
 
 
 
 

THE UNIVERSITY OF OKLAHOMA  
 

GRADUATE COLLEGE 
 
 
 
 
 

SYNTHESIS, STRUCTURE, AND SOLUTION PROPERTIES OF 

BENZOANNELATED CRYPTANDS 

 

 

A Dissertation  

SUBMITTED TO THE GRADUATE FACULTY 

in partial fulfillment of the requirements for the  

degree of 

Doctor of Philosophy 

 

 

By 
 

GARY LEE NUNNERY SMITH 
 

Norman, Oklahoma 
 

2006 
 

 

 



UMI Number: 3206115

3206115
2006

Copyright 2006  by
Smith, Gary Lee Nunnery

UMI Microform
Copyright

All rights reserved. This microform edition is protected against 
    unauthorized copying under Title 17, United States Code.

ProQuest Information and Learning Company 
300 North Zeeb Road

P.O. Box 1346
     Ann Arbor, MI 48106-1346 

All rights reserved.

 by ProQuest Information and Learning Company. 



 

 

 

SYNTHESIS, STRUCTURE, AND SOLUTION PROPERTIES OF 
BENZOANNELATED CRYPTANDS 

 
 

A Dissertation APPROVED FOR THE  
DEPARTMENT OF CHEMISTRY AND BIOCHEMISTRY 

 
 
 
 
 
 
 
 
 
 
 

BY 

 

_______________________ 

Richard W. Taylor 

_______________________ 

C. LeRoy Blank 

_______________________ 

Robert L. White 

_______________________ 

Kenneth M. Nicholas 

_______________________ 

John F. Scamehorn 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 

© Copyright by GARY LEE NUNNERY SMITH 2006 
All Rights Reserved.



iv 

ACKNOWLEDGEMENTS 

 The journey of this project was accomplished by a multitude of individuals who 

graciously blessed me with their financial support, direction, encouragement, friendship, 

patience, and love.  I would like to thank Dr. Richard W. Taylor for sharing with me his 

time, wisdom, and passion for chemistry.  I am grateful for your patience, support, and 

encouragement through this long journey.  The direction you gave me in this project and 

in my career choices has been invaluable.  I am thankful to my graduate committee:  

Professors C. LeRoy Blank, Robert L. White, Kenneth M. Nicholas, and John F. 

Scamehorn.  Furthermore, the skills and services offered from Drs. Susan S. Alguindigue, 

Masood A. Khan, Douglas R. Powell, Larry Russon, Li Zhang and fellow graduate 

students Nathalie Rocher, Lei Yang, and Ge Zu contributed immensely to this project and 

I am extremely grateful.  This project was supported by grants from the Oklahoma Center 

for the Advancement of Science and Technology, the National Institutes of Health, and 

through teaching assistantships from the University of Oklahoma Department of 

Chemistry and Biochemistry.  I have had the benefit of sharing lab space for the last 5+ 

years with many amazing people.  It was a joy to share everyday for many years with my 

friends Bo Tan and Kendra Cox.  They have contributed to my chemistry knowledge and 

impacted my view on life.  I have been blessed by the many conversations and laughs we 

have shared in together.  I am also grateful for the time shared in the lab with Jumoke 

Olowu, Rebecca Craig-Schapiro, Shaun Grewal, Tam Nguyen, and Baige Bian.  The 

friendships developed in the Chemistry Department, especially Whitney Smith, Shawn 

Carter, Adam Hixson, Huaxing Pei, Peter Nagy, Alex Xulu, Karen Johnson, Jamie 

Huntley, Steven Foster, Russell Franks, Gwen Giffin, and Rachel Mason, have made my 



v 

time here very special.  I also spent my time at O.U. out of the lab and I am thankful for 

the friendships that were developed at Norman First Church of the Nazarene, the O. U. 

Nazarene Student Center, and St. Paul's Episcopal Church.  Throughout my life, I have 

always been supported, encouraged, and loved by my precious family.  Thank you Mom 

for your unconditional love, support, and encouragement, even though you don't know 

what I do.  Thank you Kathy, Chris, Katelyn, and Cody for all the great times we have 

shared in during my time at O.U., the home projects completed, and the many other ways 

you have supported me.  Richard and Chantal, thank you for the computer that I used to 

complete this project, and for your constant love and support.  Heather, my amazing and 

true wife, I am grateful for how you have found the balance in responding to my constant 

fluctuation of emotions with compassion, encouragement, and challenge.  You 

continually motivate me to be a better person in all that I do and I am blessed to share life 

with you everyday.  This work is in memory of my dad, Garland Lee Smith, who passed 

away during my time at O.U.  He modeled to me the importance of hard work, but never 

at the sacrifice of time with your family.  I miss you greatly.  Lastly, I am overwhelmed 

and grateful by the goodness of God the Creator who blessed us with this creation so we 

could study it and share in it together.          

 



vi 

TABLE OF CONTENTS 

Page 

LIST OF TABLES...........................................................................................................viii 

LIST OF FIGURES.............................................................................................................x 

LIST OF SCHEMES.........................................................................................................xx 

 

CHAPTER ONE.  INTRODUCTION.................................................................................1 

 I.  Cryptands.............................................................................................................1 

 II.  Metal Toxicity..................................................................................................13 

 III.  Objective.........................................................................................................15 

 References..............................................................................................................17 

 

CHAPTER TWO.  SYNTHESIS OF STARTING MATERIALS, MONOCYCLIC AND 

BICYCLIC DIAMIDES AND DIAMINES......................................................................19 

 I.  Introduction.......................................................................................................19 

 II.   Summaries of Synthetic Methods...................................................................23 

  A.  Synthesis of Acyclic Diamines and Starting Materials........................23 

  B.  Synthesis of Monocyclic Diamides and Diamines...............................26 

  C.  Synthesis of Bicyclic Diamines (Cryptands).......................................30 

 III.  Experimental...................................................................................................38 

  A.  General Methods..................................................................................38 

  B.  Reagents...............................................................................................39 

  C.  Synthesis of Acyclic Diamines and Starting Materials........................42 



vii 

  D.  Synthesis of Monocyclic Diamides and Diamines..............................53 

  E.  Synthesis of Bicyclic Diamines (Cryptands)........................................78 

 References............................................................................................................102 

 

CHAPTER THREE.  SPECTROSCOPIC STUDIES OF AN2.2.1 AND AN2.2.2........103 

 I.  Introduction.....................................................................................................103 

 II.  Experimental..................................................................................................106 

  A.  Reagents.............................................................................................106 

  B.  pH Measurements...............................................................................108 

  C.  Standardization of Ligand Solutions..................................................109 

  D.  Spectrophotometric Analysis of An2.2.1 and An2.2.2......................111 

  E.  Determination of Ligand Protonation Constants (KH).......................117 

  F.  Determination of Metal Binding Constants (KML).............................119 

 References............................................................................................................124 

 

CHAPTER FOUR.  RESULTS AND DISCUSSION.....................................................125 

 I.  Structures and NMR Assignments of Monocyclic Ligands............................125 

 II.  Structures and NMR Assignments of Bicyclic and Tricyclic Compounds....148 

 III.  Structures of Cryptate Complexes................................................................165 

 IV.  Protonation and Metal Binding Constants for An2.2.1 and An2.2.2............182 

 V.  Summary........................................................................................................225 

 References............................................................................................................227 



viii 

LIST OF TABLES 

Page 

Table 1-1 Formation constants (log KML) for cryptands 2.2.1 and 2.2.2  
  in H2O at 25°C.............................................................................................5 
 
Table 1-2 Structural parameters for 2.2.2 and 2.2B.2B.................................................9 

Table 1-3 Formation constants (log KML) for 2.2.2 and 2.2B.2B in H2O at 25 °C........9 

Table 1-4 Formation constants (log KML) for EGTA and BAPTA in H2O at 25°C...11   

Table 4-1 Hydrogen bond parameters for 2.2*, (7)..................................................130 
 
Table 4-2 Hydrogen bond parameters for An2.2*, (11)...........................................132 
 
Table 4-3 Hydrogen bond parameters for 2.2S*, (8)................................................134 
 
Table 4-4 1H and 13C NMR data for An2.1*, (9).....................................................138 
 
Table 4-5 H-H and C-H correlation NMR data for An2.1*, (9)..............................139 
 
Table 4-6 1H and 13C NMR data for An2.2*, (11)...................................................140 
 
Table 4-7 H-H and C-H correlation NMR data for An2.2*, (11)............................141 
 
Table 4-8 1H and 13C NMR data for An3.1*, (13)...................................................143 
 
Table 4-9 H-H and C-H correlation NMR data for An3.1*, (13)............................143 
 
Table 4-10 Hydrogen bond parameters for An3.1*, (13)...........................................145 
 
Table 4-11 NMR peak assignments for An3.1.1*, (22) at 58 ºC in CDCl3...............164 
 
Table 4-12 Relative abundance of the elemental isotopes of potassium....................170 
 
Table 4-13 Relative abundance of the elemental isotopes of lead.............................173 
 
Table 4-14 Average lead-donor distances and N···N non-bonding distances for  
  lead cryptates...........................................................................................181 
 
Table 4-15 Protonation constants (log KHi) for An2.2.2, (19) in H2O.......................185 

Table 4-16 Protonation constants (log KHi) for An2.2.1, (16) in H2O.......................188 
 



ix 

Table 4-17 Formation constants (log KML) for An2.2.2, (19) with barium in H2O  
  at 25°C.....................................................................................................198 
 
Table 4-18 Formation constants (log KML) for An2.2.2, (19) with strontium in H2O  
  at 25°C.....................................................................................................199 
  
Table 4-19 Formation constants (log KML) for An2.2.2, (19) with lead in H2O  
  at 25°C.....................................................................................................202 
 
Table 4-20 Formation constants (log KML) for An2.2.2, (19) in H2O at 25°C...........209 
 
Table 4-21 Formation constants (log KML) for 2.2.2, 2.2B.2B, and An2.2.2, (19) 
  in H2O at 25°C.........................................................................................209 
 
Table 4-22 Formation constants (log KML) for An2.2.1, (16) in H2O at 25°C...........216 
 
Table 4-23 Formation constants (log KML) for An2.2.1, (16) in H2O at 25°C...........222 
 
Table 4-24 Formation constants (log K) for 2.1.1, 2.2.1, An2.2.2, (19), and   
  An2.2.1, (16) in H2O at 25°C...................................................................223 
 
     
 
   
      
 
 
 

  
 
 

 

 

 

 

 

 



x 

LIST OF FIGURES 

Page 

Figure 1-1 General cryptand structure and naming scheme..........................................2 

Figure 1-2 Species distribution of 2.2.2.........................................................................3 

Figure 1-3 X-ray crystal structure of unprotonated cryptand 2.2.2...............................4 

Figure 1-4 X-ray crystal structure of diprotonated cryptand H22.2.22+.........................4 

Figure 1-5 Complexation selectivity patterns of 2.2.1 and 2.2.2...................................5 

Figure 1-6 X-ray crystal structure of 2.2.2·K+...............................................................6 

Figure 1-7 X-ray crystal structure of 2.2.2·Pb2+·NCS-·SCN-.........................................7 

Figure 1-8 Cryptand 2.2B.2B..........................................................................................8 
 
Figure 1-9 Complexation selectivity patterns of 2.2.2, 2.2B.2B, and 2.2.1..................10 
 
Figure 1-10 Structures of EGTA and BAPTA..............................................................11 
 
Figure 1-11 Benzoannelated cryptands.........................................................................12 
 
Figure 1-12 Benzoannelated cryptands An2.2.1, An2.2.2, An3.1.1, and An3.1.1.3.....15 
 
Figure 2-1 General synthetic scheme for the synthesis of cryptands..........................19 

Figure 2-2 Balanced reaction between a diamine and diacid chloride with a  
  scavenger base present...............................................................................19 
 
Figure 2-3 1H NMR of 2,2'-[ethane-1,2-diylbis(oxy)]diacetyl chloride, (1)  
  in CDCl3.....................................................................................................44 
 
Figure 2-4 13C NMR of 2,2'-[ethane-1,2-diylbis(oxy)]diacetyl chloride, (1) in   
  CDCl3.........................................................................................................44 
 
Figure 2-5 1H NMR of 1,1'-[ethane-1,2-diylbis(oxy)]bis(2-nitrobenzene), (3)  
  in DMSO....................................................................................................46 
 
Figure 2-6 ESI-MS+ of 1,1'-[ethane-1,2-diylbis(oxy)]bis(2-nitrobenzene), (3)  
  in MeOH....................................................................................................47 
 
Figure 2-7 1H NMR of 2,2'-[ethane-1,2-diylbis(oxy)]dianiline, (4) in  DMSO..........48 



xi 

Figure 2-8 ESI-MS+ of 2,2'-[ethane-1,2-diylbis(oxy)]dianiline, (4) in MeOH...........49 

Figure 2-9 1H NMR of 1,1'-[oxybis(2,1-ethanediyloxy)]bis[2-nitro-benzene], (5)  
  in CDCl3.....................................................................................................50 
 
Figure 2-10 ESI-MS+ of 1,1'-[oxybis(2,1-ethanediyloxy)]bis[2-nitro-benzene], (5)  
  in MeOH....................................................................................................51 
 
Figure 2-11 1H NMR of 2,2'-[oxybis(ethane-2,1-diyloxy)]dianiline, (6) in CDCl3......52 

Figure 2-12 ESI-MS+ of 2,2'-[oxybis(ethane-2,1-diyloxy)]dianiline, (6) in MeOH.....53 
 
Figure 2-13 1H NMR of 2.2*, (7) in CDCl3..................................................................55 
 
Figure 2-14 ESI-MS+ of 2.2*, (7) in MeOH..................................................................55 
 
Figure 2-15 X-ray crystal structure of 2.2*, (7), Molecule A........................................56 
 
Figure 2-16 X-ray crystal structure of 2.2*, (7), Molecule B........................................56 
 
Figure 2-17 1H NMR of 2.2S*, (8) in CDCl3.................................................................58 
 
Figure 2-18 ESI-MS+ of 2.2S*, (8) in MeOH................................................................58 
 
Figure 2-19 X-ray crystal structure of 2.2S*, (8)...........................................................59 
 
Figure 2-20 1H NMR of An2.1*, (9) in CDCl3.............................................................60 
 
Figure 2-21 13C NMR of An2.1*, (9) in CDCl3............................................................61 

Figure 2-22 ESI-MS+ of An2.1*, (9) in MeOH.............................................................61 
 
Figure 2-23 X-ray crystal structure of An2.1*, (9)........................................................62 
 
Figure 2-24 1H NMR of An2.1, (10) in CDCl3.............................................................63 

Figure 2-25 ESI-MS+ of An2.1, (10) in MeOH.............................................................64 
 
Figure 2-26 X-ray crystal structure of An2.1, (10)........................................................64 
 
Figure 2-27 1H NMR of An2.2*, (11) in CDCl3...........................................................66 
 
Figure 2-28 13C NMR of An2.2*, (11) in CDCl3..........................................................67 

Figure 2-29 ESI-MS+ of An2.2*, (11) in MeOH...........................................................67 
 



xii 

Figure 2-30 X-ray crystal structure of An2.2*, (11)......................................................68 
 
Figure 2-31 1H NMR of An2.2, (12) in CDCl3.............................................................69 
 
Figure 2-32 13C NMR of An2.2, (12) in CDCl3............................................................70 

Figure 2-33 ESI-MS+ of An2.2, (12) in MeOH.............................................................70 
 
Figure 2-34 X-ray crystal structure of An2.2, (12)........................................................71 
 
Figure 2-35 1H NMR of An3.1*, (13) in CDCl3...........................................................73 
 
Figure 2-36 13C NMR of An3.1*, (13) in CDCl3..........................................................73 

Figure 2-37 ESI-MS+ of An3.1*, (13) in MeOH...........................................................74 
 
Figure 2-38 X-ray crystal structure of An3.1*, (13), Molecule A.................................74 
 
Figure 2-39 X-ray crystal structure of An3.1*, (13), Molecule B.................................75 
 
Figure 2-40 1H NMR of An3.1, (14) in CDCl3.............................................................76 
 
Figure 2-41 13C NMR of An3.1, (14) in CDCl3............................................................77 

Figure 2-42 ESI-MS+ of An3.1, (14) in MeOH.............................................................77 

Figure 2-43 X-ray crystal structure of An3.1, (14)........................................................78 
 
Figure 2-44 ESI-MS+ of An2.1.2*, (15) in MeOH........................................................79 

Figure 2-45 X-ray crystal structure of An2.1.2*, (15)...................................................80 
 
Figure 2-46 1H NMR of An2.2.1, (16) in CDCl3..........................................................82 
 
Figure 2-47 13C NMR of An2.2.1, (16) in CDCl3.........................................................82 

Figure 2-48 ESI-MS+ of An2.2.1, (16) in MeOH..........................................................83 

Figure 2-49 X-ray crystal structure of An2.2.1, (16).....................................................83 
 
Figure 2-50 ESI-MS+ of An2.2.1*, (17) in MeOH........................................................85 

Figure 2-51 X-ray crystal structure of An2.2.1*, (17), Molecule A..............................86 
 
Figure 2-52 X-ray crystal structure of An2.2.1*, (17), Molecule B..............................86 
 



xiii 

Figure 2-53 ESI-MS+ of An2.2.2*, (18) in MeOH........................................................88 

Figure 2-54 X-ray crystal structure of An2.2.2*, (18)...................................................88 
 
Figure 2-55 1H NMR of An2.2.2, (19) in CDCl3..........................................................90 
 
Figure 2-56 13C NMR of An2.2.2, (19) in CDCl3.........................................................91 

Figure 2-57 ESI-MS+ of An2.2.2, (19) in MeOH..........................................................91 

Figure 2-58 X-ray crystal structure of An2.2.2, (19).....................................................92 
 
Figure 2-59 ESI-MS+ of An3.1.1.3*, (20) in MeOH.....................................................93 
 
Figure 2-60 1H NMR of An3.1.1.3, (21) in CDCl3.......................................................95 
 
Figure 2-61 13C NMR of An3.1.1.3, (21) in CDCl3......................................................95 

Figure 2-62 ESI-MS+ of An3.1.1.3, (21) in MeOH.......................................................96 

Figure 2-63 X-ray crystal structure of An3.1.1.3..........................................................96 
 
Figure 2-64 1H NMR of An3.1.1*, (22) at 58ºC in CDCl3............................................98 
 
Figure 2-65 13C NMR of An3.1.1*, (22) at 58ºC in CDCl3...........................................98 

Figure 2-66 ESI-MS+ of An3.1.1*, (22) in MeOH........................................................99 
 
Figure 2-67 X-ray crystal structure of An3.1.1*, (22)...................................................99 
 
Figure 2-68 ESI-MS+ of An3.1.1, (23) in MeOH........................................................101 
 
Figure 3-1 Structure of bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid  
  (BAPTA)..................................................................................................103 
 
Figure 3-2 Plot of absorbance at 274 nm versus [Pb2+] for the standardization of  
  An2.2.2, (19) at pH = 6.6.........................................................................110 
 
Figure 3-3 Absorbance versus wavelength for An2.2.1, (16), from 0.070 mM -  
  0.025 mM at pH = 2.5-3.1.......................................................................113 
 
Figure 3-4 Absorbance at 272 nm versus concentration for An2.2.1, (16),  
  at pH = 2.5-3.1.........................................................................................113 
 
Figure 3-5 Absorbance versus wavelength for An2.2.1, (16), from 0.070 mM -  
  0.025 mM at pH = 6.0-6.6....................................................................114 



xiv 

Figure 3-6 Absorbance at 278 nm versus concentration for An2.2.1, (16), at  
  pH = 6.0 - 6.6...........................................................................................114 
 
Figure 3-7 Absorbance versus wavelength for An2.2.2, (19), from 0.18 mM -  
  0.068 mM at pH = 2.4-3.0.......................................................................115 
 
Figure 3-8 Absorbance at 272 nm versus concentration for An2.2.2, (19), at  
  pH = 2.4-3.0.............................................................................................115 
 
Figure  3-9 Absorbance versus wavelength for An2.2.2, (19), from 0.18 mM -  
  0.068 mM at pH = 6.2-6.6.......................................................................116 
 
Figure 3-10 Absorbance at 276 nm versus concentration for An2.2.2, (19) at  
  pH = 6.2-6.6.............................................................................................116 
 
Figure 3-11 Metal ion titrations:  (1) fully complexed at 1:1 stoichiometry (2) less  
  than 50% complexed................................................................................120 
 
Figure 4-1 Monocyclic diamides 2.2*, (7), An2.2*, (11), 2.2S*, (8), and 8a............126 
 
Figure 4-2 X-ray crystal structure of 2.2*, (7), Molecule A......................................127 
 
Figure 4-3 X-ray crystal structure of 2.2*, (7), Molecule B......................................127 
 
Figure 4-4 X-ray crystal structure of 2.2*, (7), showing the formation of hydrogen- 
  bonded chains for molecule A.................................................................128 
 
Figure 4-5 X-ray crystal structure of 2.2*, (7), showing the formation of hydrogen- 
  bonded chains for molecule B..................................................................129 
 
Figure 4-6 X-ray crystal structure of An2.2*, (11)....................................................130 
 
Figure 4-7 X-ray crystal structure of An2.2*, (11), showing the angle between the  
  benzene rings...........................................................................................132 
 
Figure 4-8 Monobenzo 18-membered diamide.........................................................133 
 
Figure 4-9 X-ray crystal structure of 2.2S*, (8).........................................................134 
 
Figure 4-10 X-ray crystal structure of 2.2S*, (8), showing the formation of  
  hydrogen-bonded chains..........................................................................135 
 
Figure 4-11 NMR numbering scheme for macrocyclic amides An2.1*, (9),  
  An2.2*, (11), An3.1*, (13)......................................................................137 
 
Figure 4-12 X-ray crystal structure of An2.1*, (9)......................................................140 



xv 

 
Figure 4-13 Lactam (a) and lactim (b) forms of amides..............................................141 
 
Figure 4-14 X-ray crystal structure of An3.1*, (13), Molecule A...............................144 
 
Figure 4-15 X-ray crystal structure of An3.1*, (13), Molecule B...............................144 
 
Figure 4-16 X-ray crystal structure of An2.2.1, (16)...................................................149 
 
Figure 4-17 1H NMR peak assignment for An2.2.1, (16), in CDCl3...........................150 
 
Figure 4-18 Methylene protons in cryptands...............................................................151 
 
Figure 4-19 13C NMR peak assignment for An2.2.1, (16), in CDCl3..........................152 
 
Figure 4-20 HSQC of An2.2.1, (16) in CDCl3............................................................153 
 
Figure 4-21 X-ray crystal structure of An2.2.2, (19)...................................................154 
 
Figure 4-22 1H NMR peak assignment for An2.2.2, (19), in CDCl3...........................155 
 
Figure 4-23 13C NMR peak assignment for An2.2.2, (19), in CDCl3..........................155 
 
Figure 4-24 HSQC of An2.2.2, (19), in CDCl3...........................................................156 
 
Figure 4-25 An3.1.1.3, (21), and other macrotricyclic cryptands...............................157 
 
Figure 4-26 X-ray crystal structure of An3.1.1.3, (21)................................................159 
 
Figure 4-27 X-ray crystal structure of An3.1.1.3, (21), viewed along O2-O5 axis.....160 
 
Figure 4-28 X-ray crystal structure of An3.1.1.3, (21), viewed along N2-N4 axis....160 
 
Figure 4-29 ESI+-MS of An3.1.1.3, (21).....................................................................161 
 
Figure 4-30 X-ray crystal structure of An3.1.1*, (22).................................................162 
 
Figure 4-31 NMR numbering scheme for An3.1.1*, (22)...........................................163 
 
Figure 4-32 Cryptands 2.2.2, 2.2B.2B, and 2N2N2N......................................................165 
 
Figure 4-33 X-ray crystal structure of An2.2.2·K+·ClO4

-............................................166 
 
Figure 4-34 X-ray crystal structure of An2.2.2·K+·ClO4

- viewed along  
  N1-N2 axis...............................................................................................167 
 



xvi 

Figure 4-35 Metal center and coordination geometry of An2.2.2·K+·ClO4
-................168 

 
Figure 4-36 Packing diagram of An2.2.2·K+·ClO4

-.....................................................169 
 
Figure 4-37 ESI+-MS of An2.2.2·K+·ClO4

- in MeOH.................................................170 
 
Figure 4-38 Calculated isotope distribution (top) and ESI+-MS of  
  An2.2.2·K+ (bottom)................................................................................171 
 
Figure 4-39 X-ray crystal structure of An2.2.2·Pb2+·(NCS-)2 viewed along  
  N1-N10 axis.............................................................................................172 
 
Figure 4-40 Packing diagram of An2.2.2·Pb2+·(NCS-)2...............................................172 
 
Figure 4-41 ESI+-MS of An2.2.2·Pb2+·(NCS-)2...........................................................173 
 
Figure 4-42 Calculated isotope distribution (top) and ESI+-MS of  
  An2.2.2·Pb2+ (bottom)..............................................................................174 
 
Figure 4-43 Calculated isotope distribution (top) and ESI+-MS of  
  [An2.2.2·Pb2+·NCS-]+ (bottom)................................................................174 
 
Figure 4-44 X-ray crystal structure of 2.2B.2B·Pb2+·NCS-...........................................175 
 
Figure 4-45 X-ray crystal structure of 2.2B.2B·Pb2+·NCS- viewed along  
  N1-N10 axis.............................................................................................175 
 
Figure 4-46 Metal center and coordination geometry of 2.2B.2B·Pb2+·NCS-...............176 
 
Figure 4-47 Packing diagram for 2.2B.2B·Pb2+·NCS-...................................................178  
 
Figure 4-48 ESI+-MS of 2.2B.2B·Pb2+·NCS- complex.................................................179 
 
Figure 4-49 Calculated isotope distribution (top) and ESI+-MS of  
  [2.2B.2B·Pb2+·I-]+ (bottom)........................................................................179 
 
Figure 4-50 Calculated isotope distribution (top) and ESI+-MS of  
  2.2B.2B·Pb2+ (bottom)...............................................................................180 
 
Figure 4-51 Spectra from the titration of 0.13 mM An2.2.2, (19), from  
  pH 2.5-6.5................................................................................................183 
 
Figure 4-52 Isosbestic points for cryptand An2.2.2, (19), at 264 nm and 276 nm......183 
 
Figure 4-53 Plot of absorbance at 284 nm versus aH for the titration of An2.2.2, (19),  
  shown in Figure 4-51...............................................................................184 



xvii 

Figure 4-54 Species distribution for An2.2.2, (19)......................................................186 
 
Figure 4-55 Spectra from the titration of 0.072 mM An2.2.1, (16), from  
  pH 1.9-6.5................................................................................................187 
 
Figure 4-56 Plot of absorbance at 240 nm versus aH for the titration of An2.2.1, (16),  
  shown in Figure 4-55...............................................................................187   
 
Figure 4-57 Species distribution of An2.2.1, (16).......................................................189 
 
Figure 4-58 Spectra from the titration of 0.15 mM An2.2.2, (19), with lead  
  at pH = 7.0...............................................................................................192 
 
Figure 4-59 Plot of fraction of the absorbance change versus the ratio of total lead  
  to total An2.2.2, (19), concentrations from the titration shown in  
  Figure 4-58...............................................................................................192 
 
Figure 4-60 Spectra from the titration of 0.18 mM An2.2.2, (19), with barium  
  at pH = 8.2...............................................................................................193 
 
Figure 4-61 Plot of fraction of the absorbance change versus the ratio of total barium  
  to total An2.2.2, (19), concentrations from the titration shown in  
  Figure 4-60...............................................................................................193 
 
Figure 4-62 Spectra from the titration of 0.17 mM An2.2.2, (19), with strontium  
  at pH = 9.5...............................................................................................194 
 
Figure 4-63 Plot of fraction of the absorbance change versus the ratio of total strontium 
  to total An2.2.2, (19), concentrations from the titration shown in  
  Figure 4-62...............................................................................................194 
 
Figure 4-64 Spectra from the titration of 0.091 mM An2.2.2, (19), with barium at  
  pH = 3.7...................................................................................................196 
 
Figure 4-65 Plot of absorbance at 234 nm versus [Ba2+] for the titration of  
  An2.2.2, (19), shown in Figure 4-64........................................................196 
 
Figure 4-66 Spectra from the titration of 0.091 mM An2.2.2, (19), with strontium  
  at pH = 4.2.  Some spectra have been omitted for clarity........................197 
 
Figure 4-67 Plot of absorbance at 240 nm versus [Sr2+] for the titration of  
  An2.2.2, (19), shown in Figure 4-66........................................................197 
 
Figure 4-68 Plot of K'ML vs. aH for BaAn2.2.22+ using values from Table 4-15.........199 
 
 



xviii 

Figure 4-69 Spectra from the batch titration of 0.18 mM An2.2.2, (19), with lead  
  at pH = 2.1...............................................................................................201 
 
Figure 4-70 Plot of absorbance at 284 nm versus [Pb2+] for the titration of  
  An2.2.2, (19), shown in Figure 4-69........................................................201 
 
Figure 4-71 Plot of absorbance at 284 nm versus [Pb2+] * alpha for a batch titration  
  of An2.2.2, (19), and lead........................................................................202 
 
Figure 4-72 Spectra from the titration of 0.091 mM An2.2.2, (19), with sodium at  
  pH = 9.0...................................................................................................204 
 
Figure 4-73 Plot of absorbance at 240 nm versus [Na+] for the titration of An2.2.2,  
  (19), shown in Figure 4-72.......................................................................204 
 
Figure 4-74 Spectra from the titration of 0.091 mM An2.2.2, (19), with cadmium  
  at pH = 7.7...............................................................................................205 
 
Figure 4-75 Plot of absorbance at 282 nm versus [Cd2+] for the titration of  
  An2.2.2, (19), shown in Figure 4-74........................................................205 
 
Figure 4-76 Spectra from the titration of 0.091 mM An2.2.2, (19), with calcium at  
  pH = 9.4...................................................................................................206 
 
Figure 4-77 Plot of absorbance at 242 nm versus [Ca2+] for the titration of  
  An2.2.2, (19), shown in Figure 4-76........................................................206 
 
Figure 4-78 Spectra from the titration of 0.18 mM An2.2.2, (19), with potassium at  
  pH = 9.0...................................................................................................207 
 
Figure 4-79 Plot of absorbance at 260 nm versus [K+] for the titration of  
  An2.2.2, (19), shown in Figure 4-78........................................................207 
 
Figure 4-80 Spectra from the titration of 0.061 mM An2.2.1, (16), with lead at   
  pH = 6.9..................................................................................................211 
 
Figure 4-81 Plot of fraction of the absorbance change versus the ratio of total lead to  
  total An2.2.1, (16), concentrations from the titration shown in  
  Figure 4-80...............................................................................................211 
 
Figure 4-82 Spectra from the titration of 0.091 mM An2.2.1, (16), with cadmium at 
  pH = 7.0...................................................................................................212 
 
Figure 4-83 Plot of fraction of the absorbance change versus the ratio of total cadmium 
  to total An2.2.1, (16), concentrations from the titration shown in  
  Figure 4-82...............................................................................................212 



xix 

Figure 4-84 Spectra from the titration of 0.091 mM An2.2.1, (16), with lead at  
  pH = 3.6...................................................................................................214 
 
Figure 4-85 Plot of absorbance at 250 nm versus [Pb2+] for the titration of  
  An2.2.1, (16), shown in Figure 4-84........................................................214 
 
Figure 4-86 Spectra from the titration of 0.091 mM An2.2.1, (16), with cadmium at  
  pH = 4.3...................................................................................................215 
 
Figure 4-87 Plot of absorbance at 280 nm versus [Cd2+] for the titration of  
  An2.2.1, (16), shown in Figure 4-86........................................................215 
 
Figure 4-88 Spectra from the titration of 0.070 mM An2.2.1, (16), with barium at  
  pH = 8.4...................................................................................................217 
 
Figure 4-89 Plot of absorbance at 254 nm versus [Ba2+] for the titration of  
  An2.2.1, (16), shown in Figure 4-88........................................................217 
 
Figure 4-90 Spectra from the titration of 0.070 mM An2.2.1, (16), with sodium at  
  pH = 8.3...................................................................................................218 
 
Figure 4-91 Plot of absorbance at 260 nm versus [Na+] for the titration of  
  An2.2.1, (16), shown in Figure 4-90........................................................218 
 
Figure 4-92 Spectra from the titration of 0.070 mM An2.2.1, (16), with strontium at 
  pH = 8.6...................................................................................................219 
 
Figure 4-93 Plot of absorbance at 250 nm versus [Sr2+] for the titration of  
  An2.2.1, (16), shown in Figure 4-92........................................................219 
 
Figure 4-94 Spectra from the titration of 0.070 mM An2.2.1, (16), with calcium at  
  pH = 8.7...................................................................................................220 
 
Figure 4-95 Plot of absorbance at 248 nm versus [Ca2+] for the titration of  
  An2.2.1, (16), shown in Figure 4-94........................................................220 
 
Figure 4-96 Spectra from the titration of 0.070 mM An2.2.1, (16), with potassium at 
  pH = 9.1...................................................................................................221 
 
Figure 4-97 Plot of absorbance at 264 nm versus [K+] for the titration of  
  An2.2.1, (16), shown in Figure 4-96........................................................221 
 
Figure 4-98 Complexation selectivity patterns of An2.2.1, (16), and An2.2.2, (19)...224 
 
      
 



xx 

LIST OF SCHEMES 

Page 

Scheme 1-1 Stepwise synthesis of cryptands..................................................................1 

Scheme 2-1 Synthesis of An2.2.1 and An2.2.2.............................................................21 
 
Scheme 2-2 Synthesis of An3.1.1.3 and An3.1.1..........................................................22 
 
Scheme 2-3 Synthesis of 2,2'-[ethane-1,2-diylbis(oxy)]diacetyl chloride, (1)..............23 

Scheme 2-4 Synthesis of 2,2'-[ethane-1,2-diylbis(thio)]diacetyl chloride, (2)..............24 

Scheme 2-5 Synthesis of 1,1'-[ethane-1,2-diylbis(oxy)]bis(2-nitrobenzene), (3).........24 

Scheme 2-6 Synthesis of 2,2'-[ethane-1,2-diylbis(oxy)]dianiline, (4)...........................25 

Scheme 2-7 Synthesis of 1,1'-[oxybis(2,1-ethanediyloxy)]bis[2-nitro-benzene], (5)...25 

Scheme 2-8 Synthesis of 2,2'-[oxybis(ethane-2,1-diyloxy)]dianiline, (6).....................25 

Scheme 2-9 Synthesis of 2.2*, (7).................................................................................26 

Scheme 2-10 Synthesis of 2.2S*, (8)................................................................................27 

Scheme 2-11 Synthesis of An2.1*, (9)............................................................................27 

Scheme 2-12 Synthesis of An2.1, (10)............................................................................28 

Scheme 2-13 Synthesis of An2.2*, (11)..........................................................................28 

Scheme 2-14 Synthesis of An2.2, (12)............................................................................29 

Scheme 2-15 Synthesis of Synthesis of An3.1*, (13)......................................................29 

Scheme 2-16 Synthesis of An3.1, (14)............................................................................30 

Scheme 2-17 Synthesis of An2.1.2*, (15). .....................................................................31 

Scheme 2-18 Synthesis of An2.2.1, (16).........................................................................31 

Scheme 2-19 Synthesis of An2.2.1*, (17).......................................................................32 

Scheme 2-20 Synthesis of Synthesis of An2.2.1, (16).....................................................33 



xxi 

Scheme 2-21 Synthesis of An2.2.2*, (18).......................................................................33 

Scheme 2-22 Synthesis of An2.2.2, (19).........................................................................34 

Scheme 2-23 Synthesis of An3.1.1.3*, (20)....................................................................35 

Scheme 2-24 Synthesis of An3.1.1.3, (21)......................................................................36 

Scheme 2-25 Synthesis of An3.1.1*, (22).......................................................................36 

Scheme 2-26 Synthesis of An3.1.1, (23).........................................................................37 



 1

Chapter One  
 

Introduction 
 

I. Cryptands 

In 1969, Lehn and co-workers1 reported the use of a stepwise addition process 

utilizing high dilution conditions shown in Scheme 1-1 for the synthesis of the first 

diazapolyoxa macrobicyclic ligands.2  

NH2

NH2

NH

NH

O

O

NH

NH

Cl

Cl
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O
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Scheme 1-1.  Stepwise synthesis of cryptands. 
 

