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CHAPTER I 

INTRODUCTION 

Reproductive management of stallions is extremely challenging, especially when signs of 

subfertility or infertility develop.  Subfertility and infertility contribute largely as an 

economic loss to the equine industry.  Numerous extrinsic and intrinsic factors can 

disrupt the process of spermatogenesis making management even more difficult. 

Testicular degeneration is currently a major concern in the equine industry.  Generally 

speaking, anything that disrupts the process of spermatogenesis results in degeneration.  

Known insults to the testis such as extreme heat, exogenous steroids, and injury cause 

degeneration based on the length and severity of the insult.  The exact mechanisim of 

idiopathic testicular degeneration is unknown but it is typically seen in older stallions and 

involves a defect in the testis itself resulting in degeneration. 

An element of surprise is often involved with stallions that develop testicular 

degeneration.  Most owners don’t know it’s happened until mares fail to become 

pregnant.  Many times at this point, the damage is irreversible and fertility will continue 

to decline over time.   

The study described herein is important in defining and recording histopathologic 

changes found in the testes of a general population of stallions.  These results combined 

with future studies will attempt to define testicular changes that take place with the aging 
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process.  Improvements to breeding soundness examinations could result in earlier 

detection of testicular degeneration and although it can’t be stopped, proper planning 

could prepare stallion owners for what’s to come. 
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CHAPTER II

REVIEW OF LITERATURE 

To properly evaluate and manage a stallion suspected of having reproductive problems, a 

thorough understanding of reproductive anatomy, physiology, endocrinology and 

histology is fundamental.  Part I of the following literature review will focus on these 

elements in the stallion thus providing a foundation for Part II which will focus on 

testicular degeneration in the stallion. 

PART I 

Functional Anatomy & Histology of the Adult Stallion 

The reproductive tract of the male is supported partially within the pelvic cavity by the 

genital fold and externally by the scrotum and prepuce.  The male reproductive organs 

consist of the following:  two testes, each suspended by a spermatic cord and external 

cremaster muscle; two epididymides; two ductus deferens each with an ampullae; paired 

vesicular glands; a prostate gland; paired bulbourethral glands; the penis and associated 

urethralis; ischiocavernosus, bulbospongiosus, and retractor penis muscles.  The vesicular 

glands, prostate gland and bulbourethral glands are often collectively called the accessory 

sex glands.   
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Scrotum 

The scrotum in a normal stallion should be slightly pendulous, spherical, and symmetric 

with testes location varying between stallions.  The scrotum should be thin and flexible, 

sliding easily over the testes and epididymides inside. 

The scrotum functions mainly by protecting the testes and assisting in thermoregulation.  

The scrotum of a stallion is located high within the inguinal area and consists of four 

main layers including 1) skin, 2) tunica dartos, 3) scrotal fascia, and 4) parietal vaginal 

tunic [1-4].  Scrotal skin is thin, hairless, and slightly oily and contains numerous sweat 

glands and sebaceous glands [1,5].  The tunica dartos layer lines the scrotum and is 

composed of smooth muscle fibers and connective tissue.  It is capable of constantly 

adjusting to temperature changes and is able to maintain continuous contractions for long 

periods of time.   

The scrotal fascia lies between the tunica dartos and the parietal vaginal tunic.  This layer 

consists of a movable connective tissue layer that allows vertical and horizontal 

movement of the testes within the scrotum [4].  The inner most layer of the scrotum is the 

parietal vaginal tunic or the common vaginal tunic which forms through an evagination 

of the parietal peritoneum through the inguinal rings when the testes descend.  The 

vaginal cavity, a space between the parietal and visceral layers of the vaginal tunic, 

contains a fluid that allows movement of the testes within the scrotum.  Adhesion 

formation between these two layers is common in older stallions due to normal 

movement and mild trauma over time. These adhesions can ultimately inhibit mobility 

and prevent proper thermoregulation.   

4



Testis 

The testis functions mainly in the production of both spermatozoa and testosterone.  In a 

normal stallion, the testes are oval shaped, relatively equal in size and firm on palpation. 

In stallions, the testes lay horizontally in the scrotum with the tail of the epididymis 

directed caudally.  The ligament of the tail of the epididymis is a remnant of the fetal 

ligament called the gubernaculum, which is thought to be involved in descent of the 

testes into the scrotum.  The ligament attaches the tail of the epididymis to the caudal 

pole of the testis and is predominantly large in newborn colts, often mistaken for a testis 

in the scrotum [4].   

The tunica albuginea is a tough layer of collagenous tissue and smooth muscle that 

encloses each testis within the scrotum and is fused externally to the visceral layer of the 

vaginal tunic.  The testicular parenchyma is separated into lobules by supportive 

trabeculae from the tunica albuginea [2,4,5].  The smooth muscle layer of the tunica 

albuginea functions in intratesticular sperm transport and testicular tone [6].  At the 

cranial pole of the testis lies the mediastinum testis, a partial separation inside the testis, 

consisting of fibrous tissue that is continuous with the tunica albuginea.  The stallion 

mediastinum is located axially in the testis when compared to other species [1,2,4].  

Excurrent ducts exit the testis through the mediastinum, cross the tunica albuginea and 

enter the head of the epididymis [2,5].   

The testis parenchyma of a young stallion is much more pale when compared to the 

parenchyma of older stallions [7].  The parenchyma contains seminiferous tubules and 

interstitial tissue.  Seminiferous epithelium lines the inside of the seminiferous tubules 

and contains germinal cells and Sertoli cells.  The lamina propria surrounds the 
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seminiferous tubules and consists of fibroblasts, myoid cells and laminin.  The myoid 

cells move spermatozoa and fluid through the tubules by producing rhythmic 

contractions.  Sertoli cells form junctional complexes and also assist germinal cells in 

differentiation.  The junctional complexes form a blood-testis barrier that separates the 

developing cells from the host immune system.   

The interstitial tissue contains blood vessels, lymphatics, nerves, connective tissue and 

large numbers of Leydig cells which produce testosterone among other steroid hormones 

[7].  As a stallion reaches sexual maturity, Leydig cells are capable of producing larger 

amounts of testosterone.   

Seminiferous tubules are arc shaped and consist of three zones 1) convoluted tubule zone, 

2) transitional tubule zone and 3) straight tubule zone.  The convoluted zone is highly 

coiled, making up a major portion of the seminiferous tubule.  This zone is lined by 

seminiferous epithelium, which contains Sertoli cells and germinal cells capable of 

spermatozoa production.  The seminiferous epithelium of an adult stallion is made up of 

15-20% Sertoli cells that are able to multiply as breeding season approaches [7-10].  The 

number of Sertoli cells within the testis determine how many spermatozoa are produced 

[11].   

The transitional zone lies between the convoluted and straight tubule portions of the 

seminiferous tubule.  The straight tubules unite in the cranial 2/3 of the testis at the rete 

testis [11,12].  These tubules then join with the efferent ducts that lead to the epididymal 

duct. 
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Seasonal breeders like the stallion experience hormonal and testicular changes throughout 

the year but unlike some seasonal breeders, stallions produce spermatozoa year round.  

The peak breeding season for stallions is from May-July with regression evident in the 

nonbreeding season from September-February.  During the nonbreeding season, testes are 

25% lighter, contain 35% less Leydig cells which produce less testosterone, contain 31% 

less Sertoli cells and produce 40-50% less spermatozoa [13-15].   

Torsion & Rotation of the Testis 

Normal stallions can commonly have rotation in one or both testes, up to 180 degrees.  A 

study showed that 3-4% of light horse stallions presented for a breeding soundness 

examination had some rotation present in addition to evidence of decreased sperm 

motility and extragonadal sperm reserves [16].  Rotation is usually prevented by the loose 

connective tissue inside the scrotum with the condition being more prevalent in certain 

breeds [6,16,17].  In a study evaluating Welsh ponies, rotation was evident in 39% of the 

stallions examined.  This high incidence is thought to be related to a specific family 

lineage [18].  The incidence of testis rotation in Paso Fino stallions is about 15%.  The 

testis rotation in stallions with this condition is typically permanent and no outward signs 

of distress are present [19].   

Testis rotation should not be confused with true testicular or spermatic cord torsion which 

is often serious and life threatening.  The incidence of testicular torsion in stallions is 

unknown; however, in humans, one in every four thousand males younger than twenty-

five years old is diagnosed with this condition annually [20].  Testicular torsions in 

stallions often result in signs of colic with the affected testis presenting painful and 

swollen.  One study evaluated a stallion with a three year history of left sided scrotal pain 
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and swelling.  After removal of the testis for testicular torsion, the stallion returned to 

service with an 82% conception rate the next season [21].   

Spermatic Cord & Vascular Supply to the Testis 

The spermatic cord is enclosed in the parietal layer of the vaginal tunic and travels 

distally from the internal inguinal ring.  Each cord contains a deferent duct, testicular 

veins, testicular artery, nerves, and lymphatic vessels.  The cremaster muscle is not part 

of the spermatic cord but lies lateral to it [2,4].   

The testicular artery is a branch of the abdominal aorta, supplying blood to the testis and 

epididymis.  It descends through the inguinal ring and runs along the cranial border of the 

spermatic cord in a winding manner, dividing into numerous branches close to the testis.  

The small branches pass through the tunica albuginea and enter the testis parenchyma 

through the trabeculae and septa [1,3,4].  The testicular artery intricately winds around a 

complex system of veins leaving the testis to form the pampiniform plexus.  The 

pampiniform plexus ultimately joins the caudal vena cava [1,3,4].   

An abnormal distension of the veins of the pampiniform plexus is referred to as a 

varicocele.  This condition is relatively rare in stallions [5] but common in male humans 

with the condition present in 12% of the normal male population and in approximately 

25% of men with infertility [22].  In stallions with the condition, the vessels are distended 

on palpation, usually not painful, and typically only involve one side of the spermatic 

cord.  The condition is thought to alter spermatogenesis by changes in thermoregulation 

[6] but stallions with the condition can have normal semen parameters [5].  Although 
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surgery is typically not performed in the stallion, there is much debate in human medicine 

whether men with infertility would benefit from surgical correction of the condition [22]. 

Excurrent Duct System 

Each of the rete tubules joins an efferent duct after passing through the tunica albuginea, 

continuing on to the epididymal duct and finally into the deferent duct.  The deferent duct 

ends at the colliculus seminalis, a rounded prominence situated on the dorsomedial wall 

of the urethra, caudal to the urethral opening from the bladder [4].  It is at this 

prominence that the ducts of the accessory sex glands empty into the urethra.   

Epididymis 

Each testis has a highly convoluted epididymis, which is approximately 70 meters in 

length [2,4,5].  The three grossly distinct regions of the epididymis are the head, body, 

and tail.  The head (or caput) of the epididymis is a flattened structure that is closely 

attached to the testis.  It curves around the testis and lies lateral to the spermatic cord.  

This region of the epididymis can be difficulat to palpate die to its flattened nature and 

relation to the cremaster muscle [5,23].  The body (or corpus) is cylindrical in shape and 

is loosely attached to the dorsal surface of the testis.  The tail (or cauda) is a large, 

spherical, prominent structure attached to the caudal pole of the testis by the ligament of 

the tail of the epididymis.   

The proximal head of the epididymis contains the distal ends of numerous efferent ducts 

leading out of the tubules and into the rete testis [12].  The efferent ducts fuse into the 

epididymal duct within the head of the epididymis.  The epididymal duct is 

approximately 45 meters long, is folded in pleats and courses through the head, body and 
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tail of the epididymis becoming continuous with the deferent duct.  Multiple regions 

within the stallion epididymis can be identified based on cellular structure with each 

region having a different function [24]. 

Functionally the epididymis has three sections [25-28].  Within the proximal head of the 

epididymis, the epithelia of the efferent ducts function in resorption of fluids.  

Spermatozoal maturation takes place in the distal part of the head of the epididymis and 

the body where specific secretions are released.  The tail of the epididymis and the 

proximal aspect of the deferent duct both function as storage facilities for fertile 

spermatozoa.   

Deferent Ducts 

The deferent duct, a continuation of the epididymal duct, attaches to the tail of the 

epididymis.  It courses along the medial aspect of the testis and ascends via the spermatic 

cord through the vaginal ring into the pelvis.  Each deferent duct widens into an 

ampullary gland, eventually concluding at the colliculus seminalis of the pelvic urethra.  

The proximal deferent duct has a thick wall of smooth muscle that can be easily palpated 

through the scrotum.   

Accessory Sex Glands 

The accessory sex glands collectively include the ampulla, vesicular glands, prostate 

gland and the bulbourethral glands.   

Ampullae 

The paired ampullae are the distended distal portions of the deferent ducts, measuring 1-2 

cm in diameter and 10-25 cm in length [5,23].  They can be palpated on midline of the 
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pelvic floor over the neck of the bladder.  They lie dorsal to the pelvic urethra but pass 

beneath the prostate gland as they join caudally.  They continue through the wall of the 

urethra at their distal ends, opening into the colliculus seminalis alongside the excretory 

ducts of the vesicular glands.  There is much debate regarding whether the ampullae are 

simply a storage depot for sperm or an actual accessory sex gland [29].  Histologically, 

the tissue is composed of numerous branched tubular glands within thickened walls 

[4,6,30]. 

Vesicular Glands 

The paired vesicular glands are pyriform sacs with thin walls that lie lateral and parallel 

to the ampullae within the genital fold [31].  The glands range in size from 12-20 cm long 

and 5 cm in diameter [1,5] with the ducts opening lateral to the ducts of the ampullae at 

the colliculus seminalis.  The vesicular glands produce the gel fraction of the ejaculate 

[5,32].  Season can influence the volume of gel produced often with the highest fraction 

of gel being produced during the physiologic breeding season [15].  The volume of the 

gel fraction can also vary significantly between stallions.   

Seminal vesiculitis is a unilateral or bilateral disease that rarely occurs in stallions but is 

significant due to its persistent nature and interference with fertility [33].  Typically, 

clinical signs are not evident, although some stallions exhibit pain on ejaculation or a 

reluctance to breed [5].  In a case report of a stallion with seminal vesiculitis, presenting 

clinical signs were those of colic [34].  Some stallions have enlarged vesicular glands that 

are firm and painful on rectal palpation.  Pozor and McDonnell utilized ultrasound to 

analyze the echogenic character of vesicular fluid and found a significant variation within 

and between stallions that were all known to have semen free of inflammatory cells.  This 
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led them to conclude that a change in the echogenicity of vesicular fluid doesn’t 

necessarily indicate inflammation [31].  Vesicular glands of stallions can vary 

considerably in size and appearance both across and within stallions [31].  Diagnosing 

seminal vesiculitis is best done with a combination of rectal palpation, observation of 

large numbers of neutrophils in the semen, bacterial culture of the semen, and endoscopy 

of the urethra and seminal vesicles [5,35].  Culture swabs should be taken from the 

preputial cavity and also from the penis before it is washed to determine the resident 

bacterial flora in these areas.  The pre- and post-ejaculate swabs are taken from the distal 

urethra in addition to semen cultures.  Proper techniques will ensure that the artificial 

vagina is not the source of contamination [5].  Endoscopy and direct cultures of the 

seminal vesicles will result in a more significant diagnosis [35,36]. 

Seminal vesiculitis is often difficult to treat and the prognosis is guarded.  Affected 

stallions can be treated with systemic antibiotics and their semen should be extended with 

a product containing antibiotics.  Several reports have promoted endoscope-aided direct 

lavage followed by the placement of antibiotics into the vesicular gland lumen [35,36]. 

Prostate Gland 

The prostate is firm, has two lateral lobes, and a central isthmus.  It extends along the 

caudolateral border of each vesicular gland and is not always palpable per rectum.  The 

lobes measure between 5-9 cm in length, 2-6 cm wide, and 1-2 cm in thickness [2,5].  

The prostate ducts enter the lumen of the urethra lateral to the colliculus seminalis and 

contribute to the sperm-rich fraction of the ejaculate [5,32].   
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Bulbourethral Glands 

The bulbourethral glands lie caudal to the prostate and are attached to the dorsal surface 

of the pelvic urethra.  They are difficult to palpate per rectum because the urethralis and 

bulboglandularis muscles cover them [1,4], but ultrasonographically, they are easily 

evaluated [31,37].  Multiple ducts from the bulbourethral glands enter the medial side of 

the urethra distal to the prostatic ducts.  The bulbourethral gland secretions make up a 

majority the first fraction of the ejaculate [32], functioning to cleanse the urethra prior to 

ejaculation [15]. 

