
i

IMPROVED QUALITY METRICS FOR LINGUISTIC

RULE SELECTION

By

 PREETICA KUMAR

 Bachelor of Science in Chemical Engineering

 Osmania University – College of Technology

 Hyderabad, Andhra Pradesh, India

 2003

Submitted to the Faculty of the
 Graduate College of the

 Oklahoma State University
 in partial fulfillment of

 the requirements for
 the Degree of

 MASTER OF SCIENCE
 December, 2005

ii

 IMPROVED QUALITY METRICS FOR LINGUISTIC

RULE SELECTION

Thesis Approved:

Dr.R.Russell Rhinehart

Dr Gary Yen

Dr Karen High

A. Gordon Emslie

iii

ACKNOWLEDGEMENTS

I extend my sincere appreciation and gratitude to my research advisor Dr. R.

Russell Rhinehart, without whom this master’s thesis could not have been written. His

continuous support and encouragement brought out the best in me. I deeply value his

contribution to my academic and professional growth.

I thank my committee members Dr. Gary Yen and Dr. Karen High for their

critical input towards the successful completion of this master’s thesis.

I am thankful to my research partner Ming Su for helping me with the initial

stages of this research.

I am also indebted to my dear friends Samuel Owusu and Mellicent Owusu for

always being there for me.

Last but not the least; I thank my family and friends for having faith in me which

helped me a great deal in accomplishing this goal.

iv

TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION ...1

1.1 Cause-and-effect Rules in the Chemical Process Industry1

 1.2 The Present research – The Big Picture..2
 1.2.1 The Role of the Present Work...3
 1.3 Background ...4
 1.3.1 Expert Systems and the Role of Operators ...4
 1.3.1.1 Applications of Expert Systems..5
 1.3.2 Knowledge Discovery in Databases (KDD) and Data Mining.............7
 1.3.3 The Role of Fuzzy Systems in KDD...7
 1.3.4 Rules ...8
 1.3.5 The ‘Learning Tool’: Genetic Algorithms (GAs).................................9
 1.4 Literature Review..10
 1.4.1 Sharma’s Work ...22
 1.4.1.1 Data Generation ...23
 1.4.1.2 Data Processing...25
 1.4.1.3 Initial Rule-base and Truth Space Calculations..........................28
 1.4.1.4 Truth Space Diagrams (TSD) ...29
 1.4.1.5 Points on the TSD ...30
 1.4.1.6 Sharma’s Numerical Metrics ..31
 1.4.1.7 Drawbacks of Sharma’s Metrics...34

II. METHODOLOGY ..37

2.1 The Concept of ‘Trips’..37
 2.1.1 The Problem..37
 2.1.2 The Solution..38
 2.1.3 The Tool – ‘Trips’...39
 2.1.3.1 Threshold Condition ...40
 2.2 Corroboration..41
 2.2.1 Trips into Quadrant II ...41
 2.2.2 Trips into Quadrant IV..42
 2.2.3 Trips into Both Quadrants...42
 2.2.4 Other Cases ...42

v

Chapter Page

2.3 Numerical Metrics ..43
 2.3.1 The Selection Metric...44
 2.3.1.1 Merit...44
 2.3.2 The Prediction Metric ...45
 2.3.2.1 Expectation ..45
 2.4 Calculations...48
 2.4.1 From Historical Data...48
 2.4.2 From New Data...49
 2.4.3 The ‘Expectations’ Matrix ..50
 2.4.4 Weighted Mean Average ..50
 2.4.4.1 95% Confidence Limits ..51
 2.4.4.2 The Interpolation Procedure ...51
 2.4.5 Window length for prediction...54
 2.5 Overview..55
 2.5.1 Rule-base Optimization ..55
 2.5.1.1 Criteria of Acceptance of Rules..56
 2.5.2 Prediction ..57

III. PROGRAMMING METHODOLOGY...58

3.1 Selection Mode ...60
 3.1.1 The Start Button..61
 3.1.2 The Display TSD and Merit Button ..62
 3.1.3 The Optimize Button ...63
 3.2 Prediction Mode..64
 3.2.1 The Start Button..65
 3.2.2 The Display the ‘Expectations’ Histogram Button.............................66
 3.3 Known issues ..67

IV. RESULTS AND DISCUSSION..69

4.1 Definition of Good and Bad Rules..69
 4.2 Results...71
 4.2.1 Selection - Without Noise...72
 4.2.1.1 Choice of Threshold Criterion ..72
 4.2.1.2 Evaluation of Rules...75
 4.2.1.3 Comparison with Sharma’s Work...77
 4.2.2 Selection - With Noise ..81
 4.2.2.1 Choice of Threshold Criterion ..81
 4.2.2.2 Evaluation of Rules...81
 4.2.2.3 Comparison with Sharma’s Work...84
 4.2.3 Prediction ..86

vi

Chapter Page

V. CONCLUSIONS AND RECOMMENDATIONS ..94

5.1 Conclusions...94
 5.2 Issues and Recommendations ...95

REFERENCES ..100

APPENDIXES ...102

APPENDIX A- CODE LISTING ...102

APPENDIX B1-FINAL RULE DATABASE (WITHOUT NOISE)201

APPENDIX B1-FINAL RULE DATABASE (WITH NOISE)202

vii

LIST OF TABLES

Table Page

I. Comparison of Weighted Mean Average and Median of ‘Expectations’91
 II. Predictions made by a few good rules at a certain point in time........................92
 III.Actual values of T3 at the points in time where predictions were
 made as denoted in Table II ...93

viii

LIST OF FIGURES

Figure Page

1. Hot and Cold Water Simulator ..24
2. Transient Input-Output Data..24
3. Backward Shifting of Output Variable T3...26
4. Fuzzy Classification of Output Variable T3 ..27
5. Hypothetical Truth Space Diagram ...30
6. Non-identical ‘Low’, ‘Medium’ and ‘High’ ranges
 for the Antecedent and the Consequent ..34
7. Sample Histogram Depicting the Distribution of Data in the TSD35
8. The Truth Space Diagram..37
9. Comparison of TSDs with and without ‘Trips’ ...39
10. A TSD Depicting the Difference between ‘Paths’ and ‘Trips’..............................41
11. A TSD Depicting a Trip into Both Quadrants II, IV ...43
12. Division of Quadrants II, IV into Zones ..45
13. Distribution of Points in Quadrants II, IV
 based on Historical Data ...46
14. Histograms Depicting Absolute and Normalized Expectations.............................47
15. Cumulative Graph Representing the ‘Expectations’ Histogram............................53
16. The Interpolation Procedure ..54
17. Window Length for Prediction ..55
18. Algorithm Used for the Program ..59
19. GUI for Choosing between the Selection and the Prediction Mode......................60
20. GUI for the Selection Mode...61
21. Code for Calculating the Number of Trips into Quadrant II62
22. GUI for Displaying the TSD..63
23. Algorithm for Rule-base Optimization ..63
24. GUI for Optimization...64
25. GUI for the Prediction Mode ...65
26. GUI for Displaying the ‘Expectations’ of Rules..66
27. Code for Making a ‘Verdict’ about a Rule ..67
28. TSD for Rule 148...70
29. TSD for Rule 229...71
30. TSD for Rule 169...73
31. TSD for Rule 138...74
32. TSD for Rule 97...76
33. TSD for Rule 122...76
34. TSD for Rule 325...77
35. TSD for Rule 723...78

ix

Figure Page

36. TSD for Rule 635...79
37. TSD for Rule 41...80
38. TSD for Rule 178...80
39. TSD for Rule 121...82
40. TSD for Rule 112...83
41. TSD for Rule 115...83
42. TSD for Rule 247...84
43. TSD for Rule 130...85
44. TSD for Rule 202...86
45. TSD for Rule 10 Based on Historical Data..87
46 TSD for Rule 10 Depicting Antecedent Hits in New Data....................................88
47. Individual Absolute Expectations for Rule 10...89
48. Cumulative Absolute and Normalized Expectations ...89

x

NOMENCLATURE

Subscripts and Superscripts

H The linguistic category ‘High’

i Index for a point in the data set

j Index for linguistic category (Low, Medium or High)

l Index for the rule-set (Rule statement number)

Symbols

a Lower fuzzy limit for linguistic category j

b Upper fuzzy limit for linguistic category j

F1 Flow rate of hot water stream

F2 Flow rate of cold water stream

T1 Temperature of hot water stream

Ta Truth of Antecedent

Tc Truth of Consequent

x Numerical value of point i in the dataset

µ Membership function of the point i in the jth linguistic category

1

CHAPTER I

INTRODUCTION

1.1 Cause-and-effect Rules in The Chemical Process Industry

Cause-and-effect rules generated from raw process data are vital for successful

plant operation; and especially so in the Chemical Process Industry (CPI), owing to the

complexity of chemical processes. Plant and operator safety, the quality of the final

product, environmental impact of the process, loss minimization, optimization of time

and operational cost are important factors that define successful plant operation. Thus,

knowledge gained from cause-and-effect rules can prove to be very valuable for design,

operation and control purposes. However, mining of all the potentially useful information

from the data available and its correct interpretation afterward is a challenge.

Cause-and-effect rules are linguistic, logical representations of the underlying

behavior of the process at hand. An example of a rule for a chemical process is “IF (the

reactor temperature has been high for an extended period AND the feed is in manual)

THEN (in a short while the product will be slightly yellow) WITH (moderate certainty)”.

These rules are generally expressed as, If Antecedent THEN Consequent.

2

As seen in the example above, such rules are linguistic statements that can be easily

comprehended by human beings as opposed to complex mathematical equations or

statements. They describe process variables (like temperature, color) and express their

values linguistically (high, low, and slightly yellow). They also incorporate temporal

information like persistence (extended period) and delay (short while). The logic of the

rule can be verified using existing logical understanding of the process. Thus, if

interpreted correctly, these cause-and-effect rules have significant utility in the CPI. To

name a few,

1. They can warn an operator of imminent events and can help predict future

outcomes.

2. They can help the operator recognize antecedent elements that need to be

sustained or eliminated to improve the process.

3. They can reveal unrecognized mechanisms.

4. They can guide feedforward and feedback control system strategies and thus help

in their design.

1.2 The present research – The big picture

Many vendors offer software to the CPI with reasoning capabilities (e.g.,

Gensym’s G2 or KnowledgeMiner by Script Software). But, there still seems to be a need

to integrate learning of rules from data represented linguistically, using fitness measures

to evaluate the rules, and the consideration of the temporal(changing with time) dynamics

(transport delay, persistence) of a process. Working in this direction, the present work is

3

one of the four parts of a project funded by the Measurement and Control Engineering

Center (MCEC), the aim of which is to “Develop a method to autonomously generate

cause-and-effect rules (linguistic, logical, to include temporal dynamics) from natural

process data.”

In particular, the four parallel parts of the project are as follows:

1. Development of a rule-extraction mechanism that takes the temporal features

of a process into consideration.

2. The management ad updating of the rule-set thus obtained.

These 2 parts of the project are being pursed by Dr. Gary Yen and Pedro De Lima.

[1]. A preliminary algorithm and GUI has been developed and it produces desired

results.

3. Generation of data which is to be used to extract knowledge.

4. Investigation of metrics (fitness criteria) to assess the quality of the rules

extracted by steps 1 and 2.

These 2 parts are being pursued by Dr. R. Russell Rhinehart, Ming Su and

Preetica Kumar. Their work inherits important concepts introduced by Nitin Sharma

[2] (Refer to Section 1.4.1) and serve as improvements to previous work.

Ming Su [3] is presently working mainly on quantifying the concept of

persistence and analyzing the right choice of transport.

1.2.1 The role of the present work

With this background, the aim of the present work can be stated as follows:

4

“To explore improved quality metrics to identify useful and logically correct

cause-and-effect rules which can be believed to describe the dynamic and

temporal behavior of the process at hand accurately and also to predict future

behavior to some extent.”

1.3 Background

1.3.1 Expert Systems and the Role of Operators

Modern process plants use latest data acquisition methods and storage technology

as tools to gain useful insight into the process at hand (by generating cause-and-effect

rules). Expert Systems (ES) are an approach to managing knowledge obtained from a

process.

The extent of automation and application of computer technology (Expert

Systems) in the CPI has increased multi-fold owing to the need for computer-aided

operation. Stephanopoulos and Han [4] define ES as “computer programs that possess

algorithms, which attempt to model and emulate, and thus automate engineering tasks

that used to be carried out by a human”. In other words, ES are just computer programs

that work with large amounts of knowledge and attempt to identify structure (in the form

of linguistic rules) in it; by no means do ES possess human-like intelligence.

It is important to note, though, that even today a lot of the chemical operations

(Batch or Continuous) are carried out manually by operators depending on the process at

5

hand. The operators also bear the onus of having to be accurate in their predictions of

operational states that might occur in the future from a safety point of view. The safe

running of a plant is first on the list of priorities of the plant; and relies a lot on an

operator’s intuition, experience, diagnosis of the problem (if there is one), and on the

operator’s judgment as to what the corrective or preventive action should be. The ES by

itself is completely incapable of predicting unexpected occurrences, but operators are not

perfect either as human beings are prone to making errors in operation. They have to

comprehend the vast complicated amounts of data they are flooded with, in possibly

stressful situations due to lack of time.

Furthermore, an operator’s knowledge is often outdated as a result of the

continuous evolution of the operation of the process. Their knowledge is then relayed to a

programmer, in spite of their incompleteness and with their misconceptions, often

resulting in rules that are inefficient or ineffective. Expert systems that the operators are

provided with aid them in situations like these to make more informed decisions.

E.Oshima [5] describes in detail the problems that are faced by operators during plant

operation, the use of Expert Systems (Computer-aided plant operation) and how they

should be more self-consistent.

1.3.1.1 Applications of Expert Systems

Stephanopoulos and Han [4] give a detailed overview of the numerous areas of

applications of expert systems, in their paper. A few of those applications are

summarized below.

6

1. Fault Diagnosis: Expert systems have effectively and extensively been

implemented industrially for on-line data monitoring and diagnosis. Some of

these systems also determine the best course of action.

2. Analysis of Process Trends: Most related to the present work, this application

relates to the use of data extracted from a process to create “a mental model of the

process operations that fits the current facts about the process” as stated by

Stephanopoulos and Han [4]. This helps the operator understand how the process

behaves, what can be expected in the future under the same conditions and which

control action will produce the desired results.

3. Process Control: Control systems in the CPI today employ expert systems, and

concepts of fuzzy logic and neural networks. Systems like these are needed

because the nonlinear control theory fails to deliver simple solutions to today’s

control problems. Within process control, the various sub-applications are as

follows: knowledge-based expert control(“use of logical inferences to confirm a

given conclusion” [4]), supervisory control(“used to monitor, evaluate, diagnose,

adapt” [4]), controller tuning and adaptive control(“to provide auto-tuning of PID

controllers” [4]), controller-design(“to make design decisions and for sequencing

of design tasks” [4]), fuzzy logic controllers(FLCs)(“used in the supervisory

mode and in the loop” [4], uses fuzzy reasoning), neural controllers(“use of a

neural network in some function of a control system” [4]). Various other

applications of expert systems (not mentioned here) are discussed in detail by

Stephanopoulos and Han [4].

7

1.3.2 Knowledge Discovery in Databases (KDD) and Data Mining

Expert Systems are used to solve many difficult problems in the Chemical Process

Industry (CPI) but definitely require significant operator intervention to make an in-depth

analysis of huge amounts of data obtained from a process with the aid of state of the art

data acquisition systems. This is where the field of KDD comes into play. As stated in [6]

a common definition of KDD is “The non-trivial process of identifying valid, novel,

potentially useful and ultimately understandable structure in data.” From a Chemical

Engineer’s perspective, structure in data may refer to observed cause-and-effect

mechanisms or relationships of a process.

“Data Mining” is the central component of the process of KDD. As defined in [6],

it refers to the “application of computational techniques to the task of finding patterns and

models in data.” The process of KDD however is made up of many other components –

Preparation and Pre-processing of data (raw data obtained from a plant cannot be used

directly to observe patterns, as it contains noise), incorporation of prior knowledge and

interpretation of the data-mining results (in order to make the right decisions the

information obtained needs to be comprehended correctly.) Knowledge in the form of

patterns and models are then used to learn tasks and make decisions.

1.3.3 The role of fuzzy systems in KDD

Zadeh [7] first introduced the concept of fuzzy reasoning in 1973. Since then

Fuzzy sets have contributed extensively to all components of the KDD process, and

especially so to data mining. Fuzzy sets help in making hard-to-understand patterns in

8

raw data very comprehensible by expressing the quantitative and qualitative information

in the data, in terms of fuzzy rules that use human language terms. They thus serve as an

excellent interface between the user and knowledge, because these fuzzy rules are very

easily understood by the user. They are capable of handling complex, nonlinear,

incomplete, extremely dynamic systems. They are also useful in data reduction and hence

simplification. Although fuzzy sets have been applied relatively more to data mining,

there lies great potential in their use in almost all the other areas of KDD; like in data

processing.

1.3.4 Rules

The present work (described in Section 1.2) deals with the extraction of

statements, termed as rules. Fuzzy rules represent the relationships between different

variables (e.g., temperature, flow rate, color) or values (e.g., low, medium, high), that

constitute a database, in linguistic terms. The process of extracting these rules from a

database is termed as Rule Mining. Rules are a direct reflection of functional

dependencies in the database and employ a simple If-Then structure. The following is an

example of the structure of a simple rule.

IF <condition 1> AND (<condition 2> OR <condition 3>) THEN <effect 1>

The part of the rule between the IF and THEN keywords, is termed as the

antecedent and represents a cause (certain process conditions) that bring about the effect

stated in the part of the rule after the word THEN. The part of the rule after the word

THEN is termed as the consequent and represents the effect caused by the cause stated in

9

the antecedent of the rule. These rules are thus termed as Cause-and-effect rules for

purposes of the present work.

Any number of process variables can be included on either side of the rule (as

conditions and/or effects). However, no variables should be in common between the

antecedent and the consequent.

There is however a missing link. Fuzzy systems even with all their utility do not

possess the capability to learn. They hence need to be used in conjunction with

techniques that are capable of learning, to be used. Neural networks and Genetic

Algorithms serve this purpose.

1.3.5 The ‘learning tool’: Genetic Algorithms (GAs)

Genetic Algorithms (GAs) are defined as search algorithms used to evolve

solutions to problems. As the name suggests, they make use of the underlying principles

of natural genetics. They use a randomly or heuristically generated initial database of

possible solutions (candidate rules) to the problem (process) under consideration. These

solutions (cause-and-effect rules) are termed as chromosomes. The GA then advances

towards better solutions (cause-and-effect rules) in a series of steps. Each step is referred

to as a generation and creates a new database of rules each time. The rules in the initial

data-base are first evaluated according to a predefined quality criterion defined as the

fitness function. To form a new database of rules, good rules from the initial data base are

selected according to the evaluations of their fitness functions. The selection of good

10

rules from the initial rule data base however, will not introduce any new rules into the

database. New rules are generated in each step (generation) by the use of genetic

operators like crossover and mutation. These operators are basically ways to combine

different combinations of antecedents picked from good rules, selected from the initial

rule-base, to create a new rule-base containing rules which are also expected to be good

or promising. This process is repeated for a certain number of times. The number of steps

carried out depends on the stopping criteria employed – like an acceptable fitness level.

Genetic Fuzzy systems can now be defined as fuzzy systems that make use of an

evolutionary learning process or search algorithm to generate rules that represent a

process.

1.4 Literature Review

Rules can be extracted from numerical data using many approaches that have

been proposed. However, rule number reduction (optimization of rule-bases) is

imperative especially for complex processes with high dimensionality. In recent years,

genetic techniques have been considered to address this problem with great success.

A genetic algorithm initiates and maintains a population of rules. It then evaluates

the fitness (the strength or quality) of the rules based on their response to the training

data, using objective or fitness functions. All good rules (‘parents’) are then allowed to

reproduce new rules (‘offspring’), while the bad ones are removed from the rule set.

11

Thus, the appropriate selection of a fitness function is very critical to the success of the

genetic algorithm.

Objective functions are Metrics or numerical measures that evaluate desirable

(application dependant) characteristics of the rule and represent their quality or goodness,

thus aiding the elimination of unnecessary rules from the initial rule-base.

Metrics can be classified as follows, depending on the rule-generation strategy employed.

1. Pittsburgh approach: It evolves a complete rule-set and thus uses metrics (global

criteria) that evaluate the fitness of the entire rule-base.

2. Michigan approach: It evolves single rules individually and thus uses metrics that

evaluate the fitness of individual rules (local criteria)

The choice of metrics or approach to be used is dependant on the nature of the

problem. The present work focuses on developing ‘local’ criteria which may be used,

as objectives, by GA’s that follow the Michigan approach. In the Michigan approach,

each iteration of the rule evolution adjusts the individual fuzzy rules in a collection.

What follows is a review of a few local fitness measures employed by some of the

GA technologies, in chronological order.

Yuan and Zhuang [8] developed a Fuzzy Genetic Algorithm to generate fuzzy

classification rules, with several techniques used to improve the efficiency and

12

effectiveness of the algorithm. In doing so, they developed a composite fitness function

that consisted of three components: Accuracy, Coverage and Contribution of the rule.

The coverage of a rule was the relative size of its condition (antecedent) set in the

training space. So, the larger the coverage, the more general the rule. The accuracy in

very simple terms was the truth that the condition (antecedent) implied the conclusion

(consequent). Naturally, the higher the accuracy, the better the rule was. Both accuracy

and coverage involved the use of the sum of membership functions (indicating the degree

to which an object in the training set belonged to the antecedent or consequent set) in

place of the number of data points. Contribution measured the uniqueness of a rule in the

population. Higher contribution meant lesser overlap with other rules.

All the above-mentioned quality measures were integrated into a single fitness

function. In doing so, accuracy was given more importance than coverage. However, it

appears best not to combine multiple and competing objectives without a thorough

understanding of the preference of all goodness metrics involved.

Chen and Black [9] used fuzzy systems and neural networks to sense tool

breakage for end-milling operations. In their pursuit of generating fuzzy rules, they used

the degree of a rule to resolve conflicting rules, i.e., rules with the same antecedent but

different consequents. It was defined as the product of the individual membership values

of the antecedent and consequent. The rule with the higher degree was deemed the

winner. In cases where the deviation in the degrees of two rules was small, the number of

fuzzy regions the input-space was increased until all the conflicts were resolved.

13

This approach is not recommended since the rule base complexity exponentially

increases with the number of antecedents. Using the operator ‘OR’ to combine the

conflicting antecedents into a single rule is a better solution because it clubs independent

mechanisms that create the same effect thus making the rule more interpretable and the

rule-base simpler. Besides, in the CPI it is rare to observe the same cause (antecedent)

leading to different effects (consequence). In fact, different causes are found to lead to the

same effect, more often.

Work by Herrera, et al. [10] focuses on the development of a genetic fuzzy

system to extract fuzzy linguistic rules. They used the completeness property to eliminate

redundant and unnecessary rules while maintaining a minimal completeness degree on

the training set. Mathematically, it was defined to be a function of the compatibility

degree between an individual rule and a training example. Other features such as high-

frequency value of a fuzzy-rule through the example set, high average covering degree

over positive examples (data-set matches) were also formulated as functions of the

compatibility degree. They also defined the covering value of an example rule over the

entire rule-base. Concepts of membership function width and symmetry were also used as

part of the fitness function. The product operator was used to combine the criteria to yield

the final fitness function.

Completeness and consistency have been used conventionally as the evaluation

metrics. However, a complete rule covering the entire database is unrealistic in a real-life

situation. So the support-confidence framework was employed by Ngan instead.

14

Ngan, et al. [11] used evolutionary computation as a search algorithm for

discovering rules that capture patterns in real-life medical databases. Their learning

approach was based on generic genetic programming (GGP). The following metrics were

then used for rule-evaluation. Confidence factor which measures the consistency of a rule

is defined as the ratio of the number of records matching both the consequents and the

antecedents (number of both hits) to those matching only the antecedents (number of

antecedent hits). The consequent probability on the other hand is defined as the ratio of

consequent hits to the total number of records in the training set. This value represents the

confidence for the consequents irrespective of the antecedent. Defined as the ratio of the

number of records covered by the rule (the number of both antecedent and consequent

hits) to the total number of records, support measures the coverage of the rule. The value

of support should be above a user-defined minimum for the rule to be considered as

adequate. The final fitness function also involved count and ideal count in addition to the

above-mentioned factors. Count was the number of examples the rule actually seized and

ideal count was the maximum number of examples it could have seized if there was no

competition. A rule is said to seize a data example when the numerical data matches the

antecedent of the rule statement. As a result, other weaker rules can no longer seize this

same data example. They termed this concept as token competition. This was used to

reduce redundancy, reduce rule conflict and hence the complexity of rule base.

Redundant rules were replaced by new rules thus increasing diversity of the population

and increasing the chances for generating good rules. The concept of hits, however, does

not account for the degree of membership, or completeness that the antecedent or

15

consequent is true. Besides, the arbitrary support threshold makes it impractical to the

users.

Castillo, et al. [12] proposed simplicity criteria to be included in the genetic fuzzy

learning algorithm SLAVE (Structural Learning Algorithm in Vague Environment). As

the main criteria used in SLAVE, they reformulated the concepts of completeness and

consistency (used for crisp models) in order to adapt them to the special characteristics of

linguistic terms (fuzzy models). These adaptations were called the degree of

completeness and the degree of soft consistency respectively. The degree of completeness

of a rule was defined as the ratio of the number of positive examples of the rule to the

number of examples in the training set. In other words, the completeness degree

determined the strength of the rule by measuring the number of examples of the class

being learnt that support the validity of the antecedent of the rule. The degree of soft

consistency made room for admitting some noise in the rules. It represented in the

general case the set of rules having a number of negative examples strictly less than a

percentage (k) of the positive examples and for completely consistent rules k =0. They

then defined the degree to which a rule satisfied the soft consistency condition in terms of

negative and positive examples of the rule. It determined the level to which the examples

of the training set, which are covered by the antecedent of a rule, satisfied this rule. The

degree of completeness and the degree of soft consistency were then combined using the

product operator to yield the composite main criterion.

16

Their methodology consisted of including two simplicity measures: one with

respect to the variables and another with respect to the values. These criteria would aid in

discriminating between rules that had the same evaluation function value (involving

completeness and consistency). In other words, they would choose the simpler and the

more understandable rules among best rules in case of a tie situation. The first tie would

be resolved by using simplicity of fewer variables and the second tie if any, would be

resolved by using simplicity of values. The simplicity of variables determined the

simplicity of a rule by counting the number of relevant variables that were involved in the

antecedent of the rule and the simplicity of values was determined by evaluating the

distribution of the values assigned to the relevant variables.

The final fitness function now involved three components. The lexicographical

order was used as the optimizing criteria, i.e., the main criterion was maximized initially,

and in case of a tie situation, simplicity of variables was maximized and in case of

another tie, simplicity of values was maximized.

However, these criteria were defined only for the learning algorithm SLAVE and

hence had a specific application. The optimization of these metrics was also specific to

the learning algorithm SLAVE.

Kim and Lee [13] proposed a new design method of an FLC based on the

Lamarckian co-adaptation mechanism of evolution and learning that used both global and

local strategies : The evolution of many FLCs (global searching) involved use of GAs

17

and the learning of each individual FLC (local searching) involved use of Neural

Networks (Backpropagation learning rule).

As opposed to other works mentioned so far in which the initial population

comprised individual rules, in Kim and Lee’s [13] scheme entire rule bases

(corresponding to individual FLCs) formed the initial population and eventually

competed in the evolution stage. Each rule base had its own set of input and output

variables (antecedents and consequents). Both local and global fitness measures were

then used to compare rule-bases on a global level and individual rules on a local level.

The composite fitness function comprised of four such metrics.

To begin with, Kim and Lee [13] state that, a good fuzzy rule base should cover

as many input-output data pairs in the training set as possible. The covering value of a

rule-base over a training set was then calculated as the sum of the compatibility degrees

over all fuzzy rules in the rule-base. The compatibility degree (earlier used by Herrera

[10]) over a training example in turn was defined as the product of the membership

functions of different parts of the antecedent and consequent of the rule. Compatibility

degrees with respect to each training example were summed to yield the coverage of the

individual rule. These individual coverage values were then combined to determine the

coverage value of the entire rule base. A rule-base having a higher covering value was

better.

18

The second metric was the number of useful rules in the rule-base. Rules were

termed as useful if their covering values were higher than a certain threshold value. A

smaller number of useful rules were desirable in a rule base.

The system’s approximation error and the tracing distance over all training

examples (with respect to the truck-backer upper control problem considered by Kim and

Lee [13]) were used to measure the FLC’s control performance. These two metrics were

global in nature. Each of the four metrics were then normalized individually in the range

of (0, 1) and integrated into one fitness function such that appropriate weight constants

determined the importance of each metric.

However, the performance of the system depended a great deal on the right choice

of these weight constants. The entire procedure is very computationally intense and time-

taking. Also, using the product of the membership functions of the antecedent and

consequent may lead to loss of important information, as the membership functions of the

antecedent and consequent parts provide different information when considered

individually, which could be critical in distinguishing between good and bad rules.

Ishibuchi and Yamatomo [14] proposed using rule evaluation measures (support,

confidence) as rule selection criteria for pre-screening candidate fuzzy if-then rules,

before using a multi-objective genetic algorithm to optimize the rule-base.

Confidence (earlier used by Ngan [11]) indicated the grade of the validity of a rule A�

C. Qualitatively, if c represents the confidence, it implies that, c x 100% of the training

19

patterns that are compatible with the antecedent A are also compatible with the

consequent C. Rules selected by the confidence criterion were very specific. Support

indicated the coverage by A � C. If s represents the support, it implies that, s x 100% of

the training patterns are compatible with the rule A � C (i.e., compatible with both the

antecedent and the consequent). This criterion tends to select short if-then rules that lack

in confidence. In addition to support and confidence, their product was also used as a pre-

screening criterion because it balanced the specificity introduced by confidence and the

generality introduced by support. These concepts of confidence and support were similar

to what Ngan [11] used and thus shared the same drawbacks.

In many other works, objective measures such as support, confidence, interest

factor, correlation and entropy were used to evaluate the interestingness of association

rules. But in many situations, due to differences in some of their properties, these

measures may provide conflicting information about the interestingness of a pattern.

Tan, et al. [15] describe several key properties that need to be examined in order

to select the right measure for a given application. Depending on its properties, each

measure is useful for some application, but not for others. They present an overview of

21 objective measures that were proposed in statistics, social science, machine learning

and data mining literature. Several groups of consistent measures having similar

properties are identified.

20

It has been shown that many well known measures are monotone functions of

support and confidence, which explains the reason for the optimal rules to be located

along the support-confidence border.

Wang, et al. [16] presented an approach to construct 1st order TS (Takagi-

Sugeno) fuzzy models from data. In doing so, they employed a multi-objective

hierarchical genetic algorithm to generate optimized fuzzy models with a high accuracy

and good interpretability.

Interpretability represented the transparency of a rule or how easily it could be

understood and interpreted for complex systems and comprised of the following

components.

1. Completeness and Distinguishability

2. Non-redundancy

3. Compactness

4. Utility

Thus a total of four fitness functions with pre-defined preferences, as follows, were used

for comparisons within the population.

1st priority: Accuracy – Objective: to be minimized

2nd priority: Completeness and Distinguishability Objective: to be maximized

3rd priority: Non-redundancy Objective: to be maximized

4th priority: Compactness Objective: to be minimized

21

However, since utility of the fuzzy system was guaranteed through chromosome

formulation and genetic operators with constraints, before the fitness evaluation stage, it

wasn’t included as one of the interpretability considerations for fitness evaluation.

1. Accuracy was defined as the mean squared error between the true and model

output vectors.

2. Completeness and Distinguishability (0-1): The completeness of fuzzy systems

meant that for each input variable, at least one fuzzy set is fired. These qualities

were measured by Similarity, which denoted the degree to which the fuzzy sets

were equal. If similarity ~ 0 or too small, it implied that the fuzzy partitioning in

this variable was incomplete/they did not have enough overlap. If similarity was

too big, it implied that they overlapped too much, which in turn implied that

distinguishability was poor.

3. Non-redundancy (0-1): Needed to be maximized to increase the interpretability of

fuzzy rules. A rule was said to be redundant if it brought nothing new to the rule-

base. It was calculated based on the similarity degree of rule antecedents. A high

value of non-redundancy implied that the rules were very different. A value of 0

implied that the antecedents were the same.

4. Compactness: A compact fuzzy system meant that it had the minimal number of

fuzzy sets and fuzzy rules.

5. Utility: If a fuzzy system was of sufficient utility then all of the fuzzy sets were

utilized as consequents/antecedents by the fuzzy rules.

22

This approach suffered from a major drawback. An effective trade-off between

interpretability and accuracy needed to be expressed. Thus it was a multi-objective

optimization problem by nature. In other words, only a set of pareto-optimal solutions of

which the improvement in one of the objectives will degrade other objectives, could be

obtained.

To pursue the balance between necessary accuracy for modeling complex systems

and interpretability degrees to provide expert knowledge remains an open issue in the

development of future Genetic Fuzzy systems.

1.4.1 Sharma’s work

Sharma’s [2] work introduced a general strategy, based on use of the “Truth Space

Diagram” generated for each rule, to evaluate multiple measures of goodness of linguistic

rules. His work also recommended metrics for selecting good cause-and-effect rules from

dynamic data obtained from processes in the Chemical Process Industry (CPI).

The present work inherits some parts of Sharma’s work. The ensuing discussion restates

concepts that were used.

A case study approach was used to determine the best (among many possible)

metrics. To start with, data from a Hot and Cold water simulator was processed. Then an

initial rule base containing all possible rules (all possible combinations of antecedent and

consequent parts) was created using an exhaustive search method, designed metrics were

calculated and the metrics were optimized to find the correct rule base. This final rule

23

base was inspected by the human operator and the best combination of metrics decided

based on the quality and compactness of the rule base.

Thus the process used was three-fold and can be summarized as follows.

1. Data generation and processing

2. Initial Rule base generation (by Exhaustive search)

3. Calculation of Numerical Metrics and Rule base optimization

Steps 1 and 2 of Sharma’s process, as mentioned above, were inherited in the present

work and are re-explained below.

1.4.1.1 Data generation [2]

Data was acquired from a Hot and Cold water simulator. See Figure 1. Although

simple, the simulation incorporated real-world dynamics like transport and measurement

delays and was also capable of incorporating measurement bias, process drifts, noise and

valve ‘stick-tion’. These behaviors are observed in most of the unit operations within the

CPI. Also, the simulation was nonlinear, had multiple inputs and the delay time of the

output temperature depended upon the operating conditions.

For data generation, three input variables were manipulated and the effect on one

output variable was monitored. Figure 2 depicts the transient response. The input

(manipulated) variables were:

1. Temperature of the hot water stream (0 ≤ T1 ≤ 100 oC).

2. Flow rate of the hot water stream (0 ≤ F1 ≤ 30 Kg/min)

24

3. Flow rate of the cold water stream (0 ≤ F2 ≤ 30 Kg/min).

The output variable was the temperature of the mixed stream (0 ≤ T3 ≤ 100 oC).

The algorithm simulates the mixing of two process streams - one carrying hot

water and the other carrying cold water. It calculates the resultant temperature and delays

the measurement of this output temperature based on the mixing length Lt and the input

flow rates. Data was sampled at an interval of one second.

Cold

Hot
Flow Control valve 1

Flow Control valve 2
Mixed

T1

F2

F1

T2

T3

Lt

Mixing Point

Figure 1: Hot and Cold water Simulator (reproduced from [2])

Figure 2: Transient Input-Output Data (reproduced from [2])

0

10

20

30

40

50

60

70

80

90

100

0 500 1000 1500 2000

T em perature 1

Flow rate 1

O utput T em perature 3

Flow rate 2

°C
or

Kg
/m

in

T im e

25

The Simulator code is included in Appendix A.

1.4.1.2 Data processing [2]

The raw data was processed in two steps. First the output-data was un-delayed by

shifting data backwards. This was done by deleting a number of data-points from the top

of a column and shifting the rest of the column upwards (backwards) in time. The number

of data points deleted was equal to the delay (measured in time units) in a certain

category (short/medium/high). Figure 3 depicts this procedure schematically.

Secondly, the crisp input-output data was fuzzified using linguistic

membership functions. Each variable was classified into three fuzzy categories – low,

medium and high, using triangular membership functions defined by Equation 1.1

jj

ijji
ba
xa

−
−=,µ , (1.1)

where j=1 to 3 and i = 1 to n tot, data

n tot, data = total number of data-sets in the input-output data

xi = crisp numerical value of the ith input or output variable
ji,µ = fuzzy membership value of xi in the jth fuzzy category

aj and bj = fuzzy set break points for category j

26

Figure 4 illustrates an example of fuzzy classification of output temperature T3,

into three fuzzy categories of high, medium and low. In this example for the category

“low” j = 1, aj = 10 °C and bj = 50 °C and 1,iµ = 1 if xi ≤ 10 °C. For the category

“medium” j = 2, aj = 10 °C and bj = 50 °C only if 10 < xi < 50 °C while aj = 50 °C and bj =

95 °C if 50 °C < xi < 95 °C; at xi = 50 °C, 2,iµ
2iµ

= 1. Similarly for the category “high” j =

3, aj = 50 °C and bj = 90 °C and 3,iµ
3iµ

= 1 if xi ≥ 95 °C .The values for fuzzy limits(aj , bj

)were decided based on the range (lowest, mid and highest values) of numerical values of

Time T1 F1 F2 T3_Original Values T3_Short Delay T3_Medium Delay T3_Long Delay
1 86.466 20.58 13.13 64.98472 64.9641 64.25688 63.09222
2 87.754 20.44 13.16 64.97263 64.95359 63.94546 63.08392
3 88.92 20.24 13.26 64.9641 64.85162 63.6954 62.92605
4 89.974 20.08 13.36 64.95359 64.58994 63.50988 62.51725
5 90.928 19.96 13.46 64.85162 64.25688 63.37791 62.00672
6 91.791 19.87 13.53 64.58994 63.94546 63.28615 61.54251
7 92.573 19.81 13.58 64.25688 63.6954 63.22311 61.18189
8 93.279 19.77 13.61 63.94546 63.50988 63.1801 60.92411
9 93.919 19.74 13.63 63.6954 63.37791 63.15086 60.74795

10 94.498 19.72 13.65 63.50988 63.28615 63.13103 60.63054
11 95.021 19.71 13.66 63.37791 63.22311 63.11759 60.55336
12 95.495 19.7 13.67 63.28615 63.1801 63.10849 60.50298
13 95.924 19.7 13.67 63.22311 63.15086 63.10234 60.47028
14 96.312 19.69 13.68 63.1801 63.13103 63.09817 60.4491
15 96.663 19.69 13.68 63.15086 63.11759 63.09536 60.43541
16 96.98 19.69 13.68 63.13103 63.10849 63.09348 60.42656
17 97.268 19.69 13.68 63.11759 63.10234 63.09222 60.42086
18 97.528 19.69 13.68 63.10849 63.09817 63.08392 60.41718
19 97.763 19.68 13.68 63.10234 63.09536 62.92605 60.41481
20 97.976 19.68 13.68 63.09817 63.09348 62.51725 60.41332
21 98.168 19.68 13.68 63.09536 63.09222 62.00672 60.41237
22 98.343 19.46 13.74 63.09348 63.08392 61.54251 60.40481
23 98.5 19.17 13.88 63.09222 62.92605 61.18189 60.18476
24 98.643 18.92 14.04 63.08392 62.51725 60.92411 59.56002
25 98.772 18.75 14.17 62.92605 62.00672 60.74795 58.7724
26 98.889 18.63 14.27 62.51725 61.54251 60.63054 58.07296
27 98.995 18.55 14.33 62.00672 61.18189 60.55336 57.55146
28 99.09 18.5 14.38 61.54251 60.92411 60.50298 57.19742
29 99.177 18.47 14.4 61.18189 60.74795 60.47028
30 99.255 18.45 14.42 60.92411 60.63054 60.4491
31 99.326 18.44 14.44 60.74795 60.55336 60.43541
32 99.39 18.43 14.44 60.63054 60.50298 60.42656
33 99.448 18.42 14.45 60.55336 60.47028 60.42086
34 99.501 18.42 14.45 60.50298 60.4491 60.41718
35 99.548 18.41 14.45 60.47028 60.43541 60.41481
36 99.591 18.41 14.46 60.4491 60.42656 60.41332
37 99.63 18.41 14.46 60.43541 60.42086 60.41237
38 99.665 18.41 14.46 60.42656 60.41718 60.40481
39 99.697 18.41 14.46 60.42086 60.41481 60.18476
40 99.726 18.41 14.46 60.41718 60.41332 59.56002
41 99.752 18.41 14.46 60.41481 60.41237 58.7724
42 99.776 18.07 14.54 60.41332 60.40481 58.07296
43 99.797 17.61 14.76 60.41237 60.18476 57.55146
44 99.816 17.26 14.98 60.40481 59.56002 57.19742
45 99.834 17.03 15.16 60.18476 58.7724
46 99.85 16.88 15.29 59.56002 58.07296
47 99.864 16.79 15.37 58.7724 57.55146
48 99.877 16.73 15.42 58.07296 57.19742
49 99.889 16.69 15.45 57.55146
50 99.899 16.67 15.47 57.19742

Figure 3: Example of Backward Shifting of Output variable T3 with Short Delay = 2 sec;
Medium Delay =6 sec; Long Delay = 22 sec. Reproduced from [2].

27

the variable under classification. Triangular membership functions and only three fuzzy

categories were used to keep the example simple since the number of rules in the initial

rule base, which defines the size of the search space, increases exponentially with

addition of each fuzzy category.

Dynamic information was included by incorporating the persistence of an event in

the antecedent of a rule and the resulting delay in the consequent of the rule. Thus the

process of fuzzification converts crisp numerical values to membership values which

measure the degree to which a certain variable belongs to a linguistic label.

Figure 4: Fuzzy Classification of Output T3 (Reproduced from [2]).

28

1.4.1.3 Initial Rule-base and Truth Space Calculations [2]

The antecedent of each rule involved four linguistic labels (T1, F1, F2, persistence)

while the consequent involved two linguistic labels (delay, T3). Each of these variables

was classified into three fuzzy categories as explained in Section 1.2 – low, medium and

high. The initial rule base consisted of all possible combinations of the linguistic

categories of each variable in the antecedent and consequent parts and each rule had the

following general structure:

IF T1 is L/M/H AND F1 is L/M/H AND F2 is L/M/H AND Persistence is L/M/H

THEN after L/M/H delay T3 is L/M/H, where L/M/H is Low, Medium or High.

Thus the total number of possible rules was = (no. of fuzzy classes) (no. of variables) =

36 = 729. Hence the initial rule base had a size of 729 rules containing all possible

antecedents and consequents. The algorithm generated the statements of each of the 729

rules programmatically and used the fuzzy data from the previous section to perform

calculations depending on the statement of the rule.

Firstly, persistence (the length of time an event persists) of the antecedent for each

data point was calculated as the minimum persistence of the three other parts of the rule

antecedent (T1, F1, F2). The persistence of each linguistic label (T1 is High, F2 is

Medium etc.) is measured by the number of time units the membership value of variable

has persisted in the fuzzy category. Once calculated, the persistence is fuzzified.

29

Secondly, the truth of the antecedent and the truth of the consequent for each

rule were calculated for each data point. The Truth of any statement was defined as the

degree of membership of any data set or example to the linguistic terms in that statement.

The Truth of any antecedent or consequent was the measure of the match between the

stated event (hypothesis) and the numerical data (reality). The truth of the antecedent and

the consequent respectively, were calculated as follows:

()41,,
2

,
1

,
1,

ji
ePersistenc

ji
F

ji
F

ji
TliTa µµµµ ×××= (2)

ji
TliTc ,

3, µ= (3)

After the above calculations were made the Truth Space Diagram (TSD) was constructed

for each rule.

1.4.1.4 Truth Space Diagrams (TSD) [2]

A truth space diagram (TSD) was defined by Sharma as a “two-dimensional

space bounded by the truth of the antecedent and the truth of the consequent of a

linguistic rule”. It is bounded by the region {T: 0 ≤ T ≤ 1, where T = truth of antecedent

or consequent}, where a truth of 0 means zero truth (it did not happen to even a slight

degree) and a truth of 1 meant absolute truth. As stated by Sharma, the truth space

diagram also represents a one-to-one mapping of the data-set from the real (crisp

numerical values) space to a new truth (fuzzy membership values) space defined by the

linguistic statement of the rule. As shown in a hypothetical TSD in Figure 5 the space

was divided into four equal quadrants by Sharma and each quadrant provides different

information about the linguistic rule in question.

30

1.4.1.5 Points on the TSD [2]

Each data-set is represented by a point on the TSD, and the location of the point is

a measure of the membership of the data-set to the linguistic statement of the rule. For

example, consider point A in Figure 5. It occurs in Quadrant II which suggests that the

values for Tai and Tci are high for this data-set, i.e. the cause and effect match according

to the rule statement. This reveals that the information expressed in the linguistic rule is

contained in the numerical data from the simulator. Hence many points in Quadrant II of

the TSD would reflect the validity of the rule.

Consequently, points in Quadrant IV would show that the rule statement was

false, i.e. the process data expressed the rule antecedent but did not express the rule

consequent. For example point B in Figure 5 has a high Tai which means that the event

stated in the antecedent matches the numerical values however the Tci for this point is

A

B

Truth of the Antecedent/Cause

Truth of the
Consequent/
Effect

Absolute False 0

Absolute Truth 1.0 I II

IVIII

Absolute Truth 1.0

Figure 5: Hypothetical Truth Space Diagram (Reproduced from [2]).

31

low, which shows that the event expressed in the consequent does not match the real

numerical values.

Similarly points in Quadrant I have a high Tci but low Tai which shows the

incompleteness of the rule, i.e. the consequent was observed but was due to event other

than the event expressed in the antecedent of the rule.

Quadrant III points show the possibility of the rule, but because the value of both

the truths is low, it is not possible to confidently use this information to test a rule since it

neither proves nor disproves the hypothesis stated in the rule statement. The points that

lie on the axis (Ta = 0) show that either the event stated in the antecedent never occurred

in the data, a large number of these points will indicate that the rule was insufficiently

expressed within the data and cannot be judged as good or bad using the available

numerical information.

Based on the above concept of the TSD one can define various numerical metrics

which measure the desired qualities of linguistic rules and can be used to optimize a rule

base or search a rule population so as to prescribe only Good, Complete and Sufficiently

expressed rules. Many different metrics were designed by Sharma.

1.4.1.6 Sharma’s Numerical Metrics:

Sharma proposed the quantitative measures of strength of goodness, probability of

goodness, combined goodness (based on the concept of goodness), strength of badness,

32

probability of badness, quantity of badness (based on the concept of badness)

incompleteness of a rule and insufficiency of data.

A rule was defined to be good if its consequent was in fact the actual effect of the

cause expressed by the antecedent of the rule. Subsequently, points in Quadrant II of the

TSD show that the rule in question is good. Based on this concept, strength of goodness

was defined as the RMS perpendicular distance of points in Quadrant II from the Good

Diagonal (line from the Point (0, 0) to Point (1, 1)) on the TSD. The closer the points

were to the diagonal, the better the rule was. Probability of goodness as the name

suggests was used to determine the expected probability of points to occur in Quadrant II

rather than in any other quadrant. If a rule was good this probability increased. Combined

goodness was a measure of the standard deviation of points in Quadrant II considering

the mean to be the corresponding truth of the antecedent. This metric assumed that the

data was normally distributed and that ideally for each point in the data set, the truth of

antecedent should be equal to the truth of consequent. Subsequent investigation reveals

both assumptions to be invalid.

On the same lines as strength of goodness, strength of badness was based on the

concept of badness. A rule was defined to be bad if its consequent did not conform to

what was expected of the cause stated in the antecedent of the rule. Thus points in

Quadrant IV show that the rule is bad. Strength of badness was defined as the RMS

perpendicular distance of points in Quadrant IV from the Bad Diagonal (line from Point

(0, 1) to Point (1, 0)) on the TSD. Closer the points were to this diagonal, the worse the

33

rule was. Probability of badness (similar to probability of goodness) was the expected

probability of points to occur in Quadrant II rather than in any other quadrant. If a rule

was bad this probability increased. Quantity of badness indicated a scaled value of the

amount of information present in Quadrant IV of the TSD.

A rule was said to be incomplete if the antecedent stated in the rule was not

completely responsible for the effect stated in the consequent of the rule. Points in

Quadrant I reflected this property. Thus incompleteness was defined as the RMS distance

of points in Quadrant I from the Point (0.5, 0.5) on the TSD or the center of the TSD.

The metrics stated above reflected the quality of each individual rule. However,

one final metric Insufficiency reflected the quality of the data-set in its entirety. This

metric was used to determine if the antecedent of a rule was expressed in the data

sufficient number of times to confidently state the goodness, badness or incompleteness

of the rule.

Since four metrics were involved, a multi-objective optimization scheme was

used. Two two-dimensional Pareto ranking schemes [2] were used and the best rules from

each scheme were retained. Badness and goodness were used in the first ranking scheme

while incompleteness and insufficiency were used in the second.

However, the metrics proposed by Sharma suffered from many drawbacks as

discussed below and his analysis revealed the need for improved quality metrics.

34

1.4.1.7 Drawbacks of Sharma’s metrics

1. Most of Sharma’s metrics were based on the RMS distance of points from the

upper-left to lower-right and upper-right to lower-left diagonals on the TSD.

However, there is no reason that these 1:1 and 1: -1 diagonals should be used

as ideal situations for goodness and badness respectively.

(a) (b)

Figure 6(a): Non-identical ‘Low’, ‘Medium’ and ‘High’ ranges for the antecedent (T actual) and
the consequent (T Recorded). The 3 arbitrary points on the antecedent axis correspond to 3
points on the Consequent axis all of which in this case lie in the ‘High’ category. [µH (Temp
Actual,1)=0.25, µH (Temp Actual,2)=0.75, µH (Temp Actual,3)=1.0 and µH (Temp
Recorded,1)=0.8, µH (Temp Recordedl,2)=1.0, µH (TempRecorded,3)=1.0]

Figure 6(b): The 3 points when translated to a TSD. They don’t lie on the 1:1 diagonal or close
to it, but they still represent the good rule, “If ‘actual’ T (antecedent) is high then ‘recorded’ T
(consequent) is high”

For example consider a variable T denoting temperature. An undeniably true rule

would be, “If actual T (antecedent) is high then recorded T (consequent) is high”.

But for data belonging to this rule, to lay on the 1:1 TSD diagonal, the ranges of

the fuzzy categories (High, Medium, Low) of the antecedent and consequent

should be identical. This is illustrated in Figure 6 shown above.

Temp (Actual)

Tc

Temp (Recorded)

1
2

3

Ta

35

0

0.5

1

1.5

2

2.5

3

3.5

1 2 3 4 5

7(a) 7(b)

Figure 7(a): An example Histogram depicting Normally- distributed data.

Figure 7(b): Sample data in Quadrant II of the TSD showing deviation from normal Gaussian
distribution.

2. Some metrics assumed normal distribution of data. This is not a universally

valid assumption since the data distribution could be varied.

A histogram is a useful graph for exploring the shape of the distribution of the

values of a variable. It was constructed [for each rule] for the distribution of

points in each of the consequent zones of the TSD. Figure 7(a) shows a

general example of normal data distribution in the form of a histogram with

the x-axis (horizontal) denoting the number of the item, and the y-axis

(vertical) denoting the value of the item. Figure 7(b) shows a sample of

distribution of data in Quadrant II of the TSD. The adjacent inverted

histogram is constructed by summing the number of points in each of the five

depicted consequent zones. The x-axis (vertical) denotes the consequent zone

and the y-axis (horizontal) denotes the number of points in each respective

Ta

Tc

36

consequent zone. The histogram thus shows that the distribution is far from

normal distribution.

3. Insufficiency represented the quality of the data and was not a direct

indication of the goodness/badness of a rule and hence should not have been a

metric used during optimization.

4. Incompleteness evaluated the quality of the rule-set in whole and should not

have been used as a metric for individual rules. Also, it did not measure the

goodness of a rule.

5. The metrics had to be normalized.

6. They were not very simple to compute.

7. Since 4 metrics were used to determine the quality of a rule, it became a

multi-objective problem and hence required the use of Pareto ranking

schemes, making it complicated.

8. The metrics did not yield measure of confidence in the rule in prediction

mode.

In this context, the present work aims at exploring improved quality metrics to

identify useful If/Then rules, which can be believed to describe the process a hand

accurately and to predict future behavior.

37

CHAPTER II

METHODOLOGY

2.1 The Concept of Trips

2.1.1 The problem

Sharma [3] developed a Truth Space Diagram (TSD) (refer to Section 1.4.1.4)

which symbolically represents the quality of a rule. All the metrics hence calculated were

based on the distribution or number of points in each of the four quadrants of the

diagram. Figure 8 depicts a typical TSD and explains the significance of data in each of

the four quadrants, as explained earlier in Section 1.4.1.5.

Figure 8: The Truth Space Diagram (TSD)

38

However, it is worthy to note that a few multiple points could be generated due to

random data in the database and that there could be no actual process trends involved

with their placement. Such random data may be generated due to noise in the process and

spurious events, that shouldn’t be allowed to contribute to the quality of a rule. Also, if a

certain event persisted for a long time, it would cause many points to be placed in the

TSD of the rule depicting the event. Most of the metrics proposed by Sharma, were

functions of the number of points in a quadrant in the TSD. Thus the number of points in

the TSD significantly affected the verdict about the quality of a rule. Eventually, the rule

connected to that TSD would be over or under rated during the ranking process.

Furthermore, there is no reason that closeness to the 1:1 diagonal on the TSD should be a

measure of goodness of a rule, since this is true only in cases where the fuzzy categories

are identical for both the antecedent and the consequent. This is illustrated in detail in

Section 1.4.1.7.

2.1.2 The solution

Discovery and isolation of trends in the process data is a possible solution to the

problem of misjudging the quality of a rule. The temporal behavior of measured variables

in a chemical process is the result of the interplay of many underlying phenomena and

process conditions. Thus rules expressing this temporal behavior, if identified, reflect

hidden mechanisms in the processes such as, process dynamics, external noise or

operator-induced effects.

Thus the extraction of these temporal features or trends contained in measured

data and their correct interpretation afterward provides stronger corroboration for good or

39

bad rules than analyzing the number of points in the respective quadrants, and their

distance from the two principal diagonals defined by Sharma, as discussed in Section

1.4.1.6.

2.1.3 The tool – Trips

Trips isolate underlying trends in seemingly scattered data, which in turn help us

make a better judgment on whether or not a rule in question is good. A trip within a

quadrant, can be defined as the locus of a path traced by points into and out of the

quadrant. It is a combination of monotonic increasing and decreasing behavior of the Ta

and Tc values of points. In other words, it makes visible trends, in what appears to be a

random scattering of points.

Figure 9(a): A TSD when trends are not identified in the points – seemingly scattered data

Figure 9(b): The same TSD from figure 9(a) when it denotes the loci of paths traced by points
into and out of a quadrant – termed as ‘trips’.

Figure 9 illustrates this concept. For this example 15 points in Quadrant II of the

TSD should not imply that 15 separate events occurred. Instead, the four loci should be

counted as four independent trips that corroborate the statement of the rule.

0

0.5

1

0 0.5 1
Ta

Tc

0

0.5

1

0 0.5 1
Ta

Tc

8(a) 8(b)

A ‘Trip’
into
quadrant
II

‘Trip’ into
quadrant
IV

40

If multiple events or chain of events are identified from the patterns of points in

the TSD then this would corroborate or support the goodness or badness of the rule

statement more strongly than simple placement of multiple points in different quadrants

of TSD, by the rule.

2.1.3.1 Threshold condition

To exclude spurious events from being called a trip the Minimum Time that a path

into a quadrant needs to stay in the quadrant, is chosen arbitrarily. Minimum Time is a

user-input value and determines how strict or lenient one wishes to be with respect to

what qualifies as a trip. The Sampling Time is the time interval between two consecutive

data samples, assumed to remain constant throughout the process. It is also a user-input

value.

Then, the Threshold is defined as,

TimeSampling
TimeMinimumThreshold = , (2.1)

where, Threshold is dimensionless(sec/sec).

 Therefore, the Threshold is defined as the least number of successive points

within a quadrant that can be termed as a trip into that quadrant. For the purpose of this

project a Threshold value of 5 was chosen intuitively assuming the data sampling time

was 1 time unit.

41

0

0.5

1

0 0.5 1

Figure 10: A Truth Space Diagram depicting 3 paths traced into Quadrant II, of which only 2 are
‘Trips’

For example, in Figure 10 shown above, three paths can be traced into Quadrant II

but only two of them are valid trips. One of the paths has only three successive data

points in Quadrant II, which is lesser than the Threshold value of five points. It therefore

does not qualify as a trip.

2.2 Corroboration

In the present work, the value 2 was chosen as the minimum number of trips a

rule had to make into a quadrant for it to provide sufficient evidence of ‘corroboration’.

2.2.1 Trips into Quadrant II

According to Sharma’s work (Refer to Section 1.4.1.4), a point is said to be in

Quadrant II if 0.5 ≤ Tc ≤ 1.0 and 0.5 ≤ Ta ≤ 1.0.The second quadrant consists of points

2 valid ‘Trips’
into Quadrant
II

Ta

Tc

A ‘path’ into Quadrant
IV which does not
satisfy the Threshold
condition of 5 – not a
‘trip’

42

that have a high Tc value for a corresponding high Ta value. This implies that the

consequent of the rule is actually caused by the antecedent expressed in the rule. More

trips into this quadrant therefore corroborate the validity of a rule suggesting it was good.

2.2.2 Trips into Quadrant IV

Similarly, a point is said to be in Quadrant IV if 0.5 ≤ Ta ≤ 1.0 and 0 ≤ Tc < 0.5.

These points have a low Tc value for a corresponding high Ta value. Subsequently, this

implies that the consequent of the rule does not comply with the effect expected from the

antecedent of the rule, which in turn implies that the rule is bad or wrongly stated. More

trips into this quadrant provide stronger evidence that the rule is bad.

2.2.3 Trips into both Quadrants (II, IV)

Some trips make their way into Quadrant II through Quadrant IV or vice versa. In

such cases, the quadrant in which the threshold condition is satisfied is dominant and the

trip is said to be made into this dominant quadrant. Figure 11 illustrates one such

example.

2.2.4 Other cases

In the event of the threshold condition being satisfied in both the quadrants, the

quadrant in which more time was spent is dominant.

Furthermore, in addition to satisfying the threshold condition, if equal time is

spent in both the quadrants, a trip is said to be made into both.

43

0

0.5

1

0 0.5 1

Figure 11: A Truth Space Diagram depicting a path that can be traced into both Quadrant II and
Quadrant IV, of which only the path into Quadrant II is a trip

2.3 Numerical Metrics

It is the objective of this work to propose new and improved metrics for rule

evaluation. The following is expected of them.

1. A metric should be independent of the size of the data-set. A rule that makes

two good trips, zero bad trips and has 40 data points in the good quadrant, and

another rule that also makes two good trips, zero bad trips but has 100 data

points in the good quadrant, should essentially be equivalent, since the

number of events that occurred are the same.

2. A metric should be robust to noise and anomalies in the data.

A valid “trip” into
Quadrant II

Not a ‘trip’ into
Quadrant IV as it does
not satisfy the Minimum
Threshold Condition.

Ta

Tc
II

IV

44

3. A metric should be fundamentally easy to compute.

4. A metric should directly reflect the quality of the rule (good or bad).

Truth Space Diagrams which depict the number of trips made into the II and the IV

Quadrants are generated for all the possible rules, following which, the numerical metrics

are calculated for each.

2.3.1 The Selection Metric

2.3.1.1 Merit

Merit is a metric proposed for the selection of good rules from the initial rule data base.

Although it is the single objective for selecting rules, it is used in combination with the

minimum corroboration condition for the selection of good rules (explained in Section

2.5.1.1). It is defined as the difference between the number of good and bad trips.

TripsBadOfNoTripsGoodofNoMerit .. −= (2.2)

Qualitative Meaning: A positive value of Merit implies the presence of more

good trips than bad. The higher the value, the higher the evidence for the rule being

observed often. It does not require normalization since it is the only metric used in the

optimization process. It consists of both qualitative and quantitative information about the

rule. Also, it uses the concept of trips which makes it independent of the number of data

points in the II and IV Quadrants. It is also independent of the total number of data points

in the TSD.

45

0.50 1
0

0.5

1

0.6 0.7 0.8 0.9

0.1
0.2
0.3
0.4

0.6
0.7
0.8

0.9

Each of
quadrant II and
quadrant IV is
divided into 25
such 0.1 x 0.1
zones.

Ta

Tc

II

IV

2.3.2 The Prediction Metric

Until this point, all calculations and analysis involved use of Historical Data

where both Ta and Tc were known. The Prediction Mode is a new mode of data analysis.

In this mode, only Ta of New Data are analyzed to determine the rules being activated and

to predict future outcomes of those Ta.

2.3.2.1 Expectation

This is a metric proposed to predict the likelihood of the truth of consequent

occurrences given the truth of antecedent for each of the rules in the initial rule-base. It is

calculated based on information gathered from historical data. For the calculation of

Expectations the II and the IV Quadrants in the TSD are divided into grids as shown in

Figure 12 below.

Figure 12: A TSD showing the division of Quadrants II, IV into a total of 50 zones of size 0.1 x
0.1. The Ta axis is divided into five zones of size 0.1 each (0.5-1), and the Tc axis is divided into
ten zones of size 0.1 each (0-1).

46

Thus the zones can be represented as follows

Note:)}()(|{],(BxAxxBA ≤>= I

)}()(|{],[BxAxxBA ≤>== I

Five Ta zones: (0.5, 0.6], (0.6, 0.7], (0.7, 0.8], (0.8, 0.9], (0.9, 1]

Ten Tc zones: [0, 0.1], (0.1, 0.2], (0.2, 0.3], (0.3, 0.4], (0.4, 0.5], (0.5, 0.6], (0.6, 0.7],

 (0.7, 0.8], (0.8, 0.9], (0.9, 1]

Specifically, data distribution in each of the ten consequent zones for the five

antecedent zones for each rule in the initial data-base is analyzed using a histogram and

normalized. Figure 13 illustrates the distribution of points in Quadrants II, IV based on

historical data, as an example.

Figure 13: Example of distribution of points in the II, IV quadrants based on ‘Historical Data’.
The adjoining histogram represents cumulative historical hits in each of the ten consequent
zones. Data in individual Ta zones is to be normalized and used in conjunction with the
antecedent hits in the ‘New Data’ to calculate the ‘Expectations’ as shown in Figure 14.Note:
Only points that contribute to making trips(good or bad) are considered for all calculation
purposes.

0

0.5

1

0 0.5 1
Ta

Tc

0 5 10 15 20 25
1
2
3
4
5
6
7
8
9

10

Z
on

e
of

T
ru

th
of

C
on

se
qu

en
t

Number of Hits

IV

II

47

0

0.5

1

0 0.5 1
Ta

Tc

0 2 4 6 8 10

1
2
3
4
5
6
7
8
9

10

Zo
ne

of
Tr

ut
ho

fC
on

se
qu

en
t

Expectation
First Antecedent zone

0 0.5 1 1.5 2 2.5

1
2
3
4
5
6
7
8
9

10

Expectation
Second Antecedent zone

A B

Figure 14: Based on the antecedent hits in the two Ta zones, expectations are calculated for each
of the two Ta zones to yield the cumulative absolute ‘Expectation’ of Occurrences of Truth of
Consequent in the ten zones, based on the Antecedent Hits of ‘New Data’. The values of these
‘Expectations’ are then normalized in the range (0-1) to yield the cumulative normalized
‘Expectations’ for each of the ten consequent zones.

0 2 4 6 8 10 12

1
2
3
4
5
6
7
8
9

10

Tc
zone

Absolute Expectation
0 0.1 0.2 0.3 0.4

1
2
3
4
5
6
7
8
9

10

Normalized Expectation

Tc
zone

Normalization

48

Once the historical data is analyzed, new data is collected. This data is put

through the data-processing procedure described in Section 1.4.1.2. The number of new

antecedent hits in each of the five antecedent zones is then calculated based on the truth

of antecedents. This information is then used in conjunction with the historical

normalized data, to yield the normalized expected occurrences of the truth of consequent.

As seen in Figure 14, antecedent hits were made in two Ta zones. Based on the

antecedent hits in the two Ta zones, expectations are calculated for each of the two Ta

zones to yield the cumulative absolute ‘Expectation’ of Occurrences of Truth of

Consequent in the ten zones, based on the Antecedent Hits of ‘New Data’. The values of

these ‘Expectations’ are then normalized in the range (0-1) to yield the cumulative

normalized ‘Expectations’ for each of the ten consequent zones.

2.4 Calculations

Based on the zones (as defined in Figure 12) the following values are calculated.

2.4.1 From Historical Data

The first historical data, that was used to select rules is processed.

1. The number of points or hits in each of the five zones of the antecedent,

irrespective of the Tc value, is recorded in a column vector Hits.

2. For each of the five Ta zones, the number of hits in each of the ten Tc zones is

calculated. This results in a 10 x 5 matrix NumPoints (number of points) with

values of the number of hits in each of the 50 zones.

49

3. Each column of the above matrix NumPoints is considered to be a column

vector iVr , where the subscript i denotes the column number, and ranges from 1 to

5. These vectors are normalized, to yield another matrix NormNumPts, as follows.

a. Normalization : Each column of the NumPoints matrix is comprised of a

column vector consisting of ten elements and is normalized as follows,

 





⋅=

iV
iV

normiV T rr
r

r
1

, (2.3)

where i = 1 to 5 and, 1r is 10-element vector,

[]1,1,1,1,1,1,1,1,1,11 =r

b. Concatenation: The complete normalized matrix NormNumPts(10 x 5) is

formed by concatenating each normalized column vector obtained in

Equation 2.3.

() () () () ()[] 51054321510 ,,,, ×× = normnormnormnormnorm VVVVVNormNumPts rrrrr (2.4)

2.4.2 From New Data

After the historical data defines Equation 2.4, begin collecting new data.

1. The number of Antecedent Hits in each of the five zones is recorded in a column

vector spredHitv . This column vector is converted into a 5 x 5 diagonal matrix,

PredDiagHits.

50

2.4.3 Calculation of the ‘Expectations’ Matrix

1. The normalized number of hits in each of the ten consequent zones, obtained from

the Historical Data is then multiplied by the number of New antecedent hits to

yield product which is a 10x5 matrix.

55510510 xxx tsPredDiagHiNormNumPtsproduct ⋅= , (2.5)

2. The elements of product are totaled along the row to yield the absolute

Expectation [0-1] of Truth of Consequents in each of the ten Tc zones, based on

the New antecedent hits and Historical information of Tc distribution.

∑
−

=
wiserow

xx productnExpectatio 510110 (2.6)

3. These absolute Expectations are then normalized as described by Equation 2.7 to

yield the normalized Expectations, NormExpectation (10x1).

∑
−

=
wisecolumn

x

x
x

nExpectatio
nExpectatioationNormExpect

110

110
110 (2.7)

2.4.4 Weighted Mean Average

The weighted mean average (PredMean) of the Expectations is then calculated as

follows, for each rule, within 95% confidence limits. Although the distributions were not

assumed to be Gaussian, the weighted mean average was used as an approximation. Late

breaking research suggests however, that the Median would be a better representation

owing to the fact that the distribution need not be Gaussian (Refer to Section 5.2).

∑
−

=
wiseColumn

xnExpectatioTotsum 110 (2.8)

51

)(
))1,10(95.0....)1,2(15.0)1,1(05.0(

TotSum
onxExpectationxExpectationxExpectatiPredMean +++=

(2.9)

2.4.4.1 95% Confidence Limits

Statistical t-values were not used to determine the confidence limits as there were

many occurrences where the distribution of data in the zones deviated from normal

behavior. This was observed by plotting cumulative histograms for rules, depicting the

number of points in each of the ten consequent zones of Quadrants II, IV, with the zone

of Tc represented by the x-axis and the number of points represented by the y-axis. The

shape of the histogram depicted the non-Gaussian distribution of points in the TSD.

In the present work, a simple interpolation procedure was used to determine the 95%

confidence instead.

2.4.4.2 The interpolation procedure

1. The Expectation values for each Tc zone are cumulatively added, yielding 10

CumulExp values

2. The Cumulative Distribution Function (CDF) for each of the 10 values of the

Expectation matrix is determined as follows:

)(CumulExpMax
CumulExpCDF i

i = , (2.10)

where, i = 1 to 10.

Figure 15 depicts the conversion of Expectation values (represented in the

form of a histogram) into a cumulative plot which depicts CDF on the y-axis

and Tc on the x-axis. The cumulative graph also depicts the lower and upper

52

95% confidence limits. A CDF of 0.025 is the lower confidence limit and A

CDF of 0.975 is the upper confidence limit.

3. Figure 16 denotes the zoomed in version of the lower part of the cumulative

graph denoted in Figure 15. It depicts the Tc (Tc 0.025) corresponding to a CDF

of 0.025 positioned between the Tcs (Ti, Ti+1) corresponding to the outer

limits i, i+1 of the Tc zone in which Tc 0.025 occurs. Similarly, the Tc

corresponding to a CDF of 0.975 (Tc 0.975) will be positioned between the Tcs

(Ti, Ti+1) corresponding to the outer limits i, i+1 of the zone of in which Tc0.975

occurs. The values of Tc 0.025 and Tc 0.975 need to be determined. The properties

of similar triangles are used to achieve this. For the lower confidence limit for

example, as seen in the Figure 16, triangles ABC, ADE are similar and by

principles of geometry the value of the only unknown variable Tc 0.025 can be

determined.

Tc corresponding to the Lower Confidence Limit of 0.025 is calculated as

follows.







−
−+=

<>

+
+

+

i1i

i
1iic

i1i

CDFCDF
CDFTTT

CDFCDF

 0.025
025.0

Then, 025.0and 025.0If
(2.11)

Similarly, Tc corresponding to the Upper Confidence Limit of 0.975 is

calculated as follows.







−
−+=

<>

+
+

+

i1i

i
1iic

i1i

CDFCDF
CDFTTT

CDFCDF

 50.
975.0

Then, 975.0and 975.0If

97

 (2.12)

53

Figure 15: A Cumulative graph representing the Histogram. The graph uses the Upper
Confidence Limit (U.CL) = 0.975 and the Lower Confidence Limit (L.CL) = 0.025 to determine
Tc 0.025 and Tc 0.975 respectively.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 2 3 4 5 6 7 8 9 10
Zone of Truth of Consequent

Ex
pe

ct
at

ion

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Tc

Co
nf

ide
nc

eF
ac

to
rs

U.CL

L.CL

Tc 0.025 Tc 0.975

C
D
F

54

0

0.025

0.05

0.075

0.1

0.125

0 0.05 0.1 0.15 0.2 0.25 0.3
Tc

Co
nf

id
en

ce

Tc 0.025
Tc i Tc i+1

CDF i+1

CDF i

CDF 0.025

Figure 16: The Interpolation procedure. The Lower Confidence Limit from Figure 15 is zoomed
in, with the axes denoting Cumulative Distribution Factors on the y-axis and their corresponding
Tc on the x-axis. By Geometry, the similar triangle property is used to estimate Tc 0.025

2.4.5 Window Length for Prediction

New Data was collected for 65 seconds at a time, where a 60 second (1 minute)

window was allowed for the calculation of maximum persistence. New antecedent hits

however were calculated only for the last 5 seconds labeled as NOW in Figure 17 below.

At this point all prediction calculations (as described in Sections 2.4.2, 2.4.3, 2.4.4) were

made to yield the weighted mean ‘expectation’ after say t seconds, where t was defined

by the delay associated with the rule in question(short or medium or long). The entire 65

second window then moved by a time interval, defined by the shortest delay, along the

timeline and the above procedure was repeated. The bold lines in Figure 17 denote the

prediction window to start with. The dotted lines in Figure 17 denote the movement of

the prediction window along the timeline.

C
D
F

A

B

C

D

E

55

Figure 17: Window length for prediction.

2.5 Overview

The entire selection and prediction procedure can be described as follows.

2.5.1 Rule-base Optimization/Selection

An ‘exhaustive-search’ procedure was used to generate all possible rules

(combinations of antecedents and consequents).This was done to check the robustness of

the suggested metrics and to check if the metrics produce desirable results.

The rule-base thus generated needs to be optimized to choose the best rules

among them. The Numerical Metric Merit served the purpose of evaluation of all the

rules.

Two criteria are all that were used to optimize the initial rule-base. Any rule

satisfying these conditions was termed as Good and any rule with evidence of not

1 min + 5 sec

NOW

Short delay
Medium delay

Long delay

1 min+ 5 sec
Time Line

NOW

56

satisfying the condition was termed as Bad. Rules that showed no evidence of an

occurrence of an event were not commented upon.

2.5.1.1 Criteria of Acceptance of Rules

The Metric Merit was to aid this selection process.

1. The rule in question should show proof of Corroboration by making at least two

good trips.

a. Two was chosen as a reasonable number for corroboration of the

goodness of a rule because it proved that a good trip wasn’t made just

by chance, as there was more than just 1 instance of a good trip.

2. The Merit of the rule should be >= 1

b. This also is not being claimed as a universal number. It seemed

reasonable because one good trip more than the bad proves that the

rule is inclined more towards goodness than badness. Rules that had

equal good trips and bad trips showed no proof of being categorically

good and so were deemed bad.

Thus the initial rule-base was condensed to a smaller one, in which each rule could be

believed to represent the process at hand, accurately.

It needs to be clarified here though, that more instances of corroboration does not mean

the rule is better than another good rule with lesser instances of corroboration (Refer to

Section 5.2).

57

2.5.2 Prediction

Historical information in the form of Normalized data distribution for all rules was used

to predict the expected occurrences (Expectation) of the Truth of Consequent, given the

antecedent hits captured from New data.

The weighted mean average was also calculated within 95% confidence limits.

58

CHAPTER III

PROGRAMMING METHODOLOGY

A program was written in VB 6.0 (listed in Appendix A) to carry out all the

operations discussed in the Methodology in Chapter II. It consists of ‘forms’ (sub-

programs) which are interconnected to each other, and each form in turn is made up of

many successive subroutines, each with a specific function. These various ‘forms’ serve

as the Graphic User Interface (GUI).

Figure 18 depicts the over all algorithm and the functions of some of the most

important subroutines. Each process block corresponds either to a subroutine that was

used to perform the function it denotes or a smaller part of the code which may be

important. The code for the truth-space calculations and the creation of all possible rules

were inherited from Sharma’s work [3].

To start with, the user is asked to make a choice between the selection mode and

the prediction mode. Figure 19 represents this GUI (choose.frm).

59

Figure 18: The algorithm used for the program.

No – Prediction Mode

According to statement of Rn
calculate persistence of the
rule antecedent

Data from
simulator

Fuzzy classification
of all variables into

three categories

n = 0

Is
n=729?

n = n+1

According to statement of
Rn calculate persistence of
the rule antecedent

According to statement of
Rn calculate Tai and Tci
for all data points[]

According to values of
Tai and Tci calculate the
number of trips, the
value of the metric
MERIT

Create Rule
Statements by
combining all
possible linguistic
Antecedent and
Consequent Parts

Yes Select good rules from
Historical Data?

Fuzzy classification
of INPUT variables
into three categories

Simulator is
run for
longer,
More Data

n = 0

n = n+1

According to statement
of RN calculate Tai for all
data points

Calculate ‘Expectations’
for each rule in all 10
consequent zones, their
Weighted Mean

Normalized
Consequent
distribution
[of historical
data] for each
rule

Optimization using
the 2 selection
criteria

Is n=729?

Stop

Start

Final rule base

Calculate the distribution of
consequents in quadrants II, IV

60

Figure 19: GUI for choosing between the selection and the prediction mode. The name of this
form is choose.frm

The selection mode uses an input file (.csv format) consisting of initial data

(Historical Data) collected from the simulator. It is used to determine the best rules that

represent the process. The prediction mode uses another input file (.csv format)

consisting of data obtained by running the simulator for longer (New Data). This is where

the consequents are predicted for the new antecedents. Each of the above-mentioned

modes uses a different GUI.

3.1 Selection Mode

The blocks under Yes in Figure 18, depict the selection part of the algorithm. This

mode works with the initial batch of data obtained from the simulator, considered as

historical data.

Figure 20 depicts the GUI (SelMode.frm) for this mode, and as can be seen, it

consists of three parts that perform three important operations. The following discussion

describes important aspects of the above-mentioned parts.

61

Figure 20: GUI for the selection mode. The name of this form is SelMode.frm.

3.1.1 The Start button

The button labeled Start when hit, performs Truth Space calculations (inherited

from Sharma), calculates the number of trips into Quadrants II (good trips), Quadrant IV

(bad trips) and the metric Merit, and the distribution of points in each of the 50 0.1 x 0. 1

grids in Quadrants II, IV together.

The reader is referred to [3] for details about the Truth Space calculations and the

loop structure.

Once Ta, Tc were calculated for every rule, the numbers of good and bad trips

made by each rule were calculated, within the same loop structure used by Sharma.

Figure 21 depicts a code snippet calculating the number of trips into Quadrant II.

62

If ta(i) > 0.5 And ta(i) <= 1 And tc(i) > 0.5 And tc(i) <= 1 Then
counter(i) is used to calculate the number of consecutive points
into the Quadrant

If i = 1 Then
 counter(i) = 1
 Else: counter(i) = counter(i - 1) + 1
 End If

tot is the threshold value input by the user
 If counter(i) = tot Then
 goodtrip(r) = goodtrip(r) + 1
 End If
ElseIf ta(i) >= 0 And ta(i) <= 0.5 And tc(i) >= 0 And tc(i) <= 0.5 Then
 counter(i) = 0
ElseIf ta(i) >= 0 And ta(i) <= 0.5 And tc(i) > 0.5 And tc(i) <= 1 Then
 counter(i) = 0
ElseIf ta(i) > 0.5 And ta(i) <= 1 And tc(i) >= 0 And tc(i) <= 0.5 Then
 counter(i) = 0
End If

Figure 21: Calculation of trips into quadrant II (good trips) based on the threshold value input
by the user.

Once the Merit is calculated, the numbers of points in each of the ten consequent

zones (for each of the five antecedent zones) are calculated and so is the number of

antecedent hits in each of the five antecedent zones. These calculations are made in

accordance with those in Chapter II.

3.1.2 The Display TSD and Merit button

The button labeled Display TSD and Merit as the name suggests displays the TSD

of each of the 729 rules (DispTSD.frm), and depicts the number of trips made into

Quadrants II, IV. The value of the metric Merit is also displayed. Figure 22 depicts the

GUI for this display mode. Trips into Quadrant II were denoted by green and trips into

Quadrant IV were denoted by red. There is also an option for zooming into the II or the

IV Quadrants in the event that a lot of trips are made.

63

Figure 22: GUI for Displaying the TSD. The name of this form is DispTSD.frm

3.1.3 The Optimize button

This button when clicked optimizes the initial rule-base using the two selection

criteria (minimum corroboration and minimum Merit) described in Chapter II. Figure 23

depicts the algorithm used for optimization.

For i = 1 to 729
‘Minimum corroboration and Minimum Merit – Two selection criteria
If (number of good trips) > 1 and Merit > =1 then

 Select Rule
End if

Next i
Figure 23: Algorithm for Optimization using the two selection criteria.

Figure 24 displays the GUI (opti.frm) for optimization. All the selected rules are

displayed with the number of good and bad trips they make.

64

Figure 24: GUI for Optimization, depicting the selected rules. The name of this form is Opti.frm

The present work recommends adding the ranking phase in this stage of the

program. This brings us to the end of the selection mode.

3.2 Prediction Mode

The blocks under No in Figure 18, depict the prediction part of the algorithm. This mode

works with new data (data obtained by running the simulator for longer), for which only

the antecedents are known.

Figure 25 depicts the GUI (PredMode.frm) for this mode and it consists of two

parts that perform two important operations. The following discussion describes

important aspects of the above-mentioned parts.

65

Figure 25: GUI for the prediction mode. The name of this form is PredMode.frm.

3.2.1 The start button

This button when clicked in the prediction mode performs truth space calculations

only for the antecedents of new data. The total number of antecedent hits in each of the

five antecedent zones is determined.

Note: At a certain point in time when an event is long past, its corresponding

long-past antecedent hits have no more influence on the future. The Time aspect of

prediction is not handled in the present work.

The consequent distribution of historical data obtained in the selection mode, is

normalized here and used in conjunction with the new antecedent hits to determine the

value of the metric Expectation for each of the 729 rules. The weighted mean average of

these Expectations in each of the ten consequent zones, is also reported for each rule

within 95% confidence limits. These calculations are explained in detail in Chapter II.

66

3.2.2 The Display the ‘Expectations’ Histogram button

This button when clicked, displays the Expectations calculated by the Start button

of the prediction mode, in the form of a histogram for each rule. It also displays the

weighted mean average of the expectations (in each of the ten consequent zones) within

95% confidence limits. For comparison purposes, the weighted mean average obtained

from Historical Data in the selection mode for that rule is also displayed. Figure 26

displays the GUI for this display. (DispExpect.frm). On the upper right corner of the

form, this GUI also gives a ‘verdict’ as to whether the rule was good, bad, insufficiently

expressed in data or showed insufficient corroboration, according to historical data used

in the selection mode. Figure 27 depicts a code snippet that decides what this verdict

should be.

Figure 26: GUI for the displaying the ