterisks denote amino acids conserved among all 

sequences analyzed. (B) The evolutionary history was inferred using the Neighbor-

Joining method. The optimal tree with the sum of branch length = 1.55282836 is shown. 

The percentage of replicate trees in which the associated taxa clustered together in the 

bootstrap test (1,000 replicates) are shown next to the branches. The tree is drawn to 

scale, with branch lengths in the same units as those of the evolutionary distances used to 

infer the phylogenetic tree. The evolutionary distances were computed using the Poisson 

correction method and are in the units of the number of amino acid substitutions per site. 
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The analysis involved 12 amino acid sequences. All ambiguous positions were removed 

for each sequence pair. There were a total of 282 positions in the final dataset. Sequences 

included in the analysis corresponded to I. scapularis (XP_002408065), R. microplus 

(ADT82652), A. variegatum (DAA34069), Aedes aegypti (XP_001654143), Culex 

quinquefasciatus (XP_001842637), Anopheles gambiae (XP_318947), Tribolium 

castaneum (XP_976150), Daphnia pulex (EFX77112), Drosophila melanogaster 

(NP_476813), Musca autumnalis (ADT92003), and Homo sapiens (CAG33245) and Mus 

musculus (NP_035825) as outgroups. 
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Table 1. PCR conditions and sequences of primers used for dsRNA synthesis.  

 

Gene (sample ID) Forward and reverse primers (5´-3´)* PCR annealing 
conditions 

Protein hu-li tai 
shao, Adducin 

(CG2) 

ATGACATGCGGGGCGTGGA 
57ºC/30s 

ACAAACACCTTGCTGC 

Spectrin alpha 
chain, cytoskeletal 

protein (CG8) 

CGCTGGCAACGACATTGAA 
57ºC/30s 

TTCAGGTCCTTCACCCGGT 

Beta tubulin 
(CG10) 

TGTGGGAATCAAATCGGTG 
57ºC/30s 

CTGGTGCACAGACAGGGTG 

Na+/K+ ATPase, 
alpha subunit (T1) 

TGACCTCAAGCAGGAAGTT 
57ºC/30s 

CTCTGGTGAGCGTGTCTGA 

Voltage-dependent 
anion-selective 
channel (T2) 

ATGGCTCCTCCGTGCTACG 
57ºC/30s 

AATTGTTGACCTTCGCCCT 

Fatty acid-binding 
protein FABP (T3) 

ATGGCCTCTGGTCTTCTCG 
57ºC/30s 

CTATTCATCTCGGTACT 

Subolesin 
ATGGCTTGCGCAACATTAAAG 

60ºC/30s 
TTATGACAAATAGCTTGGAG 

Rs86 
GGACGCGATAAAGACCAGTAT 

60ºC/30s 
CACACGGAGCGGCGTAGGCGA 

 

*All primers contained T7 promoter sequences  

(5´-TAATACGACTCACTATAGGGTACT-3´) at the 5´end. 
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Table 2. PCR conditions and sequences of primers used for real-time RT-PCR. 

Gene (sample ID) Forward and reverse primers (5´-3´) PCR annealing 
conditions 

Laminin B (CG1) GCAGCTCGACGCTAAGAAGT 

TCTGCATCCTTGAGTTGTGC 
60 ºC/30s 

Protein hu-li tai shao, 
Adducin (CG2) 

GGTAACGGAGCTGCTACTGC 

AGTGGGTTCACCAGGAAGTG 
60 ºC/30s 

MCM2; Predicted 
ATPase involved in 
replication control 
(CG3) 

AGATGCTGGTGATCCTGGAC 

CTTGCCGCAGTCATACTTGA 60 ºC/30s 

Cell division protein 
(CG4) 

 

GTACGAAGAGCGCAAACTCC 

ATGTTCTTGCGGTTGAGTCC 60 ºC/30s 

Talin, cytoskeletal 
associated protein 
(CG5) 

AACAAGGAGCCAAACACTGG 

CGTTGGAGTCGGAGAAGAAG 
60 ºC/30s 

Actin beta/gamma 
(CG6) 

AAGGACCTGTACGCCAACAC 

ACATCTGCTGGAAGGTGGAC 
60 ºC/30s 

Actin (CG7) AAAGCAGGTTTTGCTGGAGA 

GGTTTGAAGCTGCTCTTTGG 
60 ºC/30s 

Spectrin alpha chain, 
cytoskeletal protein 
(CG8) 

AGAACCAATACGGCAACCTG 

AGGTCCGACATGAAGTCGTC 
60 ºC/30s 

Alpha tubulin (CG9) AGGAGATTGTGGACCTGGTG 

GCTTGGACTTCTTGCCGTAG 
60 ºC/30s 

Beta tubulin (CG10) CGACTGTCTTCAGGGCTTTC 60 ºC/30s 
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AGACAGGGTGGCATTGTAGG 

Beta thymosin (CG11) 

 

GCAGGAGAAGAACCAACTGC 

CCGAGGTCGGATGAATAGAA 
60 ºC/30s 

Beta thymosin (CG12) GGCAAAGGTCAAACTCCAAA 

GTGCCTTTGACTTCCGTCTC 
60 ºC/30s 

Na+/K+ ATPase, alpha 
subunit (T1) 

ACGGCCAAGAGTGGACATAC 
AGCCAAGGCAGTCTCAAAAA 60 ºC/30s 

Voltage-dependent 
anion-selective channel 
(mt) (T2) 

GTCGTGAAACTCGACTGCAA 
CCGTGTTCCACTTCTCCTTC 60 ºC/30s 

Fatty acid-binding 
protein FABP (T3) 

GTCTTCTCGGCAAGTGGAAG 
AGCAGCGTCGAAGTCTTGAT 60 ºC/30s 

Subolesin GCTTGCGCAACATTAAAGCGAAC 
TGCTTGTTTGCAGATGCCCATCA 

62 ºC/30s 
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Table 3. Cell growth and transport proteins selected for the characterization of mRNA 

levels during A. phagocytophilum infection of I. scapularis ISE6 tick cells. 

