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Abstract:  
 
Adenovirus (Ad) is a promising gene therapy vector and is used currently in more than 
23% of clinical gene therapy trials. The viral vector, however, has drawbacks such as 
immunogenicity, promiscuous tropism, and the inability to infect certain types of cells. 
The focus of this work was to develop an improved vector through electrostatic formation 
of a complex between negatively charged adenovirus and positively charged cell-
penetrating peptides (CPPs), including Tat, Penetratin, polyarginine and Pep1. The 
resulting complexes were demonstrated to be capable of transducing cells that lack the 
coxsackie-adenovirus receptor (CAR) and are otherwise difficult to infect with native Ad. 
The transduction efficiency of the complexes was optimized by varying the multiplicity 
of infection, complex formation time and ratio of CPPs to Ad. The complexes improved 
the transduction efficiency on CAR-negative cells by more than 100-fold compared to 
unmodified Ad. Physicochemical characterization, including measurements of the size 
and zeta-potential of the complex, was performed to determine the suitability of the 
complex for in vivo gene delivery studies and investigate correlations between 
physicochemical properties and gene delivery efficiency. The size of CPP/Ad complex is 
initially less than 300 nm, but stability studies performed in the presence of serum 
indicate that the complex aggregates with serum after an extended time. The results of the 
present study indicate electrostatic modification of Ad with CPPs provides a relevant 
platform for developing effective Ad-based gene therapy vectors.  
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CHAPTER 1 

 

INTRODUCTION 

 

During the last three decades, progression in the field of genetics made it clear that many 

diseases which affect humans are caused by genetic malfunctions. These malfunctions 

lead to abnormal production of cellular proteins causing disease. The ability to correct 

these genetic defects would provide an advancement in the treatment of diseases caused 

by genetic malfunctions (Friedmann and Roblin 1972). Gene therapy is a promising 

strategy of treating diseases at a genetic level by introducing genes to a target cell in 

order to correct, restore, modify or enhance cellular activities (Mountain 2000; Nathwani, 

Benjamin et al. 2004). Gene therapy employs nucleic acid to prevent or treat acquired 

diseases such as cancer (McNeish, Bell et al. 2004), neurological diseases (Ribotta 2001), 

cardiovascular diseases (Katz, Swain et al. 2010) or inherited diseases such as muscular 

dystrophy (Inui, Okada et al. 1996) or cystic fibrosis (Griesenbach, Geddes et al. 2006). 

To implement gene therapy it is vital to understand the pathogenesis of the disease, genes 

that induce desired genetic modification and the delivery mechanism of the genes to the 

target tissues (Zaia 2007). 
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Based on the nature of the disease, gene therapy materials can be therapeutic genes, 

suicide genes, gene silencing materials or DNA vaccines (Hwang 2006). Therapeutic 

genes can be delivered to the nucleus of cells to repair or substitute defective genes 

andproduce therapeutic proteins (Ouma, Jonas et al. 2012). Suicide genes can be 

delivered to the nucleus of cancer cells where the gene encodes a protein product that 

causes cellular apoptosis (Mitry, Sarraf et al. 2000; Fillat, Carrio et al. 2003). Antisense 

oligonucleotides or siRNA can be delivered to the nucleus of a specific target cell to 

block the gene expression and silence a problematic gene (Kang, Kim et al. 2000; Li, Fu 

et al. 2005). DNA vaccines can be delivered into dendritic cells or muscle cells to be 

converted into a protein vaccine and manipulate the immune system (Donnelly, Wahren 

et al. 2005). 

The use of gene transfer to cure diseases started in the 1990s. Since then over 1,843 

human gene therapy clinical trials have been performed.  In the last 5 years, over 413 

clinical gene trials have been carried out (Wiley 2012). The first human gene therapy 

clinical trial was conducted to cure a patient with Adenosine deaminase (ADA) 

deficiency that damages the immune system (Sheridan 2011). The trial involved the 

treatment of T-cells extracted from the patient by introducing genes that correctly encode 

ADA. The treated cells were then administered back to the patient. After the clinical trial 

the patient exhibited a provisional response and was further treated with enzyme 

replacement therapy.  

The first clear-cut success in the field of gene therapy was treatment of two children with 

X-SCID, an immunodeficiency disease caused by the inability of T-cells to differentiate. 

The patients were treated with murine leukemia virus carrying complimentary DNA 
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capable of encoding the cytokine receptor essential in the delivery of differentiation and 

growth signals to progenitor cells (Cavazzana-Calvo, Hacein-Bey et al. 2000). The trial 

was successful in correcting the disease, but out of the 20 patients who received the 

treatment, five developed leukemia and one died (Hollon 2000). Studies suggested the 

development of leukemia was attributed to retroviral gene insertion to host cell genome 

(Couzin and Kaiser 2005). These side effects put treatment of diseases using gene therapy 

in jeopardy. The practicability of gene therapy was questioned earlier when a trial 

involving 18 year old patient with ornithine transcarbamylase deficiency (OTC) died 

after being treated with the pilot version of a gene vector based on that used human 

adenovirus (Raper, Chirmule et al. 2003). The cause of death was later associated with 

the patient’s immune response to the adenoviral vector  (Hollon 2000).   

Studies have concluded that the most difficult challenge in the field of gene therapy is 

developing the right vector for gene delivery (Verma and Somia 1997). Depending upon 

the vector used to deliver the genetic materials, gene therapy can be ex vivo or in vivo 

(Figure 1.1). In ex vivo gene therapy, cells extracted from a patient are treated outside the 

body and administered back to the patient (Naldini 2011). The treated cells induce the 

desired therapeutic change. Ex vivo gene therapy has to be tailored to a patient. Hence, it 

incurs high manufacturing costs and quality-control difficulties. In In vivo gene therapy, 

gene therapy materials are directly administered to the patients using gene delivery 

vectors. With this technique the gene delivery vector can be used for different patients. 

Hence, in vivo gene therapy has reduced application costs but requires a more 

sophisticated vector. Systematic in vivo gene therapy usually causes the wide 
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dissemination of particles leading to the transduction of undesired tissues and 

complicating immune responses (Mountain 2000).  

 

Figure 1.1: Ex-vivo or in-vivo gene therapy.  

 

For effective in vivo gene delivery, gene delivery vectors are required to efficiently 

maneuver through a number of barriers. These barriers can be divided into extracellular 

and intracellular (Figure 1.2). The vector has to first overcome extracellular barriers to 

reach the surface of the target cell. Depending on the type of administration, gene 

delivery vectors have to escape the vascular system and local tissue matrices. Gene 
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delivery vectors have to avoid degradation by enzymes and neutralization by antibodies 

(Lechardeur, Sohn et al. 1999). Then, the vector has to associate with the target cell by 

binding to specific cellular receptors which facilitate recognition and internalization 

through endocytosis (Wu, Wilson et al. 1989). 

Once associated with the target cells, the vector has to overcome intracellular barriers. 

The gene delivery vector has to go through the endolysosomal network if the vector 

avoids exocytosis (Luzio, Mullock et al. 2001). Vectors have to escape the 

endolysosomal network at optimum location within close vicinity to the nucleus before 

being degraded by the harsh environment (Cho, Kim et al. 2003). After the vector reaches 

the nucleus the genetic material has to be unpacked. The unpacking has to be done at a 

close proximity to the nucleus or after entering the nucleus to avoid interaction with 

degradative enzymes. The genes unpacked outside the nucleus have to passively diffuse 

through the nuclear pore to enter the nucleus.  Vectors can also utilize the vulnerability of 

the nucleus membrane during mitosis to gain access to nucleus for gene transcription 

(Wilke, Fortunati et al. 1996).  
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Figure: 1.2 Stages of internalization and transport of gene delivery vehicle (adapted from 

(Ramsey 2006)) 

 

In addition to efficiency, gene delivery vectors have to be safe. Gene delivery vectors 

should not cause undesired innate and adaptive immune responses. Innate responses will 

elicit elimination of transduced target cells while adaptive responses developed by the 

patient will neutralize re-administrated vectors. Since target cells are found in a 

heterogeneous surrounding or distributed within different parts of the body, vectors 

should have specificity to target cells. The vector should accommodate large sized 
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genetic materials for delivery. Once delivered, the vector should not promote random 

integration of genetic materials into the host chromosome which may cause integrational 

mutagenesis. The gene should reside as an episome or integrate into the chromosome at 

the desired site. The vector has to fulfill the desired level of gene expression, whether it is 

transient expression in cases of vaccines, regulated expression in cases such as diabetes 

or life time expression in cases such as hemophilia. Finally, the vector should be easy to 

produce in high titer and production should be inexpensive. 

