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CHAPTER I 
 
 

INTRODUCTION 

 

This work is based on the doctoral dissertation of Samuel Owusu who graduated with his 

PhD in May of 2006 from Oklahoma State University. The outcome of his research was a 

real-time monitor capable of determining the performance of a control loop. The intent of 

the current work is to build upon the work presented by Owusu. First, the theoretical 

background is discussed in Chapter 1 followed by an explanation of algorithms 

developed in the original work and improvements made in this work discussed in Chapter 

2. There are two general aspects of the algorithm improvements: 

1) More robust and efficient computer program to perform necessary calculations 

2) Improve algorithms for assessing controller performance 

a. More correctly calculate the window length for real-time monitoring 

b. Eliminate unsupported condition in determining the Markov Chain model 

Chapters 3 and 4 introduce and discuss two experimental apparatuses 

1) Simulated first-order plus time delay (FOPTD) system controlled by PI 

2) Pilot-plant scale two-phase flow experiment using a cascade strategy to control 

pressure drop. 

Finally, suggested future work and conclusions are discussed in Chapters 5 and 6. 
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1.1 Literature Review 

According to an assessment by Hugo (2000), a typical process plant operates with 

hundreds of control loops maintained by a limited number of operators, instrument 

technicians or control engineers. Because tuning these loops is only one out of many 

human responsibilities, problem controllers often go for long periods without correction. 

This results in some 66% - 80% of controllers in industry improperly tuned for current 

process requirements.  Mosca (2003) noted that well tuned process control loops 

contribute to safety, productivity and lower maintenance costs, perhaps in that order of 

importance. Poor process control may stem from poor controller tuning, instrument 

malfunction, process nonlinearities or process design. Even the performance of a well 

tuned controller may, over time, erode due to gradual process changes. 

 

Bartels (2007) noted that the last two decades have brought downsizing to reduce labor 

costs. In addition, a large number of technicians and control engineers will retire soon 

leading to even fewer employees to maintain the large number of loops operating in 

industrial plants. In fact, one “major chemical company that did a demographic analysis 

… found that one of its largest plants would lose 75% of its operating staff to retirement 

by the end of the decade.”  

 

With fewer employees, systematic, periodic inspections are being replaced by condition-

based inspections. Automated loop performance monitoring facilitates this initiative by 

raising a flag only when a loop is no longer healthy. In the past 25 years many 

researchers have attempted to solve this problem. 
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Harris, et al. (1989) presented a benchmark commonly referred to as minimum variance 

control (MVC) or the Harris Index (HI). This method determines the ideal minimum 

variance for a particular loop, then compares current real-time variance to the ideal value 

using Equation 1.1 

 
Variance Achievable Minimum

VarianceCurrent =HI .  (1.1) 

 

The index denotes perfect control when HI = 1 and poor control when HI is large. 

Minimum Variance Control, while able to indicate loops in oscillation, may incorrectly 

flag sluggish loops, since their variance is low. In addition, the Harris Index has no 

absolute meaning. A particular HI value for one loop may be considered good control, 

while the same value in another loop may be considered poor control. Finally, the process 

time delay is required to correctly identify the process model used in determining the 

minimum variance, which may be cumbersome to obtain. 

 

Rhinehart (1995) , Ko and Edgar (1998), Bezergianni et al. (2000) and Kadali, et al. 

(2002) have all contributed to solving this problem. All of these techniques, however, fall 

short of practical application, either because of cumbersome process model identification 

needs, inadequate statistical consideration or simply the inability to identify all frequency 

type controller problems. More recently, Li, et al. (2003) proposed the use of the chi-

squared statistic to compare a reference set of “good” control actuating error run-lengths 

to run-lengths in a window of real-time control. If a statistically significant process 

change is noticed, the control is flagged as “poor”. The technique uses routine data 
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harvested from the data historian. Although it worked well, undesirably, the theoretical 

foundation for Chi-Squared analysis is inexact, and continued research sought a more 

rigorous approach. 

 

Owusu (2006) proposed a technique to model actuating error run-lengths using a Markov 

Chains and transition probabilities. The transition probabilities are essentially a measure 

of run-length termination and are well described by Binomial Statistics. Owusu notes that 

this idea originates from Avery and Ingalls (2002) in critique of the work performed by 

Li, et al. Owusu’s work contained some computational inefficiencies and proposed a 

number of unsupported criteria for determining the real-time run-length statistical 

window. This work seeks to tie-up some of these loose ends. 

 

1.2 Objective 

The objective of this work is to replicate the work performed by Owusu, then propose 

improvements to the methods and algorithms developed by Owusu and demonstrate their 

effectiveness through simulations and experimental work. This first requires a discussion 

of the theoretical background in Owusu’s work discussed in the remainder of Chapter 1. 

 

1.3 Deviation Data 

A controller is healthy when performing according to design. Lack of perfect process 

understanding limits the ability to control a process according to some absolute state of 

health. This work assumes that the process owner is the ultimate decision maker 

regarding acceptable or good controller performance.  
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To be explained in detail later, the approach observes patterns in the actuating error. The 

process owner chooses a “good” period of control by whatever criteria he or she uses, and 

the algorithm sets up control limits about statistics that characterize patterns in the 

“good” process data. Then, if the statistics from subsequent periods are within the control 

limits, control is reported as “good”. If the control limits are violated, controller health is 

flagged as “poor”. 

 

Since real-time controller performance is compared against a standard considered “good” 

control for that particular process, the original data set must be taken during “good” 

control. These data are most likely to be found soon after a controller is satisfactorily 

tuned; however the process owner ultimately decides what “good” data are. No a priori 

knowledge of the process is required because the health monitor analyzes “good” process 

data and uses it as the ideal. The data set absolutely must represent normal operation; so 

no setpoint changes or other purposeful perturbations are needed outside of those already 

present in normal operation. 

 

1.4 Markov Chain Model 

Imagine a process under automatic control where the actuating error signal read by the 

controller is defined as the deviation from the setpoint. Throughout this work, the term 

“error” will refer to the actuating error, unless otherwise specified. Under “good” control, 

the actuating error signal will remain close to zero more often than not; however, due to 

various sources of noise, an error value of exactly zero is rarely obtained. What occurs 
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instead is a constant “bouncing” above and below the setpoint or above and below the 

zero value. For this study, the standard definition of actuating error or deviation is 

defined as “setpoint minus controlled variable”, so positive actuating error results from 

the controlled variable below the setpoint and negative actuating error results from the 

controlled variable above the setpoint. 

 

Consider monitoring the actuating error signal of some process under feedback control 

immediately after the controller has been tuned. Consider that the first error sample is 

positive or below the setpoint; only the sign is necessary, the magnitude is unimportant. 

The second error sample also happens to be positive resulting in 2 positive samples in a 

row. The next sample is negative, resulting in the beginning of a run on the negative error 

side. This hypothetical data set is found in Figure 1.1. 

 

Figure 1.1: Hypothetical Error Signal 
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Each actuating error data point is labeled by the number of samples on a particular side of 

zero error (run length) that this data point represents and the state in which this data point 

would be found. The third sample labeled (1,-1) begins a run of 4 samples in a row below 

the zero error axis, followed by a single sample above and then below. The final run in 

the hypothetical actuating error signal found in Figure 1.1 contains 6 samples in a row in 

a “plus” run. The third to last point marked (4, +4) has a value of 0.000. Since it is not a 

zero crossing it is included in the run sign of the previous data. The last run has six 

sequential ‘+’ data points. Although the run length value rises to +6, the state remains at 

+4, the maximum value illustrated. This example run helps explain the use of states in a 

Markov Chain to describe run lengths. 

 

A Markov Chain is a set of linked locations that may be visited only in a particular order. 

Each location is designated by a state number and represents a certain run length. The 

Markov Chain for this application is illustrated in Figure 1.2. States are identified as 

ovals and the arrows show permissible transitions. In this application, the condition 

represented by each state has only two possible states it may next visit. For example, 

from State +2, either the +3 or -1 State may be visited. Visiting the +3 State requires a 

continued run of positive actuating error and visiting the -1 State requires a zero crossing. 

The chain only maintains information on where to go next, it does not matter from 

whence the current state came. This “memoryless” property enables the Markov Chain to 

predict the probability of a future state condition knowing only the current state 

condition. For the Markov Chains used in this work, the state is the run length on either 

side of the zero error axis. An infinite Markov Chain would allow infinite runs on either 
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side of the zero error axis; however, this is not practical, so a limit is set. This limit is 

determined by an algorithm internal to this method, which will be explained later. 
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The chain in Figure 1.2 is also labeled so as to see how it can extend to any length of 

chain needed. The +/- E State is the extreme state, or final state that may be visited. This 

chain has 4 positive and 4 negative states, so +E may be labeled +4 and –E may be 

labeled -4. All conditions represented by any state have two possible choices to move, 

either to the next state in the increasing direction or to the first state of the opposite sign. 

The one exception to this rule is the extreme State in which the condition may either 

“revisit” the extreme State or visit the first State with the opposite sign. This explains the 

final run of samples in Figure 1.1; there are 3 positive error samples, followed by a 4th 

sample equal to zero error, then 2 more positive error samples. An actuating error of 

exactly zero is not considered a zero crossing. After the 4th sample above zero error, each 

subsequent positive error sample revisits the extreme State of +4. Table 1.1 provides the 

final counts of the samples and the visited states in Figure 1.1. The term sample is used to 

denote the number of times a data point visits a particular state. 

 

Table 1.1: Number of Visits to Each State 

State -4 -3 -2 -1 +1 +2 +3 +4 

Samples 1 1 1 2 3 2 1 3 

 

 

1.5 Transition Probability 

Let i represent the +/- visited state value, then the zero crossing transition probability Pi is 

defined as the probability for the subsequent sample to make a zero crossing and visit the 

first State of the opposite sign (+/- 1). On the other hand, the probability that the next 
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sample will remain on the same side of the zero error axis and continue a run is 1-Pi. To 

calculate the transition probability for all states, a few terms are defined. Let ni denote the 

number of samples which have visited a State i and let Ti,j denote the number of samples 

that leave State i and go to State j. For the positive states Equation (1.2) 

 
i

i
i n

T
P

+

−+
+ = 1,

, (1.2) 

and for negative states Equation (1.3) 

 
i

i
i n

T
P

−

+−
− = 1,

 (1.3) 

The transition probability for each state will be unique for any system under automatic 

control. Furthermore, if the state transition probabilities are known for a system under 

“good” control, the future real-time actuating error may be compared against the “good” 

set to determine controller health. A statistical test will now be defined by which the two 

sets, “good control data” and the future set “real-time data” are compared.  

 

Continuing with the example from Figure 1.1, the transition probabilities are presented in 

Table 1.2. 

 

Table 1.2: Zero Crossing Transition Probabilities For Data in Figure 1.1 

State -4 -3 -2 -1 +1 +2 +3 +4 

Samples 1.00 0.00 0.00 0.50 0.33 0.50 0.00 0.00 
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The limited set of “good” control data set which Figure 1.1 represents contains only 14 

samples from which the transition probabilities in Table 1.2 are calculated. This 

introduces the question of how many samples should exist in the “good” control data set 

to provide meaningful transition probabilities. Given a larger data set, the transition 

probability limits should converge to values representative of the process under control. 

One solution to this question is provided in Chapter 2. 

 

1.6 Binomial Distribution 

A binomial experiment exhibits five properties listed below: 

1. The number of trials ‘n’ is fixed. 

2. Each experimental unit results in only two possible outcomes.  Of the two  

characteristic events or outcomes, the one of interest is often referred to as success  

and the other failure. 

3. The probability of success on each trial, denoted as p, remains constant. 

4. The outcome for any one experimental unit is independent of the outcome for any 

other experiment unit. 

5. The random variable x, counts the number of  “successes” in n trials 

In the controlled process the actuating error signal fits the description of a binomial 

process. 1) The number of trials may be fixed by setting a specified observation window 

and counting the visits to one state. 2) The transition probability predicts two outcomes; 

either a subsequent sample will transition across the zero axis or it will continue it’s run 

to a higher state. 3) Furthermore, the transition probability is a constant value calculated 
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from a good data set. 5) The random variable x is assigned the number of run-lengths 

which make a zero crossing (defined as a success). 

 

The fourth requirement is most closely satisfied by a process controlled such that the 

actuating error signal contains only measurement error or noise. This would represent a 

process where each sampling is nearly independent of its predecessor. However, a degree 

of autocorrelation exists in many automated systems, because the feedback loop provides 

process output information back to the controller. Therefore, current samples are 

influenced by past samples. This requirement is admittedly one of the violations of the 

idealizations behind the method described in this work and a suitable solution was not 

found by Owusu and is not obtained in the current work. It is believed however, that in 

the effort to find both an academically and practically satisfying method to monitor 

controller health, the binomial distribution best describes state transition probability. 

 

The probability of getting exactly x successes from n trials is given by the following 

binomial distribution Function (1.4) for all n ≥ x ≥ 0 where n ≥ 1 

 
xnx

x pp
x

n
npxP −−⎟⎟

⎠

⎞
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⎝

⎛
= )1(),,( , (1.4) 

where  p is the transition probability and n is the fixed number of samples which visited a 

particular state. Because the binomial distribution is discrete, the cumulative Function 

(1.5) is the summation of each discrete probability from x to n 
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One important property of the binomial distribution is its first moment, also called the 

mean or expectation. This is reported in Equation (1.6) here without derivation 

 npxE =)( . (1.6) 

This property will be used to successfully calculate the binomial distribution while 

avoiding computer overflow errors often associated with calculating factorials. 

 

The binomial distribution is discrete, meaning that x can never contain a decimal part. 

For instance, it would not make sense to flip a coin 11.5 times. The coin is either flipped 

11 times or 12 times. This results in a distribution similar to the one found in Figure 1.3. 

The number of samples is 50 (n = 50) and the probability is 0.5 (p = 0.5), chosen to 

correspond to the calculated transition probability for State +2 from the examples in 

Figure 1.1. 
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Figure 1.3: Binomial Distribution (Total Samples in set = 50, Probability = 0.5) 
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The continuous line is for convenience only, and is meant to touch the top middle of 

every column. The remaining plots in this section will maintain only the continuous line 

and not the columns as it will be more convenient in describing the concepts. 

 

1.7 Hypothesis Testing 

In hypothesis testing, two contradictory statements are proposed. Often, one statement is 

favored, and it is rejected only if sample information is sufficient to do so. If not rejected, 

it is “accepted”. The meaning of “accepted” is not “proven” or “found true”, but instead 

means that there was not sufficient evidence to reject. The initially favored statement is 

called the null hypothesis or H0 and the other statement the alternate hypothesis or Ha. 

 

The decision to accept or reject the null hypothesis is based on confidence limits wherein 

some decision error is allowed. Let these limits be called α (probability of a Type-I error) 

and β (probability of a Type-II error). The two error types and their relation to the 

decision to reject the null hypothesis are show in Table 1.3. 

 

Table 1.3: Hypothesis Testing Decision/Situation Grid 

Situation→ 
Decision 

↓ 
H0 is true H0 is False 

Accept H0 
1- α 

(Correct decision) 
β 

(Incorrect Decision) 

Reject H0 
α 

(Incorrect Decision) 
1- β 

(Correct decision) 
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1.7.1 Analysis of Type I Errors 

To describe hypothesis testing using the binomial distribution, consider a case of 50 

samples (n = 50). For a transition probability of 0.5 (p = 0.5) which results in an expected 

or mean value of 25 successes. Figure 1.4 shows this distribution with a hypothetical 

Type I error rate (α) is the sum of the two tail Type I error rates (αT) in the shaded tail 

areas resulting from an upper and lower control limit of 30 and 20 samples respectively. 
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Figure 1.4: Binomial Distribution (Total Samples in set = 50, Pnull = 0.5, αT = 0.10) 

 

If x is chosen to be  25 with limits +/-5 so that 20 is the lower limit and 30 is the upper 

limit Type I error rate (α) for both tails combine for an approximate probability of 0.20 or 

20% of x successes found in the two tails. Each tail Type I error rate (αT) then contains 

approximately 10% of the x successes. This means that there is a probability of 0.20 that 

the null hypothesis will be rejected when it should be accepted. The analog example often 

αT α 

Null Transition 
Probability Distribution 



 17

cited when describing Type I errors is that of a court of law. In this case, with a Type I 

error of α = 0.20, there is a 20% chance of incorrectly finding someone guilty. 

 

1.7.2 Analysis of Type II Errors 

After the limits are determined, the test requires an alternate hypothesis, Ha, with which 

to compare. Let λ designate a change of probability from the nominal probability. For an 

increased alternate probability use Equation (1.7) 

 )1( nullnullupper PPP −+= λ   (1.7) 

and to find the decreased alternate probability alternate hypothesis use Equation (1.8) 

 )1( nulllower PP −= λ . (1.8) 

These equations allow the user to specify a particular amount of change that they want to 

analyze for Type II errors. In Figure 1.5, the nominal distribution is now plotted along 

side an alternate hypothesis whose mean probability has increased. The alternate mean 

probability is 0.64 (Pupper = 0.64) making the mean 32 samples. The total number of 

samples (n = 50) remain the same. Beta (β) is calculated by summing the area under the 

alternate distribution found within the upper control limit (UCL) found during Type I 

Error analysis. 
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Figure 1.5: Binomial Distribution (Total samples in set = 50, 

Pnull = 0.5, αT = 0.10, Pupper = 0.64, β = 0.33) 

 

In this case, beta (β) is the cross-hatched region below 30 samples found under the 

alternate probability which corresponds to a cumulative probability of approximately 

0.33. Beta (β) is the probability of accepting the null hypothesis when in fact it should be 

rejected. The analog in a court of law would be failing to find a defendant guilty who 

truly is guilty. For the example found in Figure 1.5, there exists a 33% chance of failing 

to find a defendant guilty who should be found guilty. Again, alpha (αT) for each tail 

individually is approximately 0.10. 

 

1.8 Real-Time Window Size 

The reason for doing both the Type-I and Type-II test is to find the number of samples 

that fulfill a user provided maximum for both α and β. As the number of samples 

αT β 

Null Transition 
Probability Distribution 

Alternate Transition 
Probability Distribution 
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increases, the overlapping area decreases between the null and alternate hypothesis. 

Figure 1.6 illustrates this idea by modifying the example from Figure 1.5 to contain a 

total sample set n = 100. The tail alpha (αT) is kept the same as above (αT = 0.10). The 

mean number of successes x for the null probability is still 50 and new limits of LCL = 

42 and UCL = 58 found from an αT = 0.10. 
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Figure 1.6: Binomial distribution (Samples = 50, Pnull = 0.5, αT = 0.10, 

Pupper = 0.64, β = 0.09) 

 

Notice that, while the Type I test error remained the same, a Type I error tail (αT) of 0.10, 

the increased number of samples resulted in much lower overlapping area. The Type II 

test then resulted in an error (β) of 0.09, much smaller then the previous 0.33 when there 

were 50 total samples in the set. The strategy then, is to allow the user the choice for 

Type I and Type II error rates, then determine how many samples are required to satisfy 

αT β 

Null Transition 
Probability Distribution 

Alternate Transition 
Probability Distribution 
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these conditions. The analogy in a court of law is that an increased quantity of evidence 

provides improves greater confidence in making a guilty or not guilty decision 

 

For the example mean null probability of 0.50 found in Figure 1.6, if the user had 

previously specified a Type I error rate (α) of 0.10 and a Type II error rate (β) of 0.10, a 

total set of 100 samples would be required to accept or reject the null hypothesis. The 

lower control limit (LCL) would be 42 samples and the upper control limit (UCL) would 

be 58 samples. Another way to view this is that if the transition probability for State +2 

remains within the limits 42/100 = 0.42 and 58/100 = 0.58 during real-time monitoring, 

then the null hypothesis is accepted, meaning no change in mean transition probability 

occurred. On the other hand, if the transition probability drops below 0.42 or moves 

above 0.58 during real-time monitoring, then the null hypothesis is rejected. These 

decisions carry with them the user specified 10% chance (α = 0.10, β = 0.10) of an 

incorrect decision in either case. 

 

It was mentioned that the null transition probability chosen for these examples is 0.50 

corresponding to the calculated transition probability for State +2 only in Figure 1.1. This 

alludes to the fact that this technique calculates the number of samples needed for each 

state to comply with the user specified Type I error rate (α) and Type II error rate (β). 

Obviously, the example will not work when the transition probability is 1.00 (as it is for 

State -4) or 0.00 (as it is for States -3, -2 and +3) since it would be impossible to violate 

one of the two limits 1.00 or 0.00. In addition, since each state may have different 

transition probabilities, the number of samples required to meet the Type I and Type II 
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tests may be different per state. When the total number of samples, n, is calculated for 

each state based on the null hypothesis (transition probability for each state) a total 

number of samples required may be determined then used during real-time analysis. This 

total number of samples for all states is called the total statistical window. Chapter 2 

discusses the technique used to calculate the total statistical window length (total required 

number of samples). 
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CHAPTER II 
 
 

ALGORITHM IMPROVEMENTS 

 

This chapter presents updates to the work reported by Owusu. The first update involves 

improving the computational robustness and efficiency of calculating the binomial 

distribution. The second update details two algorithm changes, one to more correctly 

calculate the window length for real-time monitoring and another to eliminate an 

unsupported condition in determining the Markov Chain model. 

 

2.1 Binomial Distribution Calculation Improvements 

The method used in the original work to calculate binomial distributions produced 

overflow run-time errors under certain situations. In the following section, improvements 

are detailed which eliminate overflow concerns and lower computational requirements. 

 

2.1.1 Calculating Binomial Distribution – Owusu 

The original algorithm used by Owusu to solve for discrete binomial probabilities takes a 

piece wise approach. The probability of getting x number of successes (transition 

probability) from n trials (total visits to a particular state) where the mean probability 

(null transition probability) is p is again reported as 
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also called the binomial coefficient (2.2). Owusu simplifies the binomial coefficient as 

the ratio U over L where U is n to n-x+1 (whole integers counting down) and L is x to 1 

(also whole integers counting down) shown here 
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It is now possible to split the terms into pieces to avoid memory overflow issues that are 

common to calculating factorials. For example, expression (2.4) determines the binomial 

coefficient terms that would come from 5 successes in a total of 10 trials where the mean 

probability is 0.4. The ratio of number U by L will be: 
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  (2.4) 

These terms are successively combined with 
xp  and 

xnp −− )1( . Owusu’s algorithm 

first multiplies the 
xnp −− )1(  with each successive term from the binomial coefficient 

series, then finally multiplies 
xp  to obtain the solution. Using the example from above  

 078.0)4.01()1( 510 =−=− −−xnp   (2.5) 

and  
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 010.04.0 5 ==xp . (2.6) 

Now multiply each term of the binomial coefficients with 078.0  to obtain 596.19 . The 

final step is to multiply 596.19  by 010.0  to arrive at the binomial probability 201.0 . 

This is the probability that 5 successes would result from a total sample of 10 tries where 

the mean probability is 0.4. The chart in Figure 2.1 summarizes these steps. 

 

Figure 2.1: Owusu Algorithm to Calculate Binomial Distribution 

 

Once the probability has been obtained for each discrete number of successes where x = 

0, 1, 2, 3, …, n then the complete binomial distribution curve is known for a particular 

mean probability (p) and number of samples (n). 

 

 

Begin Probability 
Calculation Function 

Calculate terms of 
binomial coefficient 

Multiply each term 

by 
xnp −− )1(  

Multiply by 
xp  

End Calculation 
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There are two advantages to using this algorithm: 

1) Memory overflow is usually avoided because the binomial coefficient is stored as 

one single value. 

2) The operation minimizes total number of multiplication operations to x+2, where 

x is the number of successes. 

 

2.1.2 Calculating Binomial Distribution – Wooters 

The method presented contains one main disadvantage; it is still subject to memory 

overflow issues. The main problem arises when either  
xp  or 

xnp −− )1(  is too small for 

a double precision variable type and is therefore truncated to zero. For instance, when the 

binomial distribution mean is 0.500, the probability of finding 900 successes in 2000 total 

attempts is 8.00 E-8, but the Owusu method will find the probability equal to 0. This 

occurs because precision doublefor  small too500.0)1( 1100 ==− −xnp . In this 

work, a similar concept is used; except terms are split into smaller pieces to allow for 

flexibility in calculating the discrete probability with fewer risks of overflow. 

 

Again consider the previous example where n = 10, x = 5 and the mean probability is 0.4. 

First, calculate the five terms of the binomial coefficient, reported below as Equations 

(2.7) through (2.9) for convenience 

 00.650.367.225.200.2 ⋅⋅⋅⋅=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

x

n
  (2.7) 

Also, each term in 
xp  or 

xnp −− )1(  can be broken up into smaller pieces namely, 
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The product of each sequential term is then calculated using the following relationship, 

where “max” is the maximum number of terms found between the three sets. 
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Whichever of the three sets contains the most terms is said to be the base set. In this case, 

each set contains 5 terms; however, if the x successes were 4, the 
i

x

n
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
 and  ( )ixp  sets 

would contain only 4 terms while the ( )ixnp −− )1(  set would contain 6 terms. To resolve 

this situation, the algorithm creates 2 two additional terms of unity in each of the sets 

containing only 4 terms. Now each set would contain 6 terms. Since this example already 

contains 5 terms in each set Equations 2.11 through 2.15 report sample calculations. 

     480.06.04.000.2 =⋅⋅   (2.11) 

     540.06.04.025.2 =⋅⋅   (2.12) 

     640.06.04.000.2 =⋅⋅   (2.13) 

     840.06.04.000.2 =⋅⋅   (2.14) 

     440.16.04.000.2 =⋅⋅   (2.15) 
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As long as xnx −≥  the final set of terms (Eq. 2.11 through 2.15 above) are sorted and 

only x number of calculations are required. This is also the same number of calculations 

required by the original Owusu algorithm. If, however, xnx −< , the terms will only be 

sorted up to the xth term, after which the terms will be filled with values from 
xp  and 

xnp −− )1(  which when multiplied together will always be less than unity and only 

pseudo-sorted. A better decision can be made on which terms to multiply together 

because the list is, at worst, pseudo-sorted. It is undesirable for the result of any terms 

products to be too small or too big from a memory overflow standpoint, so pick numbers 

to satisfy this condition. The algorithm used in this work initializes the probability at 

unity, then looks at the first and last terms in the final set (Eq 2.11 – 2.15) and multiplies 

the current calculated probability by whichever term keeps it closer to 0.5. An index is set 

at the beginning and end of the final set and as a number is used in the product, the 

indices move closer together. Equations 2.16 through 2.21 detail this procedure. 

 

 Probability = 1.000  (2.16) 

 Probability = Probability · FinalTerm1 = 1.000 · 0.480 = 0.480  (2.17) 

 Probability = Probability · FinalTerm5 = 0.480 · 1.440 = 0.691  (2.18) 

 Probability = Probability · FinalTerm2 = 0.691 · 0.540 = 0.373  (2.19) 

 Probability = Probability · FinalTerm4 = 0.373 · 0.840 = 0.314  (2.20) 

 Probability = Probability · FinalTerm3 = 0.314 · 0.640 = 0.201  (2.21) 

 

This algorithm finally arrives at the same calculated probability as the original Owusu 

algorithm, however, now with added flexibility to avoid nearly all overflow. In fact, the 
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largest and smallest numbers required by the original Owusu algorithm was 19.596 and 

0.010 respectively. The largest and smallest numbers required for storage suggested by 

this current work is 1.440 and 0.201 remaining much closer to the final answer. Figure 

2.2 reports the algorithm. 

 

The only remaining chance of overflow is when the calculated probability for a given 

number of x successes is actually smaller than the value storable within a double 

precision variable; however this is resolved using the next modification. In addition, there 

exists one disadvantage still between the two algorithms, the Owusu algorithm requires 

fewer operations when xnx −< . This is overcome by one final algorithm modification. 

 

Instead of calculating all of the probabilities for each possible number of x successes as 

the original Owusu, et al, algorithm does, only those x successes whose probability lie 

above a specified threshold of 1E-16 are calculated. Since the binomial probability is 

unknown beforehand instead of starting to calculate the distribution from an extreme 

where a small binomial probability is expected, start at the x success which represents the 

binomial mean. 

 

For all cases studied in this work, the mean or expected number of x successes of the 

binomial distribution npxE =)(  is also the mode of the samples. This means that the 

probability associated with np  successes will be the highest of the entire set of possible x 

successes. Instead of beginning at x = 0 and continuing to calculate the probability of 

each x success until reaching x = n, start by calculating np  successes and then calculate 
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above and below this number of successes until finding the x successes whose probability 

is below the threshold 1E-16, then assume all binomial probabilities beyond this number 

of successes is 0. 
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Figure 2.2: Wooters Algorithm to Calculate Binomial Distribution 
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The example in this section has been using an n of 10 samples and a mean probability of 

0.4. No x success exists with a probability less than the threshold 1E-16. Instead an 

alternate example where n = 100 samples and a mean probability of 0.5 is used to 

illustrate this idea. The mean or expected number of samples is 50, which has a 

calculated probability of 0.0796. From there, move both above and below the expected 

mean of 50 to find the first x success number that has a calculated probability below the 

threshold 1E-16. The calculated probability for 10 and 90 successes is found to be 1.37E-

17. The algorithm stops here and sets the probability for any number of successes 

between 0 and 10 and between 90 and 100 to be equal to 0. Figure 2.3 reports the 

example and shows thresholds below which the probability is set equal to 0. 
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Figure 2.3: Binomial Probability Curve with Mean, Lower and 

Upper Threshold for Practical Calculation (n = 100, p = 0.5) 

 

mean = 50 samples 

90 samples 
(upper threshold) 

10 samples 
(lower threshold) 
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This is obviously not explicitly correct, but it is more than sufficient for the requirements 

of the method this work is developing. 

 

2.2 Window Length and Model Determination Algorithm Improvements 

Below is found a discussion on sampling ratio and number of states to provide 

background on the window length and how to determine the Markov Chain model. 

Following this introduction is a discussion of the original algorithm proposed by Owusu. 

Then, two improvements are discussed which deal with the window length and Markov 

Chain model determination. 