Protein (sample ID) Genbank 
accession Nos. 

Biological Process 

Laminin B (CG1) B7P2Q4 

ISCW000339 

Cell growth and/or 
maintenance 

Protein hu-li tai shao, Adducin (CG2) B7P1C8 

ISCW000621 

Cell growth and/or 
maintenance 

MCM2; Predicted ATPase involved in 
replication control (CG3) 

B7PAS1 

ISCW016696 

Cell growth and/or 
maintenance 

Cell division protein (CG4) 

 

B7PKQ6 

ISCW018707 

Cell growth and/or 
maintenance 

Talin, cytoskeletal associated protein 
(CG5) 

B7QM86 

ISCW023338 

Cell growth and/or 
maintenance 

Actin beta/gamma (CG6) A4UTU3 

ISCW024111 

Cell growth and/or 
maintenance 

Actin (CG7) Q6X4W3 

B2YGD3 

ISCW022123 

Cell growth and/or 
maintenance 

Spectrin alpha chain, cytoskeletal protein 
(CG8) 

B7P1U8 

ISCW000012 

XP_002433506 

Cell growth and/or 
maintenance 

Alpha tubulin (CG9) Q8WQ4 

ISCW015260 

Cell growth and/or 
maintenance 
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Beta tubulin (CG10) B7PA92 

ISCW017133 

Cell growth and/or 
maintenance 

Beta thymosin (CG11) 

 

Q86G66 

CO047561 

Cell growth and/or 
maintenance 

Na+/K+ ATPase, alpha subunit (T1) B7P9E4 

ISCW002538 

Transport 

Voltage-dependent anion-selective 
channel (T2) 

B7P5X8 

ISCW000781 

XP_002408065 

Transport 

Fatty acid-binding protein FABP (T3) B7QMW0 

ISCW015316 

Transport 
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Table 4. Results of differential expression at the protein (FDR<0.05) and mRNA 

(P<0.05) levels in infected versus uninfected ISE6 tick cells. 

 

Protein (sample ID) Proteomics results RT-PCR results 

Early 
infection 

Late 
infection 

Early 
infection 

Late 
infection 

Laminin B (CG1) -2.53 -5.64 NS NS 

Protein hu-li tai shao, 
Adducin (CG2)* 

NS -2.17 -100.00 -250.00 

MCM2; Predicted ATPase 
involved in replication 
control (CG3) 

NS -1.99 

 

NS NS 

Cell division protein (CG4) 

 

NS -1.72 

 

NS NS 

Talin, cytoskeletal associated 
protein (CG5) 

NS -1.51 

 

NS NS 

Actin beta/gamma (CG6) NS -1.46 

 

NS NS 

Actin (CG7) +3.27 -1.40 

 

NS NS 

Spectrin alpha chain, 
cytoskeletal protein (CG8)* 

NS -1.39 

 

-6.25 -10.00 

Alpha tubulin (CG9) NS -1.37 

 

NS NS 

Beta tubulin (CG10)* NS -1.27 NS -25.00 
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Beta thymosin (CG11) 

 

NS + 4.68 

 

NS NS 

Na+/K+ ATPase, alpha 
subunit (T1)* 

-2.14 -2.38 -3.12 -25.00 

Voltage-dependent anion-
selective channel (mt) (T2)* 

-1.33 -1.40 -50.00 -16.67 

Fatty acid-binding protein 
FABP (T3)* 

NS -1.34 

 

-8.33 -12.50 

 

Asterisks denote genes selected for functional analysis by RNAi based on significant 

differences in differential expression at the mRNA level. Abbreviations: +, over-

expressed in infected cells; -, under-expressed in infected cells; NS, no significant 

differences between infected and uninfected cells.  
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Table 5. Effect of gene knockdown on A. phagocytophilum infection levels in I. 

scapularis ISE6 tick cells. 

 

Sample ID of 

injected 

dsRNA 

Ave±SD % gene 

knockdown with 

respect to Rs86 

control  

A. phagocytophilum infection levels 

Average±SD 

normalized msp4 

mRNA levels 

Fold difference with 

respect to control cells 

CG2 99.3±0.7* 8.8±8.2 2.3±2.0 

CG8 74.0±23.8*  1.1±0.2* 0.3±0.1 

CG10 78.6±0.0& 0.4±0.0 0.1±0.0 

T1 0.0±0.0 5.2±2.7 1.3±0.7 

T2 95.6±4.5* 16.1±12.1* 4.1±3.0 

T3 0.0±0.0 1.5±0.6 0.4±0.2 

Subolesin 36.0±0.0* 2058.2±0.2* 527.7±0.1 

Rs86 (C-) --- 3.9±2.8 --- 

 

The A. phagocytophilum infection levels were characterized in ISE6 tick cells after gene 

knockdown by RNAi. Total RNA and DNA were extracted from infected tick cells after 

RNAi and analyzed by quantitative RT-PCR or PCR normalizing against 16S rRNA or 

16S rDNA to determine gene mRNA levels and A. phagocytophilum msp4 DNA levels, 

respectively. Normalized Ct vales were compared between test and negative control (C-) 

tick cells incubated with the unrelated Rs86 dsRNA by Student's t-test (*P<0.05). &Only 

one sample was included in the analysis.
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CHAPTER III 
 

 

DEVELOPMENT OF A SHEEP MODEL FOR STUDYING PATHOGEN/TICK 

INTERACTIONS OF A HUMAN ISOLATE OF ANAPLASMA 

PHAGOCYTOPHILUM AND IXODES SCAPULARIS 

Ann T. Busbya, Katherine M. Kocana, Robin W. Allisona, Melanie A. Breshearsa,                       
Lisa Coburnb,  Edmour F. Blouina, José de la Fuentea,c  

Abstract   

 Anaplasma phagocytophilum, first identified as a pathogen of ruminants in 

Europe, has more recently been recognized as an emerging tick-borne pathogen of 

humans in the U.S. and Europe. A. phagocytophilum is transmitted by Ixodes spp., but the 

tick developmental cycle and pathogen/vector interactions have not been fully described.  

