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NOMENCLATURE 
 

 
 fi(x) - function value at a point x 

 Ji(x) - Jacobian of fi(x) 

 I - Identity Matrix 

 n - order of the matrix 

µk - scalar quantity 

 pk - step length 

 Ji
T(x) - Transpose of the Jacobian 

 xk - current value of x 

 xk+1 - next value of x 

 x* - optimum value of x for which f(x) is minimum or maximum 

Xi - process variable 

Xi-1 - previous process variable 

i - time sampling index 

v2
f,i - filtered value of a measure of variance 

v2
f,i-1 - previous filtered value 

δ2
f,i - filtered value of a measure of variance 

δ2
f,i-1 - previous filtered value 

 N - total number of data points 

rA = rate of reaction (mol/s) 

 xiii



ka = rate constant (1/s), dependent on temperature 

 kb = rate constant (1/s), not dependent on temperature 

 CA = concentration of methyl acetate in feed solution (mol/s) 

A = frequency factor (1/s) 

 E = activation energy (J/mol) 

 R = gas constant (J/mol K) 

 T = reactor temperature (K) 

 

 xiv



 

 

 

CHARTER 1 

INTRODUCTION 

 

Optimization is one of the oldest branches of mathematics, serving as a catalyst for the 

development of geometry and differential calculus. Today it finds applications in most of 

the scientific and engineering disciplines. The importance of optimization lies in its 

natural occurrence in two fundamental areas of human interest – the physical and social 

sciences [1, 2] where optimum principles have proved to be fundamental to successful 

modeling and interpretation of natural phenomenon. Optimization is aimed towards 

maximizing or minimizing a measure of quality called the objective function. The 

objective function value depends on the values chosen for the independent variables 

which are termed as the decision variables and optimization seeks to find the values for 

the decision variables which result in the best (minimum or maximum) value for the 

objective function [3]. Optimization in a manufacturing process serves as a very good 

example for commercial optimization application. Variables such as cost and quantity of 

the raw materials are optimized to obtain a product of minimum cost or of better quality 

or both. In this case, the cost and quantity of the raw materials are the decision variables 

and the cost, quality and quantity of the product are the objective functions. The concept 

of optimization is explained by a simple example, 
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( ) ( )25+= xxf

The function ‘f’ to be minimized is called the objective function and the variable ‘x’ is the 

decision variable. The above function can be plotted for different values of ‘x’ as shown 

in Figure 1.1. The optimum for this function occurs at x = -5, when the objective function 

attains the minimum value of 0. 

 

Example 1.1: To minimize the function 

In an industrial process, for example, the criterion for optimum operation is in the form of 

minimum cost, where the product cost can depend on large number of interrelated 

variables, termed as decision variables (DV). In mathematics the performance criterion 

could be, for example, to minimize the integral of the squared difference between a 

specified function and an approximation to it generated as a function of the controlled 

parameters. Both of these examples have in common the requirement that a single 

quantity is to be minimized by variation of a number of controlled parameters. 

1.1 Minimizing Process Cost 

 

The importance of process optimization lies not in trying to find out all the factors 

affecting a system but in finding out, with the least possible effort, the best way to adjust 

the system to make it run at its best [4]. If this is carried out well, systems can have a 

more economic and improved design so that they can be operated with more accuracy or  

 

 

       (1.1) 



Figure 1.1 An Optimization Example
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at less cost and the system designer will have a better understanding of the effects of 

parameter interaction and variation on his design. 

 

1.2 Empirical Modeling 

In many different fields it is necessary to represent a great number of data points in an 

easily understandable way. Usually, such data points are dependent on one or more 

independent variables. If the data points are dependent only on one independent variable, 

it is possible to plot the data points in Cartesian coordinates, and to draw a curve through 

them. Then this curve is the graphical representation of the data points. If the data points 

are dependent on more than one independent variable, it is not so easy to produce a 

graphical representation for them. In this case it is necessary to look for other possibilities 

of the representation, for instance a functional form. The functional form is nothing but 

the best model that fits through the noisy data. A functional form is also of interest if the 

data points are to be used for computations on a digital computer because it is not 

necessary to store the data points, which can be a very great number, but only the 

functional form as a representation for them. Moreover, an easy interpolation between 

data points is possible with the help of a functional form. 

 

For these reasons we must enter into the question how to obtain such a functional form. 

Usually, a class of functions is selected, for instance the class of polynomials, exponential 

functions, or trigonometric functions. If we assume that each term of selected class has a 

parametric representation; in other words, each term is dependent on the decision 

variables, then the individual functions are characterized by different values for the 
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Constants, a, b, c, are the parameters that have to determined. These are called 

“controlled parameters” in modeling, but “decision variables” in optimization [6]. 

Optimization of these parameters based on an error criterion which is, the sum of squared 

distances between the data points and the respective points on the model curve, shows 

that the appropriate values for the parameters are 

 

Consider a noisy data shown in Figure 1.2. The objective of this problem is to find a 

functional form that closely represents the data. The chosen model is shown in Equation 

1.2. 

 

Example 1.2: Determine a functional form for noisy data 

 

parameters. As the functional form shall be a good substitute for the data points, we must 

determine the parametric values for that particular function which fits the data points best 

in the sense of an error criterion. As this function is characterized by certain values for 

the parameters, which are also called the decision variables, we must select the values for 

these parameters in an appropriate way. This can be done by optimizing the error 

criterion with respect to the parameters. The determination of a functional form as 

representation for the data points in this way is usually called curve fitting [5]. 

 

       (1.2) 



Figure 1.2 Curve Fitting
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The model curve that is obtained using these parametric values best fits the noisy data. 

The requirement of methods of optimization arises from the mathematical complexity 

necessary to describe the theory of systems, process, equipment and devices which occur 

in practice. Even quite simple systems must sometimes be represented by theory which 

may contain approximations, by parameters which change with time, or by parameters 

that vary in a random manner. For many reasons the theory is imperfect, yet it must be 

used to predict the optimum operating conditions of a system such that some performance 

criterion such as low cost or better quality for instance, is satisfied. At best, such theory 

can predict only that the system is closer to the desired optimum. Optimization methods 

are then used to explore the local region of operation and predict the way that the system 

parameters, for example, quantity of the raw materials, should be adjusted to bring the 

system to an optimum. 

 

1.3 Optimization Categories 

There are two main categories in which optimization can be classified. One is constrained 

optimization and the other is unconstrained optimization. The controlled parameters, 

which are the decision variables for a particular process, are to be optimized using one of 

the two main classes of optimization. The constrained optimization tends to seek the 

optimum values for these parameters in a restricted region where there is a maximum 

probability of the optimum existing within it. But, in practical situations, we cannot 

always predict the location of the optimum. In such cases, the optimum values are 

archived using the unconstrained optimization. There are no bound regions specified for 

the parameters and optimization algorithm searches for the appropriate values in the 

 7



entire range of -∞ to +∞. These two classes of optimization are mainly used in practice to 

attain economic benefits and empirical modeling. For example, optimization of a set of 

process setpoints seeking to minimize process operating cost falls under the former case, 

and optimization of model parameters to fit experimental data is generally called 

empirical modeling. This work mainly deals with the numerical empirical model 

optimization of parameters resulting in a functional form that closely represents the noisy 

experimental data. 

 

The model parameters are usually optimized based on the difference between the 

predicted value and the experimental value. The sum of squared deviations (SSD) of the 

data to model is called the error function. The optimization algorithm seeks the optimum 

values for the parameters by minimizing the error function. 

 

Nonlinear, least squares optimization is commonly used to determine model parameter 

values that best fits the empirical data, by minimizing the sum of squared deviations 

(SSD) of data to model, termed the Objective Function (OF). Such models are commonly 

used in control and optimization. Common multivariable nonlinear optimization methods 

include Marquardt-Levenberg, Gauss-Newton, Nelder-Mead Simplex, and successive 

quadratic. Nonlinear optimization proceeds in successive iterations as the search 

progressively seeks the optimum parameter values, termed decision variables (DV) [7]. 

 

As the optimum is approached, the optimization procedure needs a criterion to stop the 

iterations. The criterion should desirably stop the search when subsequent changes in the 
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DV values do not improve the OF value. Thus, every optimization algorithm should 

include a stopping-criterion that stops the process when appropriate values of the 

parameters are achieved. 

 

Some of the current stop-optimization criteria include [8] 

 

1. A threshold on objective function value, which terminates the optimization 

process when the objective function value is less than the set value. 

2. A threshold on change in the objective function value, which terminates the 

optimization process when it observes no change in the objective function value.  

3. A threshold on change in the decision variable is another widely used criterion, 

which terminates the process when it observes no change in desired parameter 

values. 

4. A threshold in the number of iterations, which terminates the optimization after 

carrying out a certain number of iterations irrespective of whether the desired 

values for the parameters are achieved. 

5. Rise in Sum of Squared Deviation (SSD) or Root Mean Square (RMS) for 

validation set. 

 

Setting up thresholds on any of these factors requires an approximate knowledge of the 

optimum even before the optimization procedure is carried out. This is important 

because, if the threshold is set way away from the optimum, there is a possibility of the 

optimization procedure to stop searching well before the optimum is attained. On the 
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other hand, if the threshold is set far below the optimum, the optimizer might never find 

the optimum. Hence, stopping criteria 1-4 require a priori knowledge of the appropriate 

values. They are scale dependent, application dependent, starting point dependent, and 

optimization algorithm dependent; right choices require human supervision [9]. While 

criterion 5 has an advantage. It does not require a priori knowledge of the optimum. 

However, it has certain disadvantages attached to it. It stops when the optimizer observes 

a rise in the SSD value which has a very low probability of occurring. 

 

This work explains, demonstrates, and evaluates a novel stop-iteration criterion for least 

squares optimization, which is scale-free and requires no prior knowledge of the 

optimum. It stops iterations when there is no statistical evidence of improvement in 

successive iterations relative to the variation in the data. 

 10



 

 

 

CHAPTER 2 

FOCUS ON CURRENTLY USED CRITERIA 

 

There are many features that contribute to the degree of difficulty of an optimization 

problem. As the wide applicability and the great flexibility of the optimization in 

industries make it tempting to formulate models with ever increasing numbers of 

variables, it becomes more difficult to obtain optimum values for all the parameters in the 

model. Such a problem can be eliminated by using a good optimization algorithm and a 

proper stopping criterion. 

 

A general algorithm for optimization procedure consists of three major steps: a sampling 

step, an optimization step, and a check of some optimization stopping criterion. The 

availability of a suitable stopping criterion is an important aspect of any optimization 

process. 

 

To minimize computational burden and calculation time, the criterion should be loose 

enough that it does not require too many function evaluations after the near-optimum 

point has been found. But to ensure that a good model is obtained, it should also be 

stringent enough to ensure that in typical cases, the algorithm does not terminate before 
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the optimum values have been attained, i.e. if the final values obtained are no where near 

to the optima. 

 

There are a variety of stopping criteria used in the industrial optimization problems. The 

most commonly used criterion is setting up a threshold value on the objective function. 

This criterion involves fixing a previously known value for the objective function before 

the optimization process is started. When the optimization procedure is carried out, the 

objective function value is evaluated once after each iteration, and is then compared to 

the previously set threshold. The criterion stops the procedure if the evaluated objective 

function value is less than or equal to the threshold value. The accuracy of the optimum 

values for the parameters in the model is dependent on the selection of the threshold 

objective function value [10]. For example, optimization of a polynomial function to 

determine its minimum value requires this kind of stopping criteria to be incorporated 

into the algorithm. Let us consider a polynomial equation with two independent variables, 

‘x’ and ‘y’. The values of ‘x’ and ‘y’ for which the polynomial function value attains 

minimum are its optimum values. So, in this case, we can set a threshold value for the 

polynomial function, which is our objective function, to a number close to its minimum. 

 

The optimization algorithm tends to search for values of the variables, ‘x’ and ‘y’, such 

that the function value approaches the minimum. If the threshold value set is not very 

close to the minimum, the “optimum” obtained by the optimization would be less 

accurate. Hence, the values of ‘x’ and ‘y’ depend greatly on the previously set threshold 

value. 
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In experimental optimization it is usually decided heuristically when to terminate the 

series of trials; for example when the trial results indicate that no further significant 

improvement can be gained. In numerical optimization, if the calculations are made by 

computer, one must build into the program when the optimization procedure is to be 

terminated. For this purpose, quantitative criteria are needed which refer to the data 

available at any time. Sometimes, although not always, one will be concerned to obtain a 

solution as exactly as possible, i.e. accurate to the last stored digit. This requirement can 

relate to the variables or to the objective function. This criterion for stopping optimization 

looks at two or more successive values of the decision variables or the objective function. 

The optimization process is terminated when the criterion observes a change in these 

values which is less than some threshold. For instance, if we consider the same example 

of finding the minimum of the polynomial equation as we did earlier, the algorithm tends 

to take steps toward the optimum values of ‘x’ and ‘y’ at every iteration and compare 

them with the values obtained from the previous iteration. The program exits when it 

finds no significant improvement in these values, which are called the ‘step lengths’. 

 

This procedure has however one disadvantage which can be serious. Small step lengths 

occur not only when the optimum is nearby, but also if the search is moving through a 

narrow valley. The optimization may then be broken off long before the sought for 

extreme value is reached. 
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The probability that the optimizer attains the optimum values for the variables depends 

greatly on the initial guesses made to start the procedure. If the initial guess for the 

variables is no where near to the optimum, the optimizer takes a long time to get to the 

appropriate values. In such cases, it is convenient to stop the optimization process and 

rerun it with new initial guesses. Hence, it is required to fix a maximum number of 

iterations that should be allowed to be carried out by the optimizer to attain the optimum 

values. Once the maximum number of iterations is reached, the optimizer stops the search 

and starts again with new set of initial values for the variables. 