 

2.2.1 Window Length and Model Determination Background 

 

2.2.1.1 Sampling Ratio 

Two variables are necessary to sufficiently model the run-length distribution in the 

controlled process actuating errors, namely the sampling ratio and number of states to be 

used in the model. The sampling ratio is the ratio of the number of data samplings in the 

data acquisition and control system (DACS) to the number used for the health monitor. 

The ratio is initialized at unity, which is equivalent to the controller’s sampling 

frequency. A sampling ratio of three would mean that the health monitor sampled once 

for every three controller samples. As the sampling ratio increases the effects of 

persistence and autocorrelation mechanisms are lost, and the signal appears more like 

random noise. Figure 24 shows a process rejecting disturbances using a PI controller. 
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Figure 2.4: Sampling Process Output at Various Sampling Ratios 

 

A sampling ratio of unity matches the data acquisition and control frequency; however, as 

the sampling ratio increases less autocorrelation from feedback control is present in the 

sampled signal. Finally, at a sampling ratio of 100, there is essentially no autocorrelation 

between samples. This is not necessary representative of all systems; the amount of 

autocorrelation retained in the sampled signal is system dependent, meaning that a 

sampling ratio does not need to be 20 or 100 to attenuate autocorrelation. 

 

This affect is useful to the current work. The higher the sampling ratio, the more 

independent each health monitor sample is from its previous sample. This means that the 

transition probability for each state approaches 0.5 since truly, each actuating error is just 

as likely to be positive as negative. In general, the further from 0.5 the transition 

probability is, the closer to either 0.0 or 1.0 that a transition probability limit will be as 



 34

determined by the Type I test. The transition probability of 0.0 means that all samples 

which visit the current state will move to the next higher state. This is the same as saying 

that no zero crossing can occur from that state. The transition probability of 1.0 means 

that all samples which visit the current state will next go to the +/-1 state which signifies 

a zero crossing every time. These are not limits, since a transition probability cannot be 

either below 0.0 nor above 1.0; therefore, these transition probabilities are avoided. The 

means whereby extreme transition limits are avoided by Owusu is by forcing the nominal 

transition probabilities to between 0.25 and 0.75 for every state. This keeps the limits 

calculated from the Type I step away from 0.0 and 1.0. 

 

2.2.1.2 Number of States 

In addition, the Markov chain requires that a specified number of states be fixed. The 

health monitor is initialized with 8 states (4 for each of the “+” and “-” runs). The health 

monitor must be initialized with more than 2 states, and all systems under study in this 

work require more than 6 total states, therefore, the monitor is initialized with 8 states to 

improve program execution efficiency. Figure 2.5 shows the example of an 8 state 

Markov chain where the +/-4 state is called the extreme state. For a system whose 

actuating errors are close to 0.5 the number of samples which visits each higher state (run 

length) should be half the lower state. 
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Figure 2.5: Example Sample Distribution for a Markov Chain of 8 States 

 

The transition probabilities will be nearly 0.5 for all states in a perfectly controlled 

system. If N represents the number of samples found in the +/-1 states, and each higher 

state has half its predecessor, the extreme states for a Markov chain of 8 samples would 

each have N/4 samples. This is calculated from the infinite series {N/8 + N/16 + 

N/32+…}. If the extreme states each contained N/4 samples, this results in 12.5% of all 

samples residing in the extreme states. Again, this is assuming the case where the Markov 

chain contains 8 states and the transition probabilities for each state is 0.5. Owusu 

proposes that approximately 10% of the sample distribution should be found in the 

extreme states. This value is used to determine the number of states to be used in the 

chain. 
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In determining the model framework, there are two assumptions made based on the 

preceding discussion about sampling ratio and number of states. 

1. Transition probabilities for all states must be between 0.25 and 0.75 

2. The extremes state should not contain more than 10% of the sample distribution 

Neither of these two assumptions are very well supported; however, specific values are 

required to determine the Markov chain model. 

 

2.2.2 Window Estimation Algorithm – Owusu 

In the chemical process industry, it is often not possible or practical to tune loops to their 

singular optimal control. Long time delays, manipulated variable limitations and the 

consideration of downstream affects can prevent a loop from being perfectly controlled. 

What is optimum for one loop might be wrong for another loop where slower change is 

preferred. Therefore, the employee who maintains a particular loop or set of loops is the 

judge as to whether a loop is well tuned or not. The health monitor requires good data 

from which to judge future controller action. This data is most likely to be obtained 

immediately after a loop is retuned. The set of good data should contain only normal 

process behaviors, meaning that there is no reason to exaggerate controller performance 

by making unnecessary step changes during this period. The health monitor is able to 

measure the controller performance run length distribution from normal process data 

because the controller is continually acting, even to simple noise. 

 

After the desired good data period is determined, the user specifies the desired Type I 

error (α) and Type II error (β) which requires yet a third variable (λ). The third variable 
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(λ) represents the change in mean transition probability that the user would like to 

distinguish from the null mean. The health monitor initializes the sampling ratio (SR) at 

unity and the total number of states at 8. 

 

The health monitor analyzes the entire set of data representing good control. All run 

lengths are counted and, at least initially, every run length of more than 4 samples is put 

into the extreme bins of +/-4. During the run length counting phase, an additional set of 8 

bins are used to keep track of how many times a run makes a zero crossing after visiting 

one of the 8 total states. From the total run length count and the zero crossing count, the 

null transition probability is determined for positive runs by 
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and for negative runs by 
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If any iP+  or iP−  is outside of the bounds 0.25 to 0.75, then the sampling ratio is 

incremented by 1. The entire set of data representing good control is once again analyzed 

and transition probabilities recalculated. This is repeated until all transition probabilities 

are between 0.25 and 0.75. 

 

Next, the percentage of samples which visited the extreme states is calculated, and if it is 

found to be more than 10%, the number of states is increased by 2, one extra state for 
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each of the “+” and “-” runs. The entire data set is reanalyzed and checked against the 

transition probability bounds of 0.25 and 0.75 and percent of samples in the extreme 

states. This continues until the assumption 1 and 2 are met. Figure 2.6 outlines the steps 

necessary to determining the correct sampling ratio and number of states. 

 

Figure 2.6: Owusu Window Estimation Algorithm 

 

Now that the model has been determined, a window length, to be used in real-time 

monitoring is needed. This window length must provide sufficient data to be statistically 

accurate. The health monitor then finds the state on both the “+” and “-” side which 
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contains the fewest samples. These two states will serve as a basis state for which the 

Type II test is performed. The Type II test will determine the required number of samples 

needed to visit these two states to satisfy the statistical requirements provided by the user. 

 

The user has provided α and β; now called αT and βΤ meaning they are the Type I and 

Type II errors for the total Markov chain. Limits are calculated around each state 

therefore there are Ns (number of states) possible places where a limit might be violated. 

Let αk and βk be the Type I and Type II error associated with each individual state. If 

each state is independent, which has already been stated to not be completely true, then 

the product of the αk for each state must be equivalent to the total αk. This is also true for 

βk. If the transition probabilities for each state are independent then the following is 

provided as the relationship between αk and αT 

 sN
Tk αα −−= 11 , (2.24) 

and the relationship between βk and βT 

 sN
Tk ββ −−= 11 . (2.25) 

This is just an approximation since states are not independent. 

 

The health monitor initializes each state with 5 samples (n) and calculates the null 

binomial distribution, a high transition probability change and a low transition probability 

change (using the supplied λ). Since the null binomial distribution has two tails, αk is 

halved. In each of the following equations “n” is the total number of trials (or samples) 
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and x is a particular success (or sample # within the set of n). The following equation is 

used to calculate the high limit (xH) 
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and the following is used to calculate the low limit (xL) 
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After the health monitor calculates the high and low limits based on αk, then βk is found 

for the upper and lower transition probability change using 
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for the high alternate hypothesis and 
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for the upper alternate hypothesis. The Type II error statistic provided by the user is 

compared βk with the number of samples “n”. If the calculated βk meets the user 

specification, then “n” is the number of samples which must visit this state, if not, then n 

is incremented by 1 until this requirement is met. 

 

When the number of samples required to visit each of the two base cases (one for “+” 

side, one for “-” side) is determined then the total statistical window can be determined. 

The samples which visit the base case states must have come from a lower state and will 

next either visit a higher state (longer run) or will move to +/-1 (zero-crossing). Using the 
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base cases, the number of samples which must visit the remainder of the states can be 

determined. For all but the extreme state use Equation (2.30) 

 ( )iii Pnn ++++ −= 11   (2.30) 

and rearranged the following is also useful as Equation (2.31) 
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Simply stated, this means that the runs that do not make a zero-crossing will visit the next 

state. These equations are also true for the negative side as Equation (2.32) 

 ( )iii Pnn −−−− −= 11    (2.32) 

and Equation (2.33) 
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For the extreme states a different equation is used in Equation (2.34) 
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and rearranged as Equation (2.35) 
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Also, on the negative side is Equation (2.36) 
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and also rearranged as Equation (2.37) 
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By utilizing these equations, the base case defines each half of the Markov chain by 

expected number of samples. 

 

The transition probability limits for the base cases are calculated in the previous step. To 

calculate the limits for the other states, the health monitor solves Equation (2.38) 
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for the high limit where xH is the unknown and Equation (2.39) 
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for the lower limit where xL is the unknown and n is the number of samples expected to 

visit this state. 

 

With the limits now calculated and the expected sample visits known for all states, the 

total statistical window is determined. The statistical window is simply the sum of the 

expected samples over all states. Finally, the user provided settling time is added to the 

statistical window. The complete window (statistical window + settling time) is used in 

the real-time monitoring to flag the process when a transition probability limit has been 

violated. Figure 2.7 outlines the final steps used after the Markov chain model is 
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determined by finding the sampling ratio and settling time and up to the calculation of the 

complete window. 

 

Figure 2.7: Steps from Markov Chain to Complete Window Length 

 

An example is useful in conveying the steps as outlined in Figures 6 and 7. Consider the 

case of a secondary controller whose setpoints are determined by the primary controller. 

Figure 2.8 shows just such a system which is well tuned and acting in “good” control. 

 

Start 

Markov chain model determined 
(SR and States found) 

Identify state with least number of 
samples 

Use Binomial statistics to estimate 
optimal number of samples 

Use transition probabilities to estimate 
number of samples in other states 

Type I test to find limits for all states 

Combine samples for all states and combine 
with settling time for complete window 

End 
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Figure 2.8: Example Actuating Error from a Process Under “Good” Control 

 

The user provides the 36,000 “good” control data points to the health monitor. The user 

specifies α = 0.10, β = 0.10, λ = 0.90 and settling time = 20 samples (although real-time 

testing will not be performed in this example). The health monitor initializes the sampling 

ratio at unity and number of states at 8. The following series of figures show the 

progression as sampling ratio and number of states is increased. The transition 

probabilities (line) pertain to the left-axis and the number of samples (bars) pertains to the 

right-axis. 
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Figure 2.9: Markov Chain Model of Example Data (SR = 1, States = 8) 

 

In Figure 2.9, with a sampling ratio of unity and number of states at 8, all transition 

probabilities fall within the 0.25 and 0.75 limits, fulfilling the first condition. However, 

the extreme states contain 23.3% of the samples, which violates the second condition that 

no more than 10% of all samples be found in the extreme states. Therefore, according to 

the algorithm outlined in Figure 2.6, the sampling ratio remains constant, but the number 

of states increases by 2 (1 for each “+” and “-” side). The results are found in Figure 2.10. 

Nominal Transition 
Probability 

Percent Samples 
per State 
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Figure 2.10: Markov Chain Model of Example Data (SR = 1, States = 10) 

 

Figure 2.10 reports the result of increasing the number of states from 8 to 10. There are 

still 16.4% of all samples visiting the extreme states. Therefore, the sampling ratio is kept 

at unity and the number of states is increased from 10 to 12. Figure 2.11 reports these 

results. 
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Probability 

Percent Samples 
per State 
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Figure 2.11: Markov Chain Model of Example Data (SR = 1, States = 12) 

 

Figure 2.11 reports the results of increasing the number of states from 10 to 12. The 

percentage of samples now found in the extreme states has dropped to 12.4% which still 

violates the limit of 10%. The algorithm outlined in Figure 2.6 is continued until both 

conditions are met. Figure 2.12 is a matrix of percent of samples in the extreme states, 

lowest and highest transition probability for all states. These results are defined by the 

selected sampling ratio (Rows) and the number of states (Columns). The shaded regions 

are those results which violate one of the two conditions whether for percent of samples 

in the extreme states or transition probabilities. 

 

 

 

Nominal Transition 
Probability 

Percent Samples 
per State 
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Figure 2.12: Matrix of Results from Changing Sampling Ratio (SR)  

and Number of States 

 

The arrows pointing to the right in Figure 2.12 lead the reader in following the first 3 

steps taken from Figures 2.9 through 2.11 using this matrix. From Figure 2.9, the 

sampling ratio is unity and 8 states are used; 23.3% of the samples visited the extreme 

states and the lowest and highest probabilities reported, 0.292 and 0.499, are within the 

limits 0.25 and 0.75. From Figure 2.9, the sampling ratio is unity and 10 states are used; 

16.4% of the samples visited the extreme states and the lowest and highest probabilities 

reported are 0.240 and 0.499 respectively. From Figure 2.10, the sampling ratio is 1 and 

12 states are used; 12.4% of the samples visited the extreme states and the lowest and 

highest probabilities reported are 0.205 and 0.499 respectively. 

 

The algorithm actually visits and rejects each combination listed in the matrix found in 

Figure 2.12 until the correct combination is obtained. The final Markov chain which 

fulfills both conditions is found where the sampling ratio is 5 and 14 total states are used. 

Figure 2.13 reports this final model with number of samples found in each state.  
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Figure 2.13: Markov Chain Model of Example Data (SR = 5, States = 14) 

 

Notice that there are one fifth the total number of samples available to the final model as 

the initialized case where the sampling ratio is unity. 

 

Now that the Markov chain model is determined, the algorithm found in Figure 2.7 is 

followed to find the transition probability limits and the statistical window length to be 

used for real-time monitoring. The base cases for this chain are the +/-6 states since those 

states contain the fewest visits for each chain half. The -6 state whose transition 

probability is 0.301 will be explored for the benefit of this example. As a reminder, the 

user has specified α = 0.10, β = 0.10, λ = 0.90, therefore the low alternate transition 

probability is 0.0301 and the high alternate transition probability is 0.9301. Figure 2.14 

reports the initial binomial distributions for all three transition probabilities starting with 

5 samples. 

Nominal Transition 
Probability 

Percent Samples 
per State 
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Figure 2.14: Binomial Distributions for Low, Null and High Transition Probabilities (n = 

5, α = 0.10, β = 0.10, λ = 0.90) 

 

When the total number of visits n = 5, there is exists no success x which will satisfy the 

Type I test. Furthermore, since no limits may be obtained from the Type I test, the Type 

II test fails by virtue that all successes x belonging to the lower and higher alternate 

transition probability fall within the Type I test limits. 

 

If the total number of visits n is increased to 20, the binomial distributions begin to 

separate as seen in Figure 2.15. 

 

Low Transition Probability = 0.0301 

Null Transition Probability = 0. 301 

High Transition Probability = 0.9301 
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Figure 2.15: Binomial Distributions for Low, Null and High 

Transition Probabilities (n = 20, α = 0.10, β = 0.10, λ = 0.90) 

 

Figure 2.15 shows that there may be enough separation between the high and null mean 

transition probability that an upper limit may be obtained by a Type I test; however, a 

lower limit is still unobtainable, therefore no limits are show in Figure 2.15. 

 

The number of sample visits n is increased until the α and β statistics for both the Type I 

and Type II tests are met. Figure 2.16 reports the final binomial distributions for both 

curves. Also shown, are the upper and lower transition probability limits. 

Low Transition Probability = 0.0301 

Null Transition Probability = 0. 301 

High Transition Probability = 0.9301 
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Figure 2.16: Binomial Distributions for Low, Null and High 

Transition Probabilities (n = 48, α = 0.10, β = 0.10, λ = 0.90) 

 

According to the binomial statistics, 48 samples must visit state -6 to meet both α and β 

conditions. The low transition probability limit is 6 samples ( 125.048/6 = ) and the high 

transition limit is 24 ( 500.048/24 = ). Limits are also calculated for +6 then used to find 

the samples expected in each of the other states. 

 

Using the Equations (2.30) through (2.37), any state may be used to define the rest of the 

states. The original Owusu method calls for estimating the number of samples that must 

visit each positive and negative half of the chain, based on the base case on either side. 

The results shown in Figure 2.16 are done with the positive base case of +6 to find that a 

minimum of 58 samples must visit this state. The number of samples expected to visit the 

entire chain is now reported in Table 2.1. 

 

Lower Limit Upper Limit 
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Table 2.1: Expected Samples per State (base states -6, +6) 

State -7 -6 -5 -4 -3 -2 -1 +1 +2 +3 +4 +5 +6 +7 

Samples 130 48 72 107 178 329 670 863 432 239 139 85 58 153 

 

Notice that the +/- 6 states contain the number of samples previously calculated from the 

Type II test. Finally, upper and lower limits are calculated using a Type I binomial 

distribution test. With the number of samples to visit each state known, the binomial 

distribution is calculated and the limits found by Equations (2.38) and (2.39). Figure 2.17 

reports the transition probability limits calculated for each state. 
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Figure 2.17: Transition Limits Surrounding Nominal Transition Probability  

(Original Algorithm, α = 0.10, β = 0.10, λ = 0.90) 

 

The statistical window is then the sum of the samples over the entire Markov chain; in 

this case 3503 samples are required for the Type I and Type II statistics to be valid. The 

High Limit (xH) 
Nominal Transition 
Probability 

Low Limit (xL) 
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settling time in number of samples (SR = 5) is now added to the statistical window to 

create a counter used in the real-time monitoring portion. For a settling time requiring 20 

samples at a sampling ratio of 1 (equal to the DACS sampling frequency), it would 

require just 4 samples at a sampling ratio of 5. Therefore, the complete window 

(statistical window + settling time) is 3507 samples. This requires 17535 DACS samples 

to obtain. 

 

In conclusion, the health monitor analyzes good control data and populates a Markov 

chain used to characterize these data. Transition probabilities are calculated based on the 

propensity that a run must end after a certain number of samples. Upper and lower limits 

to the transition probabilities are calculated using binomial statistics. 

 

Finally, a model with transition limits and a required number of samples (statistical 

window) is used in real-time monitoring. The monitor begins collecting data as soon as 

the good control data has been characterized. The complete window length (statistical 

window + settling time) serves as a counter threshold value. The samples in the statistical 

window only are used to build a Markov chain of equal chain size as the good control 

data model. If any of the transition probability limits are violated, the counter begins. 

When the counter reaches the length of the complete window length, then the process is 

flagged, retroactively to the point when counting began. This designates the sample 

which started to move the transition probabilities outside of the limits. As soon as the 

transition probability for each state is once again inside the transition limits, the counter 

resets to 0. It is common for a well-controlled process to periodically start the monitor 
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counting since Type I errors are always possible, but the user specifies how probable. If 

the user wants fewer errors, the statistical window length must increase to collect more 

data. This allows the monitor to be more “sure” before declaring a limit violated. 

 

2.2.3 Window Estimation Algorithm – Wooters 

Two short comings are found in the above method: 

1) Two conditions of the original work are difficult to support theoretically, called 

Markov Chain conditions in the next section. 

a. Nominal transition probabilities must lie between 0.25 and 0.75 

b. No more than 10% of the sample visits may be to the combined extreme 

states 

2) The state on either the positive or negative side of the chain with the fewest 

samples may not be the true base state; it is a combination of number of samples 

and state transition probability. This is discussed under the Window Length Basis 

Determination later. 

Finally, an improved algorithm is proposed after the limitations of the original methods 

are illustrated. 

 

2.2.3.1 Markov Chain Conditions: 

The final result of the good data analysis is a set of transition probability limits as shown 

in Figure 2.17 and the minimum number of samples needed to fulfill the user specified 

statistical tests. Unfortunately, as of yet, there is no way to ensure that the shortest 

window possible is obtained. However, if the first shortcoming is relieved, the health 
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monitor now has a degree of freedom with which it can minimize the statistical window 

(with respect to DACS samples) and still fulfill the user specified statistical requirements. 

 

The first requirement of maintaining all transition probabilities between 0.25 and 0.75 is 

superfluous. The goal in this condition was to keep the final calculated limits from resting 

on 1.0 and 0.0, because there would be no way of violating these limits they would be 

useless. This end is more easily achieved by simply not allowing a model where limits 

would rest on these outermost bounds. Indeed, the Type II test will ensure this by 

increasing the number of samples required to separate the null and alternate hypothesis 

until the beta statistical requirement is met. For the final limits to rest on 1.0 or 0.0 would 

mean that the user specified a beta so high, that the entire alternate hypothesis fell within 

the null hypothesis. This situation is neither likely nor logical, as it would mean that 

100% of the time the null hypothesis would be rejected when it should not be. 

 

Therefore, it is proposed that the first assumption be dropped and in its place, allow the 

health monitor to change the sampling ratio to find the window requiring the fewest 

DACS samples. With all statistical requirements met, this would ensure the fastest 

notification of poor control. 

 

In addition, the need for no more than 10% of all samples in the extreme states seems is 

called into question. Nearly all controlled systems will have autocorrelation where each 

state is dependent on the other. One cannot assume that perfect control for a particular 

system result in a transition probability of 0.5 for every state. This is the case used to 
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justify the 10% value. The value was already somewhat arbitrary since the previous 

derivation actually led to 12.5% of the samples in the combined extreme states and 10% 

was substituted as an approximation. What is not clear, is what the best value should be. 

Is 10% better than 15% or 20%? This work does not seek to answer these questions 

theoretically; however, it is proposed that a value is necessary from the standpoint of 

state shaping. 

 

To understand this point, consider the extreme case where no limits are provided for the 

number of samples in the extreme states. Initializing the health monitor with 2 states (1 

on the “+” side and one on the “-” side) then all data is found in either the positive or 

negative state. This chain would have very little sensitivity since all positive runs fall in 

the +1 state and all negative runs fall in the -1 state. Similarly, if the limit is set very low, 

say 1% or 2%, many states, perhaps 20 or more might be required. To necessitate so 

many states, run lengths of 10 or more would need to be found in the good control period. 

However, with very few samples possible in the extreme states, two problems arise: 

1) A larger statistical window becomes required to collect sufficient long runs 

2) These extreme states are more sensitive than the states closer to +/-1 since these 

closer states will have comparatively more samples over which short anomalies 

might be averaged. Too few long runs and too many long runs would have 

amplified affects on the extreme states when compared to the lower states. 

 

This work seeks to use the limit of samples in the extreme state to shape the states 

somewhere between these two extremes. Since 10% seems already smaller than even the 
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insufficient theoretical value calculated to be 12.5% this work will use 20%. This value 

seems to allow for multiple states while rarely necessitating large number of states which 

prove too sensitive. In the final section of Chapter 2, the main advantage to specifying 

20% is discussed. 

 

With this distinction made, however, so that the two methods might be compared more 

directly, 10% is used in the examples that follow. 

 

2.2.3.2 Window Length Basis Determination: 

The number of samples expected in each state for the positive and negative half of the 

chain is assumed to be the state where the fewest samples are found. The base case is 

determined not only by the number of samples counted in a particular state, but is also a 

function of the transition probability of said state. Figure 2.18 shows just such an 

example. 
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Figure 2.18: Markov Chain Model to Show Basis Problem (SR = 1, States = 4) 

 

For the following analysis assume that α = 0.10, β = 0.10, λ = 0.90 as the examples 

above used. Considering the positive side of the Markov chain, the original method 

would have us choose state +3 to base state since it contains the fewest samples of all the 

positive states. Consider each step in the algorithm found in Figure 2.7. The transition 

probability for State +3 is 0.45, meaning that 45% of all run lengths which reach +3 

samples make a zero crossing. Binomial statistics would be performed using this state, 

providing limits that met the user specified α and β. The +3 state requires 25 samples to 

fulfill the Type II. The expected number of samples to visit each of the other positive 

states is calculated assuming 25 samples visit State +3 using Equations (2.30) through 

(2.37). Table 2.2 provides the expected number of samples per positive state. 

 

Nominal Transition 
Probability 

Percent Samples 
per State 
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Table 2.2: Expected Samples per 

Positive State (base states +3) 

State +1 +2 +3 +4 

Samples 39 33 25 28 

 

Unfortunately, since the Type II test was performed with only the +3 State, it is not 

immediately evident whether enough expected samples visit remaining states to fulfill the 

statistical requirements for each state. As a check, calculate the minimum number of 

samples needed to visit each state to fulfill these requirements reported in Table 2.3. The 

+3 State has already been calculated. 

 

Table 2.3: Minimum Required Samples per State to Fulfill 

Statistical Requirements (α = 0.10, β = 0.10, λ = 0.90) 

State +1 +2 +3 +4 

Samples 95 53 25 23 

 

The +3 and +4 (extreme) States would both have sufficient sample visits to be 

statistically valid. The +3 State receives the exact minimum required, and the +4 State 

would have more than sufficient visits. However, the +1 and +2 States would not have 

enough samples to fulfill the statistical requirements. Therefore, the +3 State could not 

possibly be the minimum or base state for the positive side of the chain. It is proposed 

that an alternate algorithm be used to ensure that all states be visited with at least the 

minimum number required by the Type II test. 
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2.2.3.3 Improved Algorithm 

The previous two claims require an improved algorithm, one which eliminates the 

arbitrary transition bounds and consistently selects the correct base state when defining 

the statistical window. Most of the techniques outlined by Owusu are still used, except 

where they are explicitly discussed in this section. The selection of the sampling ratio and 

number of states outlined in Figure 2.6 and the binomial statistics used to find the limits 

and window length in Figure 2.7 must now be combined into a single algorithm. Also, the 

previous search technique of increasing sample ratio and states based on whether they 

were with their assumed bounds is modified. 

 

As before, the health monitor user selects a period of good data by which future real-time 

data will be tested. The user specifies α , β , λ and settling time, and the monitor 

initializes the sampling ratio at unity and the number of states at 8. If the number of 

samples in the extreme states is more than 10%, then 2 states are added to the Markov 

chain (1 on each side). 

 

When the number of states is found for a sampling ratio of unity, Type I and Type II tests 

are performed on each state given the transition probability found in the previous step. 

Again, the result of the Type II test is the minimum number of samples which must visit a 

particular state to fulfill the user specified α and β. 
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Now, the base state is determined. Each side of the Markov chain will have its own base 

case from which the rest of each half will be estimated using Equations (2.30) through 

(2.37). Starting at state +/-1, the minimum number of samples found during the Type II 

test is propagated down the chain. As each half is being estimated, if a state requires more 

samples than is being estimated by the current base case, then the proposed base case is 

discarded. The algorithm then moves down the chain towards the extreme state until the 

true base state is found. There can only exist one base case per chain half, therefore, as 

soon as a state is tested and, through propagating along the rest of the chain, it is found to 

provide enough samples to all other states, the proposed base case is accepted. Figure 

2.19 provides a flowchart of the base state selection algorithm. 

 

Figure 2.19: Improved Base Case Selection Algorithm 

 

Begin with State +1/-1 

Determine the samples which 
would visit each state based on 

the current “base” state 

Is a calculated number of 
samples less than the 

required amount based 
on binomial statistics? 

Increment to the 
next “base” state 

End, found the correct 
“base” state 

Yes 

No 
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After the base case is found for each the positive and negative half of the Markov chain, 

then the entire window is estimated. The final statistical window length is found in terms 

of the number of DACS samples required to obtain enough health monitor samples to fill 

the window. 

 

The sampling ratio is increased to 2, and the number of states reset to 8. States are added 

to the chain until once again there are less than 20% of samples found in the extreme 

states. The Type I and Type II tests are performed over all states and the base case 

selection algorithm repeated for this new Markov chain. The window length in the 

arbitrary time unit is stored with this new state and sampling ratio combination. 

 

These steps are repeated by increasing the sampling ratio and storing window lengths 

until a model is found with 8 states and 10% or less of the total samples in the extreme 

states. Next, the state and sampling ratio combination which created the shortest time 

window is selected as the best Markov chain. The short time window allows for quicker 

decisions regarding real-time control monitoring. Figure 2.20 outlines all the steps found 

in this improved algorithm. 
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Figure 2.20: Improved Window Estimation Algorithm 
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As with the original algorithm it is instructive to provide an example. To illustrate the 

superiority of this method in obtaining the shortest window length, the same example as 

above is used. To remind the reader α = 0.10, β = 0.10, λ = 0.90 and settling time is 20 

samples of the DACS. As stated before, to compare both methods, no more than 10% of 

all sample visits may be to the extreme states. Beginning where the sampling ratio is 

unity and a chain of 8 states, the model and transition probabilities are equal to those 

found in Figure 2.9. Continuing the algorithm outlined in Figure 2.20 finds that the first 

number of states where only 10% of the samples fall in the extreme states is a Markov 

Chain with 14 states. The original algorithm also came to the sampling rate of unity and 

14 states. Figure 2.21 shows the samples and transition probabilities. 
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Figure 2.21: Markov Chain Model of Example Data (SR = 1, States = 14) 

 

As determined by the modified algorithm detailed in Figure 2.19 the base states for this 

model are the +/- 6 States. The number of samples expected to visit each state is 

Nominal Transition 
Probability 

Percent Samples 
per State 
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calculated then combined for a statistical window length of 3,335 health monitor samples, 

equivalent to 3,335 DACS samples. Now add the 20 DACS sample settling time for a 

complete window length of 3,355 DACS samples. 

 

This is the place where the original algorithm chose to increase the sampling ratio while 

maintaining 14 states because the extreme states obviously have transition probabilities 

below 0.25. The improved algorithm in this work increases the sampling ratio and resets 

the number of states to 8. The next number of states which fulfill the requirement to have 

no more than 10% of the data in the extreme states is again 14. Figure 2.22 reports this 

sample distribution and transition probability profile. 
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Figure 2.22: Markov Chain Model of Example Data (SR = 2, States = 14) 

 

The base states for this model are again the +/- 6 States. The combined expected number 

of samples for each state finds a statistical window length of 3,660 health monitor 
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samples, equivalent to 7,320 DACS samples. Adding the settling time of 20 samples 

leads to a complete window length of 7,340 DACS samples. 