In this research, we report development of a sheep model for studying tick/pathogen 

interactions of I. scapularis and the human NY-18 isolate of A. phagocytophilum. A. 

phagocytophilum was propagated in the human promyelocytic cell line, HL-60, and the 

infected cell cultures were then used to infect sheep by intravenous inoculation.  

Infections in sheep were confirmed by PCR and an Anaplasma competitive ELISA. 

Clinical signs were not apparent in any of the infected sheep and only limited 

hematologic and mild serum biochemical abnormalities were identified.  While A. 

phagocytophilum morulae were rarely seen in neutrophils, blood film evaluation revealed 

prominent large granular lymphocytes, occasional plasma cells, and rare macrophages.
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Upon necropsy, gross lesions were restricted to the lymphoid system.  Mild splenomegaly 

and lymphadenomegaly with microscopic evidence of lymphoid hyperplasia was 

observed in all infected sheep.  Female I. scapularis that were allowed to feed and 

acquire infection on each of the three experimentally-infected sheep became infected 

with A. phagocytophilum as determined by PCR of guts (80 to 87%) and salivary glands 

(67 to 100%). Female I. scapularis that acquired infection as nymphs on an 

experimentally-infected sheep transmitted A. phagocytophilum to a susceptible sheep, 

thus confirming transstadial transmission. Sheep proved to be a good host for the 

production of I. scapularis infected with this human isolate of A. phagocytophilum, 

which can be used as a model for future studies of the tick/pathogen interface. 

Introduction 

 Anaplasma phagocytophilum (Rickettsiales: Anaplasmataceae) is a pathogen 

transmitted by ticks, most notably of the genus Ixodes, to a wide range of hosts, including 

birds, small and large mammals and humans (Goodman 2005; Woldehiwet 2010).  This 

organism is the etiologic agent of a febrile illness of humans (human granulocytic 

anaplasmosis, HGA), sheep and other ruminants (tick-borne fever, TBF), horses (equine 

granulocytic anaplasmosis, EGA) and dogs (canine granulocytic anaplasmosis, CGA). 

While A. phagocytophilum is a well established pathogen of small ruminants in Europe 

(Stuen 2007; Stuen et al. 2009), the pathogen has more recently been shown to cause the 

emerging tick-borne disease of humans, HGA, in the United States, Europe and Asia 

(Goodman 2005).  

 The emergence of HGA has continued to increase in the U.S. A total of 3,637 

cases of HGA were reported in the U.S. from 2003 to 2008, with most case reports (834) 
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occurring in 2007 (Thomas et al. 2009). The incidence of A. phagocytophilum infection 

was recently reported to have increased during this period from 1.4 to 3.0 cases/million 

persons/year (Dahlgren et al. 2011). A. phagocytophilum is vectored by I. scapularis in 

the central and eastern areas of the U.S. Genetic analyses have shown the existence of 

many strains of A. phagocytophilum that can be differentiated between ruminants, horse, 

dogs and humans (de la Fuente et al. 2005b; Torina et al. 2008; Rar and Golovljova 

2011). These and other studies suggest that strains from ruminants may share common 

characteristics that differ from strains that infect humans (de la Fuente et al. 2005b; 

Torina et al. 2008; Reichard et al. 2009; Rar and Golovljova 2011).  

  The recognition of the broad distribution of A. phagocytophilum and its 

emergence as a human tick-borne pathogen has created renewed interest and accelerated 

research on this organism, particularly on the molecular relationship of the pathogen with 

its vertebrate and tick hosts (Woldehiwet 2010).  In this research, we report development 

of a sheep model that will allow for production of infected I. scapularis and for the study 

of molecular interactions between the tick host and the NY-18 human isolate of A. 

phagocytophilum. 

Materials and Methods 

Experimental design overview  

 Four sheep were experimentally infected with A. phagocytophilum by intravenous 

inoculation (iv) of HL-60 cell cultures infected with the human NY-18 isolate of A. 

phagocytophilum (Asanovich et al. 1997; de la Fuente et al. 2006).  All sheep were 

monitored for infection by daily recording of clinical signs, PCR of blood samples, 

examination of stained blood films and by Anaplasma competitive ELISA (cELISA) 
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serology.  After A. phagocytophilum infection was confirmed, sheep were infested with I. 

scapularis adults, nymphs or larvae. The first sheep was used to test whether the NY-18 

strain of A. phagocytophilum was infective for sheep, to determine which tick stages 

(larvae, nymphs and adults) would feed successfully on sheep and to test whether these 

ticks could acquire infection from sheep. The next two sheep were experimentally 

infected with A. phagocytophilum and then used to feed female ticks for seven days in 

order to test their ability to become infected with A. phagocytophilum.  The fourth sheep 

was experimentally infected and then infested with female/males pairs and nymphal ticks. 

The female ticks were used to study the infection dynamics of A. phagocytophilum in tick 

guts and salivary glands during tick feeding by PCR.  Nymphs were allowed to acquire 

infection by feeding to repletion and then the subsequently molted adults were allowed to 

feed on a susceptible sheep in order to test for transstadial transmission of the pathogen. 

In addition, the A. phagocytophilum infections were documented by PCR in ticks during 

transmission feeding. In order to study tick infections, ticks guts and a salivary glands 

were dissected from one half of each tick and tested individually by PCR for A. 

phagocytophilum infection, while the other half of each tick was placed in fixative for 

future morphology studies. Egg masses produced by replete female ticks, known to be 

infected with A. phagocytophilum, were tested by PCR in order to provide evidence of 

transovarial transmission.  After the completion of tick feeding, all sheep were euthanized 

and necropsies were performed in order to document pathologic changes that may have 

resulted from A. phagocytophilum infection. 