 

The different kinds of stopping criteria for optimization mentioned above are scale 

dependent, application dependent, starting point dependent, and optimization algorithm 

dependent; right choices require human supervision. However, when evaluating 

optimization algorithms, the use of a priori known information about the objective 

function under consideration should be refrained from. For example, in a practical 

situation where there is a need to optimize a process model to obtain the variables 

associated with it, the threshold value for the objective function (process model) is not 

available before hand. In such cases, it becomes highly problematic setting up a right 

threshold value. For instance, consider the simple examples shown below. 

 

Example 2.1: Minimize the function 

 

( ) 1022 −−= xxxf        (2.1) 
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( )

Figure 2.2 shows the pictorial representation of the above Equation 2.2. It is clearly 

indicated in the figure that the function value attains minimum when x value is close to 

1.14. When the optimization algorithm searches for the minimum along the deep valley 

of the curve, it observes very insignificant change in the decision variables (x values). 

The decision variables at two successive iterations are shown in Figure 2.2. If the 

optimization algorithm has a stopping criterion based on the threshold on the change in 

the DV, it stops searching for the minimum before it reaches the bottom of the valley. 

Hence, the optimum is never obtained if the search is carried out along the steepest side 

of the valley. 

 

The optimum for this function, f occurs at x = 1, when the objective function attains the 

minimum value of -11. This is clearly shown in Figure 2.1. Obtaining the optimum value 

for this objective function is not possible unless the user has a priori knowledge of it. In 

this example the optimum could be obtained by using the derivative information. This 

might not be possible in all the practical cases. If the user sets a threshold value for the 

objective function close to zero, the optimizer carries out the optimization process and 

stops when the curve cuts the x-axis and return the output as x = 4.31 or x = -2.31. In this 

case, the optimizer returned the roots of the polynomial equation and not the optimum. 

Example 2.2: Minimize the function 
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CHAPTER 3 

NOVEL STOPPING CRITERION 

 

An effort has been put in to develop a new stop-optimization criterion to eliminate the 

various disadvantages of the currently used stopping criteria. This work explains, 

demonstrates, and evaluates a novel stop-iteration criterion for the least squares 

optimization, which is scale-free and requires no a priori knowledge of the optimum. 

 

The concept of steady state identification technique is used to identify the end point of an 

optimization process instead of the conventional stopping criteria of setting up thresholds. 

This identification technique involves the calculation of the sum of squared deviations 

(SSD) between the data and the model. The optimizer tries to minimize the root mean 

square of the SSD (RMS SSD) value and the steady state identification technique 

calculates the ratio of the variances obtained from two different methods and tends to 

stop the optimization when the ratio statistic is less than unity. 

 

An observer of an optimization procedure for empirical data will note that the RMS SSD 

between the data and the model, the objective function value (OF) drops to an asymptotic 

minimum with progressive optimization iterations. The novelty of this method of 

observing progressive improvement is to calculate the RMS SSD of a random subset 
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(RMS SSD RS) of data (a different randomly selected subset for each iteration). The 

RMS SSDRS will appear as a noisy signal relaxing to its noisy steady state value as 

iterations progress. 

 

By using a random subset of data to provide a RMS SSD value for each iteration, the 

noise is independently distributed; and, at steady state, when convergence is achieved, the 

noise reflects the variance in the data. The noise is Chi-Square distributed, with an 

average equal to the standard error of the residual (model-to-data mismatch). When the 

noisy signal reaches a statistical steady state, the optimization has progressed to the point 

where there is no statistically significant improvement in OF with respect to model 

standard error; and optimization should be stopped. Since, the test looks at signal-to-noise 

ratio; it is scale independent and “right” for any particular application. 

 

The stopping criterion should be in a position to tell the optimizer that the statistical 

steady state has been reached and that the optimization process can be stopped. Hence, 

while developing this novel criterion for stopping optimization, we used the steady state 

identification technique to predict the end point. There are many ways to determine 

whether a signal is at steady state, or more properly stated, whether to accept or reject the 

null hypothesis. The most common technique used is the ratio of variances. The ratio of 

the variances as measured on the same set of data by two different methods is used to 

identify the steady state. For example, if we have a data of RMS SSD that gradually 

attains steady state as shown in Figure 3.1, the variances on this set of data are calculated 

using two different methods as shown below [11]. 



Figure 3.1 Sum of Squared Deviations of a Random Subset 
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Where, 

N - total number of data points 

XN - mean value of the data points 

Xi - current data point 

Xi-1 - previous data point 

Once the variances for this set of data points are obtained, the ratio is evaluated as –  

 

2
1

Variance
VarianceRatio =        (3.3) 

 

When steady state is reached, the ratio approaches unity. 

 

This method of identifying steady state does not require a pre-defined threshold on the 

objective function (OF) or a priori knowledge of the optimum. However, this method has 

some disadvantages attached to it. This method of evaluating the variances using the 

average value is computationally intense and also requires a large storage capacity. To 

eliminate the computational intensity, we chose the method of Cao and Rhinehart [12]. It 

presumes no auto-correlation in the noise, a condition which is satisfied by the random 

selection of data for the objective function value for each iteration. In this method, the 
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variances are calculated by replacing the average with an exponentially weighted filtered 

value. 

 

( )
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λλ     (3.4) 

( )( ) ( ) ( )1,
2
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13,
2 1 −− −+−= ifiiif XX δλλδ     (3.5) 

 

The exponentially weighted filtered factor, Xf is defined as  

 

( )
( )111 1
−

−+=
ii fif XXX λλ             (3.6) 

Where, 

Xi - process variable 

Xi-1 - previous process variable 

i - time sampling index 

v2
f,i - filtered value of a measure of variance 

v2
f,i-1 - previous filtered value 

δ2
f,i - filtered value of a measure of variance 

δ2
f,i-1 - previous filtered value 

 

In the above set of equations, λ1, λ2 and λ3 are filter factors. The ratio of the variances is 

given by 

 

( )
if
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i

v
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,
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,
2

12
δ
λ−

=        (3.7) 
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Steady state is accepted when the ratio statistic in the method is less than unity. 

 

The criterion detects a transient zone in which the ratio of the variances is greater than 2 

and then tends to seek a steady state for the ratio falls less than unity. The logic is shown 

in Figure 3.2. 

 

There are many advantages in using this technique of identifying steady state as a 

stopping criterion for optimization. This method does not require human supervision or a 

priori knowledge of the optimum. It is scale independent, computationally simple and 

requires very low data storage capacity. It also stops the optimization process when there 

is statistically no evidence of improvement. 
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CHAPTER 4 

PROCEDURE FOR EVALUATION OF THE NOVEL METHOD 

 

The method was examined using three different optimization techniques (Nelder-Mead 

Simplex, Gauss Newton, and Marquardt-Levenberg) on each of three types of data sets 

obtained from linear, nonlinear and multivariable functions. For each of the nine cases, 

the investigation approach is as follows: 

 

1. The optimization methods were run for excessive iterations, as visually defined. 

2. After every optimizer iteration, 20% of the total number of data points was randomly 

selected to calculate the sum of squared deviations. 

3. A plot between the root mean square of the sum of squared deviations of the random 

subset and the number of iterations is made for visual analysis. The method does not 

require a graph. 

4. Model parameter values are recorded twice: first when the random subset of RMS 

SSD is determined to be at steady state, and finally after excessive iterations. 

5. The models that result from these two parameter sets are visually compared by 

graphs, and quantitatively compared by analysis of variance. 
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A brief description of the three optimization techniques used to evaluate the novel 

stopping criterion follows. 

 

4.1 Nelder-Mead Simplex Method 

A method that is quite commonly used in nonlinear regression programs is the Nelder-

Mead or Simplex method. It is computationally quite simple, other than the calculation of 

the objective function value. The method works with a number of rules. The starting 

point is used to construct a simplex, m-dimensional shape with m+1 points, where m is 

the number of parameters. Thus for a two parameter problem there are three points, a 

triangle. The program calculates the objective function value at each point of the simplex 

on the surface [13]. 

The rules used by the Nelder-Mead Simplex method to approach the minimum are 

 

• Reflect the point with the highest objective function value through centroid (center) of 

the simplex. 

• If this produces the lowest OF value (best point), expand the simplex and reflect 

further. 

• If this is just a good point, start at the top of the simplex and reflect again. 

• If this is the highest OF value (worst point), compress the simplex and reflect closer. 

 

These rules are repeated until the convergence criteria are met. The simplex moves over 

the surface and should contract around the minimum. The simplex method is relatively 
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robust and numerically less complicated, but it can be inefficient (slow) for simple 

problems. 

 

For the case of two decision variables, the process generates a sequence of triangles 

(which might have different shapes), for which the function values at the vertices get 

smaller and smaller.  The size of the triangles is reduced and the coordinates of the 

minimum point are found. 

 

Let be the function that is to be minimized.  To start, we are given three vertices of 

a triangle

( yxf , )

( )kkk yxV ,= , for 3,2,1=k .  The function ( )yxf , is then evaluated at each of the 

three points  , for( )kkk yxfz ,= 3,2,1=k .  The subscripts are then reordered so 

that . We use the notation321 zzz ≤≤ ( ) ( ) ( 332211 ,,,,, yxWyxGyxB === ) to help 

remember that B is the best vector, G is good (next to best), andW is the worst vector. 

 

The construction process uses the midpoint M of the line segment joining B andG .  It is 

found by averaging the coordinates 

 

( ) ⎟
⎠
⎞

⎜
⎝
⎛ ++

=+=
2

,
22

1 2121 yyxxGBM     (4.1.1) 

 

4.1.1 Reflection using the point R :  The function decreases as we move along 

the side of the triangle fromW to B , and it decreases as we move along the side 
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fromW toG . Hence it is feasible that ( )yxf , takes on smaller values at points that lie 

away fromW on the opposite side of the line between B andG . We choose a test 

point R that is obtained by “reflecting” the triangle through the side BG . To determine R , 

we first find the midpoint M of the side BG . Then draw the line segment fromW to M and 

call its length d.  This last segment is extended a distance d through M to locate the point 

R [13]. The vector formula for R is 

 

( ) WMWMMR −=−+= 2      (4.1.2) 

 

4.1.2 Expansion using the point E  : If the function value at R is smaller than the 

function value atW , and then we have moved in the correct direction toward the 

minimum.  Perhaps the minimum is just a bit farther than the point R .  So we extend the 

line segment through M and R to the point E .  This forms an expanded 

triangle BGE .  The point E is found by moving an additional distance d along the line 

joining M and R . If the function value at E is less than the function value at R , then we 

have found a better vertex than R .  The vector formula for E is   

 

( ) MRMRRE −=−+= 2       (4.1.3) 

 

4.1.3 Contraction using the pointC : If the function values at R andW are the 

same, another point must be tested. Perhaps the function is smaller at M , but we cannot 
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The Gauss-Newton algorithm is used to solve nonlinear least squares problems. It is a 

modification of Newton's method that does not use second derivatives. The basic iteration 

of the Newton’s Method is given as 

 29

replaceW with M because we must have a triangle. Consider the two 

midpoints

 

The search procedure for the Nelder-Mead Simplex method is illustrated in Figure 4.1.  

 

1C and 2C of the line segmentsWM and MR , respectively. The point with the 

smaller function value is calledC , and the new triangle is BGC . 

 

4.1.4 Shrink toward B : If the function value atC is not less than the value atW , the 

pointsG andW must be shrunk toward B . The pointG is replaced with M , andW is 

replaced with

By neglecting the Sk in Newton’s method, Equation (4.2.1) becomes 

 

 

4.2 Gauss-Newton Method 

 

S , which is the midpoint of the line segment joining 

( ) k
T

kkk
T

k fJpJJ −=

( )

B with W [13]. 

kkkkkk
TT fJpSJJ −=+

kkk+1 pxx +=

 

       (4.2.2) 

      (4.2.3) 

      (4.2.1) 

http://www.answers.com/main/ntquery?method=4&dsid=2222&dekey=Least+squares&gwp=8&curtab=2222_1
http://www.answers.com/main/ntquery?method=4&dsid=2222&dekey=Newton%27s+method+in+optimization&gwp=8&curtab=2222_1
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this, together with the step (4.2.2), defines the Gauss-Newton method. The simultaneous 

linear equations (4.2.3) are called the least squares normal equations. Equation (4.2.3) is 

likely to be less troublesome for the generation of the descent directions than the 

corresponding one (4.2.1) for Newton’s method since the matrix,  is always at least 

positive semidefinite. To see why this is, take an arbitrary vector  and set

k
T

k JJ

0≠z zJy k= . 

Then 

 

0≥= yyzJJz T
k

T
k

T       (4.2.4) 

 

The only trouble that can arise in this respect is when Jk is rank deficient and hence 

is singular. However, even if pk
T

k JJ k is a descent direction this does not guarantee 

that . The step (4.2.2) might be too large, locating xkk FF <+1 k+1 at a point well beyond the 

linear minimum. For these reasons a good starting point is required if there is to be any 

chance of convergence to a minimum [13]. 

 

4.3 Marquardt-Levenberg Method 

The Marquardt-Levenberg method is a nonlinear optimization and equation solving 

technique. The algorithm can be used to estimate unknown variables in sets of nonlinear 

equations where the number of variables is less than or equal to the number of equations. 

