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Ψ  Modified rate constant
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CHAPTER – I 

INTRODUCTION 

 One of the major requirements for sustaining human progress is an adequate 

source of energy.  The largest sources of energy currently are combustion of coal, oil and 

natural gas.  These will last quite a while, but probably will run out or become limiting in 

tens to hundreds of years.  Solar energy is viable but is not developed except for special 

applications due to high cost.  Nuclear energy is likely to remain cheaper than oil and gas.  

The main advantage of nuclear and solar energy is that it does not put carbon dioxide into 

the atmosphere.   

 To enhance the role of nuclear energy systems, the government of the United 

States of America began two programs; Nuclear Energy Research Initiative (NERI) in 

1999 and International Nuclear Energy Research Initiative (I-NERI) in 2001 [1].  The 

objective of these two programs is to develop safe, clean, sustainable and cost-effective 

nuclear energy systems that can fuel the world for future generations.  In April 2003, the 

Department of Energy (DOE) developed a concrete plan for development of such systems 

and issued ‘A Technology Roadmap for Generation IV Nuclear Energy Systems’ [2].  

The supercritical water-cooled reactor (SCWR) is one of the six reactor technologies 

selected for research and development under the Generation IV program. 

 At present there are 103 commercial nuclear reactors with operating licenses in 

the United States.  These are located at 64 different sites in 31 states, 34 of which are 
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Boiling Light Water Reactors (LWRs) and 69 are Pressurized Water Reactors (PWRs).  

About 20% of the electricity generated in United States is from nuclear and this energy is 

considered emission free [3, 4].  The working principle of LWRs is similar to 

conventional coal fired power plant except that fuel source (combustion of coal) is 

replaced by nuclear fuel.  PWRs operation is carried out in two different loops, primary 

and secondary.  Primary loop consists of working fluid (water) in direct contact with 

nuclear fuel and is heated by radioactive decay of the nuclear fuel.  Water in the primary 

loop is under high pressure to prevent it from boiling.  Heat from the primary loop is 

transferred to the secondary loop to generate steam which is used to propel turbines.  Use 

of a two loop system prevents leakage of radiation emitted in the primary loop to other 

steam generation equipment.  In contrast, Supercritical Water Cooled Reactor (SCWR) 

can be visualized as LWR operating above the thermodynamic critical point of water [5, 

6]. 

 
Supercritical Water-Cooled Reactor (SCWR) 

 
SCWRs are high temperature, high pressure water cooled reactors that operate 

above the critical point of water (374 oC, 22.1 MPa).  SCWR has the following 

advantages over the current state of art nuclear Light Water Reactors (LWRs) [5-7]: 

1. The thermal efficiency of SCWRs can be much higher compared to LWRs.  The 

efficiency of SCWR can approach 44%, compared to 33-35% for LWRs. 

2. The mass flow rate of coolant per unit core thermal power is low in SCWRs.  This 

results in increased enthalpy of coolant offering reduction in size of reactor 

coolant pumps, piping, pumping power and associated equipment. 
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3. Reduced coolant flow rate results from once-through coolant path in the reactor 

vessel and reduced coolant density. 

4. Discontinuous heat transfer regimes in the reactor core are eliminated as a result 

of single phase operation (no boiling). 

5. Steam dryers, steam separators, recirculation pumps and steam generators which 

are currently used in LWRs are not required.  This results in simplified plant 

operation with fewer major components. 

 
Few data exist on the behavior of materials in a supercritical water environment 

under irradiation.  Water chemistry is one of the key issues addressed by the DOE in the 

research and development of SCWR as it may lead to corrosion of materials of 

construction.  DOE plans to develop a pilot plant scale supercritical water cooled reactor 

by the year 2020 [2]. 

 
Current status of research 

 At present, no pilot plant scale reactor is available for design evaluation and 

analysis of SCWR.  The technology available for LWRs and supercritical water cooled 

fossil-fired power plants is considered basic technology for development of SCWR.  It 

can be said that current status of research in the development of SCWR is at a 

rudimentary stage of testing materials of construction and analyzing the feasibility of 

reactor operation [8].  According to 2004 NERI annual report published by DOE, current 

research for SCWR is classified into three major goals [6]: 

  
1. Fuel-cycle neutronic analysis and reactor core design, 
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2. Fuel cladding and structural material corrosion and stress corrosion cracking 

studies, and 

3. Plant engineering and reactor safety analysis. 

 
The issue of water chemistry is addressed under fuel cladding and structural material 

corrosion and stress corrosion cracking studies.  Water chemistry at supercritical 

conditions poses significant challenges in the research and development of SCWR as 

reactor material is susceptible to corrosion under continuous operation. 

 
Water chemistry and corrosion 

In any hydrothermal system, water treatment is critical to both equipment life and 

efficiency.  Most of the conventional hydrothermal systems operating under sub-critical 

conditions use stainless steel or metal alloys with Iron (Fe) and Copper (Cu) as 

equipment material [9].  Poor control of alkalinity / acidity of water and presence of 

impurities in feed water in such systems may lead to various forms of corrosion.  

Corrosion results in damage to piping and equipment as well as loss of high quality water 

and energy.  In some instances, the products of corrosion, if returned to the boiler (or 

heating unit), may contribute to the formation of damaging deposits over the unit 

internals there by reducing the overall system reliability and increasing the operating and 

maintenance costs.  Different forms of corrosion include pitting corrosion (PC), general 

corrosion, inter-granular corrosion or inter-crystalline corrosion (IC) and stress corrosion 

cracking (SCC).
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Water chemistry control – focus on pH

The fundamental objectives of feed-water chemistry in a hydrothermal system are 

control over acidity / alkalinity and impurities to reduce corrosion of material of 

construction.  Currently there are three types of chemical treatments available for control 

over acidity / alkalinity in hydrothermal systems operating at sub-critical conditions [9, 

10]: 

 
• Type I is classical all-volatile treatment (AVT) using ammonia (NH3) and a 

reducing agent or oxygen scavenger (such as hydrazine) 

• Type II is the same as Type A minus the reducing agent, called new AVT 

• Type III is oxygenated treatment (OT) using only ammonia and oxygen (O2) 

 
All three treatments mentioned involve addition of an external chemical agent to 

feedwater to maintain the required minimum pH at process operating conditions.  The 

major difference between the three types of treatments is that Type I provides a reducing 

environment, whereas Types II and III result in oxidizing environments.  In nuclear 

pressurized water reactor (PWR) plants, the feed water treatment is limited to all-volatile 

treatment as the secondary cycle corrosion is extremely pH sensitive [11].  In Type III 

treatment, there is a possibility of reaction between ammonia and oxygen resulting in 

consumption of ammonia which further results in shift of pH value from alkaline to 

acidic scale.  Hence Type III treatment is least preferred compared to Type I and Type II.  

All the three treatments are currently used in steam generation systems depending on the 

type of impurities present in the feed water and other pH control considerations.  

However, it should be noted that these treatments can be used when process operating 
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conditions are in the sub-critical region.  The application of above treatments may not be 

effective in stabilizing the pH and further reducing the corrosion in hydrothermal systems 

operating above the critical point. 

 Organic amines have been used extensively as pH stabilizing agents in all-volatile 

treatments in various boiler feed water and steam condensate systems -- replacing 

ammonia [12-24].  Amines offer unique advantages over ammonia like low volatility, 

varying distribution ratios and ease of shipping and handling.  Moreover ammonia is not 

suited for this application as pH neutralizing agent in water at near critical operating 

conditions.  This is because in sub-critical once-through reactors, the presence of NH3 / 

O2 does not cause problems, since oxidation of ammonia is slow.  In contrast, the 

oxidation rate of ammonia is strongly accelerated near supercritical conditions with major 

oxidation products being nitrogen (N2) gas and N2O.  These oxidation reactions lead to 

ammonia and oxygen consumption resulting in a shift of pH to less alkaline values [9, 

11]. 

 
Proposed work 

 In view of current progress in research and development of SCWR and its unique 

advantages over existing electricity generation units, advanced research on water 

chemistry is necessary.  This report evaluates the feasibility of application of organic 

amines as acid neutralizing agents in hydrothermal systems operating above the 

thermodynamic critical point of water.  
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Hypothesis

Based on the proven performance of organic amines in sub and near-critical 

hydrothermal systems as acid neutralizing agents, it is hypothesized that organic amines 

have the potential to remain relatively stable and elevate pH to required alkaline values at 

conditions above the critical point.  Organic amines that stabilize pH decompose into 

light molecular weight organic and inorganic molecules.  Initial review of the literature 

indicates that the rate of decomposition of an organic amine in any hydrothermal system 

is mainly dependent upon process operating temperature and pressure.  Two major 

mechanisms for amine decomposition in supercritical water are identified: pyrolysis and 

hydrolysis.  Pyrolysis is dominant in low water density region and hydrolysis in high 

water density region.  There exists a range of solvent density where the two mechanisms 

proceed in parallel. 

In the case of supercritical water, the rate of decomposition of an organic amine is 

not only dependent upon the operating temperature and pressure but also on solvent 

properties in hydrolysis region (higher water densities).  Better prediction of rates of 

decomposition of amines under hydrolysis can be obtained by correlating the solvent 

properties (di-electric constant, density and ionic product) with the decomposition 

reaction rate constant. 

Objectives 

1. To understand and analyze the properties of water at supercritical conditions, 

2. To assess the work that was done on decomposition kinetics of amines in water at 

supercritical conditions, 
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3. To draw analogies between mechanisms at sub-critical and supercritical 

conditions for structurally similar organic compounds and address key issues 

related to solvent effects on reaction kinetics, and 

4. To recommend feasible methodology for generation of kinetics data and 

development of mechanistic models.
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CHAPTER - II 

PROPERTIES OF SUPERCRITICAL WATER 

In this chapter thermo-physical properties of supercritical water will be discussed.  

A fluid is termed as supercritical when its temperature and pressure exceed the critical 

temperature and pressure, respectively.  For water (H2O), the critical temperature is TC 

374oC and critical pressure is PC = 22.05 MPa.  At this temperature and pressure, the 

properties of vapor and liquid cannot be distinguished.  The phase diagram of a single  

 Figure 2.1 Phase diagram for single component 

component fluid is shown in Figure 2.1.  The vapor liquid saturation curve disappears 

beyond the critical point indicating that the vapor and liquid phases coexist.  Any liquid 

when heated at constant pressure beyond its critical pressure would undergo expansion
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reaching a vapor like state without phase transition.  This physical phenomenon is termed 

as continuity of states.  At any temperature beyond the critical point, the vapor can no 

longer be liquefied regardless of the pressure applied. 

 
 Properties of supercritical water 

 
Properties of supercritical water are quite different from those of liquid water at 

ambient conditions.  Water at supercritical conditions has unique properties, some are 

intermediate of vapor and liquid (viscosity, dielectric constant) and some are not (CP, 

thermal conductivity) [1].  This section briefly describes the thermo physical properties 

of supercritical water. 

 

Density 

Figure 2.2 shows the isothermal variation of density with pressure [2].  It can be 

observed that the density in near critical region (below 22.05 MPa, vapor) changes 

rapidly with very slight increase in pressure.  This change in pressure shifts the density to 

liquid like values.  At this point, the fluid can be visualized as a dense gas with density 

comparable to liquids.  Note that the drop shifts towards higher temperatures at higher 

pressures.  In the following sections it will be shown that other physical properties like 

viscosity and specific heat follow a smooth trend with density even in the critical point 

region. 

 
Viscosity

Figure 2.3 shows the isothermal variation of viscosity at different temperatures 

[2].  As in the case of density, there is a sharp change in viscosity near supercritical point 

(Figure 2.3 A).  This difference is due to diverging compressibility at critical point  
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of water.  When viscosity is plotted against density along the same isotherm there are no 

sharp changes in the values viscosity of irrespective of critical point region (Figure 2.3 

B).  Viscosity of supercritical water is far less than ambient water making it a fluid with 

high self diffusivity at elevated temperatures [3-7].  This property of supercritical water is 

considered as great advantage for its use in process industries 

 
Dielectric constant 

Dielectric constant (ε) or permittivity is defined as a numerical quantity that 

expresses the degree of non-conductivity of a substance (Dielectric constant of vacuum = 

1.0).  In Figure 2.4, ε of water is plotted against temperature (left y – axis) and density 

(right y – axis) [8].  Notice the steep change in the value of ε from 13.2 to 2.6 with 

change in temperature near critical region.  At these conditions water is a low dielectric 

fluid, a poor solvent for electrolytes and a good solvent for organic compounds. This 

sudden drop in ε change is due to the diverging expansion coefficient [1].  When the 

same isobar is plotted against density, the steep change is replaced by a smooth curve 

following similar trend as viscosity plotted against density (Fig 1.3 B).   

The properties, viscosity, ε, coefficient of self diffusion, enthalpy and entropy are 

intermediate between those of vapor and liquid and can be tuned to desired value by 

changing density of water above critical point. 

Beyond critical the point, properties such as heat capacity, isothermal 

compressibility and isobaric coefficient do not behave smoothly with density and cannot 

be considered intermediate between those of liquid and vapor.  The following section 

discusses the isobaric variation of heat capacity at constant pressure near critical region.
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Figure 2.5 (A) Isobaric variation of CP with temperature. (B) Isobaric variation of CP with 
density [NIST database Ref. 2] 
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Heat capacity (CP) 

Isobaric variation of CP is plotted against temperature and density in Figures 2.5 

A and B respectively [2].  The sharp spike (24 MPa) in Figure 2.5 (A) is equivalent to the 

broad spectrum (24 MPa) in Figure 2.5(B).  This is because a small change in 

temperature causes a huge density change due to diverging expansion coefficient [1]. 

 
Ionic product (Kw)

Ionic product of water is defined as the product of hydrogen ion concentration and 

hydroxide ion concentration. At ambient temperature Kw = 1.0 x 10-14 mol-2 l-2.  Figure 

2.7 shows ion product and density plotted against temperature (isobars) [2] and Figure 

2.8 shows ionic product of high-temperature water and steam versus temperature [9].  