Anaplasma phagocytophilum isolate, propagation in HL-60 cells and infection of sheep 
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 The human NY18 isolate of A. phagocytophilum (Asanovich et al., 1997; de la 

Fuente et al. 2006) was propagated in cultures of the human undifferentiated 

promyelocytic cell line, HL-60.  Infected and uninfected cell cultures were maintained at 

37oC in RPMI medium as reported previously (de la Fuente et al. 2005a).  For inoculation 

of each sheep, two T-25 flasks of A. phagocytophilum-infected HL-60 cells were used 

(45% infection, as determined by detection of intracellular morulae in stained cytospin 

cell smears; Hema-3 Stain, Fisher Scientific, Middletown, VA, USA). The cultures were 

centrifuged and resuspended with serum free RPMI 1640 medium with a final iv dose of 

1 X 107 cells in 2 ml of cell culture medium.  

Ticks 

 Ixodes scapularis ticks (males, females, nymphs and larvae) were obtained from 

the laboratory colony maintained at the Oklahoma State University Tick Rearing Facility. 

Larvae and nymphs were fed on rabbits in order to develop to the nymphal and adult 

stages, and nymphs and/or adults were fed on sheep in order to acquire A. 

phagocytophilum infection. Off-host ticks were maintained in a 12 hr light: 12 hr dark 

photoperiod at 22-25 °C and in humidity chambers with a 95% relative humidity (RH).  

Sheep  

 Sheep were purchased at a local livestock auction for use in these studies. Four 

sheep (001, 165, 102 and 084; Table 1), first determined to be negative for A. 

phagocytophilum by PCR analysis of blood samples, were inoculated with HL-60 cell 

cultures infected with A. phagocytophilum and used for tick feeding experiments. One 

susceptible sheep, 016, was used as a host for the feeding of female ticks that molted 

from replete nymphal ticks previously fed on experimentally-infected Sheep 084 (Table 
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1). Blood and serum samples were collected 3 times per week from all experimentally-

infected sheep, and samples collected on Friday were submitted to the clinical pathology 

laboratory at Oklahoma State University (Antech Diagnostics, Irvine, CA, USA) for 

analysis. Stained blood films were prepared and examined on blood collection days for 

the presence of characteristic A. phagocytophilum morulae in granulocytes.  Serum 

samples were collected and stored for subsequent testing for Anaplasma spp. antibodies 

using a commercially available Anaplasma cELISA (VMRD, Pullman, WA, USA).  Use 

of experimental sheep for this research was done under a protocol approved by the 

Oklahoma State University, Institutional Care and Use of Animals Committee and 

according to the regulations of the U.S. Department of Agriculture.    

Acquisition feeding of female and nymphal I. scapularis 

 The stages and numbers of ticks infested on each sheep are listed in Table 1.  

Female ticks that completed feeding on Sheep 001, 165 and 102 were removed after 7 

days, held in the humidity chamber for 4 days and dissected for DNA extraction from 

guts and salivary glands for PCR studies. From the ticks that were allowed to feed on 

Sheep 84, the guts and salivary glands were dissected from one group of 20 unfed 

females, and groups of 20 ticks were removed daily on days 2 through 7 of feeding and 

the guts and salivary glands dissected for DNA extraction.  PCR studies were then done 

on all samples in order to determine A. phagocytophilum infections.  

Transstadial transmission studies 

 Nymphal I. scapularis (2,000) were infested on Sheep 084 and allowed to feed to 

repletion, after which they were held in a humidity chamber. As soon as the nymphs 

molted to the adult stages, males and females were placed in separate cartons, which were 
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held in a humidity chamber until they were allowed to feed on susceptible sheep 016 in 

order to test for transstadial transmission of A. phagocytophilum. Groups of 15 female 

ticks were dissected from unfed ticks (Day 0) and from ticks removed from Sheep 16 on 

days 2, 3, 4, 5 and 6 of feeding, and the guts and salivary glands were dissected for DNA 

extraction for PCR studies in order to determine A. phagocytophilum infections.  

Detection of A. phagocytophilum in sheep and ticks by PCR  

DNA was extracted from sheep blood and tick guts, salivary glands and eggs 

using TriReagent (Sigma, St. Louis, MO, USA) following manufacturer’s 

recommendations. A. phagocytophilum infection levels were characterized by msp4 PCR 

using the iQ5 thermal cycler (Bio-Rad, Hercules, CA, USA) as described previously (de 

la Fuente et al. 2006) but using oligonucleotide primers MSP4-L (5’-

CCTTGGCTGCAGCACCACCTG-3’) and MSP4-R (5’-

TGCTGTGGGTCGTGACGCG3’) (Busby et al. 2011). PCR reaction products were 

analyzed by agarose gel electrophoresis to determine positive samples. Correlation 

analyses were conducted in Microsoft Excel to compare the percent of infected guts and 

salivary glands at different time intervals after tick infestation. 

Serology 

 Serum was collected three times per week from each experimental sheep before 

and after inoculation with A. phagocytophilum and frozen in 1 ml aliquots.  A series of 

serum samples collected before and after inoculation with A. phagocytophilum from each 

sheep was tested at the Oklahoma Animal Disease Diagnostic Laboratory, Stillwater, OK, 

using the Anaplasma sp. cELISA developed for the detection of antibodies to the major 

surface protein 5 (MSP5) (Knowles et al. 1996; Torioni de Eschaide et al. 1998). Serum 
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samples from Sheep 165, 102 and 084 were tested concurrently on the same plate. A 

positive A. phagocytophilum result for the cELISA was  >30% percent inhibition.  

Clinical pathology and necropsy of experimentally-infected sheep  

 Blood was collected three times per week from each experimental sheep. 

Complete blood counts (CBCs) were performed weekly with an automated hematology 

analyzer (ADVIA 120, Siemens Diagnostics, Tarrytown, NY, USA).  Differential 

leukocyte counts were performed manually on stained blood films. Blood films were 

prepared from EDTA-anticoagulated blood on each collection day and stained with an 

aqueous Romanowsky stain using an automated stainer (Aerospray 7120, Wescor Inc., 

Logan, UT, USA). A minimum of 500 neutrophils were counted at each time point and 

examined for the presence of morulae. Large granular lymphocytes (LGLs) were 

enumerated by counting 100 lymphocytes at each time point; lymphocytes containing 

azurophilic cytoplasmic granules visible at 500X magnification were considered LGLs 

and expressed as a percentage. Routine clinical biochemical profiles were performed on 

serum (Olympus AU640, Beckman Coulter, Fullerton, CA, USA). 