Simple constraints on the parameters may be used to keep the solution in bounds. The 

Marquardt-Levenberg method overcomes the drawbacks of the Newton’s method by 

starting off as a direct search algorithm and then progressively becomes gradient-based as 

the solution converges to the optimum. Marquardt-Levenberg method thus combines the 
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best features of the gradient Newton-Raphson procedures by using a suitable weighting 

parameter. The method has the stability of gradient procedure with respect to poor 

starting values, and at the same time, it possesses the speed of convergence of the 

Newton-Raphson method when close to the final solution. The main drawback of the 

Marquardt-Levenberg method is the inability to handle constrained optimization 

problems [13]. 

 

The Marquardt-Levenberg method tries to find the minimum of the function, f(x) that is 

the sum of squares of the nonlinear functions, 

 

( ) ( )[ ]∑
=

=
m

i
i xfxf

1

2

2
1        (4.3.1) 

 

If the Jacobian of fi(x) be denoted by Ji(x), then the Marquardt-Levenberg method 

searches for the minimum in the direction given by the solution ‘p’ to the equations 

 

( ) k
T

kkkk
T

k fJpIJJ −=+ µ       (4.3.2) 

 

where, 0
−
>kµ  is a scalar and I is the unit matrix of order n. Equation (4.2.2) is used to 

obtain a point with which the next iteration is carried out. 

 

kkk pxx +=+1        (4.3.3) 
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For a sufficiently large value of µk, the matrix ( )IJ k
T

k µ+   is positive definite and pk is 

then a descent direction. As , however, we require that  so that the 

method acquires the asymptotic rate of convergence of the Gauss-Newton method. 

*xxk ⎯→⎯ 0⎯→⎯kµ

 

When 0=kµ , pk is the Gauss-Newton vector. As , the effect of the term µ∞⎯→⎯kµ kI 

increasingly dominates that of  so that,  represents an 

infinitesimal step in the steepest descent direction. Between these two extremes, both p

k
T

k JJ k
T

kkk fJp 1−−⎯→⎯ µ

k 

and the angle between pk and -gk decreases monotonically as µk increases [14]. This 

property is useful because, while the magnitude of the Gauss-Newton vector is a rough 

indication of an acceptable step length, increasing the bias of pk towards the steepest 

descent direction makes pk more and more likely to be too large a step to give a reduction 

in function value. The set of all points 10, ≤<+ kkkx αα , as µk varies from 0 to ∞ defines 

part of a hyperplane in the space of the variables known as a region of trust [15]. 

 

Each of these three optimization approaches were used to test the novel stopping criterion 

on three simple but diverse simulated applications and two experimental applications. 

The simulated applications included the data generated using a linear function, nonlinear 

function and a multivariable nonlinear function. 

 

4.4 Description of the Functions Used To Generate Data 

4.4.1 Linear Function: The model equation selected for this linear problem is 

 and the number of data points is 20. The linear model that was used to y Ax B= +
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generate the data is given by ( ) ( )( )xsizerandnBrandnxAy +++= . The ‘randn’ function 

adds Gaussian distributed, zero mean, unity variance, random variation [NID (0, 1)] to a 

particular “x” value. Adding uncertainty to the independent variable is a non-

conventional practice, but adds realism by simulating uncertainty in experimental control. 

The “size(x)” argument generates a vector of perturbations to the vector of “y” values – of 

the same number of elements as the “x” vector. 

 

4.4.2 Nonlinear Function: The model equation selected for this nonlinear problem is 

 and the number of data points is 40. The nonlinear model that was used to 

generate the data is given by

(lny A Bx= )

( )( ) ( )( )xsizerandnrandnxBAy ++= ln . 

 

4.4.3 Multivariable Function: The model equation selected for this multivariable 

problem is z A x B y= + and the number of data points is 20. The multivariable model 

that was used to generate the data is given 

by ( ) ( ) ( )( )xsizerandnrandnyBrandnxAz ++++= . 

 

The working of the stopping criterion was also validated using two experimentally 

generated data. 
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CHAPTER 5 

EXPERIMENTAL SETUP 

 

A brief description of the equipment used to obtain the experimental data is given below. 

The novel stopping criterion for optimization was validated using the experimental data 

obtained from the two phase flow apparatus and the packed bed reactor. 

 

5.1 Two-Phase Flow Apparatus 

The experimental apparatus consists of a vertical pipe through which the air/water 

mixture flows, a control computer, Camile software, pressure transducers, three orifice 

meters, each paired with a control valve, piping, two rotameters for airflow (high and low 

flow rates), one rotameter for water flow and pressure gauges. 

 

Rotameters provide the flow rate information for the air and water streams. These are 

used in coordination with three orifice meters and the Camile software of the control 

computer to allow the user to monitor fluid flow rates. The flow rates for both air and 

water are set to the desired value using the control computer. Real time flow rate values 

can then be monitored through orifice meters displayed by the control computer or by 

utilizing the rotameters. Pressure transducers measure the pressure at both the top and the 
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bottom of the vertical column [14]. The flow diagram of the two-phase flow apparatus is 

shown in Figure 5.1 (refer Appendix B for experimental data). 

 

5.1.1 Operating Limitations: In order to operate the two-phase flow apparatus 

effectively, it is imperative to know and understand the limitations of the equipment. The 

maximum pressure limit of the piping is 120 psig. However, the compression joint will 

release at approximately 100 psig. To avoid this, the system must be operated such that 

the air pressure does not exceed 80 psig. The electrical current through all the computer 

controlled units should be limited to 4-20 mA. Inaccurate readings may result from 

operations above or below this range. When the air flow rate through the larger pipe is 

below 1 ft3/min, there is a possibility that the static head created by the water in the 

vertical tube is too great for the air to overcome. This could lead to stagnation period 

where no bubbles appear in the clear tubing even though Camile reports a flow rate. To 

avoid this problem, the small air pipe should be used when working with air flow rates 

less than 1 ft3/min. 

 

5.1.2 Experimental Description: A series of runs was conducted in order to collect 

the data for calculations. The first step involved in this process was to start-up the Camile 

TG 4.0 software and perform all the steps needed to run the program (see Appendix A for 

instructions on the start-up procedures for Camile TG 4.0). The experiment was run using 

the computer operator, “virtual employee”. The “virtual employee” is a macro which runs 

through the Camile program [16]. Multiple experimental runs can be performed 

automatically through the use of simple programming within a file. This file can be  
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edited or a new file can be entered. The file consists of a series of lines that contain four 

digits separated by commas. These digits represent: solenoid valve (1 = open, 0 = closed), 

large air valve flow rate, small air valve flow rate and water flow rate. Camile uses the 

information to set the conditions for a particular run. Once steady state is reached, the 

“virtual employee” goes on to the next line in the experimental plan begins a new run. 

 

The pressure drop within the vertical pipe is found using the recorded flow rates and the 

water height in the column provided by Camile, the data are used to test the Lockhart-

Martinelli model. 

 

5.2 Packed Bed Reactor 

The catalytic decomposition of methyl acetate is carried out in a bench-scale model of a 

catalyzed packed reactor in the Unit Operations Laboratory. The model consists of a feed 

tank, a pump, a heat exchanger, rotameter, heater and a catalyzed packed bed. The feed 

tank holds the solution of methyl acetate and the pump propels the solution through the 

system. The rotameter displays the flow rate of the methyl acetate solution traveling 

through the system. The methyl acetate solution passes through the tube side of a heat 

exchanger. The heat exchanger has hot water from the heater flowing on the shell side. 

The heated methyl acetate solution is then fed into the reactor from the bottom, and a 

mixture of methanol, acetic acid and methyl acetate exits from the top of the reactor. The 

experimental setup is shown in Figure 5.2. 



Sample 
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Figure 5.2 Flow Diagram of Packed Bed Reactor 
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The temperature of the hot water and the effluent stream are measured by a 

thermocouple. The decomposed mixture is collected in Erlenmeyer flasks and titrated 

with NaOH solution in burette. The indicator used in titration is phenolphthalein 

dissolved in ethanol. Phenolphthalein lends the solutions a pink color when the end point 

of the titration is reached [17]. The methyl acetate solution was prepared by measuring 

volumes and calculating mass using densities of water and methyl acetate to form an 8% 

weight solution. The samples were collected using a graduated cylinder with a +/- 0.2 ml 

error, the collected samples are then put in properly labeled Erlenmeyer flasks for 

titration. Solutions of methyl acetate and NaOH were made using volumetric glassware 

and an electric scale for measurements of the latter. The samples were titrated against 0.2 

M NaOH, which was dispensed from a burette. 

 

The PBR is filled with a strong acid cation exchange resin catalyst that facilitates the 

decomposition of methyl acetate into methanol and acetic acid. The reaction takes place 

on the surface of the catalyst after water and methyl acetate are absorbed. Acetic acid and 

methanol that results from the reaction are then desorbed. 

 

The decomposition of methyl acetate is given by the following reaction in Equation 6.2. 

 

COOHCHOHCHOHCOOHCHCH 33233 +→+   (6.2) 

 

As the reaction is run in a catalytic packed bed reactor, the reactant must migrate through 

the packed bed causing axial dispersion. Moreover, the reaction is catalyzed by an ion 
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exchange resin surface. So, Hougen-Watson kinetics is used to determine a rate 

expression for the reaction [17]. 

 

Using a simplified Hougen-Watson type equation, with water in great excess, the reaction 

rate is given by Equation 6.3. 

 

Ab

Aa
A Ck

Ck
r

+
=

1
       (6.3) 

Where:  rA = rate of reaction (mol/s) 

  ka = rate constant (1/s), dependent on temperature 

  kb = rate constant (1/s), not dependent on temperature 

  CA = concentration of methyl acetate in feed solution (mol/s) 

 

By the Arrhenius equation, the rate constant as function of temperature is given by 

Equation 6.4. 

 

RT
E

a Aek
−

=         (6.4) 

 

Where:  A = frequency factor (1/s) 

  E = activation energy (J/mol) 

  R = gas constant (J/mol K) 

  T = reactor temperature (K) 
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Substituting the above expression for ka in Equation 6.3, the reaction rate as a function of 

temperature is give by Equation 6.6. 

 

Ab

A
RT
E

A Ck
CAer

+
=

−

1
       (6.5) 

 

The reaction was carried out at a temperature ranging from 25 to 85oC with the initial 

concentration of methyl acetate equal to 1.0, 1.5 and 2.0 moles/liter at each reaction 

temperature. The data thus obtained was fed into the optimizer to obtain the optimum 

values for the parameters such as the frequency factor, A, activation energy, E and the 

rate constant, kb. All the three optimization techniques such as the Nelder-Mead Simplex, 

Marquardt-Levenberg and the Gauss-Newton methods were used to evaluate the novel 

stopping criterion for optimization. The experimental data are shown in Appendix B. 

 

5.2.1 Safety:  Safety is of most priority in an experiment where corrosive 

materials are being used. Methyl acetate decomposes into methanol and acetic acid. 

These chemicals have hazards associated with them. As a safety precaution while running 

this experiment, splash goggles should be worn to prevent eye irritation. Optic nerve is 

the predominate hazard of chronic exposure to NaOH. Gloves should be used to prevent 

skin irritation. Personal safety measures should be taken to avoid ingestion and inhalation 

of these chemicals. Methyl acetate should be mixed in the fume-hood as over exposure 

affects the lining of the sensitive tissues in the nostrils. All chemicals should be kept 

away from open flames because methanol and methyl acetate are flammable liquids with 
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a low flash point [18]. The unit operations stand has an electric power supply for the 

pump and water heater. Hence, extra care should be taken to avoid wet contact with open 

power outlets. In case of any spill around the electric power source, the power outlet 

should be disconnected and left to dry before connecting again. 

 

5.2.2 Environmental Considerations: Acids and hydrocarbons are unsafe to the 

environment, especially when they contaminate the water supply. Caution should be used 

when handling and disposing of these chemicals. If released into the soil, the chemicals 

may leach into groundwater, but are expected to quickly evaporate. Moreover, quick 

evaporation is expected if chemicals are released into air. The materials are not expected 

to be toxic to aquatic life. 
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CHAPTER 6 

RESULTS AND DISCUSSION 

 

The results obtained from both the simulated and the experimental data are discussed in 

this chapter. The simulated data was generated using three different types of models 

(linear, nonlinear and multivariable nonlinear equations). The experimental data was 

obtained from packed bed reactor and the two-phase flow apparatus by a group of 

undergraduate students in the Unit Operations Lab at OSU. 

 

6.1 Results from the Simulated Data 

Models of varying complexities were selected to generate the nominal data required to 

conduct the optimization procedure. In order to make the nominal data representative of 

an experimental measurement, noise was added to it using a normally distributed random 

numbers with a variance equal to 1. The generated noisy data was then fed into the 

optimizer to determine a best-fit empirical model, and the optimization procedure was 

run for an excessive number of iterations. The parameter values obtained at the end of the 

optimization process were used to evaluate the values of the objective function and to 

check if the curve fits the generated noisy data well. The novel stopping criterion was 

then used to locate a new termination point and the parameter values at that point were 

again used to evaluate the objective function values and to check if the curve fits the data. 
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A sample calculation procedure for the novel stop-iteration technique is given in 

Appendix C. The two curves obtained were compared using the F and p-statistics. The F-

statistic is calculated by the ratio of squared residuals, the sum of squared deviations 

between data and the model based on excessive iterations. The expression for the F-

statistic is given by Equation (6.1). 

 

( )
( )∑

∑
−

=−
2

1

1
1

SSD
SSD

N
statisticF      (6.1) 

 

Where, SSD1 and SSD2 are the sum of squared deviations of the experimental data from 

the curves obtained by using the two stopping criterion. The optimization result with 

excessive iterations is accepted as the most perfect model for the particular random 

realization of the data. It is expected that any model from fewer iterations should not have 

as good a SSD, and the F-statistic values should be less than 1.0. However, if the new 

stopping criterion is good, the ratio of SSD measures will be close to unity. 