Urethra 

The urethra extends from the bladder to the free end of the penis and functions as an 

outflow tract for both urine and semen.  The urethralis muscle overlays the pelvic portion 

of the urethra and contracts powerfully during ejaculation.  The urethra is typically 

narrow except at the location of the colliculus seminalis where it widens to allow 

deposition of the accessory sex gland fluids during ejaculation.  The urethra ends in a free 

extension called the urethral process.  The penile urethra is surrounded by the corpus 

spongiosum penis. 

Penis & Prepuce 

The stallion penis is musculocavernous in nature and is composed of a root, a body, and a 

glans penis [1,2,4,15].  The ischiocavernosus muscles and suspensory ligaments of the 

penis support the root of the penis.  At the ischial arch, the penile root arises in the form 

of two crura which combine distally to form the single and dorsal corpus cavernosum 

penis which is enclosed by a thick tunica albuginea.  The corpus cavernosum, corpus 

spongiosum, and corpus spongiosum glandis are the cavernous spaces making up the 
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erectile tissue of the penis.  An erection occurs when blood from branches of the internal 

and external pudendal arteries engorge the spaces [1,3].  These cavernous spaces are also 

continuous with the veins responsible for drainage.  At the pelvis, the corpus spongiosum 

begins as the bulb of the penis and distally encircles the penile urethra inside a groove on 

the ventral side of the penis.  It continues distally over the free end of the penis to form 

the glans penis.  The corpus spongiosum glandis forms the distinct bell shape of the 

stallion’s penis seen following coitus.  At the center of the glans penis the urethral 

process is noticeably visible and is surrounded by an invagination known as the fossa 

glandis.   

The bulbospongiosus muscle lies ventral to the urethra and runs the entire length of the 

penis.  This muscle is a direct continuation of the urethralis muscle and assists in moving 

the penile urethral contents (semen and urine) distally with smooth rhythmic contractions.  

The paired retractor penis muscles are smooth muscles that course ventrally along the 

penis and join at the glans penis.  They function by returning the penis to the sheath 

following erection. 

The prepuce is formed by a double fold of skin and functions to surround and protect the 

nonerect penis.  The preputial skin is essentially hairless and has an abundant amount of 

sebaceous glands and sweat glands [2,4,5].  The sheath (external part of the prepuce) 

begins at the scrotum and has an evident raphe that is continuous with the scrotal raphe.  

The preputial orifice is formed by the sheath reflecting dorsocaudad to the abdominal 

wall [4].  The internal layer of the prepuce extends caudad from the orifice to line the 

internal side of the sheath, and then reflects craniad toward the orifice again before 

reflecting caudad to form the internal preputial fold and preputial ring.  This additional 
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internal fold allows the distinct lengthening (~50%) of the stallion’s penis during 

erection.  The preputial orifice is located at the base of the penis just in front of the 

scrotum during erection with the preputial ring evident near the midshaft of the penis.  

Also during erection, the internal layer of the internal preputial fold is distal to the 

preputial ring. 

Reproductive Physiology & Endocrinology of the Stallion 

The production of spermatozoa capable of fertilization is essential to reproduction.  

Spermatogenesis is an extremely delicate process that can be easily disrupted.  A 

thorough understanding of reproductive function is critical so that actions interfering with 

normal testicular function can be avoided and causes of altered spermatozoa production 

can be identified.  Endocrine function is an important aspect of stallion reproduction that 

can be easily disturbed with the administration of exogenous hormones.   

Thermoregulation of the Testes 

Most mammals accomplish testicular thermoregulation by scrotal sweat glands, scrotal 

muscle relaxation and the arteriovenous countercurrent heat exchange mechanism at the 

pampiniform plexus [38].  Normal spermatogenesis occurs at a temperature several 

degrees below core body temperature making proper thermoregulation a necessity 

[6,15,38].   

Sweat glands in the scrotum are innervated by sympathetic nerves that assist in proper 

testicular temperature.  If the body or scrotal temperatures increase, the hypothalamus 

detects the change and transmits nerve impulses to the sweat glands.  Sweating allows the 

scrotum and thus the testes to be cooled by evaporation.  The tunica dartos and the 
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external cremaster muscle also play a role in thermoregulation by determining testis 

position.  This is relevant during times of hot and cold temperature extremes.  During 

cold winter months, the tunica dartos contracts allowing the testes to be held closer to the 

body for increased warmth and in warmer months the tunica dartos relaxes making the 

scrotum more pendulous and thus increasing the surface area of the scrotum for 

evaporative cooling.    These mechanisms in combination with an increase in scrotal 

perspiration allows for a greater rate of evaporation and more efficient cooling of the 

testes.  The external cremaster muscle is also able to raise the testis for short time 

intervals.  Androgens (testosterone) are necessary for the tunica dartos to function, thus 

castrated animals lose this ability.  The pampiniform plexus also aids in thermoregulation 

by serving as a countercurrent heat exchanger.  The cooler venous blood leaving the testis 

enters the pampiniform plexus where it intricately winds around the testicular artery, and 

functions by cooling the arterial blood as it enters the testis preventing heat shock and 

damage [5,15].  When comparing the scrotal skin temperature to testis temperature, the 

skin is 33°C while the testes are 30.5°C to 32.5°C [15]. 

Increases in scrotal and testicular temperature are known to affect spermatogenesis and 

have been experimentally induced and investigated in bulls [39-43], rams [44-48], boars 

[49-51] and rabbits [52-54].  Love and Kenney conducted a study to determine the effects 

of scrotal heat stress on four pony stallions.  Semen was collected and evaluated prior to 

the placement of an airtight, wool apparatus over the scrotum and testes.  The apparatus 

was kept in place for 48 hours and then removed.  Semen was collected and evaluated for 

64 days following removal to ensure a complete spermatogenic cycle had taken place.  It 
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was found that sperm within the epididymis was not altered whereas the primary 

spermatocytes appeared to be the most susceptible [55].   

Spermatogenesis 

Spermatogenesis is a long process by which spermatogonia divide by mitosis to produce 

a population of spermatogonia that will maintain the cell line in addition to producing 

differentiated spermatogonia.  These differentiated spermatogonia then divide by mitosis 

to produce primary spermatocytes.  The spermatocytes undergo meiosis to produce 

spermatids which finally differentiate into spermatozoa. 

Spermatogenesis occurs within the seminiferous epithelium of the convoluted 

seminiferous tubules.  The seminiferous epithelium of a mature stallion consists of 

various cells including, somatic cells called Sertoli cells, and different types of germinal 

cells including spermatogonia, primary spermatocytes, secondary spermatocytes, and 

spermatids.  Within a normal seminiferous tubule, there are four to five generations of 

developing germinal cells that are arranged in distinct cellular stages [56-59].  Each of 

these generations is 12.2 days more highly developed toward forming spermatozoa [60].  

The length of spermatogenesis is not influenced by season and is approximately 57 days 

in stallions [15,57,60,61].  If any event interferes with spermatogenesis, at least 2 months 

may be required before normal function is returned.   

The process of spermatogenesis (57 days) consists of three phases including 1) 

spermatocytogenesis (19.4 days) is characterized by stem cell spermatogonia dividing by 

mitosis to produce other stem cells that will continue the lineage throughout the adult life 

of the male and also dividing cyclically to produce committed spermatogonia, 2) meiosis 
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(19.4 days) is characterized by the exchange of genetic material between homologous 

chromosomes of primary spermatocytes and is followed by a reduction division 

producing haploid spermatids, 3) spermiogenesis (18.6 days) is characterized by 

differentiation of spermatids with spherical nuclei into spermatozoa which are released 

from the luminal free surface. 

Sertoli Cells 

The Sertoli cells can be found on the lamina propria of the seminiferous tubule with their 

widespread cytoplasm extending around the germinal cells into the tubular lumen.  

Sertoli cells play a key role in spermatogenesis but their exact function is still unknown.  

The number of Sertoli cells a testis contains relates to the amount of spermatozoa that can 

be produced [10,11,57,62-65].  Sertoli cells have numerous functions that include [65], 

blood-testis barrier formation; nutritional and structural support of germinal cells; 

movement of developing germinal cells within the seminiferous epithelium; release of 

mature spermatids by spermiation; phagocytosis of degenerating germinal cells and 

residual bodies of cytoplasm left behind as mature spermatids undergo spermiation; 

secretion of fluids and proteins to bathe the developing germinal cells and convey 

spermatozoa through the seminiferous tubules to the rete testis; cell-to-cell 

communication with developing germinal cells, the underlying myoid cell layer (part of 

lamina propria), and Leydig cells.  

The organization of germinal cell differentiation and separation of the germinal cells 

from the host stallion’s immune system are both significant functions of Sertoli cells.  

The blood-testis barrier is formed by tight junctional complexes that are located between 

adjacent Sertoli cells.  The junctional complexes divide the seminiferous epithelium into 
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two functional compartments:  basal (peripheral) and adluminal (inner).  

Spermatocytogenesis takes place within the basal compartment, where spermatogonia 

and primary spermatocytes are found.  In the early phase of meiosis, primary 

spermatocytes migrate through the blood-testis barrier, into the adluminal compartment 

where meiosis continues and spermiogenesis occurs.  Integrity of the blood-testis barrier 

is maintained by forming new junctional complexes below the primary spermatocytes 

before dissolution of junctional complexes above the cells. 

The spermatocytes and spermatids are protected from the host immune system by the 

blood-testis barrier.  The differentiated spermatocytes and spermatids are considered 

foreign to the body because the developing immune system is not exposed to them and it 

would react to antigens expressed on their surface.  This barrier controls fluids and 

molecules entering so spermatocytes and spermatids are protected.  Damage to this 

barrier is rare but if it occurs, orchitis results.  Spermatozoa outside of the seminiferous 

tubule are recognized by the immune system as foreign.  The rete testis and efferent ducts 

are common sites for orchitis, which often begins with a granulomatous reaction [66].  

Human males can form antispermatozoan antibodies when there is a major disruption in 

the blood-testis barrier.  Infections, trauma and neoplasia that damage the testis can result 

in antibody formation.  Stallions experiencing trauma to the testis with resulting low 

sperm cell viability have been found to have antispermatozoan antibodies in their seminal 

fluid or serum [66].   

It is common to find a multifocal, mild, subacute intertubular inflammation in bulls and 

stallions with no gross lesions evident [66].  In stallions, mild interstitial orchitis is 

common with interstitial lymphocytic foci, often perivascular, occurring in areas of 
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tubule degeneration and vasculitis [66,67].  Similar lesions have been found to be part of 

a generalized vascular association in equine viral arteritis [67].  A focal interstitial 

orchitis can commonly be found in human testes removed at autopsy and also in testes 

from prostate cancer patients; however, the cause of inflammation is unknown.  Atrophy 

of the germinal epithelium is often associated with severe interstitial orchitis and if 

bilateral may result in infertility [68]. 

Intratubular orchitis most likely arises from an ascending infection of the urethra, urinary 

bladder, ductus deferens and epididymis [66,67].  This inflammation typically begins in 

the seminiferous tubules but spreads to the interstitium resulting in granuloma formation 

when spermatozoa breach the tubule border.  The seminiferous tubule outline is often 

preserved in the affected area but the seminiferous epithelium is destroyed and replaced 

by abundant macrophages and multinucleated giant cells that surround neutrophils and 

debris [67].     

Sertoli cells are in close contact and control the immediate environment around all 

germinal cells with the exception of spermatogonia [69-72].  Sertoli cells contain several 

unique proteins involved in changing the formation of spermatozoa and also play an 

important role in producing proteins to carry iron, copper and vitamin A to developing 

germ cells.  It is hypothesized that a disruption in spermatogenesis affects Sertoli cells 

rather than the germinal cells directly.  The number of Sertoli cells per testis and the 

maximum number of germinal cells per Sertoli cell is predetermined within each species 

[73,74] thus the number of Sertoli cells per testis is a highly heritabile trait [11,62].  

Johnson et al. found results consistent with the hypothesis that the number of Sertoli cells 

is important in determining testicular size and daily spermatozoal production and that the 
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relationship of daily spermatozoal production to the number of Sertoli cells or to 

parenchymal weight has been established as early as the level of primitive spermatogonia 

[75].  Spermatozoal production could be adversely affected by any treatment that alters 

the function or number of Sertoli cells before puberty  

Germinal cells are supported by Sertoli cells through close contact, interdigitation of 

plasma membranes, and cellular specializations allowing communication.  In the process 

of spermiogenesis, the Sertoli cells move spherical spermatids by microtubular and 

microfibrillar movements first toward the basal membrane and then back towards the 

luminal side.  Sertoli cells are partially stimulating spermatids to change shape at this 

time too.    

The excess cytoplasm, known as a residual body, is phagocytized by surrounding Sertoli 

cells.  The spermatozoa are now mature but are not capable of fertilization.  They are 

released by the Sertoli cells in the lumen of the seminiferous tubule in a process called 

spermiation.  Any germinal cells that die during spermatogenesis are also phagocytized 

by the Sertoli cells.   

Sertoli cells produce various secretions that surround and nourish the germinal cells in 

addition to secretions that make up a component of the luminal fluid of the seminiferous 

tubule.  Sertoli cells produce unique secretions not found anywhere else in the body in 

addition to secretions similar to those from the epididymis and other accessory sex 

organs.  Some secretions such as lactate serve as an energy source for developing 

germinal cells, some help in the regulation of epididymal function and some serve as 

transport molecules to move essential metals, vitamins, or hormones from Sertoli cells to 
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developing germinal cells.  Sertoli cells secrete the protein hormone inhibin from two 

locations 1) from the luminal surface through the epididymis in the rete testis fluid of the 

seminiferous tubule and 2) through the basal surface through the interstitial fluid of the 

testis where it ultimately enters by the lymphatic and venous drainage.  

Follicle stimulating hormone (FSH) and testosterone are responsible for directing the 

function of Sertoli cells.  Sertoli cells have also been shown to communicate with both 

Leydig cells and germinal cells.  Leydig cells produce a substance that has an effect on 

both Sertoli cells and Leydig cells, terminating mitosis of indifferent supporting cells 

before puberty [76].  Insulin-like growth factor (IGF), epidermal growth factor (EGF), 

and transforming growth factor-β (TGF-β) also play important roles in regulating testis 

function.  Sertoli cells produce mitogenic polypeptides that stimulate or coordinate 

mitosis and meiosis of germinal cells [77,78]. 

Cycle of the Seminiferous Epithelium 

Studies evaluating histologic sections of stallion testes found differences between 

adjacent cross sections in the seminiferous tubules.  Eight cellular stages have been 

defined based on four to five specific types of germinal cell groupings [56-59].  The exact 

number of cellular stages depends on the criteria used for identification of each grouping 

of germinal cells [57,69,72,79-84].  Four or five types of germinal cells are associated 

with a specific layer within each cellular stage with each layer representing one 

generation of germinal cells that is 12.2 days more developed than the layer below it.  

Young generations are located along the outside edge of the seminiferous tubule at the 

lamina propria while the older generations are closer to the lumen of the seminiferous 

22 



tubules.  All normal testes have germinal cells that can be found in these specific cellular 

stages.   

If an area within a stallion seminiferous tubule were watched over time, there would be a 

sequential development of the germinal cells through all eight of the cellular stage’s 

[15,56-59].  One cycle of the seminiferous epithelium progresses through each cellular 

stage.  This process then occurs over and over again in an expected manner.  The duration 

of the cycle of the seminiferous epithelium is the time it takes for one complete series of 

cellular stages to occur at one point within the tubule. 

In a study evaluating spermatogenesis in twelve stallions, Swierstra et al. identified all 

eight stages of the seminiferous epithelium based on the structure of the germinal cells 

and their position within the epithelium [59].  See Figure 1 below. 
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Figure 1  Descriptions of the Eight Cellular Stages  

The relative rate of occurrence of the eight stages is expressed as a percentage of the total 

number of tubular cross sections evaluated for each testis.  Two generations of primary 

spermatocytes are found in stages I through III, and thus about 35% of cross sections 

through seminiferous tubules should contain two generations of primary spermatocytes in 

a normal testis.  Also, two generations of spermatids are found in stages V through VIII 

so that about 50% of cross sections in a normal testis should contain two generations of 

spermatids, and 16% should have spermatids lining the tubular lumen (stage VIII). 
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Cross sections through a seminiferous tubule often contain a single cellular stage wheras 

others contain two or three cellular stages [56,58].  This most likely represents locations 

where different cellular associations adjoin [60,69].  Swierstra et al. measured the 

duration of a cycle of the seminiferous epithelium in six stallions using a radioisotope 

called [3H]thymidine [58,59].  The radioisotope was injected into both testicular arteries 

of the stallions.  Germinal cells developing and synthesizing DNA at the time of injection 

incorporated the [3H]thymidine and were able to be identified based on radioactivity.  