  After completion of tick feeding, sheep were euthanized by a licensed 

veterinarian and subjected to comprehensive necropsy examination. Representative 

samples of heart, lung, liver, kidney, spleen, adrenal glands, lymph nodes and brain were 

fixed in 10% buffered formalin solution. Fixed tissue specimens were routinely 

processed, embedded in paraffin, sectioned at 5 μm, mounted on glass slides and stained 

with hematoxylin and eosin (HE) for histopathological examination.   
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Results 

Tick infestation and recovery in sheep  

Differences were observed between tick stages recovered from infested sheep 

(Table 2). Larvae were not recovered from sheep 001 and therefore this tick stage was not 

used in subsequent studies. The recovery of nymphal ticks was similar for Sheep 001 and 

084, being 16% and 18%, respectively. Molting success of nymphs recovered from Sheep 

084 was 69% (Table 2). Female ticks fed successfully on all sheep with a recovery rate 

ranging from 75% to 100%.  Male ticks were not observed to feed on the sheep but were 

found to be paired and mating with the females.  Males that were not paired with the 

females later in feeding were not recovered. Males were, however, included with each 

infestation to insure that the females would feed and engorge successfully. Because the 

males were not feeding and acquiring a bloodmeal, they were not dissected or tested for 

infection with A. phagocytophilum.  

 A. phagocytophilum infection in experimentally-inoculated sheep.  

 All sheep experimentally inoculated with A. phagocytophilum-infected HL-60 cell 

cultures became infected as determined by PCR.  The prepatent periods, based on PCR 

results, for Sheep 001, 165, 102 and 084 were 14, 21, 14, and 10 days, respectively 

(Average±SD prepatent period, 15±6 days) (Table 3). Seroconversion was observed in all 

three sheep inoculated with A. phagocytophilum (Table 3), but the cELISA did not prove 

to be a consistent diagnostic tool for detection of A. phagocytophilum infection.  

Acquisition of A. phagocytophilum by female ticks feeding on experimentally-infected 

sheep  
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  Female ticks acquired A. phagocytophilum infection from Sheep 165 and 102 as 

determined by PCR analysis of individual tick guts and salivary glands (Table 4). 

Infections in tick guts were found in 85% and 87% of the ticks, respectively, while the 

salivary glands of 100% of the ticks from both sheep were infected with A. 

phagocytophilum.  

A. phagocytophilum infection in ticks during 7 days of feeding on sheep 084. 

 High percentages of female ticks were found to be infected with A. 

phagocytophilum by PCR after 2 through 7 days of feeding on experimentally-infected 

Sheep 084 (Table 5). PCR results on individual ticks revealed that 65-100% of the tick 

guts and 65-90% of salivary glands became infected with A. phagocytophilum (Table 5). 

The percent of infected guts peaked after 4 days of feeding, reaching 100% infected ticks 

(Fig. 1A). However, the highest percentage of infected salivary glands (90%) was 

obtained after 5 days of feeding and stayed at that level until day 7 (Fig. 1A). When the 

infection rates were compared between guts and salivary glands, a positive correlation 

was observed (Fig. 1B). 

Transstadial transmission of A. phagocytophilum and infections in female ticks infected 

as nymphs. 

 Transstadial transmission of A. phagocytophilum was demonstrated when ticks 

infected as nymphs on Sheep 084 were allowed to feed after molting on Sheep 016. 

Sheep 016 became infected with A. phagocytophilum 14 days after the ticks were applied.  

In the females that were infected as nymphs, 27% and 0% of the guts and salivary glands, 

respectively in unfed females were infected with A. phagocytophilum (Table 6). The 

infection rate increased to 80% and 33% for guts and salivary glands, respectively, after 5 
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days of feeding (Table 6). The percentage of infected guts and salivary glands peaked 

after 5 days of feeding and then decreased on day 6 to 40% and 13%, respectively (Fig. 

1C). As with the ticks from Sheep 084, when the infection rates were compared between 

guts and salivary glands, a positive correlation was observed (Fig. 1D).  

Transovarial transmission of A. phagocytophilum 

Egg masses from two groups of replete females, infected either as nymphs or adults on 

Sheep 084, were negative for A. phagocytophilum by PCR. 

Clinical pathology findings  

 Limited hematologic abnormalities were identified. CBC results remained largely 

within reference intervals except for mild lymphopenia (Sheep 102), slight eosinophilia 

(Sheep 084), and mild neutrophilia (Sheep 016). Blood film evaluation revealed 

prominent large granular lymphocytes comprising up to 30% of total lymphocytes, 

occasional reactive lymphocytes and plasma cells, and rare macrophages. Rare 

neutrophils contained clustered granular basophilic inclusions consistent with small 

morulae (Fig. 2). Clinical chemistry abnormalities were mild, consisting of 

hypocholesterolemia, hypoalbuminemia, decreased creatine kinase activity, and increased 

activity of alkaline phosphatase and gamma-glumatyltransferase. In some cases these 

values were slightly outside reference intervals prior to inoculation with A. 

phagocytophilum, and thus unlikely related to infection.  

Necropsy findings  

 Relevant gross changes seen at necropsy were similar among the five sheep (001, 

165, 102, 084 and 016) and were mild and restricted to the lymphoid system.  The spleen 

of each sheep was mildly enlarged with conspicuous lymphoid follicles visible on cut 
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surface.  Sublumbar and prefemoral lymph nodes were mildly enlarged with maintenance 

of distinct corticomedullary architecture.  In each of the sheep gross lesions, interpreted 

to be background changes unrelated to A. phagocytophilum infection, were occasionally 

seen and included small numbers of Haemonchus contortus within the abomasums of all 

sheep, scattered pulmonary and hepatic abscesses in Sheep 084 and a lymph node abscess 

in Sheep 016.  Microscopic examination of lymphoid tissues revealed mild to moderate 

lymphoid hyperplasia with germinal center formation in spleen and lymph nodes of each 

sheep.  Minimal and patchy neutrophilic pneumonitis was also seen in two of the sheep 

102 and 165.  Two sheep (001 and 165) had moderate numbers of eosinophils in 

medullary sinuses of lymph nodes and three sheep (001, 016 and 084) has small to 

moderate numbers of eosinophils present in perisinusoidal regions of the adrenal 

medullas. 