Steam and low-density supercritical water behave like non-polar solvents.  At low 

pressures, water behaves as a non-polar solvent with low self-disassociation.  High 

pressures can increase the ionic product to values above those found for water at ambient 

conditions. Ion product can significantly alter reaction mechanisms in supercritical water 

as the concentration of H+ and OH- ions is sensitive to conditions of operation. 

 
Hydrogen bonding

 Few hydrogen bonds exist in supercritical water compared to ambient liquid 

water.  It has also been reported that almost all the properties of supercritical water differ 

from ambient water due to the decrease in number of hydrogen bonds as supercritical 

state is reached [10].  Unlike continuous network of hydrogen bonds in ambient liquid 

water, hydrogen bond network in supercritical water exists as clusters.  The size of cluster 
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depends on the localized state in any supercritical water system and is a function of 

pressure and temperature [11-14]. 

It has been observed that sudden change in physical properties at the critical point 

makes water a highly corrosive fluid in supercritical water systems [15].  These 

properties include density, pH value, and electrochemical potential of the solution.  The 

temperature plays an important role influencing the aggressiveness of attacking solvent 

species to accelerate corrosion.  The investigation of chemistry of organic amines in this 

region is of fundamental interest.   

The data used to generate various plots in this chapter are attached in Appendix 

A. 

 21
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CHAPTER – III 

ORGANIC AMINES AS ACID NEUTRALIZING AGENTS 

 Amines are nitrogen-containing in which one or more of the hydrogens has been 

replaced by an alkyl or aryl group.  Amines are as broadly classified as primary (1o), 

secondary (2o) and tertiary (3o) amines based on number of alkyl (or aryl) groups attached 

to nitrogen atom. 

N

C2H4OH

HH  
Figure 3.1 (a) Monoethanolamine (1o – amine) 

N

H

C2H4OHHOC2H4  
Figure 3.1 (b) Diethanolamine (2o – amine) 

 

N

C2H4OH

C2H4OHHOC2H4  
Figure 3.1 (c) Triethanolamine (3o - amine) 

 

 Like ammonia, most amines are Brønsted or Lewis bases.  The basicity of amines 

will be discussed in later sections of the chapter.  Amines are widely used in commercial
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 hydrothermal systems as acid neutralizing agents and corrosion inhibitors.  They have 

been proven to be very effective in stabilizing pH of high temperature water in boiler and 

steam condensate systems [1-3].  

Amines are broadly classified at the industrial scale as acid neutralizing amines 

(in short NA) and film forming amines (in short FA) in their application as corrosion 

inhibitors [4].  A corrosion inhibitor is defined as a chemical substance which, when 

added in small concentrations, effectively checks, decreases, or prevents the reaction of a 

metal with the environment. Acid neutralizing amines or alkalizing amines or volatile 

amines are used to elevate the pH of water environment by neutralizing H+ ion 

concentration.  Film forming amines are aliphatic amines with a long hydrocarbon chain 

which, may deposit on inner surfaces of metallic systems in which circulates liquid water, 

forms a protecting film against aggressive corrosion causing chemicals.  Numerous NA-

amines are being used as pH neutralizing and elevation agents at industrial scale.  The 

selection of appropriate amine is based on its basicity, volatility and stability [5].  

 
Basicity of Amines 

 Like ammonia, amines are Brønsted or Lewis (nucleophiles) bases.  The better 

competitor the amine is in the proton-transfer reaction, the stronger is Brønsted basicity.  

It is common to compare basicities quantitatively by using pKa’s of their conjugate acids 

(ammonium ion) rather than pKb’s.  If ammonium ion is a stronger acid, the related 

amine must be a weak base.  If it is easy to remove a proton from the ammonium ion to 

give the amine, the amine itself must be a poor competitor in the proton-transfer reaction.  
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Strongly basic amines give ammonium ions from which it is difficult to remove a proton, 

ammonium ions with high pKa values [6]. 

 
Hydrogen bonding

 Structure of organic amines has significant influence on their ability to accept a 

proton in aqueous solutions.  In other words the basicity of amine is a factor of the 

structure of amine in aqueous solutions [7]. In general, the more substituted an 

ammonium ion, the more stable it is.  The more stable an ammonium ion, the less readily 

it loses a proton, and the higher its pKa.  pKa values of some simple amines in aqueous 

solutions at 25oC and 1Atm  are listed in Table 3.1.  The general trend of pKa values on 

the left hand and right hand sides of the table can be explained by concept of hydrogen 

bonding.  It can be observed that di-methylamine is a stronger base than methylamine; 

which is, in turn, a stronger base than tri-methylamine.  This trend is not observed in case 

of ethanolamine in which di-ethanolamine is weaker base than mono-ethanolamine.  

Things are totally different with pKa values of amines in gas phase.   

 
Table 3.1 pKa values for some simple amines in aqueous solutions at 25oC and 1 Atm [8] 

 
Compound pKa  Compound pKa

Methylamine 10.66 ± 0.20 Primary (1o) Ethanolamine 9.16 ± 0.20 

Di-methylamine 10.73 ± 0.20 Secondary (2o) Di-ethanolamine 8.71 ± 0.20 

Tri-methylamine 9.75 ± 0.20 Tertiary (3o) Tri-ethanolamine 7.77 ± 0.10 

 

In gas-phase, order of increasing pKa is +NH4 < +NRH3 < +NR2H2 < +NR3H.  The 

irregularities of the values in aqueous solutions can be explained by the concept of 

 28



hydrogen bonding.  Ions in solution are strongly stabilized by solvation, by interaction of 

the solvent molecules with the ion [7].  One such interaction is the formation of partial 

covalent bond due to strong dipole - dipole attractions as in hydrogen bonding.  An alkyl 

group has two different effects on ammonium ion stability in aqueous solutions.  One 

effect is the stabilizing effect and other, destabilizing.  An alkyl group stabilizes the 

ammonium ion by dispersing the charge and simultaneously destabilizes the ion by 

interfering with solvation.  In case of primary amines, two hydrogen bonds are formed 

between two available hydrogens and water.  In addition to this, stabilizing effect of alkyl 

group predominates the destabilizing effect making it a strong base.  In case of secondary 

amines, the destabilizing effect is almost balanced by stabilizing effect.  But in tertiary 

amines, the presence of three alkyl groups makes the ammonium ion more unstable and 

hence the result is a less stable, more acidic ammonium ion.  

 

CH3 N

H

H

H

H
O

H

Figure 3.2 Stabilization of methyl group on ammonium ion through hydrogen bonding 

In gas phase, where there is no solvation, only the stabilizing effects remain, and 

each replacement of hydrogen with an alkyl group makes the ammonium ion more stable.
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Aromaticity and hybridization 

 Aromatic (or aryl-) amines are weaker bases than aliphatic amines due to the 

resonance delocalization of lone pair of electron on nitrogen.  Hybridization also has 

significant effect on basicity of aromatic amines.  The greater the percentage of s-

character, the closer the lon pair of electrons to nitrogen nucleus which results in 

decreased ability to participate in proton transfer reaction.  Very few aromatic amines are 

used at industrial scale as corrosion inhibitors.  pKa values of some simple aromatic 

amines in aqueous solutions at 25oC and 1 atm are tabulated in Table 3.2.  Resonance 

delocalization of electron pair in aniline is illustrated in Figure 3.3.  Hybridization of 

nitrogen atom in aniline is some where in between sp2 and sp3.  Delocalization of electron 

pair combined with high s-character results in low basicity of aniline [9].  In di-

phenylamine two benzene rings replace two hydrogens bonded to nitrogen atom making 

it a much weaker base than aniline.  This is due to the increase in degree of delocalization 

of lone pair of electrons on nitrogen atom. 

 

N N

H

H

HH

N

HH

N

HH

 
Figure 3.3 Reduced basicity of aniline due to electron pair delocalization 

 
 In pyridine nitrogen is sp2 hybridized and non-bonding electron pair is localized 

on nitrogen atom.  But increasing s-character brings it closer to nitrogen nucleus reducing 
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its tendency to bond to a proton.  The reduced basicity of para-nitroaniline is due to the 

presence of electron withdrawing group (NO2).  Presence of electron withdrawing groups 

such as CN or NO2 in para- and ortho- positions in an amine group has large effect on the 

basicity of the compound.  Benzylamine is relatively strong base compared to other 

aromatic amines due to the fact that electron pair is localized on nitrogen atom and it is 

sp3 hybridized. 

 
Table 3.2 pKa values of simple aromatic amines in aqueous solutions at 25oC and 1 Atm 

[9] 
 

Compound pKa

Benzylamine 9.40 ± 0.20 

Pyridine 5.32 ± 0.20 

Aniline (phenylamine) 4.61 ± 0.20 

Di-phenylamine 0.78 ± 0.20 

Para-nitroaniline 1.01 ± 0.20 

 
 

 The increasing order of basicity in alkyl-amines is primary (1o) > secondary (2o) > 

tertiary (3o) and when aromatic amines are compared to alkyl-amines, alkyl-amines are 

stronger bases than aromatic amines [7].  

 
Volatility of amines 

 A variety of neutralizing amines is used in boiler and steam condensate systems 

for pH stabilization [10-18].  When added to feed water, a neutralizing amine must 

volatilize into steam for thorough distribution through out the system.  The degree of 
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volatilization of amine in such systems is measured by a quantity called distribution 

factor or distribution ratio (DR).  Distribution ratio is defined as the ratio of amount of 

amine in vapor phase to the amount of amine in water phase (condensate) at a defined 

pressure or temperature. Amines with distribution ratio greater than 1.0 have more amine 

in vapor phase than the water phase. 

 

Distribution ratios for commonly used neutralizing amines (at 1 atm) are tabulated 

in Table 2.3.  As the distribution ratio is a function of temperature and pressure at any 

point in boiler / condensate system, the varying distribution ratios of commonly used NA 

amines affect their ability as neutralizing agents in certain locations where the amine is 

anticipated to be most effective. 

 
Table 3.3 Distribution ratios of commonly used industrial amines.  

 

Compound DR 
[Ref. 17] 

pKa (25 oC, 1 atm) 
[Ref. 8] 

Boiling Point (oC )
[Ref. 8] 

Morpholine 0.4 8.97 ± 0.20 128.9 

Diethyl-aminoethanol 1.7 9.79±0.20 164 

Dimethyl-isopropanolamine 1.7 9.43 ± 0.20 124.0 

Cyclohexylamine 4.0 10.57 ± 0.20 134.5 

Dimethylamine 3.0 10.73 ± 0.20 6.1 ± 3.0 

 

 Typical neutralizing amines have DR’s from 0.1 to 10; carbon dioxide has a DR 

of 100 or more depending upon temperature.  Because of this difference in distribution 

Distribution Ratio = 
Amount of amine in vapor phase (steam) 
Amount of amine in liquid water (condensate) 
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ratios, amines and carbon dioxide tend to concentrate at remote locations within in the 

hydrothermal system making it impossible for an amine to completely neutralize the 

carbonic acid formed due to dissolved carbon dioxide.  

 The importance of distribution ratio of neutralizing amine in supercritical water is 

not yet quantified.  Before addressing its importance, the stability of amines at extreme 

temperatures and pressures has to be evaluated.  Once it is known that a particular amine 

is stable at such operating conditions, the influence of distribution ratio on its pH 

neutralizing capability can then be considered.
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CHAPTER IV 

KINETICS AND MECHANISMS 

 The selection criterion for an amine as a pH stabilizing agent depends on its 

stability, basicity and volatility.  If an amine is not stable in a solvent (in this case, water) 

at process operating temperatures and pressures, it decomposes forming undesirable light 

molecular weight compounds such as ammonia.  Before evaluating amine basicity and 

volatility, it is important to figure out how stable the amine is.  Different amines 

decompose in respective solvents at different rates based on their chemical structure, 

reactivity and process operating conditions.   

 Little data are available on decomposition kinetics of amines in supercritical 

water.  This chapter focuses on two major topics, reaction kinetics and mechanisms 

which are fundamental in evaluating organic amine stability in supercritical water.  

Reaction kinetics of amines in this study is the decomposition or degradation kinetics; the 

reactants being the organic amine and water at supercritical conditions (Tc = 374 oC and 

Pc = 22.4 MPa).  The usual way of investigating a chemical reaction is to start from 

stoichiometry, then the Kinetics, followed by investigation of the chemical mechanism 

involved.  Stoichiometry of a reaction can be determined only when complete 

information of the final reaction products is known.  The importance of stoichiometry 

will be discussed only when needed. 
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Literature Review 

 No literature was found investigating the degradation kinetics of amines in 

supercritical water highlighting their potential as pH stabilizing agents.  Research 

involving supercritical water has focused on two broad areas until the mid 1900’s; 

supercritical fluid extraction (SFE) and supercritical water oxidation (SCWO) [1, 2].  The 

Nuclear Energy Research Initiative (NERI) program (1999) initiated advanced research 

in promoting supercritical water as nuclear reactor coolant for power generation.  The 

literature reviewed in this section is related to either supercritical fluid extraction (SFE) 

or supercritical water oxidation (SCWO).  It is beyond the scope of this work to present 

extensive details about SFE or SCWO; the end uses of presented data in these sources 

may be for different purposes but it can help evaluate current research interests.  The 

following sections are subcategorized based on compounds of similar structure and/or 

attached organic/inorganic molecular group. 

 
Benzylamine 

 Houser and coworkers studied the reactions of 1,2,3,4-tetrahydroquinoline (THQ) 

and benzylamine in supercritical water [3].  These reactions were carried out in a batch 

reactor in presence of zinc chloride catalyst.  Gaseous phase products were not analyzed 

after the completion of reaction; aqueous phase products were analyzed using standard 

gas chromatography and mass spectroscopy.  It was observed that the rate of conversion 

of THQ is not influenced by the presence of ZnCl2 catalyst.  However, it did influence the 

formation of quinoline, a major product formed in the reaction, enhancing its yield.  It 

was also reported that the presence of catalyst favors the formation of low molecular 
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products such as ammonia.  Only trace amounts of ammonia were found when the 

catalyst was not used.   