 

The p-value indicates the percentiles of the F distribution. It is the one sided probability 

of obtaining the higher F-value by chance. 

 

The different models and the various optimization techniques used are clearly discussed 

below. 
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6.1.1 Optimization of Parameters in a Linear Function 

 

Linear function used:   BAxy +=  

Parameters to be optimized:  A and B 

 

The above mentioned linear function was used to generate the data. The objective 

function values (y values) were calculated for A = 0.5 and B = 0.2 in a range of ‘x’ values 

from 0 to 10 with the interval of 0.5. Gaussian distributed random numbers [NID (0, 1)] 

were added to the above generated data using the random number generation code in 

MATLAB 6.5. The noisy data was then used by the optimizer to determine the best 

empirical values of A and B. The optimization code for different methods to optimize the 

parameters is written in MATLAB 6.5 release 13 (refer Appendix D). The optimization 

procedure was run for 60 iterations and the parameter values obtained were recorded to 

calculate the objective function values. The excessive number of iterations was decided 

on the basis of change in the sum of squared deviations of the random subset. Another set 

of parameter values was obtained at a point where the novel stopping criterion suggested 

termination. The results obtained using the three optimization techniques, viz. Nelder-

Mead Simplex method, Marquardt-Levenberg method and the Gauss-Newton method are 

discussed in cases below. 

 

Case 6.1.1.1  Optimization Technique used: Nelder-Mead Simplex 

Three random initial values, to form the first simplex, were given to each of the 

parameters that are to be optimized using the Nelder-Mead Simplex method. The 
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optimization procedure was then run for an excessive number of iterations until no 

change in the SSD of the random subset was observed. The plot showing the change in 

the sum of squared deviations of the random subset with the iterations is shown in Figure 

6.1. The number of iterations, took to obtain the optimum values of the parameters using 

the novel stopping criterion, is clearly indicated in Figure 6.1. The objective function 

values that resulted from the latter set of parameter values were compared to that 

obtained from the former using the F and p-statistics. The F and p-statistics and the 

parameter values for both the curves are shown in Tables 6.1 and 6.2. The comparison 

plot is shown in Figure 6.2. From the visual evidence, it is clear that both the curves are 

indistinguishable relative to variance in the data. 

 

Table 6.1: Goodness of fit for the linear model using Nelder-Mead Simplex method 

Test Results 

F-Statistic 

p-Value 

0.9997 

0.4990 

 

From Table 6.1, it can be observed that the F-statistic is close to unity and the p value 

close to 0.5 which suggests that both the curves are statistically indistinguishable. The 

parametric values obtained for both the curves are listed below in Table 6.2. 

 

 



Figure 6.1 RMS of SSD of random subset for a linear model using Nelder-Mead Sim
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Figure 6.2 A comparison plot between the linear curves obtained from the two stopping criter
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Table 6.2: Parameter values for the linear model using Nelder-Mead Simplex 

method 

Parameters Model Values Excessive Iterations Steady-State stopping 

Criterion 

A 

B 

0.5 

0.2 

0.5142 

0.2328 

0.5131 

0.2183 

 

 

Case 6.1.1.2  Optimization Technique used: Marquardt-Levenberg method 

The random number generation program in MATLAB 6.5 was again used to provide the 

initial guess to the Marquardt-Levenberg optimization method. The optimization 

procedure was run to obtain the optimum parametric values. Figure 6.3 shows the 

variation of the sum of squared deviations of the random subset with the iterations. The 

number of iterations took to obtain the optimum values of the parameters, is clearly 

indicated in the figure. Table 6.3 shows the F and p-statistic values for both the curves 

with respect to the originally generated noisy data. Both the curves and the generated 

noisy data are shown in Figure 6.4. From the visual evidence, it is clear that both the 

curves are indistinguishable. 

 

Table 6.3: Goodness of fit for the linear model using Marquardt-Levenberg method 

Test Results 

F-Statistic 

p-Value 

0.9998 

0.4990 
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Figure 6.4 A comparison plot between the linear curves obtained from the two stopping criteria w
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From Table 6.3, it can be concluded that both the curves obtained using the Marquardt-

Levenberg method, are indistinguishable. The parametric values obtained for both the 

curves are listed below in Table 6.4. 

 

Table 6.4: Parameter values for the linear model using Marquardt-Levenberg 

method 

Parameters Model Values Excessive Iterations Steady-State stopping 

Criterion 

A 

B 

0.5 

0.2 

0.6587 

0.2073 

0.6476 

0.2158 

 

 

Case 6.1.1.3  Optimization Technique used: Gauss-Newton method 

The random number generation program in MATLAB 6.5 was again used to provide the 

initial guess to the Gauss-Newton optimization method. The optimization procedure was 

run for an excessive number of iterations until no change in the SSD of the random subset 

was observed, to obtain the optimum parametric values. Figure 6.5 shows the variation of 

the sum of squared deviations of the random subset with the iterations. The number of 

iterations took to obtain the optimum values of the parameters, is clearly indicated in the 

figure. Table 6.3 shows the F and p-statistic values for both the curves with respect to the 

originally generated noisy data. Both the curves and the generated noisy data are shown 

in Figure 6.6. From the visual evidence, it is clear that both the curves are 

indistinguishable relative to variance in the data. 



Figure 6.5 RMS of SSD of random subset for a linear model using Gauss-N
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Figure 6.6 A comparison plot between the linear curves obtained from the two stopping criteria w
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Table 6.5: Goodness of fit for the linear model using Gauss-Newton method 

Test Results 

F-Statistic 

p-Value 

0.9997 

0.4990 

 

From Table 6.5, it can be concluded that both the curves obtained using the Marquardt-

Levenberg method, are indistinguishable. The parametric values obtained for both the 

curves are listed below in Table 6.6. 

 

Table 6.6: Parameter values for the linear model using Gauss-Newton method 

Parameters Model Values Excessive Iterations Steady-State stopping 

Criterion 

A 

B 

0.5 

0.2 

0.6587 

0.2073 

0.6476 

0.2383 

 

 

6.1.2 Optimization of Parameters in a Nonlinear Function 

 

Nonlinear function used:  ( )lny A Bx=  

Parameters to be optimized:  A and B 

 

The above mentioned nonlinear function was used to generate the data. The objective 

function values (y values) were calculated for A = 5 and B = 55 in a range of ‘x’ values 
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from 273 to 19773 with the interval of 500. Gaussian distributed random numbers [NID 

(0, 1)] were added to the above generated data using the random number generation code 

in MATLAB 6.5. The noisy data was then used by the optimizer to determine the best 

empirical values of A and B. The optimization code for different methods to optimize the 

parameters is written in MATLAB 6.5 release 13 (refer Appendix D). The optimization 

procedure was run for 75 iterations and the parameter values obtained were recorded to 

calculate the objective function values. The excessive number of iterations was decided 

on the basis of change in the sum of squared deviations of the random subset. Another set 

of parameter values was obtained at a point where the novel stopping criterion suggested 

termination. The results obtained using the three optimization techniques, viz. Nelder-

Mead Simplex method, Marquardt-Levenberg method and the Gauss-Newton method are 

discussed in cases below. 

 

Case 6.1.2.1  Optimization Technique used: Nelder-Mead Simplex 

Three random initial values, to form the first simplex, were given to each of the 

parameters that are to be optimized using the Nelder-Mead Simplex method. The 

optimization procedure was then run for an excessive number of iterations until no 

change in the SSD of the random subset was observed. The plot showing the change in 

the sum of squared deviations of the random subset with the iterations is shown in Figure 

6.7. The number of iterations, took to obtain the optimum values of the parameters using 

the novel stopping criterion, is clearly indicated in Figure 6.7. The objective function 

values that resulted from the latter set of parameter values were compared to that 

obtained from the former using the F and p-statistics. The F and p-statistics and the  
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Figure 6.8 A comparison plot between the nonlinear curves obtained from the two stopping criteria
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parameter values for both the curves are shown in Tables 6.7 and 6.8. The comparison 

plot is shown in Figure 6.8. From the visual evidence, it is clear that both the curves are 

indistinguishable relative to variance in the data. 

 

Table 6.7: Goodness of fit for the nonlinear model using Nelder-Mead Simplex 

method 

Test Results 

F-Statistic 

p-Value 

0.9907 

0.4990 

 

From Table 6.7, it can be observed that the F-statistic is close to unity which in turn 

suggests that both the curves are statistically indistinguishable. The parametric values 

obtained for both the curves are listed below in Table 6.8. 

 

Table 6.8: Parameter values for the nonlinear model using Nelder-Mead Simplex 

method 

Parameters Model Values Excessive Iterations Steady-State stopping 

Criterion 

A 

B 

5 

55 

5.6326 

12.6358 

5.7692 

9.2858 
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Case 6.1.2.2  Optimization Technique used: Marquardt-Levenberg method 

The random number generation program in MATLAB 6.5 was again used to provide the 

initial guess to the Marquardt-Levenberg optimization method. The optimization 

procedure was run to obtain the optimum parametric values. Figure 6.9 shows the 

variation of the sum of squared deviations of the random subset with the iterations. The 

number of iterations took to obtain the optimum values of the parameters, is clearly 

indicated in the figure. Table 6.9 shows the F and p-statistic values for both the curves 

with respect to the originally generated noisy data. Both the curves and the generated 

noisy data are shown in Figure 6.10. From the visual evidence, it is clear that both the 

curves are indistinguishable relative to variance in the data. 

 

Table 6.9: Goodness of fit for the nonlinear model using Marquardt-Levenberg 

method 

Test Results 

F-Statistic 

p-Value 

0.9998 

0.4990 

 

From Table 6.9, it can be concluded that both the curves obtained using the Marquardt-

Levenberg method, are indistinguishable. The parametric values obtained for both the 

curves are listed below in Table 6.10. 

 

 



Figure 6.9 RMS of SSD of random subset for nonlinear model using Marquardt-Leven

0

2

4

6

8

10

12

14

16

0 15 30 45

no. of iterations

R
M

S 
of

 S
SD

 o
f r

an
do

m
 su

bs
et

37

 62 
berg method

60 75



Figure 6.10 A comparison plot between the nonlinear curves obtained from the two stopping crite
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Table 6.10: Parameter values for the nonlinear model using Marquardt-Levenberg 

method 

Parameters Model Values Excessive Iterations Steady-State stopping 

Criterion 

A 

B 

5 

55 

4.7678 

104.3630 

4.7566 

104.3840 

 

 

Case 6.1.2.3  Optimization Technique used: Gauss-Newton method 

The random number generation program in MATLAB 6.5 was again used to provide the 

initial guess to the Gauss-Newton optimization method. The optimization procedure was 

run for an excessive number of iterations until no change in the SSD of the random subset 

was observed, to obtain the optimum parametric values. Figure 6.11 shows the variation 

of the sum of squared deviations of the random subset with the iterations. The number of 

iterations took to obtain the optimum values of the parameters, is clearly indicated in the 

figure. Table 6.11 shows the F and p-statistic values for both the curves with respect to 

the originally generated noisy data. Both the curves and the generated noisy data are 

shown in Figure 6.12. From the visual evidence, it is clear that both the curves are 

indistinguishable relative to variance in the data. 

 



Figure 6.11 RMS of SSD of random subset for nonlinear model using Gauss-Newt
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Figure 6.12 A comparison plot between the nonlinear curves obtained from the two stopping cri
method

45

50

55

60

65

70

75

0 2000 4000 6000 8000 10000 12000 1400

x

y

Steady-StateStopping 
Criterion

Excessive Iterations

66  
teria when using the Gauss-Newton 

0 16000 18000 20000



Table 6.11: Goodness of fit for the nonlinear model using Gauss-Newton method 

Test Results 

F-Statistic 

p-Value 

0.9997 

0.4990 

 

From Table 6.11, it can be concluded that both the curves obtained using the Marquardt-

Levenberg method, are indistinguishable. The parametric values obtained for both the 

curves are listed below in Table 6.12. 

 

Table 6.12: Parameter values for the linear model using Gauss-Newton method 

Parameters Model Values Excessive Iterations Steady-State stopping 

Criterion 

A 

B 

5 

55 

4.8452 

83.7278 

4.8352 

83.7368 

 

 

6.1.3 Optimization of Parameters in a multivariable nonlinear Function 

 

Nonlinear function used:  yBxAz +=  

Parameters to be optimized:  A and B 

 

The above mentioned nonlinear function was used to generate the data. The objective 

function values (y values) were calculated for A = 0.5 and B = 2 in a range of ‘x’ values 
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from 0 to 10 with the interval of 0.5. Gaussian distributed random numbers [NID (0,1)] 

were added to the above generated data using the random number generation code in 

MATLAB 6.5. The noisy data was then used by the optimizer to determine the best 

empirical values of A and B. The optimization code for different methods to optimize the 

parameters is written in MATLAB 6.5 release 13 (refer Appendix D). The optimization 

procedure was run for 60 iterations and the parameter values obtained were recorded to 

calculate the objective function values. The excessive number of iterations was decided 

on the basis of change in the sum of squared deviations of the random subset. Another set 

of parameter values was obtained at a point where the novel stopping criterion suggested 

termination. The results obtained using the three optimization techniques, viz. Nelder-

Mead Simplex method, Marquardt-Levenberg method and the Gauss-Newton method are 

discussed in cases below. 