Discussion 

 Emergence of HGA in the U.S. has resulted in accelerated research on the 

etiologic agent, A. phagocytophilum.  Our research is focused on the tick/pathogen 

interface because ticks are a necessary host in the pathogen life cycle and tick feeding is 

the mechanism by which A. phagocytophilum is transmitted to humans. The goal of this 

research was to develop an animal model for infection of ticks with a human isolate of A. 

phagocytophilum that would allow us to infect ticks for studies of tick/pathogen 

interactions.  Sheep were chosen for this research because they were known to be 

susceptible to infection with A. phagocytophilum; TBF, caused by A. phagocytophilum, is 

a common disease of sheep in Europe (Stuen 2007). Furthermore, sheep are easily 
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restrained for tick feeding and their body size can accommodate tick infestations and 

multiple tick feeding cells as required for our experiments.   

 Infection of sheep with the NY-18 isolate was difficult to assess. Clinical signs 

were not apparent in any of the sheep, and clinical pathology findings were minimal and 

uniform among the sheep. The only pathologic changes observed were indicative of 

general immune stimulation. Demonstration of morulae in circulating neutrophils, 

reported as a reliable method for detection of A. phagocytophilum in sheep with TBF 

(Giudice et al. 2011), was a rare event in the sheep in this study of a human isolate.  In 

the entire study involving five sheep, only a few   infected neutrophils were found that 

contained small A. phagocytophilum morulae.  

 Many variants of A. phagocytophilum have been reported which differ in host 

preferences, host responses and tick vectors, and variants from ruminants were recently 

found to differ from human ones (de la Fuente et al. 2005b; 2005c; Torina et al. 2008; 

Rar and Golovljova 2011). For example, the Ap-V1 variant was shown to be infective for 

goats and deer but was not associated with human disease or infective for hamsters, mice 

and gerbils (Massung et al. 2006; Reichard et al. 2009). Furthermore, I. scapularis ticks 

that were allowed to feed on deer inoculated with the Ap-V1 or the NY-18 isolates only 

became infected with the Ap-V1 variant (Reichard et al. 2009).  Therefore, it was not 

surprising that infection and diagnostic parameters of the human NY-18 isolate in sheep 

differed from those reported in sheep with TBF (Stuen 2007; Giudice et al. 2011) and in 

mice infected with the same human A. phagocytophilum NY-18 isolate (Blas-Machado et 

al. 2007).  
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 Nonetheless, sheep proved to be a good host for the feeding of I. scapularis 

nymphs and females, both relevant tick stages for the characterization of tick/host and 

tick/pathogen interfaces.  Sheep were easily adaptable to the temporary restraint required 

for tick feeding and their size accommodated multiple tick feeding cells.  Larvae did not 

feed successfully on sheep and, while nymphs fed to repletion on sheep, the return was 

low, approximately 18%.  I. scapularis nymphs required special handling and precise 

placement on sheep, and the return of nymphs in future studies could likely be enhanced 

by improved infestation techniques. While female ticks fed successfully at a rate 75 to 

100%, male ticks did not feed but rather paired rapidly with the females and remained 

engaged until the last day of feeding.  Therefore, while male ticks may acquire infection 

as nymphs, they would not likely be involved in transstadial transmission in sheep.   

 Experimentally-infected sheep used in these studies proved to be an excellent host 

for production of ticks infected with human NY-18 A. phagocytophilum isolate. Both tick 

guts and salivary glands were shown to become infected in female ticks after they fed and 

acquired infection on the experimentally-infected sheep, demonstrating a tick infection 

rate of 85-87% and 100% for guts and salivary glands, respectively. Furthermore, 

positive correlations were shown between infection rates in guts and salivary glands over 

the tick feeding period in female ticks infected either as nymphs or adults.  The uniform 

initiation of feeding in these ticks appears to have contributed to the synchronized 

multiplication of A. phagocytophilum in tick guts and salivary glands. 

Transstadial transmission of A. phagocytophilum was demonstrated by ticks that 

acquired infection as nymphs and transmitted as adults. However, evidence of 

transovarial transmission was not found in this study because the eggs masses from 
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infected, replete nymphs were PCR negative. However, subsequently hatched larvae from 

these egg masses were not fed on susceptible sheep to test for transovarial transmission. 

 The lack of circulating neutrophils infected with A. phagocytophilum morulae in 

these sheep suggested that a fixed tissue cell to which the ticks would be exposed and 

ingest during feeding may be a host cell for this human isolate of A. phagocytophilum. 

Certainly the high rate of tick infections does not correlate with the minimal parasitemia 

observed in circulating neutrophils.  A recent study demonstrated that murine bone 

marrow-derived mast cells (BMMCs) could serve as a host cell for A. phagoctyphilum 

and that infection of BMMCs inhibited mast cell activation (Ojogun et al. 2011). Further 

studies are needed to determine whether a fixed tissue cell, such as mast cells, harbor A. 

phagocytophilum in sheep. 

Conclusions 

 Sheep became infected with the human NY-18 isolate of A. phagocytophilum and 

served as a host for infection of I. scapularis ticks. PCR consistently demonstrated 

infection in sheep but serologic diagnosis by use of the Anaplasma cELISA was not 

consistently useful as a diagnostic tool. Distinct morulae in circulating neutrophils were 

small, singular and rarely seen. Hematology and biochemical abnormalities were mild. 

Necropsy lesions were minimal and included mild splenomegaly and lymph node 

enlargement, which demonstrated evidence of systemic immune stimulation.  

  Nevertheless, sheep proved to be a good host for some tick stages. While larvae 

and males did not feed on sheep, a small return of nymphs and most of the females fed to 

repletion.  While clinical signs of disease were not apparent in the infected sheep, tick 

infection rates in guts and salivary glands were quite high. The absence of infected 
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circulating neutrophils suggests that a tissue based cell may likely be the source of 

infection for ticks.  Mast cells may be a good candidate because they have recently been 

shown to be a host cell for A. phagocytophilum. Transstadial transmission was 

demonstrated by female ticks that were infected as nymphs. Lack of demonstration of A. 

phagocytophilum in egg masses by PCR from infected females suggested that 

transovarial transmission was not likely to occur. 
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Figure 1. Infection of ticks during feeding on A. phagocytophilum-infected sheep. The 

infection of individual ticks was determined by PCR in guts and salivary 

glands from female ticks infected as adults (A, B; N=20) or nymphs (C, D; 

N=15) during feeding on sheep 084. Correlation analyses were conducted in 
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Microsoft Excel to compare the percent of infected guts and salivary glands at 

different time intervals after tick infestation (B, D). 
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Figure 2.  Morulae of A. phagocytophilum (arrowheads) in peripheral blood neutrophils 

from Sheep 016 (left) and Sheep 102 (right) (Aqueous Romanowsky stain). 
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Table 1. Experimental sheep, source of A. phagocytophilum for infection and tick stages 
and numbers that were allowed to feed on the sheep.  

Sheep 
No. 

Source of A. phagocytophilum infection 
 

Tick stage infested 

 

001 iv inoculation of infected HL-60 cell culture 
 

100 male-female pairs,  

200 nymphs  

500 larvae 

165 iv inoculation of infected HL-60 cell culture 
 

50 male-female pairs 

102 iv inoculation of infected HL-60 cell culture 
 

50 male-female pairs 

084 iv inoculation of infected HL-60 cell culture 
 

200 male-female pairs, 
2,000 nymphs 

016        Females infected as nymphs on Sheep 084 
 

90 male-females pairs 
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Table 2.  Infestation and recovery of ticks from experimental sheep. 

Sheep  
Day of tick infestation after 

inoculation with A. phagocytophilum 

Number of tick stages recovered       
after feeding 

 

001 

 
 

11 
 

 
               0/500 larvae       (0%) 
             32/200 nymphs   (16%) 
             75/100 females    (75%) 
               0/100 males        (0%)* 

 

165 

 
29               31/40 females   (87%)                                                       

0/40 males       (0%)* 

102  
18              31/40 females    (77%)                   

0/40 males      (0%)* 

 
084 

41      174/200 female ticks    (87%)* 
      363/2,000 nymphs       (18%)** 

016 Not inoculated 90/90 females    (100%)* 

 

  * Male ticks did not feed but were attached to the females.  

 

** Replete nymphs molted into 120 females (48%) and 130 males (52%).  
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Table 3. A. phagocytophilum infections in sheep.  

 
Sheep No. 

 
Prepatent period* (days post 

inoculation)  

 
cELISA positive (days 

post inoculation) 
   

Sheep 165 21 11, 13 and 15 
   

Sheep 102 14 14 
   

Sheep 084 10 10 and 17 
   

 

*The prepatent period was calculated as the number of days from the time of inoculation 
of sheep with A. phagocytophilum infected cell cultures to the first day that blood 
samples were found to be A. phagocytophilum positive by PCR. 
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Table 4. Infection of female ticks that fed for 7 days and acquired infection on sheep 165 
and 102.  

Sheep No. PCR-positive 
guts 

PCR-positive 
salivary glands 

   
165 17/20 (85%) 20/20 (100%) 

   
102 13/15 (87%) 11/11 (100%) 
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Table 5.  Infection of female ticks that fed for varying periods and acquired infection on 
sheep 084. 

 

Tick Tissue 

 

PCR-positive samples 

 Day 0 
(unfed) 

Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 

        
Guts 0/20 

(0%) 
16/20 
(80%) 

19/20 
(95%) 

20/20 
(100%) 

13/20 
(65%) 

19/20 
(95%) 

16/20 
(80%) 

        
Salivary 
glands 

0/20 
(0%) 

15/20 
(75%) 

13/20% 
(65%) 

15/20 
(75%) 

18/20 
(90%) 

18/20 
(90%) 

18/20 
(90%) 
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Table 6.  Infection of female ticks that acquired infection as nymphs on sheep 084 and 
subsequently molted adults were allowed to feed for varying periods on sheep 016.   

 

 

Tick Tissue 

 

PCR-positive samples 

 Day 0 
(Unfed) 

Day 2 Day 3 Day 4 Day 5 Day 6 

       

Guts 4/15 
(27%) 

4/15 
(27%) 

9/15 
(60%) 

7/15 
(47%) 

12/15 
(80%) 

6/15 
(40%) 

       

Salivary 
glands 

0/15 
(0%) 

0/15 
(0%) 

4/15 
(27%) 

2/15 
(13%) 

5/15 
(33%) 

2/15 
(13%) 
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CHAPTER IV 
 

SUMMARY 

Anaplasma phagocytophilum, a tick-borne pathogen vectored by ticks of the 

genus Ixodes, was first described in Europe as the cause tick-borne fever (TBF) in sheep. 

Granulocytes are the host cell for A. phagocytophilum, where the pathogen multiples 

within a parasitophorous vacuole that allow for evasion of the immune system.  This 

pathogen differs from the other Anaplasma sp. which are host specific for ruminants 

because of its wide host range, including rodents, birds, cats, deer, horses, cattle, sheep, 

dogs and humans. Recently, A. phagocytophilum was found to be the cause of human 

granulocytic anaplasmosis (HGA), an emerging tick-borne disease in the United States 

and Europe, and the variants of A. phagocytophilum identified in humans were shown to 

vary from those that cause disease in ruminants. Recognition of the broad host range of  

A. phagocytophilum and its emergence as a human  pathogen has created renewed interest 

in research on this pathogen,  particularly in the molecular relationship of the pathogen 

with both vertebrate and tick host cells (Woldehiwet 2010). 