 

The process continues until every complete window length is determined for the 

combination of sample ratio by number of states until a model of 8 states is found to fill 

this requirement. Figure 2.23 shows the progression of changing sampling ratio and states 

until model candidates are found, shown by the time calculated for the complete window. 

This figure is similar to Figure 2.12, however there is no check for minimum and 

maximum transition probability as this assumption is no longer needed. Instead is found a 

set of columns reporting the number of DACS samples required to fill the health monitor 

window. 
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Figure 2.23: Improved Algorithm - Matrix of Results from 

Changing Sampling Ratio (SR) and Number of States 

 

Notice that the algorithm terminated when a candidate 8-state model is found at a 

sampling ratio of 33. The regions marked in grey are those state and sampling ratio 

combinations which resulted in more than 10% of sample visits to the extreme states. The 

arrows represent the actual combinations probed by the modified algorithm. Although 
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this particular example shows that increasing the sampling ratio also increases the 

required number of DACS samples, this is not necessarily always the case. The window 

length in time is dependent on many factors, including the transition probabilities of the 

individual states which may be strongly affected by changing the sampling ratio. 

Comparing the number of DACS samples required to fill a statistical window for any 

particular number of states and sampling ratio, it is found that a Markov Chain with 14 

states and a sampling ratio of 1 requires the fewest DACS samples (circled in Figure 

2.23). 

 

2.2.3.3 Number of Samples in “Good” Data Set 

An example provided in Chapter 1 contained only 14 samples, raising the question of 

how many samples should be included in the “good” data set. One solution is to consider 

the number of DACS samples required by the health monitor determined statistical 

window. If the original data set does not contain at least as many DACS samples as are 

required by the health monitor statistical window, then a larger “good” data set should be 

collected. The example “good” data set provided in this Chapter contains 36,000 DACS 

samples; meaning that if the health monitor suggests a statistical window length requiring 

more than 36,000 DACS samples, more “good” data should be provided to the health 

monitor. The longest statistical window suggested for this “good” data set requires 

17,535 DACS samples when found by Owusu’s method. Furthermore, the statistical 

window suggested by the improved algorithms in this work is much shorter requiring 

3,355 DACS samples, and therefore demonstrates that sufficient DACS samples are 

found in the “good” data set the user provided. 
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2.2.4 Final Model Comparison 

Figure 2.16 reports the transition probabilities found using the original algorithm. During 

real-time monitoring, the health monitor requires 3,503 samples plus 4 samples for 

settling time. This takes 17,535 DACS samples. 

 

The purpose of the improved algorithm is to find the model requiring the fewest number 

of DACS samples. Figure 2.24 shows the transition probability limits found when using 

the improved algorithm in this work. 
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Figure 2.24: Transition Limits Surrounding Nominal Transition Probability 

(Improved Algorithm, α = 0.10, β = 0.10, λ = 0.90) 

 

The real-time monitor requires 3,355 health monitor samples when including the settling 

time requiring 3,355 DACS samples. Since statistical requirements are met for both 

High Limit (xH) 
Nominal Transition 
Probability 

Low Limit (xL) 
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models, there is no theoretical benefit to either model, they should both work fine. 

However, the improved model has the advantage of requiring fewer DACS samples. In 

this case the improved statistical window is 19% as long as the original Owusu statistical 

window, meaning that “poor” control is more quickly indicated. 

 

For interest sake, it would be interesting to see what difference it makes to accept 20% of 

the samples in the extreme state, instead of the 10% used for comparison of the two 

models. Figure 2.25 reports the samples and nominal transition limits found during the 

analysis portion of the improved algorithm. 
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Figure 2.25: Markov Chain Model of Example Data 

(Extreme = 20%, SR = 1, States = 10) 

 

The transition probability limits for the above sampled data are based on states +/-4 found 

by the base state algorithm. Figure 2.26 reports the transition limits found by the health 

monitor. 

Nominal Transition 
Probability 

Percent Samples 
per State 



 72

0

0.25

0.5

0.75

1

-5 -4 -3 -2 -1 1 2 3 4 5
States

T
ra

n
si

tio
n

 P
ro

b
ab

ili
ty

 

Figure 2.26: Transition Limits Surrounding Nominal Transition Probability 

(Improved Algorithm, α = 0.10, β = 0.10, λ = 0.90, Extreme = 20%) 

 

Also, the statistical window contains 921 health monitor samples requiring 921 DACS 

samples. Using 20% as the condition instead of 10% further lowers the number of DACS 

samples required. The window would now require only 27% as many samples as even the 

improved method and a 10% condition. Furthermore, the window requires 5.3% as many 

DACS samples as the original Owusu statistical window. Since it is unknown whether 

there is really any difference in model quality it seems that tolerating more samples in the 

extreme states produces a model requiring a shorter time window. As will be shown in 

Chapter 3, this assumption still leads to a monitor which will correctly identify “good” 

and “poor” control. 
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CHAPTER III 
 
 

EXPERIMENTAL SETUP 

 

Two experimental apparatuses are used to validate the health monitor for effectiveness. 

Effectiveness is essentially defined as: 

1) Flagging when control is no longer “good” 

and 

2) Not flagging when control is “good” 

Quotes are used since real-time control monitoring is compared against the period of 

“good” control selected by someone familiar with the process. The first experiment is 

performed using a first-order-plus time-delay (FOPTD) simulator coded using VBA in 

conjunction with Microsoft Excel. The second experiment is physical apparatus involving 

two-phase through a vertical pipe. 

 

3.1 Simulator – FOPTD 

In Laplace domain, the first-order-plus time-delay model is expressed by 
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where Kp is the process gain, ρτ  is the process time and θ is the time delay. All time 

units expressed in the process and controller functions are in minutes. The controller is PI 

given by 

 ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

s
Ksg

I
cc τ

1
1   (3.2) 

where Kc is the controller gain and Iτ  is the integral time. The feedback block diagram 

is shown in Figure 3.1. 

 

Figure 3.1: FOPTD Block Diagram 

 

According Owusu’s work, Gaussian noise is included in output measurements using the 

Box-Muller transform where any two uniformly distributed random numbers where 

10 ≤< U  may be used to calculate a normally distributed random value using 

 ( )1ln2 UR −= , (3.3) 

 22 Uπθ =   (3.4) 

and finally 

 ( )θcosRZ = . (3.5) 
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Both U1 and U2 are uniformly distributed random numbers in the range 10 ≤< U  and 

R and θ are intermediate values found in polar coordinates. The final value, Z, is actually 

one of two independent random values that may be obtained from the Box-Muller 

technique, the other being 

 ( )θsinRZ = , (3.6) 

however, only one is used per iteration. 

 

Although the transfer functions are provided above, the system of equations is solved 

numerically. The FOPTD function given by  

 ( ) ( )tuKty
dt

dy
pp =+τ   (3.7) 

 

where y is the output and u is the input found in Figure 3.1. This does not include the 

delay, which is incorporated with a simple wait period in the program. According to High 

(2006) a first order ordinary differential equation may be solved by the 4th-order Runge-

Kuta technique. The following outlines this technique. The first step is to calculate the 

slope from the current step using Euler’s method. 
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Next, a half-step is taken using the Euler’s derived slope from Equation (3.8). 
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The slope is now determined at this half-step using 

 ( ) [ ]222

1
,' yuKyuy jp

p
j −=

τ . (3.10) 

And, now another half step is taken using the updated slope at the previous half-step. If 

this next step were taken using the full time-step, it would be equivalent to a 2nd-order 

Runge-Kuta; however, here we take only a half-step. 
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Next, a third slope is taken from half-step calculated in Equation (3.11) 

 ( ) [ ]333

1
,' yuKyuy jp

p
j −=

τ . (3.12) 

Then, a full-step is taken with the slope calculated in Equation (3.12) 

 [ ] ( )[ ]3334 ,'', yuytyyuy jjj Δ+=   (3.13) 

The slope is then calculated at the full-step length. 
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Now there are four slopes from which a-full step may be taken with greater accuracy than 

either the single step Euler’s method or a 2nd-order Runge-Kuta. The new y-value at the 

full step in u is reported in Equation (3.15) 
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The input (u) is held at its initial value throughout because the input signal from the 

controller is sampled and held. 

 

The PI controller uses the trapezoid rule to calculate the integral or cumulative error in 

the following manner 

 ( )1

1 2 −
−

+Δ≈∫ jj

j

j

ee
t

dte   (3.16) 

where “e” is the error signal and “j” is the current step. 

 

The controller makes 10 samples per second with a zero order hold in between. Each 

sample incorporates white noise calculated from the Box-Muller transform. The process 

simulation is performed at 10 times the resolution of control. In other words, the process 

simulation time step is 1/10th the length of time between controller samples and 

calculations. This is to simulate the underlying process which continues to act on the 

controller input in between samples. The 4th order Runge-Kuta is chosen to model the 

process as correctly as possible, while the trapezoid rule is selected in the controller due 

to its common use in computer control to calculate integral error. In both cases, the intent 

is to more closely model reality. 

 

The simulator also has a sticky valve replication mechanism. Valve stiction occurs when 

the valve stem does not move until enough force causes it to jerk to a new position. It 

often results in a sawtooth pattern in the process output. From Rhinehart (2007), 

expression (3.17) is used to replicate stiction 
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where uinput is the input to the FOPTD process and uoutput is the controller output. The 

value δ is some predefined difference between uinput and uoutput such that if less than δ, the 

uinput does not update for each sample period. 

 

Four simulations are performed on the FOPTD process: 

1) Well tuned, normal process data with no setpoint changes (good data) 

2) Process control response to setpoint changes 

3) Process control response to varying controller gains tested with setpoint changes 

4) Process control response to simulated valve stiction 

5) Process control response to gradual process change 

 

The good data is used to create the Markov chain, transition probability limits, and length 

of window required to satisfy binomial statistics. The process response to setpoint 

changes is to test whether the health monitor flags normal response to a setpoint change. 

The health monitor should flag the process when controller gain changes are made. 

Likewise, a controller facing valve stiction is in poor control, and the health monitor will 

flag these periods as well. Chapter 4 reports the results of the tests. 

 

3.2 Cascaded Control in Two-Phase Flow 

Testing the effectiveness of a controller health monitor using simulation alone is 

unsatisfactory. To establish that this method is useful, health monitor tests are performed 
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on both the primary and secondary controllers of a pilot-scale two-phase flow unit 

controlling pressure drop by cascade. 

 

The two-phase flow apparatus is equipped with a single vertical pipe fed by air and water. 

One flow valve controls air flow and the other controls water flow. The combination of 

air and water forced to flow upwards through the pipe produces two-phased flow of 

various regimes from bubble to annular mist flow. The experiments in this study run 

primarily in the churn flow regime. Figures 3.2 through 3.5 are photographs of the 

experimental setup including the pipe, flow controllers and data acquisition and control 

system CamilleTG 2000. 
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Figure 3.2: Two-Phase Flow Photograph – Bottom of Pipe 
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Figure 3.3: Two-Phase Flow Photograph – Entire Pipe 
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Figure 3.4: Two-Phase Flow Photograph – Control Valves 
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Figure 3.5: Two-Phase Flow Photograph – CamilleTG 2000 DACS 

 

Figure 3.5 shows the CamileTG 2000 used for data acquisition and control. Various 

control schemes may be realized using the Windows based CamileTG 2000 software. In 

CamilleTG 2000 Personal Computer 
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this work, pressure drop is controlled by cascade where the secondary controller controls 

the water flow rate. Figure 3.6 is a diagram of the cascaded control strategy employed. 

 

Figure 3.6: Pilot-Scale Two-Phased Flow Unit 

 

The large air flow valve is also used to introduce disturbances and is setup as a SISO PI 

controller. Two pressure transducers, one at the bottom, the other at the top of the column 

measure pressure drop. Nominal pressure drops for this study are from 25 to 75 inches 

H2O, water flow rates range from 0 to 25 lbs/min which are the physical limits of this 

valve and nominally the air flow valve allows 10-15 cfps depending on the case under 

study. 
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The specific series of steps and methods for each of two separate cases are described in 

Chapter 4 as introduction to each set of results. 
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CHAPTER IV 
 
 

EXPERIMENTAL RESULTS 

 

4.1 Simulated Testing – FOPTD model 

The simulated first order plus time delay system (FOPTD) controlled by PI tuned under 

ITAE servo rules is used to generate several test cases. The simulation is of no particular 

process so arbitrary time and process units are used. The process gain (Kp) is 1.2 process 

output units per controller input units, the time constant (τp) is 0.5 time units and the time 

delay (θ) is 0.1 time units. The servo PI controller tuning rules for ITAE reported by 

Ogunnaike (1994) for the proportional gain is 
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and for the integral time is 
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Therefore, the controller gain (Kc) is found to be 2.133 controller output per error and the 

integral time (τI) is 0.502 time units.
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The simulator runs to collect 120 time units of data measured at a data acquisition and 

control system (DACS) frequency of 600 per time unit during which no step changes are 

made to the process. This means that during the run of “good” data 72,000 DACS 

samples are collected. The relationship between the arbitrary time unit used in the 

simulation and the DACS frequency is the same as if minutes represent the time unit and 

10 DACS samples are taken every second. The measurement noise is Gaussian and 

independent with a standard deviation of 0.05 process units NID(0, 0.0025). Figure 4.1 

reports a sampling of the good data actuating errors collected during this run. 
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Figure 4.1: Good Data Actuating Errors (FOPTD Simulated Process) 

 

The health monitor analyzes the good control data where Type I error (α) is specified as 

0.003 and Type II error (β) is specified as 0.003 corresponding to +/- 3σ limits. In 

addition, the change of transition probability for the alternate hypothesis (λ) is 0.900. 

Finally, during step testing of the simulated FOPTD process, it is found that the settling 

time should be 1,200 samples at the DACS frequency. 
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The health monitor determines that a sampling ratio of 1 and a Markov chain of 8 states 

sufficiently describe the run-lengths found in the “good” data set. The transition ratios are 

all close to 0.5 and there is approximately 15.7% of the data found in the extreme (+/-4) 

states. Figure 4.2 shows the number of samples per state with bars and the transition 

probability for each state as a line. 
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Figure 4.2: Markov Chain Model of Simulation Data (SR = 1 and 8 states) 

 

The Type I test determines the transition probability limits found in Figure 4.3. Since the 

nominal transition probabilities are all close to 0.5, fewer samples are required to 

distinguish the null hypothesis from the alternate hypothesis. This is evident by the 

window length found during Type II tests which is short in comparison to the example 

provided in Chapter 2. The statistical window length to be used during real-time 

monitoring is 774 DACS samples. Including the settling time for a complete window 

requires 1,974 DACS samples (3.3 arbitrary time units). 
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Figure 4.3: Transition Limits Surrounding Nominal Transition Probability for 

Simulated Process (α=β=0.003, λ=0.900, Extreme = 20%) 

 

During real-time monitoring, whenever a state transition probability violates a limit, a 

counter begins. If the counter continues (violation continues) for the entire length of the 

complete window (statistical + settling time) the process is flagged retroactively. Three 

cases are presented to test the real-time monitoring capabilities of the health monitor. 

 

4.1.1 Case 1 – Setpoint changes 

During normal process operation, setpoint changes should not cause the monitor to flag. 

However, setpoint changes cause long negative or positive run lengths until the process 

settles at the new setpoint. Depending on system dynamics and the magnitude of the 

setpoint change, enough samples may visit the extreme states to alter the transition 

probability and cause a limit violation. Since a violation must last through a complete 

window length, which includes the settling time, the monitor should never flag a setpoint 
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change only. During this simulation, a setpoint change of 2 process units is initiated every 

6,000 DCS samples. Figure 4 demonstrates the ability of the health monitor to avoid 

flagging when there has been no change to the process control. 
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Figure 4.4: Simulated Real-time Analysis During Setpoint Changes 

 

Figure 4.4 shows the setpoint and process variable tracking in the upper part and a real-

time view of counting and flagging in the lower portion. The sawtooth pattern in the 

lower part shows the monitor counting during a setpoint change. This example shows no 

flagging occurred, meaning that transition probabilities are not violated for a complete 

window length, which is what this demonstration seeks to test. 

 

Notice that the period of time marked by an “A” is in a section where there is no 

sawtooth pattern in the lower portion of the figure. This means that control in this region 

is still considered “good”, or that the null hypothesis has not been rejected for any of the 

8 states. Figure 4.5 reports the transition probabilities of a sample window found during 

the period marked “A”. 
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Figure 4.5: Simulated Real-Time Transition Probabilities with Limits 

(Time Period ‘A’ During Setpoint Changes) 

 

Indeed Figure 4.5 shows that all transition probabilities are still within predefined limits. 

However, when a setpoint change occurs, as in the time period marked “B”, the lower 

portion of Figure 4.4 shows some counting occurring that if it continued for the length of 

a complete window would produce a flagged event. 

 

Figure 4.6 shows the transition probabilities calculated for a window found within the 

time period marked “B” which is a setpoint change which occurred at DACS sample 

6,000. 
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Figure 4.6: Simulated Real-Time Transition Probabilities with Limits 

(Time Period ‘B’ During Setpoint Changes) 

 

During the time period marked “B” a setpoint change from 80 to 78 produces a period of 

long negative runs until good control is again realized. Figure 4.6 shows the transition 

probability for state -4 below the lower transition limit, meaning that fewer of the 

negative runs reaching 4 or more in length are making zero crossings. Figure 4.6 does not 

generalize all setpoint changes as only violating one state transition probability limit. 

 

4.1.2 Case 2 – Controller Retuning 

One of the purposes of the health monitor is to notify the user when a loop has become 

detuned. One way to demonstrate this is by changing gains during the simulation. Since 

the controller is the standard or parallel algorithm, Kc is multiplied across the 

proportional and integral portions. First, the gain is maintained at design specifications 

(Kc = 2.133), then for a period of time gain is doubled (Kc = 4.266), then returned to 
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design specs. Finally, the gain is decreased by 4 times (Kc = 0.533) then returned back to 

specs. These steps are reported below in Table 4.1 where KI = Kc/τI. 

 

Table 4.1: Controller Gain Change Steps Simulated Process 

DACS 
Sample 

Kc KI 

0 2.133 4.249 

9000 4.266 8.498 

27000 2.133 4.249 

45000 0.533 1.062 

63000 2.133 4.249 
 

The first column gives the sample which begins the specified controller parameter; 

therefore, the gain change increase occurs from DACS sample 9,000 to DACS sample 

26,999. Figure 4.7 shows the real time monitoring of this simulation. 
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Figure 4.7: Simulated Real-time Analysis During Gain Changes 

 

When the gain is increased at DACS sample 9,000, oscillations begin and grow quite 

large compared to the good control signal. Counting begins immediately, and as soon as 

Sluggish Control 

“Good” Control 

Aggressive Control 
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violations last for complete window length the flag is marked retroactively. Figure 4.8 

shows the transition limits for the time period marked “A”. 
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Figure 4.8: Simulated Real-Time Transition Probabilities with Limits (Time Period ‘A’ 

During Gain Changes) 

 

The real-time transition probabilities are nearly zero because the window contains 

exclusively long runs, which is indicative of a process in oscillation. Notice that in this 

case every state has violated low transition probability limits. Oscillations do not always 

cause all transition probabilities to be zero, but they often result in very low transition 

probabilities, especially for the extreme states. 

 

Finally, when the gain is returned to specs at DACS sample 27,000 the system takes 

some time to return to good control noted by transition limits returning to within their 

limits. The last period marked by “B” denotes a region of sluggish control because the 

controller gain has been decreased by four times. The controller gain is decreased at 
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DACS sample 45,000. Figure 4.9 reports the real-time transition probabilities during this 

period. 
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Figure 4.9: Simulated Real-Time Transition Probabilities with Limits 

(Time Period ‘B’ During Gain Changes) 

 

All of negative state real-time probabilities are very low, meaning long runs are occurring 

on that side of the setpoint. The positive states show something very different. The +1 

state reports that all samples reaching a run length of 1 on the positive side will have a 

zero crossing, therefore, there will be no run lengths longer than 1 in the positive 

direction. Figure 4.9 shows no transition probability for States +2, +3 and +4 since no 

run-lengths of greater than +1 exist in the sample window. This means the process is 

experiencing on offset and only periodically crossing the setpoint, a result that would be 

common for a process sluggishly tracking a setpoint change. 
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Finally, when the gain is returned to specs, the controller can now track the setpoint and 

control is returned to normal. 

 

4.1.3 Case 3 – Valve Stiction 

An additional control problem which faces the process industry is valve stiction. The 

health monitor can identify poor control caused by stiction. This is simulated by not 

allowing the process input signal to change unless a difference between the controller 

output and current process input is greater than a specified value. As the process fails to 

track the setpoint, the error signal increases causing the controller output signal to 

increase. When the disparity reaches a certain value the process input is set to the 

controller output. In reality, this jerk reflects a similar response from a sticky valve. The 

valve moves only when enough force is applied, then it jerks to a new position. In the 

simulation, the difference is initially set to 0 (no stiction), then at DACS sample 9,000 the 

difference is set to 2, meaning when the controller output and process input have a 

difference of 2, the process input will be updated to the controller output. At DACS 

sample 27,000 the difference is reset to spec (no stiction). Finally, at DACS sample 

45,000 a different differential of 3 is tested, then returned to spec at DACS sample 

63,000. Figure 4.10 reports the real-time results of monitoring a system experiencing 

valve stiction. 
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Figure 4.10: Simulated Real-Time Analysis During Periods of Stiction 

 

The first section of valve stiction is denoted by the letter “A”. Figure 4.11 reports the 

transition probabilities for this period of stiction which began at DACS sample 9,000. 
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Figure 4.11: Simulated Real-Time Transition Probabilities with Limits 

(Time Period ‘A’ During Stiction) 
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The low probabilities in the extreme states denote long runs, which is seen in Figure 4.10 

as a sawtoothed response. The second section of stiction marked with a “B” is very 

similar to the first, and a plot of real-time transition probabilities is similar to Figure 4.11. 

It would be redundant to show an additional plot for the second period of stiction. The 

real-time health monitor flags both periods of stiction as having poor control. In addition, 

when stiction stops, the health monitor stops flagging the process. 

 

4.1.4 Case 4 – Process Change 

A final problem which plagues even good control is the gradual changes all processes 

experience. Even the best tuned controllers need periodic retuning. To simulate this effect 

and the ability of the health monitor to indicate poor control, process parameters are 

changed during data collection. For the first 60 time units or 36,000 DACS samples, the 

characteristic process parameters remain at their original spec values (Kp = 1.2, τp = 0.5, θ 

= 0.1). Then at DACS sample 36,000, the process gain (Kp) and process time-constant 

(τp) begin to gradually change until by DACS sample 54,000 Kp = 1.81, τp = 0.25 and the 

time delay remains constant at θ = 0.1. These process parameters are maintained through 

the end of the simulation. Figure 4.12 reports the real-time monitoring of this simulation. 
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Figure 4.12: Simulated Real-Time Analysis During Process Change 

 

As the system changes, the process output begins to oscillate slightly. Near the end of the 

simulation, oscillations have increased noticeably and, were the simulation to continue, 

their amplitude would continue to increase. This is because the final process gain and 

time constants caused the previously well tuned PI controller to become too aggressive 

for the changed system. Figure 4.13 reports the transition probabilities for a sample 

window found during the time period marked “A”. 
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Figure 4.13: Simulated Real-Time Transition Probabilities with Limits 

(Time Period ‘A’ During Process Change) 

 

Lower transition limits for States -4, -2, +1, +3 and +4 are all violated. As has already 

been noted, oscillations may cause transition probabilities to be low since long run-

lengths are more common. 

 

4.2 Experimental Testing – Two-Phase Flow 

The two-phase flow experiment described in the experimental method section of Chapter 

3 is controlled by a cascade strategy. The large air flow valve setpoint is set to 10 scfm to 

act as a disturbance. The Primary controller monitors pressure drop between the tube base 

and top and sends setpoints to the water flow, or Secondary, controller. The secondary 

controller is tuned first by the process reaction technique yielding a Kc of 2 %/error and a 

KI of 0.40 seconds-1 where the PI controller algorithm is parallel. Next, the primary 
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controller is tuned with the same process reaction technique where Kc = 4 %/error and a 

KI = 2 seconds-1 also using a parallel controller algorithm. 

 

After tuning, “good” control data for both the Primary and Secondary controllers are 

collected on the CamileTG 2000 process control and acquisition system for 

approximately 1587 seconds (26.5 minutes). Data is collected at a data acquisition and 

control (DAC) frequency of 10 samples per second collecting a total of 15,870 DACS 

samples. Figure 4.14 reports a small sampling of actuating errors from the “good” period 

of data for the Primary controller. 
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Figure 4.14: Good Data Actuating Errors (Primary Controler, Two-Phase Flow) 

 

In the “good” data set collected for the primary controller there is a discrepancy between 

the actuating error mean -0.00033 inches H2O and the mode 1.9291 inches H2O. 

Therefore more samples actually reside above the zero axis. A Markov Chain where there 

are more samples in the positive runs is expected. 

 

50 samples = 5 seconds 
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The health monitor analyzes the data using a specified Type I error (α) of 0.003 and a 

Type II error (β) of 0.003 corresponding to +/-3σ limits. In addition, the change of 

transition probability for the alternate hypothesis (λ) is 0.900. Finally, during step tests it 

is estimated that the settling time should be 20 seconds or 200 samples at the DACS 

frequency of 10 samples per second. Figure 4.15 reports the number of samples per state 

in vertical black bars and the null transition probabilities as a line. 
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Figure 4.15: Markov Chain Model of Two-Phase Flow 

(Primary Controller, SR = 8 and 8 states) 

 

The health monitor determines that a sample ratio of 8 with an 8 state Markov Chain 

fulfills the requirement to have 20% of the data in the extreme states (+/-4) and finds the 

model requiring the shortest time window. The statistical window requires 719 samples 

which takes 575.2 seconds (9.6 minutes) to acquire due to the higher than unity sampling 

ratio. In addition, the settling time adds an additional 25 samples to the window for a 

complete window of 744 samples. In terms of the DACS, the complete window requires 
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5,952 samples due to the sampling ratio of 8. The transition limits obtained through Type 

I error testing are reported in Figure 4.16. 
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Figure 4.16: Transition Limits Surrounding Nominal Transition Probability for 

Two-Phase Flow (Primary Controller, α=β=0.003, λ=0.900, Extreme = 20%) 

 

The limits presented in Figure 4.16 confirm that there exists a higher propensity for 

negative runs to make zero crossings than for positive runs. Pressure drop is the 

controlled variable. Since water and air run co-current in the tube, the higher the desired 

pressure drop, the more water required to fill the tube. More water means more work 

pushing that water up the vertical pipe. Therefore, tracking the setpoint requires more 

work in increasing pressure drop than in decreasing pressure drop. This results in the 

propensity for the process to make fewer visits above the setpoint (negative runs) and 

spend more time below the setpoint. The null transition probabilities, along with their 

limits, demonstrate this fact.  
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In addition to collecting the primary controller response, the secondary controller 

actuating errors are collected and a small sampling of the good data set is reported in 

Figure 4.17. 
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Figure 4.17: Good Data Actuating Errors (Secondary Controller, Two-Phase Flow) 

 

The health monitor now analyzes the secondary controller error signal using a specified 

Type I error (α) of 0.003 and a Type II error (β) of 0.003 corresponding to +/-3σ limits. 

In addition, the change of transition probability for the alternate hypothesis (λ) is 0.900. 

Finally, during step tests it is estimated that the settling time should be 10 seconds or 100 

samples at the DACS frequency of 10 samples per second. Figure 4.18 reports the 

number of samples per state in vertical black bars and the null transition probabilities as a 

line. 

 

50 samples = 5 seconds 
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Figure 4.18: Markov Chain Model of Two-Phase Flow 

(Secondary Controller, SR = 7 and 8 States) 

 

The health monitor determines that a sampling ratio of 7 and a Markov Chain of 8 states 

meet the requirement of less than 20% of the data in the extreme states. This model also 

requires the fewest number of DACS samples. The statistical window found through the 

Type II error test is 669 samples requiring 468.3 seconds (7.8 minutes) to obtain. 

Including the settling time adds an additional 15 samples. In terms of the DACS, the 

complete window requires 4,788 samples due to the sampling ratio of 7. Figure 4.19 

reports the limits found during Type I error testing. 
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Figure 4.19: Transition Limits Surrounding Nominal Transition Probability for 

Two-Phase Flow (Secondary Controller, α=β=0.003, λ=0.900, Extreme = 20%) 

 

The transition limits in the secondary controller model are slightly further from the ‘0’ 

probability bound. This results in fewer samples required in the Type II test to decide 

between the null and alternate hypothesis. 

 

The health monitor is validated through real-time testing. If the monitor flags a process 

which is in “poor” control, and does not flag a process which is still in “good” control, 

the monitor is working as designed. Two cases show the effectiveness of the health 

monitor. 

 

4.2.1 Case 1 – Setpoint Changes 

Due to nonlinearities many processes are tuned only for a particular range of operation; 

the two-phase flow apparatus is such a process. Originally, the primary controller is tuned 
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to operate from 45 to 65 inches H2O pressure drop. Outside of this pressure drop range 

the controller will not control in the same manner. 

 

By step testing the primary controller to the physical operating limits of the secondary 

controller, these nonlinearities may be amplified and picked up by the health monitor. A 

nonlinear process operating outside of the region for which it is tuned is no longer under 

“good” control; therefore, these circumstances should cause the health monitor to flag. 