 
Table 4.1 Products of benzylamine pyrolysis [Houser et al., Ref. 3] 

Time: 1h; Temperature: 400oC; 100% reacted 

Volatile products % yield 

Toluene 26.9 

Benzonitrile 9.5 

Diphenyl methane 1.2 

Bibenzyl 18.1 

Stilbene 11.7 

Methylcarbazole 0.6 

Diphenylmethylene indole 7 

Triphenylimidazole 3.8 

Tetraphenylpyrrole 6 

 

Experiments with benzylamine were carried out without ZnCl2 catalyst.  The final 

reaction products of pyrolysis were compared to reaction products of benzylamine and 

supercritical water reaction. Benzylamine completely reacted with supercritical water and 

it was reported that supercritical water has significant effect on the final reaction 

products.   
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Table 4.2 Reaction products of benzylamine in supercritical water [Houser et al., Ref. 3] 

Temperature [oC] 400 450 

H2O pressure [MPa] 26.7 35.85 

Time [h] 1 1 

Volatile products % yield % yield 

Ammonia 66 101 

Toluene 48 49 

Benzene 11 17 

Benzaldehyde 13.5 8.5 

Benzonitrile 0.1 0.2 

Benzyl alcohol 2.0 1.8 

Biphenyl 1.0 2.6 

Diphenyl methane 0.4 0.6 

Phenyltoluene isomers 1.4 3.4 

Bibenzyl 2.0 1.8 

Benzylidenebenzylamine 9.5 5.4 

Minor products (total) 0.6 0.8 

 

Neat (pure) pyrolysis of benzylamine produced toluene as major product and 

when reacted with supercritical water, the major product was ammonia.  These results 

clearly indicate that reaction pathway of benzylamine is significantly different in 

supercritical water compared to neat pyrolysis.  Reaction products of benzylamine with 

pyrolysis and supercritical water are tabulated in Tables 4.1 and 4.2. 
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Observation of Table 4.1 and 4.2 indicates that benzene, biphenyl and 

benzylidenebenzylamine (BBA) are absent in pyrolysis where as toluene, diphenyl 

methane and bibenzyl were common reaction products in both the reactions.  This 

suggests that there might be two different reaction pathways for benzylamine 

decomposition in supercritical water.  One pathway involves the formation of ammonia 

and toluene and the other involves the oxidation of benzylic carbon which results in 

formation of benzene.  The latter pathway is possible only when there is a source of 

hydrogen present, in this case water.  However, it has to be noted that ammonia is formed 

in trace quantities in pyrolysis.  No kinetic data for the decomposition of benzylamine in 

supercritical water or pyrolysis have been reported.  The possibility of two reaction 

mechanisms in supercritical water is qualitatively discussed but not confirmed.  The 

second reaction pathway (oxidation/hydrolysis), where hydrogen is utilized, is  

  
Benzylamine 

CH2H2N

H2O CO2 NH3 2H2

 

 
Nitro-anilines 

Wang and coworkers studied the pyrolysis reaction pathways and stability of 

nitroanilines with nitro and amino substituents in high temperature water (100oC < T < 

374oC) [4].  The compounds selected for this study are 2-nitroaniline (2NA), 4-

nitroaniline (4NA), 2,6-dinitroaniline (2,6-DNA), 2-nitro-1,4-phenylenediamine 

(2NPDA), 3-nitro-1,2-phenylenediamine (3NPDA), and 4-nitro-1,2-phenylenediamine 

(4NPDA).  All the experiments were carried out in batch reactors.  It was reported that 
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rates of decomposition of aromatic nitroamines were faster in high temperature water 

than for pyrolysis.  It was also observed that there are two reaction pathways, hydrolysis 

and pyrolysis occurring in parallel in high-temperature water.  These findings are in 

agreement with Houser et al. [3].  The pseudo first order rate constants for nitroanlines in 

high temperature water (T = 300 oC) were experimentally determined at reduced water 

density of ρr,w = 0.518.  It was observed that rates of pyrolysis of di-substituted aromatic 

amines, 2NA and 4NA were similar and a significant increase in reaction rate was 

reported when a second amino (NH2) group was added.  Addition of second nitro group 

(NO2) did not influence the pyrolysis rate significantly.  It was reported that tri-

substituted aromatic amines were more reactive than di-substituted ones.  Further it was 

observed that tri-substituted nitroamines with multiple amino groups were more reactive 

than those with multiple nitro groups.  Table 4.3 summarizes the pseudo-first order rate 

constants of nitroanilines.  2NPDA, 3NPDA and 4NPDA were observed to be thermally 

stable at T ≤ 200oC (water density not reported) and all the three compounds reacted 

completely at T = 300oC (ρr,w = 0.518).  Since all the experiments were carried out at 

fixed water density of ρr,w = 0.518, the influence of pressure (or water density) on the rate 

constant cannot be evaluated from presented data. 

 
 p-nitroaniline

Lee and coworkers investigated the reactivity of para-nitroaniline in supercritical 

water [5].  A tubular reactor was used to study the reaction under two different sets of 

conditions, reactivity in absence of oxygen (de-aerated water, hydrothermal 

decomposition/pyrolysis) and reactivity in presence of oxygen (oxidation/hydrolysis). 
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Table 4.3 Pseudo-first order rate constants of nitroanilines at T = 300oC 
[Wang et al., Ref. 4] 

 

k x 103 (min-1) Reactant Abbr 
Initial 

concentration, 
Co (mol L-1) ρr,w = 0.0 ρr,w = 0.518 

NH2

NO2

 

2NA 0.302 4.81 ± 0.71 20.72 ± 1.15 

O2N NH2

 

4NA 0.302 4.88 ± 0.52 31.08 ± 5.46 

NH2

NO2O2N

 

2,6-
DNA 

0.228 8.19 ± 0.39 67.48 ± 9.76 

NH2

NO2

NH2  

2NPDA 0.272 358.52 ± 36.69 --- 

NH2

NH2

NO2  

3NPDA 0.272 254.92 ± 40.16 297.87 ± 33.69 

NH2

NH2

NO2  

4NPDA 0.272 --- --- 
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It was reported that overall reaction rate significantly increased with addition of oxygen.  

Activation energies of pyrolysis and pyrolysis combined with hydrolysis were calculated 

experimentally.  The observed trends in the reaction rates are in agreement with data 

published by Wang et al. [4].  However, the authors did not address the key issues such 

as possible reaction mechanism and the effect of solvent density on the overall reaction 

rate which makes the kinetic model a mere correlation of generated experimental data 

and does not account for possible influence of solvent properties. 

 
Benzylphenylamine 

 Abraham and Klein studied the pyrolysis reaction of benzyl phenyl amine (BPA) 

in sub and supercritical water [6].  All the reactions were carried out in a batch reactor at 

340oC (subcritical) and 386oC (supercritical).  The operating pressure at supercritical 

conditions was reported as Pr = 1.09 (reduced pressure).  The major reaction products 

identified in both cases were aniline, benzyl alcohol and toluene, aniline being major 

product at sub and supercritical conditions.  The yields of benzyl alcohol and toluene 

changed significantly with increase in reaction temperature, the former being the second 

major product to aniline at subcritical conditions and the latter being the second major 

product at supercritical conditions.  It was observed that the reactivity of BPA was lower 

in supercritical water.  The pseudo-first order rate constant for BPA reaction in subcritical 

water was observed to be 2.8 x 10-4 s-1 and in supercritical water the rate was 6.60 x 10-4 

s-1.  The yields of major reaction products are summarized in Figures 4.1 and 4.2. 

Townsend and coworkers studied chemical kinetics and reaction mechanisms of 

heteroatom containing coal model hydrocarbons in supercritical water [7].  One of the 

compounds investigated was benzylphenylamine at water densities of 0 < ρr,w < 2.1 and T 
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= 386 oC.  The major products observed were toluene, aniline and benzaniline at ρr,w = 

0.0 and benzyl alcohol at ρr,w = 1.2.  It was also observed that selectivity of aniline, was 

relatively uneffected by solvent density.  However, solvent density was observed to 

significantly effect the selectivity of toluene which decreased as the water density 

increased indicating that pyrolysis is inhibited by increasing water density.  The 

selectivity of benzyl alcohol was observed to increase with increasing water density 

indicating that increasing density favors hydrolysis.  On the whole, decomposition of 

BPA in supercritical water is aided by parallel hydrolysis and pyrolysis pathways, 

hydrolysis dominating at high solvent densities and pyrolysis dominating at low densities.  

The conversion rates of BPA in pyrolysis (ρr,w = 0.0) were observed to be higher (about 

0.8) when compared to hydrolysis (ρr,w = 1.2) where the conversion was around 0.7.  

These findings are not in agreement with the conversion rates observed by Wang et al. 

[5] for nitroanilines where the reaction rate rapidly increased with addition of water (T = 

300 oC).  It has to be noted that there is a difference in operating temperature of the 

experiments. Pyrolysis and hydrolysis products of BPA are summarized in Table 4.4.  In 

addition to BPA, the authors also studied the reactions of dibenzyl ether, phenethyl 

phenyl ether, guaiacol, and benzyl phenyl ether.  Based on the reaction products of these 

compounds in supercritical water and their pyrolysis products, it was concluded that the 

mechanism of hydrolysis in supercritical water requires a heteroatom (in case of BPA, 

nitrogen).  Further, for hydrolysis mechanism to occur, the reactant (organic compound) 

should contain a saturated carbon to which the heteroatom is attached. 
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Figure 4.1 Yields of major reaction products of benzyl phenyl amine pyrolysis in  
water at 340oC [Abraham and Klein, Ref. 6] 

 

 
Figure 4.2 yields of major reaction products of benzyl phenyl amine pyrolysis in  

water at 386oC [Abraham and Klein, Ref. 6] 
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Table 4.4 Pyrolysis and hydrolysis products of benzyl phenyl amine at 386 oC  

[Tounsend et al., Ref. 7] 

Products 
Reactant 

Pyrolysis 
ρr,w = 0.0 

Hydrolysis 
ρr,w = 1.2 

NH2

Aniline  

H2
C OH

Benzyl Alcohol  

NH CH2

Benzyl Phenyl Amine
CH3

Toluene  

NH2

Aniline  

 
 

This mechanism is similar to nucleophilic attack of solvent on saturated carbon 

(Figure 4.3).  Based on the reaction products of compounds examined, the authors 

suggested that the solvent di-electric constant may have a significant effect on the 

reaction rate.  In order to evaluate this effect, kinetic data at varying solvent densities 

(thus varying di-electronic constant) have to be generated. 

 

H

O
H

C NHPh

H

H
Ph

C

H

PhO

H

H

H NHPh

 

Figure 4.3 Nucleophilic attack of water on saturated carbon atom 
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Methylamine

 Benjamin and Savage studied the reactions of methylamine in supercritical water 

from 386 and 500 oC and water densities from 40 to 540 kg m-3 [8].  Experiments were 

carried out in stainless-steel batch reactors; gas phase products were not analyzed.  At 

low water densities (ρw ≤ 260 kg m-3) it was observed that reactivity of methylamine was 

not influenced by variation in solvent density and methylamine conversion was too low, 

the major reaction product was ammonia.  In this low density region the conversion of 

methylamine almost remained constant.  When the water density was increased above 

260 kg m-3, the reactivity of methylamine increased, and the major product formed in this 

high density region was methanol.  Based on these observations, it was reported that 

pyrolysis of methylamine occurred in low water density region and hydrolysis dominated 

in high water density region.  These findings are in agreement with results published by 

Houser et al. [3], Townsend et al. [7], and Wang et al.  [4].  The experimental data at 

different temperatures were used to generate Arrhenius relation for rate constant in low 

density region (ρw less than 300 kg m-3) where solvent has barely any effect over the 

reaction kinetics.   

The proposed Arrhenius equation is 

 
134.030.21.6 )/(,/738exp10 −± ⎟

⎠
⎞

⎜
⎝
⎛ ±−

= scmmol
RT

molkcalk  

 
The order of reaction with respect of methylamine in this region was found to be 0.66 ± 

0.11 which further gives the global rate expression of methylamine degradation kinetics 

in supercritical water at water densities below 300 kg m-3 as 
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This rate expression can be used only when solvent (water) is not anticipated to 

participate in the reaction i.e., in low density region.  The possible mechanism for 

methylamine degradation is unknown at this point.  The major reaction product formed in 

high water density region (ρw > 260 kg m-3) was methanol aided by hydrolysis.  Kinetic 

data of methylamine reactivity in hydrolysis was used to calculate reaction order with 

respect to water.  The proposed expression is as follows 

 
)][10exp(1 4.00.2

2
6.07.1

3
tOHY OHCH

±±−−−=  

 
where , molar yield of methanol and t is the time.  Note that this expression is a 

correlation of kinetic data and does not incorporate the effects of solvent such as density 

or any other property which has potential to alter the reaction kinetics. 

OHCHY
3

 
Possible Mechanisms 

 
 To summarize the literature reviewed in previous section, the possible 

mechanisms by which amines decompose in supercritical water include ionic and free 

radical mechanisms [4, 6, 8].  The properties of supercritical water may enhance or 

inhibit the reaction to proceed through these mechanisms depending on the operating 

conditions.  For example at extremely low water densities, water molecules barely 

participate in the reaction.  In such case, it can be assumed that the amine undergoes 

thermal decomposition and free radical chemistry can be used to interpret the reaction 

kinetics from products formed. 
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Free radical mechanism 

Higashihara and coworkers studied the thermal decomposition of methylamine in 

the temperature range of 1400 and 1820 K [9].  The possible steps involved in the 

decomposition according to them is

 
CH3NH2 CH3 + NH2

 
CH3 + CH3NH2 CH4 + CH2NH2

 
CH3 + CH2NH2 CH4 + CH2NH 

 
NH2 + CH3NH2 NH3 + CH2NH2

 
NH2 + CH2NH2 NH3 + CH2NH 

 
CH2NH H2 + HCN 

 

With increase in water density, the concentration of hydroxyl and hydronium ions 

increase resulting in the increased possibility for water to participate in the reaction.  This 

might significantly change products formed in the reaction steps shown above.  Hence 

free radical chemistry can be used to explain the product formation in low water density 

region where pyrolysis is major reaction pathway.  If water is assumed to participate in 

the reaction at elevated water densities then the reaction pathway can be interpreted 

through either ionic or molecular mechanisms. 