The six stallions were castrated 4.5 h to 35 days following the injection.  A photographic 

emulsion was used to coat the histologic testicular sections and identify the radioactive 

germinal cells.  After the film was taken and developed, black “grains” were evident 

indicating radioactive germinal cells. 

Samples collected 4.5 h after injection of [3H]thymidine showed that young (leptotene) 

primary spermatocytes in stage I were the most mature radioactive germinal cells.  

Stallions castrated at >4.5 h after injection of the radioisotope had progressively more 

advanced germinal cells labeled.  Swierstra et al. concluded after analyzing the data that 

the duration of one cycle of seminiferous epithelium was 12.2 days [58,59].  Therefore at 

any given point within a seminiferous tubule, the same cellular stage will be repeated 

every 12.2 days.   

Duration of Spermatogenesis 

Within a seminiferous tubule, A1 spermatogonia periodically produce committed A1·2 

spermatogonia.  This occurs at an interval equal to the duration of one cycle of the 

seminiferous epithelium [15,57,60,69,72,81,84].  Also at some point in the cycle, groups 

of mature spermatids, originating from spermatogonia committed to differentiate 
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approximately 4.7 cycles earlier are released from the seminiferous epithelium.  Thus, 

because of the division of A1 spermatogonia every 12.2 days [58], a new group of 

germinal cells begins to develop every 12.2 days, with all of the cells in this group 

developing together.  The process of spermatogenesis requires about 57 days in the 

stallion, which calculates to approximately 4.7 cycles of the seminiferous epithelium 

(12.2 days).  Since A1 spermatogonia are developing at different times at different sites 

within the testis, hundreds of spermatogonia committed to form spermatozoa are 

produced every second.  This process makes it possible for spermatozoa to be released 

continuously from the seminiferous tubules. 

Daily Spermatozoal Output  

Breed, age, season and reproductive status all affect the testicular size in a stallion 

[15,85-87].  Testis size is an accurate indicator of spermatozoal production with small 

testes yielding a lower sperm output than larger ones.  A correlation exists between testis 

parenchymal weight and daily spermatozoal production making it a useful predictor of a 

stallion’s breeding potential [16,87-90].  Season significantly impacts daily spermatozoal 

production in 6-20 years old stallions with an average decline of 50% during the 

nonbreeding season (6.40 vs. 3.19 billion spermatozoa per day).  Stallions slaughtered in 

September-February have the lowest daily spermatozoal production compared to 

maximum daily spermatozoal production in May and June [10,57]. 

The number of spermatozoa produced per gram of testicular parenchyma defines 

efficiency of spermatozoal production.  Efficiency during the breeding season is similar 

among normal stallions [10,57,63,64,91-93] and on average is about 19 million 

spermatozoa per day per gram of testis, declining to about 15 million spermatozoa per 
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day per gram of testis in the nonbreeding season [7,10,11,57,63,91-94].  Stallions that are 

13-20 years old experience a 49% decrease in daily spermatozoal production but only a 

20% decrease in testis weight [63].   

Testicular volume is estimated by testicular measurements and correlates with sperm 

production.  Estimates of this value must be used since parenchymal weight cannot be 

established in a live stallion without castration first.  Testis size can be estimated using 

calipers or ultrasound [5,15,90,95].  A study by Bailey et al. compared caliper and 

ultrasound measurements of ten bulls to determine which method was the most accurate.  

It was found that caliper length measurements were more reliable than ultrasound derived 

lengths. Width measurements were comparable between the two methods [96].  Caliper 

error is also possible and can occur with operator technique, caliper sensitivity, and testis 

location within the scrotum [87,90,94].  The average of several measurements helps 

increase repeatability and accuracy.   

Total scrotal width measurements in the stallion correlate well with testis parenchymal 

weight and daily spermatozoal production [87,94].  The use of a single linear 

measurement to determine a three-dimensional structure is of questionable use [90].  One 

study suggested that testicular volume, rather than dimensions, more accurately predicts 

daily spermatozoal output since the testis is ellipsoid [97].  The following formula 

converts length, width and height measurements into testicular volume [97]: 

4π Length (cm) Width (cm) Height (cm)

3 2 2 2
Testis Volume =  x x x
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Love also recommends using this volume to predict the expected daily sperm output of 

the stallion, using the following formula [97]: 

Predicted Daily Sperm Output  =  x + ‐0.024 (Left Volume Right Volume) 0.76
 

In males of most species, daily spermatozoal production has a moderate to high 

correlation with daily spermatozoal output [98].  The predicted daily sperm output can be 

compared to the actual daily sperm output as estimated by semen collection during the 

routine breeding soundness examination.  If a stallion has a daily sperm output that goes 

below that of the predicted value for his testicular size, then he should be further 

evaluated for disease conditions of the testes, epididymides, and accessory glands.  

Testicular size is as heritable in stallions as it is in bulls [16,90,99], and therefore, 

stallions with measurements less than the recommended guidelines should not be used for 

breeding purposes.   

Germinal Cell Degeneration & Renewal of Spermatogonia 

In the process of spermatogenesis, spermatogonia either differentiate or remain 

uncommitted.  This process allows spermatozoa to be produced continuously after 

puberty.  There is a continuous production of differentiated spermatogonia that produce 

primary spermatocytes and ultimately spermatids.  At the same time, uncommitted 

spermatogonia are replaced so the seminiferous epithelium doesn’t become exhausted of 

spermatogonia and spermatogenesis can continue [57,69,72,73,79-81,84,91].   

Reserve spermatogonia, which are few in number, are another population of A 

spermatogonia with a lifespan >60 days that do not participate in spermatogenesis but 
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rather serve as a source of germinal cells to repopulate the testis.  In seasonally breeding 

males, testicular size, testosterone release, sperm production and reproductive behavior 

are down regulated in the nonbreeding season.  Stallions outside of the breeding season 

maintain fertility at reduced levels whereas hamsters, deer and brown bears have near 

total cessation of spermatogenesis that renders them unable to breed for several months 

[100].   

Normal spermatogenesis is a relatively inefficient process, resulting in an estimated loss 

of 25-75% of the potential number of mature spermatozoa produced in the adult testis.  

This inefficiency results from an excessive production of early germ cell types [92], that 

far exceed the number of germ cells the Sertoli cells are capable of caring for [101].  A 

study by Heninger et al. found that in normal stallions, apoptosis of germinal cells during 

spermatogenesis was quantified and most frequently occurred during cellular stages IV, 

V, and to a lesser extent VI.  This quantification technique could allow future studies to 

compare apoptosis in normal stallions with those that have idiopathic subfertility [101].   

In the stallion, testicular weight decreases in the nonbreeding season.  Degeneration of 

germinal cells can then be estimated based on the number of spermatozoa that should be 

produced per gram of testis.  During the breeding season, large numbers of B2 

spermatogonia are produced but 32% of the potential numbers of “young” primary 

spermatocytes are not formed.  Sertoli cells are capable of providing for about 9-10 

spermatids and two primary spermatocytes in a given generation [8,63,64] with almost all 

of the primary spermatocytes producing four spermatozoa [93].  In the nonbreeding 

season, 35% fewer A spermatogonia per gram of testis are found and 40% fewer B2 

spermatogonia [10,93,102].  The B2 spermatogonia rise to two “young” primary 
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spermatocytes so the number of these cells per gram of testis is not different between 

seasons.  About 23% of the potential numbers of spherical spermatids are not formed 

during the nonbreeding season.  Sertoli cells are thought to be lacking in some way due to 

the fact that each Sertoli cell is only capable of providing for a low number of germinal 

cells [57,62,93].  The number of spherical spermatids converted into spermatozoa is 

similar between seasons.  Only 75% as many spermatozoa are formed per gram of testis 

in the nonbreeding season as compared to the breeding season.  Daily spermatozoal 

production in stallions is 20% lower for stallions 4-5 years old and 50% lower for 

stallions 6-20 years old due to differences in testis weight.  Germ cell degeneration also 

occurs due to environmental factors such as day length or temperature and drugs among 

other things [57,69,72,103,104].   

Leydig Cells 

Leydig cells are found in the interstitial tissue and are in close proximity to blood vessels, 

lymphatic channels, and the basal lamina of the seminiferous tubules.  Leydig cells 

primarily secrete steroid hormones, which aid in the function of the seminiferous 

epithelium, the hypothalamic-hypophyseal axis, and the accessory sex glands.  Leydig 

cells are the site of production for most of the following: testosterone, androstenedione, 

androstenediol, dihydrotestosterone, 3α-androstanediol, progesterone, estrone, and 

estradiol.  Because the hormones are produced in Leydig cells, interstitial fluid contains a 

much higher concentration of testosterone and other secretory products of Leydig cells 

than the peripheral blood (e.g., serum from blood drawn from the jugular vein).  The 

concentration of testosterone in testis parenchyma averaged 416 ng/g and 640 ng/g in two 
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studies [14,91].  These values may be high due to the fact that testosterone is still 

produced after blood flow is stopped. 

Leydig cells constantly produce small amounts of steroid hormones and are occasionally 

stimulated to increase testosterone production.  These elevations can be 2-4 times higher 

and can last 2-4 h in the peripheral blood [105].  Some stallions exhibit 3-8 periodic 

bursts of testosterone each day.  Thus, if a single blood sample is taken to evaluate 

testosterone levels, unusually high levels could be falsely detected. 

Baseline concentrations of testosterone in the testes can be elevated >10 times during the 

periodic bursts.  As a result, seminiferous tubules are exposed to high concentrations of 

testosterone constantly.  Studies in other species has shown that high concentrations of 

testosterone is crucial for normal spermatogenesis to take place [6,69,72,82,106,107].  

Minimum testosterone concentrations for normal spermatogenesis within the 

seminiferous epithelium are not known for stallions.  Researchers have found that normal 

intratesticular concentrations of testosterone can be maintained by injecting rats 

[106,106] with massive doses of testosterone but the same cannot be done in humans and 

is unknown in stallions. 

It was found in one study that the concentration of total 17β-hydroxy-androgen in blood 

leaving the testis through the testicular vein was 45 times greater than the concentration 

in blood taken at the same time as from the jugular vein [108].  When Leydig cells are 

under increased stimulation from endogenous luteinizing hormone (LH), testosterone 

levels in testicular vein blood can exceed 500 ng/ml.  This is about a 100-fold increase 

from usual levels of testosterone in jugular vein blood [108,109].   
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Stallion Leydig cells secrete larger amounts of estrogens than testosterone but 

testosterone has the greatest physiologic significance.  The stallion testis also secretes 

estrone, estradiol, estriol and two compounds called equilin and equilenin [110-115].  

Aromatase is the only enzyme responsible for the irreversible bioconversion of androgens 

to estrogens.  This enzyme is considered to be crucial and rate-limiting for the 

estrogen/androgen balance in the body, and thus important for estrogen-dependent 

processes such as bone maturation and reproduction, even in males.  Thus, this enzyme 

has been immunolocalized in the horse testis solely in Leydig cells.  The season and age-

related cellular and hormonal changes observed in stallion testes should not exclude the 

possibility of other sources of estrogens [116].  High concentrations of free estrone and 

estradiol are found in testicular vein blood but most of the estrogen secreted by testis is 

conjugated with a sulfate (or glucuronide) side chain.  This side chain restricts bioactivity 

and makes the compound more water soluble.  It is still unclear as to the role that 

conjugated estrogens play in the stallion. 

Leydig cells require enzymes for the production of steroid hormones of which are 

localized on the smooth endoplasmic reticulum and mitochondria [117,118].  In the 

stallions, significant correlations were found between the volume of smooth endoplasmic 

reticulum per testis and serum concentrations of testosterone or intratesticular 

testosterone content [14].  The first step in steroidogenesis involves the formation of 

cholesterol in two ways (1) by de novo synthesis or (2) the breakdown from low-density 

lipoproteins in the blood.  Data based on rodent and human testes [119], have led 

researchers to assume that in stallion testes when minimal levels of testosterone is 

secreted, cholesterol for the most part is derived from intra-Leydig cell sources 
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(cholesterol droplets).  It is also likely that when the testis is under stimulation by LH or 

exogenous human chorionic gonadotropin (hCG) that a majority of the cholesterol is 

probably derived from low-density lipoproteins in the blood.  The next step in the 

steroidogenic pathway is the conversion of cholesterol to prenenolone, which occurs 

inside the mitochondria.  Pregnenolone is then transported to the smooth endoplasmic 

reticulum where other enzymes involved in the pathway are located.    

There are two general pathways that exist from pregnenolone to testosterone in stallion 

Leydig cells but the predominate pathway is unknown in the stallion.   The first is the so-

called Δ5 pathway through dehydroepiandrosterone and Δ5-androstenediol and the second 

is the Δ4 pathway via progesterone and Δ4-androstenedione.  The Δ4 pathway dominates 

in rat Leydig cells, whereas in rabbit Leydig cells the Δ5 pathway is used almost entirely 

[120].  A direct and linear relationship exists between the steroidogenic enzymes that are 

localized on the smooth endoplasmic reticulum.  This relationship holds true across 

species and involves the total surface area of smooth endoplasmic reticulum and its 

association with Leydig cells of a testis and the ability to secrete testosterone [120].   

Steroidogenesis in Leydig cells is stimulated by either LH or hCG.  This process is a 

result of LH stimulating the transport of cholesterol from intracellular stores to the outer 

mitochondrial membrane, and also inside the mitochondria, to provide cholesterol to the 

side-chain cleavage enzyme (a mitochondrial cytochrome P450 enzyme), which converts 

cholesterol to pregnenolone in a three-step sequence of reactions [118].  Cholesterol to 

pregnenolone is therefore the rate-limiting step in the production of testosterone.  The 

production of pregnenolone increases with gonadotropin stimulation thus enabling an 

increase in the production of testosterone and estrogens. 
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Specific receptors for LH are located on Leydig cells and are essential to their plasma 

membrane.  When LH binds to the membrane receptor, guanosine triphosphate (GTP-) 

binding protein is activated and stimulates adenylate cyclase which increases the local 

concentration of cyclic adenosine monophosphate (cAMP) [118].  The cAMP 

phosphorylates specific proteins by a posttranslational modification.  A cholesterol-ester 

hydrolase becomes more active and releases increased amounts of free cholesterol for 

transport by microfilaments to mitochondria.  Leydig cells rapidly increase production of 

testosterone in response to LH stimulation because the process does not involve synthesis 

of a new protein and enzymes involved in conversion of pregnenolone to testosterone are 

working far below their maximum capacity.  LH stimulation can modify the function of 

other proteins to increase the transport flux of cholesterol to the inner mitochondrial 

membrane where the side-chain cleavage enzyme is located. 

Epididymis 

The specific absorptive and secretory functional aspects of each segment of the 

epididymis have not been as well described [28,121], as other species [24-27,122-125].  

Histologically, the structure of the epididymis changes as it continues through the three 

different sections.  The epithelial height is greatest proximally and smooth muscle 

components greatest distally [6,28,30].  As spermatozoa leave the testis and enter the 

ductuli efferentes, they are transported through several zones of the epididymis.  Most of 

the proteins found in the epididymal fluid are secreted by the epididymal epithelium, and 

inhibition of this secretion leads to a loss of fertilizing ability by the spermatozoa.  Each 

anatomical region (head, body and tail) is characterized by its own secretory activity.  

During transit through the epididymis, spermatozoa are bathed in various successive 
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biochemical environments that are specific to each region and in which sequential 

interactions with their membrane occur.  This leads to the ability of sperm to fertilize 

eggs.  Fouchecourt et al. completed the first study analyzing the proteins in stallion 

epididymal fluid.  More than 250 different proteins were discovered and characterized in 

the fluid by 2D gel analysis.  Of these 250 proteins, only 20 were abundant and 

represented 98% of the total secretory activity for the whole epididymis [126].  The 

biochemical makeup up the head of the epididymis in the stallion was found to be similar 

to that of the ram and boar [127]. 