 

All setpoint changes in this experiment are in increments of 10 inches H2O and held for 

approximately 15 minutes (about 9,000 DACS samples). First the controller is tested 

within the region for which it is tuned. Second a region above the well tuned area is 

tested. This region is found to be the upper physical operating limit of the secondary 

controller. Third, the process is brought back into the well tuned region. Fourth, a region 

below the well tuned area is tested. This region is found to be the lower physical 

operating limit of the secondary controller. Fifth, the primary controller is once again 

brought into a region for which it is tuned. The experimental run ends at 136.2 minutes 

(total samples 81,725).  Table 4.2 reports the setpoint changes made during this 

experiment. 
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Table 4.2: Setpoint Changes Two-Phase Flow Experiment 

Region 
Letter 

Time 
(minutes) 

DACS 
Sample 

Setpoint 
(inches H2O) 

A 0.0 0 50 
- 15.7 9,425 60 
B 30.8 18,506 70 
- 45.9 27,573 60 
- 61.1 36,659 50 
- 76.2 45,714 40 
- 91.3 54,769 30 
C 106.4 63,861 40 
- 121.6 72,962 50 

 

Figure 4.20 reports the outcome of this test in relation to the primary controller. Note that 

the top section of the figure reports the setpoint and process variable, while the lower half 

shows the counting (dotted lines) and flagging (solid lines). 
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Figure 4.20: Two-Phase, Primary Controller Real-time Analysis 

During Setpoint Changes 

 

The first section marked by an “A” is that region for which the primary controller is 

tuned. Figure 4.21 reports the transition probabilities of an example window included in 

period “A” and the transition limits found during the previous model acquisition. 
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Figure 4.21: Two-Phase Flow, Primary Controller Real-Time Transition Probabilities 

with Limits (Time Period ‘A’ During Setpoint Changes) 

 

All transition probabilities are within the limits for its corresponding state, which is 

expected for “good” control. However, when the setpoint is moved upward, the process 

moves into a region for which it is not tuned. Figure 4.22 reports the transition 

probabilities for an example window from the time period marked “B” in Figure 4.20. 
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Figure 4.22: Two-Phase Flow, Primary Controller Real-Time Transition Probabilities 

with Limits (Time Period ‘B’ During Setpoint Changes) 

 

Transition limits during the time period marked “B” are violated for states -4, -2, -1 and 

+4. The increased transition probability for negative states comes back to the original 

reasoning for why the nominal case contained more samples for the positive states than 

did the negative. As the setpoint increases, the secondary water flow valve is less able to 

increase flow rate to meet pressure drop setpoints. This causes for negative run lengths to 

have a high propensity to make zero crossings after only 1, 2 or 3 samples. The health 

monitor begins to notice the “poor” control somewhere around 2,160 seconds; however, 

the setpoint change is made at 1,850 seconds, meaning that 310 seconds pass before any 

transition limits are violated. This occurs because enough “poor” data points must 

populate the window such that remaining “good” data points do not dominate. In this 

case almost half a window length had to include the new “poor” data to draw the 

transition probabilities outside of their limits. 
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After the setpoint is set to the upper physical limits of the secondary controller flow 

valve, the primary controller setpoint is once again brought to a region of “good” control. 

The health monitor is slow to stop flagging because enough new “good” control data 

points must fill the window before transition probabilities return to within their limits 

 

Finally, the setpoint is deceased to the lowest physical constraint of the secondary control 

flow valve. This period of time is marked by a “C”. Figure 4.23 reports the transition 

probabilities for an example window found in this time period. 
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Figure 4.23: Two-Phase Flow, Primary Controller Real-Time Transition Probabilities 

with Limits (Time Period ‘C’ During Setpoint Changes) 

 

The transition limits for states -4, -3, +3 and +4 all violate the lower control limit for their 

corresponding state. In fact, the low transition probabilities denote oscillations as was 

seen during the simulation section in the earlier portion of this chapter. Although difficult 
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to see in Figure 4.20 due to the time scale, if time period “C” is expanded to fill the plot, 

oscillations are visible. 

 

Also of interest is the response of the secondary controller to each of these regions of 

control. Although setpoint changes are made to the primary controller, many of the 

nonlinear effects are caused by operating near the physical limits of the secondary 

controller flow valve. The health monitor is employed to monitor both controllers. Figure 

4.24 reports the response of the secondary controller along with the health monitor 

evaluation of each control region. 
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Figure 4.24: Two-Phase, Secondary Controller Real-time Analysis 

During Setpoint Changes 

 

The letters marked on Figure 4.20 are marked again on Figure 4.24 as a reference. The 

health monitor correctly identifies each region; however seems to struggle identifying 

period “C” completely. From 92.9 minutes (DACS sample 55,720) to 102.9 minutes 

(DACS sample 61,740) during the time period “C” the flagging turned off. The counter is 
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frequently reset (denoted by dotted line) and never reaches the entire length of the 

complete window. This is indicative of a process right on the edge of “poor” control. So 

while the entire region may contain mostly “poor” control, it is possible for the monitor 

to stop flagging for brief periods of time when control is between “good” and “poor”. 

Also, the setpoint changes are being made in the primary controller, which may mean that 

the secondary controller is still controlling the flow rate well enough to not cause 

significant changes to actuating error run-lengths. Whatever the reason may be, run-

lengths were similar enough to the ‘good’ control data set, that the statistical parameters 

provided by the user could reject the null transition probabilities. 

 

The health monitor effectively flags the “poor” control time periods and turns the 

flagging off during time periods of “good” control. 

 

4.2.2 Case 2 – Controller Retuning 

The second case used to demonstrate the effectiveness of the health monitor is to show 

that the monitor can flag a process which has been retuned. The pressure drop setpoint 

remains a constant 50 inches H2O. The disturbance (air flow) is modulated between the 

initial value of 10 scfm and 15 scfm every 2 minutes. During the test the primary 

controller proportional and integral gains are retuned then the secondary controller 

proportional and integral gains are retuned. Each setting in Table 4.3 is held for 

approximately 15 minutes (9,000 DACS samples). 
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Table 4.3: Controller Retuning Two-Phase Flow Experiment 

Region 
Letter 

Time 
(minutes) 

DACS 
Sample 

Primary 
Kc 

Primary 
KI 

Secondary 
Kc 

Secondary 
KI 

A 0.0 0 2.0 0.4 4.0 2.0 
B 15.1 9,070 8.0 1.6 4.0 2.0 
- 30.3 18,195 2.0 0.4 4.0 2.0 
C 45.5 27,289 0.5 0.1 4.0 2.0 
D 60.6 36,379 2.0 0.4 4.0 2.0 
E 75.7 45,455 2.0 0.4 16.0 8.0 
- 90.9 54,535 2.0 0.4 4.0 2.0 
F 106.0 63,621 2.0 0.4 1.0 0.5 
- 121.1 82,378 2.0 0.4 4.0 2.0 

 

Table 4.3 also provides the reader with a list of the letters designating regions of control 

used in Figures 4.25 through 4.34. The health monitor analyzes both the real-time 

primary controller error signal and the real-time secondary error signal. Figure 4.25 

reports the outcome from the primary controller view and Figure 4.26 graphically shows 

the controller retuning pattern. 

 

Flag

Normal

70

60

50

40

30

0 10,000 20,000 30,000 40,000 50,000 60,000 70,000 80,000

DACS Sample

P
V

, S
P

 (i
n

ch
es

 H
2O

)

 

Figure 4.25: Two-Phase, Primary Controller Real-time Analysis 

During Controller Retuning 
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Figure 4.26: Two-Phase, Real-Time Controller Retuning 

(+ = Increased Gain, - = Decreased Gain) 

 

The first time period marked by “A” represents a period of “good” control where primary 

and secondary controller gains are properly tuned. Figure 4.27 reports the transition 

probabilities compared to model limits for an example window found in time period “A”. 
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Figure 4.27: Two-Phase Flow, Primary Controller Real-Time Transition Probabilities 

with Limits (Time Period ‘A’ During Controller Retuning) 

 

All transition probabilities are found within their limits, verifying that control is still as it 

was intended during tuning. At 15.1 minutes (DACS sample 9,070) the controller is made 
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more aggressive by increasing the proportional and integral gains by 400%. In Figure 19 

this is seen as a change from “0” to “+” on the lower half marked “Primary”. Also note 

that the secondary controller gains remain tuned correctly. The time period marked “B” 

in Figure 4.25 represents the effects of the increased gains. The transition probabilities 

compared to limits are reported in Figure 4.28 for a representative window found during 

time period “B”. 
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Figure 4.28: Two-Phase Flow, Primary Controller Real-Time Transition Probabilities 

with Limits (Time Period ‘B’ During Controller Retuning) 

 

Only the transition probability for state +2 remains within the limits for the primary 

controller transition probabilities. The aggressive controller has pushed control into 

oscillations; however, the oscillations have short run lengths and behave more like 

quickly correcting overshooting. Transition probabilities for the states closest to “0” are 

very low denoting that run lengths of +/-1, +/-2 seldom end, but continue to longer run 

lengths to at least 3 and sometimes 4 samples. Recall that the sampling ratio (SR) for the 
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real-time monitor is 8, meaning 1 out of every 8 DACS samples is collected in the real-

time window. Were the sampling ratio unity, the run lengths would be longer and may 

look more similar to the simulated process response to increased gain found in Figure 4.8. 

 

Next, at 30.3 minutes (DACS sample 18,195) gains are returned to proper tuning, which 

results in “good” control as indicated by a cease in flagging. Then at 45.5 minutes 

(DACS sample 27,289), the primary controller is retuned to sluggish control by 

decreasing both gains to 25% that of proper tuning. Figure 4.29 reports the resulting 

primary controller transition probabilities for a representative window during the time 

period marked “C”. 
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Figure 4.29: Two-Phase Flow, Primary Controller Real-Time Transition Probabilities 

with Limits (Time Period ‘C’ During Controller Retuning) 

 

Only states +/- 4 violate transition limits. Since the experiment is performed with 

periodic disturbance steps (large air flow valve), when the controller is sluggish, the 
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controlled variable struggles to track the setpoint 50 inH2O through periodic air 

disturbances. Therefore, longer runs on either side of the chain is expected and with 

longer runs comes a lower propensity to cross the zero axis. 

 

After the gain is once again reset to proper tuning values at 60.6 minutes (DACS sample 

36,379), the secondary controller proportional and integral gains are retuned. During time 

period ‘E’ the secondary controller gain is increased by 400% while the primary 

controller gains remain constant. The real-time health monitor does not flag the primary 

controller process during this period. This simply indicates that in retuning the secondary 

controller, gains may not have been moved enough to cause poor control in the primary 

controller. In addition, it is possible that oscillations induced in the secondary controller 

may not translate to the primary controller if the primary controller reacts more slowly 

than the secondary controller. 

 

Figure 4.30 reports the outcome of the gain changes reported in Table 4.3 from the 

secondary controller viewpoint; also Figure 4.26 is presented again as Figure 4.31. 
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Figure 4.30: Two-Phase, Secondary Controller Real-time Analysis 

During Controller Retuning 
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Figure 4.31: Two-Phase, Real-Time Controller Retuning 

(+ = Increased Gain, - = Decreased Gain) 

 

The health monitor recognized all four periods of “poor” control by raising a flag and, 

turned flagging off during periods of “good” control. Only transition probabilities 

resulting from secondary controller changes are shown here. First, Figure 4.32 reports the 

brief period of “good” control preceding secondary controller retuning which begins at 

60.6 minutes (DACS sample 36,379). The transition probabilities for the period marked 

‘D’ is reported in Figure 4.30. 
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Figure 4.32: Two-Phase Flow, Secondary Controller Real-Time Transition Probabilities 

with Limits (Time Period ‘D’ During Controller Retuning) 

 

All transition limits are within their limits before the secondary controller gains are 

increased. At 75.7 minutes (DACS sample 45,455) the secondary controller is made more 

aggressive by increasing the proportional and integral gains by 400% introducing 

oscillations into the system. Figure 4.33 reports the secondary controller transition 

probabilities for a representative window in time period ‘E’. 
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Figure 4.33: Two-Phase Flow, Secondary Controller Real-Time Transition Probabilities 

with Limits (Time Period ‘E’ During Controller Retuning) 

 

Only two states, State +1 and +4, did not violate transition probabilities during this test. 

No transition probability is reported for States -4 and -3 because all run-lengths end after 

2 negative samples. The response is very similar to the oscillations found when the 

primary controller gains are increased during the time period marked ‘B’ found in Figure 

4.28. This period featured short run-lengths. Also, since the sampling ratio is 7, run-

lengths may actually be between 7 and 14 DACS samples in length. In addition, Figure 

4.33 reports very different transition probabilities between negative and positive states, 

likely due to process nonlinearity. 

 

Beginning at 106 minutes (DACS sample 63,621) the controller gains are decreased by 

400% to produce sluggish control. Figure 4.34 reports the transition limits for a 

representative window during time period “F”. 
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Figure 4.34: Two-Phase Flow, Secondary Controller Real-Time Transition Probabilities 

with Limits (Time Period ‘F’ During Controller Retuning) 

 

Only state +4 violates a limit and two other states -4 and +1 are close to limit violations; 

however, only the violations start the health monitor counter. In the upper half of Figure 

4.30, where actual process response is reported, it is difficult to distinguish sluggish 

control from “good” control, however this is a result of time scale. Figure 4.35 reports 

from 101.7 minutes (DACS sample 61,000) through 110 minutes (DACS sample 66,000). 
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Figure 4.35: Two-Phase, Secondary Controller Real-time Analysis 

During Controller Retuning (Showing Sluggish Control) 

 

The setpoint line is grey and overlays the process response line in black. Prior to minute 

106 (DACS sample 63,621), demarcated by the black vertical line, there is little 

discernable difference between the setpoint and process response. This is because the 

controller is well tuned in this region. After minute 106 (DACS sample 63,621) the 

process tracks the setpoint more sluggishly. This is most obvious immediately following 

disturbances. Also note that there is no flagging during the period reported in Figure 4.35 

because not enough sluggish control data has filled the health monitor window yet. 

 

After 121.1 minute (DACS sample 72,680) the secondary controller is retuned to proper 

values and the performance improves until the health monitor ceases to flag the 

secondary controller, mirroring the health monitor’s response to a return to “good” 

control in the primary controller. 

 

Sluggish response to 
continuous setpoint changes 
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4.3 Effects of Type I and Type II Error Rates 

To determine the Markov Chain model used in real-time monitoring, the user specified a 

Type I error (α) of 0.003 and a Type II error (β) of 0.003 corresponding to +/-3σ limits. 

Also, λ was specified as 0.900, meaning that a 90% change in transition probability 

should be identified. These statistical parameters were set for both the primary and 

secondary controller. The primary controller was found to require a statistical window of 

719 health monitor samples, which takes 9.6 minutes to collect at a sampling ratio of 8. 

The secondary controller was found to require a statistical window of 669 health monitor 

samples, which takes 7.8 minutes to collect at a sampling ratio of 7. These statistical 

windows seem long given that the primary and secondary systems respond to setpoint 

changes in 20 and 10 seconds respectively. This is likely due to the stringent statistical 

parameters provided by the user. Were these parameters to be relaxed, the windows 

would be shortened. This idea is explored with the secondary controller. Then, when a 

suitable Markov Chain model has been found using the more relaxed statistical 

parameters, real-time identification is demonstrated on the controller retuning 

experiment. 

 

Let α = 0.1, β = 0.1 and λ = 0.990 when determining the correct Markov Chain model. 

The health monitor analyzes the 15,870 DACS samples during the period of “good” 

control. Figure 4.36 reports the number of samples per state in vertical black bars and the 

null transition probabilities as a line. 
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Figure 4.36: Markov Chain Model of Two-Phase Flow 

(Secondary Controller, SR = 7 and 8 States) 

 

The health monitor determines that a sampling ratio of 7 and a Markov Chain of 8 states 

exactly the same combination selected for the original statistical parameters. The 

statistical window found through the Type II error test is 220 health monitor samples 

requiring 154 seconds (2.6 minutes) to obtain. Including the settling time adds an 

additional 15 health monitor samples. In terms of the DACS, the complete window 

requires 1,645 DACS samples due to the sampling ratio of 7. The window obtained 

through relaxing the statistical parameters requires 34% as many DACS samples as the 

window obtained through more stringent statistical parameters. Figure 4.37 reports the 

limits found during Type I error testing. 
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Figure 4.37: Transition Limits Surrounding Nominal Transition Probability for 

Two-Phase Flow (Secondary Controller, α=β=0.1, λ=0.990, Extreme = 20%) 

 

Now, the more relaxed statistical window with the limits reported in Figure 4.37 are 

tested against the real-time controller gain chance experiment. Figure 4.30 reported the 

outcome of the gain changes found in Table 4.3 from the secondary controller viewpoint 

when more stringent statistical parameters were used. Figure 4.38 reports the real-time 

monitoring results using the relaxed statistical parameters. 
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Figure 4.38: Two-Phase, Secondary Controller Real-time Analysis 

During Controller Retuning (α=β=0.1, λ=0.990, Extreme = 20%) 

 

The bottom portion of Figure 4.38 reports where the health monitor indentifies “poor” 

control by flagging. Because the window is shorter, the health monitor is much quicker in 

flagging; whereas in Figure 4.30 there appeared some lag between where obvious “poor” 

control began (such as visible oscillations during time periods ‘B’ and ‘E’) and when 

flagging begins. With a larger statistical window, more “poor” control samples are 

required to replace the “good” control samples, resulting in some lag. The smaller 

window simply means less “poor” samples need to populate the statistical window before 

they dominate and push real-time transition limits outside their limits. In addition, all 4 

periods of poor control are indentified. However, during each sluggish period, ‘C’ and 

‘F’, there are periods where the health monitor begins to count violated limits, but the 

counter is reset by very brief periods where the controller finally settles. This is seen as 

sawtoothed dotted lines in the lower portion of Figure 4.38. 
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4.4 Effects of Percent of Visits in Extreme States 

The Markov Chains describing the run-lengths in each of the experiments found in 

Chapter 2 have been determined by ensuring that no more than 20% of all run-lengths 

visit the Extreme States. Owusu noted that a 8 state Markov Chain where all states are 

independent will have 12.5% of all run-lengths visit the +/-4 State. For simplicity, he 

proposed that 10% be selected as the threshold. 

 

Return the Type I and Type II error rates to their more stringent values where α = 0.003, 

β = 0.003 and λ = 0.900 when determining the correct Markov Chain model. The health 

monitor analyzes the 15,870 DACS samples during the period of “good” control, but now 

uses 10% as the threshold for run-length visits to the Extreme States. Figure 4.39 reports 

the number of samples per state in vertical black bars and the null transition probabilities 

as a line. 
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Figure 4.39: Markov Chain Model of Two-Phase Flow 

(Secondary Controller, SR = 4 and 12 States) 
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The health monitor determines that a sampling ratio of 4 and a Markov Chain of 14 states 

contain fewer than 10% of run-length visits in the Extreme States (+/-6). The statistical 

window found through the Type II error test is 1568 health monitor samples requiring 

627.2 seconds (10.5 minutes) to obtain. Including the settling time adds an additional 25 

health monitor samples. In terms of the DACS, the complete window requires 6372 

DACS samples due to the sampling ratio of 4. This window requires 25% more DACS 

samples than when the upper threshold for run-length visits to the Extreme States is 20%. 

Figure 4.40 reports the limits found during Type I error testing. 
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Figure 4.40: Transition Limits Surrounding Nominal Transition Probability for 

Two-Phase Flow (Secondary Controller, α=β=0.003, λ=0.900, Extreme = 10%) 

 

The window and limits are tested on the real-time controller retuning experiment to 

assess health monitor performance when 10% is the Extreme State threshold. Figure 4.41 

reports the health monitor control identification. 
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Figure 4.41: Two-Phase, Secondary Controller Real-time Analysis 

During Controller Retuning (Extreme = 10%) 

 

The health monitor successfully identifies all periods of “poor” control. However, the 

increased window length does mean more ‘poor’ data must populate the window for the 

health monitor to flag ‘poor’ control. On the other hand, more ‘good’ data must also 

populate the window for the flagging to cease, which is evident immediately following 

time period ‘E’. Oscillations stop at DACS sample 54,535, but ‘poor’ control is still 

flagged until DACS sample 61,608 (11.8 minutes later). This compared to Figure 4.30 

when flagging persisted after time period ‘E’ for an additional 7.6 minutes. 

 

Through this demonstration is appears that the most important reason for choosing a 

higher threshold for run-length visits to the Extreme States leads to a shorter statistical 

window, which entails more quick reaction to controller upsets. However, more 

experimental evidence may lead to other conclusions as well.
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CHAPTER V 
 
 

DISCUSSION AND RECOMMENDATIONS 

 

Four future improvements may further improve upon the ideas presented in this work. 

The first improvement deals with the requirement to have the same number of positive 

and negative states. Nonlinear processes may naturally contain more samples on one side 

of the Markov chain than on the other. For instance Figure 4.15 reported the number of 

samples and nominal transition probabilities from the Case 2 “good” period of control for 

the primary controller. Here, the figure is reproduced as Figure 5.1 and only shows the 

number of samples which visited each state.
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Figure 5.1: Markov Chain Model of Two-Phase Flow Without Transition Probabilities 

(Primary Controller, SR = 8 and 8 states) 

 

The obvious comparison are States -4 and +4 where 77 more samples visit State +4 than 

State -4 during the period of “good” control. This means that 60.3% of all samples 

visiting an extreme state visit the +4 State. In addition, 1054 samples visited the positive 

states while 928 samples visited the negative states, meaning that 53.2% of all samples 

are found in the positive states (below the setpoint). 

 

The algorithm used to determine sampling ratio (SR) and number of samples explained in 

Chapter 2 could be altered to only add one state to the side whose extreme state contained 

the most sample visits. If each extreme state is viewed on its own, instead of requiring 

less than 20% of all samples be found in the total extreme states, less than 10% should be 

found in each individual extreme state. For nonlinear systems where more samples visit 
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one side of the Markov chain over the other, this could result in fewer total states. For 

example, if the negative extreme state already contained just 10% of the total sample 

visits, a state is added to the positive side of the Markov chain. If the addition of this one 

state to the positive side decreases the number of sample visits in the positive extreme 

state below 10% of the total samples, the correct model is found. 

 

The second improvement involves the way in which the statistical window used in real-

time monitoring is determined. Currently, as explained in Chapter 2, each half of the 

Markov chain is independently evaluated. A state on each side of the chain is selected as 

the base state from which the expected number of sample visits per state is determined. 

With each half constructed based on separate states (one on each side) the statistical 

window is then found to be the sum of the expected number of samples visiting each 

chain half. For nonlinear systems, this produces a reasonable result since each half will 

appear similar. However, when the nominal transition probabilities for each half are 

substantially different, as is the case for nonlinear systems, the number of samples 

expected on each half can no longer be treated as independent. 

 

Consider the primary controller nominal transition probabilities reported in Figure 4.16. 

These probabilities are reported in Figure 5.2 along with the expected number of samples 

to visit each state, based on the base state in each half.  
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Figure 5.2: Markov Chain Model of Two-Phase Flow With Calculated Samples Per State 

(Primary Controller, SR = 8 and 8 states) 

 

To remind the reader, the statistical window is found to require 719 total health monitor 

samples, found by summing the sample visits for each state in Figure 5.2. The sample 

visits to States +/-1 should differ by no more than 1 sample; however, since each half is 

calculated independently, the number of samples in State +1 will not necessarily equal 

the number of samples in State -1. A method will need to be developed to take the 

interdependence between each Markov Chain half into account when building the 

statistical window. 

 

Third, the required number of sample visits to the extreme states is a condition not well 

grounded. The original work called for no more than 10% of all sample visits to be made 

to the extreme states. This was a “first-take” at a decision value with not substantive 

theoretical basis. This work proposes that 10% of the samples may lead to more states 
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than is sufficient, which leads to excessive window length. Some decision boundary is 

necessary in the current version of the health monitor. The value of 20% is chosen for 

this work to show that a larger value may provide sufficient control performance 

identification. It provides fully adequate health monitor performance with a smaller 

statistical window. Further work is needed to develop a theoretical framework to support 

the inclusion of this condition.  

 

Fourth, practical Statistical Process Control (SPC) employs a Type-I test from the user 

specified α to create SPC limits. The Type-II test performed in this work rigorously 

decides how many samples are required in a window to avoid accepting the null 

hypothesis when it should be rejected. Often, the Type-II test is omitted in favor of 

simply setting a practical window size of perhaps 100 or 200 samples. While this method 

is not fundamentally correct, it has found much success in industry. For this work to be 

practically implemented in an industrial setting, the Type-II test may need to be removed 

in favor of setting a fixed window length.



 136 

CHAPTER VI 
 
 

CONCLUSIONS 

 

6.1 Conclusions 

A control loop health monitor is hereby proposed. This work makes the following five 

conclusions regarding updates to Owusu’s original work: 

1) The revised algorithm to compute the binomial distribution is both more robust 

and more efficient. Overflow run-time errors are now avoided by performing the 

order of calculations based on remaining close to the nominal value of 0.5. In 

addition, only binomial probabilities which would be larger than 1E-16 are 

calculated to further guard against overflow run-time errors. This also leads to 

more efficient calculations since only those calculations significant enough for the 

study are performed. 

2) Modifications in this work shortened the window length while meeting Type I and 

Type II conditions demonstrated by results reported in Chapter 2. According to 

the example provided in this chapter, the improved algorithm estimated that the 

real-time window only be 19% of the DACS samples that the previous Owusu 

algorithm required. This results in quicker diagnoses of controller performance.
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3) The health monitor flags when it should, and does not flag when it should not. 

This is demonstrated by four cases for a simulated process under PI control and 

two cases for a pilot-plant scale two-phase flow experiment under cascade control 

where both the primary and secondary controller are PI controllers. 

4) Relaxing Type-I and Type-II error rate parameters leads to shorter window 

lengths. This increases the probability that a region of control performance may 

be misdiagnosed as is seen during sluggish control in Figure 4.38 where only a 

portion of ‘poor’ control is diagnosed. However, the health monitor did eventually 

flag the sluggish control. Faster controller performance diagnoses may be 

required for some processes. That the health monitor did raise a flag during each 

region of ‘poor’ control while sacrificing some statistical confidence is 

encouraging. 

5) An advantage to allowing more than 10% of run-lengths to visit the extreme states 

in the Markov Chain model during ‘good’ control data analysis is to decrease the 

number of DACS samples required to fill the statistical window. 

 

6.2 Future Work 

It is proposed that five changes might further improve the health monitor: 

1) States may be added one at a time to either side of the Markov chain, as opposed 

to two at a time, one to each side 

2) The statistical window should not be determined as the sum of both halves of the 

Markov chain, but instead, the window length must be determined including 

interactions between the positive and negative states 
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3) One condition remains from the original algorithm which cannot be resolved. The 

second condition requiring no more than a specified percentage (10% in Owusu’s 

work) of all sample visits be made to the extreme states has no theoretical 

underpinnings. This work chose to use 20% to minimize the window size. Future 

work must focus on either eliminating this condition or supporting it. 

4) After limits are violated for an entire window health monitor window, the monitor 

retroactively flags to the sample when transition probabilities limits were first 

violated. The monitor stops flagging at the end of the window when transition 

probabilities return to within their limits. It is proposed that retroactively turning 

flagging off to the beginning of the window may better represent regions of poor 

control. 

5) In practice, Statistical Process Control (SPC) sets a statistical window and 

performs a Type-I test with the user specified α. This method may be more 

practical if β and λ are dropped in favor of this standard practice. 
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APPENDIX 

 

Appendix A – Simulator Code 
 
The code included in Appendix A and B is written in Visual Basic for Applications 
(VBA) used in conjunction with Excel. 
 