Currently gene delivery vectors are divided into two categories: viral and non-viral. 

Viruses have the natural ability of introducing their own gene into cells for reproduction 

and cause an array of diseases. Viruses are often used, however, as vehicles to deliver 

genes to treat disease in a patient. These viruses are replication defective and carry 

therapeutic genetic materials instead of their own gene. Of the current ongoing and 

completed gene therapy clinical trials 70% used viral vectors (Wiley 2012). Various 

viruses such as retrovirus, adenovirus, lentivirus, herpes simplex virus and adeno-

associated virus (AAV) have shown promise as gene delivery vectors. Adenovirus is the 

leading viral vector in gene therapy clinical trials (used in 23% of trials performed so far) 

followed by retrovirus (Figure 1.3). 

Adenovirus (Ad)-based gene delivery vectors have a number of favorable futures and are 

being applied widely in clinical gene therapy trials (Benihoud, Yeh et al. 1999; 

Mizuguchi and Hayakawa 2004). Ad has transient gene expressions and can transduce 

dividing and non-dividing cells. Unlike retrovirus, Ad does not integrate into the host 

genome, thus does not lead to undesired integrational mutation. Ad can accommodate 

large transgenes. Ad however, induces inflammatory immune responses and can be 
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neutralized by preexisting host immunity. In addition, Ad has native promiscuous 

tropism. Ad employs the coxsackievirus and adenovirus receptor (CAR) to target and 

infect cells (Bergelson, Cunningham et al. 1997). Dependency on the receptor prevents 

gene transfer into cells lacking CAR (CAR-negative), which includes many advanced 

tumor cells, peripheral blood cells, hematopoietic stem cells, vascular smooth muscle 

cells (SMCs) and dendritic cells (Wickham 2000; Mizuguchi and Hayakawa 2004). 

Adenovirus is discussed in detail in the next section. 

 

Genetic and chemical modification strategies have been used to broaden transduction 

efficiency of Ad in a receptor-independent manner. One promising approach involves 

genetic modification of the fiber/knob and capsid proteins to insert small peptides, such 

as RGD, that enhance CAR-independent translocation (Vigne, Mahfouz et al. 1999; 

Ogawara, Rots et al. 2004; Kreppel, Gackowski et al. 2005). Chemical modification is an 

Adenovirus

23%

Retrovirus

20%

Naked/Plasmid DNA

18%

Vaccinia virus

6%

Lipofection

6%

Adeno-associated 

virus

5%

Poxvirus

4%

Herpes simplex 

virus

3%

Lentivirus

3%

RNA transfer

1%

Figure 1.3: Gene delivery vectors used for gene therapy clinical trial (Wiley 2012).
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alternative approach to genetic modification that allows a wide range of amino acids in 

the capsid to be modified with polymers (e.g., PEG or PLL) or peptides after 

conventional production and purification of the virus (Kaplan, Pennington et al. 1998).  

One approach to chemically modifying the virus is the use of cell penetrating peptides 

(CPPs) to increase transduction efficiency of Ad. The CPPs electrostatically bind the 

surface of the virus and introduce an alternative pathway for transporting the virus into 

the cell by functioning in place of the fiber/CAR interaction. CPPs are peptides that 

typically contain less than 30 amino acids and have been shown to possess the ability to 

translocate peptides, oligonucleotides, plasmid DNA and large proteins into a wide range 

of cell types (Lewin, Carlesso et al. 2000; Torchilin, Rammohan et al. 2001; Tseng, Liu 

et al. 2002; Snyder, Saenz et al. 2005; Mae and Langel 2006). In addition, CPPs have 

been shown to have low toxicity. The peptides are categorized typically as either 

polycationic or amphipathic. Polycationic CPPs are highly cationic peptides with high 

isoelectric points mainly composed of arginine or lysine. In comparison, amphipathic 

CPPs have basic and hydrophobic amino acid clusters which interact with the lipophilic 

regions of the cell membrane. CPPs are discussed in detail in section 3.  

Due to these described characteristics, CPPs are an attractive option for increasing the 

transduction efficiency of Ad. Forming complexes between CPPs and Ad may be 

achieved through either covalent or noncovalent attachment of CPPs to the Ad capsid. In 

fact, Gratton et al. (Gratton, Yu et al. 2003) and Lehmusvaara et al. (Lehmusvaara, 

Rautsi et al. 2006) reported that pre-incubation of CPPs with Ad derived from Drosophila 

Antennapedia homeodomain (pen) or human immunodeficiency virus type 1 transcription 

transactivation (Tat) protein with adenovirus improved adenoviral transduction of cancer 
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and endothelial cells. In the case of covalent complex formation, specific linker 

molecules are needed to facilitate the association between CPPs and the cargo; however, 

this approach limits complex formation flexibility. Noncovalent complex formation, 

which is simpler from a technological standpoint, involves electrostatic binding between 

positively charged CPPs and negatively charged cargo. Chapter two will discuss 

materials and method used by our study in detail.   

The objective of this study was to evaluate the potential of the non-covalently formed 

CPP/Ad complexes to transduce cells the virus would not infect normally. In the study, 

four CPPs with different futures were used to form the complexes. The first two CPPs are 

polycationic Tat and amphipatic Pen which have been used by Gratton et al. and 

Lehmusvaara et al. for intracellular delivery of adenovirus (Gratton, Yu et al. 2003; 

Lehmusvaara, Rautsi et al. 2006). The other two CPPs are a polyarginine(pArg), with 

nine argine residues and Pep1. The pArg peptide has led to improved translocation of 

proteins and liposomes (Tseng, Liu et al. 2002), and Pep1 has been shown to carry cargo 

into cells after non-covalent attachment (Morris, Depollier et al. 2001; Gros, Deshayes et 

al. 2006). These four CPPs were selected to find the best working CPP to translocate Ad 

into CAR-negative cells. The resulting CPP/Ad complexes were compared against native 

Ad alone and were characterized physically and chemically. Chapter 3 and chapter 4 

discuss my findings in detail.  
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1.1 Adenovirus 

1.1.1 An overview of Adenovirus 

Adenovirus was first isolated from human adenoid tissues in 1953 (Rowe, Huebner et al. 

1953). Adenoviruses are responsible for acute respiratory diseases, urinary tract 

infections and gastrointestinal infections. Currently more than 50 adenovirus serotypes 

have been isolated from different animals. Out of the characterized adenovirus serotypes, 

type 2 and 5 serotypes have been studied in great detail and are being used as gene 

transfer vectors. 

1.1.2 Structure of Adenovirus 

 Adenovirus is a 36 kbp linear double-stranded DNA molecule non-enveloped virus with 

an icosahedral shaped capsid protein. The virus has a particle size of between 70 to 100 

nm in diameter and mass of 150 MDa. The capsid is responsible to protect and preserve 

the genome. The capsid is composed mainly of 20 hexon capsid faces, 12 penton-base 

vertices, and 12 fiber/knob proteins emanating from each of the 12 vertices (Rux and 

Burnett 2004). Each capsid face is made up of 12 hexon capsomeres. The hexon faces are 

glued to each other with adhesive protein IX (pIX) (Furcinitti, van Oostrum et al. 1989). 

Penton base is found at the vertices of each hexon. The fibers protrude from each penton-

base have three distinct regions. These are N-terminal tails that fasten to the penton base, 

a shaft domain and a C-terminus knob. Fiber proteins and penton-bases have motifs that 

bind to cell surface integrin and receptors to facilitate endocytic uptake (Zubieta, 

Schoehn et al. 2005).  
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Figure 1.4: Structure of adenovirus. Fiber protein emanate out of the surface of the 

capsid.  

1.1.3 Generations of Adenovirus 

The adenovirus genome encodes five early transcription units (E1A, E1B, E2, E3 and 

E4), three delayed early transcription units (pIX, IVa2 and E2 late) and one major late 

transcription unit (L1 to L5) (McConnell and Imperiale 2004). The E1A gene products 

activate DNA transcription while the E1B gene products disengage apoptosis. The E2 

gene encodes viral DNA replication while E3 gene products regulate cellular immune 

responses of viral infection and aid in release of the virus. Modulation of transcription 

and translation are among the tasks of E4 gene products and delayed early transcription 

units. The late gene products are used to generate the capsid of the virus (McConnell and 

Imperiale 2004). 

Adenovirus vectors are grouped into three generations based on early gene modifications  

(McConnell and Imperiale 2004). The first generation vectors have E1 and/or E3 gene 

deletions. E1 gene deletion makes the vector replication deficient. Complimentary cells 

such as the 293 cell line are needed for vector production of this generation. These cells 

possess an adenoviral genome containing the E1 genes. Moreover E3 genes encode 
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proteins that are responsible for protecting infected cells from the immune system. This 

generation is capable of carrying up to 8.2 Kbp of gene (Danthinne and Imperiale 2000). 