These ligands, called cryptands employ a three digit naming system to provide a 

shorthand alternative to the formal IUPAC names.  Each digit corresponds to the number 

of donor atoms (O, S, N) in each bridge and letters are used as subscripts to designate 

heteroatoms other than oxygen or the presence of substituents (other than ethylene 

groups) in the bridging strands.2  Figure 1-1 shows examples of the notation used to name 

these compounds.  



 2

Z Z
N NY Y

X X

X=Y=Z=O;      a=b=c=1            2.2.2
                       a=b=1, c=0        2.2.1
                       a=2, b=c=0        3.1.1
X=S, Y=Z=O;  a=b=c=1            2S.2.2

a

b

c
O O

N NO O
O O

2.2.2B

 

Figure 1-1.  General cryptand structure and naming scheme. 
 
 The synthesis of cryptands has been accomplished through a variety of methods.2 

High dilution synthesis is used in order to minimize the production of polymers and 

promote the formation of the monomeric macrocycle or cryptand.  This is accomplished 

in high dilution because the rate of intermolecular interaction (polymer production) has a 

second order concentration dependence, while intramolecular interaction (ring closure) is 

a first order process. The stepwise cyclization method also allows for flexibility in 

structural alterations.  The general step-wise synthesis method (see Scheme 1-1) starts 

with the high dilution reaction of equimolar solutions of an α,ω-diamine and an α,ω-

diacyl chloride (1), followed by purification and reduction of the macrocyclic amide 

product utilizing diborane or lithium aluminum hydride (2).  A second high dilution 

reaction with another α,ω-diacyl chloride (3), and subsequent reduction of the bicyclic 

amide with diborane (4) yields the cryptand.  

 Typical cryptands such as 2.2.1 and 2.2.2 are bis(trialkylamines) that can be 

protonated at each bridgehead nitrogen.  The stepwise protonation constants, in water are 
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log KH1 = 10.53, log KH2 = 7.50 for 2.2.1 and log KH1 = 9.60, log KH2 = 7.28 for 2.2.2.3 

Due to the basicity of these compounds, a mixture of the protonated and diprotonated 

ligands occurs at physiological pH. Figure 1-2 shows the species distribution of cryptand 

2.2.2 from pH 5-12.       
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Figure 1-2.  Species distribution of 2.2.2.3 
 

The solid-state structures for the unprotonated cryptand 2.2.2 and the diprotonated 

cryptand H22.2.22+ are shown in Figures 1-3 and 1-4, respectively.4,5  The lone-pairs on 

the nitrogen atoms can exist in three conformations: either facing in (endo-endo), facing 

out (exo-exo), or a combination (endo-exo).6  Cryptand 2.2.2 has a football-like shape 

with an N···N non-bonding distance of 6.871 Å.4  Cryptand 2.2.2 has an endo-endo 

nitrogen conformation, and an arrangement of some oxygen atoms pointed toward the 

inside of the cavity and others facing away.4  In contrast, Cryptand H22.2.22+ has a much 

shorter N···N non-bonding distance of 5.71 Å and a more spherical shape.5  As a result of 
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protonation the six oxygen atoms are oriented toward the center of the cavity and the 

hydrogens on the nitrogens are pointing into the cavity. 

 
Figure 1-3.  X-ray crystal structure of unprotonated cryptand 2.2.2.4 
 
 

 

Figure 1-4.  X-ray crystal structure of diprotonated cryptand H22.2.22+.5 
 

Although these ligands are easily protonated, cryptands form very strong metal 

complexes.  Cryptand refers specifically to the ligand, and the term cryptate is used 

exclusively to describe a metal-ligand complex.  The stability constants in H2O for lead, 

cadmium, and other ions of interest for 2.2.1 and 2.2.2 are shown in Table 1-1.2   
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Table 1-1.  Formation constants (log KML) for cryptands 2.2.1 and 2.2.2 in H2O at 25°C.a   
 

  
Na+ 

 
K+ 

 
Ca2+ 

 
Sr2+ Ba2+ Cd2+ 

 
Pb2+ 

2.2.1 5.4 3.9 6.9 7.3 6.3 9.5 12.4 
2.2.2 4.0 5.5 4.5 8.1 9.6 6.8 12.4 

aRef. 7. 
 
 The data in Table 1-1 provide evidence for the inherent selectivity of 2.2.1 and 

2.2.2 for the toxic heavy metals cadmium and lead over important biological cations such 

as sodium, potassium, and calcium.  Figure 1-5 presents a plot of the log KML values 

versus ionic radius.2,8     
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Figure 1-5.  Complexation selectivity patterns of 2.2.1 and 2.2.2.2,8 
 

The binding constant selectivity sequences in 2.2.1 and 2.2.2 are Pb2+ > Cd2+ > 

Sr2+ > Ca2+ > Ba2+ > Na+ > K+ and Pb2+ > Ba2+ > Sr2+ > Cd2+ > K+> Ca2+ > Na+, 

respectively.  From this diagram, it is clear that the cryptands are selective with respect to 

Ba2+ 

Pb2+

Ca2+

K+ 

Sr2+Cd2+ 

Na+ 
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charge (2.2.1 and 2.2.2: Pb2+ > K+) and size (2.2.1: Na+ > K+; 2.2.2: K+ > Na+).  This 

figure also demonstrates the correlation between cavity size and cation diameter evident 

by the preference of smaller cations sodium, cadmium and calcium for the smaller 

cryptand 2.2.1 in comparison with 2.2.2.  The medium-sized cations strontium and lead 

bind with equal strength for both cryptands and the larger cations potassium and barium 

prefer the larger cryptand 2.2.2.  The solid-state structures for several cryptates have been 

solved.4,9-12  Figures 1-6 and 1-7 show the potassium and lead 2.2.2 cryptates, 

respectively, in order to compare the complexes in the solid-state.  The potassium 

cryptate is an eight coordinate complex with the metal in the center position of the cavity 

and bound to all eight donor atoms of the cryptand.  The average K-N and K-O distances 

are 2.87 Å and 2.79 Å.10  Cryptand 2.2.2 is able to contract around the potassium cation 

with a geometry that is intermediate between a bicapped trigonal prism and a bicapped 

trigonal antiprism.10  The N···N non-bonding distance is 5.75 Å.10    

 

Figure 1-6.  X-ray crystal structure of 2.2.2·K+.10 
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Lead forms a ten-coordinate cryptate complex involving all eight donor atoms 

from cryptand 2.2.2 and a sulfur and nitrogen atom from separate thiocyanate anions.  

The geometry can be described as a hexagonal pyramid with a trigonally capped base.12  

The Pb-N distances are 2.858 Å and 2.909 Å, Pb-O distances range from 2.729 Å to 

2.980 Å, and the thiocyanate distances are 2.642 Å for the nitrogen and 3.121 Å for the 

sulfur.12   

 

Figure 1-7.  X-ray crystal structure of 2.2.2·Pb2+·NCS-·SCN-.12 
 
Cryptand 2.2.2 contracts around the lead cation and the N···N non-bonding distance is 

5.76 Å.  The lead and potassium cryptates in the solid-state differ slightly in coordination 

number (10 vs. 8) and the lead and potassium cryptates have nearly identical average 

metal-oxygen (2.80 Å vs. 2.79 Å) and metal-nitrogen distances (2.88 Å vs. 2.87 Å) and 
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N···N non-bonding distances (5.76 Å vs. 5.75 Å).  However, in solution the formation 

constants (log KML) differ greatly (12.4 vs. 3.9).  Cryptand 2.2.2 is very flexible, evident 

by the range of N···N non-bonding distances in the solid-state structures of the cations 

calcium (5.44 Å)9, strontium (5.69 Å)13, and barium (5.99 Å)11. 

 The metal complexation properties of cryptands can be altered by variation of 

several structural factors.  These include the number and type of donor atoms (Figure 1-

1), the addition of backbone substituents into the bridging chains, and by the type of 

bridgehead atoms (alkyl N vs. C vs. aryl N).  The introduction of one and two benzene 

rings into the bridging ether strands has been investigated by several groups.14-18  

Cryptand 2.2B.2B includes benzene rings in the center of two of the polyether strands and 

is shown in Figure 1-8.  The benzo rings present in 2.2B.2B also allow for attachment of 

other functional groups onto the cryptand.16  

O O

N NO O

O O

 

Figure 1-8.  Cryptand 2.2B.2B. 
 

A comparison of the solid-state structure properties of the parent cryptand 2.2.2 

with the benzo-substituted cryptand 2.2B.2B is shown in Table 1-2.  The benzo-substituted 

cryptand is distinctly different than the parent compound.  Cryptand 2.2B.2B has lower 
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conformational freedom dictated by the eclipsed configuration of the oxygen atom pairs 

(4, 7), and (13, 16) connected to the benzene rings.19   

Table 1-2.  Structural parameters for 2.2.2 and 2.2B.2B.  
   

  
2.2.24 

 
2.2B.2B

19 

 
Space Group 

 
P21/c 

 
P21/c 

N;N Conformation Endo-Endo Endo-Endo 

Donor atom 
arrangement 

Endo: O4, O16, O24 
Exo: O7, O13, O21 

Endo: O4, O7, O21 
Tangential: O13, O16 

Exo: O24 

N···N Distance (Å) 6.871 5.161 

OCCO Torsion 
Angles (°) 

O4-O7: -175 
O13-O16: -178 
O21-O24: 179 

O4-O7: -4.8 
O13-O16: -6.1 
O21-O24: 71.4 

 
 

For 2.2B.2B, the N···N non-bonding distance is greatly reduced to 5.161 Å and 

only one oxygen is pointing away from the cavity.  These differences in structure indicate 

that smaller conformational changes will be required during the formation of metal 

complexes.19  The formation constants for 2.2B.2B for selected metals are shown in Table 

1-3.    

Table 1-3.  Formation constants (log KML) for 2.2.2 and 2.2B.2B in H2O at 25 °C. 
 

  
Na+ 

 
K+ 

 
Ca2+ 

 
Sr2+ Ba2+ 

 
Pb2+ 

2.2.2a 4.0 5.5 4.5 8.1 9.6 12.4 
2.2B.2B

  3.4b  4.4b  3.5c  6.4c  5.7c  11.4d 

aRef. 7.  bRef. 20.  cRef. 21.  dRef. 22     
 

The KML values for cryptand 2.2B.2B are all lower in magnitude in comparison to 

2.2.2.  The basicity of the oxygen atoms next to the benzene rings and the flexibility of 
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the two bridging strands containing benzene rings are reduced.14  The selectivity 

sequence among divalent cations changes from Pb2+ > Ba2+ > Sr2+ > Ca2+ in 2.2.2 to Pb2+ 

> Sr2+ > Ba2+ > Ca2+ in 2.2B.2B.7,14,21  Figure 1-9 shows the differences in complex 

formation constants in solution between cryptand 2.2B.2B, the parent compound 2.2.2, 

and cryptand 2.2.1.14,21  Cryptand 2.2B.2B shows a more specific size restriction towards 

the larger cations similar to 2.2.1.  
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Figure 1-9.  Complexation selectivity patterns of 2.2.2, 2.2B.2B, and 2.2.1.7,21 
 

The alkyl cryptands 2.2.1, 2.2.2, and 2.2B.2B all have high KHi values (KH1 ~ 9-

10.5; KH2 ~ 6-7.5).  Protonation constants in this range result in the metal formation 

constants being dependent on pH near physiological pH (~ 7), and also result in the 

cryptands being present mainly as the mono- and diprotonated forms at physiological pH 

(Fig. 1-2).23  The latter results in a slower reaction between the metal ion and protonated 

cryptand.  Tsien overcame both of these problems in designing calcium indicators and 

Ba2+ 

Sr2+

Ca2+ 
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buffers by the addition of benzene rings.23  Figure 1-10 shows the structural modification 

of EGTA to obtain BAPTA by the incorporation of benzene rings.    

EGTA

O O
NN

OH
O

HOOH
OOHO

O

O O
NN

OH
O

HOOH
OOHO

O

BAPTA  

Figure 1-10.  Structures of EGTA and BAPTA. 
 
 Table 1-4 illustrates the effects of introduction of benzene rings on the highest 

protonation constants (KH) and metal formation constants (KML) at 25oC.7  The KH’s and 

KML’s decrease by three orders of magnitude for BAPTA, but the selectivity (KS = 

KM*L/KML) for Pb2+ vs. Ca2+ actually increases from 5,500 to 33,000.    

Table 1-4.  Formation constants (log KML) for EGTA and BAPTA in H2O at 25°C.7 
   

  
H+(1) 

 
H+(2) 

 
Ca2+ 

 
Pb2+ 

 
Cd2+ 

EGTA 9.52 8.71 10.86 14.6 16.5 

BAPTA 6.32 5.45  6.78 11.3 12.2 

 
 To employ the strategy of Tsien, the use of polyoxa dianilines as the α,ω-diamine 

results in cryptands with bridgehead nitrogen atoms that are less basic than the trialkyl 

amines of the parent cryptands.  Several benzoannelated cryptands have been 

synthesized, but these compounds contained additional substituents (fluorophore).24-26  

These cryptands were developed as receptors for specific cations, while also reducing the 

competitive protonation reaction.  Protonation constants have not been reported for the 

bridgehead nitrogens.  Crossley and co-workers developed a 2.2.2 benzoannelated 

cryptand derivative (I) for use as a extracellular fluorescent probe for potassium ion.24  
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Smith and co-workers have prepared a 2.2.1N benzoannelated cryptand (II) as a selective 

indicator for intracellular free sodium ion (log KML = 1.3-1.6) that utilizes either changes 

in fluorescence or 19F-NMR chemical shift27, and Mortellaro et al. proposed the synthesis 

of a 3.1.1 benzoannelated cryptand derivative (III).28  Crossley et al.24 and Smith and co-

workers26,27 evaluated complexation for sodium, potassium, and other alkali and alkaline-

earth cations.  These benzoannelated cryptands are shown in Figure 1-11.  
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Figure 1-11.  Benzoannelated cryptands. 
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II.  Metal Toxicity 
 

Cryptands 2.2.1, 2.2.2, and 2.2B.2B have shown favorable selectivity for lead and 

cadmium versus the biologically important cations Na+, K+, and Ca2+.  The large log KML 

values (Cd2.2.1 = 9.5; Pb2.2.1, Pb2.2.2, Pb2.2B.2B ≥ 11.4) are also sufficient to react with 

low concentrations of these metals ([M] ≤ 10-6).  The Agency for Toxic Substances and 

Disease Registry (ATSDR) as well as the Environmental Protection Agency (EPA) rank 

lead and cadmium as the second and seventh most important substances, respectively, on 

the list of priority of hazardous substances.29  The internal exposure of lead to the human 

body can either occur from inhalation or oral consumption.  Acute exposure to high 

levels of lead may result in brain damage, kidney damage, and gastrointestinal distress, 

while chronic exposure results in effects on the central nervous system, blood pressure, 

kidneys, and vitamin D metabolism.30  Evidence suggests that lead toxicity may occur at 

levels as low as 10-15 µg/dL (4.8-7.2 x 10-7 M).29  The vast dispersion of lead in the 

environment is primarily due to industrial usage and previous use as an antiknock agent 

in leaded gasoline.31  In 1990, the Clean Air Act Amendments banned the sale of leaded 

gasoline.29  Lead is the fifth most consumed metal in the United States with 85% being 

produced domestically.29 Exposure to lead can occur through a variety of avenues 

including the atmosphere, food, soil, water, and lead-based paint.30  In an aqueous 

medium, the solubility of lead approaches 110 ppb (5.3 x 10-7 M) at a pH of 6.5, and 

above pH 8 it is approximately 10 ppb (4.8 x 10-8 M).30   

Although cadmium toxicity effects have been seen by both inhalation and oral 

exposure, the greatest concern are long-term oral exposures.32  At acute levels, cadmium 

potentially causes nausea, vomiting, diarrhea, muscle cramps, salivation, sensory 
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disturbances, liver injury, convulsions, shock and renal failure.  Chronic exposure to 

cadmium can result in cardiovascular, hematological, neurological, and testicular 

effects.29  The maximum contaminant level (MCL) for cadmium in drinking water is 

0.005 mg/L (4.4 x 10-8 M).32 Distribution of cadmium in the environment is caused by 

natural occurrences in zinc, lead, and copper ores as well as in coal, fossil fuels, and the 

release in volcanic action.29  The industrial release of cadmium occurs through many 

methods, some of which include leaching of landfills, waste streams from smelting and 

refining of zinc, and the manufacture of nickel-cadmium batteries.29    
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III. Objective 

The purpose of this project is to synthesize "anilino" cryptand derivatives 

An2.2.1, An2.2.2, and An3.1.1 with the expectation that selectivity for Pb2+ and Cd2+ will 

be retained and cryptands will have large log KML values.  It will also be expected that the 

cryptands will have log KHi < 6.5 based on the BAPTA/EGTA structural modifications.  

These compounds would then have minimal protonation side reactions at physiological 

pH and could have potential uses as components for sensors.  The types of modifications 

investigated in this specific project include the length of bridging chains (cavity size) and 

the incorporation of benzylic rings (acid-base chemistry, conformation). The 

benzoannelated cryptands synthesized in this project are shown in Figure 1-12.  

Cryptands An3.1.1 and An3.1.1.3 are shown in parentheses because they were made but 

the solution properties were not studied.   
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Figure 1-12.  Benzoannelated cryptands An2.2.1, An2.2.2, An3.1.1, and An3.1.1.3. 
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 The prefix “An” is used to indicate that the nitrogens are “aniline” type nitrogens 

because of the presence of the benzene rings.  The protonation and metal formation 

constants of the prepared benzoannelated cryptands An2.2.1 and An2.2.2 will be 

determined to evaluate the effects of the addition of benzylic rings by comparing with the 

known values for the parent cryptands 2.2.1, 2.2.2, and 2.2B.2B.  Comparison of the 

protonation constants will reveal the effects of aniline (aryl) versus alkyl bridgehead 

nitrogens.  The comparison of the metal formation constants will reveal the effects of the 

benzene rings that limit conformational freedom and decreases the basicity of the 

attached donor atoms.  Comparison of cryptands 2.2B.2B and An2.2.2 will reveal the 

importance of position of the benzene rings.  The benzo rings in cryptand 2.2B.2B resulted 

in a decrease in basicity of the attached oxygen atoms and limited the conformational 

freedom of these two bridges.14  Cryptand An2.2.2 will have the conformational freedom 

limited in one bridge and the benzene rings have the potential to decrease the basicity of 

one oxygen pair and the bridgehead nitrogens.  Comparisons will be made between the 

benzoannelated cryptands in terms of the effects of the number of donor atoms present 

(An2.2.1 vs. An2.2.2) and cavity size (An2.2.1 vs. An2.2.2).  The metals studied in this 

project will include the biologically important cations Na+, K+, and Ca2+, alkaline earth 

cations Sr2+ and Ba2+, and the toxic heavy metals Cd2+ and Pb2+. 
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Chapter Two  
 
 

Synthesis of starting materials, monocyclic and bicyclic 
diamides and diamines  

 
 

I.  Introduction 
 

 The syntheses described in this work are accomplished using the stepwise 

cyclization method.  This allows for flexibility in structure alterations and also provides 

multiple synthetic routes for a given product.  The general step-wise synthesis method for 

cryptands is shown in Figure 2-1.   

NH2

NH2

NH

NH

O

O

NH

NH

Cl

Cl
O

O
Cl

Cl
O

O

N

N

O

O

N

N(1) (2) (3) (4)
 

Figure 2-1.  General synthetic scheme for the synthesis of cryptands. 
 
 Synthesis of the acyclic diamines and, in some cases, the diacid chlorides are 

necessary before the first cyclization step.  Synthesis of the monocyclic diamides is 

accomplished in a high-dilution reaction between the diamine and diacyl chloride (1).  A 

scavenger base is added for the cyclization steps to react with HCl formed and promote 

the formation of the ammonium chloride salt as shown in Figure 2-2. 

NH2NH2
NH NH

O O

ClCl

O O NR3 2HCl or 2HNR3Cl

 

Figure 2-2.  Balanced reaction between a diamine and diacid chloride with a scavenger 
base present. 
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 Reduction of the monocyclic diamide product utilizing diborane is performed in 

the following step (2).  A second high-dilution reaction of the monocyclic diamine with 

another diacyl chloride generates the bi- or tricyclic diamide (3).  Subsequent reduction 

reaction of the bi- or tricyclic diamide with diborane yields the cryptand (4).  The 

complete synthetic routes for cryptands An2.2.1 and An2.2.2, along with those for 

cryptands An3.1.1 and An3.1.1.3 are shown in Schemes 2-1 and 2-2, respectively.  The 

general descriptions and specific details of the reactions involved in these synthetic 

schemes are presented in the following sections. 
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Scheme 2-1.  Synthesis of An2.2.1 and An2.2.2. 
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Scheme 2-2.  Synthesis of An3.1.1.3 and An3.1.1. 
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II. Summaries of Synthetic Methods 
 
 This section provides a general description for the synthetic steps to obtain the 

final cryptands An2.2.1, An2.2.2, An3.1.1, and An3.1.1.3.  The specific details of each 

reaction, 1H and 13C NMR spectra, electrospray ionization mass spectrometry (ESI-MS) 

spectra, and X-ray crystal structures are located in the subsequent Experimental section.   

 

A.  Synthesis of acyclic diamines and starting materials 

 

1.  2,2'-[ethane-1,2-diylbis(oxy)]diacetyl chloride, (1)  

2,2'-[ethane-1,2-diylbis(oxy)]diacetic acid is chlorinated with ethanedioyl 

dichloride in toluene with a trace amount of pyridine present as shown in Scheme 2-3.  

Ethanedioyl dichloride is used in this exchange reaction because the by product oxalic 

acid decomposes to CO and CO2.  The removal of oxalic acid drives the equilibrium of 

the reaction to produce the acyl chloride in high yield.1  Acid chlorides are the least stable 

carboxylic acid derivatives;2 therefore, purification of the product is performed as quickly 

as possible with minimum exposure to water.  Recrystallization is accomplished by 

dissolving the product in a mixture of ether and petroleum ether.  The diacid chloride is 

frozen by submerging the flask in a mixture of dry ice and acetone with a temperature of 

-70 ºC.  The product is brought back to room temperature and the solvent, containing 

starting material and, impurities, is removed using a pipet.   

OH

O O

HO
O O

Cl

O O

Cl
O O

Toluene,
 Pyridine

O

Cl

O

Cl
1

 

Scheme 2-3.  Synthesis of 2,2'-[ethane-1,2-diylbis(oxy)]diacetyl chloride, (1). 
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2.  2,2'-[ethane-1,2-diylbis(thio)]diacetyl chloride, (2)   

2,2'-[ethane-1,2-diylbis(thio)]diacetic diacid is a sulfur substituted dicarboxylic 

acid that can also be chlorinated with ethanedioyl dichloride as shown in Scheme 2-4.  

The reaction is performed in a mixture of toluene and dry ether.  The product was 

recrystallized according to the methods used for 1 to give light yellow crystals.     

Cl

S S

Cl
O O

OH

S S

HO
O O

Toluene:Ether,
 Pyridine

O

Cl

O

Cl 2  

Scheme 2-4.  Synthesis of 2,2'-[ethane-1,2-diylbis(thio)]diacetyl chloride, (2). 

 

3.  1,1'-[ethane-1,2-diylbis(oxy)]bis(2-nitrobenzene), (3) 

 2-nitrophenol was alkylated with 1,2-dibromoethane in DMF with K2CO3 present 

as a base, to give the nitrobenzene bis-ether as shown in Scheme 2-5.  This procedure was 

similar to the methods used by Sammes et al.3  The product was purified by 

recrystallization from glacial acetic acid.       

O O

O2NNO2

OH

NO2
Br Br K2CO3

DMF
+2

3  

Scheme 2-5.  Synthesis of 1,1'-[ethane-1,2-diylbis(oxy)]bis(2-nitrobenzene), (3). 

 

4.  2,2'-[ethane-1,2-diylbis(oxy)]dianiline, (4)   

 Catalytic reduction of the nitro groups on 3, as shown in Scheme 2-6, was 

accomplished by the process employed by Sammes et al.3  The diamine product was 

separated from the catalyst by filtration after hydrogen uptake had ceased.   
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O O

O2NNO2

O O

H2NNH2H2, Pd

EtOH, 
8 hrs

3 4  

Scheme 2-6.  Synthesis of 2,2'-[ethane-1,2-diylbis(oxy)]dianiline, (4). 

 

5.  1,1'-[oxybis(2,1-ethanediyloxy)]bis[2-nitro-benzene], (5)  

 Alkylation of 2-nitrophenol with bis(2-chloroethyl) ether in DMF with K2CO3 

present as a base, gave the dinitro-compound, 5 as shown in Scheme 2-7.  The pure 

product was obtained by recrystallization from methanol.  This procedure was similar to 

the methods described by Lockhart et al.4    

+
K2CO3

DMF2
O

O
O

NO2 O2N

OH

NO2

Cl O Cl

5  

Scheme 2-7.  Synthesis of 1,1'-[oxybis(2,1-ethanediyloxy)]bis[2-nitro-benzene], (5). 

 

6.  2,2'-[oxybis(ethane-2,1-diyloxy)]dianiline, (6)  

 The nitro groups on 5 were reduced by catalytic reduction as shown in Scheme 2-

8.  The diamine product, 6, was separated from the catalyst by filtration after hydrogen 

uptake had finished.   

O
O

O

NO2 O2N

O
O

O

NH2 H2NH2, Pd

THF,
MeOH

5 6  

Scheme 2-8.  Synthesis of 2,2'-[oxybis(ethane-2,1-diyloxy)]dianiline, (6). 
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B.  Synthesis of monocyclic diamides and diamines 

 

7.  1,4,10,13-tetraoxa-7,16,diazacyclooctadecane-6,17-dione, 2.2*, (7)   

 Acylation of the diamine, 2,2'-[ethane-1,2-diylbis(oxy)]diethanamine with 1 was 

accomplished under high-dilution conditions in toluene as shown in Scheme 2-9.  The 

precipitation of triethylammonium chloride during the reaction was evident on the sides 

of the flask.  This salt was separated by filtration and the pure diamide, 7, was 

recrystallized from a benzene-heptane mixture. 

O O

H2NNH2

O O

NH HN
O O

O O

+
Toluene, NEt3
High-DilutionCl

O O

Cl
O O

1
7  

Scheme 2-9.  Synthesis of 2.2*, (7). 

 

8.  1,4-Dioxa-10,13-dithia-7,16-diazacyclooctadecane-8,15-dione, 2.2S*, (8)   

 The acylation of the diamine, 2,2'-[ethane-1,2-diylbis(oxy)]diethanamine with 2 

was performed under high-dilution conditions in toluene to give the dithiadiamide as 

shown in Scheme 2-10.  Triethylammonium chloride precipitated during the reaction and 

was separated by filtration.  The pure diamide, 8, was recrystallized from a mixture of 

dichloromethane-hexane. 
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O O

H2NNH2

O O

NH HN
O O

S S

+
Toluene, NEt3
High-DilutionCl

S S

Cl
O O

2
8  

Scheme 2-10.  Synthesis of 2.2S*, (8).  
 
 
 
9.  17,18-dihydro-5H,9H-dibenzo[e,n][1,4,10,7,13]trioxadiazacyclopentadecine-

6,10(7H,11H)-dione, An2.1*, (9) 

 The acylation of 4 with 2,2'-oxydiacetyl chloride was carried out under high-

dilution conditions in toluene by methods similar to those described by Formanovskii et 

al5 as shown in Scheme 2-11.  Triethylamine was used as an acceptor for hydrogen 

chloride, which was produced during the reaction.  The product was purified by 

recrystallization from ethanol.      

O O

H2NNH2

+
Toluene, NEt3

High DilutionCl
OO

Cl

O

O O

NH NHO

O O

4
9  

Scheme 2-11.  Synthesis of An2.1*, (9). 
 
 
 
10.  6,7,10,11,17,18-hexahydro-5H,9H-dibenzo[e,n][1,4,10,7,13]- trioxadiazacyclo-

pentadecine, An2.1, (10) 

 The monocyclic diamine was prepared by the reduction of 9 in refluxing 

tetrahydrofuran containing ~ 1 M borane as shown in Scheme 2-12.  A solution of 1:10 
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H2O-THF was added during reflux to aid the reaction in going to completion.6,7  Partial 

evaporation of the organic solvent resulted in the precipitation of the pure product.    

O O

NH NHO

O O

O O

NH NHO

BH3,
THF

9 10  

Scheme 2-12.  Synthesis of An2.1, (10). 

 

11.  9,10,20,21-tetrahydro-5H,12H-dibenzo[e,q][1,4,10,13,7,16]tetraoxadiazacyclo-

octadecine-6,13(7H,14H)-dione, An2.2*, (11)  

 The acyclic diamine, 4, is acylated with 2,2'-[ethane-1,2-diylbis(oxy)]diacetyl 

chloride, 1, under high-dilution conditions in toluene as shown in Scheme 2-13.  

Triethylammonium chloride precipitated out during the reaction and was separated by 

filtration.  The pure diamide is recovered by recrystallization from ethanol.   

O O

H2NNH2

Cl

O O

Cl
O O

O O

NH HN
O O

O O

+
Toluene, NEt3
High Dilution

11

41

 

Scheme 2-13.  Synthesis of An2.2*, (11). 
 
 
 
12.  6,7,9,10,13,14,20,21-octahydro-5H,12H-dibenzo[e,q][1,4,10,13,7,16]tetraoxadiaza-

cyclooctadecine, An2.2, (12) 

 Reduction of 11 using 1 M borane in refluxing tetrahydrofuran afforded the 

monocyclic diamine, 12 as shown in Scheme 2-14.  A solution of 1:10 H2O-THF was 
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added during reflux to aid the reaction in going to completion.6,7  Partial evaporation of 

the organic solvent resulted in the precipitation of the pure product.    

O O

NH HN
O O

O O
BH3, THF

O O

NH HN

O O

11 12  

Scheme 2-14.  Synthesis of An2.2, (12). 
 
 
 
13.  6,7,9,10-tetrahydro-16H,20H-dibenzo[h,q][1,4,7,13,10,16]tetraoxadi-

azacyclooctadecine-17,21(18H,22H)-dione, An3.1*, (13)  

 Condensation of 8 with the commercially available 2,2'-oxydiacetyl chloride 

under high-dilution conditions in toluene yielded the monocyclic diamide, 13, as shown 

in Scheme 2-15.  Triethylammonium chloride precipitated during the reaction and was 

separated by filtration.  The pure product was recovered by recrystallization from a 

benzene-heptane mixture.          