 
Ionic mechanism 

Most of the reactions involving organic compounds through ionic pathway 

include substitution reactions on carbon atom [10].  In case of organic amines in 

supercritical water, there is a possibility for the reaction to occur through nucleophilic 

substitution reaction, the nucleophile, X being either hydroxyl ion or water molecule 
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itself (Figure 4.4). The nucleophilic substitutions reactions fall into two categories, SN1 

and SN2 [11].  SN1 stands for substitution nucleophilic uni-molecular and SN2 stands for 

substitution nucleophilic bi-molecular.  In SN1 reaction, the global reaction rate is 

independent of concentration of nucleophile where as in SN2 reaction global reaction rate 

is dependent on the concentrations of both amine and attacking nucleophile.  

 

X + C NH2

Y

R

R C NH2

X

R

R + Y

 
Figure 4.4 Substitution reactions of amines 

 
The qualitative picture of these two reactions is that in SN2 mechanism the 

nucleophile attacks the amine molecule forcing it to depart (Figure 4.5) where as SN1 

mechanism proceeds through the stabilization transition complex by the cation formed 

from amine molecule followed by subsequent attack of nucleophile on cation.  The 

structure of amine molecule plays an important role in determining whether the 

substitution is carried through SN1 or SN2 mechanisms.  For example, SN2 mechanism is 

likely to operate if the substitution site is sterically unhindered (Figure 4.5).  The 

nucleophilic substitution mechanism is likely to occur only when water molecules 

actively participate in the reaction. 

 

X + C Y CX ..... ..... Y

‡

X C + Y

 
Figure 4.5 Transition state complex in SN2 reaction 

 50



The reaction kinetics alone is not sufficient to distinguish between SN1 and SN2 

mechanism pathways in a solution [10].  This is because in any solution as the reaction 

proceeds, the concentration of solvent nucleophile participating in the reaction is always 

in excess and does not change significantly.  SN2 mechanism consists of a single 

elementary step in which nucleophile attacks the amine to form final product where as 

SN1 mechanism consists of two steps:  rate determining step of amine dissociation to 

carbocation and subsequent rapid attack of nucleophile on carbocation. So the possibility 

of a bimolecular reaction cannot be ruled out when the reaction rate is independent of 

nucleophile concentration. 

 
Discussion 

 
 To summarize the results in this section, organic amines decompose in 

supercritical water aided by pyrolysis at low water density and by both pyrolysis and 

hydrolysis at high density; the density of water at which a shift from pyrolysis to 

hydrolysis takes place is compound specific.  Taking into account the fact that 

supercritical water supports free radical, polar and ionic mechanisms [11], the literature 

on organic amine degradation mechanisms in supercritical water is sparse.  Careful 

observation of published kinetic data of methylamine reveals that methylamine is more 

stable than benzyl phenyl amine (BPA) and benzylamine (BA) in water at supercritical 

conditions.  This behavior can be attributed to weaker C-N bonds in aromatic compounds 

[8].  From these investigations it can be taken for granted that aliphatic amines are more 

stable than aromatic amines in supercritical water and can serve as good pH neutralizing 

agents. 
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 The influence of solvent properties is dominant on reaction kinetics, especially in 

hydrolysis [6-8, 11].  Better prediction of conversion rates is possible if these solvent 

effects are taken into consideration while formulating the rate equation.  Such solvent 

effects include the effect of dielectric constant of water (ε) [4, 7, 8, 12-20], density of 

water (ρw) and ionic product of water (Kw) [21].  When searching for the possible 

reaction mechanism, it should be noted that mechanism and kinetic equation are 

interdependent.  Hence the approach for determination of reaction mechanism is an 

iterative process in which certain changes in kinetic rate equation should to be made. 

 The stability of methylamine in supercritical water gave hope that amines have 

the potential to remain stable and neutralize the acid concentration.  The effect of 

supercritical state of water on reactivity of amines has to be addressed next.  The next 

chapter deals with possible interaction of solvent and the effects of its properties on 

reaction rate of amine in supercritical water and on their basicity.
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CHAPTER V 

SOLVENT EFFECTS 

 Water, when heated from ambient to supercritical conditions, transforms from 

being a dense, strongly-polar, hydrogen-bonded liquid to a lower density, non-polar fluid 

with gas like diffusivity and viscosity [1-3].  Supercritical water exhibits properties that 

are very different from those of ambient liquid water.  Supercritical water has a lower 

dielectric constant, fewer and weaker hydrogen bonds and a high isothermal 

compressibility than ambient liquid water.  The ion product, or dissociation constant 

(KW) for water as it approaches the critical point, is about 3 orders of magnitude than it is 

for ambient liquid water.  Beyond the critical point KW decreases dramatically making 

supercritical water a poor medium for ionic chemistry.  For example KW is about nine 

orders of magnitude lower at 600 oC and about 24 MPa than it is at ambient conditions. 

The literature available on reactions of various organic compounds including 

amines in supercritical water provides strong precedent for noticeable solvent effects on 

reaction rates.  The quantities most likely to affect reaction rate of amines and other 

organic compounds in supercritical water are density and dielectric nature of the solvent.  

The possible reaction mechanisms involved in the degradation of organic amines in 

supercritical water involves free-radical, ionic and molecular mechanisms.  The free-

radical mechanism is predominantly observed in low-water density region where the 

reaction pathway proceeds through pyrolysis of amine molecule.  It is in the hydrolysis 
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region where there is a possibility of amine undergoing degradation through ionic and 

molecular mechanisms [6].  The affect of properties of solvent medium on these reaction 

pathways in hydrolysis contributes to the deviation of reaction rate from Arrhenius-like 

behavior. 

 
Literature Review 

 Townsend et al. [4] observed parallel pyrolysis and hydrolysis reaction 

mechanisms of coal model compounds in supercritical water and it was reported that 

hydrolysis reaction rate of dibenzylether and guaiocol is strongly dependent on the 

dielectric constant of the solvent medium.  Similar trends were observed in the study of 

reactions of nitroaniline explosive simulants in high temperature and supercritical water 

by Wang et al. [5].  Benjamin and Savage [6] studied the reaction of methylamine in 

supercritical water and found that solvent dielectric constant has significant effect on the 

reaction rate.  In addition, they reported that hydrolysis mechanism may be aided either 

by SN2 or molecular mechanism with one water molecule in which the transition state is 

more polar than the reactants.  A dielectric constant dependent term was incorporated by 

Iyer and Klein [7] into the rate equation for correlating the rate constant of butyronitrile 

hydrolysis to account for changes in the electrostatic nature of solvent resulting from 

pressure variation.  Improved fits in the reaction model of synthesis of ethyl tert-butyl 

ether from tert-butyl alcohol in liquid ethanol were observed by Habenicht et al. [8] when 

the influence of solvent dielectric constant was taken into account.  Xiang and Johnston 

[9] studied the reaction of β-naphthol and base (OH-) in supercritical water up to 400oC 

and 470 bar and reported that density and dielectric nature of solvent influences the 
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equilibrium rate constant at constant temperature.  Ryan et al. [10] investigated the 

dynamics of proton transfer from 2-naphthol to various bases in sub and supercritical 

water and reported that dielectric constant of reaction medium has significant effect on 

the proton transfer reaction.  González and Montané [11] observed that the reaction rate 

of Dibenzylether hydrolysis in supercritical water is lowered with increase in dielectric 

constant of solvent medium indicating that transition complex is less polar than the 

reactants.  Venardou et al. [12] investigated the hydrolysis reaction of acetonitrile at near 

critical conditions and suggested that solvent properties like dielectric constant and ionic 

product may have a significant affect on the reaction rate and final product composition.  

Researchers at Massachusetts Institute of Technology incorporated a correction term into 

their rate expression which accounts for solvation effects in the reaction kinetics of 

methylene chloride in sub and supercritical conditions [13-14]. 

 
Ion Product (KW)

Literature concerning hydrolysis of organic amines in near critical and supercritical 

water suggests that there is a possibility for reaction pathway to proceed through ionic 

mechanism.  Three such possible mechanisms in hydrolysis region were suggested by 

Benjamin and Savage [6]: 

 
1. SN2 reaction with water as nucleophile 

2. SN2 reaction with hydroxyl ion as nucleophile (base-catalyzed) 

3. Protonation of organic amine by hydronium ion (acid-catalyzed) 
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These mechanisms were discussed in detail in Chapter IV.  All the above mechanisms 

involve either hydroxyl ion (OH-) or hydronium ion (H3O+), or both.  The concentration 

of hydroxyl and hydronium ions (or concentration of water) is expressed by ion product 

(KW) of water at specific temperature and pressure.  KW of water is not a strong function 

of pressure at sub-critical conditions.  However, beyond the critical point, it varies 

dramatically with increase in pressure (Figure 5.1).  Ion product when plotted against 

density, a smooth curve is observed (Figure 5.2). If the reaction pathway follows ionic 

mechanism, then very slight changes in pressure can dramatically change the ionic 

product further influencing the rate determining kinetic equation.   

Now it is evident that ion product of water is a key parameter for tuning the 

reaction rate in hydrolysis region provided the reaction pathway is through ionic 

mechanism.  The next step is to evaluate the conditions favorable for reaction to proceed 

through ionic pathway.  Ionic mechanisms in any aqueous system are favored when KW > 

10-14 [15].  At such relatively higher concentration of hydroxyl and hydronium ions, the 

probability of attack by one of either ion on amine molecule in amine – water system is 

higher.  From Figure 5.2, it can be inferred that increase in pressure increases the ion 

product of water at a fixed density.  Although the variation in ion product with pressure at 

a fixed density is low, this behavior can help fine tune ion product to desired values with 

variation in pressure.  At conditions where KW <<10-14 (Figure 5.2), the concentration of 

hydroxyl and hydronium ions in water is lowered resulting in low probability for ionic 

mechanisms.  In this region, radical mechanisms dominate are most favored in systems 

with water as a solvent medium.   
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Figure 5.1 Isobaric variation of Ion Product of water (KW) with temperature [19] 
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Figure 5.2 Isobaric variation of Ion product of water (KW) with density [19] 
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Dielectric constant (ε) 

Previous studies [4, 6] showed that hydrolysis of organic compounds in 

supercritical water can be interpreted using transition state theory.  According to 

transition state theory, the rate constant for reaction at temperature T and density ρ is 

given by 
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where 
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Where κ is the transmission coefficient, n is the sum of reactants stoichiometric 

coefficients, and  is the free energy of activation [16].  For the reaction occurring in 

solvent medium, the solute (organic amine) – solvent (water) interactions influence the 

rate constant by modifying the free energy of activation and transmission coefficient.   

‡G∆

The change in free energy of activation due to solvent-solute interactions are termed as 

equilibrium solvation effects.  In such cases, the pressure and density dependence of 

reaction rate can be derived from equations 5.1 and 2. 
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Where κT is isothermal compressibility and  is activation volume given by ‡v∆
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The activation volume is the difference between the partial molar volumes of the 

transition state and the reactants and is strongly dependent on solute-solvent interactions.  

The effect of temperature, pressure and density on the solvation of reactants and 

transition state species in supercritical water may significantly change the kinetics of 

organic amine reaction as indicated by equations 5.3 and 4.  The effect of these 

parameters may change depending on the characteristics of transition state.  For example, 

if the transition state involves reactants with charge localization (ions) or polar 

molecules, then electrostatic interactions between the solvent and solute would influence 

the reaction kinetics.  Dielectric constant of solvent in such instances may play a critical 

role in solvation of reactants and transition state species in water.  The qualitative picture 

of solvent dielectric effect on reaction rate is that reactions involving a transition state 

more polar than individual reactants facilitate by increasing dielectric constant and 

reactions involving a transition state that is less polar than individual reactants are 

facilitated by decreasing dielectric constant. 

The conventional approach of evaluating the effect of dielectric constant on 

reaction rate includes the use of Kirkwood theory [17-18].  For reactions involving 
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changing dipole moment, Kirkwood theory quantifies the effect of solvent polarity on the 

reaction rate. Consider the following reaction of two polar molecules: 

 
A + B  X   Products                                            (5.7) ‡

According to Kirkwood theory, the rate constant of the above reaction is given by 
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where k0 is the value of rate constant in reference state of unit activity coefficients, X ‡  is 

transition state species, µ the dipole moment, r the molecular/complex radius, N 

Avogadro number, and ε the solvent dielectric constant. According to this theory, a plot 

of ln(k) vs 1/ε should be linear.  The slope of the plot determines the relative polarity of 

transition state compared to the reactants.  A positive plot of ln(k) vs 1/ε indicates that the 

reaction proceeds through a transition state less polar than the reactants and vice versa.  

Figure 5.3 shows the sample Kirkwood plot for kinetics of methylamine methylamine 

hydrolysis in supercritical water at 410 oC.  

 
Other effects 

 The literature highlights dielectric constant and ion product of water as two major 

solvent effects which can alter the hydrolysis reaction rate of various organic compounds 

in supercritical water.  However, effect of key variables like solvent structure and 

hydrogen bonding on reaction rate is unknown.
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Figure 5.3 Kirkwood plot showing dependency of hydrolysis rate 

constant on dielectric constant of solvent – hydrolysis of methylamine in 
supercritical water at 410oC (Ref. 6.) 
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Modification of kinetic equation 

Conventional kinetic analysis 

Consider the following reaction between organic amine and water at ambient 

conditions.  Although amines are relatively inert in ambient water, a hypothetical case is 

presented below. 