The second generation vectors are created by removing E2 and E4 genes in addition to 

E1 and E3 genes.  These deletions allow a maximum of 14 Kbp foreign DNA insertions 

(Danthinne and Imperiale 2000). Like the first-generation vectors, the second-generation 

vectors are produced with a complimentary cell line. The first and second generation 

adenovirus vectors trigger an immune response in the hosts making these generation good 

vaccine vectors (Imler 1995; Tatsis and Ertl 2004). However, immune response impedes 

the application of these viruses as gene delivery vectors. Helper-dependent generations 

have complete deletion of adenovirus genome except the ITR and the encapsulation 

signal. This gutless high capacity generation can carry up to 30 Kbp of foreign genetic 

materials (Parks and Graham 1997). The high capacity allows expression of larger genes 

with reduced cellular immunogenicity associated with the viral genes. 

1.1.4 Infection Pathway of Adenovirus 

The adenovirus infection pathway involves a series of steps. In the first step the virus 

binds to the cell membrane. This step is mainly mediated by the fiber protein. The knob 

domain of the fiber protein binds to a particular plasma membrane protein called the 

coxsackie B virus and adenovirus receptor(CAR) (Howitt, Anderson et al. 2003). CAR is 

an extracellular transmembrane protein that belongs to the immunoglobulin super family 

(Bergelson, Cunningham et al. 1997). Next, the penton base links with integrin receptors 

on the cell through the argentine-glycine-aspartic acid (RGD) motif (Wickham, Mathias 

et al. 1993). In addition to CAR and integrin, lysine-lysine-threonine-lysine (KKTK) 

motifs found in the shaft domain of the fiber protein and heparin sulphate proteoglycans 
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found on the cell plasma membrane aid cell attachment (Smith, Idamakanti et al. 2003). 

These interactions between the virus and cell surface matrices lead to receptor-mediated 

endocytosis (Meier and Greber 2003). After endocytosis, the virus enters the cytosol 

encapsulated with in an endosomal membrane. As the endosome acidifies capsid proteins 

undergo conformational change (Seth, Willingham et al. 1985; Furcinitti, van Oostrum et 

al. 1989; Greber, Willetts et al. 1993), where the virus partially disassembles, upsets the 

endosomal membrane and escapes into the cytoplasm (Graham, Smiley et al. 1977). 

Upon escape from the endosome, the virus particles associate with the dynein/dynactin 

motor complexes, which guide the particles along microtubules to the nucleus (Kelkar, 

Pfister et al. 2004). Once in the proximity of the nucleus, microtubules release the virus 

particles, which bind to the nuclear pore complex (Greber, Suomalainen et al. 1997). 

Virus particles disassemble and further viral DNA is transferred into the nucleus to 

complete infection of the cells. 

1.1.5 Adenovirus as a Gene Delivery Vector 

Adenovirus has been utilized as a gene delivery vehicle (Benihoud, Yeh et al. 1999). 

Thus far, adenovirus has been used for more than 23% of gene delivery clinical trials 

(Wiley 2012). The capability to carry up to ~30Kb of genetic material to both dividing 

and non-dividing cells with high transgene expression made the viral vector appealing. 

Adenovirus can generate high levels of short term transgene expression in most tissues 

except hematopoietic cells, adenovirus receptor deficient cells cancerous cells and muscle 

cells. Adenovirus does not integrate genetic materials into the host genome. Hence it 

eliminates insertional mutagenesis. Most people have preexisting immunity to the virus. 

Patients will also develop neutralizing antibodies after administration. The adaptive 
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immunity to the virus hampers the efficacy of the vector upon readministration. 

Systematically administered adenovirus accumulates in the liver and induces an 

inflammatory response. The death of Jesse Gelsinger, a patient suffering from Ornithine 

Transcarbamylase (OTC) deficiency and enrolled in a gene therapy clinical trial that used 

an adenoviral vector, is a sad reminder to how adverse the immune response to the virus 

can be (Marshall 1999). These drawbacks complicate the development of adenoviral 

vectors. 

 

Figure 1.5: Cellular attachment and internalization of adenovirus. Fiber and penton base 

proteins interact with cell receptors to allow cellular entry and intracellular trafficking. 
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1.2 Cell-Penetrating Peptides 

1.2.1 Definition and Properties of CPPs 

Cell-penetrating peptides (CPPs) are short residue peptides which are capable of crossing 

a biological membrane. These peptides consist of less than 30 amino acids and can 

mediate movements across a cellular membrane into the cytoplasm and progress into 

intracellular pathways. CPPs translocate into cells without cytotoxic effects (Saar, 

Lindgren et al. 2005). CPPs include protein-transduction domains (PTD), membrane-

translocating sequences (MTS) and synthetic cell-permeable peptides which can 

overcome extra and/or intracellular restrictions of biomolecules to be internalized by 

cells. CPPs induce internalization activity and rapid endosomal release of many 

molecules. Cargos such as plasmid DNA (Ignatovich, Dizhe et al. 2003), nucleic acid 

(Meade and Dowdy 2007; Crombez, Aldrian-Herrada et al. 2009), oligonucleotide (Mae 

and Langel 2006), liposomes (Kale and Torchilin 2007), peptides (Yang, Wang et al. 

2006) and proteins (Matsushita, Tomizawa et al. 2001) can be attached to a CPP 

covalently or non-covalently, forming nanoparticles that cells can internalize in a 

receptor-independent manner.  

1.2.2 Discovery of CPPs 

The first CPP was discovered by Frankel and Pabo in 1988 (Frankel and Pabo 1988). 

They observed that the human immunodeficiency virus transactivating regulatory protein 

(Tat) could be internalized by cells. In 1991 Joliot et al. discovered that Drosophila 

Antennapedia homeodomain could translocate into neuronal cells (Joliot, Pernelle et al. 

1991). A short while later in 1996, the Derossi et al. demonstrated that the 16 amino acid 
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residue peptide pAntennapedia, commonly called penetratin,(RQIKIYFQNRRMKWKK) 

can be covalently bound to cargo and translocate into cells (Derossi, Calvet et al. 1996).  

In 1998, the minimum peptide sequence of Tat (YGRKKRRQRRR) necessary for 

cellular uptake was identified by Vives et al. (Vives, Brodin et al. 1997). In 2001, 

Wender et al. (Wender, Mitchell et al. 2000) and Futaki et al. (Futaki, Suzuki et al. 2001) 

investigated and identified a polyargenine amino acid residue that can initiate 

internalization of molecules into cells. 

1.2.3 Classification of CPPs 

CPPs can be grouped into three classes based on their origin.  The first group is 

composed of CPPs derived from naturally occurring proteins. This includes Tat, a CPP 

derived from human immunodeficiency virus trans-activating protein (Tat) (Vives, 

Brodin et al. 1997) and penetratin derived from Drosophila Antennapedia homeodomain 

(Derossi, Joliot et al. 1994). The second group is comprised of model CPPs that are 

developed based on functionality without any homology to natural sequences. These 

CPPs include polyarginine and polylysine (Mitchell, Kim et al. 2000). The third group of 

CPPs consists of chimeric sequences. This includes transportan which is composed of the 

neuropeptide galanin and an amino acid derived from wasp venom, mastoparan (Pooga, 

Hallbrink et al. 1998) and Pep1 composed of N-terminal hydrophobic motif, a 

linker/spacer domain, and a hydrophilic lysine rich domain derived from the nuclear 

localization sequence of simian virus 40 T antigen (Morris, Depollier et al. 2001).   

Another method to classify CPPs is by their common properties.  CPPs have two 

common properties, amphipathicity and positive charge. CPPs incorporate positively 
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charged amino acids (e.g., arginine and lysine) giving them a net positive charge at 

physiological pH. These CPPs include Tat and polycationic homopolymers such as 

polyarginines and polylysines peptide.  These peptides are called polycationic CPPs.  All 

CPPs other than polycationic homopolymers are amphipathic CPPs. Some amphipathic 

CPPs have distinct hydrophobic and hydrophilic parts in their sequence. Other 

amphipathic CPPs have the hydrophobic and hydrophilic amino acids distributed within 

their sequence.  

1.2.4 Mechanism of Internalization  

1.2.4.1 Early Study  

Understanding the internalization mechanism of CPPs is essential for the effective 

delivery of their cargo. Earlier studies reported that internalization of CPPs occurred in 

receptor and energy-independent manner (Lundberg, Wikstrom et al. 2003; Vives 2003). 