O
O

O

NH2 H2N
+ Cl

OO

Cl

O

O
O

O

NH
O

HN

O O
Toluene,
NEt3

High Dilution

8 13  

Scheme 2-15.  Synthesis of An3.1*, (13). 
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14.  6,7,9,10,17,18,21,22-octahydro-16H,20H-dibenzo[h,q][1,4,7,13,10,16]tetraoxa-

diazacyclooctadecine, An3.1, (14)  

 The monocyclic diamine, 14, was prepared by the reduction of 13 using 1 M 

borane in refluxing tetrahydrofuran as shown in Scheme 2-16.  A solution of 1:10 H2O-

THF was added during reflux to aid the reaction in going to completion.6,7  The organic 

solvent was removed by rotary evaporation and the pure product was obtained by 

filtration of the aqueous solution that remained.  

O
O

O

NH
O

HN

O O

O
O

O

NH
O

HNBH3, THF

13 14  

Scheme 2-16.  Synthesis of An3.1, (14). 
 
 
 
C.  Synthesis of bicyclic diamines (cryptands) 

 

15.  9,10,20,21-tetrahydro-5,14-(ethanooxyethano)dibenzo[e,q][1,4,10,13,7,16]tetraoxa-

diazacyclooctadecine-6,13-dione, An2.1.2*, (15)  

 The condensation of 10 with 1 under high-dilution conditions in toluene yielded 

the bicyclic diamide, 15, as shown in Scheme 2-17.  Pyridine was added as a scavenger 

base but salt formation was not visible during the reaction.  Pyridine was present in the 

mass spectrum at 80 m/z.  Rotary evaporation of the organic solvent left a yellow oil.  

The polymer products and salts were removed by flash chromatography on silica gel to 

give the pure product.         
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O O

NH NHO

Cl

O O

Cl
O O+

O O

N N

O O

O
O O

Toluene,
Pyridine

High Dilution

10 1 15  

Scheme 2-17.  Synthesis of An2.1.2*, (15).  
 
 

16.  6,7,9,10,12,13,20,21-octahydro-5,14-(ethanooxyethano)dibenzo[e,q]- 

[1,4,10,13,7,16]tetraoxadiazacyclooctadecine, An2.2.1, (16)  

 Cryptand An2.2.1, 16, was prepared by the reduction of 15 using 1 M borane in 

refluxing tetrahydrofuran as shown in Scheme 2-18.  A solution of 1:10 H2O-THF was 

added during reflux to aid the reaction in going to completion.6,7 Rotary evaporation was 

used to remove the organic solvent.  The aqueous solution was treated with 6 M HCl to 

hydrolyze any remaining nitrogen to borane bonds.8  The solution was made basic with 

NH3 and the fully deprotonated ligand was extracted with chloroform.  The pure product 

was obtained by recrystallization from a mixture of benzene and heptane.        

O O

N N

O O

O
O O

O O

N N

O O

O
BH3, THF

15 16  

Scheme 2-18.  Synthesis of An2.2.1, (16). 
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17.  6,7,9,10,12,13,20,21-octahydro-5,14-(ethanooxyethano)dibenzo-[e,q]-

[1,4,10,13,7,16]tetraoxadiazacyclooctadecine-23,27-dione, An2.2.1*, (17)  

Condensation of 12 with the commercially available diacid chloride, 2,2'-

oxydiacetyl chloride, under high-dilution conditions in toluene yielded the bicyclic 

diamide, 17, as shown in Scheme 2-19.  Triethylammonium salt formation was not 

visible during the reaction but was present in the mass spectrum.  Rotary evaporation of 

the organic solvent left a mixture of a yellow oil and a white solid.  The product was 

recovered by extraction with dichloromethane.         

O O

NH HN

O O

+
Cl

OO

Cl

O Toluene, NEt3
High Dilution

O O

N NO O
O

O O

12 17  

Scheme 2-19.  Synthesis of An2.2.1*, (17).  
 
 
 
18.  6,7,9,10,12,13,20,21-octahydro-5,14-(ethanooxyethano)dibenzo[e,q]- 

[1,4,10,13,7,16]tetraoxadiazacyclooctadecine, An2.2.1, (16) 

 Cryptand An2.2.1, 16, was also prepared by the reduction of 17 using 1 M borane 

in refluxing tetrahydrofuran as shown in Scheme 2-20.  Water was added in a solution of 

1:10 H2O-THF during reflux to assist the reaction in going to completion.6,7  Rotary 

evaporation was used to remove the organic solvent.  The aqueous solution was treated 

with 6 M HCl to hydrolyze any remaining nitrogen to borane bonds.8  The solution was 

made basic with NH3 and the fully deprotonated ligand was extracted with chloroform.  

The product was recovered by recrystallization from a mixture of benzene and heptane.        
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O O

N NO O
O

O O

O O

N NO O
OBH3, THF

17 16  

Scheme 2-20.  Synthesis of An2.2.1, (16). 
 
 

19.  9,10,20,21-tetrahydro-5,14-(ethanooxyethanooxyethano)dibenzo[e,q]-

[1,4,10,13,7,16]tetraoxadiazacyclooctadecine-6,13-dione, An2.2.2*, (18) 

The 1 + 1 cycloaddition product of 12 with 1 under high-dilution conditions in 

toluene yielded the bicyclic diamide, 18, as shown in Scheme 2-21.  Pyridinium salt 

formation was not observed during the reaction.  Rotary evaporation of the organic 

solvent left a yellow oil.  The pure product was recovered by flash chromatography on 

silica gel and recrystallized from a mixture of benzene and heptane.         

O O

NH HN

O O

O O

N N

O O

O OCl

O O

Cl
O O+

Toluene, 
Pyridine

High Dilution
OO

12 1 18  

Scheme 2-21.  Synthesis of An2.2.2*, (18). 
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20.  6,7,9,10,12,13,20,21-octahydro-5,14-(ethanooxyethanooxyethano)dibenzo[e,q]- 

[1,4,10,13,7,16]tetraoxadiazacyclooctadecine, An2.2.2, (19) 

 Cryptand An2.2.2, 19, was made by the reduction of 18 using 1 M borane in 

refluxing tetrahydrofuran as shown in Scheme 2-22.  The addition of water in a solution 

of 1:10 H2O-THF during reflux was essential for the reaction to go to completion.6,7 The 

organic solvent was removed by rotary evaporation and the remaining solution was 

treated with 6 M HCl and made basic with LiOH.  The product was extracted with 

chloroform and then recrystallized from a mixture of benzene and heptane. 
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Scheme 2-22.  Synthesis of An2.2.2, (19). 
 
 
 
21.  6,7,9,10,28,29,31,32-octahydro-16,44:22,38-di(ethanooxyethano)tetrabenzo[h,q,z,i1]- 

[1,4,7,13,19,22,25,31,10,16,28,34]octaoxatetraazacyclohexatriacontine-17,21,39,43-

tetrone, An3.1.1.3*, (20) 

The 2 + 2 cycloaddition product of 14 with 2,2'-oxydiacetyl chloride under high-

dilution conditions at room temperature in toluene yielded the tricyclic tetraamide, 20, as 

shown in Scheme 2-23.  Pyridinium salt formation was not observed during the reaction.  

A white solid precipitated out while the organic solvent was being removed by rotary 

evaporation.  This solid was recovered and recrystallized from toluene as the pure 

tetraamide, 20.         
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Scheme 2-23.  Synthesis of An3.1.1.3*, (20). 

 

22.  6,7,9,10,17,18,20,21,28,29,31,32,39,40,42,43-hexadecahydro-16,44:22,38-di(ethano-

oxyethano)tetrabenzo[h,q,z,i1][1,4,7,13,19,22,25,31,10,16,28,34]octaoxatetraazacyclo-

hexatriacontine, An3.1.1.3, (21) 

 The tricyclic tetraamine, cryptand An3.1.1.3, 21, was prepared by the reduction of 

20 using 1 M borane in refluxing tetrahydrofuran as shown in Scheme 2-24.  Water was 

added in a solution of 1:10 H2O-THF during reflux to assist the reaction in going to 

completion.6,7 The organic solvent was removed by rotary evaporation and the remaining 

solution was treated with 6 M HCl and 6 M NH3.  The product was recovered by 

extraction with chloroform and recrystallization from a mixture of dichloromethane and 

methanol.      
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Scheme 2-24.  Synthesis of An3.1.1.3, (21). 
 
 
 
23.  6,7,9,10,-tetrahydro-16,22-(ethanooxyethano)dibenzo[h,q][1,4,7,13,10,16]tetra-

oxadiazacyclooctadecine-17,21-dione, An3.1.1*, (22)  

The reaction of 14 with 2,2'-oxydiacetyl chloride under high-dilution conditions at 

5 ºC in dichloromethane yielded a mixture of the bicyclic diamide, 22, as shown in 

Scheme 2-25, and the tricyclic tetraamide, 20.  Pyridinium salt formation was observed 

during the reaction.  Rotary evaporation was used to remove the organic solvent.  The 

pure 1 + 1 cycloaddition product, 22, was recovered by flash chromatography on silica 

gel and recrystallized from a mixture of dichloromethane and methanol.           
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Scheme 2-25.  Synthesis of An3.1.1*, (22). 
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24.  6,7,9,10,17,18,20,21-octahydro-16,22-(ethanooxyethano)dibenzo[h,q]-

[1,4,7,13,10,16]tetraoxadiazacyclooctadecine, An3.1.1, (23) 

 Cryptand An3.1.1, 23, was made by the reduction of 22 using 1 M borane in 

refluxing tetrahydrofuran as shown in Scheme 2-26.  A solution of water was added as 

1:10 H2O-THF during reflux to assist the reaction in going to completion.6,7 The organic 

solvent was removed by rotary evaporation and the remaining solution was treated with 6 

M HCl and 6 M NH3.  The product was extracted with chloroform.          
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Scheme 2-26.  Synthesis of An3.1.1, (23). 
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III. Experimental 

 

A.  General Methods 

 NMR experiments were obtained on a Varian Mercury VX-300 MHz with Varian 

4-nuclei autoswitchable PFG probe, Varian Inova 400 MHz with a Nalorac indirect 

detection gradient probe, and a Varian 600 MHz with Nalorac triple resonance indirect 

detection gradient probe.  All pulse sequences were used as provided by Varian and all 

processing was done using standard Varian methods.  The signals are referenced to the 

residual signal of the solvent (CHCl3 at 7.24 ppm for 1H and 77.23 ppm for 13C, HDO at 

4.80 ppm for 1H, and DMSO at 2.50 ppm for 1H).  All coupling constants are given in 

Hz.  Signals from 1H NMR spectra are described as a singlet (s), broad singlet (bs), 

doublet (d), triplet (t), multiplet (m), doublet of doublets (dd), or triplet of doublets (td).  

The concentrations for all samples were in a range of 15-50 mg mL-1.   

 Electrospray ionization mass spectrometry (ESI-MS) experiments were carried 

out on a Micromass Q-Tof instrument.  This technique generally gives the mass to charge 

ratio (m/z) of the product without fragmentation.  The mass spectra for all products 

obtained include proton peaks (M + H+), sodium adduct peaks (M + Na+), dimer (M2 + 

Na+) or trimer (M3 + Na+) sodium peaks, and doubly charged species (M + 2H+).  The 

spectra allow the investigator to determine if side products, unused reactants, or 

contaminants are present.  Positive ion ESI-MS is used predominantly to investigate 

diamine, diamide, or cryptand products, while negative ion ESI-MS is used for 

carboxylic diacids. 
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 X-ray crystallographic data were collected using a diffractometer with a Bruker 

APEX ccd area detector and graphite-monochromated MoKα (λ = 0.71073 Å) 

radiation.9,10  Samples were cooled to 100-120 K.11  Cell parameters were determined 

from a nonlinear least-squares fit.  Structures were solved by the direct method using the 

SHELXTL system.11  Crystals suitable for X-ray crystallography were grown by 

evaporation or vapor diffusion method.  Evaporation from solvent or a mixture of 

solvents at different rates and temperatures yielded suitable crystals for analysis.  Vapor 

diffusion was accomplished by dissolving the analyte in a test tube with solvent 1.  The 

test tube was placed in a sealed jar surrounded by solvent 2.  The vapors from solvents 1 

and 2 diffuse out and into the test tube, respectively.  The analyte is less soluble in 

solvent 2 and crystallization occurs.          

 Synthesis of monocyclic intermediates and cryptands was done exclusively by 

slow addition of equimolar solutions of reagents utilizing high-dilution conditions.  High-

dilution synthesis is used in order to minimize the production of polymers and promote 

the formation of the monomeric macrocycle or cryptand.  The high-dilution method 

favors the latter because the rate of intermolecular interaction (polymer production) has a 

second order concentration dependence, while the intramolecular ring closure reaction is 

a first order process.  

 

B.  Reagents 

 Distilled Deionized Water - D.D. H2O.  Distilled deionized water was used for all 

aqueous solutions and was prepared by distillation of deionized water by using a Corning 

Megapure System distillation apparatus, model MP-3A.   
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 Toluene - C7H8.  Reagent grade (Fisher Scientific) toluene was refluxed over 

sodium metal and stored over sodium chips prior to use. 

 Benzene - C6H6.  Reagent grade (EMD) benzene was refluxed over sodium metal 

prior to use. 

 Chloroform - CHCl3.  Reagent grade (Fisher Scientific) CHCl3 was distilled from 

CaCl2 prior to use. 

 Dichloromethane - CH2Cl2.  Reagent grade (Fisher Scientific) CH2Cl2 was 

distilled from CaH2 prior to use. 

 Tetrahydrofuran - THF.  Reagent grade (Fisher Scientific) THF was freshly 

distilled from CaH2 prior to use. 

 Methanol - CH3OH, MeOH.  Reagent grade (Fisher Scientific) MeOH was 

refluxed over CaSO4.  

 n-Heptane - HPLC grade (Fisher Scientific) n-heptane was used without further 

purification. 

 Borane - BH3.  Borane-tetrahydrofuran complex, 1 M in THF (Aldrich) was 

stored at 0 ºC and used without further purification. 

 Diglycolyl chloride - C4H4Cl2O3.  The purity of diglycolyl chloride (Aldrich, 

95%) was verified by 1H NMR and used without further purification.   

 3,6-Dioxaoctanedioic diacid - C6H10O6.  3,6-dioxactanedioic diacid (Aldrich) is 

contaminated with H2O.  Removal of the water was done by azeotropic distillation with 

toluene using a Dean-Stark trap.12,13  Purification was also accomplished by 

recrystallization from ethyl acetate.  In both cases, the product was dried under vacuum.   
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 1,2-Dibromoethane - C2H4Br2.  The purity of 1,2-dibromoethane (Aldrich, 99+%) 

was verified by 1H NMR and used without further purification. 

 Ethanedioyl dichloride - C2O2Cl2.  Ethanedioyl dichloride or oxalyl chloride 

(Acros, 98%) was stored at 5 ºC and used without further purification. 

 2,2'-[ethane-1,2-diylbis(oxy)]diethanamine - C6H16N2O2.  The purity of 2,2'-

[ethane-1,2-diylbis(oxy)]diethanamine (Texaco Chemical Company) was verified by 1H 

NMR and used without further purification.     

 2-Nitrophenol - C6H5NO3.  The purity of 2-nitrophenol (Aldrich, 98%) was 

verified by 1H NMR and used without further purification. 

 Bis(2-chloroethyl)ether - C4H8OCl2.  The purity of bis(2-chloroethyl)ether 

(Aldrich, 97%) was verified by 1H NMR and used without further purification. 

 Diethylene Glycol Bis(p-toluenesulfonate) - C18H22O7S2.  The purity of diethylene 

glycol bis(p-toluenesulfonate) (Aldrich, 98%) was verified by 1H NMR and used without 

further purification.  

 1,2-Ethylenebis(thioglycolic diacid) - C6H10O4S2.  1,2-Ethylenebis(thioglycolic 

diacid) (TCI America) was used without further purification. 

 Pyridine - C5H5N.  Reagent grade pyridine (Fisher) was used without further 

purification. 

 Triethylamine - C6H15N.  Triethylamine (Aldrich) was freshly distilled prior to 

use. 

 Diatomaceous earth - Diatomaceous earth (Celite 521, Aldrich) was used as a 

filtering agent. 
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 Ascarite beads - Ascarite II (Thomas Scientific) is NaOH on non-fibrous silicate 

carrier that is used to absorb CO2. 

 Anhydrous Calcium Sulfate - CaSO4.  Anhydrous calcium sulfate (Drierite, 

Hammond) is used to absorb H2O.    

 Hydrochloric Acid - HCl.  Concentrated hydrochloric acid (EM Science) was 

used without further purification. 

 Acetic Acid, Glacial - CH3CH2COOH.  Concentrated acetic acid, glacial, (Fisher) 

was used without further purification.   

 Ammonium Hydroxide - NH4OH.  Concentrated ammonium hydroxide (EM 

Science) was used without further purification. 

 Dimethyl-d6-sulfoxide - C2D6OS, DMSO.  DMSO (Cambridge Isotope 

Laboratories, 99.9%) was used without further purification. 

 Deuterium Oxide - D2O.  D2O (Cambridge Isotope Laboratories, 99.9%) was used 

without further purification. 

 Chloroform D - CDCl3.  CDCl3 (Cambridge Isotope Laboratories, 99.8%) was 

used without further purification. 

 

C.  Synthesis of acyclic diamines and starting materials 

 

1.  2,2'-[ethane-1,2-diylbis(oxy)]diacetyl chloride (1) 

 The previously recrystallized and dried triglycolic diacid (16.2 g, 91.0 

mmol) was placed in a 500 mL round bottom flask with toluene (100 mL).  Ethanedioyl 

dichloride (20 mL, 230 mmol) was carefully added along with pyridine (5 drops).  The 
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flask was sealed with a drying tube equipped with CaSO4 and Ascarite beads.  The 

solution was stirred for 48 h at room temperature and the color turned from a milky white 

to clear yellow.  The reaction mixture was filtered through sand and the solvent was 

removed by rotary evaporation.  Recrystallization was performed using a mixture of ethyl 

ether (12 mL) and petroleum ether (15 mL).   The diacid chloride is frozen by 

submerging the flask in a mixture of dry ice and acetone with a temperature of -70 ºC.  

The product is brought back to room temperature and the solvent, containing starting 

material and, impurities, is removed using a pipet.  This process is repeated three times.  

The remaining product is transferred to a tared flask, dried under vacuum, and stored at 0 

ºC.  The amount recovered was 18.7 g (87.0 mmol) for a yield of 96%.    The 1H and 13C 

NMR data is listed below and the spectra are found in Figures 2-3 and 2-4, respectively.  

The chemical shift values in the 1H NMR spectra were in agreement with a previous 

literature report.12    

1H NMR (CDCl3):  δ = 4.46 (s), 3.78 (s) ppm. 

13C NMR (CDCl3):  δ = 171.81, 76.40, 71.23 ppm. 
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Figure 2-3.  1H NMR of 2,2'-[ethane-1,2-diylbis(oxy)]diacetyl chloride, (1) in CDCl3. 
 
 
 
 

 

Figure 2-4.  13C NMR of 2,2'-[ethane-1,2-diylbis(oxy)]diacetyl chloride, (1) in CDCl3. 
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2.  2,2'-[ethane-1,2-diylbis(thio)]diacetyl chloride (2) 

 4.19 g (19.9 mmol) of the commercially available 2,2'-[ethane-1,2-

diylbis(thio)]diacetic diacid was placed in a 500 mL round-bottom flask outfitted with a 

drying tube containing CaSO4 and Ascarite beads.  Toluene (100 mL) and dry ether (100 

mL) were added and the suspension containing undissolved diacid was stirred at room 

temperature.  After 15 min, 8 mL (92.0 mmol) of ethanedioyl dichloride was added.  The 

solid was fully dissolved after 5 h and then the solvent was removed by rotary 

evaporation.  Recrystallization was accomplished by the same method as 1 using a 

mixture of ethyl ether (3 mL) and petroleum ether (12 mL). The product was transferred 

to a tared flask and the amount produced was 3.66 g (14.8 mmol) for a yield of 74%.  

This reaction was carried out by Michelle Mosher.           

 

3.  1,1'-[ethane-1,2-diylbis(oxy)]bis(2-nitrobenzene) (3)  

 A 250 mL three-neck round bottom flask was equipped with a condenser, an inlet 

and an outlet for nitrogen gas, thermometer, heating mantle, magnetic stirring bar, and 

addition funnel.  DMF (50 mL) was added to the flask followed by slow addition of 2-

nitrophenol (32.8 g, 236 mmol) while stirring.  The color of the solution changed from 

green to red.  K2CO3 (35 g, 253 mmol) was added to deprotonate the 2-nitrophenol and 

the solution became more orange.  Dibromoethane (10 mL, 115 mmol) was slowly added 

from the addition funnel which was then rinsed with DMF.  The flask was heated until 

the temperature reached 120 ºC, and the reaction was maintained at this temperature for 

24 h.  At this time the solution was allowed to cool, and then 90 mL of H2O was added.  

The product precipitated out.  The yellow solid was filtered, washed with H2O, and dried 
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under vacuum.  Recrystallization was accomplished with ethanol or acetic acid.  Acetic 

acid was used more often because a smaller volume was required.  The yield was 57%.  

The 1H NMR data is listed below and the spectrum is shown in Figure 2-5.  The mass 

spectrum is shown in Figure 2-6 with peaks at m/z of 245.2 (M + H+) and 267.1 (M + 

Na+).   

1H NMR (DMSO):  δ = 7.85 (d), 7.66 (t), 7.43 (d), 7.14 (t), 4.53 (s), 3.35 (s) ppm. 

 

 

Figure 2-5.  1H NMR of 1,1'-[ethane-1,2-diylbis(oxy)]bis(2-nitrobenzene), (3) in DMSO. 
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Figure 2-6.  ESI-MS+ of 1,1'-[ethane-1,2-diylbis(oxy)]bis(2-nitrobenzene), (3) in MeOH. 

 

4.  2,2'-[ethane-1,2-diylbis(oxy)]dianiline (4)         

 A hydrogenation apparatus outfitted with an automatic shaker, hydrogen gas 

reservoir, and vacuum line was used for the reduction of 3.  A 250 mL reaction vessel 

was filled with 3 (19.5 g, 0.0641 moles), 175 mL of ethanol, and 0.92 g of Pd on 

activated carbon (5%).  The pressure was initially set to 18 psi and was repeatedly raised 

to that pressure for the next 3 h until the pressure no longer dropped.  The hydrogenated 

product was filtered through diatomaceous earth with ethanol.  The solvent was removed 

by rotary evaporation to give 14.3 g (0.0586 moles) of the product.  The yield was 92%.  

The 1H NMR data is listed below and the spectrum is shown in Figure 2-7.  The mass 

spectrum is shown in Figure 2-8 with peaks at m/z of 245.1 (M + H+), 267.1 (M + Na+), 
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and 489.2 (M2 + H+).  The chemical shift values in the 1H NMR spectra were in 

agreement with a previous literature report.14 

1H NMR (DMSO):  δ = 6.86 (m), 6.68 (m), 6.52 (m), 4.66 (bs), 4.27 (s), 3.41 (bs) ppm. 

 

 

Figure 2-7.  1H NMR of 2,2'-[ethane-1,2-diylbis(oxy)]dianiline, (4) in DMSO. 
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Figure 2-8.  ESI-MS+ of 2,2'-[ethane-1,2-diylbis(oxy)]dianiline, (4) in MeOH. 
 
 
 
5.  1,1'-[oxybis(2,1-ethanediyloxy)]bis[2-nitrobenzene] (5)   

 A 250 mL three-neck round bottom flask was outfitted with a condenser, an inlet 

and an outlet for nitrogen gas, heating mantle, magnetic stirring motor, and addition 

funnel.  DMF (120 mL) was added to the flask followed by the addition of 2-nitrophenol 

(5.12 g, 36.8 mmol) while stirring.  The color of the solution was bright yellow.  Then, 

K2CO3 (35 g, 253 mmol) was slowly added to deprotonate the 2-nitrophenol, and then the 

color of the solution became dark red.  Bis(2-chloroethyl)ether (2.1 mL, 18 mmol) was 

added via the addition funnel which was then rinsed with DMF.  The reaction was 

refluxed overnight.  After the reaction had cooled, 60 mL of H2O were added and 

everything dissolved.  Solvent was removed from the reaction mixture by rotary 

evaporation until a yellow precipitate fell out of solution.  The yellow solid was filtered, 
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washed with H2O, and dried under vacuum.  Additional product was recovered by adding 

more water to the red solution.  The solid product was recrystallized from methanol to 

produce yellow crystals with a yield of 67%.  The 1H NMR data is listed below and the 

spectrum is shown in Figure 2-9.  The mass spectrum is shown in Figure 2-10 with a peak 

at m/z of 371.1 (M + H+).     

1H NMR (CDCl3):  δ = 7.81 (dd), 7.50 (td), 7.09 (dd), 7.01 (td), 4.26 (t), 3.99 (t) ppm.   

 

 

 

Figure 2-9.  1H NMR of 1,1'-[oxybis(2,1-ethanediyloxy)]bis[2-nitro-benzene], (5)  
in CDCl3. 
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Figure 2-10.  ESI-MS+ of 1,1'-[oxybis(2,1-ethanediyloxy)]bis[2-nitro-benzene], (5)  
in MeOH. 
 
 
 
6.  2,2'-[oxybis(ethane-2,1-diyloxy)]dianiline (6) 

The previously described hydrogenation apparatus was used for this reaction.  A mixture 

of 75 mL ethanol and 50 mL THF was added to the 250 mL reaction vessel along with 5 

(5.12 g, 0.0147 moles) and 1.14 g of Pd on activated carbon (5%).  The hydrogen 

pressure was initially set to 14 psi.  Gas consumption ceased after 3 h.  The 

hydrogenation product was filtered through diatomaceous earth to remove the catalyst.  

The solvent was removed by rotary evaporation to give 4.21 g (0.0146 moles) of the 

product.  The reaction was nearly quantitative with a yield of 99%.  The 1H NMR data is 

listed below and the spectrum is shown in Figure 2-11.  The mass spectrum is shown in 
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Figure 2-12 with peaks at m/z of 289.2 (M + H+) and 311.2 (M + Na+).  The chemical 

shift values in the 1H NMR spectra were in agreement with a previous literature report.14 

1H NMR (CDCl3):  δ = 6.77-6.82 (m), 6.64-6.71 (m), 4.16 (t), 3.89 (t) ppm. 

 

 

Figure 2-11.  1H NMR of 2,2'-[oxybis(ethane-2,1-diyloxy)]dianiline, (6) in CDCl3. 
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Figure 2-12.  ESI-MS+ of 2,2'-[oxybis(ethane-2,1-diyloxy)]dianiline, (6) in MeOH. 

 
 
D.  Synthesis of monocyclic diamides and diamines 

 

7.  1,4,10,13-tetraoxa-7,16-diazacyclooctadecane-6,17-dione, 2.2*, (7) 

 A 550 mL solution of the diamine 2,2'-[ethane-1,2-diylbis(oxy)]diethanamine 

(61.4 mmol, 0.1116 M) and a 500 mL solution of 1 (27.9 mmol, 0.0558 M) were 

prepared.  The diamine solution was made using a two-fold molar excess to provide a 

scavenger base to consume the HCl produced.  Equipment for the reaction included a 5 L 

Morton flask equipped with two 500 mL constant rate addition funnels, an inlet and an 

outlet for nitrogen gas, and a mechanical stirrer.  An initial volume of 750 mL of toluene 

was placed in the flask and stirred at 1000 rpm under a nitrogen atmosphere.  The two 
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solutions were placed in separate constant rate addition funnels and added at a rate of 1 

mL/min.  The drop rate was monitored to ensure equal rates of addition.  The addition 

was complete after 8 h, and the reaction mixture was allowed to stir for an additional 15 

h.  Gelatinous salts formed on the sides of the flask and were filtered off before the 

solvent was removed by rotary evaporation.  The white product precipitated out during 

evaporation and was then recrystallized from a benzene-heptane mixture.  The yield was 

54%.  The 1H NMR data is listed below and the spectrum is shown in Figure 2-13.  The 

mass spectrum is shown in Figure 2-14 with peaks at m/z of 291.2 (M + H+) and 313.2 

(M + Na+).  Crystals suitable for X-ray crystallography were grown by vapor diffusion 

with heptane diffusing into a solution of 7 dissolved in benzene.  The X-ray crystal 

structure unit cell for 7 contains two crystallographically independent molecules.  

Molecules A and B are shown in Figures 2-15 and 2-16, respectively.      

1H NMR (CDCl3):  δ = 7.06 (bs), 4.02 (s), 3.62 (s), 3.57 (t), 3.50 (m) ppm. 
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Figure 2-13.  1H NMR of 2.2*, (7) in CDCl3. 
 

 

Figure 2-14.  ESI-MS+ of 2.2*, (7) in MeOH. 
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Figure 2-15.  X-ray crystal structure of 2.2*, (7), Molecule A. 
 

 

Figure 2-16.  X-ray crystal structure of 2.2*, (7), Molecule B. 
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8.  1,4-dioxa-10,13-dithia-7,16-diazacyclooctadecane-8,15-dione, 2.2S*, (8) 

 A 500 mL solution of the diamine 2,2'-[ethane-1,2-diylbis(oxy)]diethanamine 

(40.5 mmol, 0.08100 M) and a 500 mL solution of 2 (20.3 mmol, 0.04057 M) were 

prepared in toluene.  The reaction methods were the same as those previously described 

for 7.  The addition was complete in 6.5 h.  Reaction salts were filtered before the solvent 

was evaporated under vacuum.  Flash chromatography on silica gel using CHCl3 and 

MeOH (up to 5%) as the eluent gave the pure diamide.  The product was obtained in a 

37% yield.  The 1H NMR data is listed below and the spectrum is shown in Figure 2-17.  

The mass spectrum is shown in Figure 2-18 with peaks at m/z of 323.1 (M + H+) and 

345.1 (M + Na+).  Crystals suitable for X-ray crystallography were grown by vapor 

diffusion with hexane diffusing into a solution of 8 dissolved in dichloromethane.  The 

X-ray crystal structure for 8 is shown in Figure 2-19.      

1H NMR (CDCl3):  δ = 7.45 (bs), 3.61 (s), 3.58 (t), 3.48 (m), 3.24 (s), 2.73 (s) ppm. 
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Figure 2-17.  1H NMR of 2.2S*, (8) in CDCl3. 

 

Figure 2-18.  ESI-MS+ of 2.2S*, (8) in MeOH. 
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Figure 2-19.  X-ray crystal structure of 2.2S*, (8). 
 
 
 
9.  17,18-dihydro-5H,9H-dibenzo[e,n][1,4,10,7,13]trioxadiazacyclopentadecine-

6,10(7H,11H)-dione, An2.1*, (9) 

 A 350 mL solution (0.035 M) of 4 was prepared by dissolving 3.01 g (12.3 mmol) 

in 142 mL of DMF and 208 mL of toluene.  An equimolar solution of the diacid chloride 

2,2'-oxydiacetyl chloride was made by diluting 1.46 mL (12.3 mmol, d = 1.44 g/mL) to 

350 mL with toluene.  A 5 L Morton flask was prepared with a magnetic stirring bar, an 

inlet and an outlet for nitrogen gas, 400 mL of toluene, and 9.9 mL (123 mmol) of 

pyridine.  Addition of the equimolar solutions of diamine and diacid chloride was carried 

out using 50 mL syringes and a syringe pump over a period of 6.5 h.  Reaction salts were 
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filtered and the solvent was removed by rotary evaporation.  The yellow paste that 

remained was recrystallized from ethanol to give a white crystalline product with a 60% 

yield.  The 1H and 13C NMR data is listed below and the spectra are shown in Figures 2-

20 and 2-21, respectively.  The mass spectrum is shown in Figure 2-22 with peaks at m/z 

of 343.1 (M + H+), 365.1 (M + Na+), and 707.2 (M2 + Na+).  Crystals suitable for X-ray 

crystallography were grown by slow evaporation of an ethanol solution.  The X-ray 

crystal structure for 9 is shown in Figure 2-23.      

1H NMR (CDCl3):  δ = 9.03 (s, 2H), 8.50 (dd, J = 7.8, 1.7 Hz, 2H), 7.09 (td, J = 7.8, 1.7 

Hz, 2H), 7.05 (td, J = 7.8, 1.6 Hz, 2H), 7.02 (dd, J = 7.8, 1.6 Hz, 2H), 4.38 (s, 4H), 4.21 

(s, 4H) ppm. 

13C NMR (CDCl3):  δ = 165.6, 146.8, 128.3, 124.5, 123.0, 120.1, 113.7, 70.6, 68.4 ppm.   

 

Figure 2-20.  1H NMR of An2.1*, (9) in CDCl3. 
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Figure 2-21.  13C NMR of An2.1*, (9) in CDCl3. 

 

Figure 2-22.  ESI-MS+ of 9, An2.1* in MeOH. 
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Figure 2-23.   X-ray crystal structure of An2.1*, (9). 
 
 
 
10.  6,7,10,11,17,18-hexahydro-5H,9H-dibenzo[e,n][1,4,10,7,13]trioxadiazacyclo-

pentadecine, An2.1, (10) 

 To a 250 mL three-neck round bottom flask fitted with a condenser and an inlet 

and an outlet for nitrogen gas, was added 1.32 g (3.84 mmol) of 9 and 40 mL (40 mmol) 

of 1M borane-THF complex.  The diamide dissolved upon addition of the reducing agent.  