In most mammals, spermatozoa are not mature when released from the seminiferous 

tubule but those taken from the tail of the epididymis are fertile 

[6,25,26,65,124,125,128].  Spermatozoa must undergo remodeling of the sperm 

membrane, such as changes in lipids, loss or modification (changes in glycosylation, 

proteolysis, relocalization) of preexisting (testicular) glycoproteins, and incorporation of 

new glycoproteins [126].  This maturation process allows the spermatozoa to gain 

progressive motility, structural stability, and fertilizing ability [26-

28,65,103,121,122,124,125].  This maturation depends on an orderly exposure of the 

spermatozoa to various epididymal fluids containing enzymes and proteins that modify 

the plasma membrane of spermatozoa.  Androgenic stimulation with testosterone is 

important in the head and tail of the epididymis [25,124,125].  The presence of 

testosterone allows for the secretion of certain proteins by the epididymal epithelium, 

although other secretions are produced without androgenic stimulation.  The maturation 

process will not take place if spermatozoa are simply retained in a given segment 

[122,124,125].   
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Stallion spermatozoa from the head or proximal body of the epididymis are immotile 

when released into a physiologic salt solution.  Samples removed from the tail and 

diluted in buffer are similar in motility to spermatozoa collected in ejaculated from the 

same stallions.  Hence, stallion spermatozoa are mature before entering the tail of the 

epididymis if progressive motility is used as a measurement of maturity [28].  It has been 

shown that spermatozoa from all regions of the epididymis are resistant to “cold shock” 

whereas ejaculated spermatozoa are altered by rapid cooling to 0°C.  Based on these and 

other observations, Johnson et al. concluded that maturation of spermatozoa in the 

stallion was not completed until spermatozoa left the tail of the epididymis [28].  This is 

consistent with data for other species [25,27,124,125], although in rams, changes in 

spermatozoa that result in a greater percentage of surviving embryos occur in the tail of 

the epididymis [25].  In 1957, a mare artificially inseminated and became pregnant with 

frozen epididymal spermatozoa [129].  In a more recent study by Bruemmer, it was 

shown that spermatozoa capable of fertilization could be removed from the tail of the 

epididymis following a catastrophic injury, death, or even elective castration.  Most 

samples obtained from these stallions provided 5 to 25 breeding doses [130]. 

Although spermatozoa are found throughout the epididymis [24,59,60,131,132], the tail 

of the epididymis and deferent duct (including the ampulla) are the major spermatozoal 

storage areas.  The two tails of the epididymis of a normal, sexually rested adult stallion 

(5-16 years old) should contain about 54 billion spermatozoa, or approximately 61% of 

the total sperm in the excurrent duct system [130,131].  In stallions, the tail of the 

epididymis contain more spermatozoa than the tail from a bull, but a much lower number 

than the tail from a ram or boar.  Sufficient numbers of spermatozoa are present within 
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the tail of the epididymis in the horse for several ejaculates [60,131].  Testis size, daily 

spermatozoal production, and number of spermatozoa stored within the epididymis are 

influenced by age.   

Spermatozoa do not swim through the epididymis and deferent duct.  Movement of 

spermatozoa through the epididymal duct is primarily by continuous peristaltic 

contractions of smooth muscle in the wall of the duct within the head and body of the 

epididymis.  In the body, the epididymal duct normally is inactive, except when smooth 

muscle is stimulated to contract.  Consequently, time required for movement of 

spermatozoa through the head and body of the epididymis is not altered by ejaculation 

and averages about 4.1 days in stallions [59,60,131,132]. 

Fertility of spermatozoa is usually not depressed in males ejaculating frequently, because 

rate of spermatozoal transport through the caput and corpus epididymidis is not 

influenced by ejaculation; decreased fertility could result if number of spermatozoa 

ejaculated were less than the number required for maximum reproductive efficiency.  In a 

study with a small number of sexually rested stallions, five to seven consecutive days of 

ejaculation were required to deplete extragonadal reserves.  It was suggested that with 

daily collections, the number of spermatozoa collected on the seventh day will 

approximate daily spermatozoal output [133], while another report suggested that the 

precision of this single-day estimation procedure was very low, but was improved by 

increasing the number of daily ejaculates evaluated [88].  Extensive data for bulls for 

bulls ejaculating daily, or at a similar high frequency, show that spermatozoal fertility is 

equivalent, if not slightly superior, to that for bulls ejaculating once a week [134-136].  

When seven successive ejaculates were collected from beef bulls and the spermatozoa 
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were used to artificially inseminate cattle, fertility did not differ among the seven 

successive ejaculates [137].  Fertility of stallion spermatozoa used for artificial 

insemination should be similar whether stallions are collected daily, every other day, or 

every 4 days. 

The interval that spermatozoa spend in the cauda epididymidis is influenced by 

ejaculation [60,131].  The number of spermatozoa in the cauda epididymidis is maximal 

in sexually rested stallions and is reduced in males ejaculating daily or every other day 

[131].  Because fewer spermatozoa are present in the cauda epididymidis of a stallion 

ejaculating regularly than in an inactive male, transit time for spermatozoa through the 

cauda epididymidis of a sexually active stallion is reduced by 2 or 3 days from the 10 

days characteristic of a sexually rested stallion [59,131,132].  Although the time required 

for movement of spermatozoa through the caput and corpus epididymidis is reasonably 

similar among species [60], the interval that spermatozoa spend in the cauda 

epididymidis differs greatly, and ranges from < 4 days in humans and some beef bulls to 

> 12 days in rams. 

Spermatozoa are produced continuously, regardless of ejaculation frequency.  Because 

spermatozoa enter the epididymis at a constant rate, they must also leave the excurrent 

duct system at a relatively constant rate, although this rate is altered by ejaculation.  

Based on research with several species [138,139], all spermatozoa that enter the excurrent 

duct system of a stallion likely leave through the urethra.  Resorption of spermatozoa 

probably does not occur within the excurrent duct system [60,138,139].  In bulls and 

rams, spermatozoa that are not ejaculated at copulation or voided by masturbation are 

eliminated periodically during urination [139].  Probably in a normal, sexually inactive 
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stallion, spermatozoa intermittently pass from the deferent duct into the pelvic urethra 

and are voided during urination.  The direct cause for or interval between such emissions 

is unknown.  Certain stallions accumulate an abnormally large number of spermatozoa in 

the epididymis and perhaps to some extent in the deferent duct, including the ampulla.  In 

such a horse, spontaneous emissions probably do not occur and spermatozoa accumulate 

in the epididymis until the limit of distensibility of the epididymal duct is reached.  As a 

consequence of this accumulation, storage interval of spermatozoa in the cauda 

epididymidis of such a stallion is much longer than 7 to 10 days, and spermatozoa may 

undergo marked alterations.  Much lower percentages of spermatozoa are structurally 

normal or motile in the first several ejaculates collected from a stallion accumulating 

spermatozoa than in a normal horse because of the prolonged storage interval. 

Accessory Sex Glands 

The prostate gland, vesicular glands, bulbourethral glands, and ampullae are collectively 

referred to as the accessory sex glands.  A bulk of the ejaculate volume is composed of 

seminal plasma from the secretions of the accessory sex glands.  Spermatozoa from the 

cauda epididymidis and deferent duct are immotile until mixed with accessory sex gland 

fluids at ejaculation (or mixed with a buffer by human intervention).  Exact factors 

causing initiation of motility are unknown, but intracellular pH may be involved.  

Seminal plasma plays an important role in sperm function [76,140,141] but exposure to 

these fluids is not necessary for normal fertility of spermatozoa.  Evidence in some 

studies has shown that long-term exposure may decrease sperm motility and increase 

sperm death during semen storage [142-146].  Breeding programs remove seminal 

plasma when semen is frozen.  Before cooled semen storage, seminal plasma is either 
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removed by centrifugation or its influence is reduced by dilution with an extender [142].  

Webb and Arns found that the removal of seminal plasma and the dilution of sperm with 

skim milk extender containing modified Tyrode’s medium (KMT) improved motion 

characteristics during cooled storage of spermatozoa [147].  KMT was detrimental to 

sperm motility in the presence of seminal plasma [148]. 

The addition of seminal plasma to sperm recovered from the epididymis has been shown 

to reduce the freezability of the sperm [144].  On the other hand, stallions that do not 

retain adequate fertility after semen thawing can benefit from the addition of seminal 

plasma from a stallion with good fertility.  This seminal plasma can improve the motility 

and membrane integrity of the frozen semen post thawing [149].  In contrast, Akcay et al. 

found that seminal plasma taken from a stallion with high motility lowered the 

progressive motility and viability of sperm when added to a stallion with low motility 

[142].  The proteins in seminal plasma of fertile and subfertile stallions has been 

characterized and compared.  Subfertile stallions were shown to have increased 

concentrations of certain specific proteins [76,149,150].  Amann et al. demonstrated a 

variation in several of the seminal plasma proteins with post-thaw motility of 

cryopreserved sperm but the protein levels did not adequately predict a stallion’s 

response to sperm freezing [143].  Seminal plasma was shown to suppress the 

inflammatory response of the mare’s endometrium to sperm following insemination or 

natural mating [141,151].  Although the specific functions of seminal plasma are not 

known, it does provide transport of ejaculated sperm from the stallion’s tract, energy for 

the sperm, in addition to a protein source and other macromolecules necessary for sperm 

function and metabolism [6,29,143]. 
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Normal function of all accessory sex glands depends on availability of testosterone in 

peripheral blood [152].  The secretion of the prostate gland is thin and watery [152,153].  

This secretion probably helps cleanse the urethra during ejaculation and also constitutes a 

major portion of seminal plasma, especially if a second ejaculation occurs 1 to 3 h after 

an earlier ejaculation.  Depending on season and individual stallion, fluid secreted by the 

vesicular glands may (or may not) contribute a major portion of seminal plasma in an 

ejaculate.  The gelatinous material often found in seminal plasma, especially in April to 

July is secreted by these glands [153].  This seasonal change in secretion of gel by 

vesicular glands, as well as the stallion-to-stallion difference, may reflect differences in 

concentration of testosterone in blood.  Two bulbourethral glands are positioned on either 

side of the pelvic urethra near the ischial arch.  Their secretion contributes to the seminal 

plasma but probably only a minor portion in terms of volume. 

Endocrine Hormones 

The neuroendocrine system controls the function of reproductive organs.  This system 

includes specialized nerve cell bodies and endocrine tissues that secrete chemical 

messengers termed hormones.  The hormones are then carried through the blood from 

one organ to control the function of another organ.  The autonomic nervous system also 

plays a role in controlling the function of the reproductive organs.  It plays an integral 

part in transporting spermatozoa from the testes through the epididymides and deferent 

ducts and also in erection, emission, and ejaculation.  Maintenance of normal function of 

reproductive organs depends mainly on the neuroendocrine system. 
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Hypothalamic‐Hypophyseal Axis 

The hypothalamus is part of the diencephalon of the brain and is involved in numerous 

functions including; regulation of appetite and thirst, body temperature, vasomotor 

activity, emotion, use of body nutrient reserves, activity of the intestinal tract and 

bladder, states of sleep and wakefulness, sexual behavior, and release of tropic hormones.   

The hypophysis is connected to the hypothalamus and extends downward from it.  A 

number of hormones that control reproductive processes in the stallion and mare are 

synthesized and discharged from the adenohypophysis [154,155].  The neurohypophysis 

serves as a storage reservoir for hormones produced by neural tissue within the brain but 

doesn’t produce any hormones itself.  Portal vessels extend from the hypothalamus 

through the infundibulum to the pars distalis thus linking the hypothalamus and 

adenohypophysis.  Blood within the portal system normally flows directly from the 

hypothalamus to the pars distalis and is the only direct link between the two.   

The hypothalamus synthesizes and discharges a number of “releasing hormones” with 

proper neural stimulation.  Gonadotropin-releasing hormone (GnRH) is directly involved 

in controlling reproductive function and is discharged by the hypothalamus in short, 

pulsatile bursts.  GnRH is rapidly removed from the blood resulting in pulsatile 

stimulation of the gonadotropin-secreting cells in the adenohypophysis.  The synthesis of 

structural analogues of GnRH has made it possible for research involving the study and 

control of reproductive function.  Two types of analogues of GnRH are available (1) 

those that block the action of the natural hormone and (2) those that are more effective in 

inducing a response than natural GnRH. 

42



At least six tropic hormones are produced by the adenohypophysis although only two or 

three have a direct role in male reproduction.  LH and FSH are gonadotropic hormones 

that are produced by the adenohypophysis in direct response to stimulation by GnRH.  

They are termed gonadotropic hormones because they act on the gonads to stimulate their 

function, including the production of spermatozoa and steroid hormones.  As observed in 

other species, under appropriate stimuli, the hypothalamus of the stallions releases GnRH 

in a pulsatile fashion which in turn stimulates the production and episodic secretion of 

LH and FSH [156-160].  In stallions, LH release is positively correlated with day length, 

with LH concentrations rising in the beginning of the breeding season [100].  Basal LH 

concentrations in the summer are twice as high as near the winter season [100].  In some 

stallions during the breeding season, pulsatile secretion of LH is not apparent from 

analyses of jugular blood [105,159].  There are conflicting reports on seasonal changes of 

FSH in the stallion.  Mean plasma FSH concentrations in stallions are relatively constant 

throughout the year and only minor increases during the breeding season have been 

reported [100].  Roser et al. found that in the stallion, FSH and inhibin exhibit similar 

seasonal changes; peripheral FSH and inhibin increase in the spring and decrease in the 

fall [161].  FSH is secreted in a pulsatile manner, although more short-term inconsistency 

exists [105,159], perhaps reflecting sporadic discharges of small amounts of hormone.  

LH secretion often coincides with pulsatile secretion of FSH.  Several stallion studies 

have analyzed the concentrations of hormones in blood 

[63,103,105,114,152,156,157,159,160,162-166], but concepts for endocrine control of 

reproductive function are based primarily on data from other species [118,154,167-169].  

Seasonal changes in the GnRH/LH release in the horse are partly regulated by changes in 
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a GnRH-inhibitory opioidergic tone.  An acute LH release in stallions could be induced 

with the opioid antagonist naloxone outside of, but not during the breeding season [170].  

This indicates that opioidergic neuronal systems in the stallion, as found in mares [171], 

inhibit pulsatile GnRH release outside the breeding season and are partly responsible for 

reduced LH release and decrease in testicular function during the winter months [172]. 

Testicular Hormones 

Leydig cells produce steroid hormones which are the primary endocrine product of the 

testes.  Sertoli cells secrete two glycoproteins called inhibin and activin which share a 

common subunit [173].  The inhibin/activin family consists of three subunits: α, βA and 

βB.  Inhibin is the combination α/βA or α/βB, and activin is the combinations βA/βB, βA/βA, 

or βB/βB.  The amounts of different inhibins, or activins, secreted fluctuate as a function 

of cell type (Sertoli cells of male or granulosa cells of female, species, and stage of 

development).  Sertoli cells in the stallion secrete inhibin and activin of which the exact 

molecular forms of each are still being established.   

The exact role of oxytocin in the male animal is not clear, but oxytocin treatments shortly 

before ejaculation increases the number of sperm in the ejaculate of the bull, ram, rabbit, 

and rat [174].  It is suggested that this effect is mediated via a strong contractile response 

in the testes and excurrent ducts, which increases sperm transport, and it has been shown 

in vitro that contractile activity of seminiferous tubules is reduced in the absence of 

oxytocin [174].  Watson et al. were the first to find oxytocin in gonadal tissue and in 

semen from stallions.  The concentration of oxytocin in seminal fluid was similar to that 

measured in seminal fluid from men.  It was also shown that the testis of the stallion does 

not synthesize oxytocin and that the epididymis also contains oxytocin that most likely 
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plays a role in smooth muscle contractility and sperm transport in the stallion.  Oxytocin 

is highly associated with the gel fraction in stallions suggesting that concentrations in 

semen arise from either the peripheral circulation or from the vesicular glands [174].  

Studies found that Leydig cells in rats and rams likely secrete oxytocin into the interstitial 

fluid [175,176].  It is likely that oxytocin is transported by Sertoli cells into the luminal 

fluid or possibly secreted by the rete testis.  When evaluating the rete testis fluid of rams, 

it was found that the fluid contained about 550 pg/ml as compared with 124 pg/ml in 

serum from testicular venous blood [175].  Veeramachaneni and Amann contemplated 

that sperm stasis and formation of granulomatous lesions (common in cattle, sheep, and 

goats, but frequency in horses is unknown) could possibly be due to a deficiency of 

testicular oxytocin in the fluid that enters the excurrent ducts or is taken up by the 

epithelium [177].   

Regulation of Hormone Secretion 

Production of testosterone in the adult male is controlled by episodic bursts of LH 

secretion, which occasionally elevate the concentration of LH in blood reaching the testis 

above the baseline level.  Therefore, basal production of testosterone is amplified by 

episodic bursts of production of testosterone [103,108,112,156,159,163]. 

The testosterone that Leydig cells produce enters the venous blood draining from the 

testis, passes through general circulation, and the moves to the hypothalamus and 

adenohypophysis.  Through this long feedback loop, testosterone mediates the discharge 

of GnRH and LH [152,157].  If testosterone concentrations at the hypothalamus and 

adenohypophysis are high, release of GnRH by the hypothalamus is held back and the 

adenohypophysis doesn’t react to accessible levels of GnRH.  Additionally, the target 
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cells of the hypothalamus or adenohypophysis may possibly convert testosterone to 

estradiol.  Due to this negative feedback, LH concentrations would be low in blood 

entering the testis, therefore Leydig cell exposure to LH is low resulting in testosterone 

being secreted by the Leydig cells at a basal rate.  As testosterone concentrations in 

peripheral blood decline, the negative block is removed and GnRH is released 

intermittently from the hypothalamus.  LH is then released from the adenohypophysis, 

resulting in an elevated concentration of LH in the blood flowing to the testis, and rapid 

stimulation of Leydig cells to produce and discharge testosterone.  A circular feedback 

loop is formed between Leydig cells, the hypothalamus, and the adenohypophysis 

ultimately regulating concentrations of LH and testosterone in peripheral blood. 

The mechanism by which FSH secretion is stimulated by GnRH is different than that of 

LH.  Bursts of LH are not always accompanied by a release of FSH and vice versa 

[105,159].  FSH synthesis and secretion appear to be less dependent on GnRH than that 

of LH [6].  Research with non-equine species showed that FSH acts entirely on Sertoli 

cells within the seminiferous tubules [6,167].  Sertoli cells produce several protein 

hormones, including closely related inhibin and activin.  Along with other functions, 

these hormones act on the adenohypophysis to suppress (inhibin) or stimulate (activin) 

secretion of FSH, with little to no effect on the secretion of LH.  In stallions, as well as in 

rams, concentrations of inhibin in plasma vary according to seasonal reproductive state 

and are positively correlated with testicular size and testosterone secretion [100].  The 

relative amounts of LH and FSH secreted in response to GnRH from the hypothalamus 

are probably controlled by the inhibin/activin system and the ratio of testosterone to 

estradiol impinging on the adenohypophysis. 
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Stallions have a uniquely high concentration of estrogens in their testes.  Estrogens 

synthesized in the testis of mammals and detected in ejaculate appear to come from 

Leydig cells [178].  These hormones have a role in the autocrine control of testosterone 

production and act within the seminiferous tubules.  In addition, they also regulate the 

resorption of luminal fluid in the head of the epididymis, making them essential 

hormones for the male reproductive system [179].  It is hypothesized that estradiol or 

other estrogens are transformed within Leydig cells from a portion of testosterone.  High 

levels of estrogens can be found in the blood draining from the stallion testis.  These high 

concentrations of estrogens flowing to the hypothalamus and adenohypophysis may 

suppress discharge of GnRH or LH and FSH in a negative feedback loop [152,180].  

Injecting hormones in stallions can alter the hormonal balance because of feedback loops 

involving the hypothalamus, adenohypophysis, and testis.  Reproductive function can be 

disturbed with sequelae of such manipulations often having undesirable results.  

Hormonal Control of Spermatogenesis 

The hormonal requirements for normal spermatogenesis in a stallion are not entirely 

known.  The duration of the cycle of seminiferous epithelium and total duration of 

spermatogenesis are most likely not modified by hormonal balance within the testis of 

rats [69,72,80,84].  Hormones partially control the degree of germ cell degeneration 

[72,80,82,84,181].  Leydig cells produce testosterone and surround the seminiferous 

epithelium, thus exposing it to a higher concentration of testosterone that the peripheral 

blood.  Normal spermatogenesis requires high levels of testosterone [82,181], whereas in 

rams, FSH is necessary for spermatogenesis [62,65,82,181], and LH may have a direct 

role in regulating division of spermatogonia in addition to its role at stimulating 
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testosterone production [181].  In contrast, spermatogenesis can be maintained by 

testosterone alone in rats [65].  Sertoli cells mediate the role of FSH in the normal 

development of spermatids [62].  Hormonal control of spermatogenesis in stallions is still 

under much debate, because some differences among species exist [181]. 

Descent of the Testes 

In the normal colt, both testes should descend into the scrotum between 30 days before 

and 10 days after birth [17,182,183].  Androgen production by the developing fetal 

gonads probably plays an important role, as may mullerian inhibiting factor and 

epidermal growth factor [5,184].     

By day 40 of gestation, the testis is suspended from the abdominal wall and the 

mesonephric duct, which later gives rise to the epididymis and ductus deferens, leads into 

the pelvic area [182].  A narrow invagination, termed the vaginal process, starts to form 

about day 43 of gestation and progressively develops to form the inguinal canal.  Around 

day 150, the developing cauda epididymis is drawn to or just within the internal inguinal 

ring, but the testis is large and cannot enter in the inguinal canal [182].  Entrance of the 

testis into the inguinal canal typically begins between 270 and 300 days of gestation 

[182].  This occurs only after the vaginal process and internal inguinal ring have been 

stretched sufficiently by enlarging cauda epididymidis to allow entrance of the testis that 

has diminished in size from 50 to 30 g.  Pressure from fluid in the abdominal cavity, and 

possibly from the intestines, forces the testis down through the inguinal canal.  This 

descent places the lamina visceralis or the tunica vaginalis, the outer covering of the 

testis, into apposition with the lamina parietalis of the tunica vaginalis, the former vaginal 

process, separated by the cavum vaginale. 
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Failure of normal testicular descent is common in horses [17] and is termed 

cryptorchidism.  The left testis is more commonly retained in stallions [17].  The 

undescended testis is exposed to higher temperatures and therefore spermatogenesis is 

often disrupted at the time of puberty.  In the event of a unilateral cryptorchid, the stallion 

may still be fertile but since the condition is often hereditary, castration should be 

performed.  Diagnosis of cryptorchidism is attained by manual palpation of scrotal 

content in addition to rectal palpation and careful inguinal palpation to assist in 

identification of an abdominally or inguinally retained testis.  Ultrasonography has been 

recommended as a diagnostic tool for this as well [185].  In horses with bilaterally 

retained testicles or apparent geldings with stallion-like behavior, hormonal profiles may 

be useful in diagnosis of retained testes [186,187].  Baseline testosterone levels have been 

suggested as a method to diagnose retained testicular tissue in an apparent gelding 

[186,188].  Numerous problems are associated with the test including low wintertime 

testosterone values in normal stallions, a relatively high percentage of nondiagnostic 

values, and false negative values.  The use of a single measurement of plasma conjugated 

estrogens, without human chorionic gonadotropin stimulation also appears to be reliable 

in the diagnosis of cryptorchidism in colts older than 3 years of age [186].  A stimulation 

test using human chorionic gonadotropin reduces the number of nondiagnostic test results 

obtained with both conjugated estrogens and testosterone measurement.  In the test, 5000 

to 10,000 IU of human chorionic gonadotropin is injected intravenously.  Blood samples 

for conjugated estrogens and testosterone are obtained before the injection and 60 to 120 

minutes later.  A fivefold or greater increase in hormone (conjugated estrogens or 

testosterone) indicates that a retained testicle is present.  One study demonstrated that the 
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increase in conjugate estrogen and testosterone after human chorionic gonadotropin 

stimulation peaked 2 to 3 days after the injection [187].  Until a colt is older than 3 years 

of age, false-negative results may still occur whether testosterone or conjugated estrogens 

are measured [186,189]. 

Bergin et al. reported that the earliest complete descent of both testes was at 315 days of 

gestation, about 25 days before parturition [182].  In 32 fetuses between 9 months of 

gestation and birth, descent of the right testis was more advanced than the left in 78% of 

the fetuses, while the left testis was more advanced in only 3%.  Of 12 fetuses collected 

at term, 42% had completely descended testes, 25% had both testes within the inguinal 

canals, 17% had one testis in the scrotum and one in the inguinal canal, and 17% had 

both testes within the abdominal cavity.  A total of 5 of 9 colts less than 1 week old had 

complete bilateral descent of the testes into the scrotum.   

As reviewed by Bergin et al. failure of the testes to descend has been attributed to 

abnormalities of the testis, development of adhesions between the testis and adjacent 

structures, or an abnormal outpouching of the vaginal process [182].  Bergin et al. 

discounted these factors as causes of cryptorchidism and suggested that the most obvious 

reasons for the testis to remain in the abdominal cavity included the following: 

insufficient abdominal pressure to properly expand the vaginal process; stretching of the 

gubernacular cord; insufficient growth of the gubernaculum and cauda epididymidis so 

that they are unable to expand the inguinal ring sufficiently to allow entrance of the 

testis.; and displacement of the testis to a position where intestinal pressure prevents 

tension from the gubernaculum, via the gubernacular cord, pulling the testis into the 

vaginal process. 
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Puberty 

The testis contains few (if any) functional Leydig cells and only indifferent supporting 

cells and gonocytes (progenitors of Sertoli cells and spermatogonia) at birth.  The 

infantile stage of the stallion’s life then begins.  Data from other species describes this 

infantile stage by a declining number of gonocytes, absence of gonadotropin secretion by 

the adenohypophysis, and limited steroidogenesis (at least in terms of testosterone) by 

Leydig cells [82,190-194].  Spermatozoa are not produced during the infantile stage 

which continues through ≥ 6 months in stallions, and changes are initiated which 

continue through a prepubertal stage and culminate in puberty.  Breed and season of birth 

can influence the timing of the prepubertal changes among stallions.  Puberty is defined 

as the time when a stallion is first capable of successfully participating in reproduction.  

Domestic animal literature states that puberty is considered to be a definitive end point.  

A period when the animal is capable of reproduction and, by definition, implies 

achievement of spermatozoa production and completion of prepubertal events.  In human 

literature, the term puberty has no specific end point, but refers rather to the series of 

events termed the prepubertal stage.  Some stallions develop a few spermatozoa that are 

available for ejaculation by 14 months of age.  Following puberty, development of 

reproductive capacity continues (postpubertal stage), and 2-4 yr after puberty, a stallion 

achieves sexual maturity (maximum reproductive capacity).  Years later, reproductive 

senescence may occur but for most stallions, no change in daily spermatozoal production 

occurs between 4-20 yr of age [64].   

Research is lacking regarding testicular function or changes in the neuroendocrine system 

of stallions during the infantile stage of development or exactly when the prepubertal 
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stage is initiated.  Light horse and draft breeds vary in timing of specific events.  Around 

9 months of age, concentrations of FSH and LH in blood increase then around 12 months, 

the testes start to develop and grow rapidly [164,195].  A few months following that, 

spermatozoa are gradually produced [164,196].  There is a linear increase in total scrotal 

width from 42 mm at 42 weeks to 85 mm at 96 weeks of age (about 1 mm/week), based 

on a study of 15 colts born in July and early August [164].  After 80 weeks of age, 

increased levels of testosterone can be found in jugular vein blood [164].  These 

prepubertal developments are concluded in puberty when a stallion produces spermatozoa 

and would be fertile if allowed to breed a mare. 

The study carefully monitored 15 colts born in July and early August for reproductive 

development, and discovered their age at puberty averaged 83 weeks (puberty defined as 

first ejaculate containing 50 million spermatozoa of which ≥ 10% are motile) [164].  

Puberty was reached by 90 weeks of age in 11 of the 15 colts and following this period, 

there was a slow increase in both quantity and quality of spermatozoa.  The percentages 

of motile and structurally normal spermatozoa were still low at 2 yr of age, but the 

ejaculates contained 3.3 billion spermatozoa.  This contrasts with bulls in that the fertility 

of spermatozoa increases for about 6 months after puberty. 

Changes in the hypothalamic-hypophyseal-testicular axis of the stallion are based on 

information for bulls, rams, and other species due to a lack of information [168,169,190-

194].  During the infantile stage, LH, FSH and testosterone levels are secreted at low 

levels.  As the transition from the infantile stage to the prepubertal stage takes place, an 

increase in the frequency and amplitude of LH discharges occurs [168,169,190,192].  

Before about 36 weeks of age stallions have a relatively low secretion rate of LH which 
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most likely reflects a low concentration of GnRH receptors in adenohypophysis [192] and 

little secretion of GnRH from the hypothalamus.  LH secretion is high in bulls and is first 

evidenced by frequent discharges of high amplitude starting around 10-12 weeks of age 

continuing for about 6 weeks [190].  This event is similar in stallions, as verified by the 

high concentrations of LH in jugular-vein blood between 36-45 weeks of age.  It is 

thought that in stallions, the surge of LH secretion may simply be a change in amplitude 

of the LH pulses rather than a combined effect of increased frequency and volume of LH 

with each discharge [105,117,156].  The seasonal rise of serum concentration of LH in 

adult stallions is exclusively caused by an increase in LH pulse amplitude [105,117,156].  

The stallion hypophysis has the capability to secrete considerably more LH at 32 weeks 

of age than actually is secreted [165], although after GnRH administration LH release 

increased from 32-48 weeks of age. 

Naden et al. found that in eight stallions, an increase in LH-stimulation which occurred 

from 36-45 weeks of age did not affect Leydig cells because there was no change in 

testosterone concentration as evidenced from peripheral blood samples [164].  Data 

available on bulls showed the same occurrence [168,169,190,192].  It is likely that 

Leydig cells require prolonged stimulation by LH to complete their differentiation and 

develop the ability to secrete testosterone.  It takes nearly twelve months in stallions 

between the initial increase of LH concentration in the blood and an increase of 

testosterone concentration [164], compared to three months in the bull [168,169,190].  

This difference could be a consequence of a more pronounced seasonal effect on 

reproductive function in stallions than in bulls.  In addition, Naden’s study exposed 

Leydig cells to high concentrations of LH from May to July, leading to a seasonal effect 
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three months later that possibly suppressed secretion of testosterone that might have 

occurred [164].  In the stallion during the nonbreeding season (September-July), secretion 

of testosterone is decreased and blood concentrations are low [164].  The secretion of LH, 

FSH, and testosterone all increased during the next breeding season in the young colts 

born in July through early August. 

Reasons for inactivity of the neuroendocrine system during the infantile stage are still 

unknown in the stallion but data from bulls and rams have been examined 

[168,169,181,190-192].  It is hypothesized that in stallions an estradiol-mediated block 

suppresses secretion of GnRH by the hypothalamus before about 16 weeks of age.  If 

neurochemical stimuli are present, pulsatile discharges of GnRH begin or increase.  At 

the same time, an increase in the concentration of estradiol receptors in the 

adenohypophysis may allow initiation of positive feedback of estradiol on this organ.  An 

increase in the concentration of GnRH receptors in the adenohypophysis ensues and there 

is an increased responsiveness of the adenohypophysis to discharges of GnRH initiated.  

Following these events, LH is secreted in limited amounts by 16 weeks of age.  GnRH 

continues to stimulate the adenohypophysis thus increasing the synthesis of mRNA for 

the β-subunit of LH between 20-32 weeks of age.  The continued stimulation by GnRH 

enables copious production of LH from 32-45 weeks of age. 

The study by Naden et al. also considered that the maturation of the hypothalamic-

hypophyseal axis might be estradiol or androstenedione induced, rather than testosterone 

[164].  It was thought that the cause of the seasonal suppression in LH secretion from 55-

85 weeks of age in colts studied was due to the secretion of a gonadal steroid, other than 

testosterone, acting on the hypothalamic-hypophyseal axis [164].  For species other than 
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stallions, the support of spermatogenesis relies on supporting cells being exposed to FSH 

and receiving androgenic stimulation to complete their differentiation into Sertoli cells.  