 
Option Explicit 
Const Pi = 3.14159265358979 
Dim sDummy As String 
Public Sub sub_PID() 
' Author:           T. Judson Wooters 
' Created Date:     18-DEC-2006 
' Description:      Models a FOPDT process with FOPDT parrallel disturbance 
 
' ______________________________________________________________ 
' ___________________TURN OFF SCREEN UPDATING___________________ 
 
Application.ScreenUpdating = False 
 
' ______________________________________________________________ 
' _______________________DECLARE VARIABLES______________________ 
 
Dim arr_Time() As Double        ' modeled time 
Dim arr_DistU() As Double       ' modeled disturbance input 
Dim arr_Dist() As Double        ' modeled disturbance output 
Dim arr_ProcU() As Double       ' modeled process input 
Dim a_dValveP() As Double 
Dim a_dValvePM() As Double 
Dim arr_Proc() As Double        ' modeled process output 
Dim arr_Meas() As Double        ' measured time 
Dim arr_DistUM() As Double      ' measured disturbance input 
Dim arr_DistM() As Double       ' measured disturbance output 
Dim arr_ProcUM() As Double      ' measured process input 
Dim arr_ProcM() As Double       ' measured process output 
Dim arr_TotalM() As Double      ' measured total output, includeds gaussian noise 
Dim arr_ErrorM() As Double      ' measured error = setpoint - total_output 
Dim arr_DerivM() As Double      ' measured derivative of error 
Dim arr_IntegM() As Double      ' measured integral of error 
Dim arr_SetPnt() As Double 
Dim a_dStic() As Double 
Dim a_dTime(1 To 6) As Double 
Dim a_sTime(1 To 6) As String 
Dim aSP() As Double 
Dim aGain() As Double 
Dim dbl_EndTime As Double       ' ending time for model 
Dim dbl_Step As Double          ' model step size 
Dim dbl_Measure As Double       ' measured step size (time between measurement) 
Dim dbl_Setpoint As Double      ' setpoint 
Dim dbl_InitProc As Double 
Dim dbl_DistMean As Double      ' modeled average disturbance output 
Dim dbl_DistStdev As Double     ' modeled disturbance standard deviation per 
                                ' modeled time step (stdev * stepsize) 
Dim dbl_ProcStdev As Double     ' measured standard deviation (noise) 
Dim dbl_KProc As Double         ' process gain
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Dim dbl_TProc As Double         ' process time 
Dim dbl_ThetaProc As Double     ' process dead time 
Dim dbl_KDist As Double         ' disturbance gain 
Dim dbl_TDist As Double         ' disturbance time 
Dim dbl_ThetaDist As Double     ' disturbance dead time 
Dim dbl_KC As Double            ' controller gain 
Dim dbl_TauI As Double          ' integral time 
Dim dbl_TauD As Double          ' derivative time 
Dim dbl_InitTime As Double      ' initial system clock time 
Dim dbl_FinalTime As Double     ' end system clock time 
Dim dDelStic As Double 
Dim dDate_Day As Double 
Dim dDiff As Double 
Dim dStamp As Double 
Dim lng_ArrSize As Long         ' modeled array size (# of modeled data points) 
Dim lng_MeaSize As Long         ' measured array size (# of measured data points) 
Dim iSPIndex As Integer 
Dim iSPMaxIndex As Integer 
Dim iGainIndex As Integer 
Dim iSticIndex As Integer 
Dim iSticMaxIndex As Integer 
Dim iGainMaxIndex As Integer 
Dim s_DistType As String        ' type of modeled disturbance 
Dim var_SelectedItem As Variant 
Dim s_FileData As String 
Dim s_FileName As String 
Dim sStamp As String 
Dim sStampYMD As String 
Dim fd_FileData As FileDialog 
Dim K As Integer 
Dim N As Long                   ' counter variable 
Dim P As Long                   ' counter variable 
Dim R As Long                   ' counter variable 
Dim S As Long                   ' counter variable 
 
' ______________________________________________________________ 
' _____________________INITIALIZE VARIABLES_____________________ 
 
dbl_InitTime = Timer 
s_DistType = "Random" 
dbl_Step = sht_FOPDT.Cells(1, 6) 
dbl_EndTime = sht_FOPDT.Cells(2, 6) 
dbl_Measure = sht_FOPDT.Cells(3, 6) 
dbl_InitProc = sht_FOPDT.Cells(2, 9) 
dbl_DistMean = sht_FOPDT.Cells(2, 10) 
dbl_DistStdev = sht_FOPDT.Cells(3, 10) 
dbl_ProcStdev = sht_FOPDT.Cells(3, 9) 
dbl_KProc = sht_FOPDT.Cells(2, 2) 
dbl_TProc = sht_FOPDT.Cells(3, 2) 
dbl_ThetaProc = sht_FOPDT.Cells(4, 2) 
dbl_KDist = sht_FOPDT.Cells(2, 3) 
dbl_TDist = sht_FOPDT.Cells(3, 3) 
dbl_ThetaDist = sht_FOPDT.Cells(4, 3) 
dbl_KC = sht_FOPDT.Cells(2, 13) 
dbl_TauI = sht_FOPDT.Cells(3, 13) 
iSPIndex = 1 
iGainIndex = 1 
iSticIndex = 1 
 
For K = 1 To 20000 
'    If sSequence.Cells(2, 1) = "" Then 
'        ReDim Preserve aSP(1 To 2, 1 To 1) 
'        aSP(1, 1) = 0 
'        aSP(2, 1) = dbl_Setpoint 
'        Exit For 
'    End If 
    If sSequence.Cells(K + 1, 1) = "" Then Exit For 
    ReDim Preserve aSP(1 To 2, 1 To K) 
    aSP(1, K) = sSequence.Cells(1 + K, 1) 
    aSP(2, K) = sSequence.Cells(1 + K, 2) 
    iSPMaxIndex = K 
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Next K 
For K = 1 To 20000 
    If sSequence.Cells(2, 4) = "" Then 
        ReDim Preserve aGain(1 To 2, 1 To 1) 
        aSP(1, 1) = 0 
        aSP(2, 1) = dbl_KC 
        Exit For 
    End If 
    If sSequence.Cells(K + 1, 4) = "" Then Exit For 
    ReDim Preserve aGain(1 To 2, 1 To K) 
    aGain(1, K) = sSequence.Cells(1 + K, 4) 
    aGain(2, K) = sSequence.Cells(1 + K, 5) 
    iGainMaxIndex = K 
Next K 
For K = 1 To 20000 
    If sSequence.Cells(2, 8) = "" Then 
        ReDim Preserve a_dStic(1 To 2, 1 To 1) 
        aSP(1, 1) = 0 
        aSP(2, 1) = 0 
        Exit For 
    End If 
    If sSequence.Cells(K + 1, 8) = "" Then Exit For 
    ReDim Preserve a_dStic(1 To 2, 1 To K) 
    a_dStic(1, K) = sSequence.Cells(1 + K, 8) 
    a_dStic(2, K) = sSequence.Cells(1 + K, 9) 
    iSticMaxIndex = K 
Next K 
 
' ______________________________________________________________ 
' ______________________CALCULATE CONSTANTS_____________________ 
 
lng_ArrSize = fun_Round(dbl_EndTime / dbl_Step, 1) 
 
If dbl_Measure < dbl_Step Then 
    dbl_Measure = dbl_Step 
    sht_FOPDT.Cells(3, 6) = dbl_Measure 
    MsgBox ("Measurement frequency set to stepsize") 
End If 
 
lng_MeaSize = fun_Round(dbl_EndTime / dbl_Measure, 1) 
 
'_______________________________________________________________ 
'_______________________REQUEST FILENAME________________________ 
Set fd_FileData = Application.FileDialog(msoFileDialogSaveAs) 
 
With fd_FileData 
    .AllowMultiSelect = False 
    If .Show = -1 Then 
        For Each var_SelectedItem In .SelectedItems 
            s_FileData = var_SelectedItem 
        Next 
    Else 
        Exit Sub 
    End If 
End With 
 
' ______________________________________________________________ 
' _______________________RESIZE ARRAYS__________________________ 
 
ReDim arr_Time(0 To lng_ArrSize) 
ReDim arr_DistU(0 To lng_ArrSize) 
ReDim arr_Dist(0 To lng_ArrSize) 
ReDim arr_ProcU(0 To lng_ArrSize) 
ReDim arr_Proc(0 To lng_ArrSize) 
ReDim arr_Meas(0 To lng_MeaSize) 
ReDim arr_DistUM(0 To lng_MeaSize) 
ReDim arr_DistM(0 To lng_MeaSize) 
ReDim arr_ProcUM(0 To lng_MeaSize) 
ReDim a_dValveP(0 To lng_ArrSize) 
ReDim arr_ProcM(0 To lng_MeaSize) 
ReDim arr_TotalM(0 To lng_MeaSize) 



 144 

ReDim arr_ErrorM(0 To lng_MeaSize) 
ReDim arr_DerivM(0 To lng_MeaSize) 
ReDim arr_IntegM(0 To lng_MeaSize) 
ReDim arr_SetPnt(0 To lng_MeaSize) 
ReDim a_dValvePM(0 To lng_MeaSize) 
 
' ______________________________________________________________ 
' ____________________CREATE TIME ARRAYS________________________ 
 
For N = 0 To lng_ArrSize 
    arr_Time(N) = N * dbl_Step 
Next 
 
For N = 0 To lng_MeaSize 
    arr_Meas(N) = N * dbl_Measure 
Next 
 
' ______________________________________________________________ 
' ___________________MODEL / MEASUREMENT ARRAYS_________________ 
' Steps: 
'   1) Determine disturbance input/output for current step 
'   2) Determine process input/output for current step 
'   3) If it is time to measure, (a) then the total output is measured 
'      assuming guassian noise, (b) the error from setpoint, 
'      the error integral and error derivative are determined, 
'      (c) finally the process input is found for the next modeled step 
'      based on the controller output 
'   4) If it is not time to measure, the process input for the next 
'      modeled step is considered constant and the loop returns to 
'      step 1 
 
For N = 0 To lng_ArrSize 
 
' --- STEP 1 --- 
    Call subDist(arr_Time(), arr_DistU(), arr_Dist(), _ 
                        dbl_Step, dbl_ThetaDist, dbl_DistMean, _ 
                        dbl_DistStdev, dbl_KDist, dbl_TDist, _ 
                        s_DistType, N, R) 
' --- STEP 2 --- 
    Call subProc(arr_Time(), a_dValveP(), arr_ProcU(), arr_Proc(), _ 
                        dbl_Step, dbl_ThetaProc, dbl_DistMean, _ 
                        dbl_ProcStdev, dbl_KProc, dbl_TProc, _ 
                        dbl_InitProc, N, S) 
' --- STEP 3 --- 
    If arr_Time(N) >= arr_Meas(P) Then 
     
        If iSPIndex <= iSPMaxIndex Then 
            If arr_Time(N) >= aSP(1, iSPIndex) Then 
                dbl_Setpoint = aSP(2, iSPIndex) 
                iSPIndex = iSPIndex + 1 
            End If 
        End If 
        If iGainIndex <= iGainMaxIndex Then 
            If arr_Time(N) >= aGain(1, iGainIndex) Then 
                dbl_KC = aGain(2, iGainIndex) 
                iGainIndex = iGainIndex + 1 
            End If 
        End If 
        If iSticIndex <= iSticMaxIndex Then 
            If arr_Time(N) >= a_dStic(1, iSticIndex) Then 
                dDelStic = a_dStic(2, iSticIndex) 
                iSticIndex = iSticIndex + 1 
            End If 
        End If 
     
        arr_SetPnt(P) = dbl_Setpoint 
' ---- (a) ----- 
        arr_DistUM(P) = arr_DistU(N) 
        arr_DistM(P) = arr_Dist(N) 
        arr_ProcUM(P) = arr_ProcU(N) 
        arr_ProcM(P) = arr_Proc(N) 
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        a_dValvePM(P) = a_dValveP(N) 
        arr_TotalM(P) = (arr_ProcM(P) + arr_DistM(P)) + _ 
                        fun_Gauss(0, dbl_ProcStdev) 
' ---- (b) ----- 
        arr_ErrorM(P) = dbl_Setpoint - arr_TotalM(P) 
        Call subInteg(arr_IntegM(), dbl_Measure, arr_ErrorM(), P) 
' ---- (c) ----- 
        If arr_Time(N) > 2 Then 
            sDummy = "HERE" 
        End If 
        Call subProcU(dbl_TauI, arr_ProcU(), dbl_InitProc, _ 
                        dbl_DistMean, dbl_KProc, dbl_KC, _ 
                        arr_ErrorM(), arr_IntegM(), lng_MeaSize, N, P) 
        If N < lng_ArrSize Then 
            If Abs(arr_ProcU(N) - a_dValveP(N)) < dDelStic Then 
                a_dValveP(N + 1) = a_dValveP(N) 
            Else 
                a_dValveP(N + 1) = arr_ProcU(N + 1) 
            End If 
        End If 
        P = P + 1 
' --- STEP 4 --- 
    Else 
        If N < lng_ArrSize Then 
            arr_ProcU(N + 1) = arr_ProcU(N) 
            a_dValveP(N + 1) = a_dValveP(N) 
        End If 
    End If 
Next 
 
' ______________________________________________________________ 
' ________________________FIX FINAL STEP________________________ 
' Description: 
'   The final time step does not seem to always map to the measurement 
'   array so it is specifically done so in this if section 
 
If arr_TotalM(lng_MeaSize) = 0 And dbl_Setpoint <> 0 And _ 
                                arr_ErrorM(lng_MeaSize) = 0 Then 
    arr_DistUM(lng_MeaSize) = arr_DistU(lng_ArrSize) 
    arr_DistM(lng_MeaSize) = arr_Dist(lng_ArrSize) 
    arr_ProcUM(lng_MeaSize) = arr_ProcU(lng_ArrSize) 
    arr_ProcM(lng_MeaSize) = arr_Proc(lng_ArrSize) 
    arr_TotalM(lng_MeaSize) = fun_Gauss((arr_ProcM(lng_MeaSize) + _ 
                                arr_DistM(lng_MeaSize)), dbl_ProcStdev) 
    arr_ErrorM(lng_MeaSize) = dbl_Setpoint - arr_TotalM(lng_MeaSize) 
    Call subInteg(arr_IntegM(), dbl_Measure, arr_ErrorM(), lng_MeaSize) 
    'Call subDeriv(arr_DerivM(), dbl_Measure, arr_ErrorM(), lng_MeaSize) 
End If 
 
' ______________________________________________________________ 
' _________________ DETERMINE STARTING TIMESTAMP _______________ 
 
dDate_Day = Now() 
'a_dTime(1) = Year(dDate_Day) 
a_dTime(2) = Month(dDate_Day) 
a_dTime(3) = Day(dDate_Day) 
dDiff = fRoundDown(dDate_Day) 
a_dTime(4) = (dDate_Day - dDiff) * 24 
dDiff = fRoundDown(a_dTime(4)) 
a_dTime(5) = (a_dTime(4) - dDiff) * 60 
dDiff = fRoundDown(a_dTime(5)) 
a_dTime(6) = (a_dTime(5) - dDiff) * 60 
a_dTime(4) = fRoundDown(a_dTime(4)) 
a_dTime(5) = fRoundDown(a_dTime(5)) 
a_dTime(6) = fRoundDown(a_dTime(6)) 
 
'a_sTime(1) = a_dTime(1) 
'sStampYMD = a_sTime(1) 
sStampYMD = "" 
For K = 2 To 3 
    If a_dTime(K) < 10 Then 
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        a_sTime(K) = "0" & a_dTime(K) 
    Else 
        a_sTime(K) = a_dTime(K) 
    End If 
    sStampYMD = sStampYMD & a_sTime(K) 
Next K 
 
' ______________________________________________________________ 
' ___________________________OUTPUT_____________________________ 
 
Open s_FileData For Output Access Write Lock Write As #1 
For N = 0 To lng_MeaSize 
     
    If sht_FOPDT.Cells(7, 3).Value = "Actuate Err" Then 
        Print #1, arr_Meas(N) * 60, arr_ErrorM(N) 
    Else 
        Print #1, arr_Meas(N) * 60, arr_TotalM(N), arr_SetPnt(N) 
    End If 
    If dbl_EndTime <= 30 Then 
        sht_FOPDT.Cells(N + 11, 1) = arr_Meas(N) 
        sht_FOPDT.Cells(N + 11, 2) = arr_ErrorM(N) 
        sht_FOPDT.Cells(N + 11, 3) = arr_ProcUM(N) 
        sht_FOPDT.Cells(N + 11, 4) = a_dValvePM(N) 
        sht_FOPDT.Cells(N + 11, 5) = arr_TotalM(N) 
        sht_FOPDT.Cells(N + 11, 6) = arr_ProcM(N) 
        sht_FOPDT.Cells(N + 11, 7) = arr_SetPnt(N) 
        'sht_FOPDT.Cells(N + 11, 8) = arr_IntegM(N) 
        sht_FOPDT.Cells(N + 11, 8) = arr_DistM(N) 
    End If 
Next 
Close #1 
 
sht_FOPDT.Cells(4, 6) = lng_MeaSize + 1            ' record # measured data points 
 
dbl_FinalTime = Timer 
sht_FOPDT.Cells(7, 1) = dbl_FinalTime - dbl_InitTime ' record total execution time (s) 
 
' ______________________________________________________________ 
' ___________________TURN ON SCREEN UPDATING___________________ 
 
Application.ScreenUpdating = True 
 
End Sub 
Private Function fun_Round(dbl_Value As Double, dbl_Sig As Double) As Double 
' Description:  Takes two inputs (any number and the desired output 
' significant digits) and rounds up 
 
fun_Round = Application.WorksheetFunction.Ceiling(dbl_Value, dbl_Sig) 
 
End Function 
Private Function fun_Gauss(dbl_Mean As Double, dbl_StDev As Double) As Double 
' Description:  Takes two inputs (mean and standard deviation) and returns a 
'               random normally distributed value 
 
Dim dbl_U1 As Double        ' first random number 
Dim dbl_U2 As Double        ' second random number 
Dim dbl_R As Double         ' intermediate cosine side 
Dim dbl_Theta As Double     ' intermediate natural log side 
Dim dbl_Z As Double         ' random gaussian coefficient 
 
dbl_U1 = Rnd() 
dbl_U2 = Rnd() 
If dbl_U1 = 0 Then dbl_U1 = Rnd() 
If dbl_U2 = 0 Then dbl_U2 = Rnd() 
dbl_R = Math.Cos(2# * Pi * dbl_U1) 
dbl_Theta = (-2# * Math.Log(dbl_U2)) ^ 1 / 2 
dbl_Z = dbl_R * dbl_Theta 
 
fun_Gauss = dbl_Mean + dbl_Z * dbl_StDev 
 
End Function 
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Private Function fun_Integ(dbl_Step As Double, dbl_X1 As Double, _ 
                            dbl_X2 As Double) As Double 
' Description:  Takes three inputs (stepsize, value 1 and value 2) 
' and returns the integral using the trapezoid rule 
 
fun_Integ = (dbl_Step * (dbl_X2 + dbl_X1)) / 2 
 
End Function 
Private Function fun_Back1(dbl_Step As Double, dbl_X0 As Double, _ 
                        dbl_X1 As Double) As Double 
' Description:  Takes three inputs (stepsize, value 1 and value 2) 
' and returns the derivative using 1st order error backwards finite difference 
 
fun_Back1 = (dbl_X1 - dbl_X0) / (2 * dbl_Step) 
 
End Function 
Private Function fun_Back2(dbl_Step As Double, dbl_X0 As Double, _ 
                                dbl_X1 As Double, dbl_X2 As Double) As Double 
' Description:  Takes four inputs (stepsize, value 1, value 2 and value 3) 
' and returns the derivative using 2nd order error backwards finite difference 
 
fun_Back2 = (3 * dbl_X2 - 4 * dbl_X1 + dbl_X0) / (2 * dbl_Step) 
 
End Function 
Private Function fun_RK4(dbl_Input As Double, dbl_OutPrev As Double, _ 
                    dbl_Gain As Double, dbl_Step As Double, dbl_Tau As Double) _ 
                    As Double 
' Description:  Takes five inputs (input, previous output, gain, stepsize, 
' time constant) and returns the next step based on runga kuta 4th order 
 
Dim dbl_EulSlope As Double          'euler slope from initial point 
Dim dbl_HalfEul As Double           'half of the next step based on initial 
                                    'step euler slope 
Dim dbl_HalfEulSlp As Double        'euler slope from half step 
Dim dbl_HalfRK As Double            'half of the next step from first point 
                                    'based on half step euler slope 
Dim dbl_HalfRKSlp As Double         'slope at the next step based on halfrunga step 
Dim dbl_FullRK As Double            'full step based on the halfrunga slope 
Dim dbl_FullRKSlp As Double         'slope at the full step 
Dim dbl_RK4Slp As Double            '4th order runga kuta full step by weighing 
                                    'each slope 
 
dbl_EulSlope = (1 / dbl_Tau) * (dbl_Gain * dbl_Input - dbl_OutPrev) 
dbl_HalfEul = dbl_OutPrev + ((dbl_EulSlope * dbl_Step) / 2) 
dbl_HalfEulSlp = (1 / dbl_Tau) * (dbl_Gain * dbl_Input - dbl_HalfEul) 
dbl_HalfRK = dbl_OutPrev + ((dbl_HalfEulSlp * dbl_Step) / 2) 
dbl_HalfRKSlp = (1 / dbl_Tau) * (dbl_Gain * dbl_Input - dbl_HalfRK) 
dbl_FullRK = dbl_OutPrev + (dbl_HalfRKSlp * dbl_Step) 
dbl_FullRKSlp = (1 / dbl_Tau) * (dbl_Gain * dbl_Input - dbl_FullRK) 
 
dbl_RK4Slp = (((1 / 6) * dbl_EulSlope) + ((1 / 3) * dbl_HalfEulSlp) + _ 
                ((1 / 3) * dbl_HalfRKSlp) + ((1 / 6) * dbl_FullRKSlp)) 
fun_RK4 = dbl_OutPrev + dbl_RK4Slp * dbl_Step 
 
End Function 
Private Sub subDist(arr_Time() As Double, arr_DistU() As Double, _ 
                        arr_Dist() As Double, dbl_Step As Double, _ 
                        dbl_ThetaDist As Double, dbl_DistMean As Double, _ 
                        dbl_DistStdev As Double, dbl_KDist As Double, _ 
                        dbl_TDist As Double, s_DistType As String, N As Long, _ 
                        R As Long) 
' Description:  Takes twelve inputs and changes both the disturbance 
' input and output 
 
Select Case s_DistType 
' ______________________________________________________________ 
' ____________________RANDOM DISTURBANCE INPUT__________________ 
' Description: 
'   Generates a gaussian random walk input that is then transfered to the output 
Case "Random" 
    If arr_Time(N) <= dbl_ThetaDist Or N = 0 Then 



 148 

        arr_DistU(N) = (dbl_DistMean / dbl_KDist) + fun_Gauss(0, dbl_DistStdev) _ 
        * dbl_Step 
        arr_Dist(N) = dbl_DistMean 
        If arr_Dist(N) < 0 Then arr_Dist(N) = 0         ' output is confined 
                                                        ' between 0 and 100 
        If arr_Dist(N) > 100 Then arr_Dist(N) = 100 
    Else 
        arr_DistU(N) = arr_DistU(N - 1) + fun_Gauss(0, dbl_DistStdev) * dbl_Step 
        arr_Dist(N) = fun_RK4(arr_DistU(R), arr_Dist(N - 1), dbl_KDist, _ 
                        dbl_Step, dbl_TDist) 
        If arr_Dist(N) < 0 Then arr_Dist(N) = 0           'output is confined 
                                                          'between 0 and 100 
        If arr_Dist(N) > 100 Then arr_Dist(N) = 100 
        R = R + 1 
    End If 
' ______________________________________________________________ 
' ____________________PULSE DISTURBANCE INPUT___________________ 
' Description: 
'   Generates a pulse 3* as large as the steady state disturbance input after 
'   1 second 
Case "Pulse" 
    If arr_Time(N) <= dbl_ThetaDist Or N = 0 Then 
        arr_DistU(N) = (dbl_DistMean / dbl_KDist) 
        If arr_DistU(N) < 0 Then arr_DistU(N) = 0           ' input / output is 
                                                            ' confined between 0 and 100 
        If arr_DistU(N) > 100 Then arr_DistU(N) = 100 
        arr_Dist(N) = dbl_DistMean 
    ElseIf arr_Time(N) > (dbl_ThetaDist + 1) And arr_Time(N) < _ 
    (dbl_ThetaDist + 1 + 0.01000001) Then 
        arr_DistU(N) = 3 * (dbl_DistMean / dbl_KDist) 
        If arr_DistU(N) < 0 Then arr_DistU(N) = 0           ' input / output is confined 
                                                            ' between 0 and 100 
        If arr_DistU(N) > 100 Then arr_DistU(N) = 100 
        arr_Dist(N) = fun_RK4(arr_DistU(R), arr_Dist(N - 1), dbl_KDist, _ 
                        dbl_Step, dbl_TDist) 
        R = R + 1 
    Else 
        arr_DistU(N) = (dbl_DistMean / dbl_KDist) 
        If arr_DistU(N) < 0 Then arr_DistU(N) = 0           ' input / output is confined 
                                                            ' between 0 and 100 
        If arr_DistU(N) > 100 Then arr_DistU(N) = 100 
        arr_Dist(N) = fun_RK4(arr_DistU(R), arr_Dist(N - 1), dbl_KDist, _ 
                        dbl_Step, dbl_TDist) 
        R = R + 1 
    End If 
' ______________________________________________________________ 
' ____________________PULSE DISTURBANCE INPUT___________________ 
' Description: 
'   Generates a step input of 1.5* the initial disturbance input 
Case "Step" 
    If arr_Time(N) <= dbl_ThetaDist Or N = 0 Then 
        arr_DistU(N) = (dbl_DistMean / dbl_KDist) 
        If arr_DistU(N) < 0 Then arr_DistU(N) = 0           ' input / output is confined 
                                                            ' between 0 and 100 
        If arr_DistU(N) > 100 Then arr_DistU(N) = 100 
        arr_Dist(N) = dbl_DistMean 
    ElseIf arr_Time(N) > dbl_ThetaDist And arr_Time(N) <= dbl_ThetaDist + 1 Then 
        arr_DistU(N) = (dbl_DistMean / dbl_KDist) 
        If arr_DistU(N) < 0 Then arr_DistU(N) = 0           ' input / output is confined 
                                                            ' between 0 and 100 
        If arr_DistU(N) > 100 Then arr_DistU(N) = 100 
        arr_Dist(N) = fun_RK4(arr_DistU(R), arr_Dist(N - 1), dbl_KDist, _ 
                        dbl_Step, dbl_TDist) 
        R = R + 1 
    ElseIf arr_Time(N) > dbl_ThetaDist + 1 Then 
        arr_DistU(N) = 1.5 * (dbl_DistMean / dbl_KDist) 
        If arr_DistU(N) < 0 Then arr_DistU(N) = 0           ' input / output is confined 
                                                            ' between 0 and 100 
        If arr_DistU(N) > 100 Then arr_DistU(N) = 100 
        arr_Dist(N) = fun_RK4(arr_DistU(R), arr_Dist(N - 1), dbl_KDist, _ 
                        dbl_Step, dbl_TDist) 
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        R = R + 1 
    End If 
Case Else 
End Select 
 
End Sub 
Private Sub subProc(arr_Time() As Double, a_dValveP() As Double, arr_ProcU() As Double, _ 
                    arr_Proc() As Double, dbl_Step As Double, dbl_ThetaProc As Double, _ 
                    dbl_DistMean As Double, dbl_ProcStdev As Double, dbl_KProc As Double, 
_ 
                    dbl_TProc As Double, dbl_InitProc As Double, N As Long, S As Long) 
' Description:  Takes twelve inputs and changes both the process input and output 
 
If arr_Time(N) <= dbl_ThetaProc Or N = 0 Then 
    If N = 0 Then 
        arr_ProcU(N) = dbl_InitProc / dbl_KProc 
        a_dValveP(N) = arr_ProcU(N) 
    End If 
    If a_dValveP(N) < 0 Then a_dValveP(N) = 0           ' input / output is confined 
                                                        ' between 0 and 100 
    If a_dValveP(N) > 100 Then a_dValveP(N) = 100 
    arr_Proc(N) = dbl_InitProc 
Else 
    If a_dValveP(N) < 0 Then a_dValveP(N) = 0           ' input / output is confined 
                                                        ' between 0 and 100 
    If a_dValveP(N) > 100 Then a_dValveP(N) = 100 
    arr_Proc(N) = fun_RK4(a_dValveP(S), arr_Proc(N - 1), dbl_KProc, _ 
                        dbl_Step, dbl_TProc) 
    S = S + 1 
End If 
 
End Sub 
Private Sub subInteg(arr_Integ() As Double, dbl_Step As Double, _ 
                    arr_Error() As Double, N As Long) 
' Description:  Takes four inputs (integral array, stepsize, error array 
' and N counter) and returns the current integrated error 
 
If N = 0 Then 
    arr_Integ(N) = 0 
Else 
    arr_Integ(N) = arr_Integ(N - 1) + fun_Integ(dbl_Step, _ 
                                arr_Error(N - 1), arr_Error(N)) 
End If 
 
End Sub 
Private Sub subProcU(dbl_TauI As Double, arr_ProcU() As Double, dbl_InitProc As Double, _ 
                        dbl_DistMean As Double, dbl_KProc As Double, dbl_KC As Double, _ 
                        arr_Error() As Double, arr_Integ() As Double, _ 
                        lng_ArrSize As Long, N As Long, P As Long) 
' Description:  Takes eleven inputs and returns the next controller output (process 
input) 
 
If P < lng_ArrSize Then 
    If dbl_TauI = 0 Then 
        arr_ProcU(N + 1) = (dbl_InitProc / dbl_KProc) + dbl_KC * arr_Error(P) 
    Else 
        arr_ProcU(N + 1) = (dbl_InitProc / dbl_KProc) + dbl_KC _ 
                                * (arr_Error(P) + (dbl_KC / dbl_TauI) * (arr_Integ(P))) 
    End If 
End If 
 
End Sub 
Function fRoundDown(dValue As Double) As Double 
' Description: Takes a double and returns the value rounded down 
 
Dim myDec As Long 
  
myDec = InStr(1, CStr(dValue), ".", vbTextCompare) 
If myDec > 0 Then 
    fRoundDown = CDbl(Left(CStr(dValue), myDec)) 
Else 
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    fRoundDown = dValue 
End If 
 
End Function 
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Appendix B – Health Monitor Code 
 
The code included in Appendix A and B is written in Visual Basic for Applications 
(VBA) used in conjunction with Excel. 
 