The reaction was refluxed for 2 h, then 10 mL of a solution of 1:10 H2O-THF was added 

dropwise over 1 h with a syringe pump.  After 3 h, the solution was cooled and 30 mL of 

H2O were added to destroy the excess reducing agent.  The solvent was removed by 

evaporation under vacuum and a white residue remained.  The product was washed with 

water and dried under vacuum.  This reaction afforded a 97.7% yield.  The 1H NMR data 

is listed below and the spectrum is shown in Figure 2-24.  The mass spectrum is shown in 

Figure 2-25 with peaks at m/z of 315.2 (M + H+), 337.2 (M + Na+), and 651.4 (M2 + 
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Na+).  Crystals suitable for X-ray crystallography were grown by vapor diffusion with 

heptane diffusing into a solution of 9 dissolved in benzene.  The X-ray crystal structure 

for 9 is shown in Figure 2-26.  The chemical shift values in the 1H NMR spectra were in 

agreement with a previous literature report.5         

1H NMR (CDCl3):  δ = 6.80-6.91 (m), 6.61-6.68 (m), 4.93 (bs), 4.34 (s), 3.68 (t), 3.33 

(m) ppm. 

 

 

Figure 2-24.  1H NMR of An2.1, (10) in CDCl3. 
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Figure 2-25.  ESI-MS+ of An2.1, (10) in MeOH. 

 

Figure 2-26.  X-ray crystal structure of An2.1, (10). 
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11.  9,10,20,21-tetrahydro-5H,12H-dibenzo[e,q][1,4,10,13,7,16]tetraoxadiaza-

cyclooctadecine-6,13(7H,14H)-dione, An2.2*, (11) 

 A 0.050 M solution of the diamine was prepared by dissolving 5.50 g (0.0225 

mol) of 4 in 200 mL of DMF and 250 mL of toluene.  A 0.05 M solution of 2,2'-[ethane-

1,2-diylbis(oxy)]diacetyl chloride was prepared by dissolving 4.84 g (0.0225 mol) of 1 in 

450 mL of toluene.  A 5 L Morton flask was equipped with a mechanical stirrer, an inlet 

and an outlet for nitrogen gas, and two 500 mL constant rate addition funnels.  Initially, 

500 mL of toluene containing 32 mL (0.23 mol) of N(Et)3 was added to the Morton flask.  

The solutions of diamine and diacid chloride were placed in separate addition funnels.  

The solutions were added at an equal, constant rate to the 5 L flask over a period of 7 h.  

During addition the contents of the 5 L flask were stirred at 1000 rpm.  The reaction salts 

were filtered and the solvent was removed by rotary evaporation.  The white paste was 

recrystallized from EtOH.  The product was recovered as a white spongy material with a 

53% yield.  The 1H and 13C NMR data is listed on the following page and the spectra are 

shown in Figures 2-27 and 2-28, respectively.  The mass spectrum is shown in Figure 2-

29 with peaks at m/z of 409.2 (M + Na+) and 795.3 (M2 + Na+).  Crystals suitable for X-

ray crystallography were grown by vapor diffusion with heptane diffusing into a solution 

of 11 dissolved in benzene.   
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The X-ray crystal structure for 11 is shown in Figure 2-30.  The chemical shift values in 

the 1H NMR spectra were in agreement with a previous literature report.14     

1H NMR (CDCl3):  δ = 9.04 (s, 2H), 8.34 (d, J = 7.7 Hz, 2H), 7.02 (t, J = 7.7 Hz, 2H), 

6.96 (t, J = 7.7 Hz, 2H), 6.82 (d, J = 7.7 Hz, 2H), 4.42 (s, 4H), 4.10 (s, 4H),  

3.81 (s, 4H) ppm. 

13C NMR (CDCl3):  δ = 167.1, 146.6, 127.3, 124.2, 121.6, 120.6, 110.8, 70.8, 70.0,  

66.4 ppm. 

 

Figure 2-27.  1H NMR of An2.2*, (11) in CDCl3. 
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Figure 2-28.  13C NMR of An2.2*, (11) in CDCl3. 

 

Figure 2-29.  ESI-MS+ of An2.2*, (11) in MeOH. 
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Figure 2-30.  X-ray crystal structure of An2.2*, (11). 
 
 
 
12.    6,7,9,10,13,14,20,21-octahydro-5H,12H-dibenzo[e,q][1,4,10,13,7,16]tetraoxa-

diazacyclooctadecine, An2.2, (12)       

 The monocyclic diamide 11 (4.19 g, 10.8 mmol) and 1M borane-THF complex 

(110 mL, 110 mmol) were added to a 200 mL three-neck round bottom flask fitted with a 

condenser and an inlet and an outlet for nitrogen gas.  The diamide did not completely 

dissolve upon addition of the reducing agent.  The reaction was refluxed for 45 min and 

then a 40 mL solution of 1:10 H2O-THF was added dropwise over 1 h with a syringe 

pump.  Gas evolution ceased after 20 mL, but the entire amount was added.  The solution 

was cooled and 40 mL of H2O were added and all of the white sludge went into solution.  

The organic solvent was removed by rotary evaporation leaving a white precipitate that 
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was filtered and washed with water.  The product was dried under vacuum for 6 h and 

isolated in a 95.6% yield.  The 1H and 13C NMR data is listed below and the spectra are 

shown in Figures 2-31 and 2-32, respectively.  The mass spectrum is shown in Figure 2-

33 with peaks at m/z of 359.2 (M + H+) and 381.1 (M + Na+).  Crystals suitable for X-ray 

crystallography were grown by vapor diffusion with water diffusing into a solution of 12 

dissolved in benzene.  The X-ray crystal structure for 12 is shown in Figure 2-34.   

1H NMR (CDCl3):  δ = 6.84-6.90 (m), 6.76-6.79 (dd), 6.60-6.69 (m), 4.37 (s), 3.70 (t), 

3.59 (s), 3.32 (t) ppm. 

13C NMR (CDCl3):  δ = 146.08, 138.04, 121.84, 116.80, 110.42, 110.20, 70.59, 69.01, 

66.48, 43.39 ppm. 

 

Figure 2-31.  1H NMR of An2.2, (12) in CDCl3. 



 70

 

Figure 2-32.  13C NMR of An2.2, (12) in CDCl3. 

 

Figure 2-33.  ESI-MS+ of An2.2, (12) in MeOH. 
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Figure 2-34.  X-ray crystal structure of An2.2, (12). 
 
 
 
13.  6,7,9,10-tetrahydro-16H,20H-dibenzo[h,q][1,4,7,13,10,16]tetraoxadiaza-

cyclooctadecine-17,21(18H,22H)-dione, An3.1*, (13) 

 A 0.043 M solution of the diamine was prepared by dissolving 4.4 g (0.015 mol) 

of 6 in 350 mL of toluene and triethylamine (4.9 mL, 0.035 mol) was added as the 

scavenger base.  A 0.049 M solution of 2,2'-oxydiacetyl chloride was prepared by 

dissolving 2.0 mL (0.017 mol) in 350 mL of toluene.  A 5 L Morton flask was equipped 

with a mechanical stirrer, an inlet and an outlet for nitrogen gas, and two 500 mL 

constant rate addition funnels.  Initially, 750 mL of toluene was added to the Morton 

flask.  The solutions of diamine and diacid chloride were placed in separate addition 

funnels.  The solutions were added at an equal, constant rate to the 5 L flask over a period 
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of 6 h.  During addition the contents of the 5 L flask were stirred at 1000 rpm.  The 

reaction salts were filtered and the solvent was removed by rotary evaporation.  A light 

brown solid was recrystallized from a solvent mixture of benzene and heptane in 80% 

yield.  The 1H and 13C NMR data is listed below and the spectra are shown in Figures 2-

35 and 2-36, respectively.  The mass spectrum is shown in Figure 2-37 with peaks at m/z 

of 387.2 (M + H+) and 409.2 (M + Na+).  Crystals suitable for X-ray crystallography were 

grown by vapor diffusion with heptane diffusing into a solution of 13 dissolved in 

benzene.  In the X-ray crystal structure of 13 the unit cell contains a water molecule 

(fractional occupancy = 0.50) and two crystallographically independent molecules.  

Molecules A (with H2O) and B are shown in Figures 2-38 and 2-39, respectively.  The 

chemical shift values in the 1H NMR spectra were in agreement with a previous literature 

report.15       

1H NMR (CDCl3):  δ = 8.73 (s, 2H), 8.22 (dd, J = 7.9, 1.8 Hz, 2H), 7.06 (td, J = 7.9, 1.8 

Hz, 2H), 6.97 (td, J = 7.9, 1.5 Hz, 2H), 6.85 (dd, J = 7.9, 1.5 Hz, 2H), 4.25 (s, 4H), 4.21 

(m, 4H), 3.84 (m, 4H) ppm. 

13C NMR (CDCl3):  δ = 166.4, 147.8, 126.7, 125.0, 121.5, 111.4, 71.8, 69.4, 67.9 ppm. 
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Figure 2-35.  1H NMR of An3.1*, (13) in CDCl3. 

 

Figure 2-36.  13C NMR of An3.1*, (13) in CDCl3. 
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Figure 2-37.  ESI-MS+ of An3.1*, (13) in MeOH. 
 

 

Figure 2-38.  X-ray crystal structure of An3.1*, (13), Molecule A. 
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Figure 2-39.  X-ray crystal structure of An3.1*, (13), Molecule B. 
 
 
 
14.  6,7,9,10,17,18,21,22-octahydro-16H,20H,dibenzo[h,q][1,4,7,13,10,16]tetraoxa-

diazacyclooctadecine, An3.1, (14) 

 To a 200 mL 3-neck round bottom flask surrounded by an ice bath was added 50 

mL (50 mmol) of 1M borane-THF complex.  The monocyclic diamide, 13, (2.0 g, 5.2 

mmol) was partially dissolved in THF and added slowly to the reaction mixture with a 

pipet.  The pipet and beaker were thoroughly rinsed with THF.  The solution was 

refluxed under a nitrogen atmosphere for 1 h.  20 mL of a solution of 1:10 H2O-THF was 

added dropwise over 1 h with a syringe pump.  Bubbling ceased before the addition was 

complete.  The solution was allowed to cool to room temperature and 30 mL of H2O were 

added to destroy the excess reducing agent.  During removal of the organic solvent by 
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rotary evaporation a white solid precipitated from the solution.  The white solid was 

filtered and washed with water.  The product was dried under vacuum for 8 h.  A yield of 

95% was obtained.  The 1H and 13C NMR data is listed below and the spectra are shown 

in Figures 2-40 and 2-41, respectively.  The mass spectrum is shown in Figure 2-42 with 

peaks at m/z of 359.2 (M + H+) and 381.2 (M + Na+).  Crystals suitable for X-ray 

crystallography were grown by slow evaporation of a methanol solution.  The X-ray 

crystal structure for 14 is shown in Figure 2-43.  The chemical shift values in the 1H 

NMR spectra were in agreement with a previous literature report and are listed below.15         

1H NMR (CDCl3):  δ = 6.82-6.87 (m), 6.57-6.73 (m), 4.71 (bs), 4.16 (t), 3.93 (t), 3.78 (t), 

3.28 (t) ppm. 

13C NMR (CDCl3):  δ = 146.53, 138.25, 121.42, 116.94, 110.18, 109.80, 69.91, 67.06, 

43.80, 35.96 ppm. 

 

Figure 2-40.  1H NMR of An3.1, (14) in CDCl3. 
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Figure 2-41.  13C NMR of An3.1, (14) in CDCl3. 

 

Figure 2-42.  ESI-MS+ of An3.1, (14) in MeOH. 
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Figure 2-43.  X-ray crystal structure of An3.1, (14).   
 
 

E.  Synthesis of bicyclic diamines (cryptands) 

 

15.  9,10,20,21-tetrahydro-5,14-(ethanooxyethano)dibenzo[e,q][1,4,10,13,7,16]-

tetraoxadiazacyclooctadecine-6,13-dione, An2.1.2*, (15) 

 A solution (0.0160 M) of the monocyclic diamine, 10, was prepared by adding 

1.51 g (0.00479 mol) to 300 mL of toluene.  Pyridine (1.0 mL, 0.012 mol) was added to 

this solution as a scavenger base.  A 0.0164 M solution of 1 was prepared by adding 1.06 

g (0.00493 mol) of the diacid chloride to 300 mL of toluene.  A 5 L Morton flask was 

equipped with a mechanical stirrer, an inlet and an outlet for nitrogen gas, and two 500 

mL constant rate addition funnels.  Initially, 750 mL of toluene was added to the Morton 

flask.  The solutions of diamine and diacid chloride were placed in separate addition 
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funnels.  During addition the contents of the 5 L flask were stirred at 1000 rpm.  The 

equimolar solutions of 10 and 1 were added at the same rate for the first 180 mL of each 

solution.  After this point, the solution of 1 was unintentionally added at a rate twice as 

fast as 10.  The pyridinium salts were filtered and the reaction solvent was removed by 

rotary evaporation.  The pure bicyclic diamide 15 was recovered by flash 

chromatography on silica gel using CH2Cl2 and MeOH (up to 5%) as the eluent.  Yellow 

crystals were collected in 11% yield.  The mass spectrum is shown in Figure 2-44 with 

peaks at m/z of 457.2 (M + H+), 479.2 (M + Na+), and 935.4 (M2 + Na+).  Crystals 

suitable for X-ray crystallography were grown by vapor diffusion with heptane diffusing 

into a solution of 15 dissolved in dichloromethane.  The X-ray crystal structure for 15 is 

shown in Figure 2-45.   

 

Figure 2-44.  ESI-MS+ of An2.1.2*, (15) in MeOH. 
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Figure 2-45.  X-ray crystal structure of An2.1.2*, (15). 
 
 
 
16.    6,7,9,10,12,13,20,21-octahydro-5,14-(ethanooxyethano)dibenzo[e,q]-

[1,4,10,13,7,16]tetraoxadiazacyclooctadecine, An2.2.1, (16) 

a)  A 100 mL 3-neck round bottom flask was surrounded by an ice bath and was prepared 

with a condenser and an inlet and an outlet for nitrogen gas.  A solution of the 1M 

borane-THF complex (8 mL, 8 mmol) was added to the flask, followed by the slow 

addition of 0.10 g (0.22 mmol) of 15 partially dissolved in THF.  The reaction mixture 

was refluxed for 2 hr prior to the addition of 5 mL of a solution of 1:10 H2O-THF with a 

syringe pump.  The addition was complete after 30 min and the solution was allowed to 

cool to room temperature.  The excess reducing agent was destroyed by the addition of 10 

mL of H2O.  The organic solvent was removed by rotary evaporation.  The remaining 

solution was treated with 10 mL of 6 M HCl, made basic with NH3, and then extracted 

with CHCl3 (3 x 50 mL).  The CHCl3 layer was dried with MgSO4, filtered, and rotary 
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evaporated.  During removal of the organic solvent a white solid precipitated from the 

solution.  The solid was recovered from the CHCl3 in a 60% yield.    

b)  To a 100 mL 3-neck round bottom flask equipped with a condenser and an inlet and 

an outlet for nitrogen gas, was added 0.508 g (1.11mmol) of 17 and 15 mL (15 mmol) of 

1M borane-THF complex.  The solution was refluxed for 1 hr and then a 15 mL solution 

of 10% H2O:THF was added with a syringe pump.  The addition was complete after 1 h 

and the flask was allowed to cool to room temperature.  Water (10mL) was added to 

destroy the excess reducing agent.  The organic solvent was removed by rotary 

evaporation and the remaining aqueous solution was treated with concentrated 6 M HCl, 

6 M NH3, and then extracted with CHCl3 (3 x 40 mL).  The product was recovered from 

the CHCl3 layer in a 50% yield.  The 1H and 13C NMR data is listed below and the 

spectra are shown in Figures 2-46 and 2-47, respectively.  The mass spectrum is shown in 

Figure 2-48 with peaks at m/z of 451.2 (M + Na+) and 879.5 (M2 + Na+).  Crystals 

suitable for X-ray crystallography were grown by vapor diffusion with heptane diffusing 

into a solution of 16 dissolved in benzene.  The X-ray crystal structure for 16 is shown in 

Figure 2-49.   

1H NMR (CDCl3):  δ = 6.86-6.97 (m), 4.22-4.42 (m), 3.97-4.06 (m), 3.11-3.89 (m) ppm. 

13C NMR (CDCl3):  δ = 153.19, 141.64, 122.02, 121.47, 119.95, 114.53, 70.88, 70.37, 

69.71, 68.17, 56.22, 54.06 ppm. 
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Figure 2-46.  1H NMR of An2.2.1, (16) in CDCl3. 

 

Figure 2-47.  13C NMR of An2.2.1, (16) in CDCl3. 
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Figure 2-48.  ESI-MS+ of An2.2.1, (16) in MeOH. 

 

 

Figure 2-49.  X-ray crystal structure of An2.2.1, (16).   
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17.  6,7,9,10,12,13,20,21-octahydro-5,14-(ethanooxyethano)dibenzo[e,q]- 

[1,4,10,13,7,16]tetraoxadiazacyclooctadecine-23,27-dione, An2.2.1*, (17) 

 A 0.01096 M solution of 12 was prepared by adding 2.003 g (5.587 mmol) of the 

monocyclic diamine to a mixture of 290 mL of toluene and 220 mL of DMF.  A 0.011 M 

solution of the diacid chloride was made by adding 0.67 mL (5.6 mmol) of 2,2'-

oxydiacetyl chloride to 510 mL of toluene.  A 5 L Morton flask was prepared with a 

mechanical stirrer, an inlet and an outlet for nitrogen gas, and an initial volume of 800 

mL of toluene.  Pyridine (4.5 mL, 0.056 mol) was added as a scavenger base.  The 

equimolar solutions were added at the same rate with two 50 mL syringes powered by a 

syringe pump.  The reaction solvent was removed by rotary evaporation.  A yellow oil 

and white precipitate remained.  The crude mixture was dissolved in water and the 

product was extracted with CH2Cl2.  The bicyclic diamide 17 was obtained in a 65% 

yield.  The mass spectrum is shown in Figure 2-50 with peaks at m/z of 457.3 (M + H+) 

and 479.2 (M + Na+).  Crystals suitable for X-ray crystallography were grown by vapor 

diffusion with methanol diffusing into a solution of 17 dissolved in dichloromethane.   

The X-ray crystal structure unit cell for 17 contains two crystallographically independent 

molecules.  Molecules A and B are shown in Figures 2-51 and 2-52, respectively.       

 



 85

 

Figure 2-50.  ESI-MS+ of An2.2.1*, (17) in MeOH. 
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Figure 2-51.  X-ray crystal structure of An2.2.1*, (17), Molecule A.   
 
 

 

Figure 2-52.  X-ray crystal structure of An2.2.1*, (17), Molecule B. 
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18.  9,10,20,21-tetrahydro-5,14-(ethanooxyethanooxyethano)dibenzo[e,q]- 

[1,4,10,13,7,16]tetraoxadiazacyclooctadecine-6,13-dione, An2.2.2*, (18) 

 A 0.0164 M of 12 was prepared by adding 2.65 g (7.39 mmol) of the monocyclic 

diamine to a mixture of 250 mL of toluene and 200 mL of DMF.  Pyridine (6.2 mL, 0.077 

mol) was added to the diamine solution as a scavenger base.  A 0.0172 M solution of the 

diacid chloride was made by adding 1.66 g (7.72 mmol) of 1 to 450 mL of toluene.  A 5 

L Morton flask was outfitted with a mechanical stirrer, an inlet and an outlet for nitrogen 

gas.  An initial volume of 600 mL of toluene was added to the flask.  Constant rate 

addition funnels were used to add the equimolar solutions at a similar rate to the reaction 

flask.  The reaction solvent was removed by rotary evaporation and a yellow oil 

remained.  The bicyclic diamide 18 was purified by flash column chromatography on 

silica gel using CH2Cl2 and MeOH (up to 10%) as the eluent.  Recrystallization was 

accomplished from a solvent mixture of benzene and heptane.  The yield was 32%.  The 

mass spectrum is shown in Figure 2-53 with peaks at m/z of 501.3 (M + H+), 523.3 (M + 

Na+), and 1023.5 (M2 + Na+).  Crystals suitable for X-ray crystallography were grown by 

vapor diffusion with heptane diffusing into a solution of 18 dissolved in dichloromethane.  

The X-ray crystal structure for 18 is shown in Figure 2-54.   
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Figure 2-53.  ESI-MS+ of An2.2.2*, (18) in MeOH. 

 

 

Figure 2-54.  X-ray crystal structure of An2.2.2*, (18). 
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19.  6,7,9,10,12,13,20,21-octahydro-5,14-(ethanooxyethanooxyethano)dibenzo[e,q]- 

[1,4,10,13,7,16]tetraoxadiazacyclooctadecine, An2.2.2, (19) 

 A 200 mL 3-neck round bottom flask was surrounded by an ice bath and equipped 

with a condenser and an inlet and an outlet for nitrogen gas.  The 1M Borane-THF 

complex (8 mL, 8 mmol) was added to the flask, followed by the slow addition of 0.505 g 

(1.01 mmol) of 18 dissolved in THF.  The solution was refluxed for 1.5 h, then 18 mL of 

a solution of 1:10 H2O-THF was added using a syringe pump.  The addition was 

complete after 20 min and the solution was allowed to cool to room temperature.  

Addition of 20 mL of H2O was added to destroy the excess reducing agent.  The organic 

solvent was removed by rotary evaporation and the remaining aqueous solution was 

treated with 15 mL of 6 M HCl.  The remaining solution was made basic with LiOH and 

then extracted with CHCl3 (3 x 75 mL).  The CHCl3 layer was dried with Na2SO4, 

filtered, and the solvent removed by rotary evaporation.  Recrystallization was 

accomplished from a solvent mixture of benzene and heptane.  The product was obtained 

in quantitative yield (100%).  The 1H and 13C NMR data is listed below and the spectra 

are shown in Figures 2-55 and 2-56, respectively.  The mass spectrum is shown in Figure 

2-57 with a peak at m/z of 495.4 (M + Na+).  Crystals suitable for X-ray crystallography 

were grown by vapor diffusion with heptane diffusing into a solution of 19 dissolved in 

dichloromethane.  The X-ray crystal structure for 19 is shown in Figure 2-58.  The 

chemical shift values in the 1H NMR spectra were in agreement with a previous literature 

report.16   

1H NMR (CDCl3):  δ = 6.90-6.94 (m), 4.39 (s), 3.79-3.85 (m), 3.38-3.68 (m), 3.08-3.17 

(m) ppm. 
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13C NMR (CDCl3):  δ = 152.99, 141.58, 122.30, 121.84, 120.01, 115.79, 71.66, 69.59, 

68.44, 54.10 ppm. 

    

 

Figure 2-55.  1H NMR of An2.2.2, (19) in CDCl3. 



 91

 

Figure 2-56.  13C NMR of An2.2.2, (19) in CDCl3. 

 

Figure 2-57.  ESI-MS+ of An2.2.2, (19) in MeOH. 
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Figure 2-58.  X-ray crystal structure of An2.2.2, (19). 
 
 
 
20.  6,7,9,10,28,29,31,32-octahydro-16,44:22,38-di(ethanooxyethano)tetrabenzo- 

[h,q,z,i1][1,4,7,13,19,22,25,31,10,16,28,34]octaoxatetraazacyclohexatriacontine-

17,21,39,43-tetrone, An3.1.1.3*, (20) 

 A 0.0105 M solution of the monocyclic diamine was prepared by adding 1.511 g 

(4.216 mmol) of 14 to a mixture of 250 mL of toluene, 150 mL of DMF, and 0.9 mL 

(0.01 mol) of pyridine.  A 0.0172 M solution of the diacid chloride was made by adding 

0.52 mL (4.4 mmol) of 2,2'-oxydiacetyl chloride to 400 mL of toluene.  A 5 L Morton 

flask was prepared with a mechanical stirrer, an inlet and an outlet for nitrogen gas, and 

an initial volume of 500 mL of toluene.  The equimolar solutions were added with 

constant rate addition funnels at a similar rate.  The reaction was stirred at 1000 rpm.  

Rotary evaporation was used to reduce the organic solvent to a volume of 150 mL.  The 

product precipitated out as a white solid.  The tricyclic tetraamide was recrystallized from 
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toluene and recovered for a 12% yield.  The mass spectrum is shown in Figure 2-59 with 

a peak at m/z of 479.3 (M2 + 2Na+).     

 

Figure 2-59.  ESI-MS+ of An3.1.1.3*, (20) in MeOH. 
 
 
 
21.  6,7,9,10,17,18,20,21,28,29,31,32,39,40,42,43-hexadecahydro-16,44:22,38-

di(ethanooxyethano)tetrabenzo[h,q,z,i1][1,4,7,13,19,22,25,31,10,16,28,34]octaoxa-

tetraazacyclohexatriacontine, An3.1.1.3, (21) 

 The tricyclic diamide 20 (0.163 g, 0.178 mmol) was added to a 200 mL 3-neck 

round bottom flask surrounded by an ice bath and equipped with a condenser and an inlet 

and an outlet for nitrogen gas.  The 1M Borane-THF complex (5 mL, 5 mmol) was added 

to the flask slowly.  The solution was refluxed for 4 h followed by the addition of 30 mL 

of a solution of 1:10 H2O-THF using a syringe pump.  The solution was allowed to cool 

to room temperature and 20 mL of H2O were added to destroy the excess reducing agent.  
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The organic solvent was removed by rotary evaporation and the remaining solution was 

acidified with 15 mL of 6 M HCl, made basic with NH3, and then extracted with CHCl3 

(3 x 75 mL).  The CHCl3 layer was dried with MgSO4, filtered, and the solvent removed 

by rotary evaporation.  The product was obtained in quantitative yield (100%).  The 1H 

and 13C NMR data is listed below and the spectra are shown in Figures 2-60 and 2-61, 

respectively.  The mass spectrum is shown in Figure 2-62 with a peak at m/z of 429.2 

(M2 + 2H+).  Crystals suitable for X-ray crystallography were grown by vapor diffusion 

with heptane diffusing into a solution of 21 dissolved in benzene.  The X-ray crystal 

structure for 21 is shown in Figure 2-63.   

1H NMR (CDCl3):  δ = 6.77-6.91 (m), 4.15 (t), 3.94 (t), 3.77 (t), 3.55 (t), 3.37-3.45 (m) 

ppm. 

13C NMR (CDCl3):  δ = 152.10, 140.90, 121.81, 121.28, 119.99, 113.47, 70.40, 70.14, 

69.66, 68.19, 54.03, 52.28 ppm. 
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Figure 2-60.  1H NMR of An3.1.1.3, (21) in CDCl3. 

 

Figure 2-61.  13C NMR of An3.1.1.3, (21) in CDCl3. 
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Figure 2-62.  ESI-MS+ of An3.1.1.3, (21) in MeOH. 

 

Figure 2-63.  X-ray crystal structure of An3.1.1.3, (21). 
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22.  6,7,9,10,-tetrahydro-16,22-(ethanooxyethano)dibenzo[h,q] [1,4,7,13,10,16]-

tetraoxadiazacyclooctadecine-17,21-dione, An3.1.1*, (22) 

 A solution of the monocyclic diamine (0.0038 M) was prepared by adding 0.550 g 

(1.53 mmol) of 14 to 400 mL of CH2Cl2 containing 0.5 mL (0.006 mol) of pyridine.  The 

diacid chloride solution (0.0043 M) was made by adding 0.20 mL (1.7 mmol) of 2,2'-

oxydiacetyl chloride to 400 mL of CH2Cl2.  A 5 L Morton flask was prepared with a 

mechanical stirrer, an inlet and an outlet for nitrogen gas, an initial volume of 500 mL of 

CH2Cl2.  The flask was surrounded by an ice-bath and stirred at 1000 rpm.  Constant rate 

addition funnels were used to add the equimolar solutions at a similar rate.  Addition was 

complete after 7 h.  Rotary evaporation was used to remove the solvent.  The bicyclic 

diamide 22 was purified by flash column chromatography on silica gel using CH2Cl2 and 

MeOH (up to 10%) as the eluent.  The 1H and 13C NMR data is listed below and the 

spectra are shown in Figures 2-64 and 2-65, respectively.  The mass spectrum is shown in 

Figure 2-66 with peaks at m/z of 457.3 (M + H+) and 479.3 (M + Na+).  Crystals suitable 

for X-ray crystallography were grown by vapor diffusion with methanol diffusing into a 

solution of 22 dissolved in dichloromethane.  The X-ray crystal structure for 22 is shown 

in Figure 2-67.   

1H NMR (CDCl3):  δ = 6.96-7.25 (m), 4.52 (m), 4.39-4.44 (m), 3.96 (m), 3.83-3.85 (m), 

3.66-3.71 (m) ppm. 

13C NMR (CDCl3):  δ = 168.78, 154.73, 131.34, 128.68, 128.04, 121.58, 114.12, 71.94, 

70.12, 69.05, 68.49, 50.85 ppm. 
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Figure 2-64.  1H NMR of An3.1.1*, (22) at 58ºC in CDCl3. 

 

Figure 2-65.  13C NMR of An3.1.1*, (22) at 58ºC in CDCl3. 
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Figure 2-66.  ESI-MS+ of An3.1.1*, (22) in MeOH. 
 
 
 
 

 

Figure 2-67.  X-ray crystal structure of An3.1.1*, (22). 
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23.  6,7,9,10,17,18,20,21-octahydro-16,22-(ethanooxyethano)dibenzo[h,q]-

[1,4,7,13,10,16]tetraoxadiazacyclooctadecine, An3.1.1, (23) 

 A 50 mL 3-neck round bottom flask was surrounded by an ice bath and was 

prepared with a condenser and inlet and an outlet for nitrogen gas.  1M borane-THF 

complex (5 mL, 5 mmol) was added to the flask, followed by the slow addition of 0.16 g 

of (0.35 mmol) of 22 dissolved in THF.  The reaction mixture was refluxed for 1.5 hr 

prior to the addition of 6 mL of a 1:10 H2O-THF solution using a syringe pump.  The 

addition was complete after 45 min and the solution was allowed to cool to room 

temperature.  The excess reducing agent was destroyed by the addition of 10 mL of H2O.  

The organic solvent was removed by rotary evaporation.  The remaining aqueous solution 

was treated with 5 mL of 6 M HCl, made basic with 6 M NH3, and then extracted with 

CHCl3 (3 x 50 mL).  The CHCl3 layer was dried with MgSO4, filtered, and the solvent 

removed by rotary evaporation.  A dark brown oil was recovered from the CHCl3 layer 

and the mass spectrum shows a relatively pure product. However, thin-layer 

chromatography revealed multiple products and cryptand An3.1.1 could not be 

crystallized from this crude mixture.  The mass spectrum is shown in Figure 2-68 with 

peaks at m/z of 429.2 (M + H+) and 451.2 (M + Na+).    
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Figure 2-68.  ESI-MS+ of An3.1.1, (23) in MeOH. 
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Chapter Three  
 

Spectrophotometric studies of An2.2.1 and An2.2.2 
  

I.  Introduction 

Methods used to determine metal ion complexation constants include 

potentiometric1,2, calorimetric1, NMR2, and spectrophotometric3 titrations.  The solubility 

of cryptands An2.2.1 and An2.2.2 (~ 10-4 M) in water is not sufficient for potentiometric 

titration methods (~ 10-3 M).  BAPTA, as shown in Figure 3-1, is an acyclic 

benzoannelated tetraacetic acid compound that has similar chromophores as cryptands 

An2.2.1 and An2.2.2.  Tsien3 showed that the peaks in the UV spectrum for BAPTA shift 

significantly to shorter wavelengths upon metal complexation.  A similar change in the 

UV spectrum also occurs when the pH drops below 6.5.  The chromophore conjugation 

of the nitrogens with the rings as seen in BAPTA is expected to change with degree of 

protonation (L, HL+, H2L2+) and when nitrogens are involved in metal ion complexation 

(ML) for cryptands An2.2.1 and An2.2.2.     

O O
NN

OH
O

HOOH OOHO
O

 

Figure 3-1.  Structure of bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid 
(BAPTA). 
 

    Spectrophotometric titrations were employed to investigate the areas of acid-base 

and metal ion complexation equilibria of An2.2.1 and An2.2.2.  Cryptands An2.2.1 and 

An2.2.2 each have two nitrogen atoms that can undergo stepwise protonation (KH1 and 
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KH2).  Cryptands generally form one-to-one metal cryptate complexes (KML), and some 

cryptates can be involved in other side reactions (KMLOH).4  These reactions and the 

associated equilibrium constants are defined by eqs 3.1-3.4.    

 H+ + L HL+ KH1    (3.1) 

 H+ + HL+ H2L2+ KH2    (3.2) 

 Mn+ + L MLn+ KML    (3.3) 

 MLOH + H+ML + H2O KMLOH   (3.4) 

 Reactions with protons will be reported as protonation constants as opposed to 

acid dissociation constants.  Protonation constants (KHi) are equal to the inverse of the 

appropriate dissociation constant (Kai).  The dissociation constants are described in eqs 

3.5 and 3.6 and the difference in notation is shown in eqs 3.7 and 3.8.    