 

Case 6.1.3.1  Optimization Technique used: Nelder-Mead Simplex 

Three random initial values, to form the first simplex, were given to each of the 

parameters that are to be optimized using the Nelder-Mead Simplex method. The 

optimization procedure was then run for an excessive number of iterations until no 

change in the SSD of the random subset was observed. The plot showing the change in 

the sum of squared deviations of the random subset with the iterations is shown in Figure 

6.13. The number of iterations, took to obtain the optimum values of the parameters using 

the novel stopping criterion, is clearly indicated in Figure 6.13. The objective function 

values that resulted from the latter set of parameter values were compared to that 

obtained from the former using the F and p-statistics. The F and p-statistics and the 
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parameter values for both the curves are shown in Tables 6.13 and 6.14. The comparison 

plot is shown in Figure 6.14. The black and the white markers indicate that the points are 

above and below the plane, respectively. The dark shading on the surface show that the 

two surfaces overlap. From the visual evidence, it is clear that both the curves are 

indistinguishable relative to variance in the data. 

 

Table 6.13: Goodness of fit for the multivariable nonlinear model using Nelder-

Mead Simplex method 

Test Results 

F-Statistic 

p-Value 

0.9146 

0.4190 

 

From Table 6.13, it can be observed that the F-statistic is close to unity and the p value is 

close to 0.5 which suggests that both the curves are statistically indistinguishable. The 

parametric values obtained for both the curves are listed below in Table 6.14. 

 

Table 6.14: Parameter values for the multivariable nonlinear model using Nelder-

Mead Simplex method 

Parameters Model Values Excessive Iterations Steady-State stopping 

Criterion 

A 

B 

0.5 

2 

0.1582 

2.3414 

0.1652 

2.3916 



Figure 6.13 RMS of SSD of random subset for multivariable model using Nelder-Mead

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0 10 20 30 40

no. of iterations

R
M

S 
of

 S
SD

 o
f r

an
do

m
 su

bs
et

30

 70 
 Simplex method

50 60

 



71  



 72

Case 6.1.3.2  Optimization Technique used: Marquardt-Levenberg method 

The random number generation program in MATLAB 6.5 was again used to provide the 

initial guess to the Marquardt-Levenberg optimization method. The optimization 

procedure was run to obtain the optimum parametric values. Figure 6.15 shows the 

variation of the sum of squared deviations of the random subset with the iterations. The 

number of iterations took to obtain the optimum values of the parameters, is clearly 

indicated in the figure. Table 6.15 shows the F and p-statistic values for both the curves 

with respect to the originally generated noisy data. Both the curves and the generated 

noisy data are shown in Figure 6.16. The black and the white markers indicate that the 

points are above and below the plane respectively. The dark shading on the surface show 

that the two surfaces overlap. From the visual evidence, it is clear that both the curves are 

indistinguishable relative to variance in the data. 

 

Table 6.15: Goodness of fit for the multivariable nonlinear model using Marquardt-

Levenberg method 

Test Results 

F-Statistic 

p-Value 

0.9983 

0.4980 

 

From Table 6.15, it can be concluded that both the curves obtained using the Marquardt-

Levenberg method, are indistinguishable. The parametric values obtained for both the 

curves are listed below in Table 6.16. 
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Table 6.16: Parameter values for the multivariable nonlinear model using 

Marquardt-Levenberg method 

Parameters Model Values Excessive Iterations Steady-State stopping 

Criterion 

A 

B 

0.5 

2 

1.3992 

1.1005 

1.3562 

1.0225 

 

 

Case 6.1.3.3  Optimization Technique used: Gauss-Newton method 

The random number generation program in MATLAB 6.5 was again used to provide the 

initial guess to the Gauss-Newton optimization method. The optimization procedure was 

run for an excessive number of iterations until no change in the SSD of the random subset 

was observed, to obtain the optimum parametric values. Figure 6.17 shows the variation 

of the sum of squared deviations of the random subset with the iterations. The number of 

iterations took to obtain the optimum values of the parameters, is clearly indicated in the 

figure. Table 6.17 shows the F and p-statistic values for both the curves with respect to 

the originally generated noisy data. Both the curves and the generated noisy data are 

shown in Figure 6.18. The black and the white markers indicate that the points are above 

and below the plane respectively. The dark shading on the surface show that the two 

surfaces overlap. From the visual evidence, it is clear that both the curves are 

indistinguishable relative to variance in the data. 

 



Figure 6.17 RMS of SSD of random subset for multivariable model using Gauss-N
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Table 6.17: Goodness of fit for the multivariable nonlinear model using Gauss-

Newton method 

Test Results 

F-Statistic 

p-Value 

0.9661 

0.4680 

From Table 6.17, it can be concluded that both the curves obtained using the Marquardt-

Levenberg method, are indistinguishable. The parametric values obtained for both the 

curves are listed below in Table 6.18. 

Table 6.18: Parameter values for the multivariable nonlinear model using Gauss-

Newton method 

Parameters Model Values Excessive Iterations SS stopping Criterion 

A 

B 

0.5 

2 

1.3992 

1.1105 

1.3982 

1.102 

The optimization procedure was run with different seed values to the random number 

generator which was used to add noise to the data. It was observed that the change in the 

seed values to generate random numbers to add noise to the data did not have a great 

effect on the optimization. Table 6.19 shows the parameter values obtained from different 

seed values using the Gauss-Newton method for the multivariable model. 

Table 6.19: Parameter values for the multivariable nonlinear model using Gauss-

Newton method using different seed values 

Seed = 0 Seed = 1 Seed = 2 Seed Values 

A B A B A B 

SS Criterion 1.3982 1.102 1.4265 1.1365 1.4132 1.1956 
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6.2 Results from the Experimental Data 

The experimental data was obtained by carrying out two laboratory scale experiments-the 

decomposition of methyl acetate in packed bed reactor (PBR) and the vapor-liquid two-

phase flow experiment. 

 

6.2.1 Optimization of Parameters in the Rate Equation 

A decomposition reaction, where in methyl acetate is decomposed to give methanol and 

acetic acid in a packed bed reactor (PBR), is used to obtain the data required to calculate 

the output concentration of methyl acetate. 

Case 6.2.1.1 Optimization of parameters in the reaction kinetic model using Nelder-

Mead Simplex method 

Three random initial values, to form the first simplex, were given to each of the 

parameters that are to be optimized using the Nelder-Mead Simplex method. The 

optimization procedure was then run for an excessive number of iterations of about 400, 

until no change in the SSD of the random subset was observed. The plot showing the 

change in the root mean square of the sum of squared deviations of the random subset 

(RMS SSD RS) with the iterations is shown in Figure 6.19. The number of iterations, 

took to obtain the optimum values of the parameters using the novel stopping criterion, is 

clearly indicated in Figure 6.19. The objective function values that resulted from the 

latter set of parameter values were compared to that obtained from the former using the 

mean sum of squared distances. The mean sum of squares distances of the data points 

from the ‘x = y’ line is shown in Table 6.19. The comparison plot is shown in Figure 

6.20. 



Figure 6.19 RMS of SSD of Reaction Kinetic Model Using Nelder-Mea
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Figure 6.20 A Comparison Plot between the Experimental Output-Concentra
Output-Concentration of Methyl Acetate Using Nelder-Mead Simp
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Table 6.20: Mean Sum of Squares Distances of Data Points from ‘x = y’ Line using 

Nelder-Mead Simplex Method 

Stopping Criteria Mean Sum of 

Squared Distances 

Excessive Iterations 

SS Technique 

0.00680 

0.00762 

 

From Table 6.19, it can be observed that the mean sum of squared distances is almost 

equal for both criteria. The parametric values obtained for both the curves are listed 

below in Table 6.20. 

 

Table 6.21: Parameter values for the reaction kinetic model using Nelder-Mead 

Simplex method 

Parameters Excessive Iterations Steady-State stopping 

Criterion 

A (1/s) 

E (J/mol) 

kb (1/s) 

9.4253 E+6 

5947.215  

2.4320 

9.4266 E+6 

5897.406 

2.2465 

 

Case 6.2.1.2 Optimization of parameters in the reaction kinetic model using Marquardt-

Levenberg method 

The random number generation program in MATLAB 6.5 was again used to provide the 

initial guess to the Marquardt-Levenberg optimization method. The optimization 
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procedure was run to obtain the optimum parametric values. Figure 6.21 shows the 

variation of the sum of squared deviations of the random subset with the iterations. The 

number of iterations took to obtain the optimum values of the parameters, is clearly 

indicated in the figure. The objective function values that resulted from the latter set of 

parameter values were compared to that obtained from the former using the mean sum of 

squared distances. The mean sum of squares distances of the data points from the ‘x = y’ 

line is shown in Table 6.21. The comparison plot is shown in Figure 6.22. 

Table 6.22: Mean Sum of Squares Distances of Data Points from ‘x = y’ Line using 

Marquardt-Levenberg Method 

Stopping Criteria Mean Sum of 

Squared Distances 

Excessive Iterations 

SS Technique 

0.00648 

0.00814 

 
From Table 6.21, it can be concluded that the mean sum of squared distances is almost 

equal for both criteria. The parametric values obtained for both the curves are listed 

below in Table 6.22. 

Table 6.23: Parameter values for the reaction kinetic model using Marquardt-

Levenberg method 

Parameters Excessive Iterations Steady-State stopping 

Criterion 

A (1/s) 

E (J/mol) 

kb (1/s) 

9.4565 E+6 

5934.345  

2.2486 

9.4673 E+6 

5968.357  

2.5435 



Figure 6.21 RMS of SSD of Reaction Kinetic Model Using Marquardt-Lev
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Figure 6.22 A Comparison Plot between the Experimental Output-Concentra
Output-Concentration of Methyl Acetate Using Marquardt-Levenb
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Case 6.2.1.2 Optimization of parameters in the reaction kinetic model using Gauss-

Newton method 

The random number generation program in MATLAB 6.5 was again used to provide the 

initial guess to the Gauss-Newton optimization method. The optimization procedure was 

run for an excessive number of iterations until no change in the SSD of the random subset 

was observed, to obtain the optimum parametric values. Figure 6.23 shows the variation 

of the sum of squared deviations of the random subset with the iterations. The objective 

function values that resulted from the latter set of parameter values were compared to that 

obtained from the former using the mean sum of squared distances. The mean sum of 

squares distances of the data points from the ‘x = y’ line is shown in Table 6.23. The 

comparison plot is shown in Figure 6.24. 

 

Table 6.24: Mean Sum of Squares Distances of Data Points from ‘x = y’ Line using 

Gauss-Newton Method 

Stopping Criteria Mean Sum of 

Squared Distances 

Excessive Iterations 

SS Technique 

0.00875 

0.00943 

 

From Table 6.23, it can be concluded that both the mean sum of squared distances is 

almost equal for both criteria. The parametric values obtained for both the curves are 

listed below in Table 6.24. 

 



Figure 6.23 RMS of SSD of Reaction Kinetic Model Using Gauss-New
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Figure 6.24 A Comparison Plot between the Experimental Output-Concentr
Output-Concentration of Methyl Acetate using Gauss-Newto
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Table 6.25: Parameter values for the reaction kinetic model using Gauss-Newton 

method 

Parameters Excessive Iterations Steady-State stopping 

Criterion 

A (1/s) 

E (J/mol) 

kb (1/s) 

9.4223 E+6 

5814.687  

2.3557 

9.4251 E+6 

5986.542  

2.7381 

 

6.2.2 Optimization of Parameters in a Two-Phase Flow Equation 

The two-phase flow is a simultaneous flow of both gas and liquid phase fluids through a 

pipe or a tube. This phenomenon occurs extensively in chemical engineering unit 

operations such as distillation columns, evaporators, gas pipelines, condensers, reactors 

etc. The experimental setup consists of a long vertical glass pipe through which the liquid 

and the gas flow. The fluid flow rates are monitored using rotameters in coordination 

with orifice meters and the Camile software is used to control them. Pressure transducers 

measure the pressure at both the top and the bottom of the vertical column. The 

experimental data are shown in Appendix B. 

 

Several methods are used to analyze the two phase flow. In this experimental study, the 

pressure drop per unit length in two phase flow systems is calculated from the Lockhart-

Martinelli correlation. It is then compared with the experimental values. A sample 

calculation for the pressure drop is shown in Appendix C. 
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The four Lockhart-Martinelli correlation constants, C are obtained from the literature 

[19]. For different flow patterns, the iterative values of C are given in Table 6.26. 

 

The fluid flow is laminar or turbulent depending on the Reynold’s number. The 

classification of flow based on the Re values is given in Table 6.25. 

 

Table 6.26: Flow patterns of fluid based on Reynold’s number 

Flow Pattern Reynold’s Number 

Laminar 

Turbulent 

Re < 2000 

3000 < Re < 50000 

 

Table 6.27: Lockhart-Martinelli correlation constant for different vapor-liquid 

flow patterns 

Liquid Vapor C 

Laminar Laminar 5 

Turbulent Laminar 10 

Laminar Turbulent 12 

Turbulent Turbulent 20 

 

It is evident from the above table that the value of C is dependent on the Reynolds’s 

number of both the liquid and the vapor. An effort was put in to obtain more accurate 

values for the correlation constant, C, by choosing a model that involves both the gas and 

liquid Reynolds’s numbers. The model selected is given by Equation 6.6. 

ii c
g

b
lii aC ReRe=        (6.6) 
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The three coefficients a, b, and c, for each of the four laminar-turbulent cases were the 

DV in the optimization to make the Lockhart-Martinelli model best predict the 

experimentally measured pressure drop from these experiments. The data was classified 

into four groups depending on the flow patterns of the gas and the liquid. Two sets of the 

parameter values were obtained for each case while optimizing with the conventional 

stopping criterion with excessive iterations and the novel stopping criterion using the 

steady state identification technique. The results obtained using the Nelder-Mead 

Simplex method is shown below. The values of the parameters were then used to evaluate 

the values of the constant which in turn were used to calculate the pressure drop. The 

pressure drops thus obtained were compared with the experimental values as indicated by 

the Camile software. The comparison plots are shown in Figure 6.25, Figure 6.26 and 

Figure 6.27. The classification and the results obtained in each are discussed in the cases 

below. 