---- Markov Chain and Window Length Code ---- 
 
Const Pi = 3.14159265358979     ' Fixes constant for PI 
Const dEpsilon = 1E-16          ' how small is zero? 
Dim sDummy As String            ' Dummy variable used to stop a loop 
Sub History() 
' Author:           T. Judson Wooters 
' Created Date:     3-JAN-2008 
' Description:      Main program 
 
Dim a_dTotTime() As Double      ' time corresponding to each actuating error data point 
Dim a_dTotErr() As Double       ' each actuating error data point 
Dim a_dTot() As Double          ' used in Charact sub, holds transition probabilities 
Dim a_dStats() As Double        ' holds transition probability limits in samples 
Dim a_lngWindow() As Long       ' holds number of samples expected to visit states 
Dim a_dTranLimits() As Double   ' holds transition probability limits as a fraction 
Dim a_dSP() As Double           ' each setpoint data point 
Dim a_dCV() As Double           ' each controlled variable data point 
Dim dInitTime As Double         ' initial system clock time 
Dim dFinalTime As Double        ' end system clock time 
Dim dExtremeMax As Double       ' allowed maximum sample fraction in extreme states 
Dim dExtreme As Double          ' sample fraction in extreme states 
Dim dAlphaT As Double           ' allowed maximum alpha test 
Dim dBetaT As Double            ' allowed maximum beta test 
Dim dLamda As Double            ' allowed maximum lambda change 
Dim dMeasFreq As Double         ' optional measurement frequency in seconds 
Dim lngSettle As Long           ' process settling time 
Dim dSampleFreq As Double       ' sampling frequency in seconds 
Dim dStatWinTime As Double      ' statistical window in seconds 
Dim dTotWinTime As Double       ' total window = statistical window + settling time 
                                ' (seconds) 
Dim dAlphaK As Double           ' alpha for each state 
Dim lngDataPts As Long          ' number of samples based on sampling ratio 
Dim lngArrSize As Long          ' total number of samples 
Dim lngXL As Long               ' sample number lower limit 
Dim lngXH As Long               ' sample number high limit 
Dim lngMinPoints As Long        ' minimum samples required for a given state 
Dim lngStatWin As Long          ' statistical window in samples 
Dim lngSampleSettle As Long     ' samples in settling time 
Dim lngTotWin As Long           ' total window = statistical window + settling time 
                                ' (samples) 
Dim lngN As Long                ' temporary storage for min number of samples 
Dim lngModelSamples As Long     ' number of samples in final model 
Dim iMaxStates As Integer       ' maximum number of states 
Dim iSR As Integer              ' sampling ratio 
Dim iInitState As Integer       ' initial number of states 
Dim iMaxSR As Integer           ' maximum sampling ratio 
Dim dOptTime As Double          ' time required by optimum states / sampling ratio 
Dim lngOptSample As Long        ' samples requred by optimum states / sampling ratio 
Dim iOptStates As Integer       ' optimum number of states 
Dim iOptSR As Long              ' optimum sampling ratio 
Dim iExitErr As Integer         ' exit error number (0 = ok, -1 = error) 
Dim vSelectedItem As Variant    ' holds value of selection for file name 
Dim sFileData As String         ' complete file name with path 
Dim sFileTypeName As String     ' file type found in header 
Dim sFileType As String         ' file type 
Dim sErrFileData As String      ' temporary storage for file name with path 
Dim sErrFileDir As String       ' error file path 
Dim sReason As String           ' explains model output 
Dim fdFileData As FileDialog    ' file dialog object for user input 
Dim bModCand As Boolean         ' model candidate 
Dim bNotZero As Boolean         ' if a state has 0 visits 
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Dim bDebug As Boolean           ' if model output should be viewed 
Dim dCompleteP As Double        ' percent complete in finding model 
Dim N As Long                   ' counting variable 
Dim P As Long                   ' counting variable 
Dim R As Integer                ' counting variable 
 
' ==== INITIALIZE VARIABLES ==== 
dExtreme = 1 
dAlphaT = shtModel.Cells(1, 3).Value 
dBetaT = shtModel.Cells(2, 3).Value 
dLamda = shtModel.Cells(3, 3).Value 
dExtremeMax = shtModel.Cells(7, 3).Value 
iInitState = shtModel.Cells(8, 3).Value 
iSR = 1 
lngSettle = shtModel.Cells(4, 3).Value 
iMaxStates = shtModel.Cells(9, 3).Value 
bDebug = shtModel.Cells(10, 3).Value 
 
' ==== REQUEST ERROR FILE ==== 
sFileType = ".aer" 
sFileTypeName = "Actuating Error" 
If RequestFile(sErrFileData, sErrFileDir, sFileType, sFileTypeName) = -1 Then Exit Sub 
sFileData = sErrFileData 
 
 
dInitTime = Timer           ' Initialize the timer 
 
' ==== READ ERROR FILE ==== 
Open sFileData For Input As #1 
Do While Not EOF(1) 
    lngArrSize = lngArrSize + 1 
    ReDim Preserve a_dTotErr(1 To lngArrSize) 
    ReDim Preserve a_dTotTime(1 To lngArrSize) 
    ReDim Preserve a_dSP(1 To lngArrSize) 
    ReDim Preserve a_dCV(1 To lngArrSize) 
    Input #1, a_dTotTime(lngArrSize), a_dCV(lngArrSize), a_dSP(lngArrSize) 
    a_dTotErr(lngArrSize) = a_dSP(lngArrSize) - a_dCV(lngArrSize) 
Loop 
Close #1 
 
' ==== REQUEST NAME FOR MODEL OUTPUT ==== 
Set fdFileData = Application.FileDialog(msoFileDialogSaveAs) 
 
With fdFileData 
    .AllowMultiSelect = False 
    If .Show = -1 Then 
        For Each vSelectedItem In .SelectedItems 
            sFileData = vSelectedItem 
        Next 
    Else 
        Exit Sub 
    End If 
End With 
 
' ==== DETERMINE MAXIMUM SAMPLING RATIO ==== 
iMaxSR = fOptMax(lngArrSize, False, iSR, iInitState, lngArrSize, dExtreme, _ 
            a_dTotErr(), dExtremeMax) 
 
' ==== DETERMINE MAXIMUM STATES ==== 
iMaxStates = fOptMax(CLng(iMaxStates), True, iSR, iInitState, lngArrSize, dExtreme, _ 
            a_dTotErr(), dExtremeMax) 
             
dCompleteP = 100 / ((iMaxSR * (iMaxStates - iInitState)) + 2)     ' Compute % complete 
 
' ==== SETUP EXCEL WORKSHEETS FOR OUTPUT ==== 
shtModel.Activate 
shtModel.Cells(12, 3).ClearContents 
shtModel.Cells(13, 3).ClearContents 
shtModel.Cells(15, 3).ClearContents 
shtModel.Cells(16, 3).ClearContents 
shtModel.Cells(18, 3).ClearContents 
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shtModel.Cells(19, 3).ClearContents 
shtModel.Cells(21, 3).ClearContents 
shtModel.Cells(22, 3).ClearContents 
If bDebug Then 
    shtData.Activate 
    shtData.Range(Cells(1, 2), Cells(5, 200)).ClearContents 
    shtData.Range(Cells(8, 2), Cells(1000, 200)).Clear 
    shtData.Range(Cells(8, 2), Cells(9 + iMaxSR, (3 * (iMaxStates - iInitState) _ 
                                    / 2# + 1) + 5)).Interior.ColorIndex = 2 
    For N = 1 To 40 
        shtData.Columns(N).ColumnWidth = 8.43 
    Next N 
    shtModel.Activate 
End If 
 
' ==== MAIN MODEL ACQUISITION ==== 
For P = iSR To iMaxSR                           ' Loops through sampling ratio 
    For R = iInitState To iMaxStates Step 2     ' Loops through states 
        sReason = ""                            ' Initialize reason 
        lngDataPts = lngArrSize                 ' reset number of data points 
        ReDim a_dTot(1 To 4, 1 To R)            ' reset tot array 
        Call Charact(R, dExtreme, P, lngDataPts, a_dTotErr(), a_dTot())   ' determine 
                                                            ' transition probabilities 
        ReDim a_dStats(1 To 4, 1 To R)          ' reset stats array 
        ReDim a_lngWindow(1 To 3, 1 To R)       ' reset window array 
         
        ' ==== CHECK FOR STATE WITH ZERO VISITS ==== 
        For N = 1 To R 
            If a_dTot(4, N) <> 1 And a_dTot(4, N) <> 0 Then 
                bNotZero = True 
            Else 
                bNotZero = False 
                Exit For            ' exit if there is a state with zero visits 
            End If 
        Next N 
         
        ' ==== CHECK IF MAX EXTREME FRACTION VIOLATED ==== 
        If dExtreme <= dExtremeMax Then 
            If bNotZero Then 
                bModCand = True         ' Possible model candidate 
            Else 
                bModCand = False 
            End If 
        Else 
            bModCand = False 
        End If 
         
        ' ==== FIND LIMITS USING MIDPOINT OPTIMIZATION ==== 
        For N = 1 To R 
            If bModCand Then 
                RunLimitsAlg dAlphaT, dBetaT, dLamda, R, a_dTot(4, N), lngXL, _ 
                            lngXH, lngMinPoints, False 
                a_dStats(2, N) = lngXL 
                a_dStats(3, N) = lngXH 
                a_dStats(4, N) = lngMinPoints 
                a_dStats(1, N) = a_dTot(1, N) 
            Else 
                a_dStats(2, N) = 0 
                a_dStats(3, N) = 0 
                a_dStats(4, N) = 0 
                a_dStats(1, N) = a_dTot(1, N) 
            End If 
        Next 
        If P = 5 Then 
            sDummy = "HERE" 
        End If 
         
        ' ==== FIND WINDOW SIZE / DETERMINE SHORTEST WINDOW IN TIME ==== 
        If bModCand Then 
            FindWindow a_dStats(), a_dTot(), a_lngWindow(), lngStatWin 
            lngSampleSettle = fRoundUp((lngSettle / P), 0) 
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            lngTotWin = lngStatWin + lngSampleSettle 
            dStatWinTime = lngStatWin * P 
            dTotWinTime = lngTotWin * P 
            If iOptStates = 0 Then      ' initialize optimum parameters 
                iOptStates = R 
                iOptSR = P 
                dOptTime = dStatWinTime 
                lngOptSample = lngStatWin 
            ElseIf dStatWinTime < dOptTime Then 
                iOptStates = R 
                iOptSR = P 
                dOptTime = dStatWinTime 
                lngOptSample = lngStatWin 
            End If 
        Else 
            lngStatWin = 0 
        End If 
         
        ' ==== EXCEL OUTPUT ==== 
        shtModel.Cells(12, 3).Value = Round(((P - 1) * (iMaxStates - iInitState) + _ 
                                        (R - iInitState) + 2) * dCompleteP, 2) 
        If bDebug Then 
            If OutputModelExcel(iMaxStates, iInitState, P, lngDataPts, R, dExtreme, _ 
                            dExtremeMax, dTotWinTime, bNotZero, sReason, bModCand, iSR) _ 
                            = -1 Then Exit For 
        End If 
        DoEvents 
        If Not bDebug And dExtreme <= dExtremeMax Then 
            Exit For 
        End If 
        If Not bNotZero Then Exit For       ' Choose new sampling ratio if zero 
                                            'visits occurs 
    Next R 
    If R = iInitState And bNotZero Then 
        Exit For 
    End If 
Next P 
shtModel.Cells(12, 3).Value = Round((iMaxSR * (iMaxStates - iInitState) + 2) _ 
                                * dCompleteP, 2) 
 
' ==== RERUN FOR OPTIMUM PARAMETERS ==== 
lngDataPts = lngArrSize                         ' reset total number of data points 
ReDim a_dTot(1 To 4, 1 To iOptStates) 
Call Charact(iOptStates, dExtreme, iOptSR, lngDataPts, a_dTotErr(), a_dTot()) 
ReDim a_dStats(1 To 4, 1 To iOptStates) 
ReDim a_lngWindow(1 To 3, 1 To iOptStates) 
ReDim a_lngWindow(1 To 3, 1 To iOptStates) 
ReDim a_dTranLimits(1 To 2, 1 To iOptStates) 
For N = 1 To iOptStates 
    RunLimitsAlg dAlphaT, dBetaT, dLamda, iOptStates, a_dTot(4, N), lngXL, _ 
                lngXH, lngMinPoints, False 
    a_dStats(2, N) = lngXL 
    a_dStats(3, N) = lngXH 
    a_dStats(4, N) = lngMinPoints 
    a_dStats(1, N) = a_dTot(1, N) 
Next N 
FindWindow a_dStats(), a_dTot(), a_lngWindow(), lngStatWin 
lngSampleSettle = fRoundUp((lngSettle / iOptSR), 0) 
lngTotWin = lngStatWin + lngSampleSettle 
dStatWinTime = lngStatWin * iOptSR 
dTotWinTime = lngTotWin * iOptSR 
dAlphaK = 1# - (1# - dAlphaT) ^ (1# / iOptStates) 
For N = 1 To iOptStates 
    lngN = a_lngWindow(1, N) 
    Limits dAlphaK, a_dTot(4, N), 1, 0, lngXL, lngXH, False, lngN, 0, True 
    a_lngWindow(2, N) = lngXH 
    a_lngWindow(3, N) = lngXL 
    a_dTranLimits(1, N) = (lngXH / a_lngWindow(1, N)) 
    a_dTranLimits(2, N) = (lngXL / a_lngWindow(1, N)) 
Next 
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For N = 1 To iOptStates 
    lngModelSamples = lngModelSamples + a_dTot(2, N) 
Next N 
 
' ==== WRITE MODEL PARAMETERS TO EXCEL ==== 
shtModel.Cells(16, 3).Value = iOptStates 
shtModel.Cells(15, 3).Value = iOptSR 
shtModel.Cells(18, 3).Value = lngStatWin 
shtModel.Cells(19, 3).Value = lngTotWin 
shtModel.Cells(21, 3).Value = Round(dStatWinTime, 2) 
shtModel.Cells(22, 3).Value = Round(dTotWinTime, 2) 
 
For N = 1 To iOptStates 
    shtData.Cells(1, N + 2) = a_dTot(1, N) 
    shtData.Cells(2, N + 2) = a_dTot(2, N) / lngModelSamples 
    shtData.Cells(3, N + 2) = a_dTranLimits(1, N) 
    shtData.Cells(4, N + 2) = a_dTot(4, N) 
    shtData.Cells(5, N + 2) = a_dTranLimits(2, N) 
Next N 
 
' ==== WRITE MODEL FILE ==== 
Open sFileData For Output Access Write Lock Write As #1 
Print #1, iOptStates 
Print #1, iOptSR 
Print #1, lngOptSample 
Print #1, lngTotWin 
For N = 1 To iOptStates 
    Print #1, a_dTot(1, N), a_dTranLimits(1, N), a_dTranLimits(2, N) 
Next N 
Close #1 
 
' ==== CLEANUP EXCEL OUTPUT ==== 
If bDebug Then 
    CleanUpExcel iMaxStates, iInitState, iMaxSR 
End If 
 
' ==== FINISH WITH SOME STATISTICS ==== 
dFinalTime = Timer 
shtModel.Cells(13, 3).Value = (dFinalTime - dInitTime) 
 
' ==== SET-UP CHART ==== 
ModifyChart iOptStates, "ModelChart" 
 
End Sub 
Sub Charact(iNumState As Integer, dExtreme As Double, iSR As Long, _ 
                lngArrSize As Long, a_dTotErr() As Double, a_dTot() As Double) 
' Author:           T. Judson Wooters 
' Created Date:     18-DEC-2006 
' Description:      Accepts an array of errors, assigns states and returns statistics 
 
Dim a_iStates() As Integer         ' Array holding the state value of each error 
Dim a_dErr() As Double             ' Array holding all error 
Dim N As Long                      ' Internal counter 
Dim P As Integer                   ' Internal counter (used to count through states) 
 
If ((lngArrSize / iSR) Mod 1) > 0 Then 
    lngArrSize = Int(lngArrSize \ iSR) + 1 
Else 
    lngArrSize = Int(lngArrSize \ iSR) 
End If 
 
' ==== RESIZE ARRAYS ==== 
ReDim a_iStates(1 To lngArrSize) 
ReDim a_dErr(1 To lngArrSize) 
ReDim a_dTot(1 To 4, 1 To iNumState) 
 
' ==== FILL 'TOT' ARRAY WITH STATES (1) ==== 
For N = 1 To iNumState 
    If (N - (iNumState / 2#)) > 0 Then 
        a_dTot(1, N) = N - (iNumState / 2#) 
    Else 
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        a_dTot(1, N) = N - (iNumState / 2#) - 1 
    End If 
Next 
 
' ==== FILL 'ERR', 'STATES' AND 'TOT' ARRAYS ==== 
For N = 1 To lngArrSize 
    a_dErr(N) = a_dTotErr(((iSR * (N - 1)) + 1)) 
    If N = 1 Then                                          ' determine current state 
        a_iStates(N) = fState(a_dErr(N), 0, (iNumState / 2#)) 
    Else 
        a_iStates(N) = fState(a_dErr(N), a_iStates(N - 1), (iNumState / 2#)) 
    End If 
    If N > 1 Then 
        For P = 1 To iNumState 
            If a_iStates(N) = a_dTot(1, P) Then 
                a_dTot(2, P) = a_dTot(2, P) + 1 
                Exit For 
            End If 
        Next 
        If a_iStates(N - 1) > 0 And a_iStates(N) = -1 Then 
            For P = 1 To iNumState 
                If a_iStates(N - 1) = a_dTot(1, P) Then 
                    a_dTot(3, P) = a_dTot(3, P) + 1 
                    Exit For 
                End If 
            Next 
        ElseIf a_iStates(N - 1) < 0 And a_iStates(N) = 1 Then 
            For P = 1 To iNumState 
                If a_iStates(N - 1) = a_dTot(1, P) Then 
                    a_dTot(3, P) = a_dTot(3, P) + 1 
                    Exit For 
                End If 
            Next 
        End If 
    End If 
Next 
 
' ==== TRANSITION PROB = PROBABILIY TO CROSS ZERO ==== 
For N = 1 To iNumState 
    If a_dTot(2, N) = 0 Then 
        a_dTot(4, N) = 0 
    Else 
        a_dTot(4, N) = a_dTot(3, N) / a_dTot(2, N) 
    End If 
Next 
 
' ==== DETERMINE STATISTICS OF ENTIRE STATE CHARACTERIZATION ==== 
dExtreme = (a_dTot(2, 1) + a_dTot(2, iNumState)) / (lngArrSize) 
 
End Sub 
 
Function fState(dError As Double, iStateP As Integer, iNumState) As Integer 
' Author:           T. Judson Wooters 
' Created Date:     28-DEC-2006 
' Description:      Accepts the current error, the previous state and the max 
'                   number of states 
 
' ==== DECLARE VARIABLES ==== 
Dim iMaxState As Integer                 ' Maximum state 
Dim iMinState As Integer                 ' Minimum state 
 
iMaxState = Math.Abs(iNumState) 
iMinState = -1 * Math.Abs(iNumState) 
 
If iStateP < iMaxState And iStateP > iMinState Then     ' If the previous state 
                                                        ' was not an extreme 
    If iStateP = 0 Then              ' If the previous state = 0 
        If dError = 0 Then           ' If current error = 0 
            fState = 0               ' assign current state = 0 
        ElseIf dError < 0 Then       ' If current error < 0 
            fState = -1              ' assign current state = -1 
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        Else                         ' If current error > 0 
            fState = 1               ' assign current state > 1 
        End If 
    ElseIf iStateP < 0 Then          ' If the previous state < 0 
        If dError <= 0 Then          ' If the current error <= 0 
            fState = iStateP - 1     ' assign current state to one less than previous 
        Else                         ' If the current error > 0 
            fState = 1               ' assign current state = 1 
        End If 
    Else                             ' If the previous state > 0 
        If dError >= 0 Then          ' If the current error >= 0 
            fState = iStateP + 1     ' assign current state to one more than previous 
        Else                         ' If the current error < 0 
            fState = -1              ' assign current state = -1 
        End If 
    End If 
Else                                 ' If at an extreme state 
    If iStateP = 0 Then              ' If the previous state = 0 
        If dError = 0 Then           ' If current error = 0 
            fState = 0               ' assign current state = 0 
        ElseIf dError < 0 Then       ' If current error < 0 
            fState = -1              ' assign current state = -1 
        Else                         ' If current error > 0 
            fState = 1               ' assign current state > 1 
        End If 
    ElseIf iStateP < 0 Then          ' If the previous state < 0 
        If dError <= 0 Then          ' If the current error <= 0 
            fState = iStateP         ' assign current state to be the same as previous 
        Else                         ' If the current error > 0 
            fState = 1               ' assign current state = 1 
        End If 
    Else                             ' If the previous state > 0 
        If dError >= 0 Then          ' If the current error >= 0 
            fState = iStateP         ' assign current state to be the same as previous 
        Else                         ' If the current error < 0 
            fState = -1              ' assign current state = -1 
        End If 
    End If 
End If 
 
End Function 
Sub RunLimitsAlg(dAlphaT As Double, dBetaT As Double, dLamda As Double, _ 
                iStates As Integer, dProbRef As Double, lngXL As Long, _ 
                lngXH As Long, lngMinPoints As Long, bPrint As Boolean) 
' Author:           T. Judson Wooters 
' Created Date:     3-JAN-2007 
' Description:      Inverval halving method to find the number of samples required 
'                   for beta test. 
'                   Step 1) Bounding using the exact binomial distribution 
'                   Step 2) After bounding we use interval halving with the exact 
'                           binomial distribution 
 
Dim a_lngSample(1 To 3) As Long     ' number of samples (1 - Low, 2 - Mid, 3 - High) 
Dim a_dBeta(1 To 3) As Double       ' beta for each number of samples 
Dim a_iSign(1 To 3) As Integer      ' sign, above or below beta limit for each 
                                    ' number of samples 
Dim a_lngXL(1 To 3) As Long         ' lower limit for each set of samples 
Dim a_lngXH(1 To 3) As Long         ' upper limit for eacch set of samples 
Dim iDirection As Integer           ' +/- 1 used during step 3 to bound correctly 
Dim dMaxBeta As Double              ' maximum beta obtained through limits sub 
Dim lngSamLow As Long               ' number of samples obtained from step 2 
Dim lngFLow As Long                 ' beta found with optimum number of samples 
                                    ' (step 2 and 4) 
Dim lngIncrement As Long            ' step size used in bounding 
Dim dAlphaK As Double               ' alpha for each state 
Dim dBetaK As Double                ' beta for each state 
Dim dProbH As Double 
Dim dProbL As Double 
Dim N As Long                       ' counting variable 
Dim P As Long                       ' counting variable 
Dim M As Long                       ' counting variable 
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Dim K As Long                       ' counting variable 
 
dAlphaK = 1# - (1# - dAlphaT) ^ (1# / iStates) 
dBetaK = 1# - (1# - dBetaT) ^ (1# / iStates) 
dProbH = dProbRef + dLamda * (1# - dProbRef) 
dProbL = dProbRef - dLamda * dProbRef 
 
N = 5 
lngIncrement = 1 
 
' ==== STEP 1 ==== 
For P = 1 To 10000 
    Limits dAlphaK, dProbRef, dProbH, dProbL, lngXL, lngXH, bPrint, N, dMaxBeta, False 
    If dMaxBeta < dBetaK / 2# Then      ' Check if crossed allowable beta on high side 
    'If dMaxBeta < dBetaK Then      ' Check if crossed allowable beta on high side 
        a_lngSample(3) = N 
        a_dBeta(3) = Abs((dMaxBeta - (dBetaK / 2#)) / (dBetaK / 2#)) 
        'a_dBeta(3) = Abs((dMaxBeta - (dBetaK)) / (dBetaK)) 
        If ((dMaxBeta - (dBetaK / 2#)) / (dBetaK / 2#)) > 0 Then 
        'If ((dMaxBeta - (dBetaK)) / (dBetaK)) > 0 Then 
            a_iSign(3) = 1 
        Else 
            a_iSign(3) = -1 
        End If 
        a_lngXL(3) = lngXL 
        a_lngXH(3) = lngXH 
        Exit For                        ' Once the high side is found, exit for 
    Else                                ' Check if low side of allowable beta 
        lngIncrement = lngIncrement * 2#    ' Increase stepsize 
        a_lngSample(1) = N 
        a_dBeta(1) = Abs((dMaxBeta - (dBetaK / 2#)) / (dBetaK / 2#)) 
        'a_dBeta(1) = Abs((dMaxBeta - (dBetaK)) / (dBetaK)) 
        If ((dMaxBeta - (dBetaK / 2#)) / (dBetaK / 2#)) > 0 Then 
        'If ((dMaxBeta - (dBetaK)) / (dBetaK)) > 0 Then 
            a_iSign(1) = 1 
        Else 
            a_iSign(1) = -1 
        End If 
        a_lngXL(1) = lngXL 
        a_lngXH(1) = lngXH 
    End If 
    N = N + lngIncrement      ' Increase number of samples if no high side found yet 
Next P 
 
' ==== Get Middle Point ==== 
a_lngSample(2) = Round((a_lngSample(1) + a_lngSample(3)) / 2#, 0)       ' Middle point 
Limits dAlphaK, dProbRef, dProbH, dProbL, lngXL, lngXH, bPrint, a_lngSample(2), _ 
                dMaxBeta, False 
a_dBeta(2) = Abs((dMaxBeta - (dBetaK / 2#)) / (dBetaK / 2#)) 
'a_dBeta(2) = Abs((dMaxBeta - (dBetaK)) / (dBetaK)) 
If ((dMaxBeta - (dBetaK / 2#)) / (dBetaK / 2#)) > 0 Then 
'If ((dMaxBeta - (dBetaK)) / (dBetaK)) > 0 Then 
    a_iSign(2) = 1 
Else 
    a_iSign(2) = -1 
End If 
a_lngXL(2) = lngXL 
a_lngXH(2) = lngXH 
 
lngFLow = 0 
 
' ==== STEP 2 ==== 
For P = 1 To 10000 
    If (a_lngSample(3) - a_lngSample(1)) <= 2 Then      ' Did we find the optimum? 
        For M = 1 To 3 
            If a_iSign(M) < 0 And lngFLow = 0 Then 
                lngFLow = a_dBeta(M) 
                lngMinPoints = a_lngSample(M) 
                lngXL = a_lngXL(M) 
                lngXH = a_lngXH(M) 
                Exit For                                ' Exit when optimum found 
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            End If 
        Next M 
        Exit For 
    End If 
    ' ==== If the sign of the bottom two are the same, then you have to move up ==== 
    If a_iSign(1) = a_iSign(2) Then 
        a_lngSample(1) = a_lngSample(2) 
        a_dBeta(1) = a_dBeta(2) 
        a_iSign(1) = a_iSign(2) 
        a_lngXL(1) = a_lngXL(2) 
        a_lngXH(1) = a_lngXH(2) 
    ' ==== If the sign of the top two are the same, then you have to move down ==== 
    Else 
        a_lngSample(3) = a_lngSample(2) 
        a_dBeta(3) = a_dBeta(2) 
        a_iSign(3) = a_iSign(2) 
        a_lngXL(3) = a_lngXL(2) 
        a_lngXH(3) = a_lngXH(2) 
    End If 
    ' ==== Get Middle Point ==== 
    a_lngSample(2) = Round((a_lngSample(1) + a_lngSample(3)) / 2#, 0) 
    Limits dAlphaK, dProbRef, dProbH, dProbL, lngXL, lngXH, bPrint, a_lngSample(2), _ 
                    dMaxBeta, False 
    a_dBeta(2) = Abs((dMaxBeta - (dBetaK / 2#)) / (dBetaK / 2#)) 
    'a_dBeta(2) = Abs((dMaxBeta - (dBetaK)) / (dBetaK)) 
    If ((dMaxBeta - (dBetaK / 2#)) / (dBetaK / 2#)) > 0 Then 
    'If ((dMaxBeta - (dBetaK)) / (dBetaK)) > 0 Then 
        a_iSign(2) = 1 
    Else 
        a_iSign(2) = -1 
    End If 
    a_lngXL(2) = lngXL 
    a_lngXH(2) = lngXH 
Next P 
 
End Sub 
Sub Limits(dAlphaK As Double, dProbRef As Double, dProbH As Double, dProbL As Double, _ 
                lngXL As Long, lngXH As Long, bPrint As Boolean, N As Long, _ 
                dMaxBeta As Double, bFixLimits As Boolean) 
' Author:           T. Judson Wooters 
' Created Date:     10-JAN-2007 
' Description:      This program finds the alpha and beta given a mean and number of 
samples 
 
Dim arrRefCumProb() As Double       ' cummulative probability for the reference tran prob 
Dim arrRefProb() As Double          ' discrete probability for the reference tran prob 
Dim arrHighCumProb() As Double      ' cummulative probability for the high side tran prob 
Dim arrHighProb() As Double         ' discrete probability for the high side tran prob 
Dim arrLowCumProb() As Double       ' cummulative probability for the low side tran prob 
Dim arrLowProb() As Double          ' discrete probability for the low side tran prob 
Dim arrRevRefCumProb() As Double    ' reverse cummulative probability for the reference 
                                    ' tran prob 
Dim arrRevHighCumProb() As Double   ' reverse cummulative probability for the high side 
                                    ' tran Prob 
Dim arrRevLowCumProb() As Double    ' reverse cummulative probability for the low side 
                                    ' tran prob 
Dim dCumProbH As Double             ' beta on the high side 
Dim dCumProbL As Double             ' beta on the low side 
Dim dX1Prob As Double               ' 1st probability used to find slope 
Dim dX2Prob As Double               ' 2nd probability used to find slope 
Dim dSlope As Double                ' slope between # of samples used to find # of 
samples 
Dim dYIntercept As Double           ' y intersept of samples used to find # of samples 
Dim dXLowActual As Double           ' fraction value for # of samples (low side) 
Dim dXHighActual As Double          ' fraction value for # of samples (low side) 
Dim lngX1 As Long                   ' 1st number samples used to find slope 
Dim lngX2 As Long                   ' 2nd number samples used to find slope 
Dim lngMean As Long 
Dim lngMeanLow As Long 
Dim lngMeanHigh As Long 
Dim X As Long 
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' ==== INITIALIZE VARIABLES ==== 
ReDim arrRefCumProb(0 To N) 
ReDim arrRevRefCumProb(0 To N) 
ReDim arrRefProb(0 To N) 
ReDim arrHighCumProb(0 To N) 
ReDim arrRevHighCumProb(0 To N) 
ReDim arrHighProb(0 To N) 
ReDim arrLowCumProb(0 To N) 
ReDim arrRevLowCumProb(0 To N) 
ReDim arrLowProb(0 To N) 
dCumProbL = 0 
dCumProbH = 0 
lngMean = Math.Round(N * dProbRef, 0) 
lngMeanLow = Math.Round(N * dProbL, 0) 
lngMeanHigh = Math.Round(N * dProbH, 0) 
lngXL = 0 
lngXH = N 
 
' ==== CREATE THE 3 BINOMIAL DISTRIBUTIONS ==== 
UpperHalf N, arrRefProb(), dProbRef, lngMean 
 
LowerHalf N, arrRefProb(), dProbRef, lngMean 
 
If Not bFixLimits Then 
    UpperHalf N, arrHighProb(), dProbH, lngMeanHigh 
                 
    UpperHalf N, arrLowProb(), dProbL, lngMeanLow 
     
    LowerHalf N, arrHighProb(), dProbH, lngMeanHigh 
                 
    LowerHalf N, arrLowProb(), dProbL, lngMeanLow 
End If 
     
' ==== FORWARD CUMMULATIVE PROBABILITIES ==== 
For X = 0 To N 
    If X = 0 Then 
        arrRefCumProb(X) = arrRefProb(X) 
        If Not bFixLimits Then 
            arrHighCumProb(X) = arrHighProb(X) 
            arrLowCumProb(X) = arrLowProb(X) 
        End If 
    Else 
        arrRefCumProb(X) = arrRefProb(X) + arrRefCumProb(X - 1) 
        If Not bFixLimits Then 
            arrHighCumProb(X) = arrHighProb(X) + arrHighCumProb(X - 1) 
            arrLowCumProb(X) = arrLowProb(X) + arrLowCumProb(X - 1) 
        End If 
    End If 
Next 
 