 

  
H+ + LHL+ Ka2=

[HL+]
[H+]*[L]

   (3.5) 
 

  
H+ + HL+H2L2+ Ka1=

[H2L2+]
[H+]*[HL+]

   (3.6) 
 

  
KH2 = 1

Ka1

, log KH2 = pKa1

     (3.7) 
 

  
KH1 = 1

Ka2

, log KH1 = pKa2

     (3.8)  
 

 
 Determination of the protonation constants is necessary prior to measurement of 

the metal ion complexation constants.  Stability constants (KML) can be measured directly 

only where there is no interference from the protonation reaction.  If this is not possible, 
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then conditional stability constants (K'ML) are measured at a pH where there is 

competition from the protonation reactions.  The intrinsic (or unconditional) stability 

constants can be determined for a given metal ion from the conditional stability constant 

data and the values of the ligand protonation constants.    
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II.  Experimental 

 This section presents the chemicals and methodologies used for the spectroscopic 

determination of the protonation and complexation constants of An2.2.1 and An2.2.2. 

 
 

A.  Reagents 
 
 Distilled Deionized Water - D.D. H2O.  Distilled deionized water was used for all 

aqueous solutions and was prepared using a Corning Megapure System distillation 

apparatus, model MP-3A.   

 Perchloric Acid - HClO4.  Solutions containing HClO4 at different concentrations 

were made from 70% redistilled acid, ~ 11.7 M (GFS Chemicals) and were used to adjust 

the pH of solutions.    

 Tetraethylammonium Hydroxide - (CH3CH2)4NOH, Et4NOH.  Solutions 

containing Et4NOH at different concentrations were made from 20% w/v concentrated 

base, ~ 1.5 M (Fluka chemical) by diluting with freshly boiled D.D. H2O and storing 

under N2.  These solutions were used to adjust the pH of solutions.     

 Tetraethylammonium Perchlorate - (CH3CH2)4NClO4, TEAP.  TEAP was made 

by titrating 20% tetraethylammonium hydroxide with 70% redistilled perchloric acid to 

one drop past the equivalence point.  The equivalence point is distinct because of the 

large decrease in pH.  The product was filtered and recrystallized five times from double 

distilled water to insure purity.  The final product was vacuum dried for six hours.       

 Hexamethylenetetramine - Hexamine.  Hexamine buffer (Aldrich, 99+%) was 

prepared by weight as a 20 % solution in water.  
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 Potassium Chloride - KCl (Aldrich, 99.999%, puratronic) was dried in an oven at 

110ºC overnight.  Solutions were prepared by weight. 

 Sodium Chloride - NaCl (Aldrich, 99.999%, puratronic) was dried in an oven at 

110ºC overnight.  Solutions were prepared by weight. 

 Barium Chloride - BaCl2 (Aldrich, 99.999%, metals basis) was used as obtained 

from Aldrich.  Solutions were prepared by weight. 

 Strontium Chloride - SrCl2·6H2O (Alfa Aesar, 99.9965%, puratronic, metals 

basis) was used as obtained from Aldrich.  Solutions were prepared by weight. 

 Calcium Chloride - CaCl2·xH2O (Aldrich, 99.999%, metals basis) was used to 

prepare solutions that were standardized by EDTA titration using EBT as an indicator 

and ammonia/ammonium chloride (pH 10) as a buffer.5 

 Cadmium Perchlorate - Cd(ClO4)2.  Cd(ClO4)2 (Aldrich, 99.999%, metals basis) 

was used to prepare solutions that were standardized by EDTA titration using xylenol 

orange as an indicator and hexamine as a buffer.5  

 Lead Perchlorate - Pb(ClO4)2.  Pb(ClO4)2 (Aldrich, 99.995+%, metals basis) was 

used to prepare solutions that were standardized by EDTA titration using xylenol orange 

as an indicator and hexamine as a buffer.5 

Noncomplexing Tertiary Amines -  Buffers used were described by Rorabacher 

and co-workers6,7 as noncomplexing tertiary amines that are incapable of forming 

complexes with metal ions.  The buffers N,N'-diethylethylenediamine-N,N'-bis(3-

propanesulfonic acid (DESPEN, pKa1 = 5.62, pKa2 = 9.06), piperazine-N,N'-bis(2-

ethanesulfonic acid) (PIPES, pKa1 = 2.67, pKa2 = 6.78), piperazine-N,N'-bis(3-

propanesulfonic acid) (PIPPS, pKa1 = 3.79, pKa2 = 7.97), piperazine-N,N'-bis(4-
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butanesulfonic acid) (PIPBS, pKa1 = 4.29, pKa2 = 8.55), 2-(N-morpholino)ethanesulfonic 

acid (MES, pKa = 6.06), and 4-(N-morpholino)butanesulfonic acid (MOBS, pKa = 7.48) 

were purchased from Sigma Chemical Company and GFS Chemicals. 

Glassware - All glassware used for metal titrations was soaked overnight in an 

acid bath (3:1 v/v sulfuric acid:nitric acid) and rinsed thoroughly with distilled water 

before use.   

 

B.  pH Measurements 
 

Measurements of pH were performed with a Fisher Scientific pH meter, model 

AR15 or 825MP, and an Orion Ross semi-micro combination pH electrode, model 8103 

or an Orion Ross semi-micro combination pH electrode, model 8175BN.  The pH meter 

was standardized each day before use with the commercially available (Fisher, Gram 

Pac) buffers potassium acid phthalate (pH = 4.01), potassium phosphate monobasic 

sodium phosphate dibasic (pH = 6.86), and borax (pH = 9.18).  The internal filling 

solution for the electrode was dependent upon the ligand and metal used during analysis.  

For An2.2.2, a solution of NaNO3 (10%) or TEAP (0.1 M) was used to minimize cation 

complexation for all pH measurements of solutions.  An internal electrolyte solution of 

0.1 M TEAP was used for all pH measurements of An2.2.1 solutions except for those 

containing K+ because of the low solubility of KClO4.  A solution of KCl (3.5 M) was 

used as the internal solution for this case.     
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C. Standardization of Ligand Solutions 
 

 The concentrations of An2.2.1 and An2.2.2 in stock solutions were determined by 

spectrophotometric titrations because of the inaccuracy of weighing milligram samples 

and the possibility of samples being contaminated with an unknown amount of solvent.  

Samples of the stock solutions were diluted to ~10-4 M and adjusted to pH 6.0-7.0.  A 

2.70 mL solution of the ligand and 5 mM PIPES buffer were titrated with 2-4 µL aliquots 

of a standardized Pb(ClO4)2 solution until the spectra no longer changed with the addition 

of metal.  Absorbance data for a selected wavelength was plotted versus metal 

concentration.  Two different portions of the plot were used for analysis:  the region 

where there is a linear increase in absorbance with the addition of metal and a region 

where there is no change upon the addition of metal.  Data from each set was fit to a 

linear model using the least-squares method as shown in Figure 3-2.8  The linear 

equations (Abs (λ) = m[Pb2+] + b) determined from the two sets of data were combined to 

find the concentration of [Pb2+] at the intersection of the two lines.  The Kaleidagraph 

data results listed in the figures throughout this work are the output of the data fitting 

program and are not representative of the correct number of significant figures.       
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Figure 3-2.  Plot of absorbance at 274 nm versus [Pb2+] for the standardization of 
An2.2.2, (19), at pH = 6.6.   
 

Assuming 1:1 metal ion-ligand stoichiometry and that the metal ion reacts 

quantitatively i.e., [ML] ≥ 0.99 [M] added, the [Pb2+] value found corresponds to the 

equivalence point of the reaction, and is equal to the concentration of the dilute ligand 

solution.  Subsequent correction for dilution gives the concentrations of the stock 

solution.  Micropipets (Gilson) were used for solution preparation and the addition of 

stock metal solutions.  Each addition was made using a new pipet tip (Rainin and Fisher).  

Calibration of the micropipets was done professionally (Calibration Services) by 

comparing the mass of double distilled water with the designated volume.                   
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D.  Spectrophotometric Analysis of An2.2.1 and An2.2.2 

 It was necessary to determine if cryptands obeyed the Beer-Lambert Law (eq. 3.9) 

in the concentration range 0.04 - 0.1 mM and pH ~ 2.7 to ~ 6.8.  These concentration and 

pH ranges will be used in spectrophotometric titrations.  In Equation 3.9, b refers to the 

pathlength of the cell, which is 1 cm in all cases, and c is the concentration of the ligand, 

M or mM. 

  
A  =    bcλ λε         (3.9) 

 The pH of a 0.1 mM solution of the cryptand and 5 mM PIPES was adjusted to 

either low (~ 2.7) or high (~ 6.8) pH using HClO4 or Et4NOH.  The initial concentrations 

of An2.2.1 and An2.2.2 were 0.070 mM and 0.18 mM, respectively.  The samples were 

maintained at 25 ºC by an external temperature bath (Fisher) attached to the cuvette 

holder.  The solution was allowed to equilibrate in the cell holder for 2 minutes, then the 

spectrum was scanned from 190 - 820 nm using the diode array spectrophotometer.  The 

solution was then diluted by 0.5 mL using 5 mM buffer and inverted ten times to promote 

mixing and the spectrum recorded after a 2 min equilibration time.  The process was 

repeated until the concentrations of the ligands were 0.025 mM and 0.068 mM for 

An2.2.1 and An2.2.2, respectively.  Figures 3-3 and 3-5 show the absorbance versus 

wavelength spectra at low and high pH for An2.2.1, respectively and Figures 3-4 and 3-6 

show the relationship of absorbance at a specific wavelength versus concentration for the 

respective spectra.  The absorbance versus concentration data was fit using 

Kaleidagraph.8  Figures 3-7 and 3-9 show the absorbance versus wavelength spectra at 

low and high pH for An2.2.2, respectively and Figures 3-8 and 3-10 show the 

relationship of absorbance at a specific wavelength versus concentration for the 
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respective spectra.  A linear concentration dependence was found at both low and high 

pH for An2.2.1 and An2.2.2.  Molar absorptivity values for An2.2.1 at low and high pH 

were 4720(52) M-1cm-1 at 272 nm and 4900(66) M-1cm-1 at 278 nm, respectively.  The 

molar absorptivity value for An2.2.2 at 272 nm (4160(38) M-1cm-1) was lower in 

comparison to An2.2.1 and the value for An2.2.2 at 276 nm was 4420(30) M-1cm-1.  

Cryptands An2.2.1 and An2.2.2 both have larger molar absorptivity values at the high pH 

range (278 nm and 276 nm, respectively) in comparison to the lower pH range (272 nm 

for both).     
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Figure 3-3.  Absorbance versus wavelength for An2.2.1, (16), from 0.070 mM -  
0.025 mM at pH = 2.5-3.1.   

0.15

0.20

0.25

0.30

0.35

0.40

2.00 10-5 4.00 10-5 6.00 10-5 8.00 10-5

A
bs

or
ba

nc
e 

at
 2

72
nm

Conc. (M)

ErrorValue
52.2764719.6ε

0.00238860.062319y-int
NA3.0168e-05Chisq
NA0.99957R

 
 
Figure 3-4.  Absorbance at 272 nm versus concentration for An2.2.1, (16), at pH = 2.5-
3.1.  The solid line was calculated using eq 3.9 and the molar absorptivity, ε, is listed in 
the table. 
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Figure 3-5.  Absorbance versus wavelength for An2.2.1, (16), from 0.070 mM - 0.025 
mM at pH = 6.0 - 6.6.   
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Figure 3-6.  Absorbance at 278 nm versus concentration for An2.2.1, (16), at pH = 6.0 - 
6.6.  The solid line was calculated using eq 3.9 and the molar absorptivity, ε, is listed in 
the table. 
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Figure 3-7.  Absorbance versus wavelength for An2.2.2, (19), from 0.18 mM -  
0.068 mM at pH = 2.4-3.0.   
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Figure 3-8.  Absorbance at 272 nm versus concentration for An2.2.2, (19), at pH = 2.4-
3.0.  The solid line was calculated using eq 3.9 and the molar absorptivity, ε, is listed in 
the table. 
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Figure 3-9.  Absorbance versus wavelength for An2.2.2, (19), from 0.18 mM -  
0.068 mM at pH = 6.2-6.6.   
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Figure 3-10.  Absorbance at 276 nm versus concentration for An2.2.2, (19), at pH = 6.2-
6.6.  The solid line was calculated using eq 3.9 and the molar absorptivity, ε, is listed in 
the table. 
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E.  Determination of Ligand Protonation Constants (KH) 

 Ligand solutions for protonation constant measurements were prepared to have 

concentrations of 50-100 µM and were buffered from pH 2-10 with PIPES, PIPBS, 

DESPEN, and MOBS at 1 mM each.  EDTA was added at a concentration of 0.1 mM to 

complex any metal contaminants.  A blank solution of the buffers and EDTA did not 

have an absorbance signal (λ > 250 nm) that would interfere with the ligands studied.  

Solution mixtures containing the ligand, buffers, and EDTA were initially treated with 

HClO4 to lower the pH to 2.  In addition to the standard buffers used to calibrate the pH 

meter, potassium chloride-hydrochloric acid buffer (pH = 2.00) and potassium 

biphthalate-hydochloric acid buffer (pH = 3.00) were also used so the calibration would 

cover the entire pH range investigated.  Titrations were carried out from the acidic to 

basic region or from the basic to acidic region by the addition of small aliquots of 

concentrated Et4NOH or HClO4, respectively.  Spectrophotometric data were obtained 

from 190 nm to 820 nm using a Hewlett Packard 8452A diode array spectrophotometer.  

The pH was first adjusted by the addition of HClO4 or Et4OH to the ligand solution and 

then the cuvette was inverted ten times to ensure adequate mixing.  The cuvette was then 

inserted into the cell holder that which was equipped with an external temperature bath to 

maintain the solution at a constant temperature of 25ºC.  The cuvet was allowed to 

equilibrate for two minutes.  Next, the spectrum was scanned with the spectrophotometer 

from 190 - 820 nm and then the pH was measured.  This process was repeated until the 

absorbance did not change with pH.  The total volume added in HClO4 or Et4OH was      

≤ 5% of the initial volume of ligand solution.        
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 The protonation constants were obtained by fitting the absorbance versus pH data 

using a nonlinear least-squares program that is part of the Kaleidagraph graphics 

package.  Because the cryptands have two protonation steps, the expression used to 

describe the observed absorbance, Ai, at any given wavelength is described by eq 3.10.         

  
Ai =

A2KH1KH2aH
2 + A1KH1aH + A0

KH1KH2aH
2 + KH1aH + 1     (3.10) 

 
 The observed absorbance depends on the protonation constants KH1 and KH2, 

defined in eqs 3-1 and 3-2, parameters A0, A1, and A2 which are the limiting absorbance 

values for the unprotonated, monoprotonated, and diprotonated species of the ligand, 

respectively, and the hydrogen ion activity, aH.  The value aH is calculated from the 

measured pH according to the equation: 

  aH
 = 10-pH        (3.11) 

 The nonlinear least-squares curve fitting program uses the Levenberg-Marquardt 

algorithm.8  Estimates for the values of KH1, KH2, A0, A1, and A2 were made from plots of 

Ai vs pH and were refined by minimizing the Acalc,i vs Ai at each value of aH.  

 SPECFIT/32 is another curve fitting program that uses a nonlinear least-squares 

method employing the Levenberg-Marquardt algorithm.9  The major difference between 

SPECFIT/32 and Kaleidagraph is that the former program utilizes multi-wavelength data 

sets.  Therefore, KH1 and KH2 values are determined from the spectral range selected 

(200-400 nm), not a specific wavelength.  For SPECFIT/32, the spectrophotometric data 

file (.wav format), abs. vs wavelength, is imported and the pH data and volume of titrant 

added is entered for each spectrum.  The concentration of the analyte, number of 

protonation equilibria, and initial estimates of the protonation constants are also required 
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for the fitting process.10  A protonation equilibria model provides the predefined 

functions to fit the pH titration data sets.  In this case, the chemical model is based on the 

equilibria defined by eqs 3.1 and 3.2.   

 

F. Determination of Metal Binding Constants (KML)  

The metal ion complexation equilibrium for cryptands An2.2.1 and An2.2.2 is 

defined in eq 3.12 along with the corresponding equilibrium expression.     

  
Mn+ + L MLn+ KML=

[MLn+]

[Mn+][L]    (3.12) 

 Based on the known values of the protonation constants, the metal ion titrations 

are first carried out at a pH greater than log KH1 + 2 so that interference from protonation 

side reactions will be negligible.  This simplifies the reaction in solution and establishes 

the metals that bind more strongly with the ligands.  The test solutions typically contain 

0.1 - 0.2 mM ligand and 5 mM DESPEN.  The pH is raised to ~ 9 by the addition of 

Et4NOH and the absorbance is recorded from 190 - 820 nm.  Aliquots of metal ion 

solutions (10 mM - 2 M) are added and the absorbance is recorded.  Some metals such as 

Pb2+ and Cd2+ will precipitate at this pH and therefore titrations were done at pH ~ 7.  For 

each of these titrations, a plot is made of the fractional absorbance change versus the ratio 

total metal:total ligand concentration.  The results of these plots will either show that the 

increase in fraction of absorbance change stops at 1:1 metal to ligand ratio or continues to 

increase.  If there is no change, then the metal and ligand are fully or nearly fully 

complexed at 1:1 concentration.  If the fraction of absorbance change continues to 

increase then the metal is bound more weakly and not fully complexed.  Examples of 
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both scenarios for fractional absorbance change versus total metal divided by total ligand 

scenarios are shown in Figure 3-11.      

Fr
ac

tio
n 

of
 A

bs
. c

ha
ng

e

[M]tot/[L]tot

1:1 Metal:Ligand 1:1 Metal:Ligand

(1) (2)

Fr
ac

tio
n 

of
 A

bs
. c

ha
ng

e

[M]tot/[L]tot

 

Figure 3-11.  Metal ion titrations:  (1) fully complexed at 1:1 stoichiometry (2) less than 
50% complexed. 
 
 Stability constants can be directly determined from the titration data at pH ~ 9 for 

cases where only a fraction of the ligand is in the complexed form.  The absorbance at 

any given wavelength, Ai, depends on the complex formation constant, KML, the 

concentration of uncomplexed metal ion, [M], and the limiting absorbance values A1 and 

A0 for the metal-ligand complex and the uncomplexed ligand, respectively.  This 

relationship is shown in the following equation:   

  
Ai =

A1KML[M] + A0

KML[M] + 1       (3.13) 

 For a metal-ligand titration where complexation is quantitative at pH ~ 9, the 

formation constant cannot be directly determined because the error from data fitting 

would be very high.  If the pH is decreased then the percentage of ligand in a protonated 

form increases and competition exists between the formation of the metal ion complex 

and protonation of the ligand.  Therefore, the ligand is no longer present as just the free 
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ligand and the expression for the metal ion complexation equilibrium is written as a  

conditional (pH dependent) stability constant denoted as K'ML as shown in eq 3.14.      

  
K'ML=

[MLn+]

[Mn+][L']       (3.14) 

 In this expression [L'] is the total concentration of all forms of the uncomplexed 

ligand as shown in eq 3.15. 

  [L'] = [L] + [HL]+ + [H2L]2+      (3.15) 

 To obtain the intrinsic stability constant, KML, from the conditional stability 

constant value, K'ML, the side reactions of the protonation reactions (eqs 3.1 and 3.2) 

must be accounted for.  This is done using equations 3.16 and 3.17.   

  
K'ML =

[ML]

[M][L']
 =

[ML]αL

[M][L]
 = KMLαL

    (3.16) 

  
αL =

[L]
[L']

 = (1 + KH1aH + KH1KH2aH
2)-1

    (3.17) 

 For a metal titration at a lower pH, the absorbance at any given wavelength, Ai, 

now depends on the conditional stability constant, K'ML, concentration of the 

uncomplexed metal ion [M], and the limiting absorbance values A1 and A0 for the metal 

ion-ligand complex and the uncomplexed ligand, respectively, as shown in the following 

equation:        

  
Ai =

A1K'ML[M] + A0

K'ML[M] + 1       (3.18) 

 A nonlinear least-squares program (Kaleidagraph) was used to find KML or K'ML, 

A1, and A0.  Estimates of A1 and A0 are obtained from the metal ion titration spectra. 

Initial estimates for KML or K'ML are obtained from fractional absorbance versus 
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metal:ligand ratio plots.  The fraction of total absorbance change, f, is linearly related to 

the fraction of ligand complexed.  Therefore, concentration of the metal-ligand complex 

is proportional to the initial concentration of ligand, CL and f as shown in eq 3.19.  

  [ML] = f * CL        (3.19) 
 
 Estimates of the ligand and metal ion concentrations ([L], [M]) are determined by 

subtracting the concentration of metal ion-ligand complex, [ML], from the initial 

concentration of ligand or metal ion, respectively.  These concentrations are used to 

calculate an initial estimate KML or K'ML for the data fitting process.  The measured 

absorbance, Ai is plotted versus initial metal ion concentration, [M]i, and the data is fit by 

using Equation 3-13 or Equation 3-17 and the initial guesses for KML or K'ML, A0, and A1.  

The value of KML or K'ML obtained from the data fitting program is then used to calculate 

new metal concentrations for each step of the titration.  This is done by finding the 

concentration of the metal ion-ligand complex by using the value of KML (K'ML), the total 

concentration of ligand, CL, and the total concentration of metal, CM, as shown in eq 3.20.   

[ML] =
K'ML(CL + CM) + 1 - ((K'ML(CL + CM) + 1)2 - 4K'ML

2CLCM)1/2

2K'ML   (3.20) 

 The metal ion-ligand concentration is then subtracted from the total metal ion 

concentration to get a new set of free metal ion concentrations for the curve fitting 

program.  The curve fitting process is repeated using the values for KML or K'ML, A0, and 

A1 from the previous data fitting cycle.  This calculation process is repeated until the 

values of KML (K'ML), A0, and A1 change ≤ 2% from the previous cycle.   

 The only exception to the previously described procedure and data analysis is the 

determination of the formation constant for cryptand An2.2.2 with lead.  A very large (≥ 
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6) formation constant of cryptand An2.2.2 with Pb(ClO4)2 requires the formation constant 

to be measured at a very low pH (~2) where the ligand is predominantly (≥ 95%) present 

as the diprotonated species.  The kinetics of the ligand and metal interaction at this pH 

are slowed down considerably so the titrations are accomplished by batch analysis.  Batch 

analysis is different from the previously described method of analysis because multiple 

solutions are prepared to contain various amounts of metal and a fixed concentration of 

ligand.  The solutions are prepared separately and allowed sufficient time to reach 

equilibrium (~ 48 hrs).  Plots of absorbance versus total metal and absorbance versus the 

product of total metal and alpha are both used to fit K'ML.  This is done to correct for the 

variance in pH between the solutions.  The plot of absorbance versus total metal is fit 

using the previously described method and eq 3.18.  The plot of absorbance versus the 

product of total metal and alpha is fit using the equation below.  The value of KML 

obtained from the data fitting program is then used to calculate new metal concentrations 

for each step of the titration.            

Ai =
A1KML[M]αL   + A0

KML[M]αL   + 1        (3.21) 

 In order to use SPECFIT/32 to determine the metal ion-complexation constants, a 

suitable model is selected from the program.9  The spectrophotometric data is imported as 

well as the volume of the aliquot of metal added and the concentration of the metal ion 

solution for each spectrum.  A metal ion-complexation equilibria model (eqs. 3-1 - 3.3) is 

used to fit the metal ion titration sets.  Initial guesses for the metal ion complexation 

constants must be provided by the operator and are determined from the fraction of 

absorbance versus metal to ligand ratio plots.10   
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Chapter Four  
 

Results and Discussion  
 

I.  Structures and NMR Assignments of Monocyclic Ligands 

 Monocyclic diamides are intermediates in the synthesis of diaza-crown ethers and 

macrobicyclic cryptand ligands1, and are also of interest for their potential use as 

molecular or anion receptors2,3.  An important aspect of receptors is the preferred position 

of the amide N-H moieties that serve as hydrogen bond donors.  Each pair of amide N-H 

groups may adopt an endo-endo4, endo-exo5, or exo-exo orientation with respect to the 

macrocycle cavity.  This orientation may be affected by structural factors such as ring 

size, type of donor atoms, and the incorporation of benzene rings into the backbone chain 

of the macrocycle.  The first section will report the results of an investigation of the 

monocyclic diamides 7, 8, and 11 in the solid-state and the subsequent section will 

describe an investigation of monocyclic diamides 9, 11, and 13 in the solid-state and in 

solution.   

 The parent 18-membered macrocyclic diamide, 7, the benzoannelated derivative, 

11, and the thioether derivative, 8, were synthesized according to the methods described 

in Chapter 2 and are shown in Figure 4-1.  Macrocyclic diamide 8a, a thioether derivative 

with the amide groups on the dioxa chain, was previously studied by our group.5  These 

compounds allow investigation of the structural effects of changing the donor atoms (7 

vs. 8), the addition of benzylic rings (7 vs. 11), and the position of the carbonyl groups (8 

vs. 8a5) on the orientation of the amide groups.  Each macrocyclic diamide will be 

described by the overall shape, donor atom orientation, cavity size, torsion angle 

sequences, arrangement of amide groups, and hydrogen-bonding arrangement.  The 
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donor atoms will be described as endodentate or exodentate, which indicates whether 

they point towards or away from the cavity, respectively.6  A torsion angle for a chain A-

B-C-D is the dihedral angle between the planes A-B-C and B-C-D and will be described 

as anti, a (90-180º) or gauche, g (30-90º).         
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Figure 4-1.  Monocyclic diamides 2.2*, (7), An2.2*, (11), 2.2S*, (8), and 8a. 
 
 Solid-state structures for compound 7 show two different forms of the molecule, 

A and B, as shown in Figures 4-2 and 4-3.  The cavity of molecule A exists in a relatively 

flat arrangement with all six donor atoms N1A, N2A, O1A, O2A, O4A, and O5A 

adopting endodentate positions.  Molecule A has a cavity size that can be characterized 

by distances between opposite donor atoms: N1A:N2A 5.68 Å; O1A:O4A 5.39 Å; 

O2A:O5A 5.52 Å.  In contrast, the donor atoms N1B, O4B, and O5B in molecule B 

adopt an exodentate conformation.  This results in a larger cavity size in comparison to 

molecule A based on the corresponding donor atom distances:  N1B:N2B 5.73 Å; 

O1B:O4B 5.85 Å; O2B:O5B 5.96 Å.  Molecules A and B have the same torsion angle 

sequence gga, aga, agg for the N—C—C—O—C—C—O—C—C—N chain that does 

not contain amide groups.  For the chains with amide groups the C—O—C—C—O—C 

torsion angle sequences for molecules A and B are a,aga,a and g,aag,a, respectively.   
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Figure 4-2.  X-ray crystal structure of 2.2*, (7), Molecule A. 
 

 
Figure 4-3.  X-ray crystal structure of 2.2*, (7), Molecule B.   
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The amide groups in both molecules (H—N—C==O) exhibit trans orientation 

and are involved in hydrogen-bonding.  Least-squares calculations for molecule A show 

that the amide groups N1A—C12A[O6A]—C11A and N2A—C7A[O3A]—C8A are 

planar with average deviations of ≤ 0.0005 Å and ≤0.0024 Å, respectively.  The dihedral 

angle between the least-squares planes of the amides is 54.2°.    

Molecule B shows greater distortion in the planarity of the amide groups as 

evidenced by larger average deviations from the least-squares planes for N1B—

C12B[O6B]—C11B, ≤ 0.008 Å, and N2B—C7B[O3B]—C8B, ≤ 0.0026 Å; furthermore, 

there is a larger dihedral angle of 119.4° between the least-squares planes.  Both 

molecules of compound 7 have only intermolecular hydrogen bonds.  Figure 4-4 shows 

the chain of hydrogen bonds present for molecule A.  Each molecule A has four hydrogen 

bonds associated with it. 

 

Figure 4-4.  X-ray crystal structure of 2.2*, (7), showing the formation of hydrogen-
bonded chains for molecule A.  Displacement ellipsoids are drawn at 50% probability 
level.  Hydrogen bonds are indicated by dashed lines.  Symmetry transformations used to 
generate equivalent molecules:  molecule # 1-x, 1-y, 1-z; molecules $ and & -x, 1-y, 1-z.   
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Molecule A consists of polymeric chains that are linked by two distinct 

intermolecular hydrogen bonds (N-H···O; Table 4-1) involving the amide hydrogen atom 

and an ether oxygen in the adjacent molecule as shown in Figure 4-4.  Amide atom N1A 

acts as a hydrogen bond donor, via atom H1A and atom N2A via H2A with ether atoms 

O1A# and O2A$, respectively.  The number sign (#) and dollar symbol ($) are used to 

denote the equivalent atoms from neighboring molecules.  Figure 4-5 shows the chain of 

hydrogen bonds that link individual forms of molecule B together.  Each molecule B has 

four hydrogen bonds associated with it. 

  

Figure 4-5.  X-ray crystal structure of 2.2*, (7), showing the formation of hydrogen-
bonded chains for molecule B.  Displacement ellipsoids are drawn at 50% probability 
level.  Hydrogen bonds are indicated by dashed lines.  Symmetry transformations used to 
generate equivalent molecules:  molecule # 1-x, 2-y, -z; molecules $ and & 1-x, 1-y, -z.   

 
In this case the intermolecular hydrogen bonds involve interactions between the amides 

N1B via H1B and N2B via H2B and carbonyl oxygens O3B# and O6B$, respectively.  

The number sign (#) and dollar symbol ($) are used to denote the equivalent atoms from 

different neighboring molecules.    Table 4-1 shows the hydrogen bond distances (d) and 

angles (∠) for the hydrogen bond donor (D), acceptor (A), and hydrogen (H) atoms in 7. 
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Table 4-1.  Hydrogen bond parameters for 2.2*, (7).a 
 

 
D-H···A 

 
d(D-H)b 

 
d(H···A)b 

 
d(D···A)b 

 
∠(DHA)c 

N1A-H1A···O1A# 0.832(15) 2.295(15) 3.0087(12) 144.0(13) 
N2A-H2A···O2A$ 0.830(15) 2.205(15) 2.9581(12) 150.9(13) 
N1B-H1B···O3B# 0.844(15) 2.068(15) 2.8667(12) 157.7(13) 
N2B-H2B···O6B$ 0.865(15) 1.993(15) 2.8228(13) 160.3(13) 

aUncertainty in least significant digits in parentheses.  bValues in units of  Angstroms 
(Å).  cValues in units of degrees (º). 
 

Compound 11 differs from 7 by the incorporation of benzylic rings into the 

backbone of the macrocycle.  The solid-state structure of 11 is shown in Figure 4-6.  

Compound 11 is similar to molecule A of 7 because all of the donor atoms N1, N1A, O1, 

O3, O1A, and O3A are endodentate.  The cavity of compound 11 is smaller than the 

parent compound 7 with donor atom distances of N1:N1A 5.64 Å; O1:O3A 4.68 Å; 

O1A:O3 5.01 Å. 

 

Figure 4-6.  X-ray crystal structure of An2.2*, (11).   
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In comparison with 7 the structural change of 11 is evident in the significant difference in 

torsion angle sequences for both the non-amide side N—C—C—O—C—C—O—C—

C—N (aga, gga, aga) and the amide side C—O—C—C—O—C (a, gga, a) of the 

molecule.  Least-squares calculations for 11 show that the amide groups N1—C10[O2]—

C9 and N1A—C10A[O2A]—C9 are planar but with significantly different average 

deviations of ≤ 0.0005 and ≤0.007, respectively.  The dihedral angle between the least-

squares planes of the amides is 128.2°.  Two other least-squares planes are present in the 

molecule, defined by the benzene rings, and the dihedral angle between these planes is 

106.0°.  Figure 4-7 shows compound 11 in a different view without hydrogens so the 

angle between the benzene rings is visible.  Least-squares calculations for the benzene 

ring plane defined by C1, C2, C3, C4, C5, and C6 have average deviations of  ≤ 0.005 Å 

and the three donor atoms O1, O3, and N1 have average deviations from that plane ≤ 

0.05 Å. The planarity of the benzene ring made up of C1A, C2A, C3A, C4A, C5A, and 

C6A has a lower average deviation of ≤ 0.004 Å, but the donor atoms O1A, O3A, and 

N1A are further out of that plane with average deviations ≤ 0.3 Å.     
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Figure 4-7.  X-ray crystal structure of An2.2*, (11), showing the angle between the 
benzene rings. 
 
Due to the rigidity of the benzene rings, compound 11 contains only four intramolecular 

hydrogen bonds (N-H···O; Table 4-2) between the amides and adjacent ether oxygens.     

Table 4-2.  Hydrogen bond parameters for An2.2*, (11).a  
 

 
D-H···A 

 
d(D-H)b 

 
d(H···A)b 

 
d(D···A)b 

 
∠(DHA)c 

N1-H1···O1 0.93(3) 2.16(3) 2.584(3)      106.3(19) 
N1-H1···O3 0.93(3) 2.11(3) 2.589(3) 111(2) 

        N1A-H1A···O1A 0.90(3) 2.13(2) 2.623(3) 113(2) 
        N1A-H1A···O3A 0.90(3) 2.15(3) 2.588(3)      108.9(19) 

aUncertainty in least significant digits in parentheses.  bValues in units of  Angstroms 
(Å).  cValues in units of degrees (º). 
  