Ticks are the biological vector for the   A. phagocytophilum, and are  necessary 

for transmission of the pathogen among  humans and reservoir hosts. While the 

developmental cycle of A. phagocytophilum in ticks has not been fully described, the AP-

1 variant has been identified in tick gut cells. Recent research has contributed to our 

understanding of these tick cell/pathogen interactions, but continued studies are needed 
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on the molecular interactions at the tick-pathogen interface in order to identify the tick 

genes that are required for tick vector competency and pathogen transmission. 

 The focus of this research was two-fold: (1) to characterize the gene expression in 

culture tick cells in response to infection with A. phagocytophilum infection in order to 

identify   tick genes involved in infection and multiplication of A. phagocytophilum and 

(2) to develop a sheep model for characterization of a human isolate of A. 

phagocytophilum thus providing a host on which to infect ticks for future tick-pathogen 

interaction studies of this human isolate.  The overall hypothesis for the research in our 

laboratory is that tick cell proteins differentially expressed in response to pathogen 

infection would include those involved in pathogen infection, multiplication and 

transmission, as well as being involved in the tick protective response against pathogen 

infection.  

In the first part of this research, the characterization of I. scapularis proteins 

differentially expressed by tick cells in response to A. phagocytophilum infection, was 

done by a combination of proteomic and gene silencing studies in the ISE6 tick cell line 

that was originally derived from embryos of I. scapularis. After infection of the cultured 

cells, the proteomic analysis was done using protein one-step in-gel digestion, peptide 

iTRAQ labeling, IEF fractionation, LC-MS/MS analysis and peptide identification. 

Protein identification was carried out as described previously (Lopez-Ferrer et al. 2004) 

using SEQUEST algorithum (Bioworks 3.2 package, Thermo Finnigan), allowing 

optional (Methionine oxidation) and fixed modifications (Cysteine 

carboxamidomethylation, Lysine and N-terminal modification of +114.1020 Da). The 

alphaproteobacteria Swissprot database was used to identify and discard Anaplasma and 
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possible symbiotic bacterial sequences from further analyses.  Analysis of protein 

ontology for differentially expressed proteins demonstrated that biological processes such 

as cell growth, protein and nucleic acid metabolism and transport were affected during 

early and late infections. Significant differences were observed between under- and over-

represented proteins in early and late infections for cell growth and transport biological 

processes and between the early and late infections for cell growth. The transport 

biological processes were under-represented in both early and late infections. Proteins in 

cell growth and transport biological processes were selected for the characterization of 

mRNA levels during A. phagocytophilum infection in I. scapularis ISE6 tick cell culture 

systems.  

 Real time RT-PCR was subsequently used to analyze the mRNA levels of genes 

encoding for the proteins in cell growth and transport in early and late-infected cells and 

were compared with the proteomic results. Based on this analysis, six genes, CG2, CG8, 

CG10, T1, T2, T3, were selected for the analysis of mRNA levels in ISE6 cells and for 

gene silencing by RNA interference (RNAi). The expression of four of the six genes 

(CG2, CG8, T2 and subolesin) was found to be significantly reduced in cultured tick cells 

after RNAi. Of these genes RNAi of CG8, T2 and subolesin resulted in a significant 

difference in the A. phagocytophilum infection levels.  This research represents the first 

report of the analysis of global protein changes in tick cells in response to A. 

phagocytophilum infection. Genes confirmed to be differentially expressed at both the 

protein and mRNA levels with predicted function provided evidence that  these genes are 

involved in pathogen infection/multiplication and tick response to infection. 
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 In the second part of this research focused on development of a sheep model of a 

human isolate of A. phagocytophilum, four sheep were experimentally-infected with A. 

phagocytophilum by intravenous inoculation of HL-60 cell cultures  infected with the 

human NY-18 isolate of A. phagocytophilum. After the sheep were confirmed to be 

infected by PCR, the sheep were infested with I. scapularis adults and/or nymphal and 

larvae.  Ticks that were allowed to feed on the infected sheep also became infected with 

A. phagocytophilum, and PCR of tick guts and salivary glands demonstrated that 65 to 

100% of the female ticks were infected.  Transstadial transmission was demonstrated 

when the susceptible sheep fed on by female ticks that were infected as nymphs was 

shown to become PCR positive for A. phagocytophilum. Infection rates of ticks used to 

demonstrate transstadial transmission tick ranged from 65 to 100 %.   

 In summary, the results of the cell culture studies resulted in characterization of 

genes differentially expressed in response to Anaplasma phagocytophilum. The genes 

CG8, T2 and subolesin were found to impact A. phagocytophilum infection levels.  The 

sheep model developed herein provided a model system for study of the human A. 

phagocytophilum strain.  Although clinical signs were not observed in any of the 

experimentally- infected sheep, the sheep proved to a good host for infection for the I. 

scapularis nymphs and adults. Characterization of the molecular interactions at the 

vector-pathogen interface is needed to identify candidate antigens for development of 

vaccines for the control of tick infestations and prevention of pathogen 

infection/transmission.
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growth and transport was significantly reduced, thus reflecting the effect of pathogen 
multiplication on these cell processes. New genes were identified, including spectrin 
alpha chain or alpha-fodrin and Voltage-dependent anion-selective channel or 
mitochondrial porin, to be involved in tick cell infection/multiplication of A. 
phagocytophilum, thus contributing to our understanding of the molecular events at the 
tick-pathogen interface. In the sheep model study, female I. scapularis acquired infection 
on each of the three experimentally-infected sheep as determined by PCR of tick guts (80 
to 87%) and salivary glands (67 to 100%). Transstadial transmission was confirmed 14 
days after female I. scapularis, infected as nymphs, transmitted A. phagocytophilum to a 
susceptible one.  The results from this research demonstrated that sheep are a good host 
for infection of   I. scapularis ticks with the human NY-18 isolate of A. phagocytophilum. 
The results of this research have contributed to our understanding of the tick/A. 
phagocytophilum interface and will likely contribute towards the development of novel 
tick control measures.  
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