Studies showed that internalization occurs at low temperature, which indicated an energy-

independent pathway (Derossi, Calvet et al. 1996; Wender, Mitchell et al. 2000). 

Furthermore, similar translocation efficiency of a CPP and its reverse sequence 

demonstrated that internalization was independent of specific sequence and receptor 

(Futaki, Suzuki et al. 2001). It was suggested that the internalization mechanism of a CPP 

was due to direct interactions of lipid membrane and strong lipid-binding affinity of a 

CPP (Drin, Mazel et al. 2001). Translocation of penetratin in model membrane systems 

appeared to support an uptake mechanism in which a CPP with a high number of cationic 

amino acids can cross the plasma membrane by an energy-independent pathway (Thoren, 

Persson et al. 2003).The validity of the early studies suggesting an energy-independent 

translocation of CPPs, however, was later questioned.  
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1.2.4.2 Current Studies 

Numbers of studies were conducted to reevaluate the internalization mechanism of CPPs 

across the plasma membrane. These studies demonstrated that transmembrane potential is 

required for the peptides to be absorbed by neutral and charged lipid bilayer systems 

(Terrone, Sang et al. 2003; Ziegler, Blatter et al. 2003; Henriques and Castanho 2004). 

Moreover, several investigations suggested that the apparent energy-independent 

internalization mechanism of CPPs proposed by the earlier studies were due to artifacts in 

the cell-fixation (Lundberg, Wikstrom et al. 2003; Richard, Melikov et al. 2003). Despite 

the studies conducted to reevaluate the cellular uptake pathway of CPP across the plasma 

membrane, detailed understanding remains unclear. Studies suggested several types of 

translocation mechanisms. For example, Tat-derived peptides and penetratin were shown 

to internalize by an energy-dependent endocytosis (Drin, Cottin et al. 2003; Vives 2003). 

Recently, it became evident that these CPP can use multiple pathways for cellular entry, 

depending on the context of the experimental conditions (Duchardt, Fotin-Mleczek et al. 

2007).  

The internalization mechanisms of CPPs into cells are debated. Discrepancies between 

studies are attributed to the use of different cell types, incubation conditions and cargo or 

label. Properties of CPPs, such as sequence, molecule length, secondary structure, and 

charge delocalization can influence the uptake mechanism of the peptide. Properties of 

the associated cargo, such as size, concentration, and ability of the cargo to interact with 

cell surface can also factor into the uptake mechanism of the peptide. Studies have 

proposed endocytotic cellular entry pathways (Jones, Christison et al. 2005) such as 
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macropinocytosis (Nakase, Niwa et al. 2004), caveolae (Fittipaldi, Ferrari et al. 2003) and 

non endocytotic membrane perturbation (Henriques and Castanho 2004).  

1.2.4.3 Factors Affecting Internalization 

Cellular uptake of CPPs is determined by the interaction of the CPP with the cell 

membrane surface. Several studies have reported that the interaction of cationic CPPs 

with the negatively charged cell membrane is due to the presence of heparan sulphate 

proteoglycan (Drin, Cottin et al. 2003; Richard, Melikov et al. 2003; Fischer, Kohler et 

al. 2004; Ziegler and Seelig 2004). This electrostatic interaction leads to binding of CPPs 

and heparan sulphate on the membrane surface and trigger endocytotic internalization of 

the complex (Fuchs and Raines 2004). Studies have shown that anti-HS antibodies that 

inhibit binding of CPP to heparan sulphate and competent polyanionic compounds such 

as dextran sulphate and heparin weakened the internalization pAntp, Tat, and these CPPs 

coupled to a cargo (Suzuki, Futaki et al. 2002; Console, Marty et al. 2003). These 

findings suggested that the role of the peptide may be restricted to aiding the attachment 

of cargo to the cell membrane.  

In addition to the cationic properties of CPPs studies showed that other properties 

influence translocation. Studies have shown some hydrophobic residues contributed to 

the membrane binding and translocation (Derossi, Calvet et al. 1996; Fischer, Zhelev et 

al. 2000). Derossi et al. showed hydrophobic residues played a role in membrane binding 

and translocation (Derossi, Joliot et al. 1994). Furthermore, Mitchell et al. and Wender et 

al. proved that a guanidinium group of arginine facilitated cellular uptake of arginine rich 

CPPs (Mitchell, Kim et al. 2000; Wender, Mitchell et al. 2000). Another noteworthy 
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finding is that CPPs of similarly high (pI 10-13)  isoelectric points (pI) showed dissimilar 

internalization activities and some CPPs with low pI such as integrin (pI 5.49) showed 

good cellular uptake (Mueller, Kretzschmar et al. 2008). In addition, homopeptides of 

similar length polymers of arginine showed higher uptake activity compared to lysine, 

histidine or ornithine (Mitchell, Kim et al. 2000). The length of the sequence and the 

conformation of the CPP are proposed factors that play important roles in the cellular 

uptake of CPPs (Fischer, Zhelev et al. 2000). Further studies showed concentration of 

CPPs attaching to the membrane affects the translocation mechanism. Above certain 

concentrations, cellular uptake for Tat and nanoarginine occurred through energy-

independent direct uptake instead of endocytosis (Duchardt, Fotin-Mleczek et al. 2007).   

A factor that may influence the translocation mechanism is the nature of the cargo 

coupled to the CPPs. In cases of CPPs coupled to cargo, the internalization mechanism 

was influenced by the size of the conjugate (Zuhorn, Visser et al. 2002). Despite the fact 

that different CPPs are internalized into cells through endocytosis or energy-independent 

mechanisms, cellular uptake of these CPPs coupled with high molecular weight cargo 

occurred via endocytosis (Console et al. 2003; Lundberg et al. 2003; Takeshima et al. 

2003). Studies have shown that CPPs coupled to high-molecular-weight maleimide-

derivatized phospholipid are internalized by endocytosis (Console et al. 2003). 

1.2.5 CPPs of Interest   

1.2.5.1 Penetratin 

Derived from the highly conserved 60-residue Drosophila melanogaster Antennapedia 

homeodomain protein, Penetratin is one of the most investigated CPPs (Derossi, Calvet et 
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al. 1996). It was determined that the third helix 16-residue peptide (residues 43–58) was 

responsible for translocation (Derossi, Joliot et al. 1994). The penetratin sequence is 

composed of several positively charged basic amino acids interspersed throughout the 

hydrophobic residue. Hence, Penetratin has a low amphipathicity. Penetratin has low 

toxicity in cells and did not show membrane perturbation in model membrane systems 

(Magzoub, Eriksson et al. 2003).  Even though the process involved in internalization is 

still controversial, recent studies suggest that cellular uptake of penetratin is largely due 

to an endocytotic mechanism.  Penetratin promotes endocytosis by binding to cell surface 

glycosaminoglycans (Drin, Cottin et al. 2003; Fischer, Kohler et al. 2004) Studies have 

shown that Penetratin has successfully facilitated cellular delivery of oligonucleotides 

(Astriab-Fisher, Sergueev et al. 2002), siRNA (Lundberg, El-Andaloussi et al. 2007) and 

PNA (Chaubey, Tripathi et al. 2008) in vitro and in vivo. 

1.2.5.2 Tat 

In the 1980s, Frankel & Pabo reported that HIV 1 trans-activating protein (Tat) was able 

to penetrate cells (Frankel and Pabo 1988). Later, it was proven that a shorter truncated 

Tat solely composed of basic amino acid and nuclear localization sequence (NLS), Tat 

(48-60) promotes effective internalization (Vives, Brodin et al. 1997). The initialization 

mechanism that Tat takes has been broadly debated. Recent studies however, suggested 

that Tat uses macropinocytosis and/or Clathrin-dependent endocytotic mechanism 

(Richard, Melikov et al. 2003; Wadia, Stan et al. 2004; Ziegler and Seelig 2004). The 

mechanism is initiated by the binding of the peptide to anionic glycosaminoglycans on 

the plasma membrane (Richard, Melikov et al. 2003; Fischer, Kohler et al. 2004) A 

similar uptake mechanism was reported for Tat/cargo conjugates (Lundberg, Wikstrom et 
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al. 2003; Wadia, Stan et al. 2004). Tat has shown  the  ability to carry a wide range of 

macromolecules into cells without compromising cell viability (Zorko and Langel 2005). 

Recently, macromolecules such as liposomes (Torchilin and Levchenko 2003), 

oligonucleotides (Astriab-Fisher, Sergueev et al. 2002), and plasmid DNA (Rudolph, 

Plank et al. 2003) (Rudolph et al. 2003) conjugated with  Tat  showed effective 

translocation  into cells. 