The 18-membered monobenzo diamide derivative shown in Figure 4-8 was 

prepared and also has different structural properties from compound 7.7  This derivative 

had two intramolecular hydrogen bonds between amide nitrogens and ether oxygens 

proximal to the amides and one intermolecular hydrogen bond between the amide and a 

carbonyl oxygen in an adjacent molecule. 
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Figure 4-8.  Monobenzo 18-membered diamide.7 
 
 In 8, sulfur donor atoms are substituted for the oxygen atoms in one bridge of the 

parent compound 7.  The solid-state structure of 8 is shown in Figure 4-9.  The donor 

atoms N1, N2, O2, and O3 have an endodentate orientation while donor atoms S1 and S2 

are exodentate.  Compound 8 has the largest cavity size of the macrobicyclic diamides 

based on the donor atom distances:  N1:N2 6.13 Å; O2:S1 5.84 Å; O3:S2 5.77 Å.  

Although the chain that does not contain amide groups in 8 is the same as 7, the torsion 

angle sequence for N—C—C—O—C—C—O—C—C—N is different with a sequence of 

gga, agg, aga in comparison to gga, aga, agg.  The chain that does contain amide groups, 

C—S—C—C—S—C, has a torsion angle sequence of g,gag,g which is different from 

both 7 and 11.  Least-squares calculations of the amide groups N1—C4[O1]—C3 and 

N2—C11[O4]—C12 reveal that they have similar planarity with average deviations of ≤ 

0.0002 Å and ≤ 0.0003 Å, respectively.  The dihedral angle between these least-squares 

planes is 81.9°.     
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Figure 4-9.  X-ray crystal structure of 2.2S*, (8). 
 
 In the solid-state, compound 8 is made up of polymeric chains formed by 

intermolecular hydrogen bonds (N-H···O) between the amide (N1) and carbonyl oxygen 

(O4#) as shown in Table 4-3.  The number sign (#) is used to denote an equivalent atom 

from a neighboring molecule.   

Table 4-3.  Hydrogen bond parameters for 2.2S*, (8).a 
   

 
D-H···A 

 
d(D-H)b 

 
d(H···A)b 

 
d(D···A)b 

 
∠(DHA)c 

   N1-H1···O4# 0.83(2) 2.01(2) 2.8353(18) 175.3(19) 
N2-H2···S1 0.80(2)     2.603(19) 3.0503(15) 116.9(16) 

aUncertainty in least significant digits in parentheses.  bValues in units of  Angstroms 
(Å).  cValues in units of degrees (º). 
 
Amide atom N1 acts as a hydrogen bond donor, via atom H1 with O4#.  An 

intramolecular hydrogen bond (N-H···S) between the other amide and thioether occurs on 

the amide side between the atom N2 via atom H2 with S1.  Figure 4-10 shows the 

polymeric chains of 8.       
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Figure 4-10.  X-ray crystal structure of 2.2S*, (8), showing the formation of hydrogen-
bonded chains.  Displacement ellipsoids are drawn at 50% probability level.  Hydrogen 
bonds are indicated by dashed lines.  Symmetry transformations used to generate 
equivalent molecules:  molecule # -x, 1-y, 1-z; molecules A and B 1-x, -y, -z.   
 

An X-ray structure of a related 18-membered macrocyclic diamide (8a) that had 

the amides on the ether side of the ring instead of the thioether side was previously 

reported by our group.5  Derivative 8a had an intermolecular hydrogen bond between the 

amide hydrogen and carbonyl oxygen of a neighboring molecule and an intramolecular 

hydrogen bond between the other amide nitrogen and other carbonyl oxygen.  The 

structure of 8a was different from 8 in that the hydrogen bonds only involved amide 

hydrogens and carbonyl oxygens and that one carbonyl oxygen points into the center of 

the cavity.  The similarities between the molecules in the solid-state were that both 

derivatives had one intermolecular and one intramolecular hydrogen bond and both 

derivatives were made up of molecular chains.   
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All 18-membered macrocyclic amides mentioned have intermolecular H-bonds 

except compound 11.  In this case, planarity of anilino and adjacent amide groups result 

in the amide hydrogen adopting an endo orientation.  The most flexible diamide (7) has 

only intermolecular H-bonds.  The conformational constraints imposed by the -SCCS- 

subunit  (8, 8a5) and benzo groups (11 and the monobenzo compound shown in Figure 4-

87) result in a mixture of intra- and intermolecular H-bonds.  Where intramolecular H-

bonds are found to involve ether or thioether atoms, the H-bonds always involve the 

acceptor atom on the carbonyl moiety side.  In the case of 11, intramolecular hydrogen 

bonds involve ether oxygens in both bridges.  

The monocyclic amides 9, 11, and 13 were isolated during the synthesis of several 

benzoannelated cryptands according to the methods described in Chapter 2 and were 

selected to study the effects of ring size (9 vs. 11) and location of the amide moieties 

within the macrocyclic ring (11 vs. 13) on the orientation of the amide groups.  The 

presence of a benzene subunit adjacent to the amide provides a means to assess the 

relative position of the amide group with respect to the aromatic ring in the solution state.  

Previous NMR studies have shown that the ortho hydrogens in N-acylanilines can be 

shifted downfield significantly with respect to the other aromatic protons8-10.  The 

magnitude of the shift depends on degree of co-planarity of the amide carbonyl group 

with the aromatic ring and the presence of H-bond acceptors for the amide proton8-10.  

Although proton NMR spectra have been reported for 1111 and 1312-16, the assignments 

are incomplete or differ from each other.  This section will report the complete 

assignment of the 1H and 13C NMR spectra of 9, 11, and 13 in CDCl3, the solid-state 
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structures of 9 and 13, and the correlation found in all three diamides between the 

structures in solution and in the solid-state. 

     1-D 1H and 13C NMR spectra along with gCOSY, gHMBC, gHMQC, HMQC, 

and HSQC were used to assign the proton and carbon chemical shifts.  The splitting 

patterns for the aromatic protons of 9 were obtained from spectra acquired using 600 

MHz 1H NMR.  The 1H and 13C chemical shift and coupling constant data for 9, 11, and 

13 are listed in Tables 4-4, 4-6, and 4-8, respectively while Tables 4-5, 4-7, and 4-9 show 

the gCOSY, gHMBC, gHMQC, HMQC, and HSQC signals for each compound.  The 

numbering schemes shown in Figure 4-11 are used to define the NMR assignments given 

in Tables 4-4 - 4-9. 
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Figure 4-11.  NMR numbering scheme for macrocyclic amides An2.1*, (9),  
An2.2*, (11), and An3.1*, (13). 
 

A COSY (COrrelation SpectroscopY) experiment will provide cross peaks for 

protons coupled to other protons.17  HMQC (Heteronuclear Multiple Quantum 

Correlation) and HSQC (Heteronuclear Single Quantum Correlation) experiments both 

provide information regarding the one-bond connection of carbons to hydrogens.  HMBC 

(Heteronuclear Multiple Bond Correlation) experiments suppress one bond carbon to 

hydrogen signals and show 2-3 bond signals.  NOESY (Nuclear Overhauser Effect 

SpectroscopY) irradiates one proton nucleus and the resultant signals reveal the identity 
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of protons that are close in space (~ 4 Å) to the irradiated proton regardless if geminal or 

vicinal coupling occurs.17     

The synthesis of compound 9 has been reported by Formanovskii and 

Murakhovskaya18 and their characterization included the melting point, elemental 

analysis, and IR spectra.  1H and 13C NMR data was not reported.   

Table 4-4.  1H and 13C NMR data for An2.1*, (9). 

 
C 

δC 
(ppm) 

 
H 

δH 
(ppm) 

 
Coupling constants (Hz) 

 
Multiplicity 

1 128.3     
2 120.1 2 8.50 (2H) J(2, 3) = 7.8; J(2, 4) = 1.7 dd 
3 123.0 3 7.05 (2H) J(3, 2) = 7.8; J(3, 4) = 7.8; J(3, 5) = 1.6 td 
4 124.5 4 7.09 (2H) J(4, 3) = 7.8; J(4, 5) = 7.8; J(4, 2) = 1.7 td 
5 113.7 5 7.02 (2H) J(5, 4) = 7.8; J(5, 3) = 1.6 dd 
6 146.8     
7   68.4 7 4.38 (4H)  s 
8   70.6 8 4.21 (4H)  s 
9 165.6     
  NH 9.03 (2H)  s 

 
The HSQC of 9 made known the direct linkage of protons (H2-H5, H7 and H8) to 

carbons (C2-C5, C7 and C8), quarternary carbons that were not connected to any 

hydrogens (C1, C6, C9), and the hydrogen signal that was not connected to any carbon 

(NH).  1D NOESY experiments of 9 included irradiation of H2 which gave peaks at 9.03 

ppm (NH) and 7.02-7.09 ppm (H3-H5) and irradiation of H7, resulting in peaks at 7.02-

7.09 ppm (H3-H5).  These results elucidated the location of the aromatic protons H2 and 

H5, as well as the singlet protons H8 and H7 adjacent to the carbonyl and ether, 

respectively.  The ortho proton (H2) on the benzene ring is shifted downfield 

significantly compared to the other aromatic protons.    
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Table 4-5.  H-H and C-H correlation NMR data for An2.1*, (9).    
 

 
C 

 
H 

 
gHMBC 

 
gCOSY 

 
HSQC 

1     
2 2 NH H5 H2 
3 3   H3 
4 4 C2  H4 
5 5  H2 H5 
6  C7, C2   
7 7   H7 
8 8   H8 
9  C8   
 HN    

 
The solid-state structure of 9 in Figure 4-12 shows the amide moiety in the trans 

arrangement with intramolecular hydrogen bonds between the amides and adjacent ether 

oxygens.  The donor-acceptor distances and angles for the two hydrogen bonds between 

N1···O2 and N2···O1 are 2.586(2) Å, 112.6(16)° and 2.617(2) Å, 110.6(16)°, respectively.  

There are two other hydrogen bonds present from the amides to the ether oxygens on the 

other bridge.  The donor-acceptor distances and angles for the hydrogen bonds between 

N1···O4 and N2···O4 are 2.619(2) Å, 111.3(16)° and 2.640(2) Å, 112.8(16)°, respectively.  

The solid-state structure of the parent amide (2.1*) without the benzene rings also has 

bifurcated hydrogen bonds between the amide nitrogens and both adjacent ether 

oxygens.19   
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Figure 4-12.  X-ray crystal structure of An2.1*, (9). 
 

The synthesis and characterization of the monocyclic amide 11 has been reported 

by Kilic and Gunduz.11  Only the chemical shift values for H7 and some of the aromatic 

protons agree with the previously reported values.11   

Table 4-6.  1H and 13C NMR data for An2.2*, (11).   

 
C 

δC 
(ppm) 

 
H 

δH 
(ppm) 

 
Coupling constants (Hz) 

 
Multiplicity 

1 127.3     
2 120.6 2 8.34 (2H) J(2, 3) = 7.7 d 
3 121.6 3 6.96 (2H) J(3, 2) = 7.7; J(3, 4) = 7.7 t 
4 124.2 4 7.02 (2H) J(4, 3) = 7.7; J(4, 5) = 7.7 t 
5 110.8 5 6.82 (2H) J(5, 4) = 7.7 d 
6 146.6     
7   66.4 7 4.42 (4H)  s 
8   70.0 8 3.81 (4H)  s 
9   70.8 9 4.10 (4H)  s 
10 167.1     
  NH 9.04 (2H)  s 
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The earlier report proposed that downfield signals observed at 8.5 ppm (O-H) and 9.2 

ppm (N-H) could be attributed to contributions from lactim and lactam tautomers, 

respectively.  This conclusion was based on characteristic IR bands for the existence of 

O-H groups and C=N stretching found.  Figure 4-13 shows the resonance structures 

possible for this type of interaction.11      

N C

OH
H
N C

O

a b  
 

Figure 4-13.  Lactam (a) and lactim (b) forms of amides. 
 

However, the HMQC of 11 shows a direct bond from C2 to the proton with a signal at 8.3 

ppm.  Therefore, the signals at 8.34 ppm and 9.03 ppm can be assigned to the ortho 

aromatic proton (H2) and the amide proton.  The large downfield shift of the ortho proton 

(H2) in comparison to the other aromatic protons is consistent with the pattern in 

compound 9.     

Table 4-7.  H-H and C-H correlation NMR data for An2.2*, (11). 
   

 
C 

 
H 

 
gHMBC 

 
gCOSY 

 
gHMQC 

1     
2 2 C4, C6 H3 H2 
3 3 C1, C5 H2, H4 H3 
4 4 C2, C6 H3, H5 H4 
5 5 C1, C3, C4 H4 H5 
6     
7 7 C6  H7 
8 8 C9  H8 
9 9 C8, C10  H9 
10     
 NH    

 
1D NOESY irradiation of H2 gave signals at 9.04 ppm (N-H) and 6.82-7.02 ppm 

(H3-H5), and irradiation of H5 gave a signal at 4.42 ppm (H7).  These experiments made 

clear the assignments of H2 and H5 proton positions around the benzene ring.  The 
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NOESY correlation of H7 and H5 also helped with the distinction between the location of 

the three singlets H7, H8, and H9.   

The intramolecular hydrogen-bonding in the solid-state of 11 was presented 

earlier in Table 4-2 and is similar to 9 in that both amides have bifurcated hydrogen 

bonds to the ether oxygens.  The solid-state structure shown earlier in Figure 4-6 also 

shows the amide moieties of 11 in the trans orientation.   

The 1H chemical shift values have been reported for 13, although the peak 

assignments were not made12,15 or were not given for all protons13,14,16.  In general, the 

values of the individual chemical shifts and the peak assignments (when given) agree 

with those reported in Table 4-8.  However, our assignments for H7 and H8 are opposite 

to those given in one report13, and in another case, the magnitude of all chemical shifts 

given differ from ours by ~ 0.3 ppm15.  The chemical shifts and peak assignments given 

in Table 4-8 agree most closely with those in d6-DMSO reported by Markovich et al.16 

and in CDCl3 by Formanovskii et al.14.  However, H3-H5 were not assigned by these 

authors, and the value for the amide proton reported by the latter (8.08 ppm)14 differs 

significantly from ours (8.73 ppm) and the others (8.75 - 9.00 ppm)12,15,16.  The value for 

H2 given in Table 4-8 (8.22 ppm) falls in the range (7.9 - 8.30 ppm) reported by other 

groups12-15. 
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Table 4-8.  1H and 13C NMR data for An3.1*, (13).   
 

 
C 

δC 
(ppm) 

 
H 

δH 
(ppm) 

 
Coupling constants (Hz) 

 
Multiplicity

1 126.7     
2 121.5 2 8.22 (2H) J(2, 3) = 7.9; J(2, 4) = 1.8 dd 
3 121.5 3 6.97 (2H) J(3, 2) = 7.9; J(3, 4) = 7.9; J(3, 5) = 1.5 td 
4 125.0 4 7.06 (2H) J(4, 3) = 7.9; J(4, 5) = 7.9; J(4, 2) = 1.8 td 
5 111.4 5 6.85 (2H) J(5, 4) = 7.9; J(5, 3) = 1.5 dd 
6 147.8     
7   67.9 7 4.21 (4H)  m (5 lines) 
8   69.4 8 3.84 (4H)  m (5 lines) 
9   71.8 9 4.25 (4H)  s 
10 166.4     
  NH 8.73 (2H)  s 

 
 The assignments of H2 and H5 in the respective positions around the aromatic 

ring were made possible by the HMBC correlation of C2 with the amide hydrogen.  

Irradiation of H7 in 13 showed peaks at 3.84 (H8) and 6.85 (H5).  The large downfield 

shift of H2 in 13 is consistent with the pattern found in compounds 9 and 11.   

Table 4-9.  H-H and C-H correlation NMR data for An3.1*, (13). 

 
C 

 
H 

 
gHMBC 

 
gCOSY 

 
HMQC 

1     
2 2 C1, C4, C6 H3 H2 
3 3 C1, C2, C4, C5 H2 H3 
4 4 C1, C2, C3, C5, C6  H4 
5 5 C1, C2, C3, C4, C6  H5 
6     
7 7 C6, C8 H8 H7 
8 8 C7, C8 H7 H8 
9 9 C9, C10  H9 
10     
 NH C2   

 
 In the solid-state structure of 13, the unit cell contains a water molecule 

(fractional occupancy = 0.50) located near the center of the cavity of one macrocycle that 

forms hydrogen bonds with the amide protons and with the ether oxygen of an adjacent 
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molecule.  Molecule A shown in Figure 4-14 has a water molecule encapsulated in the 

cavity and molecule B shown in Figure 4-15 has an empty cavity.  The amides in both 

molecules have trans arrangement.  The intramolecular hydrogen bond patterns of 

compounds 9 and 11 are consistent in 13 where the amide protons are hydrogen-bonded 

with the adjacent ether oxygens.  

 

Figure 4-14.  X-ray crystal structure of An3.1*, (13), Molecule A. 
 

 

Figure 4-15.  X-ray crystal structure of An3.1*, (13), Molecule B. 
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Molecule A has trifurcated hydrogen bonds between the amides with the ether 

oxygens and the water molecule.  Molecule B has bifurcated hydrogen bonds between the 

ether oxygens.  The donor-acceptor distances and angles for the hydrogen bonds are 

listed in Table 4-10. 

Table 4-10.  Hydrogen bond parameters for An3.1*, (13).a 

   
 

D-H···A 
 

d(D-H)b 
 

d(H···A)b 
 

d(D···A)b 
 

∠(DHA)c 

N(1)-H(1)...O(3) 0.821(16) 2.337(15)     2.6313(14) 101.9(12) 
N(1)-H(1)...O(5) 0.821(16) 2.360(15)     2.7213(15) 107.5(12) 

  N(1)-H(1)...O(13) 0.821(16) 2.259(16) 3.044(2) 160.1(15) 
N(2)-H(2)...O(1) 0.873(15) 2.215(14)     2.6169(14) 107.8(11) 
N(2)-H(2)...O(5) 0.873(15) 2.564(14)     2.8218(15)   98.0(10) 

  N(2)-H(2)...O(13) 0.873(15) 2.144(16) 2.993(2) 164.3(13) 
N(3)-H(3)...O(9) 0.849(15) 2.218(14)     2.6104(14) 108.2(12) 

  N(3)-H(3)...O(11) 0.849(15) 2.158(14)     2.6149(14) 113.5(12) 
N(4)-H(4)...O(7) 0.848(15) 2.153(15)     2.5824(14) 111.1(12) 

  N(4)-H(4)...O(11) 0.848(15) 2.595(14)     2.8568(14)   99.3(11) 
aUncertainty in least significant digits in parentheses.  bValues in units of  Angstroms 
(Å).  cValues in units of degrees (º). 
 
 The amide moieties of the solid-state structures for 9, 11, and 13 are essentially 

planar (mean dev ≤ 0.0068 Å) with a trans arrangement of the carbonyl oxygen and 

amide hydrogen atoms, with the latter also close to the amide plane (dev ≤ 0.1592 Å).  

The amide hydrogen atoms are orientated toward the center of the macrocycle cavity, 

resulting in an exo-exo disposition of the carbonyl oxygen atoms.  This conformation is 

stabilized by intramolecular hydrogen bonds between the amide protons and the proximal 

ether oxygen atoms.  There are no intermolecular hydrogen bonds found in these 

structures except for those in 13 that involve a water molecule.  The extent of the 

downfield shift of the aromatic proton in the ortho position is affected by the proximity 

and extent of co-planarity of the amide carbonyl group and the ortho aromatic hydrogen 

atom.  These parameters can be defined by the Oamide - Ho,arom distance and the dihedral 
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angle between the planes defined by the benzene ring and the four-atom amide group.  

The respective parameters are 2.359 Å, 11.1º, 2.307 Å, 1.1º, for 9; 2.311 Å, 13.8º, 2.317 

Å, 12.7º, for 11; and 2.347 Å, 17.1º, 2.323 Å, 14.3º for the anhydrous form of 13.  For the 

hydrated form of 13 the corresponding values are 2.288 Å, 16.2º, 2.402 Å, and 27.1º.  

The small dihedral angles (av ~14º) indicate that the carbonyl group is nearly coplanar 

with the benzene moiety, and if similar conformations are maintained in solution, the 

aromatic ortho hydrogen atom would be located in the deshielding region of the 

anisotropic field associated with the carbonyl group.  

 For compounds 9, 11, and 13 the number of 1H and 13C peaks found indicates that 

the left and right halves of each molecule are equivalent.  In compounds 9 and 11 there is 

rapid interconversion between conformers of the O-C-C-O, therefore, all sets of ethylene 

protons are singlets.  However, the multiplets found for both sets of ethylene protons (H7, 

H8) in 13 suggest that rapid conformational change does not occur for this part of the 

macrocycle.  If rapid conformational change did occur, these protons (H7,H8) would 

each be triplets.  There is little variation of the 1H and 13C chemical shifts for comparable 

nuclei among the three compounds, and the 13C chemical shifts for various nuclei occur 

in the expected regions.14,17  For compounds 9, 11, and 13 the ortho proton (H2) on the 

benzene ring is shifted downfield significantly compared to the other aromatic protons.  

A measure of this shift can be defined in terms of the difference δH2- δH4
10, whose values 

were calculated and found to decrease in the following manner; 1.41 ppm (9), 1.32 ppm 

(11), 1.16 ppm (13).  These values are close to that of the model compound o-methoxy-

N-acetylaniline, where δH2- δH4 = 1.32 ppm10.  The observed downfield shifts of H2 are 

consistent with a conformation for macrocycles 9, 11, and 13 wherein the carbonyl 
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groups adopt an exo-exo orientation and are relatively coplanar with the benzene rings.  

This conformation would maximize the effect of magnetic anisotropy, due to the 

carbonyl group, on H2.8-10,14,16  The trend in δH2- δH4 values also shows a qualitative 

inverse relationship with the average magnitude of the dihedral angles between benzene 

ring and amide group found in the solid-state.  These angles increase as follows, (6.1º) 9, 

(13.2º) 11, (15.7º) 13, suggesting that the solid-state structures are similar to those in a 

non-polar solvent like CHCl3.  Markovich et al.16 previously suggested similarities 

between the solid-state and solution structures of 13 based on the small changes observed 

in position of the IR bands for the N-H moiety in the solid-state (mineral oil suspension) 

and in solution (C4Cl6).  Furthermore, Biernat et al.13a interpreted results from studies of 

13 with a shift reagent (Eu(dpm)3)13b to indicate that the carbonyl groups were exodentate 

and the amide protons were orientated into the macrocycle cavity forming hydrogen 

bonds with the ether oxygen atoms.  The solid-state structures show that these 

conformations are stabilized by multiple intramolecular hydrogen bonds involving the 

amide protons and the ether oxygen atoms.  The chemical shifts of the amide protons are 

9.03, 9.04, and 8.73 for 9, 11, and 13, respectively.  Comparison with the value of 7.85 

ppm for o-methoxy-N-acetylaniline10 suggests that the amide protons of 9, 11, and 13 are 

more extensively hydrogen-bonded compared to the model compound.10  Thus, the 

downfield shifts for N-H and the ortho proton (H2) are consistent with the proposed 

conformation of macrocycles 9, 11, and 13 in solution.   
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II.  Structures and NMR Assignments of Bicyclic and Tricyclic Compounds 

The solid-state structures of cryptands An2.2.1, An2.2.2, and An3.1.1.3 reveal the 

arrangement of the donor atoms, orientation of the donor atoms (endodentate vs. 

exodentate), the size of the cavity, and the orientation of the benzene rings.  These 

characteristics can be compared with other cryptand and cryptate structures to determine 

the effects of the addition of the benzene rings.  The solid-state structure of cryptand 

An2.2.1 is shown in Figure 4-16.  The ligand has an unsymmetrical cavity with some 

donor atoms in an endodentate orientation (N1, N2, O1, and O2) and the others (O3, O4, 

and O5) in an exodentate orientation.  This arrangement of atoms pointing in and out of 

the cavity resulted in a twisted structure as evident from the very different distances for 

comparable oxygen to oxygen arrangements (O1···O5:  6.14 Å, O2···O4:  4.58 Å).  The 

shortest O···O nonbonding distance is 3.83 Å (O3···O5) and the largest is 6.14 Å 

(O1···O5).  Least-squares calculations for benzene rings 1 (C1-C6) and 2 (C11-C16) 

show that the average deviations of the carbon atoms from the calculated planes are 

0.0018 Å and 0.0055 Å, respectively.  The dihedral angle between the least-squares 

planes of the benzene rings is 43.9° also shows the twisted nature of the cryptand 

structure.   
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Figure 4-16.  X-ray crystal structure of An2.2.1, (16). 
 

The parent cryptand 2.2.1 has not been characterized by X-ray crystallography but 

some cryptate complexes have been.20,21  The N···N nonbonding distances of cobalt, 

sodium, and potassium 2.2.1 cryptates were 4.20 Å, 4.944 Å, and 5.143 Å, 

respectively.20,21  The considerable flexibility of the parent cryptand should be restricted 

by the presence of the benzene rings in cryptand An2.2.1.  Although cryptand 2.2.1 

complexed all three metals in the solid-state, the stability constants are higher for Na+ and 

Co2+ (5.4 for both) in comparison to K+ (<2.5).22  This suggests that cryptand 2.2.1 is 

more suited for the smaller cations Na+ (0.97 Å) and Co2+ (0.72 Å) in contrast to the 

larger K+ (1.33 Å).23  The N···N nonbonding distance of 4.72 Å of An2.2.1 is close to the 

corresponding value for the Na-2.2.1 cryptate (4.944 Å).  Because these distances are 
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similar, it would seem likely that cryptand An2.2.1 will be the right size to accommodate 

cations such as Na+ (0.97 Å) and Cd2+ (0.97 Å).23   

 The 1H spectrum shown in Figure 4-17 has a large number of peaks due to the six 

inequivalent sets of alkyl protons. 

 
 

Figure 4-17.  1H NMR peak assignment for An2.2.1, (16), in CDCl3. 
 
The methylene protons in cryptands shown in Figure 4-18 consist of sets of alkyl protons 

coupled to each other located between either nitrogens or oxygens (X and Z).17  The 

identity of the donor atoms X and Z (nitrogen or oxygen) will determine if the chemical 

shifts of the sets of alkyl protons are similar (X = Z) or if they are different (X ≠ Z).17  

Because cryptands have restricted rotation around C-C bonds, the system is described as 

an AA'XX' system and a difference exists between the coupling constant of proton Ha to 

Hx and Ha to Hx'.17    Therefore, protons Ha and Ha' are chemically equivalent but not 

magnetically equivalent.24  This type of system has a very complex spectra but if the 

protons were equivalent and the bridge was more mobile the system would most likely 
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have a spectra with two triplets.17  Protons Ha and Ha', located next to nitrogen atoms (X = 

N), are distinguishable from the other sets of alkyl protons because there are less sets than 

those that are next to oxygen atoms and because they are shifted further upfield.     

Ha' Hx'Ha Hx

X Z  

Figure 4-18.  Methylene protons in cryptands. 
 
In Cryptand An2.2.1 the right and left halves of the cryptand are equivalent because there 

are a total of six sets of alkyl protons (AA'XX' system) and two of the sets are located 

upfield.  The proton assignments shown in Figure 4-17 were made possible by the COSY 

correlation of proton b to d.  Protons a and b are upfield because of their position next to 

the nitrogen while f is the farthest downfield of the methylene protons due to the ether 

environment next to the benzene rings.  The aromatic protons (g) can not be resolved 

from this spectrum.         

 The carbon 13 spectrum is divided into four sections:  quarternary carbons (1, 6), 

aromatic carbons (2-5), carbons next to ether groups (7, 9, 10, 12) and carbons next to the 

amines (8, 11) as seen in Figure 4-19.  An impurity is located at ~ 63 ppm.  An HMBC 

peak from carbon 1 to proton a provided the information to distinguish the quarternary 

carbons from each other.  Carbons 2-5 have distinct signals but the chemical shifts for the 

attached protons could not be resolved (as shown in Figure 4-17).  Therefore, these 

carbons (2-5) could not be assigned.       
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Figure 4-19.  13C NMR peak assignment for An2.2.1, (16), in CDCl3. 
 

The HSQC spectrum of An2.2.1 is shown in Figure 4-20.  The HSQC identified 

the carbon to hydrogen one-bond connections.  The inset in Figure 4-20 shows the 

aromatic portion of the spectra.  The HSQC spectrum reveals that one of the six sets have 

coupling constants that overlap and therefore show up as one spot at ~ 3.5 ppm.   
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Figure 4-20.  HSQC of An2.2.1, (16), in CDCl3. 
 

 The solid-state structure of An2.2.2 is shown in Figure 4-21 and has a more 

spherical cavity compared to An2.2.1.  The cavity has an N···N nonbonding distance of  

5.417 Å and the comparable oxygen to oxygen nonbonding distances for O1-O3A, O1-

O2A, O2-O2A, and O3-O3A are 4.620 Å, 5.810 Å, 4.754 Å and 6.240 Å, respectively.  

The later distance is caused by the exodentate orientation of donor atoms O3 and O3A.  

The other six donor atoms (N1, N1A, O1, O1A, O2, and O2A) are pointing towards the 

cavity.  In contrast, the parent cryptand 2.2.2 has a much longer N···N nonbonding 

distance of  6.871 Å and the oxygen to oxygen distances on the different chains range 

from 3.745 Å to 4.697 Å.25  The torsion angle for the O-C-C-O group containing O1, 

O1A is -62.4º.  The comparable angles in the alkyl bridges are -81.8º for O2A, O3 and 

O2, O3A.      

8 
11 

7
10 

12 

b 
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Figure 4-21.  X-ray crystal structure of An2.2.2, (19). 
 

Least-squares calculations for the benzene rings 1 (C1-C6) and 2 (C1-C6A) show 

the carbon atoms are planar with average deviations of 0.0071 for both.  The dihedral 

angle between the least-squares planes of the benzene rings is 44.5°.  This angle is similar 

to that of An2.2.1 (43.9°) and reveals a consistent orientation due to the presence of the 

benzene rings.  

 The 1H NMR of An2.2.2 in Figure 4-22 shows the peak assignment for each 

proton group.  The 1H NMR has only four sets of alkyl protons (AA'XX' system) with 

one set located upfield.  These assignments agree with those reported for a derivative of 

An2.2.2 with a methyl group para to the nitrogen on one of the benzene rings.26   
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Figure 4-22.  1H NMR peak assignment for An2.2.2, (19), in CDCl3. 
 
 The carbon 13 spectrum for An2.2.2 is divided into four sections:  quarternary 

carbons (1, 6), aromatic carbons (2-5), carbons next to ether groups (7, 9, 10) and a 

carbon next to an amine (8) as seen in Figure 4-23.  There are total of ten distinct carbon 

signals and only four are alkyl carbon signals.  This indicates that the left and right halves 

of the molecule are equivalent as well as the alkyl bridges (Figs. 4-22, 4-23).        

 
Figure 4-23.  13C NMR peak assignment for An2.2.2, (19) in CDCl3. 
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The HSQC spectrum of An2.2.2 is shown in Figure 4-24.  The inset in Figure 4-

24 shows the aromatic portion of the spectra with the hydrogens (6.9-7.0 ppm) being 

unresolved similar to the case for An2.2.1.  Due to the symmetry of An2.2.2, there is only 

one signal for a carbon next to a nitrogen donor atom (C8) and the HSQC shows a direct 

connection to the most upfield hydrogen sets Ha, Hb.  The singlet methylene proton (4.4 

ppm,) farthest downfield is connected to the most upfield carbon signal in the group of 

ether carbons.   

     

 
Figure 4-24.  HSQC of An2.2.2, (19), in CDCl3. 
 

The HSQC also provides information showing which hydrogen atoms are 

connected to the same carbon.  The HSQC showed that protons a and b as well as protons 

d and e are linked to the carbon atoms C8 and C9, respectively.  Carbons 7 and 10 are 

only linked to one set of protons each.  The HMBC peaks of carbon 6 to proton f and 
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c 
d 
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carbon 1 to proton a allowed for the distinction between the quarternary carbons 1 and 6.  

The aromatic carbons (2-5) cannot be assigned because the protons on the aromatic ring 

cannot be resolved.  Carbons 8 and 9 were assigned to the same bridge because of an 

HMBC correlation between carbon 9 and proton a.  Carbon 10 had HMBC correlations to 

protons d and e, but not to protons a or b.  An HMBC correlation between carbon 6 and 

proton f provided the information needed to assign the protons f and c to their respective 

positions.   

 Cryptand An3.1.1.3 is the 2 + 2 cycloaddition product obtained from the attempt 

to synthesize cryptand An3.1.1 by the high-dilution method.  Although the product was 

not deliberately made, it has properties of interest that are significantly different from 

those of cryptands An2.2.1, An2.2.2, and An3.1.1.  Several groups27-29 have prepared 

macrotricyclic compounds similar to An3.1.1.3 and they are shown in Figure 4-25. 
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Figure 4-25.  An3.1.1.3, (21), and other macrotricyclic cryptands.  
 
 Cylindrical macrotricyclic compounds are composed of two rings and two 

bridges.27  The cryptands reported in the literature have symmetric bridges within the 

monocyclic rings, while the bridges linking the monocyclic rings differ from those in the 

monocycles.  In cryptand An3.1.1.3, the bridges within the monocyclic rings are 
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asymmetric and the bridges linking the monocyclic rings are identical to the smaller 

bridge of each monocycle.  Because An3.1.1.3 has two distinct receptor sites, it has the 

potential to accommodate multiple guests in comparison to a single guest as expected for 

cryptands An2.2.1, An2.2.2, and An3.1.1.  Cylindrical cryptands have been reported to 

form inclusion complexes with +H3N-(CH2)n-NH3
+ dications of various chain lengths (n = 

3-12)30, binuclear complexes that contain two metal cations31, and cascade complexes 

which are made up of an anion bridging two coordinated metals32.  The solid-state 

structure of An3.1.1.3 is shown in Figure 4-26 and confirms that there are three different 

binding regions present for the cylindrical cryptand.  These include the two 18-membered 

rings (cavity 1:  N1, N4, O1, O2, O3, O10; cavity 3: N2, N3, O4, O5, O6, O8) and a 24-

membered ring that forms a central cavity (cavity 2:  N1, N2, N3, N4, O7, O8, O9, O10).  