A (amine) + B (water)  Product 1 (C) + Product 2 (D)                  (5.9) 

The rate expression for the disappearance of A is given by 

b
B

a
A

A
A CkC

dt
dCr =−=−                                              (5.10) 

where k is the rate constant.  According to Arrhenius expression form of rate constant, 

this would be 

RT
E

ekk
−

= 0                                                      (5.11) 

Where k0 is the frequency factor and E is activation energy of the reaction.  The 

concentration of water will not change appreciably during the course of reaction.  

Therefore the rate dependence on A can be isolated and can be written as  

a
A

A
A Ck

dt
dCr '=−=−                                                 (5.12) 

where k’ is pseudo first order rate constant, given by 

( )b
BCkk .'=                                                          (5.13) 

Integrating equation 5.12 from time 0 to t seconds and CA0 to CA, CA0 being the initial 

concentration, one would end up with the following equation: 

( ) ( ) ( ) ( )
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1lnln1ln
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0 −
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a

A                                      (5.14) 
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where F is fractional conversion, 
0A

A
C

CF =  

Experimental data can then be generated at various initial concentrations (CA0) and 

varying reaction times.  

 

Temperature Initial concentration of 
organic amine (CA0) 

Time of reaction (t) Final concentration of 
organic amine (CA) 

(CA0)1 t1 (CA)1

(CA0)2 t2 (CA)2T1

(CA0)3 t3 (CA)3

(CA0)1 t1 (CA)1

(CA0)2 t2 (CA)2T2

(CA0)3 t3 (CA)3

 
Table 5.1 Sample set of data points necessary to compute the rate constant and Arrhenius 

parameters of organic amine degradation 
 

 Once the experimental data is generated, equation 5.14 can be used to create a 

linear plot of ln(t) versus ln (CA0), the slope of plot, (1-a) and intercept on ln(t) axis being 

( )
( )1'

1ln
1

−
−−

ak
F a

 .  The slope of the, (1-a) is positive and greater than one, then the reaction 

has a negative order with respect to CA.  If the slope is positive and less than one, then the 

order of reaction is positive with respect to CA.  k’ can be calculated from the intercept of 

plot on ln(t) axis and finally the global reaction rate constant, k can be computed using 

equation 5.13.  To evaluate the activation energy and frequency factor of the reaction, 

similar set of experiments should be performed at a different temperature to generate 

Arrhenius plot [20]. 
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 The above presented conventional kinetic analysis would be sufficient to 

determine the rate kinetics of organic amines in supercritical water at very low water 

densities where the solvent effects are negligible.  In this region, water is not an active 

participant in the reaction and decomposition of amines could be aided by cracking of 

molecular species. In other words, pyrolysis of organic molecules dominates in this 

region and use of conventional methods to correlate the kinetic data would be sufficient 

to obtain a fair approximation of rate constant.  The threshold value of water density 

above which the solvent effects would alter the rate constant may be specific to the 

organic amine (or compound) participating in the reaction.   Above this threshold value 

of density, water is an active participant in the reaction and may significantly change the 

overall stoichiometry of the reaction resulting in formation of new products.  With 

continuous increase in water density, a transition from pyrolytic region to hydrolysis 

region takes places.  During this transition, the two reaction pathways may proceed in 

parallel, with different rates with different product formations.  Of these two reactions, 

the rate of hydrolysis (and probably pyrolysis too) reaction may be significantly altered 

by the changing physical properties of solvent (Dielectric constant, Ion product and 

Hydrogen bonding).  Or it can be said that rate of reaction is a function of temperature, 

concentration of reactants and solvent properties. 

 
-rA = f(temperature, concentration of reactants, KW, ε, H-bonding)           (5.15) 

b
B

a
AA CCr ψ=−                                                             (5.16) 

where Ψ is new rate constant and is a function of temperature and solvent properties.
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CHAPTER VI 

CONCLUSIONS AND RECOMMENDATIONS 

Conclusions 

 The study reported in this thesis included (a) an extensive review of literature 

available on possible reaction pathways of organic amines in supercritical water and (b) 

possible solvent parameters that can affect the rate of reaction of organic amines in 

supercritical water. 

 
Reaction pathways of amine degradation

1. Organic amines decompose in supercritical water through pyrolysis and / or 

hydrolysis pathways, 

2. Pyrolysis is favored in low water density region (typically ρw << 0.4 kg m-3) and 

hydrolysis pathway is favored in high water density region (ρw  > 0.4 kg m-3), 

3. There is a possibility for the two reaction pathways to proceed in parallel with 

equal or unequal rates within a range of water densities, the range being specific 

to selected organic amine, 

4. The available literature is not sufficient to generate a robust procedure to quantify 

the reaction rates of the two mechanisms,
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5. The decomposition rate of amine through pyrolysis pathway in low water density 

region can be interpreted using free radical chemistry, and 

6. The decomposition rate of amine through hydrolysis pathway in high water 

density region can be interpreted by nucleophilic substitution mechanisms. 

 
Water effects in supercritical state

1. Pyrolysis of amine decomposition in low water density region is independent of 

properties of water 

2. Rate of decomposition through hydrolysis is altered by dielectric constant and ion 

product of water at elevated water densities 

3. The nature of dielectric constant influence on hydrolysis reaction can be evaluated 

using conventional Kirkwood analysis 

4. The change in reaction pathway, either from pyrolysis to hydrolysis or hydrolysis 

to pyrolysis is accompanied by changes in water density and further, changes in 

ion product of water 

 
To conclude, organic amines decompose in supercritical water and can serve as potential 

corrosion inhibitors when used in hydrothermal systems operating above critical point.  

Out of the three key parameters for selection an amine, stability, volatility and basicity, 

this report presented the results of investigation on the stability of amines by evaluating 

possible reaction mechanisms and kinetics.  The volatility of amines which is an 

important factor to be considered when used in sub-critical systems may not have an 

impact in supercritical systems as the amine itself is in a supercritical state.  Finally, no 

previous work was found evaluating the basicity of amines in supercritical water and 
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significant amount of work should be done in this area to determine the acid - base 

behavior of amines in water beyond the critical point.   

 
Recommendations 

 
 Literature available on reactions kinetics of organic amines in supercritical water 

is sparse.  The kinetic data of amine reaction in supercritical water available till date 

include reactant conversions and product yields as functions of temperature and initial 

concentrations in batch reactors.  None of the works reported analyzing the gas phase 

products formed after completion of reaction.  These available experimental data are 

accompanied by a discussion of complementary mechanistic modeling components, not 

validated by experimental data.   

There is a necessity to develop robust mechanistic and kinetic models to predict 

the elementary reaction rates and global kinetics of amine degradation in supercritical 

water.  The model predictions should be compared with experimental measurements of 

intermediate molecular and free radical species of the reaction.  Such measurements 

would need to be made in situ, and till date there have been no reports for measuring 

radical and molecular species concentrations during organic chemical reactions in 

supercritical water systems.   

 
Experimentation

 Experiments can be conducted either in batch or plug flow reactors.  The reaction 

amine in supercritical state should be continuously monitored for any intermediate 

products formed.  An ideal solution to monitor the reaction intermediates in situ would be 

use of spectroscopic techniques such as fiber-optic Raman spectroscopy, Fourier 
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transform infrared (FTIR) spectroscopy and emission spectroscopy.  The use of 

spectroscopic techniques would facilitate in examining the possible reaction 

intermediates in situ based on their respective wave characteristics.  Temperature, 

pressure and pH in spectroscopic cell can be measured using conventional 

thermocouples, transducers and pH measurement devices.  The sample can then be 

cooled to ambient temperature, vapor phase separated from liquid and analyzed for 

respective concentrations using Gas Chromatography (G.C) and Mass Spectroscopic 

(M.S) techniques.  Notice that initial spectroscopic measurements are made in situ at 

supercritical conditions followed by G.C-M.S analysis at ambient temperature and 

pressure.  This procedure would provide sufficient information on the reaction 

intermediate products and final reaction products in vapor as well as in liquid phases.  It 

would also facilitate in investigation of acid – base behavior of organic amines in 

supercritical water and further investigation in molecular dynamics of solute – solvent 

interactions at supercritical conditions. 

 
Rate equation

 For accurate prediction of rate of decomposition of amines in supercritical water 

there is a necessity for development a global kinetic rate equation over a wide range of 

operating conditions.  Considering the fact that the properties of supercritical water, 

density, ion product and dielectric constant are extremely sensitive to changes in 

temperature and pressure, and have the potential to alter the decomposition reaction 

pathway and reaction kinetics of amines, it is essential to incorporate these solvent effects 

into global kinetic equation.   
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 An alternative approach to attain the goal is to breakdown the range of operating 

conditions based on density at which a shift of reaction pathway occurs.  The reason for 

selecting density as a fundamental property here is that dielectric constant and ion 

product of water have smooth variation with density and can be easily correlated with the 

same.   

Three possible regimes can be identified based on decomposition pathways: 

 
I. wPTw ρρ <<0  where ρw is water density and ρwPT is the value of density below 

which solvent effects can be neglected and reaction pathway is assumed to be aided 

by pyrolysis pathway only.  In this region water is not an active participant in the 

reaction and major amount of organic amine can be assumed to decompose through 

thermal cracking 

II. MOPwwTH ρρρ <<  where ρwTH is the value of water density above which reaction 

pathway is assumed to proceed only through hydrolysis.  Water is an active 

participant in the reaction in this region; ion product and dielectric constant of water 

have significant influence on reaction kinetics.  In this region, major amount of 

organic amine is assumed to decompose through ionic mechanisms.  ρMOP is water 

density at maximum operating pressure and minimum operating temperature 

III. wTHwwPT ρρρ << .  In this region, the decomposition of amine is aided by both 

hydrolysis and pyrolysis. This regime can be visualized as a transition region where 

amine is partially decomposed through thermal degradation and partially through 

reaction with water (hydrolysis).  The reaction pathway in this region is a function 

of localized density due to formation and dissociation of clusters of water 

molecules.  Amine decomposes through hydrolysis pathway only if amine molecule 
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is located within a cluster of water molecules where the probability for water 

molecule to participate in the reaction is higher. 

 
This methodology of breaking down the operating range based on density would result in 

three different rate equations for the three regimes discussed above.  The three rate 

expressions would then be of the form 

 
( ) II ionConcentrateTemperaturfr Π=− ,                                    (6.1) 

 
( ) IIWII KionConcentrateTemperaturfr Π=− ,,, ε                             (6.2) 

 
( ) IIIWIII KionConcentrateTemperaturfr Π=− ,,, ε                            (6.3) 

 
Where rI, rII, rIII are rates of decomposition of amine in region I, II and III.  Note that rate 

in equation 6.1 is independent of solvent properties.  ПI in equation 6.1 is correction 

factor for rate equation that takes into account reaction with water, if any.  Similarly ПII 

in equation 6.2 is correction factor in region II to take into account the reaction purely by 

thermal degradation.  In equation 6.3, ПIII should incorporate the effects of varying rates 

of two different reaction pathways, pyrolysis through free radical mechanism and 

hydrolysis through ionic mechanism. 

 Finally, little data on dissociation constants of amines in supercritical water are 

available in literature which limits this study to evaluate the basic strength of organic 

amines.  Availability of such experimental data would also contribute in evaluating the 

multiple steps involved in ionic mechanisms in hydrolysis region. 
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APPENDIX A 

THERMODYNAMIC DATA OF WATER: 

SUB AND SUPERCRITICAL CONDITIONS 
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A-I.  Dielectric Constant of Water 

Dielectric constant of water is calculated from the following correlation proposed 

by Uematsu and Franck: 
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  ρw, density of water in kg m-3

  T, temperature in K 

  Ai, ρ0, T0, numerical constants given in Table A.1 
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Table A.1 Numerical values of coefficients in section A-I 

A1 7.62571E00 

A2 2.44003E02 

A3 -1.40569R02 

A4 2.77841E01 

A5 -9.62805E01 

A6 4.17909E01 

A7 -1.02099E01 

A8 -4.52059E01 

A9 8.46395E01 

A10 -3.58644E01 

T0 298.15 K 

ρ0 1000 kg m-3
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A-II. Ion Product of Water 

 Ion product (KW) of water is calculated from the following correlation proposed 

by Marshall and Franck: 

( ) ( )*
232

* loglog wW T
G

T
FE

T
D

T
C

T
BAK ρ⎟
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⎞

⎜
⎝
⎛ ++++++=  

Where 

( ) ( ) 22* / −= kgmolKK WW ,  ( )( ) 3* / −= cmgww ρρ  

 
and values for the parameters are  

A = -4.098 

B = -3245.2 K 

C = 2.2362E05 K2

D = -3.984E07 K3

E = 13.957 

F = -1262.3 K 

G = 8.5641E05 K2
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Table A.2 Isobaric data of water at P = 24 MPa 
 
 

T (C) Pressure 
(MPa) 

Density 
(kg/m3) 

Cp 
(J/mol*K) 

Therm. 
Cond. 