1.2.5.3 Polyarginines 

In the early 2000s, homopeptides attracted the interest of investigators as candidate CPPs. 

Polymers of arginine, lysine, histidine or ornithine of similar length were studied and 

polyarginine demonstrated superior cellular uptake compared to other homopeptides 

(Mitchell, Kim et al. 2000). Studies showed polyarginine with 8 to 10 arginine molecules 

internalized into cells most efficiently (Futaki, Suzuki et al. 2001).  Efficiency of 

polyarginine compared to other homopeptides suggested that the cationic property of the 

amino acid residues was not the only factor affecting internalization. In fact, the 

guanidinium group of arginine was mainly responsible for cellular uptake (Wender, 

Mitchell et al. 2000). A study by Mitchell et al. supported this argument by showing that 

cellular uptake of polyarginine failed when the nitrogen of the guanidine was replaced by 

oxygen (Mitchell, Kim et al. 2000). Polyarginine binds to the cell surface heparan 

sulphate to facilitate uptake by endocytosis (Fuchs and Raines 2004). Nakase el al. 

reported macropinocytosis pathway as an uptake mechanism (Nakase, Niwa et al. 2004). 

The study further reported that the uptake of polyarginine in the presence of 

macropinocytosis inhibiters depended on the length of polyarginine which suggests the 

possibility of an additional pathway contributing to their uptake (Nakase, Niwa et al. 
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2004). Nonetheless polyarginine has facilitated efficient intercellular delivery of siRNA 

(Kim, Christensen et al. 2006), plasmid (Kish, Tsume et al. 2007) and different proteins 

(Futaki, Suzuki et al. 2001; Wright, Rothbard et al. 2003). 

1.2.5.4 Pep1 

Pep1 is a chimeric and amphipathic peptide composed of N-terminal hydrophobic motif, 

a linker/spacer domain, and a hydrophilic lysine rich domain derived from the nuclear 

localization sequence of simian virus 40 T antigens (Morris, Depollier et al. 2001). The 

hydrophobic motif is required for traversing the plasma membrane and to facilitate 

complex formation with cargo. The hydrophilic motif is required for intracellular 

trafficking while linker/spacer domain separates and interlinks the hydrophobic and 

hydrophilic motif (Morris, Depollier et al. 2001). Pep1 has to first bind to phospholipids 

on the cell membrane, initiate conformational changes and prompt cellular uptake 

through direct translocation (Morris, Depollier et al. 2001). Rapid dissociation of Pep1 

from its cargo after internalization reduces the influence of the CPP on biochemical 

activity and the final destination of its cargo (Morris, Depollier et al. 2001). Pep1 has 

been shown to promote internalization of a wide range of proteins such as protein Kinase 

(Maron, Folkesson et al. 2005), PNA and antibodies (Morris, Depollier et al. 2001).  
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CHAPTER 2 

 

MATERIALS AND METHODOLOGY 

 

2.1 Cell Lines  

Human embryonic kidney (HEK293) and mouse fibroblast (NIH/3T3) cell lines were 

purchased from the American Type Culture Collection (ATCC, Manassas, VA). The 

HEK293 cell line was cultured in Dulbecco’s Modified Eagle’s Medium (DMEM) 

(Gibco-BRL, Grand Island, NY) with 10 % fetal bovine serum (FBS), and the NIH/3T3 

cell line was cultured in DMEM with 10 % calf serum (CS). The cells were subcultured 

every 2 to 3 days and stored in a humidified incubator at 37 °C with 5 % CO2.  

2.2 Production of Adenovirus  

Recombinant adenovirus (Ad) with an E1/E3 deletion and packing lacZ reporter gene 

was purchased from Capital Biosciences (Rockville, MD) and amplified by infecting 

HEK293 cells in 10 cm dishes. The infected cells were incubated until the cytopathic 

effect was observed after which three freeze/thaw cycles were performed to lyse the 

virus-producing cells. Ad contained in the cell lysate was isolated and purified using a 

Vivapure Adenopack purification kit (Sartorius Stedim, Arvada, Colorado) by following 
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the manufacturer’s protocol. The viral titer (cfu/ml) was measured by X-Gal staining of 

HEK293 cells infected with serially diluted viruses. 

2.3 Synthesis of Cell Penetrating Peptides  

Cell penetrating peptides, Tat (YGRKKRRQRRRC), Pen (RQIKIWFQNRRMKWKKC), 

pArg (RRRRRRRRRC) and Pep1 (KETWWETWWTEWSQPKKKRKVC), were 

synthesized by EZBiolab (Westfield, IN). A cysteine residue was added to the C-terminus 

end of each peptide. The purity and uniformity of the peptides were analyzed using NMR 

and HPLC. Peptides were then diluted in HEPES buffer (pH 7. 4) at a concentration of 2 

µg/µl and aliquoted and stored at -80 °C. The isoelectric point and net charge of CPPs 

were calculated with a peptide property calculator from GenScript (Table 4.1) 

(GenScript).



 

 

 

 

 Table 2.1 Selection of CPP sequences. 

CPPs sequence  
CPP charge 

at pH 7 

Isoelectric 

Point  

Hydrophilic 

 % 

Hydrophobic 

% 

MW 

(g/mol) 

 

Pen 

 

RQIKIWFQNRRMKWKKC 

 

7 

 

12.3 

 

41 

 

35 

 

2350 

Tat YGRKKRRQRRRC 8 12.5 67 0 1663 

pArg RRRRRRRRRC 9 13.0 90 0 1527 

Pep1 KETWWETWWTEWSQPKKKRKVC 3 10.2 41 32 2951 
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2.4 Formation of CPP/Ad complexes  

Complexes were formed through electrostatic conjugation of Ad and CPPs (Figure4.1). 

The Ad particles were diluted in HEPES buffer (pH 7.4) at desired multiplicity of 

infection (MOI) of 5, 10, 30, 40, 50 or 100. CPP/Ad complexes were prepared by adding 

CPPs to the virus in a drop-wise fashion and vortexing gently. The mixture was then 

incubated at room temperature for various times to optimize the CPP and Ad interaction. 

As the CPP was added to the negatively charged Ad, noncovalent electrostatic attraction 

formed the CPP/Ad complex.  

 

Figure 2.1 Schematic of CPP/Ad complex formation. 
 

2.5 Particle Size Measurements  

A Brookhaven 90Plus Dynamic Light Scattering (DLS) instrument (Brookhaven 

Instrument, Inc., Worcestershire, UK) was used to measure the hydrodynamic diameter 

of the complexes. Complexes were diluted in DMEM with 10 % CS (pH 7.4) to a 

concentration of 1 × 107 cfu/ml and were maintained at 25 oC. The light scattering was 

measured at 90° relative to the laser source. The particle size of complexes in each 

sample was calculated from six repeat measurements of three samples where each 

measurement acquired data over 30 seconds. 
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2.6 Zeta-Potential Measurements   

A Brookhaven 90Plus ZetaPALS (Brookhaven Instrument, Inc., Worcestershire, UK) 

was used to measure the zeta-potential. Samples were diluted in phosphate buffered 

saline (PBS, pH 7.4) to a concentration 1 × 107 cfu/ml and volume of 1,500 µl. Zeta-

potential measurements were performed in triplicate, and the zeta potential of each 

sample was calculated from ten repeat measurements where each measurement acquired 

data for 30 seconds. 

2.7 Transduction of CPP/Ad 

Transduction of CPP/Ad was studied on CAR-negative NIH/3T3 cells. The cells were 

seeded 24 hours prior to transduction at 2.5 × 105 cells per well in a 12 well plate. The 

cells were then infected with Ad and CPP/Ad at specific MOIs (5, 10, 50, or 100). An 

MOI of 40 was used for further studies to assure the presence of MOI greater than 30. 

Quantitative levels of transduction were measured 48 hours post transduction using the 

chemiluminescence-based, Beta-Glo assay (Promega Inc., Madison, WI), which 

quantifies β-galactosidase protein expressed from the lacZ reporter gene packaged by the 

virus. The quantity of β-galactosidase was measured in terms of relative light units 

(RLUs) with a Lumat LB9507 luminometer (EG&G, Berthold, Bundoora, Australia). 

Reporter gene expression was normalized to total cellular protein, which was quantified 

by a bicinchoninic acid (BCA) protein assay (Pierce Inc., Rockford, IL).  

2.8 Statistical Analysis 

Statistical analysis was performed by One Way Analysis of Variance (ANOVA) with 

Holm-Sidak method to compare the difference between the means of two groups. An 
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overall significance level of 95% was accepted as significant. Mean values with standard 

error are reported and all experiments were performed in triplicate. 
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CHAPTER 3 

 

RESULTS 

 

3.1 Transduction of CPP/Ad Complex 

CPP/Ad complexes were prepared by incubating Ad and CPP for 60 minutes at a 

concentration of 6.25 µg of CPP per 106 Ad. CAR-negative NIH/3T3 cells were infected 

with unmodified Ad and CPP/Ad complexes, and the MOI was varied from 5 to 100 to 

evaluate the effect of MOI on transduction efficiency (Figure 5.1). The results of the gene 

expression study confirmed that the unmodified Ad, as expected, is unable to infect 

CAR-negative cells. The virus alone resulted in low infectivity with no notable increase 

in infectivity as the MOI was increased. All CPP/Ad complexes showed significantly 

higher levels of gene expression at each MOI compared to native Ad, verifying the ability 

of the CPPs to efficiently translocate Ad into CAR-negative cells. At an MOI of 50, 

Tat/Ad, Pen/Ad and pArg/Ad produced a 50-fold improvement in gene expression 

compared to the unmodified Ad whereas Pep1/Ad showed only a 36-fold improvement. 

Gene expression resulting from the CPP/Ad complexes did not increase significantly at 

MOIs greater than 30. 
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Figure 3.1 Transduction study of CPP/Ad complexes with varied MOI.  

3.2 Effect of Incubation Period on Transduction 

Formation of CPP/Ad complexes is dependent on electrostatic interaction between 

positively charged CPPs and negatively charged Ad. Incubation of CPPs and Ad 

facilitates the interaction and formation of the complex. To evaluate the effect of 

incubation period on the transduction efficiency, CPP/Ad complexes were prepared by 

varying the incubation period from 5 to 90 minutes while keeping constant the 

concentration of CPP (6.25 µg CPP/106 Ad) and the MOI of the virus. High transduction 

efficiency was observed for all CPP/Ad complexes compared to unmodified Ad at all 
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incubation periods. The incubation period at which the optimum infectivity was achieved, 

however, varied for each individual CPP/Ad complex (Figure 5.2). 

 

Figure 3.2 Transduction study of CPP/Ad complexes with varied times allowed for 

CPP/Ad complex formation. 

Tat/Ad complexes showed significantly higher transduction efficiency when incubated 

for 15 minutes compared to 5 minutes. Longer incubation periods produced only minor 

improvements of gene transduction for the Tat/Ad complex. The transduction efficiency 

of Pen/Ad, pArg/Ad, and Pep1/Ad was maximized after an incubation period of 60 

minutes, and further increase in the incubation time had no improvement on the 

transduction efficiency of CPP/Ad complexes. Based on these results, an incubation 
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period of 60 minutes, which gives optimal gene expression for all the CPP/Ad 

complexes, was used for the remainder of the study.  

3.3 Effect of Concentration of CPP and Type of CPP on Transduction  

CPP/Ad complexes were formed using CPP concentrations ranging from 0.1 to 50 µg/106 

Ad to determine the effect of concentration of CPP on the formation of CPP/Ad 

complexes and the transduction of CAR-negative cells. The results show that CPP/Ad 

complexes formed from high concentrations of CPPs exhibited better efficiency than 

complexes formed at low concentrations (Figure 5.3). There was a substantial increase in 

transduction over the CPP concentration range of 0.1 to 6.25 µg/106 Ad for all four CPPs 

explored in the study. Transduction levels continued to increase beyond this initial CPP 

concentration range, but at a much lower rate.  

Pen/Ad produced the highest level of cell transduction over the entire concentration range 

of CPPs. Tat/Ad was the second most effective complex followed closely by pArg/Ad. 

Pep1/Ad produced the lowest gene expression over the entire concentration range. At the 

highest CPP concentration, Pen/Ad showed 100-fold higher transduction efficiency 

compared to unmodified Ad. At this concentration, transduction of Tat/Ad and pArg/Ad 

were approximately 95-fold higher than unmodified Ad, while the Pep1/Ad transduction 

was only 66-fold higher compared to unmodified Ad.    
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Figure 3.3 Transduction study of CPP/Ad complexes with varied CPP to Ad ratio. 

3.4 Effect of Serum on Transduction of CPP/Ad 

Serum proteins can have a substantial impact on the transduction efficiency of gene 

vectors due to electrostatic affinity between positively charged complexes and negatively 

charged serum proteins. Although an ultimate goal with many gene vectors is systemic 

administration of the vector in a protein-rich environment, most transduction studies of 

complexes are performed in serum-free medium. In this study, however, transduction 

experiments using CPP/Ad complexes at a concentration of 6.25 µg CPP/106 Ad were 

performed in the presence and absence of 10 % CS. Based on the results of this 

comparative study, the serum did not significantly affect the transduction of Tat/Ad or 
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Pen/Ad complexes (Figure 5.4). In contrast, the transduction efficiency of Pep1/Ad and 

pArg/Ad complexes decreased by 63 and 30 %, respectively, in the presence of serum. 

 

Figure 3.4 Transduction study of CPP/Ad complexes in the presence and absence of 

serum. 

3.5 Significance of Free CPPs as Translocation Agents  

The importance of pre-incubating CPPs with Ad to form a CPP/Ad complex was 

evaluated by comparing CPP/Ad complexes with Ad added directly to cell culture 

medium containing the same concentration range of CPP (i.e., 2.5 – 50 µg/106 Ad) 

without first forming complexes. Ad and free CPPs in solution exhibited greater gene 

expression than unmodified Ad alone and showed some dependency on the CPP 
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concentration (Figure 5.5). Compared to the preformed complexes, however, viruses and 

free CPPs were significantly less efficient than the CPP/Ad complexes, which exhibited 

5- to 14-fold higher gene expression than Ad and free CPPs.  

 

Figure 3.5 Transduction study of CPP/Ad complexes and Ad mixture with free CPP for 

a) Tat/Ad, b) Pen/Ad, c) pArg/Ad and d) Pep1/Ad. 
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3.6 Physicochemical Properties of CPP/Ad Complexes 

The surface charge and hydrodynamic diameter of the CPP/Ad complexes were studied 

to better understand the physicochemical properties associated with the most efficient 

complexes. CPP/Ad complexes were prepared with CPP to Ad ratios ranging from 0.1 to 

50 µg CPP/106 Ad. The zeta-potential of the complexes was measured and revealed that 

binding of CPPs to Ad modifies the overall surface charge of the negatively charged Ad. 

While the surface charge of the unmodified Ad was measured to be -21 ± 4 mV, the 

maximum surface charge of the CPP/Ad complexes was measured to be 12 ± 2 mV 

(Figure 5.6). No significant difference was observed between the surface charges of 

CPP/Ad complexes composed of different CPPs. As the concentration of CPP increased, 

however, all CPP/Ad complexes exhibited an increase in surface charge. The increase in 

charge was sizable from concentration of 0.1 up to 6.25 µg CPP/106 Ad and only 

moderate for higher concentrations.   

The mean hydrodynamic diameter of the CPP/Ad complexes was also measured as a 

function of CPP to Ad ratio over the range 0.1 to 50 µg CPP/106 Ad (Figure 5.7). As 

CPPs were added to the virus, the size increased from the size of the virus alone (i.e., 

approximately 100 nm) to more than double the size of the virus.  As with the zeta-

potential measurement, the greatest change in hydrodynamic diameter occurred within 

the concentration range 0.1 to 6.25 µg CPP/106 Ad. Table 5.1 lists the size of the CPP/Ad 

complexes at this higher concentration of 6.25 µg/106 Ad. Worth noting is that the 

hydrodynamic diameter remained below 300 nm for all CPP/Ad complexes as long as the 

concentration was not increased above 25 µg/106 Ad. Above this concentration, the 
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diameter of complexes composed of pArg/Ad or Tat/Ad increased significantly to sizes 

greater than 300 nm. 

 

Figure 3.6 surface charge characterizations of CPP/Ad complexes as a function of CPP 

concentration.  

Table 3.1 Size of Particles  

Particle 
Hydrodynamic Diameter 

(nm) 
Ad  115 ± 12 
Tat/Ad 226 ± 48 
Pen/Ad 219 ± 54 
pArg/Ad 231 ± 50 
Pep1/Ad 217 ± 52 
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3.7 Stability of CPP/Ad Complexes 

The stability of the CPP/Ad complexes was evaluated by measuring the size of 

complexes in the presence and absence of serum as a function of incubation time (Figure 

5.8). The complexes were prepared at a concentration of 6.25 µg CPP/106 viruses. The 

complexes were then incubated at room temperature in medium with (i.e., 10 % CS) and 

without serum. For both cases the results showed a trend of increasing particle size with 

increasing incubation time. The increase in the size of the complex was much greater, 

however, in the presence of serum than in the absence of serum. The size of each CPP/Ad 

complex in the presence of serum was approximately four times higher than the size in 

the absence of serum.   
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Figure 3.7 Particle size characterizations of CPP/Ad complexes as a function of CPP 

concentration. 
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Figure 3.8: Aggregation of CPP/Ad complexes in the presence and absence of serum for 

a) Tat/Ad, b) Pen/Ad, c) pArg/Ad and d) Pep1/Ad. 
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CHAPTER 4 

 

DICUSSIONS 

 

The ability of CPPs to deliver macromolecules such as peptides (Yang, Wang et al. 