The donor atoms O1, O2, and O3 are endodentate towards cavity 1, donor atoms O4, O5, 

and O6 are endodentate towards cavity 3, and donor atoms N1, N2, N3, and N4 are 

endodentate towards cavity 2.  Donor atoms O7, O8, O9, and O10 are exodentate with 

respect to all three cavities.  The monocycles that make up cavities 1 and 3 are virtually 

the same size with N···N nonbonding distances for N1···N4 and N2···N3 of 7.203 Å and 

7.232 Å, respectively.  The O···O nonbonding distances 4.402 Å for O2···O10 and 4.333 

Å for O5···O8 also support this claim.  The 24-membered central cavity has an oblong 

shape characterized by O···O nonbonding distances of 10.022 Å for O7···O9 and 5.464 Å 

for O8···O10 and N···N nonbonding distances for N1···N3 and N2···N4 of 10.667 Å and 

7.781 Å, respectively.   
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Figure 4-26.  X-ray crystal structure of An3.1.1.3, (21). 
 

Figure 4-27 shows cryptand An3.1.1.3 from a different view in order to see the 

arrangement of the benzene rings.  The benzene rings are orientated in an x-shaped 

arrangement.  Least-squares calculations for the benzene rings 1 (C1, C24, C33-C36), 2 

(C6, C7, C37-C40), 3 (C12, C13, C41-C44), and 4 (C18, C19, C45-C48) show the carbon 

atoms are planar with average deviations of 0.0061 Å, 0.0179 Å, 0.0052 Å, and 0.0145 

Å, respectively.  The dihedral angles between the benzene rings for cavities 1 (ring 1 and 

4) and 3 (ring 2 and 3) are 60.1° and 55.8°, respectively.  The benzene rings of cavities 1 

and 3 diagonal from each other (rings 1 and 3; rings 2 and 4) are virtually on the same 

plane evidenced by dihedral angles of 6.7° between benzene rings 1 and 3 and 4.7° 

between benzene rings 2 and 4.        

Ring 1 
Ring 2 

Ring 4 Ring 3 

Cavity 2

Cavity 1

Cavity 3 
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Figure 4-27.  X-ray crystal structure of An3.1.1.3, (21), viewed along O2-O5 axis. 
 
 Figure 4-28 shows cryptand An3.1.1.3 from another view so the arrangement of 

the three cavities is visible.  From this perspective, cavity 1 and cavity 3 are orientated 

below and above cavity 2, respectively.  The overall shape of the molecule is comparable 

to a flight of steps.    

 
 

Figure 4-28.  X-ray crystal structure of An3.1.1.3, (21), viewed along N2-N4 axis. 
 

Cavity 2

Cavity 1

Cavity 3
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 The ESI+-MS spectra of An3.1.1.3 is shown in Figure 4-29.  The m/z ratios of 

429.2 and 429.7 are indicative of the molecular ion peak (M) and the M + 1 isotope peak 

for An3.1.1.3 (integer mass = 856).  The molecular weight is divided by two because the 

ligand is doubly protonated.  This does not occur for the cryptands An2.2.1, An2.2.2, or 

An3.1.1 because the presence of two protons is not electrostatically favorable.  The 

presence of two nitrogens separated by ~10 Å allows the cryptand to become doubly 

protonated.    

 
   

 
 

Figure 4-29.  ESI+-MS of An3.1.1.3, (21). 
 

The full characterization of 22 (An3.1.1*), the bicyclic diamide precursor of 

cryptand An3.1.1, was completed to validate the production of the desired 1 + 1 

cycloaddition product in the high-dilution reaction.  Conditions were changed from the 

previous high dilution reaction that yielded exclusively the 2 + 2 cycloaddition product in 

an attempt to shift the reaction to favor 1 + 1 cycloaddition.  The modified procedure 
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gave the previous product, An3.1.1.3*, that was confirmed by X-ray crystallography unit 

cell measurements, and An3.1.1*.  The X-ray structure in Figure 4-30 confirms the 

formula and structure of the bicyclic diamide An3.1.1*.  A related diamide without the 

benzene rings has been made but the carbonyl groups are on the bridge containing three 

ether oxygens.33  Least-squares calculations for the benzene rings 1 (C1-C6) and 2 (C19-

C24) show the carbon atoms are planar with average deviations of 0.0025 Å and 0.0048 

Å, respectively.  The dihedral angle between the least-squares planes of the benzene rings 

is 48.0°.  The dihedral angles between the least-squares planes of the benzene rings vary 

significantly among the other bicyclic diamides An2.2.1* (21.9° and 27.6°), An2.1.2* 

(34.3°), and An2.2.2* (137.9°).  

  

 
Figure 4-30.  X-ray crystal structure of An3.1.1*, (22). 
 
 The numbering scheme for An3.1.1* used to describe the NMR results is shown 

in Figure 4-31.  NMR experiments performed at room temperature gave complex spectra 

with a large number of peaks, many of them being very broad.  The complexity of the 

spectra was a result of the inequivalent sets of alkyl protons (AA'XX' system) as 

previously described.  This was due, in part, to additional conformational restrictions that 
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were imposed by the amide moieties.17,34  All NMR experiments were conducted at 58º C 

in an attempt to resolve the broad peaks.  Even though the temperature was increased, the 

methylene protons were still inequivalent for four (H8, H9, H10, H12) out of the five sets 

(H7).  NOESY experiments for H2, H4, and H5 show correlation peaks to H9, nothing, 

and H7, respectively.  The distances between these protons found in the solid-state are in 

good agreement with the limit of detection (~ 4 Å) for NOESY experiments.17  In the 

solid-state, proton H2 has distances from H9 and H9' of 2.47 Å and 3.78 Å, respectively 

and H5 is 2.17 Å and 2.36 Å from protons H7 and H7', respectively.   
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Figure 4-31.  NMR numbering scheme for An3.1.1*, (22). 
 
 Table 4-11 shows the chemical shifts and peak assignments from the 1H, 13C, and 

2D NMR experiments.  The aromatic protons have chemical shift values from 6.96 - 7.25 

ppm.  This is distinctly different from the monocycle, An3.1* where H2 is shifted 

significantly (~1.2 ppm) downfield because of deshielding from the carbonyl oxygens.  In 

the solid-state structure of An3.1*, each amide moiety and adjacent benzene ring are 

nearly co-planar (14.3°, 17.1°) and the H2 distances from the adjacent carbonyl oxygens 

are between 2.29 Å and 2.40 Å.  For An3.1.1*, the H2 protons are not deshielded by the 

carbonyl oxygens evidenced by the normal chemical shift.  In the solid-state, the 

distances between the protons (H2 and H20) and the carbonyl oxygens (O5 and O7) have 
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distances of 3.70 Å and 3.80 Å, respectively, and the dihedral angles between the planes 

defined by the benzene ring and the adjacent four-atom amide group are 104.0º and 99.0º, 

respectively.        

Table 4-11.  NMR peak assignments for An3.1.1*, (22) at 58 ºC in CDCl3. 
 

 
C 

δC 
(ppm) 

 
H 

δH 
(ppm) 

 
COSY 

 
HSQC 

 
HMBC 

1 131.34     H2, H3, H5 
2 128.04 2 7.09 H3, H5 H2 H4 
3 121.58 3 6.96 H2, H4 H3 H5 
4 128.68 4 7.25 H3, H5 H4 H2 
5 114.12 5 6.96 H2, H4 H5 H3 
6 154.73     H2, H4, H5 
7   69.05 7 4.17 H8, H8' H7  
8   70.12 8 3.85 H8', H7 H8, H8' H8' 
  8' 3.96 H8   
9   50.85 9 3.71 H9', H10 H9, H9'  
  9' 4.44 H10, H9   

10   68.49 10 3.66 H9, H9', H10 H10, H10' H9', H10 
  10' 3.83 H10   

11 168.78     H12 
12   71.94 12 4.39 H12' H12, H12' H12 
  12' 4.52 H12   
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III.  Structures of Cryptate Complexes 

 The determination of crystal structures for cryptate complexes will show if the 

metal is encapsulated in the ligand in the solid-state, identify the donor atoms that are 

coordinated to the metal ion, and reveal if the metal ion is coordinated to any anion donor 

atoms.  Comparison between the solid-state structure of the free cryptand and metal ion 

cryptates for An2.2.2·K+·ClO4
-, An2.2.2·Pb2+·(NCS-)2, and  2.2B.2B·Pb2+·NCS- will show 

conformational changes that occur as a result of metal ion complexation.  Structural 

changes upon complexation of the cryptand An2.2.2 to form the cryptate 

An2.2.2·K+·ClO4
- will be compared with that of 2.2.2 to form cryptate 2.2.2·K+.25,35  The 

cryptates 2.2B.2B·Pb2+·NCS-, 2.2.2·Pb2+·NCS-·SCN- and 2N2N2N·Pb2+ will be compared to 

establish trends associated with the ligands.36  Cryptands 2.2.2, 2.2B.2B, and 2N2N2N are 

shown in Figure 4-32. 
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Figure 4-32.  Cryptands 2.2.2, 2.2B.2B, and 2N2N2N. 
 
 The solid-state structure of An2.2.2·K+·ClO4

- is shown in Figures 4-33 and 4-34.  

The potassium cation is located inside the cryptand cavity coordinated to all eight donor 

atoms (N1, N2, O1, O2, O3, O4, O5, and O6) of cryptand An2.2.2 and to two oxygen 

atoms from a perchlorate anion (O1A and O2A) for a total coordination number of 10.  
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The average metal ion donor atom distances for cryptand An2.2.2 are 2.80 Å for K-O, 

which is slightly shorter in comparison to the average distance of 2.96 Å for K-N.  The 

K-O metal-donor atom distances range from 2.71-2.95 Å while the range for K-N is 2.94-

2.98 Å.  The distance between perchlorate anion oxygen atoms and potassium are longer 

than those from the ligand with distances of 3.08 Å and 3.10 Å for O1A and O2A, 

respectively.             

 

 

Figure 4-33.  X-ray crystal structure of An2.2.2·K+·ClO4
-. 
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Figure 4-34.  X-ray crystal structure of An2.2.2·K+·ClO4
- viewed along N1-N2 axis.   

 
Figure 4-35 shows the metal center and coordination geometry of An2.2.2·K+·ClO4

-.  

Least-squares calculations show that a plane is defined by N1, O3, O4, and K1 with an 

average deviation of 0.0581 Å.  A second least-squares plane exists involving the metal 

(K1) and anion atoms (O1A, O2A, Cl1) with an average deviation of 0.0119 Å.  The 

dihedral angle between these two planes is 80.8°.  Least-squares calculations for benzene 

rings 1 (C1-C6) and 2 (C9-C14) in An2.2.2·K+·ClO4
- show that the average deviations of 

the carbon atom from the calculated planes are 0.0083 Å and 0.0241 Å, respectively.  The 

dihedral angle between the least-squares planes of the benzene rings undergoes very little 

change from 44.5° in An2.2.2 to 42.1° in An2.2.2·K+·ClO4
-.   
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Figure 4-35.  Metal center and coordination geometry of An2.2.2·K+·ClO4
-. 

 
The O-C-C-O torsion angles for the potassium cryptate complex are very similar for the 

oxygen atom pairs O5-O6, O3-O4, and O1-O2 with angles of -66.0º (2), -67.8º (2), and 

63.9º (3), respectively.  Cryptand An2.2.2 has O-C-C-O torsion angles of -81.8º (O2A, 

O3; O2, O3A) and -62.4º (O1, O1A).  The latter correspond to oxygen atoms O1 and O2 

as shown in Figures 4-33 - 4-35.  The three atom angle (∠N-M-N) between the nitrogen 

bridgeheads and the metal ion is 164.79(5)º.  The cryptand cavity of An2.2.2 expands in 

size to accommodate the metal ion (K+) evident by the increase in N···N non-bonding 

distance from 5.417 Å to 5.870 Å.  The exodentate donor atoms (O3 and O3A) from 

cryptand An2.2.2 have rotated to endodentate positions in An2.2.2·K+·ClO4
-.  This 

oxygen atom pair is indistinguishable in An2.2.2·K+·ClO4
- and therefore could be atoms 

O6 and O4 or O3 and O5.  Figure 4-36 shows the packing diagram of An2.2.2·K+·ClO4
-.   



 169

 

Figure 4-36.  Packing diagram of An2.2.2·K+·ClO4
-. 

 
In comparison to the parent cryptand 2.2.2 and the cryptate 2.2.2·K+, the conformational 

changes of cryptand An2.2.2 to accommodate the potassium ion seem relatively small.  

The N···N non-bonding distance for cryptand 2.2.2 changes from 6.87 Å to 5.75 Å for 

2.2.2·K+ and the average values of the O-C-C-O torsion angles change from 177º to 

51º.25,35  The three atom angle (∠N-M-N) between the nitrogen bridgeheads and the 

metal ion is linear (180.0º) for 2.2.2·K+.35   
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 A mass spectrum of An2.2.2·K+·ClO4
- cryptate was obtained by dissolving a 

crystal from the X-ray structure analysis batch in methanol.  The ESI+-MS spectrum is 

shown in Figure 4-37.  The molecular mass of free ligand An2.2.2 (472) is not seen, 

because the ligand is fully complexed by sodium (m/z = 495) and potassium (m/z = 511).         

 

 
Figure 4-37.  ESI+-MS of An2.2.2·K+·ClO4

- in MeOH. 
 
The identification of molecular ion peaks is also substantiated by comparing the relative 

intensities of the peaks in the mass spectrum with the relative abundance of the isotopes 

of potassium.  The potassium isotopes are listed in Table 4-12.   

Table 4-12.  Relative abundance of the elemental isotopes of potassium.23 
 

 
Metal 

 
Isotope 

 
Relative Abundance 

K 39 93.10 
 40   0.02 
 41   6.88 

 
Figure 4-38 shows a portion of the ESI+-MS of a solution of the An2.2.2·K+·ClO4

- crystal 

(bottom) along with a calculated isotopic distribution model for this complex (top).  

There is excellent agreement for the position (m/z) and relative intensities to confirm the 

sample as the An2.2.2·K+ complex.       
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Figure 4-38.  Calculated isotope distribution (top) and ESI+-MS of An2.2.2·K+ (bottom). 
 

A crystal of An2.2.2·Pb2+·(NCS-)2 was subjected to X-ray diffraction analysis.  

Unfortunately, the molecule was found to sit on a crystallographic mirror plane.  Because 

the molecule does not possess a mirror plane, all atoms (except the metal) were 

disordered and refined with an occupancy factor of 0.5.  Restraints on the positional and 

displacement parameters of all carbon, nitrogen, and oxygen atoms were required.  

Therefore, the atom positions, bond distances, and bond angles are not reliable.  

However, the general features of the compound could be discerned from a structure based 

on the average positions of the atoms.  This solid-state structure of An2.2.2·Pb2+·(NCS-)2 

is shown in Figure 4-39 and the packing diagram is shown in Figure 4-40.  The lead 

cation is centrally located inside the cryptand cavity with all eight donor atoms (N1, N10, 

O4, O7, O13, O16, O21, and O24) having an endodentate orientation suitable for 

coordination to the metal ion.  In addition, the nitrogen atoms from two thiocyanate 

anions (N35 and N37) appear to be coordinated giving a total coordination number of 10.        
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Figure 4-39.  X-ray crystal structure of An2.2.2·Pb2+·(NCS-)2 viewed along N1-N10 axis.   
 

 

Figure 4-40.  Packing diagram of An2.2.2·Pb2+·(NCS-)2.    
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 The atom positions, distances, and angles in cryptate An2.2.2·Pb2+·(NCS-)2 are not 

reliable and cannot be compared with the other cryptates or cryptand An2.2.2 because all 

atoms (except the metal) were disordered in the solid-state structure.  The parent cryptand 

2.2.2 and cryptate 2.2.2·Pb2+·NCS-·SCN- show considerable differences in structure such 

as average torsion angles (177º vs. 59º) and the N···N non-bonding distance (6.87 Å vs. 

5.76 Å).25,36   

 The An2.2.2·Pb2+·(NCS-)2 complex was characterized using ESI+-MS by 

dissolving a crystal from the sample used for the X-ray structure analysis in methanol.  

The spectrum is shown in Figure 4-41.  The complex has two main peaks contributed by 

the masses of the singly charged An2.2.2·Pb2+·NCS- complex (m/z = 739) and the doubly 

charged An2.2.2·Pb2+ complex (m/z = 340).  The doubly charged complex is observed 

centered at m/z = 340 because the x-axis for mass spectra is mass/charge ratio (680/2). 

 
Figure 4-41.  ESI+-MS of An2.2.2·Pb2+·(NCS-)2. 
 

Lead has four isotopes, listed in Table 4-13, that provide a distinct pattern for the 

molecular ion dominated by a ~1:1:2 signal ratio (204Pb is negligible).    

Table 4-13.  Relative abundance of the elemental isotopes of lead.23 
   

 
Metal 

 
Isotope 

 
Relative Abundance 

Pb 204   1.5 
 206 23.6 
 207 22.6 
 208 52.3 
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 The experimental (bottom) and calculated (top) mass spectra for the peaks 

associated with An2.2.2·Pb2+ and An2.2.2·Pb2+·NCS- are shown in Figures 4-42 and 4-43, 

respectively.  The calculated isotope distribution patterns were obtained from the Mass 

Lynx software package.37  There is excellent agreement for the position (m/z) and relative 

intensities for An2.2.2·Pb2+ (m/z = 340) and the An2.2.2·Pb2+·NCS- (m/z = 739) complex.       

 
 

Figure 4-42.  Calculated isotope distribution (top) and ESI+-MS of  
An2.2.2·Pb2+ (bottom).   
 

 
Figure 4-43.  Calculated isotope distribution (top) and ESI+-MS of  
[An2.2.2·Pb2+·NCS-]+ (bottom).   
 
 The X-ray crystal structure of the 2.2B.2B·Pb2+·NCS- complex was determined to 

allow comparison with the solid-state structures of the uncomplexed 2.2B.2B ligand38 and 

with other lead cryptates 2.2.2·Pb2+·NCS-·SCN- and 2N2N2N·Pb2+.36,39  Figures 4-44 and 4-

45 show the X-ray structure of 2.2B.2B·Pb2+·NCS- complex with lead located inside the 

cavity coordinated to all eight donor atoms of cryptand 2.2B.2B and to one nitrogen from a 

thiocyanate anion for a total coordination number of 9.   
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Figure 4-44.  X-ray crystal structure of 2.2B.2B·Pb2+·NCS-. 
 

 
 

Figure 4-45.  X-ray crystal structure of 2.2B.2B·Pb2+·NCS- viewed along N1-N10 axis. 
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The average metal-donor atom distances from cryptand 2.2B.2B to the metal for Pb-O and 

Pb-N are 2.76 Å and 2.77 Å, respectively.  The Pb-O and Pb-N metal-donor atom 

distances range from 2.69-2.83 Å and 2.71-2.83 Å, respectively.  The thiocyanate ligand 

has a shorter bond length with Pb-N = 2.47 Å.  Figure 4-46 shows the metal center and 

coordination geometry of 2.2B.2B·Pb2+·NCS-.  Least-squares calculations show that a 

plane exists between Pb1, O4, O7, O13, O16, N1, and N10 with an average deviation 

from the plane of 0.0736 Å.  The donor atoms from the non-benzo bridge (O21 and O24) 

are below the plane and the donor atom from the thiocyanate ligand (N35) is above the 

plane as shown in Figure 4-46.  A least-squares calculation of the plane with only the 

ligand donor atoms of 18-membered dibenzo monocycle (N1, N10, O4, O7, O13, and 

O16) has an average deviation from the plane of 0.0526 Å, and Pb1 is just below that 

plane (0.175 Å).  Therefore, the 18-membered monocycle of 2.2B.2B that includes the 

benzo bridges adopts an almost flat arrangement in the cryptate 2.2B.2B·Pb2+·NCS-.              

 

Figure 4-46.  Metal center and coordination geometry of 2.2B.2B·Pb2+·NCS-. 
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Least-squares calculations for benzene rings 1 (C5, C6, C27-C30) and 2 (C14, C15, C31-

C34) in 2.2B.2B·Pb2+·NCS- show that the average deviations of the carbon atom from the 

calculated planes are 0.0087 Å and 0.0043 Å, respectively.  The dihedral angle between 

the least-squares planes of the benzene rings is 41.1°.  The O-C-C-O torsion angle for the 

non-benzo bridge oxygen pair (O21, O24) is -66.9º, while those for the benzo bridge 

oxygen pairs (O4, O7) and (O13, O16) are -0.3º and -2.4º, respectively, distinctly 

different because of the constraint imposed by the benzene rings.  The N···N non-bonding 

distance in 2.2B.2B·Pb2+·NCS- is 5.522 Å and the three atom angle (∠N-M-N) between 

the nitrogen bridgeheads (N1, N10) and the metal ion is 171.26(8)º. 

  The torsion angles in the uncomplexed ligand 2.2B.2B do not undergo much 

alteration upon lead complexation from the comparison of torsion angles between the 

oxygen pairs of 2.2B.2B and 2.2B.2B·Pb2+·NCS- (-4.8º, -6.1º, and 71.4º vs. -0.3º, -2.4º, and 

-66.9º.38  However, the lone exodentate atom (O24) does change to endodentate 

orientation.  The dihedral angle between the benzene rings in the cryptand 2.2B.2B  

changes considerably from 127.9º to 41.1º in the cryptate 2.2B.2B·Pb2+·NCS- and the 

N···N non-bonding distance increases from 5.161 Å to 5.522 Å.  Figure 4-47 shows the 

packing diagram for 2.2B.2B·Pb2+·NCS-. 
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Figure 4-47.  Packing diagram for 2.2B.2B·Pb2+·NCS-.  
 

The 2.2B.2B·Pb2+·NCS- complex was characterized using ESI+-MS by dissolving a 

crystal from the sample used for the X-ray structure analysis in methanol.  The spectrum 

is shown in Figure 4-48.  The mass spectrum is composed of the 2.2B.2B·Pb2+·I- complex 
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(m/z = 807), the doubly charged 2.2B.2B·Pb2+ complex (m/z = 340), and the 2.2B.2B·Na+ 

complex (m/z = 495).   

 

 
Figure 4-48.  ESI+-MS of 2.2B.2B·Pb2+·NCS- complex.   
 
 The experimental (bottom) and calculated (top) mass spectra for the peaks 

associated with 2.2B.2B·Pb2+·I- and 2.2B.2B·Pb2+ are shown in Figures 4-49 and 4-50, 

respectively.  

 

Figure 4-49.  Calculated isotope distribution (top) and ESI+-MS of [2.2B.2B·Pb2+·I-]+  
(bottom).   
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Figure 4-50.  Calculated isotope distribution (top) and ESI+-MS of 2.2B.2B·Pb2+ (bottom).   
 
 The calculated isotope distribution patterns and the mass total are in good 

agreement with the mass total for the complexes.  CsI is used to calibrate the mass 

spectra and residual iodide (I-, m/z = 127) present in the system complexed with the lead 

cryptate. 

Comparison of the solid-state structures of the lead cryptates 2.2B.2B·Pb2+·NCS-, 

2.2.2·Pb2+·NCS-·SCN- and 2N2N2N·Pb2+ will reveal if consistent trends exist for the metal 

complexes.  The all nitrogen substituted cryptate 2N2N2N·Pb2+  is coordinated to all 8 

donor atoms and has four bonds with distances of 2.67-2.74 Å and four with contacts > 

2.8 Å, including the two bridgehead nitrogens.39  The three atom angle (∠N-M-N) 

between the nitrogen bridgeheads and the metal ion is 176.67º.39  Table 4-14 shows the 

average lead-donor distances, N···N non-bonding distances, and three atom angle (∠N-

M-N) between the nitrogen bridgeheads for 2N2N2N·Pb2+ and the two lead cryptates 

previously discussed.  The average Pb-O bonds for the oxygen containing cryptates were 

consistent with each other (~2.8 Å).    The average lead to bridgehead nitrogen distance 

in cryptates 2.2.2·Pb2+·NCS-·SCN- and 2N2N2N·Pb2+ are very similar (2.88 Å, 2.85 Å), and 

2.2B.2B·Pb2+·NCS- is slightly shorter (2.77 Å).  The comparisons show that the average 

lead-oxygen bonds are shorter than the average lead-nitrogen bonds.  It also reveals that 

  



 181

lead has the shortest bonds between the nitrogens from the bridging strands in 

2N2N2N·Pb2+ cryptate and the longest for the nitrogens in 2.2.2·Pb2+·NCS-·SCN- cryptate.  

The N···N non-bonding distances for cryptates 2.2.2·Pb2+·NCS-·SCN- and 2N2N2N·Pb2+ 

are very similar (≤ 0.09 Å), but the distance in 2.2B.2B·Pb2+·NCS- is considerably (≥ 0.19 

Å) shorter.  The cryptand that contains benzene rings, 2.2B.2B, results in a solid-state lead 

cryptate that has a three atom angle (∠N-M-N) that differs more from linearity in 

comparison to the other lead cryptates. 

Table 4-14.  Average lead-donor distances and N···N non-bonding distances for lead 
cryptates. 
   

  
2.2B.2B·Pb2+ 

CN = 9 

 
2.2.2·Pb2+ 
CN = 10 

 
2N2N2N·Pb2+ 

CN = 8 
Pb-Oavg

a 2.76 2.80 -- 
Pb-Navg

a 2.77 2.88 2.70c; 2.82d; 2.85e 
N···Na 5.52 5.76 5.71 
∠N-M-Nb 171.3 174.4 176.7 

aMeasurements are in Å.  bMeasurements are in °.  cShort Pb-N bridging strands.   dLong 
Pb-N bridging strands.  eBridgehead Pb-N. 
 
Lead-containing crystal structures from the Cambridge Structural Database (CSD) can be 

classified as either holodirected (donor atoms distributed evenly) or hemidirected (donor 

atoms bunched to one side).40  The cryptates 2.2B.2B·Pb2+·NCS-, 2.2.2·Pb2+·NCS-·SCN-, 

and 2N2N2N·Pb2+ are all holodirected structures.  The Pb-O and Pb-N average bond 

distances for cryptate 2.2B.2B·Pb2+·NCS- is longer (≥ 0.15 Å)  than the average values of 

2.53 (15) Å and 2.62 (11) Å, respectively found in all holodirected divalent lead 

complexes.41  However, only 10% of all divalent lead compounds in the CSD have 

coordination numbers > 8 and bond lengths are likely to increase as the coordination 

number increases.40  
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IV.  Protonation and Metal Complexation Constants for An2.2.1 and An2.2.2 

The solution properties of cryptands An2.2.1 and An2.2.2 were investigated to 

determine the effects of the benzo-substitution on the protonation and metal formation 

constants.  Figure 4-51 shows the changes in absorbance with pH for cryptand An2.2.2.  

The diprotonated ligand has a peak of maximum absorbance, λmax  at 272 nm.  As the pH 

increases, the λmax shifts to a longer wavelength at 278 nm.  Two isosbestic points are 

present from pH 3.0 - 3.4 at 264 nm and 276 nm as shown in Figure 4-52.  The presence 

of an isosbestic point is evidence that only two absorbing components are present.  As the 

pH is increased above 3.4, the isosbestic points are lost.  Figure 4-53 is a semi-log plot of 

the measured absorbance at 284 nm versus aH for An2.2.2.  The data were fit to eq 4.1 

and the calculated parameters used to construct the solid line are listed in the inset table.  

The Kaleidagraph data results listed in the tables throughout this work are the output of 

the data fitting program and are not representative of the correct number of significant 

figures.  The observed absorbance (Ai) depends on the protonation constants KH1 and 

KH2, parameters A0, A1, and A2 which are the limiting absorbance values for the 

unprotonated, monoprotonated, and diprotonated species of the ligand, respectively, and 

the hydrogen ion activity, aH. 

Ai =
A2KH1KH2aH

2 + A1KH1aH + A0

KH1KH2aH
2 + KH1aH + 1       (4.1) 
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Figure 4-51.  Spectra from the titration of 0.13 mM An2.2.2, (19), from pH 2.5-6.5.  
Some spectra have been omitted for clarity. 
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Figure 4-52.  Isosbestic points for cryptand An2.2.2, (19), at 264 nm and 276 nm. 
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Figure 4-53.  Plot of absorbance at 284 nm versus aH for the titration of An2.2.2, (19),  
shown in Figure 4-51.   
 
 The calculated values for the protonation constants (log KHi) are listed in Table 4-

15.  The values obtained using Kaleidagraph are at a specific wavelength listed in the 

table.  Specfit utilizes multi-wavelength data sets to calculate KH1 and KH2 from a 

specified portion of the spectrum.  For titration data analysis using Specfit in this project, 

the wavelength range will be 200-400 nm.  This 200 nm range is where the absorbing 

species occur and 100 discrete wavelengths will be measured for this range.  Both data 

fitting programs report error as standard error. 
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Table 4-15.  Protonation constants (log KHi) for An2.2.2, (19) in H2O.  
 

Exp. 
No. 

 
Methoda 

λ, nm 
(range) 

 
log KH1 

 
Error 

 
log KH2 

 
Error 

1 K 284 5.28 0.03   3.32   0.06 
1 S 200-400 5.56 0.03   3.41   0.07 
2 K 284 5.20 0.05 3.2 0.2 
2 S 200-400 5.28 0.04 3.7 0.1 

Avg.   5.33 0.16   3.41   0.21 
aK = Kaleidagraph, S = Specfit. 

 The protonation constants (log KHi) for cryptand An2.2.2 are 5.3 ± 0.2 and 3.4 ± 

0.2.  A species distribution plot showing the relative concentration (%) of each form of 

the ligand versus pH, shown in Figure 4-54, was constructed using the program SolEq42 

and the values of KH1 and KH2.  The isosbestic points previously discussed are present 

when pH ~ 3.5, because the solution is made up primarily of the di- and monoprotonated 

ligand.  The isosbestic points are lost as the pH increases because of the presence of the 

unprotonated ligand.  At physiological pH (~7), cryptand An2.2.2 is present 

predominantly (>95%) in the unprotonated form.  In contrast, the parent cryptand 2.2.2 is 

present as a mixture of the di- and monoprotonated species at physiological pH due to the 

larger values of log KH1 (9.60) and log KH2 (7.28).43       



 186

0

20

40

60

80

100

2 3 4 5 6 7 8

L
HL
H2L

%
 L

ig
an

d

pH  

Figure 4-54.  Species distribution for An2.2.2, (19). 
 

Figure 4-55 shows the changes in absorbance with pH for cryptand An2.2.1.  The 

diprotonated ligand has a peak of maximum absorbance, λmax, at 272 nm.  As the pH 

increases, λmax shifts to a longer wavelength at 280 nm.  Figure 4-56 is a semi-log plot of 

the measured absorbance at 240 nm versus aH for An2.2.1.  The data was fit using eq 4.1 

and the calculated values used to construct the solid line are listed in the table (inset). 
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Figure 4-55.  Spectra from the titration of 0.072 mM An2.2.1, (16), from pH 1.9-6.5.  
Some spectra have been omitted for clarity. 
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Figure 4-56.  Plot of absorbance at 240 nm versus aH for the titration of An2.2.1, (16),  
shown in Figure 4-55.   
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The calculated values for the protonation constants (log KHi) are listed in Table 4-16.  

The Kaleidagraph fits are at a specific wavelength listed in the table.  A value for KH2 

was not determined from experiment 1 using Kaleidagraph.  Specfit analysis of 

experiment 1 using the entire spectrum made it possible to obtain KH2.      

Table 4-16.  Protonation constants (log KHi) for An2.2.1, (16) in H2O. 
   

Exp. 
No. 

 
Methoda 

λ, nm 
(range) 

 
log KH1 

 
Error 

 
log KH2 

 
Error 

1 K 248 5.22 0.02 -- -- 
1 S 200-400 5.43 0.06 2.8 0.1 
2 K 242 5.45 0.04 3.1 0.2 
2 S 200-400 5.37 0.09 3.3 0.2 

Avg.   5.40 0.10 3.1 0.3 
aK = Kaleidagraph, S = Specfit. 
 
 The protonation constants (log KHi) for cryptand An2.2.1 are 5.4 ± 0.1 and 3.1 ± 

0.3.  A species distribution plot of percent ligand versus pH is shown in Figure 4-57.  

Cryptand An2.2.1 is similar to cryptand An2.2.2 in that the only species present in an 

appreciable amount at physiological pH is the unprotonated ligand (>95%).  The parent 

cryptand 2.2.1 has log KH1 and KH2 values of 10.53 and 7.50, respectively, and is present 

at physiological pH as a mixture of di- and monoprotonated species.43   

 The addition of benzene rings in cryptands An2.2.1 and An2.2.2 lowers both KHi 

values by ≥ 4 orders of magnitude and also results in protonation constants that are closer 

together.  The protonation constants KH1 and KH2 for 2.2.1 and 2.2.2 have a difference in 

magnitude of 3.1 and 2.4 log units, respectively, whereas cryptands An2.2.1 and An2.2.2 

differ by 2.3 and 1.9 log units, respectively.  
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Figure 4-57.  Species distribution of An2.2.1, (16). 
 