The data show that there is sufficient androgenic stimulation provided by the 

intratesticular environment at 70-75 weeks of age enabling the onset of spermatogenesis 

and ejaculation of spermatozoa at 83 weeks of age (puberty) while the secretion of 

testosterone increased for at least several months after the initial rise around 72 weeks of 

age.  When comparing stallions to available data for bulls and rats [60,193,194], the 

efficiency of spermatozoal production in stallions probably increases rapidly through the 

interval from puberty to > 100 weeks of age. 

Ejaculation 

Three sequential processes: (1) erection, (2) emission, and (3) ejaculation - are involved 

in the process of ejaculation.  Erection occurs when blood engorges the corpus 

cavernosum and corpus spongiosum penis resulting in the lengthening and stiffening of 

the penis.  Emission is the movement and deposition of spermatozoa and fluid from the 

ductus deferens and cauda epididymis, and fluids from the accessory sex glands, into the 

pelvic urethra.  Ejaculation is the actual discharge of semen through the urethra. 

An erection can be initiated either by sensory stimuli of the glans penis or by psychic 

stimulation of the cerebral cortex.  The cerebrum reacts to visual stimuli during teasing 

thus resulting in an erection.  Parasympathetic impulses pass from the second, third, and 

fourth sacral ligaments of the spinal cord, via splanchnic nerves, to the penis.  These 

impulses override sympathetic stimulation which normally keeps arterioles in the penis 

partly constricted thus allowing dilation of the penile arterioles.  Blood enters the corpus 

cavernosum and corpus spongiosum penis while at the same time, extrinsic muscles of 
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the penis (i.e., ischiocavernosus, bulbospongiosus, and urethralis) which contract and 

compress the deep and dorsal veins of the penis against the ischial arch.  This impedes 

the venous return from the cavernous bodies of the penis.  Blood is then shunted to fill 

and distend the corpus cavernosum and corpus spongiosum penis resulting in 

enlargement of the penis.  The penis returns to its flaccid state when the arteries constrict 

to their normal state as a result of sympathetic impulses, and pressure on the veins is 

relieved by relaxation of the ischiocavernosus and bulbospongiosus muscles.   

In the stallion, emission and ejaculation occur as a series of strong, pulsatile contractions 

of the urethralis and bulbospongiosus muscles so that several successive jets of semen are 

ejaculated [197].  Weber and Woods were the first researchers to use transrectal 

ultrasonography to evaluate the accessory sex glands in ejaculating stallions.  Their study 

confirmed that the pattern of seminal emission is consistent with the sequence in which 

accessory sex gland secretions appear in stallions ejaculates, with the highest 

spermatozoa concentration in the first seminal fraction and decreasing concentrations in 

successive fractions [198].  First, the prostate gland secretes a watery fluid into the pelvic 

urethra and some prostatic fluid is ejaculated as a prespermatozoal fraction.  Next, 

emission and ejaculation of the spermatozoal-rich fraction occurs.  This fraction consists 

of spermatozoa and epididymal secretions and probably prostatic fluids and watery 

bulbourethral gland fluid.  Usually, three to six sequential discharges of sperm-rich fluid 

occur.  The vesicular glands release the gel or postspermatozoal fraction.  The gel is 

significantly decreased if a second ejaculate is taken in a 2 h period.  Semen 

characteristics differ depending on season, age, testicular size, interval of abstinence 
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since the previous ejaculation, and the extent of sexual arousal or courtship before 

ejaculation.   

PART II 

Testicular Degeneration in Stallions 

The process of spermatogenesis is very fragile, extensive and easily upset by a variety of 

extrinsic factors [199].  The susceptibility of the germinal epithelium to damage makes 

testicular degeneration (TD) a common cause of acquired, progressive infertility and 

often sterility in stallions [200-202].  TD is a poorly understood disease in males with a 

significant economic impact, especially in stallions.  TD results in poor semen quality 

characterized by a high percentage of morphologic spermatozoal defects, poor motility, a 

low number of normal sperm per ejaculate and decreased testicular size.  TD can affect 

one or both testes, depending on whether the contributing reason is localized (focal 

lesion), as with a locally aggressive tumor, or generalized (diffuse lesion), as with fever 

of variable origin or ITD [202,203].  TD can manifest in two ways, 1) acutely and with a 

known insult on the testis or 2) for reasons unknown.   TD has a numerous causes with 

thermal injury being the most common.  Any event that disturbs the vital temperature 

differential of the testis can interfere with normal spermatogenic function.  Insults that 

can be identified that can result in TD in the stallion include, high environmental 

temperature, fever, orchitis, periorchitis, hydrocele, scrotal hemorrhage, scrotal edema, 

scrotal dermatitis, improper scrotal descent, systemic/local infections, injury to essential 

vasculature (torsion), inflammation of the testicular artery or degenerative changes in 

testicular arterioles, hormonal disturbances, ionizing radiation, malnutrition, ingestion of 

toxic plants, neoplasia, efferent/epididymal duct obstruction, production of antisperm 
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antibodies or uncontrolled intratesticular hemorrhage [203-207].  Though the germinal 

epithelium is quite susceptible to injury, damage is often temporary because of the more 

resistant nature of the stem-cell spermatogonia, Sertoli cells and Leydig cells.  These 

cells allow restoration of normal spermatogenic function if the contributing agent for the 

TD is removed.  TD can be reversible depending on the duration and severity of the 

insult.  Mild cases of TD are able to return to full function whereas in severe cases of TD, 

the affected testes usually do not progress once the insult has been removed but return to 

function is unknown.  Cases of TD in which no cause can be identified is referred to as 

idiopathic testicular degeneration (ITD) [206,208].  In infertile men, only 25% have 

defined conditions [209].  ITD is often age-related and is found in middle-older age 

stallions but it can affect much younger animals too [206].  ITD is extremely progressive 

in nature, beginning with a reduction in fertility and possibly leading to sterility.  Several 

researchers have reported differences in plasma hormone concentration and Leydig cell 

morphology in stallions with ITD compared to stallions with androgen or heat induced 

TD [204,210,211].  This leads some researches to consider ITD as a separate condition 

from TD.  

A majority of the studies concerning ITD has been done in rats.  These studies have 

shown that age-related declines in testicular function are likely due to the testis and not 

defects in the hypothalamic-pituitary axis [212].  The number of Leydig cells does not 

change as the testis ages.  Old Leydig cells have been shown to contain less LH receptors 

when compared to younger Leydig cells.  As the rat ages, the Leydig cells become less 

efficient at producing testosterone and FSH levels increase, thus the signaling pathways 

and steps in the steroid pathway become impaired in the Leydig cells [213].  
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Additionally, a study looked at gene expression in rat Leydig cells during their 

development and found gene profiling demonstrates that postnatal development is 

associated with changes in the expression levels of several different clusters of genes 

consistent with the processes of Leydig cell growth and differentiation [214].  It has been 

hypothesized that during normal spermatogenesis, reactive oxygen products are produced 

and thus over time cause damage to Leydig cells.   

Several studies have attempted to determine the causes of ITD in stallions [85,215-217].  

These studies determined that the endocrine changes in aging, subfertile stallions varied 

significantly depending on the severity of the problem and the reason for subfertility.  A 

comparison study was done on plasma hormone concentrations between normal, fertile 

animals and subfertile animals with mild testicular changes, revealing no significant 

differences amongst the two groups.  More severely affected subfertile/infertile animals 

showed elevated levels of LH and FSH in plasma, decreased plasma levels of inhibin and 

estradiol and decreased intratesticular inhibin concentrations.  Elevated levels of FSH in 

the plasma combined with low plasma estrogens in the face of low fertility have been 

implicated in cases of TD [208,215].  Like the rat, studies testing hypothalamic, pituitary 

and testicular function in fertile, subfertile and infertile stallions indicate that the primary 

problem in idiopathic stallion infertility lies in the testis itself and not in the 

hypothalamus or pituitary [216,218]. 

LH receptors were evaluated and compared in the testes of subfertile and normal 

stallions.  Unlike the rat, there was no difference in the number of receptors between the 

two groups [219].  This leads researchers to believe the problem is not in the LH receptor 

number but possibly in the steroidogenic pathway itself [218].  One of the first changes in 
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steroid levels in subfertile stallions is decreased levels of testicular inhibin.  Therefore the 

defect may reside in the Sertoli cell rather than the Leydig cell in cases of idiopathic 

infertility [217], providing further evidence that the primary cause of ITD resides at the 

level of the testis and not the hypothalamus or pituitary. 

Turner and Casas-Dolz [220] looked at differences in gene expression in the testes of a 

fertile stallion compared to the testes of one young stallion and one old stallion diagnosed 

with severe ITD.    They suspected that multiple genes are involved in ITD since it has 

many characteristics of a multigenic condition (e.g., inconsistent penetrance, stages of 

severity, high prevalence).  Their results found few differences in gene expression 

between the ITD stallions and the fertile stallion [220].  In addition, several genes were 

found to be differentially expressed (either up or down regulated) when comparing the 

fertile stallion to one of the ITD stallions but findings were not consistent in both [220].  

These findings indicate that ITD truly encompasses an assorted collection of problems 

and that the function of these genes in the pathogenesis of ITD is still unclear.   

In a study by Blanchard and Johnson [221], there was an increased degeneration of germ 

cells in stallions that produced low sperm numbers.  This degeneration was evident 

during early meiosis and spermatogenesis in addition to having lower germ cell:Sertoli 

cell ratios.  When the stages of cells were closely evaluated, it appeared that earlier stage 

germ cells (e.g., spermatogonial stem cells) and testicular somatic cells (Leydig and 

Sertoli cells) were more resilient to degenerative changes.  Therefore, the remaining germ 

cells may have the ability to restore normal spermatogenesis if the inciting cause of TD 

can be identified and removed.  Normal spermatogenesis often resumes in cases of TD in 
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which the insult is identified and removed unlike ITD which isn’t reversible and often 

progresses in severity.   

In 2005, Dobrinski performed the first study in which testicular tissue xenografts were 

taken from neonatal pigs and goats and then placed in castrated and 

immunocompromised mice.  These xenografts successfully resulted in functional sperm 

in the mouse host [222].  In a 2006 study, Turner et al. evaluated a similar xenografting 

procedure of stallion testis tissue in mice.  Small pieces of testicular tissue were taken 

from normal stallions, cryptorchid stallions and stallions with ITD.  The tissue was 

placed under the dorsal skin of immunocompromised and castrated mice.  In normal 

testicular tissue, spermatogenesis resumed within the tissue [223-225].  The cryptorchid 

stallions also had evidence that spermatogenesis resumed.  In stallions with ITD, the 

tissue did not resume normal spermatogenesis and rather underwent further degeneration 

suggesting that the testis itself is defective.  The xenografts from stallions with ITD were 

also treated with exogenous and endogenous hormones which had no effect on the 

degenerating tissues [224,225].  This most likely proves that in stallions with ITD, 

hormone treatment is not likely to improve the condition.   

An accurate diagnosis of TD begins with a precise breeding history of the stallion.  The 

history should include the stallions past book sizes, seasonal pregnancy rates, and average 

numbers of heat cycles per pregnancy in each mare.  A detailed history may also provide 

information regarding a possible cause for the TD.  A recent history of trauma to the 

testis, an illness associated with fever, administration of anabolic steroids or 

administration of other likely damaging substances.  In these cases, the onset of infertility 

is generally sudden and closely associated with the cause.  The prognosis for future 
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fertility is generally better in cases where an inciting cause can be identified and 

removed, than for cases of true ITD.  Stallions, especially older ones that present with no 

history of a known insult and declining fertility over time should be considered for ITD.  

ITD is typically considered to be a slowly progressive problem, however many stallions 

present for an alleged acute onset of subfertility/infertility.   

Testicular hypoplasia (TH) is a congenital condition whereas TD is an acquired condition 

thus, a history of declining fertility and often decreased testicular size is critical for a 

diagnosis.  It should be kept in mind that many animals with TH often are affected by 

degeneration as well [202,207].  Clinically and histologically, TD may be impossible to 

differentiate from TH.  TD is strictly an acquired condition as opposed to TH, which can 

be congenital or acquired.  These two terms are often mistakenly used interchangeably, 

so TH will be briefly described here.    

TH is a fairly common pathologic entity of stallions.  One study evaluating 1000 stallions 

found a 3% incidence in which it was associated with concurrent epididymal hypoplasia 

[67].  The difference between TH and TD is that TH is differentiated by incomplete 

gonadal development and TD or atrophy, involves gonadal regression after maturation is 

complete.   

When a stallion reaches puberty, advanced development within the testes make them a 

sexually functional organ.  Any event that impedes prepubertal development leading up 

to puberty can result in TH.  TH is thought to be a consequence of primarily congenital 

abnormalities although it may be acquired [226], genetic and/or teratogenic.  Some types 

of TH have a hereditary basis in some species, so genetically induced TH of horses is 
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possible [67,226].  The pathophysiology of TH may involve abnormal primordial germ-

cell activity during fetal life, such as inadequate proliferation in the yolk sac, improper 

migration en route to the fetal gonad, or insufficient multiplication/excessive 

degeneration after arrival at the gonad; or it may involve postnatal disruption of the 

germinal epithelium [227].  A wide range of cytogenetic abnormalities, from 

translocations and mosaics to nondysjunctions causing polysomies of sex chromosomes, 

result in TH.  The best known example of polysomy is the XXY karyotype of 

Kleinfelter’s syndrome seen in bulls, dogs, boars, stallions and tricolor cats [207]. 

TH occurs in connection with cryptorchidism (both intersex and idiopathic forms) but 

also occurs as an unexplainable phenomenon of intrascrotal testes.  Elevated testicular 

temperature may contribute to hypoplasia leading to the production of small testes when 

thermoregulation is impaired (e.g., with abdominal or inguinal cryptorchidism, inguinal 

herniation, congenitally short cremaster muscles or excessive intrascrotal fat in bulls) 

[226].  A disruption in thermoregulation can lead to TD and atrophy while TH may occur 

when such conditions as those above are present prior to the completion of testis growth 

and development.  Some flocks of sheep have a high incidence of TH occurring 

concurrently with unilateral cryptorchidism, suggesting that the two conditions may be 

related [67].  In addition, the testes of male equine hybrids (mules or hinnys) are also 

typically hypoplastic. 

In addition to genetic errors, it is possible that infections, intoxications, malnutrition, 

endocrinologic disturbances, irradiation or other factors may activate TH.  An example of 

this type of TH would be small testes size in a young stallion retired from racing.  In 

general, stallions with a racing career have smaller testes than stallions the same age not 
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involved in racing.  This implies that vigorous training and/or possible drug 

administration negatively affect testis size [228]. 

TH can be mild to severe and can involve one or both testes.  Resulting fertility is 

determined by the degree of hypoplasia [67,203] with clinical findings varying 

accordingly.  Testicular size and consistency are two simple and noninvasive ways to 

evaluate the severity of TH.  Hypoplastic testes are usually small but may occasionally be 

of normal size [67].  The texture of the affected testes vary from normal to soft with mild 

or moderate hypoplasia, to firm in severely affected testes.  In severe cases, the testes 

become firm due to the large amount of stromal connective tissue present [203].  The 

testes of a suspect stallion should be compared with those of similarly aged stallions.  TH 

can be unilateral or bilateral but the left testis tends to be larger than the right one during 

fetal development, with the size difference continuing into adulthood [63,229-231]. 

Prepubertal testes are quite small and can be mistakenly diagnosed as pathologically 

hypoplastic.  Testicular growth in prepubertal/pubertal stallions usually increases at a 

fairly rapid and linear rate between 12 and 22 months of age, but testicular growth 

continues until at least 4-5 years of age [63,164,231].  Puberty may be delayed because of 

malnutrition or other factors; therefore, diagnosis of pathologic TH can be quite difficult 

before a stallion reaches 2-3 years of age. 

A young postpubertal stallion with testes smaller than normal should be suspected of TH.  

TH is difficult to differentiate between TD when the duration of small testicular size is 

not known.  Physical examination findings, testicular histologic findings and semen 

characteristics are very similar between the two pathologic states [67].  If an inguinal 
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herniation or some other congenital condition is present, there is a high likelihood that 

testicular development was impaired.  An underdeveloped or small epididymis associated 

with a small testis provides indirect evidence for TH.   

In mild cases of TH, most of the affected seminiferous tubules are undergoing active 

spermatogenesis progressing to the primary spermatocyte stage or beyond with some 

tubules remaining completely hypoplastic.  Hypoplastic seminiferous tubules can be 

found scattered among numerous tubules that appear normal histologically.  Stallions 

with a mild case of TH tend to have slightly small testes with a normal turgid to soft 

consistency that is hardly noticeable on physical examination.  Stallions with severe TH 

are characterized by predominantly hypoplastic seminiferous tubules.  These tubules are 

typically lined only by Sertoli cells, though some contain a small rim of non-dividing 

spermatogonia or spermatogonial precursors.  The affected tubules have a thickened 

basement membrane that is infiltrated with hyaline connective tissue with the connective 

tissue also accumulating in the interstitial compartment.  The testes are smaller than 

normal because the diameter of the seminiferous tubules is reduced.  Although the testes 

may be soft at first, gradual replacement of parenchyma with connective tissue eventually 

makes the testes firm in texture [67,203].  Mild hypoplasia is difficult to distinguish from 

TD [207]. 

Affected stallions can have oligospermia leading to azoospermia depending on the 

severity of TH.  Libido and semen volume are often normal.  Ejaculated spermatozoa 

usually have a high incidence of morphologic defects and poor motility.  Round 

spermatogenic cells and multinucleated germ cells may appear in the ejaculate as a result 

of incomplete cytoplasmic divisions during spermatogenesis [203]. 
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There is no known treatment for stallions with TH, thus hypoplastic testes are 

predisposed to TD.  Stallions with TH should not be used for breeding purposes as the 

condition is likely to be hereditary, and the stallions have reduced fertility.  

Unfortunately, the value of some stallions encourages owners to breed them anyways.   

Azoospermia is often seen in TD within the first two weeks following a known insult.  If 

the inciting factor is removed, it takes approximately 57 days for next spermatogenic 

cycle to produce viable spermatozoa.  Upwards of 5 months may be required for recovery 

and return to function in cases of severe TD [200].  As mentioned previously, the 

spermatogonial stem cells and testicular somatic cells (Leydig cells and Sertoli cells) are 

fairly resistant thus they provide a population of cells that are capable of repopulating the 

testis following an insult. 

In one study evaluating germ cell loss rate in stallions with ITD it was noted that stallions 

with mild cases of ITD may not have any obvious changes in testicular character and that 

ITD can be present before a clinically significant decrease in testicular size can be 

appreciated [221].  Semen quality should be monitored frequently as a gradual decline in 

quality (including a decline in total sperm numbers and/or declines in the percentages of 

motile and morphologically normal sperm) may be the only clinical sign early in the 

disease.  Decreasing testicular size, palpable softening of the testicular parenchyma, 

decreasing sperm numbers, low daily sperm output per ml of testis, appearance of 

increasing numbers of immature round spermatogenic cells and/or multinucleate giant 

cells in the ejaculate and an overall decline in semen quality may become more apparent 

as the disease progresses [202,203,208,232].  Azoospermia can be found in advanced 

cases of ITD in addition, the epididymis may seem strangely large with respect to 
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testicular size because ITD doesn’t affect it [213].  Some stallions with ITD present for 

an acute onset of subfertility/infertility when in reality the problem has been progressing 

over time but was not noticed.  The testes may become overly firm in severe, end-stage 

ITD [5]. 

Thorough yearly examinations should be done on all breeding stallions with detailed 

records of total scrotal width, daily sperm output, and testicular volume.  Meticulous 

record keeping will allow early detection of trends indicating ITD (e.g., decreasing 

testicular size/volume, declining semen quality, declining sperm numbers).  If a stallion 

has a low daily sperm output for his testicular volume, he should be suspected of having 

ITD.  The volume of a single testis can be calculated using the following formula [97]: 

4π Length (cm) Width (cm) Height (cm)

3 2 2 2
Testis Volume =  x x x

 

AND 

Left Testis Volume + Right Testis VolumeTotal Testicular Volume  = 
 

Additionally, daily sperm output per ml of testis can be calculated by dividing the total 

number of sperm in the ejaculate by the total testicular volume [232].  TD is often 

indicated in stallions with low daily sperm output/ml of testis and a low percentage of 

morphologically normal sperm in the ejaculate [232]. 

ITD, TD and HP can all have large numbers of immature spermatogenic cells (round 

cells) and multinucleated giant cells in the ejaculate [202,203,208].  These cells can 
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sometimes be confused with white blood cells in an unstained semen sample.  Different 

stages of spermatogenic cells appear in a single ejaculate and are thus varied in size 

compared to white blood cells.  Spermatogenic cells can sometimes be found in the 

ejaculate of normal stallions but no other signs of abnormal spermatogenesis (small 

testicular size, poor semen quality, low sperm number, etc) should be present [233].  

Plasma hormone levels are not a good predictor of mild to moderate TD as the levels can 

vary significantly in normal and subfertile stallions [221].  High plasma levels of FSH 

and LH with low plasma estradiol are often helpful in diagnosing of TD. 

When incised, degenerate testes do not bulge and are dark brown [203].  Histologic 

evidence of TD includes cytoplasmic vacuolization, germinal-cell desquamation, 

decreased thickness of the seminiferous epithelium, decreased cross-sectional diameter of 

the seminiferous tubules, pyknosis of spermatocyte nuclei, intratubular giant cell 

formation, spermiostasis, mineralization of thickened tubular elements, diminished tubule 

size, fibrosis, and apparent interstitial cell hyperplasia [67,203,207].  There is loss of or 

reduced spermatogenesis and small tubules may be lined only with germinal cells that 

can be shed into the lumen.  Hyaline thickening and occasional mineralization of the 

basement membrane may be wavy as a result of the collapse of the seminiferous tubules 

[67,203,206,207,234].  In more severe cases, large numbers of immature round 

spermatogenic cells may appear in the ejaculate, as described above.  Germ cells decrease 

in number as TD progresses and in severe cases, fibrous tissue may become abundant and 

seminiferous tubules become almost devoid of spermatogenic cells.   The testicular 

parenchyma may also become fibrotic and calcified [235].  Normal testes can have some 

focal areas of abnormal spermatogenesis.  The percentage of the testicular parenchyma 
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that is affected and severity of the histological lesions should be considered before a 

diagnosis of TD is made. 

A testicular biopsy will help provide evidence that can aid in the diagnosis of TD but the 

procedure is rarely performed in practice.  A thorough history, complete physical 

examination and a reproductive examination often give a practitioner enough evidence to 

make a diagnosis of TD without taking a testicular biopsy.  There is considerable debate 

regarding the significance of a single biopsy sample as a representative sample of the 

entire testis.  Some researchers say that a wedge biopsy is preferred to obtain sufficient 

testicular parenchyma.  This type of biopsy can result in considerable hemorrhage in 

addition to pressure-induced degeneration and necrosis [236].  Decreased sperm counts 

and formation of antisperm antibodies are among the reported complications in men 

[237].  An ultrasound examination should be used to evaluate the testes prior to taking a 

biopsy [238].  The ultrasonographic appearance of the parenchyma can help the 

practitioner choose a representative site for the biopsy.  Several stallion studies have 

shown that testicular biopsies can be taken safely and with minimal permanent damage to 

the remaining testicular parenchyma [239,240].  The problem with the results of these 

studies is that they were performed on normal stallions and thus the risk to an already 

compromised testicle (e.g. degenerating testicle) is more difficult to determine.  A case 

report on a stallion exhibiting signs of azoospermia determined via a testicular biopsy 

that the azoospermia was due to testicular degeneration and not obstructive purposes.  

This stallion already had one testis removed prior to this incident and his fertility status 

was already in jeopardy prior to the biopsy [206].  Practitioners must carefully weigh the 
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diagnostic benefits of obtaining a biopsy sample against the risk of damaging some 

portion of an already marginally functional testicular parenchyma. 

There is no known, proven successful treatment for TD.  If the cause of the degeneration 

is known (e.g., fever, toxin), successful treatment of or removal of the inciting cause 

should at least prevent further progression of the disease.  If the degeneration is not 

severe and if the inciting cause is removed, the testis may at least partially, and 

sometimes fully, recover depending on the degree of damage sustained. 

It has been recommended in cases of unilateral TD that the affected testis be removed 

because the damaged testicular tissue could possibly result in the production of antisperm 

antibodies [241,242] that might adversely affect sperm produced by the normal testis.  In 

humans, autoimmune-related infertility is often associated with antisperm antibodies in 

women [209].  It is also thought that late descent of inguinal testes occurs in horses [243] 

and it could be hypothesized that late descent could present as TD.  In addition, the 

remaining testis results in testicular hypertrophy thus increasing sperm numbers.  

Unilateral castration is of considerable debate since reports have stated that stallions with 

unilateral TD have acceptable fertility without removal of the affected testis [200]. 

GnRH therapy has proved successful in several studies for the treatment of infertility in 

stallions [244,245,245] but the results have not been duplicated in control studies 

[215,246,247].  Men with hypogonadotropic-hypogonadism have been successfully 

treated with GnRH therapy [248].  This condition has not been clearly documented in 

stallions.  Therefore the use of GnRH implants or pulsatile administration of GnRH as a 

treatment for stallion infertility or ITD is debatable.  This treatment may benefit the 
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stallion if therapy is attempted before the testis has reached a severe state of degeneration 

[249] but as Turner et al. discovered, testicular tissue from stallions with ITD is not 

responsive to hormone therapy [224]. 

A study by Brinsko et al. found improvements in several parameters of semen quality 

when a nutriceutical rich in docosahexaenoic acid (DHA) was fed to normal stallions 

[250].  The effect of this nutriceutical on stallions with infertility has yet to be 

determined. 

Since the possible treatments for TD are of unknown value, stallion management should 

be monitored closely.  Meticulous records should be kept on breeding stallions closely 

monitoring the number of progressively motile, morphologically normal sperm that the 

stallion is capable of producing on a regular basis.  The stallion should then be used 

accordingly to prevent overuse.  Stallions with marginal fertility should have limited 

breeding days with adequate rest between ejaculates to allow for maximum insemination 

doses.  This rest period often helps boost sperm numbers and improves pregnancy rates in 

mares.  Each ejaculate should be closely monitored to ensure that spermatozoal numbers 

are adequate for breeding.  Sperm longevity and motility can often be improved with the 

use of an extender. 

Stallions with TD should have their semen handled with extreme care and often mares 

should be inseminated immediately following collection.  Not all semen from stallions 

with TD is suitable for cooled transport.  The semen from stallions with moderate to 

severe TD is often not able to withstand the cooling and shipping process resulting in 

decreased pregnancy rates.  Stallions with poor seminal characteristics are often best used 
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for onsite breeding or natural cover.  Mares bred to stallions with TD should be intensely 

managed and bred close to ovulation to minimize sperm longevity.  Intracytoplasmic 

sperm injection has also been evaluated in horses and could possibly benefit stallions 

with infertility [251]. 

Stallions with an identifiable cause of TD typically have the best chances of returning to 

a fully functioning status depending on the degree of damage.  If a case of TD has an 

unknown cause then is should technically be considered ITD.  Hormone levels and gene 

expression have not shown to be foolproof when attempting to detect early stages of ITD.  

A thorough history and annual breeding soundness examination will help detect small 

changes over time.  Presently, there is no known successful treatment for ITD.  If this 

disease is caught early, and breed registries permit, semen can be frozen in expectation of 

a steady decline in the stallion’s fertility over time.  Stallions diagnosed with ITD should 

be managed intensely to maximize fertility as the semen quality will continue to 

progressively decline.  This disease can have a huge impact on the genetics of the equine 

industry thus requiring additional research to identify and diagnose early stages of ITD.  
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CHAPTER III 

A SURVEY OF TESTICULAR LESIONS IN STALLIONS 

ABSTRACT 

Very little is known or has been published about the incidence of testicular lesions in the 

general equine population.  The aim of this survey was to assess the incidence of 

microscopic lesions in a random sample of pubertal stallions of different ages.  Testicular 

samples from 65 adult stallions were fixed, processed and stained for microscopic 

evaluation.  A board-certified pathologist evaluated the histological slides and assigned 

grades to the sample based on distribution and severity of any lesions.  Organs and 

regions examined for lesions included seminiferous tubules, testicular interstitium, rete 

testis, epididymis or capsule.  In the seminiferous tubules, 89% of the sampled stallions 

had evidence of tubular degeneration and 31% had evidence of tubular atrophy.  Tubular 

dilation, intraepithelial cysts and intratubular giant syncytial cells characterized the 

degenerated seminiferous tubules.  Intratubular granulomatous inflammation was present 

in 38% of the stallions.  A malignant seminoma was identified in one stallion.  Of the 65 

stallions, 92% had significant tissue alterations presenting as interstitial edema, Leydig 

cell hypocellularity, perivascular lymphocytic inflammation and interstitial fibrosis.  The 

majority of the lesions graded as minimal to mild; some were moderate or severe.  No 

significant tissue alterations existed in the rete testis, epididymis or capsule.  This survey 

indicates that the incidence of testicular lesions in the general equine population is high 
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and that their severity is minimal to mild.  Knowledge gained from this study will help to 

guide testicular diagnostic testing procedures in stallions in the future. 

Keywords:  Stallion, Survey, Testis 

INTRODUCTION 

The process of spermatogenesis is extensive, delicate and can easily be disrupted by a 

variety of extrinsic and intrinsic factors [1].  The germinal epithelium is relatively 

susceptible to injury; however, due to the resilient nature of the stem-cell spermatogonia, 

Sertoli cells and Leydig cells, the re-establishment of normal spermatogenic function is 

possible in some cases [2].   

Equine testicular tumors are uncommon and are rarely reported most likely due to the 

practice of castrating stallions at young age, which makes it difficult to access the true 

incidence of pathologic conditions [3,4].  Testicular neoplasia is rare and can be 

classified as primary, which are the most common tumors, and secondary [3-5].  Primary 

testicular neoplasms are classified based on their origin into two categories 1) germinal or 

2) somatic (nongerminal).  They can then be further classified based on their histologic 

features with germinal neoplasms originating from the germ cells of the seminiferous 

epithelium.  Germinal neoplasms comprise a majority of testicular tumors [6] and include 

the seminoma, teratoma, teratocarcinoma and embryonal carcinoma.  Somatic neoplasms 

include Leydig cell tumors, Sertoli cell tumors, and other nonparenchymal neoplasms 

such as lipomas, fibromas and leiomyomas [7].  Stallions castrated at an older age may 

have small neoplasms that are overlooked and therefore under-reported.   
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Multifactorial diseases such as testicular hypoplasia (TH) and testicular degeneration 

(TD) are also of considerable importance when evaluating equine testicular pathology.  

TH occurs before gonadal development is complete, whereas TD involves gonadal 

regression after maturation is complete.  TH is fairly common in stallions and often 

occurs in connection with cryptorchidism [5].  It is thought to be a consequence of 

primarily congenital abnormalities but other causes include genetic, teratogenic and 

acquired [8].  TD is a common cause of acquired, progressive infertility and subfertility 

in stallions that often leads to sterility and contributes significantly as a loss to the equine 

industry [5,9-17].  TD can manifest in two ways: 1) acutely and secondary to a known 

insult on the testis or 2) one in which no underlying cause can be found.  Known causes 

of TD include, high environmental temperature, fever, orchitis, periorchitis, hydrocele, 

scrotal hemorrhage, scrotal edema, scrotal dermatitis, improper scrotal descent, 

systemic/local infections, injury to essential vasculature (torsion), hormonal disturbances, 

radiation, malnutrition, ingestion of toxic plants, neoplasia, efferent/epididymal duct 

obstruction, production of antisperm antibodies and many more [5,6,10,12,13,17-21].  

TD can often be reversible depending on identification and removal of the insult and the 

length and severity involved.  TD in which no underlying insult is identified is referred to 

as idiopathic testicular degeneration (ITD) [11,13,16].  ITD is often associated with aging 

and can be found in middle-older age stallions but younger stallions can be affected too 

[13].  Stallions with ITD often show signs of decreased fertility, but the condition is 

progressive in nature and often leads to sterility.  ITD is not responsive to hormone 

therapy and is most likely due to a defect in the testis itself [22-25]. 
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Routine evaluation of the breeding stallion typically involves a physical examination, 

semen analysis, bacteriological cultures, ultrasonography and hormonal assays [26].  