Case 6.2.2.1 Liquid Flow - Laminar 

  Gas Flow - Laminar 

The values of a, b, and c for this case of Laminar-Laminar flow is given in Table 6.27. 

Table 6.28: Parameter values for the model equation and the C value for Laminar-

Laminar flow patterns of liquid and gas respectively 

Constants Excessive Iterations Steady-State stopping 

Criterion 

a 

b 

c 

7.4918 

0.7035 

-0.7573 

7.5849 

0.6143 

-0.6919 
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Case 6.2.2.2 Liquid Flow - Turbulent 

  Gas Flow - Laminar 

The values of a, b, and c for this case of Turbulent -Laminar flow is given in Table 6.28. 

 

Table 6.29: Parameter values for the model equation and the C value for Turbulent 

-Laminar flow patterns of liquid and gas respectively 

Constants Excessive Iterations Steady-State stopping 

Criterion 

a 

b 

c 

0.32065 

0.8173 

-0.4553 

0.26464 

0.7549 

-0.3664 

 

Case 6.2.2.3 Liquid Flow - Turbulent 

  Gas Flow - Turbulent 

The values of a, b, and c for this case of Turbulent - Turbulent flow is given in Table 

6.29. 

 

Table 6.30: Parameter values for the model equation and the C value for Turbulent 

- Turbulent flow patterns of liquid and gas respectively 

Constants Excessive Iterations Steady-State stopping 

Criterion 

a 

b 

c 

20.4434 

0.7394 

-0.7255 

19.1364 

0.76464 

-0.74646 
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Case 6.2.2.4 Liquid Flow - Laminar 

  Gas Flow - Turbulent 

The values of a, b, and c for this case of Laminar - Turbulent flow is given in Table 6.30. 

 

Table 6.31: Parameter values for the model equation and the C value for Laminar - 

Turbulent flow patterns of liquid and gas respectively 

Constants Excessive Iterations Steady-State stopping 

Criterion 

a 

b 

c 

5.0199 

0.9122 

-0.6254 

4.87646 

0.8664 

-0.5944 

 

The SSD of the data points from the ‘x = y’ line is shown in Table 6.31. 

 

Table 6.32: The average SSD of the data points from the ‘x = y’ line 

 C from 

Literature 

C from Excessive 

Iterations 

C from Steady-State 

stopping Criterion 

SSD/(N-1)* 0.13240 0.11644 0.12421 

 

*N is the number of data points, N = 65. 

Table 6.30 gives the average distance of all the data points from the ‘x = y’ line. It is 

evident from Table 6.31 that the deviation of the data points from the line in all the three 

cases is almost the same. 



Figure 6.25 A Comparison Plot between the Experimental Pressure Drop and the
Drop Using the C Values Form Literature
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Figure 6.26 A Comparison Plot between the Experimental Pressure Drop and the
Drop Using the C Values Form Excessive Iterations method
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Figure 6.27 A Comparison Plot between the Experimental Pressure Drop and 
Drop Using the C Values Form Steady State Technique
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6.3 Discussion 

In an earlier investigation [20], this technique was used as the stopping criterion for both 

the Levenberg-Marquardt and error back propagation methods for neural network 

training.   While the number of decision variables (15 to 30 weights) was larger than the 

number in this work (2 model coefficients), the application was of one type.   While all 

problems in this work were low dimensional, this work extends the applications and 

optimizations to demonstrate the practicality of this steady state stopping criterion on a 

wider variety of problems [20]. 

 

The novel stop-training technique was used to stop neural network training [21] when the 

improvement in prediction is insignificant relative to the variability in the residuals. 

Based on their technique, after each epoch, 20 to 30% of the data set was randomly 

selected. This is the validation set for that particular epoch. Each epoch will have a 

unique validation set. The RMS error on the validation set was computed, and was 

plotted against epoch number. As the number of training epochs increase, the plot will 

asymptotically approach a low value [20]. However, the curve will be a “noisy” 

reflection of the random choice of the validation set. When there is no visible 

improvement in training (when the change in RMS value is small relative to the noise on 

the RMS value), it is stopped. This was easily done visually, as if declaring when a noisy 

variable reaches steady-state. Else, any one of a number of automated steady-state 

identification techniques could be used. Both the visual and automated steady-state stop-

training trigger (SSSTT) approaches were explored on a variety of applications and 

compared with conventional practice. 
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Since these optimization applications were of low dimension, the optimization 

approaches immediately started “down hill” to minimize the Objective Function value.    

By contrast, in the prior work with many decision variables, the improvement in the OF 

value in the initial iterations was often slight, and the plot of random subset SSD with 

respect to iteration number would appear to be at steady state initially. This would stop 

the optimization prior to making progress. Consequently, the broader, two-condition rule, 

“Stop optimization when steady state is identified subsequent to a transient period.” Was 

unnecessary for this work.   That additional logic would not affect the results. 

 

The comparison of this steady state stop optimization criterion to the conventional 

operator-decision based on cross validation in training neural networks concluded that the 

automated method gave equivalent RMS values and chose to stop with less iteration [22]. 

The automation advantage of this method was subsequently used in evaluating the 

probability of finding a global minimum in training thousands of neural networks. This 

work supports that finding on a variety of conventional applications. 
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CHAPTER 7 

CONCLUSIONS AND RECOMMENDATIONS 

 

The novel stopping criterion for optimization, based on identifying steady state of a 

random subset of the sum of squared deviations with respect to iteration number, was 

formerly explored for neural network training. In this work, it has been extended to 

demonstrate advantages on a variety of empirical modeling optimization applications.  

 

The novel stop-optimization criterion was tested on a different variety of applications 

involving various kinds of objective functions. On all the cases, the novel stop-

optimization criterion gives equivalent results (as measured by model residuals) to the 

best possible results, with a sufficient (not excessive) number of iterations and without a 

priori knowledge of the optimization problem (scale, end-point values, and other classic 

stopping criteria). 

 

The method is ready for commercial use and hence, the recommendation would be to 

spread out the word to the world so that this novel stop-iteration technique could be 

implemented in the optimization softwares developed. 
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APPENDIX A 

CAMILE TG 4.0 SOFTWARE STARTUP AND OPERATIONS 

 

A1 Startup 

The following steps must be performed to open the Camile Software and create the 

necessary two-phase operation file. 

1. Turn on computer. 

Log in (username and password required). 

Double click Camile TG 4.0 icon on the desktop. 

 

2. Go to the file menu 

Open applications. 

Select C:\ drive. 

Select UOL Two-Phase flow directory. 

Double click Two-Phaseflow.app. 

 

The following steps must be performed to create a new task name for any UOL 

operations and to select the variables that will be input into the results file. 

1. Go to the task menu 

Select Logging. 

Select New. 

Enter username. 

Click OK. 
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2. Go to Edit menu 

Highlight your name. 

Set Logging rate (2 to 5 seconds recommended). 

Click Insert field. 

In Fields window, double click Software Tag. 

  Add: bottom_Pressure 

   Delta_Pressure 

   Fl_1_Filt 

   Fl_2_Filt 

Fl_3_Filt 

SSIP_1 

SSIT_1 

Top_Pressure 

Water_Height 

SC_1Valve 

 

3. From the Fields window, click Camile Box. Select the following: 

Camile_1 

Box ID 

DIO_BOARD_10Mz_1 

SC_1Valve 

Click Add 
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Click OK 

 

4. In Logging-Edit Template window, go to Format Drop box 

Click Text. 

Click OK. 

 

The following steps must be performed to create a notepad file which will be used for 

data reports. 

1. From Logging Configurations 

Click open. 

Enter new file name. 

Check Logging Slate – enabled. 

Check Status – overwrite. 

Click Done. 

 

The following steps must be performed to begin a Camile two-phase run. 

1. Go to Run drop box 

Click Start Run. 

Observe pop up window. 

Click OK. 

Click Two-Phase Flow Window Save. 

 

2. From Logging_Overwrite Confirmation Window 
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Verify that username is highlighted. 

Click OK. 

 

A2 Camile TG 4.0: Using Virtual Employee 

1. Go to the desktop 

Double click Camile TG 4.0 icon. 

 

2. Go to File menu 

Open Applications. 

Open in C:\ drive. 

Select UOL two-phase flow folder. 

Double click Two-PhaseFlow.app. 

Click Run drop box. 

Click Start Run. 

Click OK. 

Click Save. 

 

3. Make sure the results file is highlighted. 

 

4. Press and hold CTRL and press TAB button. 

Keep doing so until Controls of Two Phase Flow Screen appears. 
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5. Click YELLOW BUTTON # STOP while holding down the CTRL button – 

BUTTON # START. 

 

6. Camile will automatically run and record the data. 

 

7. Press and hold CTRL and press TAB button. 

 

8. Keep doing so until Graphical Data of Two Phase Flow screen appears. 

 

9. Scroll down to the bottom of this screen to the Steady State Identification and All 

Measured Data Graph. 

 

10. Make sure the system is at Steady State. The lines on the graph will be straight and 

horizontal for approximately one minute when the system is at steady state. 

 

11. Go to Run drop box 

Click Stop Run. 

 

12. Go to File drop box 

Click Exit Camile. 

 

13. Program will ask if you want to save changes to Two-PhaseFlow.app. 

Click NO if no changes have been made. 
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Click YES if changes have been made. 

 

14. Go to Start Button (bottom left corner of the screen) 

Click Program. 

Click Accessories. 

Double Click Notepad. 

 

15. Click File drop box 

Click Open. 

Open the file that was saved to record the data. 
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APPENDIX B 

EXPERIMENTAL DATA 

 

B1 Data from the Packed Bed Reactor Experiment (PBR) 

The experimental output-concentration of methyl acetate is obtained by titrating the 

sample collected with 0.164 M sodium hydroxide (NaOH) using phenolphthalein as 

indicator. The rate constant, ka is given by the Arrhenius equation given in Equation (i). 

 

RT
E

oa eAk
−

=         (i) 

 

The model that was used to optimize the values for the parameters, A, E and kb, is given 

in Equation (ii). 
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Where, 

 L - Length of the reactor 

 F - Flow rate of reactants 

 X - Area of cross section of the reactor 

 A - Frequency factor 

 E - Activation energy 

 Ca - Output-concentration of methyl acetate 

 Co - Input-concentration of methyl acetate 

 kb - Rate constant 
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 T - Temperature 

 R - Universal gas constant 

The experimental data is shown in Table B1. 

 

Table B1: Experimental Data from the Packed Bed Reactor 

s. 
no. T (C ) T (K) 

Co 
(mol/L)

V 
sample 

(ml) 

V 
NaOH 
(ml) 

n 
NaOH 
(mol) 

n 
sample 
(mol) 

Ca 
(mol/L) 

1 32 305.15 1.06 50 10.5 1.722 1.722 0.03444 
2 32 305.15 1.328 50 10.9 1.7876 1.7876 0.035752
3 32 305.15 1.98 50 11.8 1.9352 1.9352 0.038704
4 37.4 310.55 1.06 50 12.6 2.0664 2.0664 0.041328
5 37.4 310.55 1.328 50 13.2 2.1648 2.1648 0.043296
6 37.4 310.55 1.98 50 13.9 2.2796 2.2796 0.045592
7 44.3 317.45 1.06 50 16.7 2.7388 2.7388 0.054776
8 44.3 317.45 1.328 50 19.2 3.1488 3.1488 0.062976
9 44.3 317.45 1.98 50 22.9 3.7556 3.7556 0.075112

 111



B2 Data from the Two-Phase Flow Experiment 

The results from the Two-phase Flow experiment are shown in Table B2. 

 

Table B2: Experimental Data from the Packed Bed Reactor 

    
large air 

flow 
small air 

flow 
liquid flow 

rate Water Ht. 
S. no. Delta_Pr. FI_1_Filt FI_2_Filt FI_3_Filt (m) 

    (ft3/min) (ft3/min) (kg/hr) W_Ht_Filt 
1 0.0507 1.3498 0.051 91.1077 0.0334 

2 0.0688 1.5193 0.0516 92.5997 0.0371 

3 0.0479 1.5942 0.0475 90.4832 0.0334 

4 0.0515 1.6495 0.0509 92.2022 0.0335 

5 0.0381 1.668 0.0513 89.0564 0.0244 

6 4.3754 24.9847 0.0544 519.5394 3.0113 

7 4.2531 24.9838 0.0537 520.492 3.0191 

8 4.1076 24.976 0.0518 513.5342 3.0412 

9 4.4256 24.9957 0.0557 525.4731 3.021 

10 6.6422 12.1766 0.0635 295.2589 3.803 

11 6.6132 1.331 0.0477 88.4521 4.6495 

12 6.546 1.3907 0.0479 88.3032 4.6502 

13 6.6422 1.626 0.0499 90.5244 4.6483 

14 6.5842 1.5733 0.0496 89.6316 4.6484 

15 6.6224 1.3945 0.0481 89.0713 4.6542 

16 4.1848 1.5374 1.0012 497.4645 2.8596 

17 4.6788 1.6143 1.0012 496.4514 2.8711 

18 4.2142 1.6453 1.0011 494.1385 2.8379 

19 5.3232 1.5262 1.001 484.4626 2.8457 

20 3.7591 1.4381 0.7254 417.8737 2.7753 
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Table B2 (contd.) 

    
Large air 

flow 
Small air 

flow 
Liquid flow 

rate Water Ht. 
S. no. Delta_Pr. FI_1_Filt FI_2_Filt FI_3_Filt (m) 

    (ft3/min) (ft3/min) (kg/hr) W_Ht_Filt
21 3.0983 6.9099 0.0535 506.7354 2.0248 

22 3.1356 6.9465 0.0548 518.5857 2.0634 

23 2.2391 6.9189 0.0524 526.2402 2.0251 

24 3.2055 6.8981 0.0526 514.9471 2.1135 

25 2.6775 7.039 0.0532 505.1873 2.0855 

26 4.8066 1.4871 0.5015 516.2134 3.6626 

27 5.6527 1.5952 0.5011 517.7882 3.6403 

28 5.1833 1.6012 0.501 517.1487 3.6385 

29 4.7757 1.394 0.5 519.9964 3.6841 

30 5.2051 1.7096 0.5006 515.911 3.6371 

31 5.2872 1.4949 0.0504 102.3022 3.7237 

32 5.3022 1.5885 0.0518 101.6442 3.7253 

33 5.2826 1.5451 0.0517 101.3847 3.7269 

34 5.306 1.4748 0.0511 101.0812 3.7267 

35 5.1835 1.6051 0.0503 100.5808 3.7672 

36 3.02 1.566 0.5015 99.8789 2.1164 

37 2.913 1.3943 0.5012 99.995 2.0793 

38 2.8286 1.5553 0.5014 99.965 2.0742 

39 2.7656 1.3057 0.5004 99.8528 2.0707 

40 2.9677 1.3522 0.1949 100.9842 2.0342 

41 3.2543 1.2259 0.048 99.8881 2.3033 

42 3.2596 1.2069 0.0498 100.2032 2.304 

43 3.3017 1.4645 0.0517 101.5342 2.3096 

44 3.2772 1.2805 0.0473 99.978 2.3085 
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Table B2 (contd.) 

    
Large air 

flow 
Small air 

flow 
Liquid flow 

rate Water Ht. 
S. no. Delta_Pr. FI_1_Filt FI_2_Filt FI_3_Filt (m) 

    (ft3/min) (ft3/min) (kg/hr) W_Ht_Filt
45 3.7305 1.4216 0.0521 101.1915 2.3161 

46 4.1507 1.3397 1.0008 297.1745 2.3546 

47 2.8382 1.329 1.0005 299.4958 2.3747 

48 3.6234 1.392 1.0002 298.5453 2.3681 

49 2.7378 1.5377 1.0003 304.526 2.3544 

50 2.9877 1.3748 0.6925 241.8319 2.2926 

51 3.1209 7.0204 0.0509 496.462 1.9407 

52 2.7202 7.088 0.0537 506.15 2.1037 

53 3.2052 7.0773 0.0531 502.9768 2.1059 

54 1.9616 6.9554 0.0512 502.3859 1.9336 

55 3.1072 7.0119 0.0547 504.0659 2.036 

56 1.4118 7.0717 0.051 99.3628 0.9594 

57 1.4246 6.9956 0.0514 100.1572 0.9835 

58 1.3984 6.928 0.0481 98.4197 0.9171 

59 1.3768 6.9778 0.0514 99.0677 0.9765 

60 1.4579 6.9697 0.0499 98.8602 0.9545 

61 1.103 1.5693 0.0492 99.2359 0.7712 

62 1.1041 1.742 0.0491 98.4339 0.7674 

63 1.0864 1.4532 0.0503 98.4255 0.7726 

64 1.0923 1.4741 0.0511 98.3083 0.776 

65 1.0722 1.4127 0.0511 100.2193 0.768 
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APPENDIX C 

SAMPLE CALCULATIONS 

 

C1 Sample Calculations for the Novel Stopping Criterion 

Table C1: Sample Calculations for the Novel Stop-Iterations Technique 

 λ1         = 0.1  λ3     = 0.05   

 λ2         = 0.2      

Itr. SSD RMS SSD xf v2
f,i δ2

f,i R  

1 3.29E+03 2.57E+01 2.57E+01 0 0   

2 2.27E+03 2.13E+01 25.22457 3.807115 0.951779 7.6 

3 3.23E+03 2.54E+01 25.24184 3.051656 1.744426 3.323813 

4 3.31E+03 2.57E+01 25.28965 2.487059 1.662414 2.842499 

5 1.90E+03 1.95E+01 24.70866 8.740685 3.52636 4.709475 

6 1.79E+03 1.89E+01 24.12724 13.75358 3.36717 7.760759 

7 2.27E+03 2.13E+01 23.84754 12.56748 3.495472 6.831185 

8 1.08E+03 1.47E+01 22.92962 26.90556 5.539761 9.227936 

9 302.6909 7.78E+00 21.41472 67.42285 7.634797 16.77889 

10 68.6745 3.71E+00 19.64386 116.6576 8.083162 27.42113 

11 296.2818 7.70E+00 18.44925 121.8677 8.475708 27.31908 

12 37.7308 2.75E+00 16.87903 146.8061 9.277438 30.06559 

13 1.0414 4.56E-01 15.23676 171.3856 9.07592 35.87875 

14 23.8374 2.18E+00 13.93143 171.1862 8.771264 37.08176 

15 7.1264 1.19E+00 12.65768 169.3982 8.381667 38.40007 
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Itr. SSD RMS SSD xf v2

f,i δ2
f,i R

16 2.3561 6.86E-01 11.46055 164.1806 7.975456 39.11289 

17 0.2019 2.01E-01 10.33459 156.7002 7.588469 39.23458 

18 0.339 2.60E-01 9.327172 145.6581 7.209222 38.38839 

19 5.3398 1.03E+00 8.497797 130.2837 6.87864 35.98663 

20 0.3605 2.69E-01 7.674869 117.7712 6.563962 34.08997 

21 36.1845 2.69E+00 7.176397 99.18645 6.52898 28.86427 

22 1.0914 4.67E-01 6.505477 88.35182 6.449605 26.02771 

23 0.241 2.20E-01 5.876884 78.58404 6.130191 24.35645 

24 11.0075 1.48E+00 5.43757 66.72717 5.903592 21.47534 

25 0.6669 3.65E-01 4.930334 58.5275 5.670968 19.60904 

26 0.145 1.70E-01 4.45433 51.35359 5.389319 18.10467 

27 3.0312 7.79E-01 4.086759 43.78505 5.138356 16.19031 

28 3.4712 8.33E-01 3.761404 37.14516 4.881587 14.45755 

29 0.9074 4.26E-01 3.427864 31.9411 4.645799 13.06301 

30 4.6672 9.66E-01 3.181692 26.76489 4.428097 11.48423 

Table C1 (Contd.) 
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C2 Sample Calculations for Pressure Drop in Two-Phase Flow Apparatus Using 

Lockhart-Martinelli correlations 

 

Density of Air 

 

The density of air can be found out from the atmospheric pressure (P), its molecular 

weight (MW), the gas constant (R), and temperature (T): 

 

avg

avg
g RT

MWP
=ρ       (i) 

 

333 0135.106313.0
15.293*

.

.9.998

2.742*9.24

m
kg

ft
lb

K
Klbmol
ftmmHg

mmHg
lbmol
lb

m

m

g ===ρ  

 

Density of Water 

 

33 77.998282.28
m
kg

ft
kg

l ==ρ  

 

The void fraction is obtained from the following equation. The values of hv and h are 

given by the Camile output data. 
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h
h

Vol
Vol v

l

g
g ==ε       (ii) 

 

4783.0
44.5

6021.2
==

m
m

gε  

 

( ) lgggTP ρερερ .1. −+=      (iii) 

 

( ) 333 5133.52177.998*4783.010135.1*4783.0
m
kg

m
kg

m
kg

TP =−+=ρ  

 

Reynold’s Number 

 

l

l
l A

mD
µ

.

Re =        (iv) 

 

1117.5878
00109.0*0457.5

1372.0*026.0
Re

2
=

−
=

ms
kgmE

s
kgm

l  

 

g

g
g A

mD
µ

.

Re =        (v) 
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3518.1780
0523.3*0457.5

00123.0*026.0
Re

2
=

−−
=

ms
kgEmE

s
kgm

g  

 

 

Liquid is in turbulent flow and the gas is in laminar flow. Hence, the Lockhart-Martinelli 

constant is given by the following equation. 

 

ii c
g

b
lii aC ReRe=       (vi) 

 

9417.113518.1780*1117.5878*26464.0 3664.07549.0 == −C  

 

Mass fraction, xg

 

00889.0
1372.000123.0

00123.0
..

.

=
+

=
+

=
gl

g
g

mm

mx  

 

Friction factor, f 

 

01088.0
1117.5878

64
Re
64

===
l

lf  

 

03594.0
3518.1780

64
Re
64

===
g

gf  
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( )
( ) lgg

ggl

g

f

l

f

xf

xf

L
P
L
P

X
ρ

ρ
2

2
2 1−

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ∆

⎟⎟
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⎞
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( )

8130.3
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2

2
2 =

−
=X  

 

9526.1=X  

 

( ) 22 .1 XXCg ++=φ      (viii) 

 

( ) 3399.288130.39526.1*9417.1112 =++=gφ  

 

( )

m
PaE

D

x
A
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L
P

g

gg

g
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m
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( )
m
Pa

L
P

L
P

g

f
g

TP

f 699.3753550.13*3399.28.2 ==⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ∆
=⎟⎟

⎠

⎞
⎜⎜
⎝
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m
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L
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⎠
⎞

⎜
⎝
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( ) PsiPam
m
PaP 4018.43922.3035744.5*4029.5580 ===∆−  
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APPENDIX D 

MATLAB CODES FOR DIFFERENT OPTIMIZATION TECHNIQUES 

 

D1 Linear model - Nelder-Mead Simplex method 

 
Main Program 
 
clear all; 
clc; 
% Generating random values of 'x' and 'y'. 
x=0.01:0.5:10; 
y=0.5.*x+0.2+0.4.*randn(size(x)); 
% Initial guess for the parameters. 
Starting=rand(1,2); 
options=optimset('Display','iter'); 
% Optimizing parameters 
Estimates=fminsearch(@linsimf,Starting,options,x,y) 
% To check the fit 
clf; 
plot(x,y,'*') 
hold on 
plot(x,(Estimates(1).*x+Estimates(2)),'r') 
 
 
Subroutine 
 
function sse=linsimf(params,input,Actual_Output) 
% Selecting random 20 values of 'x'. 
out_number = zeros(5,1); 
o=round(rand(20,1).*20.+0.5); 
r=o(1:5'); 
d=0.01+(r-1).*0.5; 
% Defining parameters. 
A=params(1); 
B=params(2); 
fc1=(A.*input+B); 
% Calculating 'y' values for corresponding 'x' values. 
fc2=(A.*d+B)'; 
% Extracting the calculated fc2 values. 
for i = 1:length(fc2) 
    for j = 1:length(fc1) 
        if fc2(i)==fc1(j) 
            k(i) = j; 
        end 
    end 
end 
 
for i = 1:length(fc2) 
 
 h(i) = fc2(i) - Actual_Output(k(i)); 
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end 
% SSD calculation. 
ssd=sum(h(i).^2); 
% Total SSE 
Error_Vector=fc1 - Actual_Output; 
sse=sum(Error_Vector.^2); 
 
 
D2 Linear Model – Marquardt-Levenberg Method 
 
Main Program 
 
clear all; 
clc; 
% Define the data sets that you are trying to fit the 
% function to 
x=0.01:0.5:10; 
y=0.5.*x+0.2+3.*randn(size(x)); 
  
% Initialize the coefficients of the function 
%X0=[1 1 1 1 1]'; 
% 
% 
% Initial guess for the parameters. 
Starting=rand(1,2); 
options=optimset('Display','iter','Largescale','off','LevenbergMarquard
t','on','maxFunEvals',400); 
% 
% 
% Set an options file for LSQNONLIN to use the 
% medium-scale algorithm 
%options = optimset('Largescale','off'); 
  
% Calculate the new coefficients using LSQNONLIN 
Estimates=lsqnonlin(@linmlf,Starting,[],[],options,x,y); 
  
% Plot the original and experimental data 
clf; 
plot(x,y,'*') 
hold on 
plot(x,(Estimates(1).*x+Estimates(2)),'r') 
 
 
Subroutine 
 
function Error_Vector=linmlf(params,input,Actual_Output) 
% Selecting random 20 values of 'x'. 
out_number = zeros(5,1);  
o=round(rand(20,1).*20.+0.5); 
r=o(1:5'); 
d=0.01+(r-1).*0.5; 
% Defining parameters. 
A=params(1) 
B=params(2) 
fc1=(A.*input+B); 
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% Calculating 'y' values for corresponding 'x' values. 
fc2=(A.*d+B)'; 
% Extracting the calculated fc2 values. 
for i = 1:length(fc2) 
    for j = 1:length(fc1) 
        if fc2(i)==fc1(j) 
            k(i) = j; 
        end 
    end 
end 
 
for i = 1:length(fc2) 
    h(i) = fc2(i) - Actual_Output(k(i)); 
end 
% SSD calculation. 
ssd=sum(h(i).^2) 
% Total SSE 
Error_Vector=fc1 - Actual_Output; 
sse=sum(Error_Vector.^2); 
 
 
D3 Linear Model – Gauss-Newton Method 
 
Main Program 
 
clear all; 
clc; 
% Define the data sets that you are trying to fit the 
% function to 
x=0.01:0.5:10; 
y=0.5.*x+0.2+3.*randn(size(x)); 
  
% Initialize the coefficients of the function 
%X0=[1 1 1 1 1]'; 
% 
% 
% Initial guess for the parameters. 
Starting=rand(1,2); 
options=optimset('Display','iter','Largescale','on','LevenbergMarquardt
','off','maxFunEvals',400); 
% 
% 
% Set an options file for LSQNONLIN to use the 
% medium-scale algorithm 
%options = optimset('Largescale','on'); 
  