' ==== REVERSE CUMMULATIVE PROBABILITIES ==== 
For X = N To 0 Step -1 
    If X = N Then 
        arrRevRefCumProb(X) = arrRefProb(X) 
        If Not bFixLimits Then 
            arrRevHighCumProb(X) = arrHighProb(X) 
            arrRevLowCumProb(X) = arrLowProb(X) 
        End If 
    Else 
        arrRevRefCumProb(X) = arrRefProb(X) + arrRevRefCumProb(X + 1) 
        If Not bFixLimits Then 
            arrRevHighCumProb(X) = arrHighProb(X) + arrRevHighCumProb(X + 1) 
            arrRevLowCumProb(X) = arrLowProb(X) + arrRevLowCumProb(X + 1) 
        End If 
    End If 
Next 
 
' ==== FIND LOW SAMPLE ==== 
For X = 0 To N 
    If arrRefCumProb(X) < dAlphaK / 2# Then 
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        lngX1 = X 
        dX1Prob = arrRefCumProb(X) 
    Else 
        If X = 0 Then 
            lngXL = 0 
            Exit For 
        End If 
        lngX2 = X 
        dX2Prob = arrRefCumProb(X) 
        dSlope = (dX2Prob - dX1Prob) / (lngX2 - lngX1) 
        dYIntercept = dX1Prob - (dSlope * lngX1) 
        dXLowActual = ((dAlphaK / 2#) - dYIntercept) / dSlope   ' This is the 
                                                                ' interpolated low limit 
        lngXL = Round(dXLowActual, 0) 
        Exit For 
    End If 
Next X 
 
' ==== FIND HIGH SAMPLE ==== 
For X = N To 0 Step -1 
    If arrRevRefCumProb(X) < dAlphaK / 2# Then 
        lngX1 = X 
        dX1Prob = arrRevRefCumProb(X) 
    Else 
        If X = N Then 
            lngXH = N 
            Exit For 
        End If 
        lngX2 = X 
        dX2Prob = arrRevRefCumProb(X) 
        dSlope = (dX2Prob - dX1Prob) / (lngX2 - lngX1) 
        dYIntercept = dX1Prob - (dSlope * lngX1) 
        dXHighActual = ((dAlphaK / 2#) - dYIntercept) / dSlope  ' This is the 
                                                                ' interpolated high limit 
        lngXH = Round(dXHighActual, 0) 
        Exit For 
    End If 
Next X 
 
' ==== FIND LOW PROBABILITY ==== 
If Not bFixLimits Then 
    If lngXL = 0 Then 
        dCumProbL = arrRevLowCumProb(lngXL) 
    Else 
        If dXLowActual < lngXL Then 
            lngX1 = lngXL - 1 
            lngX2 = lngXL 
        Else 
            lngX1 = lngXL 
            lngX2 = lngXL + 1 
        End If 
        dX1Prob = arrRevLowCumProb(lngX1) 
        dX2Prob = arrRevLowCumProb(lngX2) 
        dSlope = (dX2Prob - dX1Prob) / (lngX2 - lngX1) 
        dYIntercept = dX1Prob - (dSlope * lngX1) 
        dCumProbL = dSlope * dXLowActual + dYIntercept  ' This is the interpolated beta 
    End If 
     
    ' ==== FIND HIGH PROBABILITY ==== 
    If lngXH = N Then 
        dCumProbH = arrHighCumProb(lngXH) 
    Else 
        If dXHighActual < lngXH Then 
            lngX1 = lngXH - 1 
            lngX2 = lngXH 
        Else 
            lngX1 = lngXH 
            lngX2 = lngXH + 1 
        End If 
        dX1Prob = arrHighCumProb(lngX1) 
        dX2Prob = arrHighCumProb(lngX2) 
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        dSlope = (dX2Prob - dX1Prob) / (lngX2 - lngX1) 
        dYIntercept = dX1Prob - (dSlope * lngX1) 
        dCumProbH = dSlope * dXHighActual + dYIntercept  ' This is the interpolated beta 
    End If 
      
    dMaxBeta = fFindMax(dCumProbL, dCumProbH)         ' All I care about is the highest 
                                                      ' beta (low/high) 
End If 
 
' Print information to spreadsheet only if debugging 
If bPrint Then 
    shtTestLimits.Range(Cells(13, 1), Cells(11000, 10)).Clear 
 
    shtTestLimits.Cells(6, 2) = N 
    shtTestLimits.Cells(8, 3) = dCumProbL 
    shtTestLimits.Cells(10, 3) = dCumProbH 
    shtTestLimits.Cells(8, 2) = lngXL 
    shtTestLimits.Cells(10, 2) = lngXH 
    shtTestLimits.Cells(8, 4) = dProbL 
    shtTestLimits.Cells(9, 4) = dProbRef 
    shtTestLimits.Cells(10, 4) = dProbH 
 
 
    For X = 0 To N 
        shtTestLimits.Cells(X + 13, 1) = X 
        shtTestLimits.Cells(X + 13, 2) = arrLowProb(X) 
        shtTestLimits.Cells(X + 13, 3) = arrRefProb(X) 
        shtTestLimits.Cells(X + 13, 4) = arrHighProb(X) 
        'shtTestLimits.Cells(X + 13, 5) = arrLowCumProb(X) 
        'shtTestLimits.Cells(X + 13, 6) = arrRevLowCumProb(X) 
        'shtTestLimits.Cells(X + 13, 7) = arrRefCumProb(X) 
        'shtTestLimits.Cells(X + 13, 8) = arrRevRefCumProb(X) 
        'shtTestLimits.Cells(X + 13, 9) = arrHighCumProb(X) 
        'shtTestLimits.Cells(X + 13, 10) = arrRevHighCumProb(X) 
    Next 
 
End If 
 
 
End Sub 
Function fBinomial(lngN As Long, lngX As Long, dProb As Double) As Double 
' T. Judson Wooters 
' The Binomial function is also refered to as the direct method in this program. 
' || Due to overflow concerns, each individual element in the binomial equation is 
' || assigned to an array of lenght 'N'. If there are not enough unique elements to 
' || fill an array then '1' fills the rest. For example, if X = 2 but lngN = 10 
' || then the N! array will contain 10, 9, 8, ... and the X! array will 
' || contain 2, 1, 1, 1. Further efforts are made to reduce overflow risk in this order 
' || 1) Each of the 5 element arrays are multiplied to together and assigned to a 
'       new array 
' || 2) The cases where overflow are of the most concern have arrays that are already 
'       mostly sorted. Very low numbers on one end increasing to some max value not found 
'       in the middle then decreasing to small values. The peak will never be in the 
'       middle and an algorithm makes sure that the number stays as close to "0.5" as 
'       possible. 
 
Dim arrX() As Double               ' Array of lngX! 
Dim arrN() As Double               ' Array of lngN! 
Dim arrNminusX() As Double         ' Array of (lngN-lngX)! 
Dim arrPX() As Double              ' Array of P^lngX 
Dim arrPNminusX() As Double        ' Array of P^(lngN-lngX) 
Dim arrEachIter() As Double        ' Array created by step 1 above 
Dim lngNminusX As Long             ' Calculated lngN-lngX value 
Dim lngSmallIndex As Long 
Dim lngLargeIndex As Long 
Dim lngArrUpper() As Long 
Dim lngArrLower() As Long 
Dim lngMaxRun As Long 
Dim dArrCombined() As Double 
Dim PWA As Double 
Dim PWB As Double 
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Dim lngthR As Long 
Dim S As Long                       ' Counter variable 
Dim J As Long                       ' Counter variable 
 
' ------ INITIAL CALCULATIONS ------ 
fBinomial = 1 
lngNminusX = lngN - lngX 
lngMaxRun = fFindMaxLong(lngX, lngNminusX) 
     
' ------ RESIZE ARRAYS ------ 
ReDim arrX(1 To lngN) 
ReDim arrN(1 To lngN) 
ReDim arrNminusX(1 To lngN) 
ReDim arrPX(1 To lngN) 
ReDim arrPNminusX(1 To lngN) 
ReDim arrEachIter(1 To lngN) 
 
' ------ STEP 1 ------ 
For S = 1 To lngMaxRun 
    If S <= lngX Then 
        arrN(S) = lngN - S + 1 
        arrX(S) = lngX - S + 1 
    Else 
        arrN(S) = 1 
        arrX(S) = 1 
    End If 
    If S <= lngX Then 
        arrPX(S) = dProb 
    Else 
        arrPX(S) = 1 
    End If 
    If S <= lngNminusX Then 
        arrPNminusX(S) = (1 - dProb) 
    Else 
        arrPNminusX(S) = 1 
    End If 
    arrEachIter(S) = (arrN(S) / arrX(S)) * arrPX(S) * arrPNminusX(S) 
Next 
 
lngSmallIndex = 0 
lngLargeIndex = lngMaxRun + 1 
 
' ------ STEP 2 ------ 
Do While lngSmallIndex + 1 < lngLargeIndex 
    If fBinomial > 0.5 Then 
        If arrEachIter(lngSmallIndex + 1) < arrEachIter(lngLargeIndex - 1) Then 
            lngSmallIndex = lngSmallIndex + 1 
            fBinomial = fBinomial * arrEachIter(lngSmallIndex) 
        Else 
            lngLargeIndex = lngLargeIndex - 1 
            fBinomial = fBinomial * arrEachIter(lngLargeIndex) 
        End If 
    Else 
        If arrEachIter(lngSmallIndex + 1) > arrEachIter(lngLargeIndex - 1) Then 
            lngSmallIndex = lngSmallIndex + 1 
            fBinomial = fBinomial * arrEachIter(lngSmallIndex) 
        Else 
            lngLargeIndex = lngLargeIndex - 1 
            fBinomial = fBinomial * arrEachIter(lngLargeIndex) 
        End If 
    End If 
Loop 
 
End Function 
Function fFindMax(dbl_A As Double, dbl_B As Double) As Double 
' T. Judson Wooters 
' FindMax finds the maximum number between two numbers 
 
If dbl_A > dbl_B Then 
    fFindMax = dbl_A 
Else 
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    fFindMax = dbl_B 
End If 
 
End Function 
Function fFindMaxLong(dbl_A As Long, dbl_B As Long) As Long 
' T. Judson Wooters 
' FindMaxLong finds the maximum number between two integers 
 
If dbl_A > dbl_B Then 
    fFindMaxLong = dbl_A 
Else 
    fFindMaxLong = dbl_B 
End If 
 
End Function 
Function fFindMinLong(dbl_A As Long, dbl_B As Long) As Long 
' T. Judson Wooters 
' FindMaxLong finds the maximum number between two integers 
 
If dbl_A < dbl_B Then 
    fFindMinLong = dbl_A 
Else 
    fFindMinLong = dbl_B 
End If 
 
End Function 
Function FindWindow(a_dStats() As Double, a_dTot() As Double, _ 
                    a_lngWindow() As Long, lngWin As Long) 
' Author:           T. Judson Wooters 
' Created Date:     10-JAN-2007 
' Description:      This program finds the base state on either side 
'                   of the Markov Chain 
 
Dim arrWin() As Double 
Dim iExtState As Integer 
Dim iArrSize As Integer 
Dim bRightFound As Boolean 
Dim bLeftFound As Boolean 
Dim N As Integer 
Dim P As Integer 
Dim R As Integer 
 
iExtState = (a_dStats(1, 1) ^ 2) ^ (1 / 2#) 
iArrSize = 2 * iExtState 
bRightFound = False 
bLeftFound = False 
lngWin = 0 
 
ReDim arrWin(1 To iArrSize) 
 
' ---- FIND THE POSITIVE BASE STATE ---- 
For N = iExtState + 1 To iArrSize 
    arrWin(N) = a_dStats(4, N) 
    For P = N + 1 To iArrSize - 1 
        arrWin(P) = arrWin(P - 1) * (1 - a_dTot(4, P - 1)) 
    Next 
    If N < iArrSize Then 
        arrWin(iArrSize) = (arrWin(iArrSize - 1) * (1 - a_dTot(4, iArrSize - 1))) _ 
                            / a_dTot(4, iArrSize) 
    End If 
    If N > iExtState + 1 Then 
        For P = N - 1 To iExtState + 1 Step -1 
            If P = iArrSize - 1 Then 
                arrWin(P) = (arrWin(P + 1) * a_dTot(4, P + 1)) / (1 - a_dTot(4, P)) 
            Else 
                arrWin(P) = arrWin(P + 1) / (1 - a_dTot(4, P)) 
            End If 
        Next 
    End If 
    For P = iExtState + 1 To iArrSize 
        If arrWin(P) < a_dStats(4, P) Then 



 165 

            For R = iExtState + 1 To iArrSize 
                arrWin(R) = 0 
            Next 
            Exit For 
        ElseIf P = iArrSize Then bRightFound = True 
        End If 
    Next 
    If bRightFound = True Then Exit For 
Next 
 
' ---- FIND THE NEGATIVE BASE STATE ---- 
For N = iExtState To 1 Step -1 
    arrWin(N) = a_dStats(4, N) 
    For P = N - 1 To 2 Step -1 
        arrWin(P) = arrWin(P + 1) * (1 - a_dTot(4, P + 1)) 
    Next 
    If N > 1 Then 
        arrWin(1) = (arrWin(2) * (1 - a_dTot(4, 2))) / a_dTot(4, 1) 
    End If 
    If N < iExtState Then 
        For P = N + 1 To iExtState 
            If P = 2 Then 
                arrWin(P) = (arrWin(P - 1) * a_dTot(4, P - 1)) / (1 - a_dTot(4, P)) 
            Else 
                arrWin(P) = arrWin(P - 1) / (1 - a_dTot(4, P)) 
            End If 
        Next 
    End If 
    For P = iExtState To 1 Step -1 
        If arrWin(P) < a_dStats(4, P) Then 
            For R = iExtState To 1 Step -1 
                arrWin(R) = 0 
            Next 
            Exit For 
        ElseIf P = 1 Then bLeftFound = True 
        End If 
    Next 
    If bLeftFound = True Then Exit For 
Next 
 
For N = 1 To iArrSize 
    arrWin(N) = fRoundUp(arrWin(N), 0) 
    lngWin = lngWin + arrWin(N) 
    a_lngWindow(1, N) = arrWin(N) 
Next 
 
End Function 
Function fRoundUp(dValue As Double, iDecimal As Integer) As Double 
' Author:           T. Judson Wooters 
' Created Date:     10-JAN-2007 
' Description:      This program rounds up to the next decimal 
 
Dim myDec As Long 
 
myDec = InStr(1, CStr(dValue), ".", vbTextCompare) + iDecimal 
If myDec > 0 Then 
    fRoundUp = CDbl(Left(CStr(dValue), myDec)) + (1 / (10 ^ iDecimal)) 
Else 
    fRoundUp = dValue 
End If 
 
End Function 
Function fRoundDown(dValue As Double, iDecimal As Integer) As Double 
' Author:           T. Judson Wooters 
' Created Date:     10-JAN-2007 
' Description:      This program rounds down to the next decimal 
 
Dim myDec As Long 
  
myDec = InStr(1, CStr(dValue), ".", vbTextCompare) + iDecimal 
If myDec > 0 Then 
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    fRoundDown = CDbl(Left(CStr(dValue), myDec)) 
Else 
    fRoundDown = dValue 
End If 
 
End Function 
Sub UpperHalf(N As Long, arrProb() As Double, dProb As Double, lngMean As Long) 
' Author:           T. Judson Wooters 
' Created Date:     10-JAN-2007 
' Description:      This program calculates the binomial for the upper 
'                   half of the distribution 
 
Dim X As Long 
 
For X = lngMean To N 
    arrProb(X) = fBinomial(N, X, dProb) 
    If arrProb(X) < dEpsilon Then 
        Exit For 
    End If 
Next X 
 
End Sub 
Sub LowerHalf(N As Long, arrProb() As Double, dProb As Double, lngMean As Long) 
' Author:           T. Judson Wooters 
' Created Date:     10-JAN-2007 
' Description:      This program calculates the binomial for the lower 
'                   half of the distribution 
 
Dim X As Long 
 
For X = lngMean - 1 To 0 Step -1 
    arrProb(X) = fBinomial(N, X, dProb) 
    If arrProb(X) < dEpsilon Then 
        Exit For 
    End If 
Next X 
 
End Sub 
Function RequestFile(sFileData As String, sFileDir As String, sFileType As String, _ 
                sFileTypeName As String) As Integer 
' Sub program to request file name from user 
 
Dim vSelectedItem As Variant    ' temporarily contains file name 
Dim fdFileData As FileDialog    ' object of file dialog 
     
Set fdFileData = Application.FileDialog(msoFileDialogFilePicker) 
 
With fdFileData 
    .Filters.Clear 
    .Filters.Add sFileTypeName, "*" & sFileType, 1 
    .AllowMultiSelect = False 
    .Title = "Select " & sFileTypeName & " File" 
    If .Show = -1 Then 
        For Each vSelectedItem In .SelectedItems 
            sFileData = vSelectedItem 
        Next 
        sFileDir = .InitialFileName 
        RequestFile = 0 
    Else 
        RequestFile = -1 
        Exit Function 
    End If 
End With 
 
End Function 
Function fOptMax(iMax As Long, bStates As Boolean, iSR As Integer, _ 
            iInitState As Integer, lngArrSize As Long, dExtreme As Double, _ 
            a_dTotErr() As Double, dExtremeMax As Double) As Long 
' Author:           T. Judson Wooters 
' Created Date:     10-JAN-2007 
' Description:      This program finds the upper range of SR and States ratios 
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Dim iMaxSR As Long 
Dim iMaxStates As Integer 
Dim lngDataPts As Long 
Dim a_dTot() As Double 
Dim bModCand As Boolean 
Dim P As Long 
Dim R As Integer 
Dim N As Integer 
 
If bStates Then 
    iMaxStates = iMax 
    iMaxSR = iSR 
Else 
    iMaxSR = iMax 
    iMaxStates = iInitState 
End If 
 
For P = iSR To iMaxSR 
    For R = iInitState To iMaxStates Step 2 
        lngDataPts = lngArrSize 
        ReDim a_dTot(1 To 4, 1 To R) 
        Call Charact(R, dExtreme, P, lngDataPts, a_dTotErr(), a_dTot()) 
        For N = 1 To R 
            If dExtreme <= dExtremeMax Then 
                bModCand = True 
            Else 
                bModCand = False 
                Exit For 
            End If 
        Next N 
        If bModCand Then 
            Exit For 
        End If 
    Next R 
    If bModCand Then        ' Found max number of states or SR 
        If bStates Then 
            fOptMax = R 
        Else 
            fOptMax = P 
        End If 
        Exit For 
    Else 
        If bStates Then 
            fOptMax = R 
        Else 
            fOptMax = P 
        End If 
    End If 
Next P 
 
End Function 
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---- Run Individual Subs ---- 
Option Explicit 
Sub HistoryTest() 
' Author:           T. Judson Wooters 
' Created Date:     3-JAN-2008 
' Description:      Main program 
 
Dim a_dTotTime() As Double      ' time corresponding to each actuating error data point 
Dim a_dTotErr() As Double       ' each actuating error data point 
Dim a_dTot() As Double          ' used in Charact sub, holds transition probabilities 
Dim a_dStats() As Double        ' holds transition probability limits in samples 
Dim a_lngWindow() As Long       ' holds number of samples expected to visit states 
Dim a_dTranLimits() As Double   ' holds transition probability limits as a fraction 
Dim a_dSP() As Double           ' each setpoint data point 
Dim a_dCV() As Double           ' each controlled variable data point 
Dim dInitTime As Double         ' initial system clock time 
Dim dFinalTime As Double        ' end system clock time 
Dim dExtremeMax As Double       ' allowed maximum sample fraction in extreme states 
Dim dExtreme As Double          ' sample fraction in extreme states 
Dim dAlphaT As Double           ' allowed maximum alpha test 
Dim dBetaT As Double            ' allowed maximum beta test 
Dim dLamda As Double            ' allowed maximum lambda change 
Dim dMeasFreq As Double         ' optional measurement frequency in seconds 
Dim dSettle As Double           ' process settling time 
Dim dSampleFreq As Double       ' sampling frequency in seconds 
Dim dStatWinTime As Double      ' statistical window in seconds 
Dim dTotWinTime As Double       ' total window = statistical window + settling time 
(seconds) 
Dim dAlphaK As Double           ' alpha for each state 
Dim lngDataPts As Long          ' number of samples based on sampling ratio 
Dim lngArrSize As Long          ' total number of samples 
Dim lngXL As Long               ' sample number lower limit 
Dim lngXH As Long               ' sample number high limit 
Dim lngMinPoints As Long        ' minimum samples required for a given state 
Dim lngStatWin As Long          ' statistical window in samples 
Dim lngSampleSettle As Long     ' samples in settling time 
Dim lngTotWin As Long           ' total window = statistical window + settling time 
(samples) 
Dim lngN As Long                ' temporary storage for min number of samples 
Dim iMaxStates As Integer       ' maximum number of states 
Dim iSR As Integer              ' sampling ratio 
Dim iInitState As Integer       ' initial number of states 
Dim iMaxSR As Integer           ' maximum sampling ratio 
Dim dOptTime As Double          ' time required by optimum states / sampling ratio 
Dim lngOptSample As Long        ' samples requred by optimum states / sampling ratio 
Dim iOptStates As Integer       ' optimum number of states 
Dim iOptSR As Long           ' optimum sampling ratio 
Dim iExitErr As Integer         ' exit error number (0 = ok, -1 = error) 
Dim vSelectedItem As Variant    ' holds value of selection for file name 
Dim sFileData As String         ' complete file name with path 
Dim sFileTypeName As String     ' file type found in header 
Dim sFileType As String         ' file type 
Dim sErrFileData As String      ' temporary storage for file name with path 
Dim sErrFileDir As String       ' error file path 
Dim sReason As String           ' explains model output 
Dim fdFileData As FileDialog    ' file dialog object for user input 
Dim bModCand As Boolean         ' model candidate 
Dim bNotZero As Boolean         ' if a state has 0 visits 
Dim bDebug As Boolean           ' if model output should be viewed 
Dim dCompleteP As Double        ' percent complete in finding model 
Dim N As Long                   ' counting variable 
Dim P As Long                ' counting variable 
Dim R As Integer                ' counting variable 
 
' ==== INITIALIZE VARIABLES ==== 
dExtreme = 1 
dAlphaT = shtModel.Cells(1, 3).Value 
dBetaT = shtModel.Cells(2, 3).Value 
dLamda = shtModel.Cells(3, 3).Value 
dExtremeMax = shtModel.Cells(6, 3).Value 
iInitState = shtModel.Cells(7, 3).Value 
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iSR = 1 
dMeasFreq = shtModel.Cells(8, 3).Value 
dSettle = shtModel.Cells(4, 3).Value 
iMaxStates = shtModel.Cells(9, 3).Value 
bDebug = shtModel.Cells(10, 3).Value 
 
' ==== REQUEST ERROR FILE ==== 
sFileType = ".aer" 
sFileTypeName = "Actuating Error" 
If RequestFile(sErrFileData, sErrFileDir, sFileType, sFileTypeName) = -1 Then Exit Sub 
sFileData = sErrFileData 
 
 
dInitTime = Timer           ' Initialize the timer 
 
' ==== READ ERROR FILE ==== 
Open sFileData For Input As #1 
Do While Not EOF(1) 
    lngArrSize = lngArrSize + 1 
    ReDim Preserve a_dTotErr(1 To lngArrSize) 
    ReDim Preserve a_dTotTime(1 To lngArrSize) 
    ReDim Preserve a_dSP(1 To lngArrSize) 
    ReDim Preserve a_dCV(1 To lngArrSize) 
    Input #1, a_dTotTime(lngArrSize), a_dCV(lngArrSize), a_dSP(lngArrSize) 
    a_dTotErr(lngArrSize) = a_dSP(lngArrSize) - a_dCV(lngArrSize) 
Loop 
Close #1 
 
' ==== RERUN FOR OPTIMUM PARAMETERS ==== 
iOptSR = shtTestTran.Cells(1, 2).Value 
iOptStates = shtTestTran.Cells(2, 2).Value 
lngDataPts = lngArrSize                         ' reset total number of data points 
ReDim a_dTot(1 To 4, 1 To iOptStates) 
Call Charact(iOptStates, dExtreme, iOptSR, lngDataPts, a_dTotErr(), a_dTot()) 
ReDim a_dStats(1 To 4, 1 To iOptStates) 
ReDim a_lngWindow(1 To 3, 1 To iOptStates) 
ReDim a_lngWindow(1 To 3, 1 To iOptStates) 
ReDim a_dTranLimits(1 To 2, 1 To iOptStates) 
For N = 1 To iOptStates 
    RunLimitsAlg dAlphaT, dBetaT, dLamda, iOptStates, a_dTot(4, N), lngXL, _ 
                lngXH, lngMinPoints, False 
    a_dStats(2, N) = lngXL 
    a_dStats(3, N) = lngXH 
    a_dStats(4, N) = lngMinPoints 
    a_dStats(1, N) = a_dTot(1, N) 
Next N 
FindWindow a_dStats(), a_dTot(), a_lngWindow(), lngStatWin 
dSampleFreq = dMeasFreq * iOptSR 
lngSampleSettle = fRoundUp((dSettle / dSampleFreq), 0) 
lngTotWin = lngStatWin + lngSampleSettle 
dStatWinTime = lngStatWin * dSampleFreq 
dTotWinTime = lngTotWin * dSampleFreq 
dAlphaK = 1# - (1# - dAlphaT) ^ (1# / iOptStates) 
For N = 1 To iOptStates 
    lngN = a_lngWindow(1, N) 
    Limits dAlphaK, a_dTot(4, N), 1, 0, lngXL, lngXH, False, lngN, 0, True 
    a_lngWindow(2, N) = lngXH 
    a_lngWindow(3, N) = lngXL 
    a_dTranLimits(1, N) = (lngXH / a_lngWindow(1, N)) 'fRoundUp(lngXH / a_lngWindow(1, 
N), 6) 
    a_dTranLimits(2, N) = (lngXL / a_lngWindow(1, N)) 'fRoundDown(lngXL / a_lngWindow(1, 
N), 6) 
Next 
 
' ==== WRITE MODEL PARAMETERS TO EXCEL ==== 
shtTestTran.Cells(15, 3).Value = iOptStates 
shtTestTran.Cells(14, 3).Value = iOptSR 
shtTestTran.Cells(16, 3).Value = lngStatWin 
shtTestTran.Cells(17, 3).Value = lngTotWin 
shtTestTran.Cells(18, 3).Value = Round(dStatWinTime, 2) 
shtTestTran.Cells(19, 3).Value = Round(dTotWinTime, 2) 
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For N = 1 To iOptStates 
    shtTestTran.Cells(1, N + 4) = a_dTot(1, N) 
    shtTestTran.Cells(2, N + 4) = a_dTot(2, N) 
    shtTestTran.Cells(3, N + 4) = a_dTranLimits(1, N) 
    shtTestTran.Cells(4, N + 4) = a_dTot(4, N) 
    shtTestTran.Cells(5, N + 4) = a_dTranLimits(2, N) 
Next N 
 
End Sub 
Sub sub_RunLimitsMH() 
 
Dim dbl_AlphaT As Double 
Dim dbl_BetaT As Double 
Dim dbl_Lamda As Double 
Dim int_States As Integer 
Dim dbl_Prob0 As Double 
Dim lng_XL As Long 
Dim lng_XH As Long 
Dim lng_MinPoints As Long 
Dim dTimeStart As Double 
 
dTimeStart = Timer 
 
Application.ScreenUpdating = False 
 
dbl_AlphaT = shtTestLimits.Cells(1, 2) 
dbl_BetaT = shtTestLimits.Cells(2, 2) 
dbl_Lamda = shtTestLimits.Cells(3, 2) 
int_States = shtTestLimits.Cells(1, 5) 
dbl_Prob0 = shtTestLimits.Cells(2, 5) 
 
RunLimitsAlg dbl_AlphaT, dbl_BetaT, dbl_Lamda, int_States, dbl_Prob0, lng_XL, _ 
            lng_XH, lng_MinPoints, True 
 
Application.ScreenUpdating = True 
 
shtTestLimits.Cells(1, 7) = Timer - dTimeStart 
 
End Sub 
Sub sub_FindAlphaLimits() 
 
Dim dAlphaT As Double 
Dim dAlphaK As Double 
Dim iStates As Integer 
Dim dProbRef As Double 
Dim lngXL As Long 
Dim lngXH As Long 
Dim lngN As Long 
Dim iNumSamples As Long 
 
dAlphaT = shtTestLimits.Cells(1, 2).Value 
iStates = shtTestLimits.Cells(1, 5).Value 
dProbRef = shtTestLimits.Cells(2, 5).Value 
lngN = shtTestLimits.Cells(6, 2).Value 
 
dAlphaK = 1# - (1# - dAlphaT) ^ (1# / iStates) 
 
Limits dAlphaK, dProbRef, 1, 0, lngXL, lngXH, True, lngN, 0, True 
 
End Sub 
Sub ModifyChartTestTran(iStates As Integer, sChartName As String) 
' T. Judson Wooters, 20-DEC-2007 
' Inputs:  iStates - number of states to be ploted 
' Outputs: None 
' Purpose: Makes a chart visible and changes its source 
 
    Dim K As Integer        ' Counting variable 
     
    'iStates = 8 
    'sChartName = "ModelChart" 
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    With shtTestTran.ChartObjects(sChartName) 
        .Visible = True     ' Set the chart visible 
    End With 
     
    With shtTestTran.ChartObjects(sChartName).Chart 
        For K = 1 To 3 
            .SeriesCollection(K).XValues = "='Test States'!R1C6:R1C" & (5 + iStates) ' 
Change the X axis source 
            .SeriesCollection(K).Values = "='Test States'!R" & (1 + K) & "C6:R" & (1 + K) 
& "C" & (5 + iStates) ' Change the Y axis source 
        Next K 
    End With 
 
End Sub
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---- Plot Update Code ---- 
 
Option Explicit 
Sub ModifyChart(iStates As Integer, sChartName As String) 
' T. Judson Wooters, 20-DEC-2007 
' Inputs:  iStates - number of states to be ploted 
' Outputs: None 
' Purpose: Makes a chart visible and changes its source 
 
    Dim K As Integer        ' Counting variable 
     
    'iStates = 8 
    'sChartName = "ModelChart" 
     
    With shtModel.ChartObjects(sChartName) 
        .Visible = True     ' Set the chart visible 
    End With 
     
    With shtModel.ChartObjects(sChartName).Chart 
        For K = 1 To 4 
            .SeriesCollection(K).XValues = "=Data!R1C3:R1C" & _ 
                        (2 + iStates) ' Change the X axis source 
            .SeriesCollection(K).Values = "=Data!R" & (1 + K) & _ 
                        "C3:R" & (1 + K) & "C" & (2 + iStates) 
                        ' Change the Y axis source 
        Next K 
    End With 
 
End Sub 
Function OutputModelExcel(iMaxStates As Integer, iInitState As Integer, _ 
                        P As Long, lngDataPts As Long, R As Integer, _ 
                        dExtreme As Double, dExtremeMax As Double, _ 
                        dTotWinTime As Double, bNotZero As Boolean, _ 
                        sReason As String, bModCand As Boolean, _ 
                        iSR As Integer) As Integer 
 
    If iInitState Then 
        shtData.Cells(9, 2) = "SR" 
        shtData.Cells(8, 4) = "Extreme" 
        shtData.Cells(8, ((iMaxStates - iInitState) / 2) + 5) = _ 
                        "Statistical Window (sec)" 
        shtData.Cells(8, (2 * (iMaxStates - iInitState) / 2 + 1) + 5) = _ 
                        "Reason" 
        shtData.Cells(8, 3) = "Total" 
        shtData.Cells(9 + P, 2) = P 
        shtData.Cells(9 + P, 3) = lngDataPts 
    End If 
    If P = iSR Then 
        shtData.Cells(9, (R / 2)).Value = R 
        shtData.Cells(9, (iMaxStates / 2) + (R / 2) - 3).Value = R 
        shtData.Cells(9, (2 * (iMaxStates - iInitState) / 2 + 1) + 5 + _ 
                        (R - iInitState) / 2).Value = R 
    End If 
    shtData.Cells(9 + P, (R / 2)) = dExtreme 
    If bModCand Then 
        shtData.Cells(9 + P, ((iMaxStates / 2) + (R / 2) - 3)) = dTotWinTime 
    End If 
    If dExtreme > dExtremeMax Then 
        sReason = "Ext > " & dExtremeMax 
        If Not bNotZero Then 
            sReason = sReason & ", TranProb=0/1" 
        End If 
    ElseIf Not bNotZero Then 
        sReason = "TranProb=0/1" 
    End If 
    If bModCand Then 
        shtData.Cells(9 + P, (R / 2)).Interior.ColorIndex = 45 
        shtData.Cells(9 + P, ((iMaxStates / 2) + (R / 2) - 3)) _ 
                    .Interior.ColorIndex = 45 
        shtData.Cells(9 + P, (2 * (iMaxStates - iInitState) / 2 + 1) _ 
                    + 5 + (R - iInitState) / 2).Interior.ColorIndex = 45 
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        shtData.Cells(9 + P, (2 * (iMaxStates - iInitState) / 2 + 1) _ 
                    + 5 + (R - iInitState) / 2).Value = "MODEL" 
        OutputModelExcel = -1 
    Else 
        shtData.Cells(9 + P, (2 * (iMaxStates - iInitState) / 2 + 1) _ 
                    + 5 + (R - iInitState) / 2).Value = sReason 
        shtData.Cells(9 + P, (2 * (iMaxStates - iInitState) / 2 + 1) _ 
                    + 5 + (R - iInitState) / 2).Interior.ColorIndex = 15 
        shtData.Cells(9 + P, (R / 2)).Interior.ColorIndex = 15 
        shtData.Cells(9 + P, ((iMaxStates / 2) + (R / 2) - 3)) _ 
                    .Interior.ColorIndex = 15 
        shtData.Columns((2 * (iMaxStates - iInitState) / 2 + 1) _ 
                    + 5 + (R - iInitState) / 2).EntireColumn.AutoFit 
        OutputModelExcel = 0 
    End If 
 
End Function 
Sub CleanUpExcel(iMaxStates As Integer, iInitState As Integer, iMaxSR As Integer) 
 
    shtData.Activate 
     
    ' ==== FIXES HEADERS ==== 
    If iMaxStates > 8 Then 
        With shtData.Range(Cells(8, 4), Cells(8, (iMaxStates / 2))) 
            .Merge 
            .Font.Bold = True 
            .HorizontalAlignment = xlCenter 
        End With 
        With shtData.Range(Cells(8, (iMaxStates / 2) + 1), _ 
                Cells(8, iMaxStates - 3)) 
            .Merge 
            .Font.Bold = True 
            .HorizontalAlignment = xlCenter 
        End With 
        With shtData.Range(Cells(8, (2 * (iMaxStates - iInitState) / _ 
                        2 + 1) + 5), Cells(8, (3 * (iMaxStates - iInitState) _ 
                        / 2 + 1) + 5)) 
            .Merge 
            .Font.Bold = True 
            .HorizontalAlignment = xlCenter 
        End With 
    ElseIf iMaxStates = 8 Then 
        With shtData.Cells(8, 4) 
            .Font.Bold = True 
            .HorizontalAlignment = xlCenter 
        End With 
        With shtData.Cells(8, (iMaxStates / 2) + 1) 
            .Font.Bold = True 
            .HorizontalAlignment = xlCenter 
        End With 
    End If 
     
    With shtData.Cells(8, 3) 
        .Font.Bold = True 
        .HorizontalAlignment = xlCenter 
    End With 
     
    ' ==== BORDERS ==== 
    With shtData.Range(Cells(8, 2), Cells(9 + iMaxSR, (3 * (iMaxStates _ 
                - iInitState) / 2 + 1) + 5)) 
        .Borders(xlEdgeRight).LineStyle = xlContinuous 
        .Borders(xlEdgeRight).Weight = xlThick 
        .Borders(xlEdgeLeft).LineStyle = xlContinuous 
        .Borders(xlEdgeLeft).Weight = xlThick 
        .Borders(xlEdgeTop).LineStyle = xlContinuous 
        .Borders(xlEdgeTop).Weight = xlThick 
        .Borders(xlEdgeBottom).LineStyle = xlContinuous 
        .Borders(xlEdgeBottom).Weight = xlThick 
    End With 
     
    With shtData.Range(Cells(9, 2), Cells(9, (3 * (iMaxStates - iInitState) _ 
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                / 2 + 1) + 5)) 
        .Borders(xlEdgeBottom).LineStyle = xlContinuous 
        .Borders(xlEdgeBottom).Weight = xlThin 
        .HorizontalAlignment = xlCenter 
    End With 
     
    With shtData.Range(Cells(8, 2), Cells(9 + iMaxSR, 2)) 
        .Borders(xlEdgeRight).LineStyle = xlContinuous 
        .Borders(xlEdgeRight).Weight = xlThin 
        .HorizontalAlignment = xlCenter 
    End With 
     
    With shtData.Range(Cells(8, 4), Cells(9 + iMaxSR, (iMaxStates / 2))) 
        .Borders(xlEdgeRight).LineStyle = xlContinuous 
        .Borders(xlEdgeRight).Weight = xlThin 
        .Borders(xlEdgeLeft).LineStyle = xlContinuous 
        .Borders(xlEdgeLeft).Weight = xlThin 
    End With 
     
    With shtData.Range(Cells(8, (2 * (iMaxStates - iInitState) / 2 + 1) _ 
            + 5), Cells(9 + iMaxSR, (2 * (iMaxStates - iInitState) / 2 + 1) + 5)) 
        .Borders(xlEdgeLeft).LineStyle = xlContinuous 
        .Borders(xlEdgeLeft).Weight = xlThin 
    End With 
    shtModel.Activate 
 
End Sub
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---- Real-Time Data Analyzer ---- 
 
Option Explicit 
Sub RealTime() 
 
Dim aLimit() As Double 
Dim aTempErr() As Double 
Dim aTotTime() As Double 
Dim aSample() As Double 
Dim aState() As Integer 
Dim aTran() As Double 
Dim aTot() As Double 
Dim a_dSP() As Double 
Dim a_dCV() As Double 
Dim aF() As Double 
Dim aT() As Double 
Dim aFlagVal() As Double 
Dim aFlagTime() As Double 
Dim dCurrTime As Double 
Dim dPrevTime As Double 
Dim dCurrErr As Double 
Dim dSampleFreq As Double 
Dim dSeed As Double 
Dim dFlag As Double 
Dim dCurrFlag As Double 
Dim dPrevFlag As Double 
Dim dFlagTime As Double 
Dim dCurrSP As Double 
Dim iFlagStates As Integer 
Dim lngFlagSamples As Long 
Dim iStates As Integer 
Dim iNextState As Integer 
Dim iPrevState As Integer 
Dim lngSR As Long 
Dim lngSample As Long 
Dim lngArrSize As Long 
Dim lngIndexS As Long 
Dim lngIndexFlag As Long 
Dim lngPrevIndex As Long 
Dim lngNextIndex As Long 
Dim lngFlagIndex As Long 
Dim lngFIndex As Long 
Dim lngStartIndex As Long 
Dim vSelectedItem As Variant 
Dim sFileData As String 
Dim fdFileData As FileDialog 
Dim aTotTest() As Double 
Dim aStateTest() As Integer 
Dim aSampleTest() As Double 
Dim IndexTest As Long 
Dim iSeed As Integer 
Dim dummy As String 
Dim bContinousSP As Boolean 
Dim K As Long 
Dim J As Long 
Dim N As Long 
 
Application.ScreenUpdating = False 
dSampleFreq = 0.1 
bContinousSP = shtRT.Cells(1, 2).Value 
 
Set fdFileData = Application.FileDialog(msoFileDialogFilePicker) 
 
With fdFileData 
    .AllowMultiSelect = False 
    If .Show = -1 Then 
        For Each vSelectedItem In .SelectedItems 
            sFileData = vSelectedItem 
        Next 
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    Else 
        Exit Sub 
    End If 
End With 
 
Open sFileData For Input As #1 
Input #1, iStates 
Input #1, lngSR 
Input #1, lngSample 
Input #1, lngFlagSamples 
lngSample = lngSample + 1               ' Must get 1 more sample to find final state tran 
lngFlagSamples = lngFlagSamples     ' Must add 1 more sample 
ReDim aLimit(1 To 3, 1 To iStates) 
ReDim aTran(1 To 3, 1 To iStates) 
ReDim aSample(1 To lngSample) 
ReDim aTot(1 To 4, 1 To iStates) 
ReDim aTotTest(1 To 4, 1 To iStates) 
ReDim aState(1 To lngSample) 
ReDim aStateTest(1 To lngSample) 
ReDim aSampleTest(1 To lngSample) 
ReDim aFlagVal(1 To 1) 
ReDim aFlagTime(1 To 1) 
 
For K = 1 To iStates 
    If (K - (iStates / 2)) > 0 Then 
        aLimit(1, K) = K - (iStates / 2) 
        aTran(1, K) = aLimit(1, K) 
        aTot(1, K) = aLimit(1, K) 
        aTotTest(1, K) = aLimit(1, K) 
    Else 
        aLimit(1, K) = K - (iStates / 2) - 1 
        aTran(1, K) = aLimit(1, K) 
        aTot(1, K) = aLimit(1, K) 
        aTotTest(1, K) = aLimit(1, K) 
    End If 
Next 
For K = 1 To iStates 
    Input #1, aLimit(1, K), aLimit(2, K), aLimit(3, K) 
Next K 
Close #1 
 
With fdFileData 
    .AllowMultiSelect = False 
    If .Show = -1 Then 
        For Each vSelectedItem In .SelectedItems 
            sFileData = vSelectedItem 
        Next 
    Else 
        Exit Sub 
    End If 
End With 
 
Open ActiveWorkbook.Path & "\CV.txt" For Output Access Write Lock Write As #4 
Open ActiveWorkbook.Path & "\SP.txt" For Output Access Write Lock Write As #5 
Open sFileData For Input As #1 
Do While Not EOF(1) 
    lngArrSize = lngArrSize + 1 
    ReDim Preserve aTempErr(1 To lngArrSize) 
    ReDim Preserve aTotTime(1 To lngArrSize) 
    ReDim Preserve a_dSP(1 To lngArrSize) 
    ReDim Preserve a_dCV(1 To lngArrSize) 
    Input #1, aTotTime(lngArrSize), a_dCV(lngArrSize), a_dSP(lngArrSize) 
    aTempErr(lngArrSize) = a_dSP(lngArrSize) - a_dCV(lngArrSize) 
    Print #4, aTotTime(lngArrSize), a_dCV(lngArrSize) 
    If bContinousSP Then 
        Print #5, aTotTime(lngArrSize), a_dSP(lngArrSize) 
    Else 
        If dCurrSP <> a_dSP(lngArrSize) Then 
            If lngArrSize = 1 Then 
                Print #5, aTotTime(lngArrSize), a_dSP(lngArrSize) 
            Else 
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                Print #5, aTotTime(lngArrSize), dCurrSP 
            End If 
            dCurrSP = a_dSP(lngArrSize) 
            Print #5, aTotTime(lngArrSize), dCurrSP 
        End If 
    End If 
Loop 
Print #5, aTotTime(lngArrSize), dCurrSP 
Close #1 
Close #4 
Close #5 
 
dFlag = 1 / (lngFlagSamples + 1) 
dCurrFlag = 0 
 
dSeed = aTempErr(1) 
iPrevState = fState(dSeed, 0, (iStates / 2)) 
For K = 1 To lngSample 
    aSample(K) = aTempErr(lngSR * (K - 1) + 1) 
Next K 
dCurrTime = aTotTime(lngSR * (lngSample - 1) + 1) 
lngStartIndex = lngSR * lngSample + 1 
 
Open ActiveWorkbook.Path & "\RealTime.txt" For Output Access Write Lock Write As #1 
For K = 1 To iStates 
    Print #1, aLimit(1, K), 
Next K 
Print #1, 
For K = 1 To iStates 
    Print #1, aLimit(2, K), 
Next K 
Print #1, 
For K = 1 To iStates 
    Print #1, aLimit(3, K), 
Next K 
Print #1, 
 
RealCharact iStates, 0, 1, lngSample, aSample(), aTot(), aState(), 0 
 
iFlagStates = 0 
For N = 1 To iStates 
    If aTot(4, N) > aLimit(2, N) Or aTot(4, N) < aLimit(3, N) Then 
        If dCurrFlag = 0 Then 
            dFlagTime = dCurrTime 
        End If 
        dPrevFlag = dCurrFlag 
        dCurrFlag = dCurrFlag + dFlag 
        Exit For 
    End If 
    iFlagStates = iFlagStates + 1 
Next N 
 
Print #1, dCurrTime, 
For J = 1 To iStates 
    Print #1, aTot(4, J), 
Next J 
Print #1, dCurrFlag 
 
If iFlagStates = iStates Then 
    dCurrFlag = 0 
    dFlagTime = 0 
End If 
 
lngFIndex = lngFIndex + 1 
ReDim Preserve aT(1 To lngFIndex) 
ReDim Preserve aF(1 To lngFIndex) 
aT(lngFIndex) = dCurrTime 
aF(lngFIndex) = dCurrFlag 
aFlagVal(1) = dCurrFlag 
aFlagTime(1) = dCurrTime 
ReDim Preserve aFlagVal(1 To 2) 
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ReDim Preserve aFlagTime(1 To 2) 
lngIndexFlag = 2 
 
For K = lngStartIndex To lngArrSize Step lngSR 
    dCurrErr = aTempErr(K) 
    dPrevTime = dCurrTime 
    dCurrTime = aTotTime(K) 
    lngIndexS = lngIndexS + 1 
    If lngIndexS > lngSample Then lngIndexS = 1 
    If lngIndexS = 1 Then 
        lngPrevIndex = lngSample 
    Else 
        lngPrevIndex = lngIndexS - 1 
    End If 
    If lngIndexS = lngSample Then 
        lngNextIndex = 1 
    Else 
        lngNextIndex = lngIndexS + 1 
    End If 
    iNextState = modDevModel.fState(dCurrErr, aState(lngPrevIndex), iStates / 2) 
    For J = 1 To iStates                             ' fill (2) element of 'tot' array 
        If aState(lngIndexS) = aTot(1, J) Then 
            aTot(2, J) = aTot(2, J) - 1 
            Exit For 
        End If 
    Next J 
    If aState(lngIndexS) > 0 And aState(lngNextIndex) = -1 Then 
        For N = 1 To iStates 
            If aState(lngIndexS) = aTot(1, N) Then 
                aTot(3, N) = aTot(3, N) - 1 
                Exit For 
            End If 
        Next 
    ElseIf aState(lngIndexS) < 0 And aState(lngNextIndex) = 1 Then 
        For N = 1 To iStates 
            If aState(lngIndexS) = aTot(1, N) Then 
                aTot(3, N) = aTot(3, N) - 1 
                Exit For 
            End If 
        Next 
    End If 
    If aState(lngPrevIndex) > 0 And iNextState = -1 Then 
        For N = 1 To iStates 
            If aState(lngPrevIndex) = aTot(1, N) Then 
                aTot(3, N) = aTot(3, N) + 1 
                Exit For 
            End If 
        Next 
    ElseIf aState(lngPrevIndex) < 0 And iNextState = 1 Then 
        For N = 1 To iStates 
            If aState(lngPrevIndex) = aTot(1, N) Then 
                aTot(3, N) = aTot(3, N) + 1 
                Exit For 
            End If 
        Next 
    End If 
    For J = 1 To iStates                            ' fill (2) element of 'tot' array 
        If aState(lngPrevIndex) = aTot(1, J) Then 
            aTot(2, J) = aTot(2, J) + 1 
            Exit For 
        End If 
    Next J 
     
    iSeed = aState(lngIndexS) 
    aState(lngIndexS) = iNextState 
    aSample(lngIndexS) = dCurrErr 
 
    For N = 1 To iStates 
        If aTot(2, N) = 0 Then 
            aTot(4, N) = 0 
        Else 
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            aTot(4, N) = aTot(3, N) / aTot(2, N) 
        End If 
    Next 
     
    iFlagStates = 0 
    For N = 1 To iStates 
        If aTot(4, N) > aLimit(2, N) Or aTot(4, N) < aLimit(3, N) Then 
            If dCurrFlag = 0 Then 
                dFlagTime = dCurrTime 
            End If 
            dPrevFlag = dCurrFlag 
            dCurrFlag = dCurrFlag + dFlag 
            If dCurrFlag >= 1 Then 
                dCurrFlag = 1 
                aFlagVal(lngIndexFlag) = 1 
            End If 
            If aFlagVal(lngIndexFlag) = 0 Then 
                aFlagTime(lngIndexFlag) = dCurrTime 
                lngIndexFlag = lngIndexFlag + 1 
                ReDim Preserve aFlagVal(1 To lngIndexFlag) 
                ReDim Preserve aFlagTime(1 To lngIndexFlag) 
                aFlagVal(lngIndexFlag) = dCurrFlag 
                aFlagTime(lngIndexFlag) = dCurrTime 
            End If 
            Exit For 
        End If 
        iFlagStates = iFlagStates + 1 
    Next N 
    ' **** PRINTS ALL TRANSITION PROBABILITIES **** 
    Print #1, dCurrTime, 
    For J = 1 To iStates 
        Print #1, aTot(4, J), 
    Next J 
    Print #1, dCurrFlag 
    ' ********************************************* 
    If iFlagStates = iStates Then 
        dPrevFlag = dCurrFlag 
        dCurrFlag = 0 
        dFlagTime = 0 
        If aFlagVal(lngIndexFlag) = 1 Then 
            lngIndexFlag = lngIndexFlag + 1 
            ReDim Preserve aFlagVal(1 To lngIndexFlag) 
            ReDim Preserve aFlagTime(1 To lngIndexFlag) 
            aFlagVal(lngIndexFlag) = 1 
            aFlagTime(lngIndexFlag) = dCurrTime 
            lngIndexFlag = lngIndexFlag + 1 
            ReDim Preserve aFlagVal(1 To lngIndexFlag) 
            ReDim Preserve aFlagTime(1 To lngIndexFlag) 
            aFlagVal(lngIndexFlag) = 0 
            aFlagTime(lngIndexFlag) = dCurrTime 
            lngIndexFlag = lngIndexFlag + 1 
            ReDim Preserve aFlagVal(1 To lngIndexFlag) 
            ReDim Preserve aFlagTime(1 To lngIndexFlag) 
        Else 
            If aFlagVal(lngIndexFlag) > 0 Then 
                lngIndexFlag = lngIndexFlag - 1 
                ReDim Preserve aFlagVal(1 To lngIndexFlag) 
                ReDim Preserve aFlagTime(1 To lngIndexFlag) 
            End If 
            aFlagVal(lngIndexFlag) = 0 
            aFlagTime(lngIndexFlag) = dCurrTime 
        End If 
    End If 
             
    If dCurrFlag < dPrevFlag Then 
        lngFIndex = lngFIndex + 1 
        ReDim Preserve aT(1 To lngFIndex) 
        ReDim Preserve aF(1 To lngFIndex) 
        aT(lngFIndex) = dPrevTime 
        aF(lngFIndex) = dPrevFlag 
        lngFIndex = lngFIndex + 1 



 180 

        ReDim Preserve aT(1 To lngFIndex) 
        ReDim Preserve aF(1 To lngFIndex) 
        aT(lngFIndex) = dCurrTime 
        aF(lngFIndex) = dCurrFlag 
    ElseIf dCurrFlag > dPrevFlag And dPrevFlag = 0 Then 
        lngFIndex = lngFIndex + 1 
        ReDim Preserve aT(1 To lngFIndex) 
        ReDim Preserve aF(1 To lngFIndex) 
        aT(lngFIndex) = dPrevTime 
        aF(lngFIndex) = dPrevFlag 
        lngFIndex = lngFIndex + 1 
        ReDim Preserve aT(1 To lngFIndex) 
        ReDim Preserve aF(1 To lngFIndex) 
        aT(lngFIndex) = dCurrTime 
        aF(lngFIndex) = dCurrFlag 
    ElseIf dCurrFlag > dPrevFlag And dCurrFlag = 1 Then 
        lngFIndex = lngFIndex + 1 
        ReDim Preserve aT(1 To lngFIndex) 
        ReDim Preserve aF(1 To lngFIndex) 
        aT(lngFIndex) = dPrevTime 
        aF(lngFIndex) = dPrevFlag 
        lngFIndex = lngFIndex + 1 
        ReDim Preserve aT(1 To lngFIndex) 
        ReDim Preserve aF(1 To lngFIndex) 
        aT(lngFIndex) = dCurrTime 
        aF(lngFIndex) = dCurrFlag 
    End If 
 
 
     
Next K 
 
lngIndexFlag = lngIndexFlag + 1 
ReDim Preserve aFlagVal(1 To lngIndexFlag) 
ReDim Preserve aFlagTime(1 To lngIndexFlag) 
aFlagVal(lngIndexFlag) = aFlagVal(lngIndexFlag - 1) 
aFlagTime(lngIndexFlag) = dCurrTime 
lngFIndex = lngFIndex + 1 
ReDim Preserve aT(1 To lngFIndex) 
ReDim Preserve aF(1 To lngFIndex) 
aT(lngFIndex) = dCurrTime 
aF(lngFIndex) = aF(lngFIndex - 1) 
 
Close #1 
 
Open ActiveWorkbook.Path & "\Flag.txt" For Output Access Write Lock Write As #2 
For K = 1 To lngFIndex 
    Print #2, aT(K), aF(K) 
Next K 
Close #2 
Open ActiveWorkbook.Path & "\SquareFlag.txt" For Output Access Write Lock Write As #3 
For K = 1 To lngIndexFlag 
    Print #3, aFlagTime(K), aFlagVal(K) 
Next K 
Close #3 
 
Application.ScreenUpdating = True 
 
End Sub 
Sub RealCharact(iNumState As Integer, dExtreme As Double, iSR As Integer, _ 
                lngArrSize As Long, a_dTotErr() As Double, a_dTot() As Double, _ 
                arr_States() As Integer, iSeed As Integer) 
' Author:           T. Judson Wooters 
' Created Date:     18-DEC-2006 
' Description:      Accepts an array of errors, assigns states and returns statistics 
 
Dim N As Long                       ' Internal counter 
Dim P As Integer                    ' Internal counter (used to count through states) 
 
' ---------- FILL 'TOT' ARRAY WITH STATES (1) ----------- 
For N = 1 To iNumState 
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    a_dTot(2, N) = 0 
    a_dTot(3, N) = 0 
    a_dTot(4, N) = 0 
    If (N - (iNumState / 2)) > 0 Then 
        a_dTot(1, N) = N - (iNumState / 2) 
    Else 
        a_dTot(1, N) = N - (iNumState / 2) - 1 
    End If 
Next 
 
For N = 1 To lngArrSize 
    arr_States(N) = 0 
    If N = 1 Then                                               ' determine current state 
        arr_States(N) = fState(a_dTotErr(N), iSeed, (iNumState / 2)) 
    Else 
        arr_States(N) = fState(a_dTotErr(N), arr_States(N - 1), (iNumState / 2)) 
    End If 
Next N 
 
' ---------- FILL 'ERR', 'STATES' AND 'TOT' ARRAYS ----------- 
For N = 1 To lngArrSize - 1 
    For P = 1 To iNumState                          ' fill (2) element of 'tot' array 
        If arr_States(N) = a_dTot(1, P) Then 
            a_dTot(2, P) = a_dTot(2, P) + 1 
            Exit For 
        End If 
    Next 
    If arr_States(N) > 0 And arr_States(N + 1) = -1 Then 
        For P = 1 To iNumState 
            If arr_States(N) = a_dTot(1, P) Then 
                a_dTot(3, P) = a_dTot(3, P) + 1 
                Exit For 
            End If 
        Next 
    ElseIf arr_States(N) < 0 And arr_States(N + 1) = 1 Then 
        For P = 1 To iNumState 
            If arr_States(N) = a_dTot(1, P) Then 
                a_dTot(3, P) = a_dTot(3, P) + 1 
                Exit For 
            End If 
        Next 
    End If 
Next 
 
' --------- TRANSITION PROB = PROBABILIY TO CROSS ZERO ---------- 
For N = 1 To iNumState 
    If a_dTot(2, N) = 0 Then 
        a_dTot(4, N) = 0 
    Else 
        a_dTot(4, N) = a_dTot(3, N) / a_dTot(2, N) 
    End If 
Next 
 
' -------- DETERMINE STATISTICS OF ENTIRE STATE CHARACTERIZATION --------- 
dExtreme = (a_dTot(2, 1) + a_dTot(2, iNumState)) / (lngArrSize) 
 
End Sub 
 
Sub LoadRTFile() 
 
Dim aStates() As Integer 
Dim aLimits() As Double 
Dim aTran() As Double 
Dim aTemp() As Double 
Dim dTimeInit As Double 
Dim vSelectedItem As Variant 
Dim sFileData As String 
Dim fdFileData As FileDialog 
Dim iStates As Integer 
Dim iIndex As Integer 
Dim iSR As Integer 



 182 

Dim iRecordCnt As Long 
 
Dim K As Long 
Dim J As Long 
Dim M As Long 
 
Application.ScreenUpdating = False 
 
shtRT.Range(Cells(2, 4), Cells(30001, 20)).ClearContents 
shtRT.Range(Cells(30002, 4), Cells(60002, 20)).ClearContents 
ReDim aTemp(1 To 2) 
iIndex = 0 
iSR = 1 
 
J = 0 
Open ActiveWorkbook.Path & "\Flag.txt" For Input As #2 
Do While Not EOF(2) 
    J = J + 1 
    For K = 1 To 2 
        Input #2, aTemp(K) 
        shtRT.Cells(J + 1, 15 + K).Value = aTemp(K) 
    Next K 
Loop 
Close #2 
 
ReDim aTemp(1 To 2) 
J = 0 
Open ActiveWorkbook.Path & "\SquareFlag.txt" For Input As #3 
Do While Not EOF(3) 
    J = J + 1 
    For K = 1 To 2 
        Input #3, aTemp(K) 
        shtRT.Cells(J + 1, 18 + K).Value = aTemp(K) 
    Next K 
Loop 
Close #3 
 
ReDim aTemp(1 To 2) 
J = 1 
iRecordCnt = 1 
iIndex = 0 
Open ActiveWorkbook.Path & "\CV.txt" For Input As #4 
For K = 1 To 2 
    Input #4, aTemp(K) 
    shtRT.Cells(J + 1, iIndex + K + 3).Value = aTemp(K) 
Next K 
Do While Not EOF(4) 
    iRecordCnt = iRecordCnt + 1 
    If (iRecordCnt Mod iSR) = 0 Then 
        J = J + 1 
        For K = 1 To 2 
            Input #4, aTemp(K) 
            shtRT.Cells(J + 1, iIndex + K + 3).Value = aTemp(K) 
        Next K 
    Else 
        For K = 1 To 2 
            Input #4, aTemp(K) 
        Next K 
    End If 
    If J >= 60000 Then 
        J = 0 
        iIndex = iIndex + 3 
    End If 
Loop 
Close #4 
 
ReDim aTemp(1 To 2) 
J = 0 
iIndex = 0 
Open ActiveWorkbook.Path & "\SP.txt" For Input As #5 
Do While Not EOF(5) 
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    J = J + 1 
    For K = 1 To 2 
        Input #5, aTemp(K) 
        shtRT.Cells(J + 1, iIndex + K + 9).Value = aTemp(K) 
    Next K 
    If J >= 60000 Then 
        J = 0 
        iIndex = iIndex + 3 
    End If 
Loop 
Close #5 
 
Application.ScreenUpdating = True 
 
End Sub 
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