2006), liposomes (Pappalardo, Quattrocchi et al. 2009), siRNA, (Crombez, Aldrian-

Herrada et al. 2009) and DNA (Ignatovich, Dizhe et al. 2003) across the plasma 

membrane of a wide range of cell types without causing toxic side effects makes the 

peptides explored in this study an attractive option for gene delivery. To further 

demonstrate the usefulness of these CPPs (Tat, pArg, Pen, and Pep1) that have high 

isoelectric points and a net positive charge at physiological conditions, the peptides were 

evaluated to determine if they could electrostatically bind Ad and transform cells 

otherwise hard to infect using Ad alone.  

For in vivo application, the best way to facilitate the transfer of cargo into a target cell is 

to simultaneously position both the translocation agent and cargo near the cell. Although 

studies have shown that CPPs can associate with the plasma membrane of cells and 

transfer cargo through the membrane without forming a complex with the cargo (Kosuge, 

Takeuchi et al. 2008) a more efficient approach would utilize complexes formed between 

the translocation agent and the cargo. In this study, CPP/Ad complexes were formed 

electrostatically by incubating CPPs (positively charged) and Ad (negatively charged). 



 

44 

 

The transduction ability of CPP/Ad complexes was compared to Ad in the presence of 

free CPPs to determine if the improvement in transduction was the result of complexes 

formed between CPPs and Ad or the result of these CPPs settling onto the surface of the 

cells. The CPP/Ad complexes exhibited a 14-fold higher gene expression than the virus in 

the presence of free CPPs, illustrating the importance of complex formation. Thus, the 

ability of the CPPs to form the CPP/Ad complex is an important criterion that plays a role 

in the transduction efficiency and was further studied by evaluating incubation time 

required to form the best working complex.  

By knowing the optimum complex formation time, one can avoid inefficient complex 

formation due to short incubation periods as well as avoid formation of large aggregates 

resulting from long incubation periods, both of which reduce the transduction efficiency 

of the complex. As the results of the study show, increasing the incubation time for 

complex formation improved the gene delivery efficiency of all CPP/Ad complexes 

studied. Slightly different trends of transduction efficiency were observed, however, for 

the different kinds of CPP/Ad complexes. For example, Pen/Ad, pArg/Ad and Pep1/Ad 

showed optimum transduction after an incubation period of 60 minutes. Tat/Ad produced 

its highest level of gene expression after only a 15 minute incubation period, the lowest 

incubation period of all the peptides. This level of gene expression after such a short 

incubation period demonstrates the ability of Tat to quickly associate with Ad and form 

complexes sooner than the other peptides, even though the charge of the peptide is 

similar to Pen and pArg (Table 5.1). This result suggests that the overall charge of the 

CPP is not the only factor that influences the formation of the CPP/Ad complexes. Both 
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the charge and arrangement of the cationic amino acids plays a role in the formation of 

CPP/Ad complexes.  

The potential of CPPs to efficiently deliver cargo is dependent on the cellular association 

of the CPP to the target cell and the mechanism by which the CPP/cargo is transported 

into the cell. The mechanism of membrane translocation of CPPs and cargo, however, has 

yet to be identified definitively (Zorko and Langel 2005; Duchardt, Fotin-Mleczek et al. 

2007; Patel, Zaro et al. 2007) and there are conflicting studies regarding whether the CPP 

internalization mechanism involves energy-dependent endocytosis or a non-endocytic 

mechanism (Drin, Cottin et al. 2003; Richard, Melikov et al. 2003; Ziegler, Nervi et al. 

2005). Despite the fact that different CPPs internalize into cells through different 

mechanisms (i.e., endocytosis or energy-independent membrane perturbations), recent 

observations have indicated that internalization of these CPPs occurs via endocytosis 

when the CPPs are coupled with high molecular weight cargo (Console, Marty et al. 

2003; Lundberg, Wikstrom et al. 2003). These findings suggested that the role of the 

peptide in this case is may be limited to facilitating attachment of cargo to the cell 

membrane. Nevertheless, the results of the current study show different levels of 

transduction induced by different CPPs of similar physicochemical properties, which 

suggest that it is unlikely the CPP serves only to facilitate attachment with the cell 

membrane. Instead, the CPP is likely facilitating cellular association and influencing the 

mechanism of membrane translocation, which others have reported to be dependent on 

properties of the CPP such as sequence (Mueller, Kretzschmar et al. 2008), net charge 

(Magzoub and Graslund 2004), number and arrangement of hydrophobic residues 

(Magzoub and Graslund 2004), numbers and arrangement of arginine residues (Zaro and 
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Shen 2003), concentration (Duchardt, Fotin-Mleczek et al. 2007) and other 

physicochemical properties of the complex formed.  

Our study showed that each of the four CPPs has the ability to translocate Ad into cells 

that are hard to infect, albeit with varying degrees of efficiency. This is attributed to the 

different properties these CPPs possess which influence membrane binding and 

translocation of CPP/Ad. CPPs used in the study have different sequences, net charges, 

numbers of arginine residues, and amphipathicity (Table 5.1). For example, Tat (Frankel 

and Pabo 1988) and pArg (Mitchell, Kim et al. 2000) are highly charged peptides 

containing cationic, basic amino acids that are highly hydrophilic (e.g., arginine and 

lysine). In comparison, Pen (Derossi 1995) is a peptide with low amphipathicity 

consisting of several positively charged basic amino acids interspersed throughout a 

hydrophobic region of the peptide, and Pep1 (Deshayes, Heitz et al. 2004) is an 

amphipathic peptide with hydrophilic, hydrophobic and linker domains.  

In the gene delivery studies, Pen/Ad showed relatively high gene expression compared to 

all the other CPP/Ad complexes. Tat/Ad and pArg/Ad (i.e., peptides with a large number 

of arginine residues) produced lower levels of gene expression compared to Pen/Ad, 

except at the highest concentration (50 µg/106 Ad). Pep1/Ad, which has distinct cationic 

and hydrophobic regions, low net charge and few arginine residues, exhibited the lowest 

efficiency compared to the other CPP/Ad complexes. The fact that Pen/Ad was more 

effective compared to Tat/Ad and pArg/Ad indicates that the high number of arginine 

residues does not guarantee a high level of translocation. In fact, studies have shown, in 

addition to the positively charged amino acids residues, some hydrophobic residues 

contributed to the membrane binding and translocation (Derossi, Calvet et al. 1996; 
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Fischer, Zhelev et al. 2000). Also, poor efficiency of Pep1/Ad, relative to the other 

CPP/Ad complexes, further supports the likelihood that a high net positive charge 

improves complex formation and the level of cellular uptake, at least to some degree. In 

addition to the number of arginine residues and peptide charge, some researchers have 

claimed that amphipathicity affects translocation ability of a CPP since this property is 

thought to be important in membrane interaction (Drin, Mazel et al. 2001). The results of 

this study, however, found no direct relationship between amphipathicity and 

translocation efficiency. In fact, the amphipathic CPPs, Pen and Pep1, were both the best 

and worst performing peptides, respectively.    

Another factor that influenced the transduction efficiency is concentration of the peptide 

(i.e., the relative ratio of the peptide to virus). In this study, the transduction efficiency of 

the complex increased by orders of magnitude for all CPP/Ad complexes up to a CPP 

concentration of 6.25 µg/106 Ad and increased thereafter by only a moderate amount. 

Based on this observation there is likely an effective amount of CPP that can completely 

coat the surface of the virus, thereby hindering additional CPPs from binding to the 

complex. Consequently, further increasing the concentration of CPP only moderately 

improved the level of transduction. The moderate improvement in transduction was a 

result of the combined effect of some additional binding between the CPP and CPP/Ad 

complex and free CPPs that remained unbound to the virus. Physicochemical properties 

(e.g., size and charge) showed similar trends. As the CPP concentrations increased, size 

and surface charge increased dramatically for all CPP/Ad complexes up to a CPP 

concentration of 6.25 µg/106 Ad and leveled off as the concentration increased beyond 

this point. This observation further supports the suggestion that at these high CPP 
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concentrations, the peptides may have completely coated the surface of the virus, thereby 

hindering additional CPPs from binding to the complex.   