Testicular biopsies are often only performed when less invasive techniques are in doubt 

for diagnosis [27].  A thorough history, complete physical examination and a 

reproductive examination often give practitioners enough evidence to make a diagnosis 

without taking a testicular biopsy.  Because of its perceived invasiveness, evaluations of 

testicular biopsies in the stallion are not routinely performed as a common procedure, 

thus limiting the use of biopsy as a diagnostic tool.  Several studies have shown that 

biopsy and fine needle aspiration produces minimal long term effects on fertility in 

normal stallions [27-30].  Similar studies have yet to be performed in stallions that are 

already compromised.   

Very little is known or has been published about the incidence of testicular lesions in the 

general equine population.  Further complicating the matter, the field of equine medicine 

has yet to characterize testicular lesions in stallions which can be attributed to the normal 

aging process.  To assess the incidence of microscopic testicular lesions in stallions, we 

surveyed a random population of pubertal horses.  We hypothesize that the incidence of 

testicular lesions in the general equine population is low. 

MATERIALS AND METHODS 

Animals, samples and tissue handling 

Testes were obtained from 65 pubertal stallions slaughtered for food consumption at an 

abattoir in Fort Worth, Texas between the months of March and June in 2003.  Workers 

at the slaughter house severed the testes at the level of the spermatic chord, pampiniform 
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plexis and cremaster muscle. Testes were grossly examined for abnormalities and noted if 

present.  Testes were processed for fixation on site to prevent autolysis.  Because the 

testicles were too large to fix whole, they were cut into sections prior to fixation.  Testes 

were cut axially and a representative, mid-testicular section was removed parallel to the 

cut.  The sections were then immediately placed into Modified Davidson’s solution (30% 

v/v of a 40% v/v formaldehyde solution, 15% ethanol v/v, 5% v/v, glacial acetic acid and 

50% distilled water) and fixed at least 24 hours at room temperature. 

Histology 

After fixation, the testes were washed in phosphate buffered saline three times prior to 

being processed through graded alcohols and xylene routinely, embedded in paraffin, 

sectioned at 4 µm and stained with hematoxylin and eosin for microscopic evaluation.  

Evaluation of histological sections  

The slides were examined by a board-certified pathologist at the Oklahoma Animal 

Disease Diagnostic Laboratory.  The tissues were evaluated according to lesion location 

(seminiferous tubules, interstitium, rete testis, capsule, and epididymis) and severity 

(scale of 0 to 4 with 0 being normal and 4 being severe).  The severity was characterized 

based on the percent of tissue affected: minimal was defined as <10% affected; mild was 

>10% but <20%; moderate was >20% but <30%; and severe was >50% of the tissue 

affected. 
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RESULTS 

The results are summarized in the TABLE 1.  A majority of the testicular tissues 

examined had microscopic lesions present (Table 1).  The testicular lesions varied from 

minimal to mild with some lesions grading moderate and few lesions were occasionally 

severe.   

Normal stallion testis histopathology can be seen in Figure 2.  The seminiferous tubules 

are round, contain multiple concentric layers of developing germinal cells and are 

actively undergoing spermatogenesis.  The interstitium contains abundant numbers of 

Leydig cells. 

Seminiferous Tubules 

Of the 65 stallions examined, 89% had evidence of seminiferous tubule degeneration 

with 59% of those grading minimal in severity.  Figure 3 characterizes diffuse 

seminiferous tubule degeneration.  The germinal layers in the seminiferous tubules are 

mildly hypocellular, disorganized, and are lined by a collection of Sertoli cells and 

epithelial cells, with clear, cystic-like spaces or “intraepithelial cysts”.   

Intratubular inflammation was present in 38% of stallions.  Twenty-one of twenty-five 

stallions graded minimal in severity.   

Seminiferous tubule atrophy affected 20/65 stallions with 30% of the stallions grading 

moderate in severity.  Figure 4 is an example of diffuse seminiferous tubule atrophy.  The 

seminiferous tubules are oblong to curved with a decreased diameter.  Some tubules are 

97



lined with only Sertoli cells while some are completely devoid of germinal cells.   The 

interstitium is moderately fibrotic, devoid of Leydig cells and minimally inflamed.  

At initial gross examination and fixation, a gross abnormality was identified in the testis 

of one stallion (Figure 5).  On microscopic examination, this lesion was identified as a 

malignant seminoma (Figure 6).  Within a scant fibrovascular stroma, sheets of highly 

pleomorphic and infiltrative neoplastic round cells have obliterated the testicular 

architecture.  Cells have moderately abundant eosinophilic cytoplasm, with distinct 

borders.  The hyperchromatic nuclei are round to oval, with marked anisokaryosis and 

prominent, often multiple nucleoli; multinucleated giant tumor cells are frequent.  

Mitoses vary from 0 to 5 per high power field with no vascular invasion detected.   

Interstitium 

Of the 65 stallions, 92% had recognizable tissue alterations in the testicular interstitium.  

These consisted of interstitial edema (49/65), Leydig cell hypocellularity (42/65), 

perivascular lymphocytic inflammation (33/65), and interstitial fibrosis (11/65). 

Interstitial edema was evident in 75% of stallions (49/65).  Forty-six of the stallions were 

minimally to mildly affected.  The interstitial tissues are moderately expanded with 

loosely arranged connective tissue and lymphangiectasia (Figure 7). 

Leydig cell hypocellularity was identified in 42/65 stallions with 11 minimally affected, 

15 mildly affected, 11 moderately affected and 5 severely affected.  The basement 

membranes of the seminiferous tubules are wavy and are lined by a collection of Sertoli 

cells and epithelial cells, with clear, cystic-like spaces or “intraepithelial cysts”.  
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Spermatogenesis is decreased to absent in some tubules.  The interstitial tissue is severely 

depleted of Leydig cells and has a mild non-suppurative inflammation (Figure 8). 

Nearly half of the stallions had evidence of interstitial inflammation (33/65) grading 

minimal to mild in severity.  A mild perivascular collection of lymphocytes can be seen 

expanding the peritubular interstitium (Figure 9).  The seminiferous tubules surrounded 

by inflammation are not undergoing spermatogenesis.   

Only 17% of stallions showed evidence of interstitial fibrosis.  The seminiferous tubules 

are indented and clustered together.  There is a loss of Leydig cells in the interstitium 

which has been completely replaced by marked fibrosis (Figure 10).   

Tissue alterations in the capsule were focal and minimal, and no tissue alterations existed 

in the rete testis or epididymis. 

A Fisher’s exact test was used to compare the lesion locations that were histologically 

graded to determine if significances exist among them.  It was determined that 

seminiferous tubule degeneration was statistically significant when compared to 

intratubular inflammation and interstitial inflammation (p<0.05).  Leydig cell 

hypocellularity was also statistically significant when compared to interstitial edema 

(p<0.05). 
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TABLE 1 (n = 65 stallions) 
 

 
Testicular 

Lesions 

Number of 
Stallions 

with 
Lesions 

Degree of Severity 

   Minimal Mild Moderate Severe 

Seminiferous  
Tubules 

Tubular 
Degeneration 58/65 34/58 9/58 15/58 0/58 

 Intratubular 
Inflammation 25/65 21/25 4/25 0/25 0/25 

 Tubular Atrophy 20/65 11/20 3/20 6/20 0/20 

 Neoplasia 1/65 N/A N/A N/A N/A 

Interstitium Interstitial Edema 49/65 20/49 26/49 3/49 0/49 

 Leydig Cell 
Hypocellularity 42/65 11/42 15/42 11/42 5/42 

 Interstitial 
Inflammation 33/65 23/33 10/33 0/33 0/33 

 Interstitial Fibrosis 11/65 1/11 9/11 1/11 0/11 

Rete Testis  0 0 0 0 0 

Capsule Capsular 
Inflammation 7/65 7/7 0/7 0/7 0/7 

Epididymis  0 0 0 0 0 

 

DISCUSSION  

This study suggests that the incidence of microscopic testicular lesions in stallions is high 

and that the majority of the testicular lesions have a minimal to mild degree of severity.  

While this survey implies that the incidence of microscopic testicular lesions in the 

general equine population may be high, the findings may not be representative of the 

general breeding stallion population nor each individual stallion’s reproductive 

performance and semen quality parameters. The testicular tissues evaluated were 

obtained from healthy stallions of undetermined age that were slaughtered for food 
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consumption. At the time of the sample collection, the reason(s) for which these horses 

were removed from the general breeding population was unknown.  A representative 

sample population of normal breeding stallions would be difficult to acquire due to the 

perceived invasive nature of biopsy; therefore the equine population subjected to this 

survey is likely the best available sample. 

Intratubular inflammation and interstitial inflammation were present in 25/65 and 33/65 

stallions, respectively.  Autoimmune orchitis is a cause of inflammation in animals and 

occurs when there is a disruption in the blood-testis barrier.  Spermatozoa get outside of 

the protected areas and are recognized by the immune system as foreign.  The rete testis 

and efferent ducts are typically the starting sites for the process which begins with a 

granulomatous reaction [31].  A major disruption in the blood-testis barrier has also been 

identified in human males with the formation of antispermatozoan antibodies.  Infections, 

trauma and neoplasia that damage the testis can result in antibody formation.  Stallions 

experiencing trauma to the testis with resulting low sperm cell viability have been found 

to have antispermatozoan antibodies in their seminal fluid or serum [31].  Fisher’s 

statistical analyses confirmed a statistically significant association between tubular 

degeneration and intratubular inflammation and also between tubular degeneration and 

interstitial inflammation.  While microscopic recognition of these two sets of parameters 

in conjunction is commonplace, this data set confirms the association.  Further, future 

exploration of clinical interventions with anti-inflammatory drugs and their effect upon 

restoration of testicular architecture and function could be a warranted future study. 

 

101 



Stallions typically have a multifocal, mild, subacute intertubular inflammation with no 

gross lesions evident [31].  In stallions, mild interstitial orchitis is common with 

interstitial lymphocytic foci, often perivascular, occurring in areas of tubule degeneration 

and vasculitis [2,31].  Similar lesions may be part of a generalized vascular involvement 

in equine viral arteritis [2].  Focal interstitial orchitis is commonly found in human testes 

removed at autopsy and also from the testes of prostate cancer patients.  The cause of 

inflammation in these particular cases is still unknown.  Atrophy of the germinal 

epithelium is often associated with severe interstitial orchitis and if bilateral may result in 

infertility [32]. 

Intratubular orchitis most likely arises from an ascending infection of the urethra, urinary 

bladder, ductus deferens and epididymis [2,31].  This inflammation typically begins in 

the seminiferous tubules but spreads to the interstitium, thus leading to granuloma 

formation when spermatozoa breach the tubule border.  The seminiferous tubule outline 

is often preserved in the affected area.  The seminiferous epithelium is destroyed and 

replaced by abundant macrophages and multinucleated giant cells that encircle 

neutrophils and debris [2].     

The stallions in this study were not cultured for bacteria nor were any additional 

laboratory tests performed.  A bacterial or other infectious etiology did not appear to be 

the cause of this inflammation however, without a detailed history of each stallion, we are 

unsure of their fertility status prior to slaughter. 

Interstitial edema was noted in 49/65 stallions with a majority of the lesions being 

minimal to mild in nature (20/49 and 26/49, respectively).  This finding is not described 
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in the literature and could possibly be subjective interpretation by the pathologist, or even 

possible disruption in the testicular tissue due to transportation and stress.  The minimal 

to mild nature of this change prevented attribution of specific causation, though 

additional study pathologists could eliminate the bias of a single evaluator, and 

evaluation of a subset of non-abbatoir horses might control for the possibility of 

transportation or stress contributions.  Fisher’s statistical analyses detected a statistically 

significant association between interstitial edema and Leydig cell hypocellularity 

(p<0.05).  Both of these parameters are poorly described in the literature thus this 

comparison is probably the first to draw this conclusion.  The significance of this 

relationship deserves further study. 

Testicular neoplasia in horses is fairly uncommon and is rarely reported.  The true 

incidence in the general equine population is unknown due to the practice of castrating 

stallions at a young age [3].  This study identified a malignant seminoma in one stallion 

of unknown age (Figure 5 & 6).  Seminomas are the most common testicular neoplasm in 

the aged stallion with teratomas being more commonly found young stallions 

[2,31,33,34].  Seminomas are more prevalent in cryptorchid testes, commonly involving 

the undescended testis but no association between cryptorchidism and seminoma 

occurrence has been proven in the horse [33,35].  Microscopically, seminomas have an 

intratubular or diffuse arrangement of large, polyhedral, discretely demarcated cells with 

a large nucleus, variable nuclear size, and very little cytoplasm.  Giant cells, with either 

single or multiple nuclei and lymphoid nodules are sometimes present.  Seminomas are 

seldom malignant but often locally invasive [2,31]. 
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The variation in Leydig cell density in testicular tissue, with and without evidence of 

concurrent testicular degeneration, deserves further study.  This finding did not appear to 

correlate with the season of the year (data not shown).  In horses, an increase in Leydig 

cells is typically seen with an increase in age.  This is unlike rats, who experience 

negligible change, and humans, who experience a decline in Leydig cell numbers.  The 

Leydig cell population size, like that of germ cells or Sertoli cells, cycles yearly in the 

horse [17-19] however, the size of individual Leydig cells does not differ with season of 

the year [17].  This lack of seasonal influence on the size of individual Leydig cells in 

stallions may be contributed to their continued production of spermatozoa throughout the 

year [36,37].  The samples in this study were taken from March-June and should have 

indicated an increased number of Leydig cells.  A study by Nagata et al. [38] showed that 

the administration of a common anabolic steroid, 19-nortestosterone, had serious effects 

on the interstitial compartment with a severe depletion of the number of Leydig cells and 

advanced atrophy in the cells that remained.  It is highly unlikely that 42/65 stallions in 

this study were under the influence of steroids at the time of slaughter.  It is also not 

known at this point whether Leydig cell hypocellularity seen in this study has an affect on 

the fertility of stallions but to our knowledge, this is the first report to describe such 

findings in horses. 

In conclusion, this survey suggests that the incidence of microscopic testicular lesions in 

the general equine population may be high and that their severity is minimal to mild.  

Such findings may or may not be representative of the normal breeding stallion 

population in general and may not correlate with breeding soundness and semen quality 

parameters.  Although a majority of the stallions in this study had some minimal to mild 
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form of pathology present, it is possible that these mild changes have no impact on 

fertility status.  Due to the invasive nature of obtaining samples from normal stallions, the 

lesions described in this study are from the best available equine population.  Taken 

together, this study provides a revised basis for clinical decision making regarding 

stallion fertility. 
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Figure 2  Normal Seminiferous Tubule and Interstitial Tissue 

Note the normal seminiferous tubule (asterisk) and abundance of Leydig cells in the 
testicular interstitium (arrows). 
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Figure 3  Diffuse Seminiferous Tubule Degeneration 
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Figure 4  Diffuse Seminiferous Tubule Atrophy 

 

108



 

Figure 5  Gross Lesion of Testicular Seminoma 

Lesion identified in the caudal pole of the testis on gross examination.  Lesion was pale 
yellow, firm and bulged on cut surface.  
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Figure 6  Malignant Testicular Seminoma 

Malignant seminoma (arrow), seminiferous tubule (asterisk) and cluster of Leydig cells 
(arrowhead). 
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Figure 7  Diffuse Interstitial Edema 
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Figure 8  Leydig Cell Hypocellularity 

Lack of Leydig cells in the interstitium (asterisks). 
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Figure 9  Interstitial Inflammation 

Abundance of inflammatory cells in the interstitium (asterisks). 
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Figure 10  Interstitial Fibrosis 

Severe interstitial fibrosis and lack of Leydig cells (asterisks). 
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CHAPTER IV 

CONCLUSION 

The male reproductive system is extremely complex as evidenced here by the literature 

review provided.  Many factors are capable of disrupting the delicate process of 

spermatogenesis thus resulting in a stallion incapable of impregnating mares.  A thorough 

understanding of this complex system is mandatory when attempting to determine a 

cause. 

The study provided here sampled the best available equine population to access testicular 

lesions that were present.  Although a majority of the stallions in this study had some 

minimal to mild form of pathology present, it is possible that these mild changes have no 

impact on fertility status.  This study provides a starting point for mapping the 

histopathologic changes associated with aging in the stallion.   

This study has also served as a platform for several other projects.  The first is a 

comparative fixative study for testicular and endometrial biopsies in the horse and the 

second is a study utilizing ultrasound as an early detection method for stallions with 

testicular degeneration.   

The results of these studies will provide more answers regarding the complex events 

leading to infertility in the stallion.  The future of equine genetics rests with those 

researchers attempting to further understand infertility in the stallion. 
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