(W/m*K) 
Phase log(Kw(mol/kg)2) ε 

0.01 24 1011.7 74.118 0.57427 liquid -14.83036255 88.93004 

10.01 24 1010.8 74.104 0.5917 liquid -14.42991646 85.00651 

20.01 24 1008.9 74.148 0.60948 liquid -14.07118158 81.2264 

30.01 24 1006 74.222 0.62635 liquid -13.74934898 77.58265 

40.01 24 1002.4 74.309 0.64155 liquid -13.45803329 74.09461 

50.01 24 998.19 74.402 0.65472 liquid -13.19336801 70.76187 

60.01 24 993.37 74.499 0.66579 liquid -12.9527465 67.57615 

70.01 24 988.02 74.605 0.67487 liquid -12.73335303 64.53599 

80.01 24 982.19 74.723 0.68214 liquid -12.53296448 61.63721 

90.01 24 975.91 74.86 0.68781 liquid -12.34979479 58.87409 

100.01 24 969.2 75.02 0.6921 liquid -12.18236274 56.24028 

110.01 24 962.09 75.21 0.69518 liquid -12.02930172 53.73039 

120.01 24 954.58 75.432 0.69719 liquid -11.88962743 51.33706 

130.01 24 946.69 75.693 0.69824 liquid -11.76233888 49.05469 

140.01 24 938.42 75.995 0.6984 liquid -11.64669618 46.87662 

150.01 24 929.77 76.343 0.69773 liquid -11.54205568 44.79652 

160.01 24 920.75 76.741 0.69626 liquid -11.44778389 42.80912 

170.01 24 911.33 77.194 0.69399 liquid -11.3636153 40.90691 

180.01 24 901.52 77.709 0.69092 liquid -11.28905547 39.0854 

190.01 24 891.3 78.29 0.68704 liquid -11.22389034 37.33855 

200.01 24 880.66 78.947 0.68233 liquid -11.16788664 35.66137 

210.01 24 869.56 79.689 0.67677 liquid -11.12108648 34.04753 

220.01 24 857.98 80.527 0.67031 liquid -11.08343457 32.49232 

230.01 24 845.88 81.477 0.66291 liquid -11.05507701 30.99032 

240.01 24 833.23 82.556 0.6545 liquid -11.03613736 29.53713 

250.01 24 819.96 83.791 0.64503 liquid -11.02710346 28.12671 

260.01 24 806.01 85.211 0.6344 liquid -11.02845547 26.7541 

270.01 24 791.3 86.859 0.62252 liquid -11.04090839 25.41389 

280.01 24 775.73 88.793 0.60931 liquid -11.0654339 24.10036 

290.01 24 759.15 91.095 0.59467 liquid -11.10353726 22.8062 

300.01 24 741.4 93.885 0.57857 liquid -11.15698525 21.52463 

310.01 24 722.23 97.343 0.56101 liquid -11.22854586 20.24601 
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T (C) Pressure 
(MPa) 

Density 
(kg/m3) 

Cp 
(J/mol*K) 

Therm. 
Cond. 

(W/m*K) 
Phase log(Kw(mol/kg)2) ε 

320.01 24 701.3 101.76 0.54206 liquid -11.32214696 18.95853 

330.01 24 678.1 107.63 0.52186 liquid -11.44383744 17.64567 

340.01 24 651.84 115.9 0.5005 liquid -11.60330967 16.28343 

350.01 24 621.11 128.65 0.4778 liquid -11.81827321 14.83046 

360.01 24 582.96 151.92 0.4528 liquid -12.12687594 13.20263 

370.01 24 528.7 212.64 0.42262 liquid -12.64576353 11.15718 

380.01 24 385.13 1140.9 0.40901 supercritical -14.49987667 6.813174 

390.01 24 178.16 328.12 0.1903 supercritical -19.1089029 2.580786 

400.01 24 148.53 194.54 0.14934 supercritical -20.12707843 2.163999 

410.01 24 132.61 147.27 0.13089 supercritical -20.72903473 1.959533 

420.01 24 121.87 122.09 0.12007 supercritical -21.15668706 1.829418 

430.01 24 113.86 106.18 0.113 supercritical -21.4861071 1.736596 

440.01 24 107.51 95.153 0.10813 supercritical -21.75316795 1.665699 

450.01 24 102.3 87.036 0.10466 supercritical -21.97551014 1.609353 

460.01 24 97.885 80.813 0.10218 supercritical -22.16622804 1.562993 

470.01 24 94.074 75.896 0.10042 supercritical -22.33232101 1.524039 

480.01 24 90.728 71.922 0.0992 supercritical -22.47927542 1.490701 

490.01 24 87.753 68.651 0.09839 supercritical -22.61081519 1.461771 

500.01 24 85.079 65.92 0.09793 supercritical -22.72981273 1.436372 

510.01 24 82.653 63.611 0.09773 supercritical -22.83850279 1.41385 

520.01 24 80.437 61.641 0.09776 supercritical -22.93843481 1.393728 

530.01 24 78.398 59.945 0.09798 supercritical -23.03107259 1.375613 

540.01 24 76.512 58.474 0.09835 supercritical -23.11742605 1.359213 

550.01 24 74.759 57.191 0.09886 supercritical -23.19836039 1.344287 

560.01 24 73.123 56.065 0.09947 supercritical -23.27455625 1.330643 

570.01 24 71.59 55.073 0.10018 supercritical -23.34663796 1.318116 

580.01 24 70.148 54.196 0.10096 supercritical -23.41515438 1.30657 

590.01 24 68.787 53.417 0.10181 supercritical -23.48056051 1.295889 

600.01 24 67.501 52.723 0.10272 supercritical -23.54302455 1.285992 
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Table A.3 Isobaric data of water at P = 30 MPa 

T (C) Density 
(kg/m3) 

Cp 
(J/mol*K) 

Viscosity 
(cP) 

Therm. 
Cond. 

(W/m*K) 
Phase log(Kw(mol/kg)2) ε 

0.01 1014.5 73.712 1.7271 0.57754 liquid -14.805381 89.192425 

10.01 1013.5 73.781 1.2784 0.59461 liquid -14.40653794 85.255163 

20.01 1011.5 73.874 0.99155 0.61224 liquid -14.04925604 81.461387 

30.01 1008.6 73.979 0.79603 0.62907 liquid -13.72792582 77.812966 

40.01 1004.9 74.085 0.65624 0.64429 liquid -13.43784881 74.311399 

50.01 1000.7 74.189 0.55255 0.65751 liquid -13.17346179 70.974699 

60.01 995.84 74.293 0.47338 0.66865 liquid -12.93345868 67.780776 

70.01 990.51 74.401 0.41152 0.6778 liquid -12.71416774 64.737363 

80.01 984.7 74.519 0.36227 0.68516 liquid -12.51384521 61.835258 

90.01 978.47 74.652 0.32241 0.69094 liquid -12.33048215 59.071065 

100.01 971.82 74.807 0.28971 0.69534 liquid -12.16275476 56.436786 

110.01 964.77 74.988 0.26256 0.69853 liquid -12.00937339 53.926268 

120.01 957.35 75.2 0.23978 0.70067 liquid -11.86913224 51.534307 

130.01 949.55 75.446 0.22048 0.70186 liquid -11.74125393 49.253092 

140.01 941.38 75.732 0.20398 0.70218 liquid -11.6249241 47.076628 

150.01 932.86 76.059 0.18976 0.70167 liquid -11.51935147 44.999892 

160.01 923.96 76.434 0.17741 0.70036 liquid -11.42419465 43.014895 

170.01 914.7 76.858 0.16661 0.69827 liquid -11.33881797 41.117334 

180.01 905.06 77.339 0.15709 0.69539 liquid -11.26294375 39.300696 

190.01 895.04 77.88 0.14866 0.69171 liquid -11.19620537 37.560113 

200.01 884.61 78.489 0.14112 0.68723 liquid -11.13851072 35.889309 

210.01 873.75 79.173 0.13436 0.68191 liquid -11.08974502 34.283053 

220.01 862.45 79.942 0.12824 0.67573 liquid -11.0497668 32.737062 

230.01 850.68 80.807 0.12267 0.66864 liquid -11.01863053 31.246311 

240.01 838.39 81.785 0.11756 0.66061 liquid -10.99659178 29.805155 

250.01 825.54 82.892 0.11285 0.65156 liquid -10.98388439 28.40896 

260.01 812.09 84.153 0.10846 0.64144 liquid -10.98079804 27.053521 

270.01 797.96 85.598 0.10435 0.63018 liquid -10.98799871 25.733126 

280.01 783.08 87.268 0.10045 0.61769 liquid -11.00615574 24.443128 

290.01 767.35 89.218 0.09674 0.60391 liquid -11.03627446 23.178052 

300.01 750.64 91.526 0.09315 0.58881 liquid -11.07973284 21.931769 

310.01 732.78 94.3 0.08965 0.57241 liquid -11.13841614 20.697257 
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T (C) Density 
(kg/m3) 

Cp 
(J/mol*K) 

Viscosity 
(cP) 

Therm. 
Cond. 

(W/m*K) 
Phase log(Kw(mol/kg)2) ε 

320.01 713.56 97.703 0.08618 0.55477 liquid -11.21479455 19.466863 

330.01 692.67 101.98 0.08271 0.53604 liquid -11.31256599 18.230178 

340.01 669.67 107.55 0.07916 0.51641 liquid -11.4371672 16.973616 

350.01 643.92 115.13 0.07546 0.49595 liquid -11.59684462 15.678877 

360.01 614.36 126.15 0.07149 0.47447 liquid -11.80562872 14.316934 

370.01 579.05 143.97 0.06705 0.45108 liquid -12.09011435 12.836704 

380.01 533.88 177.7 0.06176 0.4235 supercritical -12.50965754 11.134813 

390.01 468.72 258.34 0.05471 0.387 supercritical -13.22709461 8.9799564 

400.01 357.29 466.21 0.04393 0.33197 supercritical -14.80096793 5.9327997 

410.01 251.13 353.64 0.03541 0.24322 supercritical -16.86198579 3.6735759 

420.01 203.21 229.84 0.03253 0.19147 supercritical -18.06614518 2.8545344 

430.01 177.39 172.24 0.03144 0.16392 supercritical -18.81072685 2.4650537 

440.01 160.59 140.61 0.03099 0.14721 supercritical -19.33590258 2.2312397 

450.01 148.42 120.68 0.03085 0.13615 supercritical -19.73726872 2.0716906 

460.01 139.01 106.96 0.03088 0.12843 supercritical -20.05973314 1.9541339 

470.01 131.43 96.936 0.03101 0.12287 supercritical -20.326898 1.8632103 

480.01 125.11 89.301 0.03121 0.1188 supercritical -20.55476892 1.7900996 

490.01 119.73 83.3 0.03145 0.11581 supercritical -20.75221999 1.7298524 

500.01 115.07 78.47 0.03172 0.11362 supercritical -20.92572428 1.6792007 

510.01 110.95 74.508 0.03202 0.11205 supercritical -21.0813968 1.6356984 

520.01 107.29 71.208 0.03234 0.11097 supercritical -21.22116282 1.5980581 

530.01 104 68.424 0.03267 0.11027 supercritical -21.34810463 1.5650743 

540.01 101.01 66.051 0.03301 0.10989 supercritical -21.46474994 1.5358399 

550.01 98.274 64.009 0.03336 0.10977 supercritical -21.57263638 1.5097306 

560.01 95.76 62.239 0.03372 0.10985 supercritical -21.67272467 1.4862916 

570.01 93.436 60.695 0.03408 0.11011 supercritical -21.76617217 1.4651132 

580.01 91.277 59.34 0.03444 0.11052 supercritical -21.85387213 1.4458741 

590.01 89.262 58.145 0.0348 0.11104 supercritical -21.93659682 1.4283099 

600.01 87.375 57.086 0.03517 0.11167 supercritical -22.01489773 1.4122132 
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Table A.4 Isobaric data of water at P = 36 MPa 

T (C) Density 
(kg/m3) 

Cp 
(J/mol*K) 

Viscosity 
(cP) 

Therm. 
Cond. 

(W/m*K) 
Phase log(Kw 

(mol/kg)2) ε 

0.01 1017.4 73.329 1.7169 0.58078 liquid -14.77957983 89.4632 

10.01 1016.2 73.474 1.2743 0.5975 liquid -14.38322162 85.503 

20.01 1014 73.613 0.99027 0.615 liquid -14.02822688 81.6867 

30.01 1011.1 73.745 0.7962 0.63179 liquid -13.70737865 78.0339 

40.01 1007.4 73.868 0.65716 0.64702 liquid -13.41771449 74.5278 

50.01 1003.1 73.983 0.55386 0.66029 liquid -13.15447459 71.1779 

60.01 998.28 74.093 0.47489 0.67149 liquid -12.91445203 67.9826 

70.01 992.96 74.204 0.41312 0.68073 liquid -12.69533767 64.9352 

80.01 987.19 74.321 0.36389 0.68817 liquid -12.49492639 62.0315 

90.01 980.99 74.452 0.32403 0.69405 liquid -12.31152056 59.2648 

100.01 974.4 74.601 0.29131 0.69855 liquid -12.14349773 56.6301 

110.01 967.41 74.774 0.26413 0.70187 liquid -11.98979656 54.1191 

120.01 960.06 74.975 0.24132 0.70414 liquid -11.84913829 51.7272 

130.01 952.35 75.209 0.22199 0.70547 liquid -11.72067275 49.4472 

140.01 944.29 75.479 0.20545 0.70593 liquid -11.60358642 47.2732 

150.01 935.87 75.788 0.19121 0.70558 liquid -11.49730726 45.1979 

160.01 927.11 76.14 0.17883 0.70443 liquid -11.40112586 43.2168 

170.01 917.99 76.539 0.16801 0.70251 liquid -11.31469729 41.3227 

180.01 908.51 76.989 0.15848 0.69981 liquid -11.23759398 39.5105 

190.01 898.66 77.493 0.15003 0.69634 liquid -11.16951865 37.7746 

200.01 888.44 78.059 0.14249 0.69206 liquid -11.11015221 36.1104 

210.01 877.81 78.692 0.13572 0.68697 liquid -11.05951901 34.5114 

220.01 866.77 79.401 0.12961 0.68104 liquid -11.01739422 32.9737 

230.01 855.28 80.194 0.12404 0.67425 liquid -10.98389513 31.4918 

240.01 843.32 81.083 0.11895 0.66654 liquid -10.95903559 30.0615 

250.01 830.86 82.083 0.11426 0.65788 liquid -10.94295029 28.6784 

260.01 817.85 83.212 0.10991 0.64821 liquid -10.93597689 27.3376 

270.01 804.23 84.492 0.10584 0.63748 liquid -10.93858936 26.0342 

280.01 789.95 85.953 0.102 0.62561 liquid -10.95124975 24.7643 

290.01 774.94 87.633 0.09835 0.61257 liquid -10.97465286 23.5233 

300.01 759.08 89.585 0.09485 0.59833 liquid -11.00999547 22.305 
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T (C) Density 
(kg/m3) 

Cp 
(J/mol*K) 

Viscosity 
(cP) 

Therm. 
Cond. 