The goal of the present work was to produce a CPP/Ad complex capable of efficiently 

transducing cells the virus would not infect on its own. The results show that the best 

CPP/Ad complex was Pen/Ad, which improved the transduction of CAR-negative 

NIH/3T3 cells by 100-fold compared to the unmodified Ad. The Pen/Ad complex 

performed better than similar complexes reported by others. For example, Gratton et al. 

reported that noncovalent modifications of Ad with Pen improved the gene delivery 

efficiency of the virus to monkey kidney fibroblast cells by 10-fold (Gratton, Yu et al. 

2003). Lehmusvaara et al., however, reported the same modification only improved gene 

delivery by 2-fold (Lehmusvaara, Rautsi et al. 2006). These differences in the level of 

cell transduction can be attributed to several factors, including the cell type, method of 

complex formation, MOI and virus purity. These groups reported also that Tat is 

sometimes as effective as Pen (Gratton, Yu et al. 2003; Lehmusvaara, Rautsi et al. 2006). 

Similarly, the present study found that Tat/Ad and pArg/Ad performed nearly as well as 

Pen/Ad at high concentrations.   

Studies have also shown that the initial electrostatic interaction of CPPs with anionic cell 

membrane surfaces is an important factor for the uptake of all cationic CPP-cargo 

complexes (Deshayes, Morris et al. 2005; Duchardt, Fotin-Mleczek et al. 2007; Poon and 

Gariepy 2007). The presence of competing anionic material can limit the interaction 

CPPs with an anionic cell membrane surface, restricting cellular uptake (Fischer, Bieber 

et al. 1999). Most in vitro transduction efficiency studies evaluate complexes in the 

absence of serum. The present study, however, evaluated how adverse the effects of 
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competing anionic serum were to transduction efficiency. Even though the cellular uptake 

of CPPs and their cargo is often reduced in the presence of serum, the results of the 

present study show that serum did not significantly inhibit or promote the transduction 

efficiency of Tat/Ad or Pen/Ad complexes. Others have reported similar findings where 

uptake of CPP-cargo complexes by HeLa cells was not affected by the presence of serum 

(Saalik, Elmquist et al. 2004).  

While the performance of Tat/Ad and Pen/Ad was not impacted significantly by serum, 

Pep1/Ad and pArg/Ad were both negatively affected by the presence of serum. Contrary 

to these observations, Morris et al reported that an advantage of Pep1 is a lack of 

sensitivity to serum (Morris, Depollier et al. 2001). Morris et al., however, observed that 

the impact of serum on the performance of Pep1 depends on the concentration of the 

peptide (Morris, Depollier et al. 2001). The apparent discrepancy between these earlier 

studies and our own can be explained by concentrations that were reported as being either 

lower or slightly higher than the concentrations used in the present study. Similarly, 

Kosuge et al. explored sensitivity of arginine-based peptides to serum and investigated 

specifically the impact of the number of arginine residues (Kosuge, Takeuchi et al. 2008). 

They found that peptides with more than 8 arginine residues became sensitive to serum 

proteins due to differences in the valency with serum (Kosuge, Takeuchi et al. 2008). The 

9-residue pArg peptide used in the present study was sensitive to serum, likely a result of 

a high capacity to bind to serum.  The decrease in transduction efficiency of pArg/Ad and 

Pep1/Ad illustrates that the sensitivity of complexes to serum is not only dependent on 

the cationic properties of the peptide, but also potentially dependent on how the cationic 

basic amino acids are arranged within the peptide. 
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The physicochemical properties (e.g., size and charge) of the peptide/virus complex were 

measured to better understand the characteristics associated with highly efficient CPP/Ad 

complexes and to ensure their suitability for in vivo gene delivery. Based on the dynamic 

light scattering and zeta-potential measurements, the size and surface charge of the 

different CPP/Ad complexes were similar at a given concentration, independent of the 

particular CPP. For example, the hydrodynamic diameter of the CPP/Ad complexes at 

their optimal incubation periods was smaller than 300 nm, a desired range to prevent 

edema in vivo, for concentrations of CPP lower than 25 µg/106 virus. Although these 

properties were similar, the transduction efficiency of the different CPP/Ad complexes 

was quite different, further supporting that the efficiency of each CPP is more closely 

related to the particular amino acids residue sequence of the peptide than to the overall 

charge of the peptide or the resulting charge of the CPP/Ad complex.  

The surface charge of CPP/Ad complexes is also a concern. A high positive charge 

adversely affects the stability of the complex and reduces the effectiveness of complexes 

as a delivery agent (Kwoh, Coffin et al. 1999). While serum had only a minor effect on 

the transduction efficiency of the CPP/Ad complex, the high surface charge poorly 

affected the stability of all of the CPP/Ad complexes. The CPP/Ad complexes used in 

this study formed aggregates when stored beyond the optimal incubation period, 

regardless of the presence or absence of serum. Although similar trends were observed in 

both environments due to the high positive charge, complexes incubated in a protein-rich 

environment exhibited particle sizes four times larger than the corresponding complexes 

incubated in a protein-free environment. This difference in size indicates that aggregates 

between oppositely charged CPP/Ad complexes and serum were formed when complexes 
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were incubated with serum. Clearly improvements need to be made to reduce the surface 

charge of the CPP/Ad complexes. The use of polymers that would reduce sensitivity to 

serum (e.g., polyethylene glycol) in combination with CPPs may be a potential route for 

improving serum stability.  
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CHAPTER 5 

 

CONCLUSIONS AND RECOMMENDATIONS 

 

The focus of the present study was on developing an improved adenoviral based gene 

delivery vector that can efficiently transform tissues that lack CAR necessary for the 

infection pathway of the virus. We evaluated if CPPs could form complexes with Ad and 

function in place of the fiber/CAR interaction to transport the virus into cells lacking the 

CAR. CPP/Ad complexes were produced using simple electrostatic association. Complex 

formation and transduction efficiencies of the four CPP/Ad complexes were optimized by 

varying the incubation period and the ratio of the peptide to virus. The CPP/Ad 

complexes showed improved transduction efficiency compared to the virus alone, 

indicating that the CPPs are capable of promoting transduction of cells that are otherwise 

hard to transform using only the virus. The transduction efficiency of Ad was improved 

by more than 100-fold. Pen/Ad produced the highest transduction efficiency followed by 

Tat/Ad, pArg/Ad, and Pep1/Ad. Even though Pep1/Ad was the least efficient, the 

complex still improved gene expression by 66-fold compared to Ad alone.  

In this study, the size of the complexes is appropriate for in vivo gene delivery, although 

in its current state, the high positive surface charge of the complex is likely to result in 

undesired interactions with serum proteins. In addition, the complexes provide untailored 
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cell targeting. Surface charge can be reduced by using a low concentration of CPP. In 

addition, incorporating high molecular weight polyethylene glycol (PEG), a safe and 

biocompatible polymer commonly used to prolong the circulatory lifetime of proteins, 

drugs, and nanoparticles (Kochendoerfer 2003; Otsuka, Nagasaki et al. 2003), can 

provide the desired property. The issue of untailored cell targeting can be tacked by using 

cell specific ligand in combination with CPP and PEG. 

To advance beyond the laboratory stage, it is critical to address the drawbacks associated 

with adenovirus.  In addition to the inability to efficiently infect certain types of cells, 

adenovirus has serious drawbacks such as immunogenicity and promiscuous tropism. A 

variety of approaches have been attempted to improve immunogenicity of adenovirus.  

One of the most common attempts used to diminish the susceptibility of the virus to 

immune inactivation and inflammatory immune responses has been to coat the surface of 

the virus with PEG. This process called PEGylation, reduces susceptibility of the virus to 

immune inactivation and initiation of  inflammatory immune response (Aliabadi, Brocks 

et al. 2005). Adding the element of PEGylation of strategy to CPP/Ad conjugate will 

improve the stability and reduce susceptibility to immune response of the complex.  

Genetic modification of Ad may reduce promiscuous tropism and immune response 

associated with the virus. The crucial role played by fiber and knob proteins of the virus 

in transduction prompts the genetic modification of these proteins.  Studies have shown 

that transduction efficiency of the virus has shown dependency on the length of the fiber 

protein (Legrand, Spehner et al. 1999; Shayakhmetov and Lieber 2000; Vigne, Dedieu et 

al. 2003). Further, complete removal of the knob domain has been established as a way to 
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ablate tropism (Magnusson, Hong et al. 2001). Genetic modifications and replacement of 

the fiber and knob protein will further overcome the drawbacks associated with the virus. 
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