 The spectral properties of cryptand An2.2.2 with sodium, potassium, calcium, 

strontium, barium, cadmium, and lead were investigated initially at pH ≥ 7.  The pH was 

neutral or greater so that the ligand was only present in the unprotonated form.  The 

concentration of metal needed to completely complex the ligand is an indication of how 

strong of an affinity the ligand has for the metal ions.  Plots of the fraction of total 

absorbance change versus the ratio of metal to ligand concentrations indicate the binding 

stoichiometry.44  The absorbance change (∆Ai) is the difference between that of the 

original solution of ligand and a solution containing ligand plus metal ion.  The fraction 

of absorbance change (f) is calculated as the change (∆Ai) for a given amount of added 

metal ion divided by the maximum spectral change (∆Atot).  The latter is defined as the 

difference in absorbance between the ligand solution with no metal ion present (AL) and 
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the ligand solution containing the completely formed metal-ligand complex (AML).  These 

parameters are defined by the following equations: 

∆Ai =  AL -Ai          (4.2)

 

∆Ai

∆Atot
f =

         (4.3) 

∆Atot =  AL -AML         (4.4) 

The results of these plots will either show a scenario where the fraction of absorbance 

change stops at 1:1 metal to ligand mole ratio or continues to increase.  If no change 

occurs, then the metal and ligand are completely or nearly completely complexed at 1:1 

concentration ratio.  If the fraction of absorbance change continues to increase then the 

metal is bound more weakly and not fully complexed.  The spectra for titrations of 

cryptand An2.2.2 with Pb(ClO4)2 at pH = 7.0, BaCl2 at pH = 8.2, and SrCl2 at pH = 9.5 in 

H2O are shown in Figures 4-58, 4-60, and 4-62, respectively.  The plots of the fractional 

absorbance change at a specific wavelength versus the ratio of metal ion to An2.2.2 for 

these titrations are shown in Figures 4-59, 4-61, and 4-63, respectively.  The plots of 

fractional absorbance change for each titration indicate that cryptand An2.2.2 binds 

almost quantitatively with Pb2+, Ba2+, and Sr2+ with 1:1 stoichiometry.  The formation 

constants for these metal ligand complexes can be estimated from these plots if the 

fraction (f) of absorbance change at 1:1 metal to ligand ratio is less than 1.   
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The fraction (f) of absorbance change at 1:1 metal to ligand ratio is used to estimate the 

concentration of the metal-ligand complex and then used to estimate the formation 

constant by using the following equations.                

 ML  = f*CL         (4.5) 

 M = M0 - ML         (4.6)  

 L  = L0 - ML         (4.7) 

 
KML=

ML

M*L         (4.8) 
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Figure 4-58.  Spectra from the titration of 0.15 mM An2.2.2, (19), with lead at pH = 7.0. 
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Figure 4-59.  Plot of fraction of the absorbance change versus the ratio of total lead to 
total An2.2.2, (19), concentrations from the titration shown in Figure 4-58. 
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Figure 4-60.  Spectra from the titration of 0.18 mM An2.2.2, (19), with barium at  
pH = 8.2.   
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Figure 4-61.  Plot of fraction of the absorbance change versus the ratio of total barium to 
total An2.2.2, (19), concentrations from the titration shown in Figure 4-60.   
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Figure 4-62.  Spectra from the titration of 0.17 mM An2.2.2, (19), with strontium at  
pH = 9.5. 
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Figure 4-63.  Plot of fraction of the absorbance change versus the ratio of total strontium 
to total An2.2.2, (19), concentrations from the titration shown in Figure 4-62.   
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The estimated formation constants are used to calculate a pH where cryptand An2.2.2 

will not be fully complexed when the concentrations of the metal and ligand are equal.  

The conditional formation constants can be more accurately measured at this pH by 

increasing the competition between the metal and protons.   

 The spectra for titrations of cryptand An2.2.2 with BaCl2 at pH = 3.7 and SrCl2 at 

pH = 4.2 are shown in Figures 4-64 and 4-66, respectively.  Plots of absorbance versus 

free metal ion concentration can be fit using eq 4.9.  These fits are shown in Figures 4-65 

and 4-67 for barium and strontium, respectively, and the calculated values used to 

construct the solid lines are listed in the table (inset).  The absorbance measured (Ai) at an 

individual wavelength is dependent upon the conditional stability constant, K'ML, 

concentration of the uncomplexed metal ion [M], and the limiting absorbance values A1 

and A0 for the metal ion-ligand complex and the uncomplexed ligand, respectively, as 

shown in the following equation:        

 
Ai =

A1K'ML[M] + A0

K'ML[M] + 1        (4.9) 
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Figure 4-64.  Spectra from the titration of 0.091 mM An2.2.2, (19), with barium at  
pH = 3.7.  Some spectra have been omitted for clarity. 
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Figure 4-65.  Plot of absorbance at 234 nm versus [Ba2+] for the titration of  
An2.2.2, (19), shown in Figure 4-64.  The data were fit to eq 4.9 and the calculated 
values used to construct the solid line are listed in the table.   
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Figure 4-66.  Spectra from the titration of 0.091 mM An2.2.2, (19), with strontium at  
pH = 4.2.  Some spectra have been omitted for clarity. 
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Figure 4-67.  Plot of absorbance at 240 nm versus [Sr2+] for the titration of An2.2.2, (19), 
shown in Figure 4-66.  The data were fit to eq 4.9 and the calculated values used to 
construct the solid line are listed in the table.   
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 The conditional formation constants (log K'ML) for barium were determined at 

several pH values and the results are listed in Table 4-17.  The formation constant for 

barium can be calculated using eq 4.10 using the previously determined protonation 

constants for An2.2.2.  Cryptand An2.2.2 has a formation constant (log KML) for barium 

of 4.7 ± 0.2.     

 
KML = K'ML

(1 + KH1aH + KH1KH2aH
2)

 = K'ML
αL     (4.10)   

Table 4-17.  Formation constants (log KML) for An2.2.2, (19) with barium in H2O  
at 25°C. 
   

Exp. 
No. 

 
pH 

 
log K'ML 

 
Error 

 
log KML 

1 4.7 4.14 0.05 4.86 
2 4.3 3.80 0.01 4.91 
3 9.3 4.84 0.03 4.84 
4 4.1 3.48 0.04 4.78 
5 4.1 3.47 0.04 4.87 
6 3.9 3.03 0.03 4.64 
7 3.7 2.73 0.03 4.62 

 
The conditional stability constants for barium were also used to calculate the protonation 

constants of An2.2.2 in order to compare them with the values obtained from pH 

titrations.  The plot of K'ML versus aH is shown in Figure 4-68 and the data was fit to eq 

4.10 and the calculated values used to construct the solid line are listed in the table.  The 

protonation constants log KH1 and log KH2 were calculated to be 3.9 ± 0.2 and 5.18 ± 

0.04, respectively.  These KH1 and KH2 values are in agreement with the values previously 

determined by pH titrations without added metal ion. 
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Figure 4-68.  Plot of K'ML vs. aH for BaAn2.2.22+ using values from Table 4-17.  The 
solid line is fit using eq 4-10 and the calculated KH values are listed in the table (inset).   
 
The conditional formation constants (log K'ML) for strontium were determined from 

duplicate experiments at two different pH values and the results are listed in Table 4-18.  

The formation constant for strontium can be calculated using eq 4.10 using the previously 

determined protonation constants for An2.2.2.  Cryptand An2.2.2 has a formation 

constant (log KML) for strontium of 4.1 ± 0.6.     

Table 4-18.  Formation constants (log KML) for An2.2.2, (19) with strontium in H2O  
at 25°C. 
 

 
Exp. No. 

 
Methoda 

λ, nm 
(range) 

 
pH 

 
log K'ML 

 
Error 

 
log KML 

1 K 240 3.8   3.07   0.05 4.75 
1 K 276 3.8   2.38   0.07 4.06 
1 S 200-400 3.8   2.97   0.07 4.65 
2 K 240 4.2   3.07   0.05 4.29 
2 K 274 4.2   2.19   0.06 3.41 
2 S 200-400 4.2 2.0 0.1 3.22 

aK = Kaleidagraph, S = Specfit. 
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The very large (≥ 6) formation constant (log KML) for cryptand An2.2.2 with Pb(ClO4)2 

requires that this parameter be measured at a very low pH (~2) where the ligand is 

predominantly (≥ 95%) present as the diprotonated species.  The kinetics of the ligand 

and metal interaction at this pH are slowed down considerably so the titrations are 

accomplished by a batch method.  The spectra for a batch titration of cryptand An2.2.2 

with Pb(ClO4)2 at pH = 2.1 is shown in Figure 4-69.  Plots of absorbance versus free 

metal ion concentration and absorbance versus the product of free metal ion 

concentration and alpha are shown in Figures 4-70 and 4-71, respectively.  The plot of 

absorbance versus free metal concentration is fit using eq 4.9 and the plot of absorbance 

versus the product of free metal concentration and alpha is fit using the equation below.  

The alpha value is included in the calculations at every point to account for the variation 

in pH among individual solutions.      

Ai =
A1KML[M]αL   + A0

KML[M]αL   + 1        (4.11) 

αL =
[L]
[L]'

 = (1 + KH1aH + KH1KH2aH
2)-1

     (4.12) 
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Figure 4-69.  Spectra from the batch titration of 0.18 mM An2.2.2, (19), with lead at  
pH = 2.1. 
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Figure 4-70.  Plot of absorbance at 284 nm versus [Pb2+] for the titration of An2.2.2, 
(19), shown in Figure 4-69.  The data were fit to eq 4.9 and the calculated values used to 
construct the solid line are listed in the table. 
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Figure 4-71.  Plot of absorbance at 284 nm versus [Pb2+] * alpha for a batch titration of 
An2.2.2, (19), and lead.  The data were fit to eq 4.11 and the calculated values used to 
construct the solid line are listed in the table. 
 
The formation constants for lead were determined by several batch titrations and the 

values are listed in Table 4-19.  The calculations using the alpha factor among the 

individual solutions (eq 4.11) are identified with the letter a.  Cryptand An2.2.2 has a 

formation constant (log KML) for lead of 8.5 ± 0.3.     

Table 4-19.  Formation constants (log KML) for An2.2.2, (19) with lead in H2O at 25°C.    
 

Exp. 
No. 

 
pH 

 
log K'ML 

 
log KML 

 
Error 

1 2.25 3.99 8.2   0.08 
1a -- -- 8.1   0.08 
2 2.10 4.01 8.5   0.09 
2a -- -- 8.9 0.1 
3 2.15 4.08 8.5   0.03 
3a -- -- 8.1 0.1 
4 2.02 4.11 8.8   0.06 
4a -- -- 9.0   0.07 
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 The spectra for titrations of cryptand An2.2.2 with NaCl at pH = 9.0, Cd(ClO4)2 at 

pH = 7.7, CaCl2 at pH = 9.4, and KCl at pH = 9.0 are shown in Figures 4-72, 4-74, 4-76, 

and 4-78, respectively.  The plots of fraction of absorbance change versus the ratio of 

metal ion to An2.2.2 concentrations for these titrations indicate that cryptand An2.2.2 

does not bind quantitatively at 1:1 metal ion to ligand concentration.  Complete 

complexation of the ligand by the metal is not achieved at pH ≥ 7 when the 

concentrations are equal.  Therefore, the plots of absorbance versus free metal 

concentration shown in Figures 4-73, 4-75, 4-77, and 4-79 can be fit using eq 4.9 to 

determine the formation constants (log KML) of each metal.     
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Figure 4-72.  Spectra from the titration of 0.091 mM An2.2.2, (19), with sodium at  
pH = 9.0.  Some spectra have been omitted for clarity. 
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Figure 4-73.  Plot of absorbance at 240 nm versus [Na+] for the titration of An2.2.2, (19), 
shown in Figure 4-72.  The data were fit to eq 4.9 and the calculated values used to 
construct the solid line are listed in the table.   
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Figure 4-74.  Spectra from the titration of 0.091 mM An2.2.2, (19), with cadmium at  
pH = 7.7.  Some spectra have been omitted for clarity. 
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Figure 4-75.  Plot of absorbance at 282 nm versus [Cd2+] for the titration of  
An2.2.2, (19), shown in Figure 4-74.  The data were fit to eq 4.9 and the calculated 
values used to construct the solid line are listed in the table.   
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Figure 4-76.  Spectra from the titration of 0.091 mM An2.2.2, (19), with calcium at  
pH = 9.4.  Some spectra have been omitted for clarity. 
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Figure 4-77.  Plot of absorbance at 242 nm versus [Ca2+] for the titration of  
An2.2.2, (19), shown in Figure 4-76.  The data were fit to eq 4.9 and the calculated 
values used to construct the solid line are listed in the table.   
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Figure 4-78.  Spectra from the titration of 0.18 mM An2.2.2, (19), with potassium at  
pH = 9.0.  Some spectra have been omitted for clarity. 
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Figure 4-79.  Plot of absorbance at 260 nm versus [K+] for the titration of An2.2.2, (19), 
shown in Figure 4-78.  The data were fit to eq 4.9 and the calculated values used to 
construct the solid line are listed in the table.   
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The calculated values for the formation constants (log KML) are listed in Table 4-20.  The 

fits using Kaleidagraph are at a specific wavelength listed in the table.  The Specfit 

analysis of the same experiments is located in the second log KML column with the 

corresponding error and these values were determined the wavelength region from 200 to 

400 nm.  The average formation constants (log KML) for An2.2.2 with Na+, Ca2+, Cd2+, 

and K+ are 2.4 ± 0.1, 2.7 ± 0.1, 3.0 ± 0.2, and 2.0 ± 0.3, respectively. 

Table 4-20.  Formation constants (log KML) for An2.2.2, (19) in H2O at 25°C.   
 

 
Exp. No. 

 
Metal 

 
λ 

 
log KML

a 
 

Error 
 

log KML
b 

 
Error 

1 Na 240   2.35 0.02   
1 Na 276   2.38 0.02   2.32   0.08 
2 Na 250   2.47 0.09   
2 Na 284 2.5 0.10   2.33   0.09 
1 Ca 242   2.79 0.01   
1 Ca 282   2.82 0.01   2.67   0.05 
2 Ca 242   2.77 0.01   
2 Ca 282   2.80 0.01   2.61   0.08 
3 Ca 242   2.68 0.01   
3 Ca 282   2.72 0.01   2.64   0.04 
1 Cd 242   2.85 0.03   
1 Cd 282   2.87 0.03 3.0 0.1 
2 Cd 242   3.11 0.01   
2 Cd 282   3.11 0.01 2.8 0.1 
3 Cd 242   3.15 0.03   
3 Cd 282   3.14 0.03   3.27   0.06 
1 K 262   2.03 0.08   
1 K 276   2.06 0.05 1.6 0.2 
2 K 260   2.42 0.04   
2 K 274   2.30 0.06 1.7 0.8 

aFrom Kaleidagraph.  bFrom Specfit.  
 
 Cryptand An2.2.2 differs from 2.2.2 because of the addition of benzene rings and 

is also differs from 2.2B.2B because of the location of the benzene rings.  The difference 

in location of the benzene rings also transforms the nitrogens from alkyl to aryl in 

An2.2.2.  Table 4-21 lists the formation constants (log KML) of the metals studied in this 
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project for all three ligands.  The structural changes clearly have an effect on the metal 

formation constants.  The log KML values determined for cryptand An2.2.2 are ≥ 1.5 

orders of magnitude lower in comparison to cryptand 2.2.2.  The smaller cations sodium 

(0.97 Å) and calcium (0.99 Å) are less affected (∆log K = 1.6 and 1.8, respectively) in 

comparison to the decrease by 4.9, 4.0, and 3.9 log units for the larger cations barium 

(1.34 Å), strontium (1.12 Å), and lead (1.20 Å), respectively.23  The trend in formation 

constant values among the divalent cations for 2.2.2 (Pb2+ > Ba2+ > Sr2+ > Cd2+ > Ca2+) is 

still present for cryptand An2.2.2.  This behavior does not hold for the monovalent 

cations, where cryptand An2.2.2 has a larger KML value for sodium than for potassium 

while the opposite order is found with cryptand 2.2.2.    

Table 4-21.  Formation constants (log KML) for 2.2.2, 2.2B.2B, and An2.2.2, (19) in H2O  
at 25°C. 
 

  
2.2.2a 

 
2.2B.2B 

 
An2.2.2 

Na+ 4  3.4b 2.4 ± 0.1 
K+ 5.5  4.4b 2.0 ± 0.3 

Ca2+ 4.5  3.5c 2.7 ± 0.1 
Sr2+ 8.1  6.4c 4.1 ± 0.6 
Ba2+ 9.6  5.7c 4.7 ± 0.2  
Cd2+ 6.8 -- 3.0 ± 0.2  
Pb2+ 12.4   11.4d 8.5 ± 0.3 

a Ref. 45. b Ref. 46. cRef. 47.  dRef.  48.     
 
 The log KML values for cryptand An2.2.2 are lower in magnitude in comparison to 

2.2B.2B by 0.8 - 2.9 orders of magnitude.  The trend in binding constants changes from 

Pb2+ > Sr2+ > Ba2+ > Ca2+ and K+ > Na+ for 2.2B.2B to Pb2+ > Ba2+ > Sr2+ > Ca2+ and Na+ 

> K+ for An2.2.2.  The KML values for 2.2B.2B and An2.2.2 show that the addition of 

benzene rings decreases the value of KML compared to 2.2.2.  Cryptand An2.2.2 also 

shows that changing from alkyl to aryl nitrogens results in lower KML values.  The 
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inherent selectivity (KS = KM*L/KML) for lead over the biological cations sodium, 

potassium, and calcium is present in all three cryptands but slightly lower for An2.2.2.    

 The spectral properties of cryptand An2.2.1 with sodium, potassium, calcium, 

strontium, barium, cadmium, and lead were investigated initially at pH ≥ 7 similarly to 

An2.2.2.  The spectra for titrations of cryptand An2.2.1 with Pb(ClO4)2 at pH = 6.9 and 

Cd(ClO4)2 at pH = 7.0 are shown in Figures 4-80 and 4-82, respectively.  The plots of 

fraction of absorbance change at a specific wavelength versus the ratio of metal ion to 

An2.2.1 concentration for these titrations are shown in Figures 4-81 and 4-83, 

respectively.  The plots of fraction of absorbance change for Pb2+ and Cd2+ indicate ≥ 

80% complexation at 1:1 metal to ligand ratio.  This percentage of complexation is not as 

high as the values found for An2.2.2 with Pb2+, Ba2+, and Sr2+.  The formation constants 

were estimated from these plots and metal titrations were performed at a lower pH as 

described for An2.2.2. 
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Figure 4-80.  Spectra from the titration of 0.061 mM An2.2.1, (16), with lead at  
pH = 6.9.  Some spectra have been omitted for clarity. 
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Figure 4-81.  Plot of fraction of the absorbance change versus the ratio of total lead to 
total An2.2.1, (16), concentrations from the titration shown in Figure 4-80.   
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Figure 4-82.  Spectra from the titration of 0.091 mM An2.2.1, (16), with cadmium at  
pH = 7.0.  Some spectra have been omitted for clarity. 
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Figure 4-83.  Plot of fraction of the absorbance change versus the ratio of total cadmium 
to total An2.2.1, (16), concentrations from the titration shown in Figure 4-82.  

0.6 mM Cd2+ 

0.0 mM Cd2+



 213

The spectra for titrations of cryptand An2.2.1 with Pb(ClO4)2 at pH = 3.6 and with 

Cd(ClO4)2 at pH = 4.3 are shown in Figures 4-84 and 4-86, respectively.  Plots of 

absorbance versus free metal ion concentration are fit using eq 4.9.  These fits are shown 

in Figures 4-85 and 4-87 for lead and cadmium, respectively and the calculated values 

used to construct the solid line are listed in the table. 
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Figure 4-84.  Spectra from the titration of 0.091 mM An2.2.1, (16), with lead at  
pH = 3.6.  Some spectra have been omitted for clarity. 
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Figure 4-85.  Plot of absorbance at 250 nm versus [Pb2+] for the titration of  
An2.2.1, (16), shown in Figure 4-84.  The data were fit to eq 4.9 and the calculated 
values used to construct the solid line are listed in the table. 
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Figure 4-86.  Spectra from the titration of 0.091 mM An2.2.1, (16), with cadmium at  
pH = 4.3.  Some spectra have been omitted for clarity. 
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Figure 4-87.  Plot of absorbance at 280 nm versus [Cd2+] for the titration of  
An2.2.1, (16), shown in Figure 4-86.  The data were fit to eq 4.9 and the calculated 
values used to construct the solid line are listed in the table. 
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The conditional formation constants (log K'ML) for lead and cadmium were determined 

from duplicate experiments and the results are listed in Table 4-22.  The analysis of the 

experiments using Specfit was determined for the wavelength region from 200 to 400 nm.  

The average formation constants (log KML) for An2.2.1 with Pb2+ and Cd2+ are 5.0 ± 0.1 

and 4.0 ± 0.1, respectively. 

Table 4-22.  Formation constants (log KML) for An2.2.1, (16) in H2O at 25°C.   
 

 
Exp. No. 

 
Metal 

 
Methoda 

λ, nm 
(range) 

 
pH 

 
log K'ML 

 
Error 

 
log KML 

1 Pb K 250 3.6   3.02   0.02 4.91 
1 Pb S 200-400 3.6   3.19   0.07 5.08 
2 Pb K 250 3.5   2.91   0.01 4.93 
2 Pb S 200-400 3.5   2.90   0.06 4.92 
1 Cd K 280 4.3   2.83   0.06 3.96 
1 Cd S 200-400 4.3   2.63   0.08 3.76 
2 Cd K 280 4.3   2.89   0.04 4.02 
2 Cd S 200-400 4.3 3.0 0.2 4.13 

aK = Kaleidagraph, S = Specfit. 
 
 The spectra for titrations of cryptand An2.2.1 with BaCl2 at pH = 8.4, NaCl  at  

pH = 8.3, SrCl2 at pH = 8.6, CaCl2 at pH = 8.7, and KCl at pH = 9.1 are shown in Figures 

4-88, 4-90, 4-92, 4-94, and 4-96, respectively.  The plots of fraction of absorbance 

change versus the ratio of metal ion to An2.2.1 concentration for these titrations indicate 

that cryptand An2.2.1 does not bind quantitatively at 1:1 metal to ligand concentration.  

Full complexation of the ligand by the metal is not achieved at a pH ≥ 7 when the 

concentrations are equal.  Therefore, the plots of absorbance versus free metal 

concentration shown in Figures 4-89, 4-91, 4-93, 4-95, and 4-97 for barium, sodium, 

strontium, calcium, and potassium, respectively can be fit using eq 4.9 to determine the 

formation constants of each metal.   
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Figure 4-88.  Spectra from the titration of 0.070 mM An2.2.1, (16), with barium at  
pH = 8.4.  Some spectra have been omitted for clarity. 
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Figure 4-89.  Plot of absorbance at 254 nm versus [Ba2+] for the titration of  
An2.2.1, (16), shown in Figure 4-88.  The data were fit to eq 4.9 and the calculated 
values used to construct the solid line are listed in the table.   
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1.3 mM Ba2+
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Figure 4-90.  Spectra from the titration of 0.070 mM An2.2.1, (16), with sodium at  
pH = 8.3.  Some spectra have been omitted for clarity. 
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Figure 4-91.  Plot of absorbance at 260 nm versus [Na+] for the titration of An2.2.1, (16), 
shown in Figure 4-90.  The data were fit to eq 4.9 and the calculated values used to 
construct the solid line are listed in the table.  
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Figure 4-92.  Spectra from the titration of 0.070 mM An2.2.1, (16), with strontium at  
pH = 8.6.  Some spectra have been omitted for clarity. 
 

0.30

0.35

0.40

0.45

0.50

0.0000 0.0002 0.0004 0.0006 0.0008 0.0010

A
bs

or
ba

nc
e 

at
 2

50
 n

m

[Sr2+], M

ErrorValue

0.0019040.30147A
ML

0.00522490.49618A
L

1407.317017K
ML

NA0.00010045Chisq
NA0.99848R

 
 

Figure 4-93.  Plot of absorbance at 250 nm versus [Sr2+] for the titration of An2.2.1, (16), 
shown in Figure 4-92.  The data were fit to eq 4.9 and the calculated values used to 
construct the solid line are listed in the table. 
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Figure 4-94.  Spectra from the titration of 0.070 mM An2.2.1, (16), with calcium at  
pH = 8.7.  Some spectra have been omitted for clarity. 
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Figure 4-95.  Plot of absorbance at 248 nm versus [Ca2+] for the titration of  
An2.2.1, (16), shown in Figure 4-94.  The data were fit to eq 4.9 and the calculated 
values used to construct the solid line are listed in the table. 

0.0 mM Ca2+

0.3 mM Ca2+



 221

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

250 260 270 280 290

A
bs

or
ba

nc
e

Wavelength (nm)  
 

Figure 4-96.  Spectra from the titration of 0.070 mM An2.2.1, (16), with potassium at  
pH = 9.1.  Some spectra have been omitted for clarity. 
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Figure 4-97.  Plot of absorbance at 264 nm versus [K+] for the titration of An2.2.1, (16), 
shown in Figure 4-96.  The data were fit to eq 4.9 and the calculated values used to 
construct the solid line are listed in the table. 
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The formation constants (log KML) were determined from multiple experiments and a 

number of the results are listed in Table 4-23.  The average formation constants (log KML) 

for An2.2.1 with Ba2+, Na+, Sr2+, Ca2+, and K+ are 3.6 ± 0.4, 4.1 ± 0.4, 4.2 ± 0.4, 4.3 ± 

0.3, and 3.7 ± 0.5, respectively. 

Table 4-23.  Formation constants (log KML) for An2.2.1, (16) in H2O at 25°C. 
 

 
Exp. No. 

 
Metal 

 
Methoda 

λ, nm 
(range) 

 
log KML 

 
Error 

1 Ba K 254   3.53   0.03 
1 Ba S 200-400   3.70   0.07 
2 Ba K 256   3.68   0.06 
2 Ba S 200-400 4.2 0.2 
3 Ba K 252   3.04   0.02 
3 Ba S 200-400   3.19   0.09 
1 Na K 262   3.77   0.09 
1 Na S 200-400 3.9 0.2 
2 Na K 260   4.29   0.06 
2 Na S 200-400 4.6 0.2 
1 Sr K 250   4.23   0.04 
1 Sr S 200-400   4.56   0.07 
2 Sr K 284   3.69   0.04 
2 Sr S 200-400   4.19   0.03 
1 Ca K 284   4.38   0.02 
1 Ca S 200-400   4.56   0.07 
2 Ca K 284   3.94   0.05 
2 Ca S 200-400 4.3 0.1 
1 K K 258   4.15   0.07 
1 K K 264   4.20   0.07 
2 K K 264   3.50   0.06 
2 K K 270   3.09   0.07 

aK = Kaleidagraph, S = Specfit.  
  
Cryptand An2.2.1 is different from 2.2.1 because of the addition of benzene rings and is 

also different from An2.2.2 because of the smaller cavity size and one less oxygen donor 

atom.  Table 4-24 lists the formation constants (log KML) with various metals for all three 

ligands as well as cryptand 2.1.1.  The log KML values determined for cryptand An2.2.1 

are lower than 2.2.1.  The value for potassium is only slightly lower (0.2 log units) while 
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the other metals are significantly lower ranging from 1.3 (Na+) to 7.4 (Pb2+) log units.  

The alkali cations sodium and potassium are the least affected by the structural changes, 

with slightly larger changes observed for alkaline earth cations (2.6-3.1 log units).  KML 

values for the heavy metal cations decrease by the greatest magnitude (5.5 and 7.4 log 

units for Cd2+ and Pb2+, respectively).  The formation constants (log KML) of An2.2.1 for 

the heavy metal cations are similar in magnitude to those reported for cryptand 2.1.1.  

Cryptands An2.2.1 and 2.2.1 both have formation constant values higher for sodium 

compared to potassium.  The KML value pattern for 2.2.1 is Pb2+ > Cd2+ > Sr2+ > Ca2+ > 

Ba2+ and is similar to that found for An2.2.1 which is Pb2+ ≥ Ca2+ ≥ Sr2+ ≥ Cd2+ > Ba2+. 

Table 4-24.  Formation constants (log K) for 2.1.1, 2.2.1, An2.2.2, (19) and An2.2.1, (16) 
in H2O at 25°C.    
 

 2.1.1a 2.2.1a An2.2.1 An2.2.2 
H+(1)  10.6b 10.5 5.4 ± 0.1 5.3 ± 0.2 
H+(2)  7.9b 7.4 3.1 ± 0.3 3.4 ± 0.2 
Na+ 3.1 5.4 4.1 ± 0.4 2.4 ± 0.1 
K+ <2b 3.9 3.7 ± 0.5 2.0 ± 0.3 

Ca2+ 2.5 6.9 4.3 ± 0.3 2.7 ± 0.1 
Sr2+ <2b 7.3 4.2 ± 0.4 4.1 ± 0.6 
Ba2+ <2b 6.3 3.6 ± 0.4 4.7 ± 0.2  
Cd2+ 5.2 9.5 4.0 ± 0.1 3.0 ± 0.2  
Pb2+ 7.3 12.4 5.0 ± 0.1 8.5 ± 0.3 

a Ref. 45. bRef. 43. 
 
 The log KML values for cryptand An2.2.1 and An2.2.2 are all within 2 orders of 

magnitude of each other except for lead (∆log K = 3.5 log units).  Both cryptands have a 

similar formation constant value for strontium and both have greater values for sodium in 

comparison to potassium.  The smaller cryptand An2.2.1 generally has a larger KML value 

for the smaller cations sodium (0.97 Å), calcium (0.99 Å), and cadmium (0.97 Å) while 

the larger cations barium (1.34 Å)  and lead (1.20 Å) have higher KML values for 
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An2.2.2.23  Potassium (1.33 Å) does not fit this behavior.  Figure 4-98 presents the log 

KML values for An2.2.1 and An2.2.2 versus ionic radius.     
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Figure 4-98.  Complexation selectivity patterns of An2.2.1, (16), and An2.2.2, (19). 
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V.  Summary 

 Cryptands An2.2.1, An2.2.2, An3.1.1, and An3.1.1.3 were synthesized by high 

dilution techniques.  Solid-state structures were determined for cryptands An2.2.1, 

An2.2.2, and An3.1.1.3; cryptates An2.2.2·K+·ClO4
-, An2.2.2·Pb2+·(NCS-)2, and  

2.2B.2B·Pb2+·NCS-; and mono- and bicyclic intermediates An2.1*, An2.2*, An3.1*, 

An2.1, An2.2, An3.1, An2.2.1*, An2.1.2*, An2.2.2*, and An3.1.1*.  The solid-state 

structures of two additional 18-membered macrocyclic diamides, 2.2* and 2.2S*, were 

determined to evaluate trends in structural modifications.  All 18-membered macrocyclic 

amides mentioned had intermolecular H-bonds except An2.2* and compound 2.2* has 

only intermolecular H-bonds.  Conformational constraints imposed by the -SCCS- 

subunit and benzo groups result in a mixture of intra- and intermolecular H-bonds.  NMR 

techniques were used to characterize the synthesized compounds and to confirm 

intramolecular hydrogen-bonding occurred in the macrocyclic amides An2.1*, An2.2*, 

and An3.1* in solution.  The solid-state structures of cryptates An2.2.2·K+, An2.2.2·Pb2+, 

and 2.2B.2B·Pb2+ were determined and confirmed that the metal ions were located inside 

the cavity of the macrobicyclic ligand.  These cryptates differed in coordination number 

(An2.2.2·K+ and An2.2.2·Pb2+ (CN = 10) vs. 2.2B.2B·Pb2+ (CN = 9)) and coordination 

sphere geometry (An2.2.2·K+ vs. 2.2B.2B·Pb2+).  The potassium cryptate of An2.2.2 had 

average M-O and M-N distances slightly longer than the averages for 2.2B.2B·Pb2+.  The 

average M-O and M-N distances were consistent with the distances found in other 

cryptate complexes containing lead and potassium from the literature.  The cryptates 

containing benzo rings (An2.2.2·K+ and 2.2B.2B·Pb2+) had three atom angles (∠N-M-N) 

between the nitrogen bridgeheads and metal ion that differed more from linearity in 
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comparison to cryptates of ligands without benzene rings.  The benzoannelated cryptate 

(An2.2.2·K+) showed a greater deviation from linearity in comparison to 2.2B.2B·Pb2+.  

Protonation constants for An2.2.1 and An2.2.2 are ≥ 2.5 pH units below the parent 

compounds 2.2.1, 2.2.2, and 2.2B.2B.  The metal formation constants for cryptands 

An2.2.1 and An2.2.2 are all weaker in comparison to the parent cryptands 2.2.1, 2.2.2, 

and 2.2B.2B.  The formation constants for the divalent cations are more affected by the 

structural changes in An2.2.1 and An2.2.2 in comparison to the monovalent cations.  This 

is a result of an increase in ligand thickness (benzene rings) which decreases the 

interaction of the complexed cation with water and destabilizes the complex.49  The 

inherent selectivity of the parent cryptands for lead over the biological cations sodium, 

potassium, and calcium is present for An2.2.2, but not for An2.2.1.  Cryptand An2.2.1 

shows very little selectivity for the cations studied in this project because of the decrease 

in basicity of the oxygens and nitrogens adjacent to the benzene rings, a small cavity size 

imposed by the conformational restrictions of the benzene rings, and an increase of ligand 

thickness.        
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