% Calculate the new coefficients using LSQNONLIN 
Estimates=lsqnonlin(@linmlf,Starting,[],[],options,x,y); 
  
% Plot the original and experimental data 
clf; 
plot(x,y,'*') 
hold on 
plot(x,(Estimates(1).*x+Estimates(2)),'r') 
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Subroutine 
 
function Error_Vector=linmlf(params,input,Actual_Output) 
% Selecting random 20 values of 'x'. 
out_number = zeros(5,1);  
o=round(rand(20,1).*20.+0.5); 
r=o(1:5'); 
d=0.01+(r-1).*0.5; 
% Defining parameters. 
A=params(1) 
B=params(2) 
fc1=(A.*input+B); 
% Calculating 'y' values for corresponding 'x' values. 
fc2=(A.*d+B)'; 
% Extracting the calculated fc2 values. 
for i = 1:length(fc2) 
    for j = 1:length(fc1) 
        if fc2(i)==fc1(j) 
            k(i) = j; 
        end 
    end 
end 
 
for i = 1:length(fc2) 
    h(i) = fc2(i) - Actual_Output(k(i)); 
end 
% SSD calculation. 
ssd=sum(h(i).^2) 
% Total SSE 
Error_Vector=fc1 - Actual_Output; 
sse=sum(Error_Vector.^2); 
 
 
D4 Nonlinear Model – Nelder-Mead Simplex Method 
 
Main Program 
 
clear all; 
clc; 
channel = ddeinit('excel','data for packed bed reactor.xls'); 
% Generating random values of 'x' and 'y'. 
x=273:500:19773; 
y=5.*log(55.*x)+3.*randn(size(x)); 
% Initial guess for the parameters. 
Starting=rand(1,2); 
options=optimset('Display','iter'); 
rc = ddepoke(channel, 'r3c1:r42c1', x); 
rc = ddepoke(channel, 'r3c2:r42c2', y); 
% Optimizing parameters 
Estimates=fminsearch(@nonlinsimf,Starting,options,x,y) 
% To check the fit 
clf; 
plot(x,y,'*') 
hold on 
plot(x,Estimates(1).*log(Estimates(2).*x),'r') 
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Subroutine 
function sse=nonlinf(params,input,Actual_Output) 
channel = ddeinit('excel','data for packed bed reactor.xls'); 
% Selecting random 20 values of 'x'. 
out_number = zeros(5,1);  
o=round(rand(40,1).*40.+0.5); 
r=o(1:5'); 
d=273+(r-1).*500; 
% Defining parameters. 
A=params(1); 
lamda=params(2); 
fc1=A.*log(lamda.*input); 
% Calculating 'y' values for corresponding 'x' values. 
fc2=A.*log(lamda.*d); 
% Extracting the calculated fc2 values. 
for i = 1:length(fc2) 
    for j = 1:length(fc1) 
        if(fc2(i)==fc1(j)) 
            k(i) = j; 
        end 
    end 
end 
 
for i = 1:length(fc2) 
    h(i) = fc2(i) - Actual_Output(k(i)); 
end 
% SSD calculation. 
ssd=sum(h(i).^2); 
% Total SSE 
Error_Vector=fc1 - Actual_Output; 
sse=sum(Error_Vector.^2); 
rc = ddepoke(channel, 'r3c3', A); 
rc = ddepoke(channel, 'r3c4', lamda); 
rc = ddepoke(channel, 'r3c7', ssd); 
 
 
D5 Nonlinear Model – Marquardt-Levenberg Method 
 
Main Program 
clear all; 
clc; 
% Define the data sets that you are trying to fit the 
% function to 
x=273:500:19773; 
y=5.*log(55.*x)+2.*randn(size(x)); 
  
% Initialize the coefficients of the function 
%X0=[1 1 1 1 1]'; 
% 
% 
% Initial guess for the parameters. 
Starting=rand(1,2); 
options=optimset('Display','iter','Largescale','off','LevenbergMarquard
t','on','maxFunEvals',400); 
% 
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% Set an options file for LSQNONLIN to use the 
% medium-scale algorithm 
%options = optimset('Largescale','off'); 
  
% Calculate the new coefficients using LSQNONLIN 
Estimates=lsqnonlin(@nonlinmlf,Starting,[],[],options,x,y); 
  
% Plot the original and experimental data 
clf; 
plot(x,y,'*') 
hold on 
plot(x,Estimates(1).*log(Estimates(2).*x),'r') 
 
 
Subroutine 
 
function Error_Vector=nonlinmlf(params,input,Actual_Output) 
% Selecting random 20 values of 'x'. 
out_number = zeros(5,1);  
o=round(rand(40,1).*40.+0.5); 
r=o(1:5'); 
d=273+(r-1).*500; 
% Defining parameters. 
A=params(1) 
B=params(2) 
fc1=A.*log(B.*input); 
% Calculating 'y' values for corresponding 'x' values. 
fc2=A.*log(B.*d); 
% Extracting the calculated fc2 values. 
for i = 1:length(fc2) 
    for j = 1:length(fc1) 
        if(fc2(i)==fc1(j)) 
            k(i) = j; 
        end 
    end 
end 
 
for i = 1:length(fc2) 
    h(i) = fc2(i) - Actual_Output(k(i)); 
end 
% SSD calculation. 
ssd=sum(h(i).^2) 
% Total SSE 
Error_Vector=fc1 - Actual_Output; 
sse=sum(Error_Vector.^2); 
 
 
D6 Nonlinear Model – Gauss-Newton Method 
 
Main Program 
 
clear all; 
clc; 
% Define the data sets that you are trying to fit the 
% function to 
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x=273:500:19773; 
y=5.*log(55.*x)+2.*randn(size(x)); 
  
% Initialize the coefficients of the function 
%X0=[1 1 1 1 1]'; 
% 
% 
% Initial guess for the parameters. 
Starting=rand(1,2); 
options=optimset('Display','iter','Largescale','on','LevenbergMarquardt
','off','maxFunEvals',400); 
% 
% 
% Set an options file for LSQNONLIN to use the 
% medium-scale algorithm 
%options = optimset('Largescale','on'); 
  
% Calculate the new coefficients using LSQNONLIN 
Estimates=lsqnonlin(@nonlinmlf,Starting,[],[],options,x,y); 
  
% Plot the original and experimental data 
clf; 
plot(x,y,'*') 
hold on 
plot(x,Estimates(1).*log(Estimates(2).*x),'r') 
 
 
Subroutine 
 
function Error_Vector=nonlinmlf(params,input,Actual_Output) 
% Selecting random 20 values of 'x'. 
out_number = zeros(5,1);  
o=round(rand(40,1).*40.+0.5); 
r=o(1:5'); 
d=273+(r-1).*500; 
% Defining parameters. 
A=params(1) 
B=params(2) 
fc1=A.*log(B.*input); 
% Calculating 'y' values for corresponding 'x' values. 
fc2=A.*log(B.*d); 
% Extracting the calculated fc2 values. 
for i = 1:length(fc2) 
    for j = 1:length(fc1) 
        if(fc2(i)==fc1(j)) 
            k(i) = j; 
        end 
    end 
end 
 
for i = 1:length(fc2) 
    h(i) = fc2(i) - Actual_Output(k(i)); 
end 
% SSD calculation. 
ssd=sum(h(i).^2) 
% Total SSE 
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Error_Vector=fc1 - Actual_Output; 
sse=sum(Error_Vector.^2); 
 
 
D7 Multivariable Model – Nelder-Mead Simplex Method 
 
Main Program 
 
clear all; 
clc; 
% Generating random values of 'x' and 'y'. 
x=0.01:0.5:10; 
y=0.01:0.5:10; 
z=0.5.*x.^0.5+2.*y.^0.5+randn(size(x)); 
% Initial guess for the parameters. 
Starting=rand(1,2); 
options=optimset('Display','iter'); 
% Optimizing parameters 
Estimates=fminsearch(@multisimf,Starting,options,x,y) 
% To check the fit 
clf; 
surf(x,y,z,'*') 
hold on 
surf(x,y,Estimates(1).*x.^0.5+Estimates(2).*y.^0.5) 
 
 
Subroutine 
 
function sse=multisimf(params,input,Actual_Output) 
% Selecting random 20 values of 'x'. 
out_number = zeros(5,1); 
o=round(rand(20,1).*20.+0.5); 
r=o(1:5'); 
d=0.01+(r-1).*0.5; 
s=0.01+(r-1).*0.5; 
% Defining parameters. 
input 
A=params(1) 
B=params(2) 
fc1=(A.*input.^0.5+B.*input.^0.5); 
% Calculating 'y' values for corresponding 'x' values. 
fc2=(A.*d.^0.5+B.*s.^0.5)'; 
% Extracting the calculated fc2 values. 
for i = 1:length(fc2) 
    for j = 1:length(fc1) 
        if fc2(i)==fc1(j) 
            k(i) = j; 
        end 
    end 
end 
 
for i = 1:length(fc2) 
    h(i) = fc2(i) - Actual_Output(k(i)); 
end 
% SSD calculation. 
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ssd=sum(h(i).^2) 
% Total SSE 
Error_Vector=fc1 - Actual_Output; 
sse=sum(Error_Vector.^2); 
 
 
D8 Multivariable Model - Marquardt-Levenberg Method 
 
Main Program 
 
clear all; 
clc; 
% Define the data sets that you are trying to fit the 
% function to 
x=0.01:0.5:10; 
y=0.01:0.5:10; 
z=0.5.*x.^0.5+2.*y.^0.5+3.*randn(size(x)); 
% Initialize the coefficients of the function 
%X0=[1 1 1 1 1]'; 
% 
% 
% Initial guess for the parameters. 
Starting=rand(1,2); 
options=optimset('Display','iter','Largescale','off','LevenbergMarquard
t','on','maxFunEvals',400); 
% 
% 
% Set an options file for LSQNONLIN to use the 
% medium-scale algorithm 
%options = optimset('Largescale','off'); 
  
% Calculate the new coefficients using LSQNONLIN 
Estimates=lsqnonlin(@multimlf,Starting,[],[],options,x,y); 
  
% Plot the original and experimental data 
clf; 
plot3(x,y,z,'*') 
hold on 
plot3(x,y,Estimates(1).*x.^0.5+Estimates(2).*y.^0.5) 
 
 
Subroutine 
 
function Error_Vector=multimlf(params,input,Actual_Output) 
% Selecting random 20 values of 'x'. 
out_number = zeros(5,1);  
o=round(rand(20,1).*20.+0.5); 
r=o(1:5'); 
d=0.01+(r-1).*0.5; 
s=0.01+(r-1).*0.5; 
% Defining parameters. 
A=params(1) 
B=params(2) 
fc1=(A.*input.^0.5+B.*input.^0.5); 
% Calculating 'y' values for corresponding 'x' values. 
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fc2=(A.*d.^0.5+B.*s.^0.5)'; 
% Extracting the calculated fc2 values. 
for i = 1:length(fc2) 
    for j = 1:length(fc1) 
        if fc2(i)==fc1(j) 
            k(i) = j; 
        end 
    end 
end 
 
for i = 1:length(fc2) 
    h(i) = fc2(i) - Actual_Output(k(i)); 
end 
% SSD calculation. 
ssd=sum(h(i).^2) 
% Total SSE 
Error_Vector=fc1 - Actual_Output; 
sse=sum(Error_Vector.^2); 
 
 
D9 Multivariable Model - Gauss-Newton Method 
 
Main Program 
 
clear all; 
clc; 
% Define the data sets that you are trying to fit the 
% function to 
x=0.01:0.5:10; 
y=0.01:0.5:10; 
z=0.5.*x.^0.5+2.*y.^0.5+3.*randn(size(x)); 
% Initialize the coefficients of the function 
%X0=[1 1 1 1 1]'; 
% 
% 
% Initial guess for the parameters. 
Starting=rand(1,2); 
options=optimset('Display','iter','Largescale','on','LevenbergMarquardt
','off','maxFunEvals',400); 
% 
% 
% Set an options file for LSQNONLIN to use the 
% medium-scale algorithm 
%options = optimset('Largescale','on'); 
  
% Calculate the new coefficients using LSQNONLIN 
Estimates=lsqnonlin(@multimlf,Starting,[],[],options,x,y); 
  
% Plot the original and experimental data 
clf; 
plot3(x,y,z,'*') 
hold on 
plot3(x,y,Estimates(1).*x.^0.5+Estimates(2).*y.^0.5) 
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Subroutine 
 
function Error_Vector=multimlf(params,input,Actual_Output) 
% Selecting random 20 values of 'x'. 
out_number = zeros(5,1);  
o=round(rand(20,1).*20.+0.5); 
r=o(1:5'); 
d=0.01+(r-1).*0.5; 
s=0.01+(r-1).*0.5; 
% Defining parameters. 
A=params(1) 
B=params(2) 
fc1=(A.*input.^0.5+B.*input.^0.5); 
% Calculating 'y' values for corresponding 'x' values. 
fc2=(A.*d.^0.5+B.*s.^0.5)'; 
% Extracting the calculated fc2 values. 
for i = 1:length(fc2) 
    for j = 1:length(fc1) 
        if fc2(i)==fc1(j) 
            k(i) = j; 
        end 
    end 
end 
 
for i = 1:length(fc2) 
    h(i) = fc2(i) - Actual_Output(k(i)); 
end 
% SSD calculation. 
ssd=sum(h(i).^2) 
% Total SSE 
Error_Vector=fc1 - Actual_Output; 
sse=sum(Error_Vector.^2); 
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