(W/m*K) 
Phase log(Kw 

(mol/kg)2) ε 

310.01 742.28 91.877 0.09146 0.58288 liquid -11.05836015 21.1055 

320.01 724.38 94.609 0.08813 0.56631 liquid -11.12157251 19.9182 

330.01 705.17 97.921 0.08484 0.54875 liquid -11.20212684 18.7356 

340.01 684.4 102.02 0.08153 0.53039 liquid -11.30321428 17.5498 

350.01 661.71 107.23 0.07816 0.51141 liquid -11.42952577 16.3505 

360.01 636.57 114.08 0.07466 0.49184 liquid -11.58816763 15.1229 

370.01 608.24 123.51 0.07096 0.47141 liquid -11.78970846 13.8489 

380.01 575.45 137.37 0.06693 0.44927 supercritical -12.0527267 12.4978 

390.01 536.1 159.04 0.0624 0.42364 supercritical -12.41039178 11.0234 

400.01 486.99 193.71 0.05712 0.39165 supercritical -12.9217839 9.36863 

410.01 423.76 251.48 0.05083 0.35125 supercritical -13.69355663 7.48968 

420.01 348.61 290.57 0.04408 0.29998 supercritical -14.80376059 5.57337 

430.01 285.41 258.81 0.03915 0.24974 supercritical -15.94108078 4.20596 

440.01 242.72 208.93 0.03636 0.21202 supercritical -16.84765419 3.40683 

450.01 214.4 170.52 0.03488 0.18609 supercritical -17.52512504 2.93201 

460.01 194.48 144.11 0.03409 0.16824 supercritical -18.0431373 2.62456 

470.01 179.59 125.61 0.03368 0.1556 supercritical -18.45455667 2.40924 

480.01 167.94 112.14 0.0335 0.14642 supercritical -18.79145628 2.24955 

490.01 158.48 101.97 0.03347 0.13962 supercritical -19.07501386 2.12569 

500.01 150.59 94.056 0.03353 0.13454 supercritical -19.31843947 2.02649 

510.01 143.88 87.747 0.03366 0.13071 supercritical -19.53035216 1.94513 

520.01 138.06 82.615 0.03385 0.12784 supercritical -19.7179573 1.87689 

530.01 132.94 78.372 0.03407 0.12572 supercritical -19.88599775 1.81871 

540.01 128.39 74.815 0.03432 0.12417 supercritical -20.03768242 1.7685 

550.01 124.31 71.799 0.03459 0.12309 supercritical -20.17559771 1.72471 

560.01 120.61 69.216 0.03488 0.12239 supercritical -20.30243505 1.68607 

570.01 117.24 66.986 0.03518 0.12199 supercritical -20.41937408 1.65176 

580.01 114.15 65.046 0.03549 0.12183 supercritical -20.52786903 1.62108 

590.01 111.29 63.348 0.03582 0.12188 supercritical -20.62963997 1.59338 

600.01 108.65 61.853 0.03614 0.1221 supercritical -20.72448284 1.56839 
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Table A.5 Isobaric data of water at P = 42 MPa 

T (C) Density 
(kg/m3) 

Cp 
(J/mol*K) 

Viscosity 
(cP) 

Therm. 
Cond. 

(W/m*K) 
Phase log(Kw (mol/kg)2) ε 

0.01 1020.2 72.968 1.7074 0.58398 liquid -14.75473804 89.7236 

10.01 1018.9 73.183 1.2705 0.60037 liquid -14.35996717 85.7501 

20.01 1016.6 73.364 0.98921 0.61774 liquid -14.00641148 81.9205 

30.01 1013.5 73.521 0.7965 0.6345 liquid -13.68770111 78.2455 

40.01 1009.8 73.661 0.65815 0.64975 liquid -13.39843249 74.7351 

50.01 1005.5 73.785 0.55521 0.66306 liquid -13.13553277 71.3807 

60.01 1000.7 73.9 0.47642 0.67433 liquid -12.89564701 68.1825 

70.01 995.38 74.013 0.41473 0.68364 liquid -12.67678373 65.1304 

80.01 989.64 74.13 0.36552 0.69117 liquid -12.47635799 62.2244 

90.01 983.48 74.257 0.32565 0.69714 liquid -12.29283249 59.456 

100.01 976.93 74.401 0.29291 0.70176 liquid -12.12466335 56.8195 

110.01 970.01 74.567 0.2657 0.70519 liquid -11.97056849 54.3088 

120.01 962.74 74.759 0.24285 0.70759 liquid -11.8294211 51.9177 

130.01 955.11 74.981 0.22348 0.70905 liquid -11.70044473 49.6385 

140.01 947.14 75.236 0.20692 0.70966 liquid -11.58275234 47.4656 

150.01 938.83 75.529 0.19264 0.70946 liquid -11.47569827 45.3926 

160.01 930.19 75.86 0.18024 0.70847 liquid -11.37864537 43.4141 

170.01 921.2 76.235 0.1694 0.70672 liquid -11.2912463 41.5231 

180.01 911.88 76.657 0.15985 0.7042 liquid -11.2129248 39.7155 

190.01 902.2 77.129 0.15138 0.70091 liquid -11.14352546 37.9843 

200.01 892.16 77.656 0.14383 0.69683 liquid -11.08272497 36.3251 

210.01 881.74 78.244 0.13706 0.69196 liquid -11.03039368 34.7324 

220.01 870.94 78.898 0.13095 0.68627 liquid -10.98629836 33.2023 

230.01 859.72 79.628 0.12539 0.67973 liquid -10.95054464 31.7289 

240.01 848.06 80.441 0.12031 0.67233 liquid -10.92313326 30.3081 

250.01 835.94 81.349 0.11564 0.66401 liquid -10.90410674 28.9359 

260.01 823.32 82.366 0.11131 0.65474 liquid -10.89370363 27.6078 

270.01 810.16 83.51 0.10727 0.64447 liquid -10.89221248 26.3195 

280.01 796.41 84.802 0.10348 0.63316 liquid -10.9000544 25.0669 

290.01 782.01 86.269 0.09989 0.62075 liquid -10.91779356 23.8456 

300.01 766.88 87.948 0.09646 0.60723 liquid -10.94623225 22.6511 

310.01 750.95 89.886 0.09315 0.59261 liquid -10.98618775 21.4795 
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T (C) Density 
(kg/m3) 

Cp 
(J/mol*K) 

Viscosity 
(cP) 

Therm. 
Cond. 

(W/m*K) 
Phase log(Kw (mol/kg)2) ε 

320.01 734.1 92.144 0.08993 0.57694 liquid -11.03900749 20.3256 

330.01 716.2 94.808 0.08678 0.56035 liquid -11.10628921 19.1844 

340.01 697.08 97.996 0.08364 0.54301 liquid -11.19019299 18.05 

350.01 676.51 101.87 0.08049 0.52511 liquid -11.2937213 16.9153 

360.01 654.21 106.69 0.07729 0.5068 liquid -11.4207914 15.7727 

370.01 629.78 112.8 0.07399 0.48804 liquid -11.57713674 14.6121 

380.01 602.68 120.81 0.07055 0.46847 supercritical -11.77097952 13.4211 

390.01 572.14 131.69 0.06688 0.44729 supercritical -12.01477635 12.1837 

400.01 537.07 146.62 0.0629 0.42314 supercritical -12.32783448 10.8798 

410.01 496.33 166.31 0.05857 0.3944 supercritical -12.73627668 9.49831 

420.01 449.24 191.2 0.05388 0.3605 supercritical -13.27081509 8.05405 

430.01 396.49 215.56 0.04903 0.32209 supercritical -13.95754573 6.60816 

440.01 344.42 217.56 0.04467 0.28217 supercritical -14.73952586 5.34249 

450.01 300.53 201.1 0.0414 0.24748 supercritical -15.49397897 4.39432 

460.01 266.47 177.72 0.03919 0.21972 supercritical -16.15176586 3.73256 

470.01 240.65 155.59 0.03777 0.19846 supercritical -16.69937061 3.2739 

480.01 220.81 137.38 0.03688 0.18241 supercritical -17.15222627 2.94677 

490.01 205.18 123 0.03634 0.17029 supercritical -17.53018265 2.70465 

500.01 192.53 111.68 0.03602 0.16109 supercritical -17.85053697 2.51891 

510.01 182.05 102.67 0.03587 0.15406 supercritical -18.12610602 2.37208 

520.01 173.19 95.395 0.03583 0.14867 supercritical -18.3664837 2.25305 

530.01 165.56 89.439 0.03587 0.14453 supercritical -18.57915702 2.15439 

540.01 158.92 84.496 0.03598 0.14136 supercritical -18.76842965 2.07147 

550.01 153.05 80.343 0.03613 0.13895 supercritical -18.93925149 2.00055 

560.01 147.81 76.818 0.03632 0.13716 supercritical -19.09459419 1.93917 

570.01 143.1 73.798 0.03653 0.13585 supercritical -19.23651964 1.8856 

580.01 138.83 71.189 0.03677 0.13494 supercritical -19.36717708 1.83838 

590.01 134.92 68.919 0.03703 0.13435 supercritical -19.48872217 1.79631 

600.01 131.34 66.932 0.0373 0.13401 supercritical -19.60143644 1.75878 
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Table A.6 Isothermal data for water at T = 650oC 

Pressure 
(MPa) 

Density 
(kg/m3) 

Cp 
(J/g*K) 

Viscosity 
(cP) 

Therm. Cond. 
(W/m*K) Phase log(Kw 

(mol/kg)2) 

0 0 2.236 0.034596 0.086518 vapor  

1 2.3557 2.2548 0.034634 0.087099 vapor -43.1264 

2 4.7289 2.274 0.034675 0.087705 vapor -39.0121 

3 7.1198 2.2934 0.034718 0.088336 vapor -36.5963 

4 9.5288 2.3133 0.034765 0.088992 vapor -34.8756 

5 11.956 2.3335 0.034814 0.089674 vapor -33.5359 

6 14.402 2.354 0.034866 0.090382 vapor -32.437 

7 16.867 2.3749 0.034921 0.091116 vapor -31.5042 

8 19.352 2.3962 0.034978 0.091877 vapor -30.6927 

9 21.856 2.4179 0.035039 0.092664 vapor -29.9743 

10 24.38 2.4399 0.035103 0.093478 vapor -29.3291 

11 26.924 2.4623 0.035169 0.094319 vapor -28.7431 

12 29.488 2.485 0.035239 0.095188 vapor -28.206 

13 32.074 2.5082 0.035311 0.096085 vapor -27.7097 

14 34.68 2.5317 0.035386 0.097009 vapor -27.2485 

15 37.308 2.5555 0.035465 0.097962 vapor -26.8173 

16 39.957 2.5798 0.035546 0.098943 vapor -26.4123 

17 42.628 2.6044 0.035631 0.099953 vapor -26.0302 

18 45.321 2.6294 0.035719 0.10099 vapor -25.6686 

19 48.037 2.6548 0.035809 0.10206 vapor -25.3249 

20 50.775 2.6805 0.035903 0.10316 vapor -24.9977 

21 53.536 2.7066 0.036 0.10428 vapor -24.685 

22 56.319 2.733 0.036101 0.10544 vapor -24.3858 

23 59.126 2.7598 0.036204 0.10663 vapor -24.0987 

23 59.126 2.7598 0.036204 0.10663 supercritical -24.0987 

23 59.126 2.7598 0.036204 0.10663 supercritical -24.0987 

24 61.956 2.787 0.036311 0.10785 supercritical -23.8226 

25 64.81 2.8145 0.036421 0.10909 supercritical -23.5567 

26 67.686 2.8424 0.036534 0.11037 supercritical -23.3004 

27 70.587 2.8706 0.03665 0.11168 supercritical -23.0526 

28 73.511 2.8991 0.03677 0.11302 supercritical -22.813 

29 76.459 2.9279 0.036893 0.11439 supercritical -22.5808 
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Pressure 
(MPa) 

Density 
(kg/m3) 

Cp 
(J/g*K) 

Viscosity 
(cP) 

Therm. Cond. 
(W/m*K) Phase log(Kw 

(mol/kg)2) 

30 79.431 2.957 0.037019 0.11579 supercritical -22.3557 

31 82.427 2.9865 0.037149 0.11721 supercritical -22.1371 

32 85.447 3.0162 0.037282 0.11867 supercritical -21.9247 

33 88.491 3.0462 0.037419 0.12016 supercritical -21.718 

34 91.558 3.0765 0.037558 0.12168 supercritical -21.5168 

35 94.649 3.1071 0.037702 0.12323 supercritical -21.3208 

36 97.764 3.1379 0.037848 0.12481 supercritical -21.1296 

37 100.9 3.1689 0.037998 0.12642 supercritical -20.9432 

38 104.06 3.2001 0.038151 0.12806 supercritical -20.7611 

39 107.25 3.2315 0.038308 0.12972 supercritical -20.5829 

40 110.46 3.2631 0.038468 0.13141 supercritical -20.4088 

41 113.69 3.2948 0.038631 0.13313 supercritical -20.2386 

42 116.94 3.3267 0.038798 0.13488 supercritical -20.0722 

43 120.22 3.3587 0.038968 0.13665 supercritical -19.9089 

44 123.52 3.3909 0.039141 0.13845 supercritical -19.749 

45 126.84 3.4231 0.039318 0.14027 supercritical -19.5924 

46 130.18 3.4553 0.039498 0.14212 supercritical -19.4389 

47 133.54 3.4876 0.039681 0.14399 supercritical -19.2885 

48 136.92 3.5199 0.039867 0.14588 supercritical -19.1409 

49 140.32 3.5522 0.040057 0.1478 supercritical -18.9961 

50 143.74 3.5845 0.04025 0.14973 supercritical -18.8539 
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Table A.7 Isothermal data for water at T = 400oC 

Pressure 
(MPa) 

Density 
(kg/m3) 

Cp 
(J/mol*K) 

Viscosity 
(cP) 

Therm. 
Cond. 

(W/m*K) 
Phase log(Kw (mol/kg)2) 

0 0 37.175 0.02445 0.05467 vapor  

1 3.2615 38.36 0.02442 0.05562 vapor -43.29785638 

2 6.6131 39.657 0.0244 0.05662 vapor -39.00870342 

3 10.062 41.077 0.02438 0.05769 vapor -36.4619452 

4 13.618 42.633 0.02437 0.05884 vapor -34.62565292 

5 17.29 44.336 0.02437 0.06006 vapor -33.17703949 

6 21.088 46.205 0.02437 0.06138 vapor -31.9721109 

7 25.026 48.257 0.02439 0.0628 vapor -30.93322741 

8 29.117 50.514 0.02441 0.06435 vapor -30.01451293 

9 33.378 53.006 0.02444 0.06604 vapor -29.18579746 

10 37.827 55.762 0.02449 0.06788 vapor -28.42655081 

11 42.486 58.824 0.02454 0.06992 vapor -27.72176104 

12 47.38 62.24 0.02461 0.07217 vapor -27.06021008 

13 52.54 66.069 0.0247 0.07468 vapor -26.43294857 

14 58.003 70.387 0.02481 0.0775 vapor -25.83271712 

15 63.812 75.291 0.02493 0.08068 vapor -25.25356188 

16 70.021 80.903 0.02508 0.08431 vapor -24.69013809 

17 76.697 87.388 0.02526 0.08846 vapor -24.13755475 

18 83.924 94.964 0.02547 0.09326 vapor -23.5911507 

19 91.81 103.93 0.02573 0.09886 vapor -23.04619951 

20 100.5 114.71 0.02603 0.10547 vapor -22.49744434 

21 110.18 127.93 0.02641 0.11337 vapor -21.93945899 

22 121.13 144.5 0.02687 0.12291 vapor -21.3645365 

23 133.73 165.92 0.02745 0.13465 vapor -20.76407118 

23 133.73 165.92 0.02745 0.13465 supercritical -20.76407118 

23 133.73 165.92 0.02745 0.13465 supercritical -20.76407118 

24 148.55 194.61 0.02819 0.14937 supercritical -20.12634763 

25 166.54 234.78 0.02917 0.16824 supercritical -19.43270788 

26 189.21 293.61 0.03054 0.19303 supercritical -18.65831676 

27 219.12 380.44 0.03253 0.22589 supercritical -17.76778681 

28 259.44 484.99 0.03551 0.26633 supercritical -16.74289086 

29 309.07 539.75 0.0396 0.3064 supercritical -15.68076022 

 92



Pressure 
(MPa) 

Density 
(kg/m3) 

Cp 
(J/mol*K) 

Viscosity 
(cP) 

Therm. 
Cond. 

(W/m*K) 
Phase log(Kw (mol/kg)2) 

30 357.43 466.02 0.04394 0.33204 supercritical -14.7986662 

31 394.52 373.19 0.04748 0.34707 supercritical -14.19958553 

32 422.45 306.78 0.05027 0.35882 supercritical -13.78453692 

33 443.84 261.12 0.05247 0.36853 supercritical -13.48482734 

34 460.86 230.56 0.05427 0.37707 supercritical -13.25649309 

35 474.97 209.3 0.05579 0.38474 supercritical -13.0735029 

36 487.04 193.67 0.05712 0.39169 supercritical -12.92123255 

37 497.63 181.61 0.05831 0.39802 supercritical -12.79070961 

38 507.06 171.95 0.05938 0.40383 supercritical -12.67680082 

39 515.57 163.99 0.06036 0.40918 supercritical -12.57580907 

40 523.34 157.3 0.06127 0.41416 supercritical -12.48504456 

41 530.49 151.57 0.06212 0.41881 supercritical -12.4027053 

42 537.11 146.6 0.06291 0.42317 supercritical -12.32745298 

43 543.28 142.26 0.06366 0.42729 supercritical -12.25814645 

44 549.06 138.42 0.06436 0.4312 supercritical -12.19393109 

45 554.49 135.01 0.06503 0.43491 supercritical -12.13421709 

46 559.63 131.95 0.06568 0.43846 supercritical -12.07822856 

47 564.51 129.19 0.06629 0.44186 supercritical -12.02554598 

48 569.14 126.69 0.06688 0.44513 supercritical -11.97598165 

49 573.56 124.41 0.06744 0.44828 supercritical -11.92904014 

50 577.79 122.32 0.06799 0.45132 supercritical -11.884454 
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Table A.8 Isothermal data for water at T = 386oC 

Pressure 
(MPa) 

Density 
(kg/m3) 

Cp 
(J/mol*K) 

Viscosity 
(cP) 

Therm. 
Cond. 

(W/m*K) 
Phase log(Kw 

(mol/kg)2) 

0 0 37.01 0.02387 0.05302 vapor  

1 3.3346 38.311 0.02383 0.05403 vapor -43.3553783 

2 6.7697 39.751 0.0238 0.0551 vapor -39.04600627 

3 10.315 41.346 0.02378 0.05625 vapor -36.48302249 

4 13.981 43.11 0.02376 0.05748 vapor -34.63233323 

5 17.78 45.065 0.02375 0.0588 vapor -33.16946183 

6 21.727 47.234 0.02375 0.06023 vapor -31.94937367 

7 25.837 49.647 0.02375 0.06179 vapor -30.89499943 

8 30.13 52.338 0.02377 0.0635 vapor -29.95952974 

9 34.628 55.352 0.0238 0.06538 vapor -29.11274541 

10 39.358 58.743 0.02384 0.06746 vapor -28.3335413 

11 44.352 62.582 0.0239 0.06979 vapor -27.60654175 

12 49.648 66.957 0.02397 0.07242 vapor -26.92006286 

13 55.295 71.986 0.02406 0.0754 vapor -26.26447497 

14 61.352 77.825 0.02418 0.07882 vapor -25.63188588 

15 67.896 84.688 0.02432 0.08279 vapor -25.01509507 

16 75.027 92.878 0.0245 0.08745 vapor -24.40730166 

17 82.878 102.84 0.02472 0.093 vapor -23.80163417 

18 91.632 115.23 0.02499 0.09972 vapor -23.19055453 

19 101.56 131.15 0.02533 0.10803 vapor -22.56451425 

20 113.05 152.46 0.02578 0.11856 vapor -21.91223665 

21 126.78 182.71 0.02636 0.13239 vapor -21.2146646 

22 143.93 229.65 0.02718 0.15151 vapor -20.44253756 

23 166.99 313.94 0.02842 0.18024 vapor -19.53814752 

23 166.99 313.94 0.02842 0.18024 supercritical -19.53814752 

23 166.99 313.94 0.02842 0.18024 supercritical -19.53814752 

24 202.77 510.53 0.03064 0.23057 supercritical -18.3566621 

25 278.35 1131.8 0.03629 0.3384 supercritical -16.42864154 

26 386.94 682.14 0.04611 0.37504 supercritical -14.42404139 

27 436.16 401.32 0.05109 0.38116 supercritical -13.69533198 

28 464.16 295.13 0.05406 0.38843 supercritical -13.31667312 

29 483.49 244.74 0.05618 0.39596 supercritical -13.06836493 
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Pressure 
(MPa) 

Density 
(kg/m3) 

Cp 
(J/mol*K) 

Viscosity 
(cP) 

Therm. 
Cond. 

(W/m*K) 
Phase log(Kw 

(mol/kg)2) 

30 498.43 215.48 0.05785 0.40304 supercritical -12.88315899 

31 510.73 195.96 0.05926 0.40949 supercritical -12.73480012 

32 521.24 181.76 0.06048 0.41534 supercritical -12.61083555 

33 530.44 170.86 0.06157 0.42069 supercritical -12.50435699 

34 538.65 162.18 0.06256 0.42562 supercritical -12.41088438 

35 546.07 155.07 0.06346 0.43021 supercritical -12.32762371 

36 552.85 149.12 0.06429 0.4345 supercritical -12.25252784 

37 559.11 144.07 0.06507 0.43854 supercritical -12.18400479 

38 564.92 139.71 0.06581 0.44237 supercritical -12.12109054 

39 570.36 135.91 0.0665 0.44602 supercritical -12.0627667 

40 575.47 132.56 0.06716 0.4495 supercritical -12.00848536 

41 580.29 129.58 0.06778 0.45284 supercritical -11.95772452 

42 584.86 126.91 0.06838 0.45605 supercritical -11.9099844 

43 589.21 124.49 0.06895 0.45915 supercritical -11.86488777 

44 593.36 122.31 0.06951 0.46215 supercritical -11.8221738 

45 597.33 120.31 0.07004 0.46504 supercritical -11.78159115 

46 601.13 118.47 0.07055 0.46786 supercritical -11.74299817 

47 604.79 116.78 0.07105 0.47059 supercritical -11.70605698 

48 608.31 115.22 0.07153 0.47325 supercritical -11.67073913 

49 611.7 113.76 0.072 0.47585 supercritical -11.6369183 

50 614.98 112.41 0.07246 0.47838 supercritical -11.60437283 
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Table A.9 Isothermal data for water at T = 374oC 

Pressure 
(MPa) 

Density 
(kg/m3) 

Cp 
(J/mol*K) 

Viscosity 
(cP) 

Therm. 
Cond. 

(W/m*K) 
Phase log(Kw 

(mol/kg)2) 

0 0 36.869 0.02338 0.05161 vapor  

1 3.4001 38.284 0.02333 0.05269 vapor -43.41136384 

2 6.9109 39.867 0.02329 0.05383 vapor -39.08295628 

3 10.544 41.637 0.02325 0.05505 vapor -36.50495075 

4 14.312 43.617 0.02323 0.05636 vapor -34.6404127 

5 18.232 45.836 0.02321 0.05778 vapor -33.16314215 

6 22.32 48.327 0.0232 0.05933 vapor -31.92859547 

7 26.598 51.133 0.02321 0.06103 vapor -30.85852064 

8 31.091 54.308 0.02322 0.06291 vapor -29.9060424 

9 35.83 57.921 0.02324 0.065 vapor -29.04031123 

10 40.851 62.061 0.02328 0.06734 vapor -28.24000626 

11 46.201 66.849 0.02334 0.07001 vapor -27.48898206 

12 51.937 72.445 0.02342 0.07306 vapor -26.77481726 

13 58.135 79.075 0.02352 0.07661 vapor -26.08685348 

14 64.893 87.066 0.02365 0.08081 vapor -25.4157603 

15 72.347 96.909 0.02382 0.08584 vapor -24.7522197 

16 80.689 109.38 0.02403 0.09201 vapor -24.08627448 

17 90.203 125.82 0.02431 0.09979 vapor -23.40609749 

18 101.34 148.69 0.02468 0.10994 vapor -22.69566424 

19 114.92 183.35 0.0252 0.12393 vapor -21.92825573 

20 132.56 244.16 0.02597 0.14501 vapor -21.05683715 

21 158.85 391.47 0.0273 0.18364 vapor -19.95275909 

22 232.51 2703.1 0.03205 0.39813 vapor -17.62790723 

23 469.23 407.96 0.05415 0.40406 vapor -13.34304165 

23 469.23 407.96 0.05415 0.40406 supercritical -13.34304165 

23 469.23 407.96 0.05415 0.40406 supercritical -13.34304165 

24 495.97 279.53 0.05713 0.40813 supercritical -13.00483164 

25 513.45 230.58 0.05914 0.41461 supercritical -12.79346124 

26 526.8 203.17 0.0607 0.42078 supercritical -12.63682271 

27 537.73 185.16 0.06201 0.42641 supercritical -12.51150607 

28 547.07 172.23 0.06315 0.43158 supercritical -12.40642145 

29 555.25 162.41 0.06416 0.43634 supercritical -12.31585136 
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Pressure 
(MPa) 

Density 
(kg/m3) 

Cp 
(J/mol*K) 

Viscosity 
(cP) 

Therm. 
Cond. 

(W/m*K) 
Phase log(Kw 

(mol/kg)2) 

30 562.57 154.65 0.06508 0.44078 supercritical -12.23592746 

31 569.21 148.32 0.06592 0.44495 supercritical -12.16432264 

32 575.3 143.05 0.0667 0.44888 supercritical -12.09937954 

33 580.94 138.57 0.06744 0.45261 supercritical -12.03984544 

34 586.2 134.71 0.06813 0.45617 supercritical -11.9848411 

35 591.13 131.34 0.06878 0.45958 supercritical -11.93373385 

36 595.78 128.36 0.0694 0.46286 supercritical -11.88591836 

37 600.18 125.7 0.06999 0.46601 supercritical -11.841016 

38 604.36 123.31 0.07056 0.46906 supercritical -11.79866263 

39 608.35 121.15 0.07111 0.47201 supercritical -11.75850678 

40 612.16 119.18 0.07164 0.47487 supercritical -11.72040755 

41 615.82 117.38 0.07215 0.47766 supercritical -11.68403093 

42 619.33 115.73 0.07264 0.48036 supercritical -11.64934768 

43 622.71 114.19 0.07312 0.483 supercritical -11.61613427 

44 625.97 112.77 0.07358 0.48558 supercritical -11.58427039 

45 629.11 111.45 0.07403 0.4881 supercritical -11.55373592 

46 632.16 110.21 0.07447 0.49057 supercritical -11.52422221 

47 635.11 109.06 0.0749 0.49298 supercritical -11.49581132 

48 637.97 107.97 0.07532 0.49535 supercritical -11.46839291 

49 640.75 106.94 0.07573 0.49767 supercritical -11.441859 

50 643.45 105.98 0.07613 0.49995 supercritical -11.41619863 
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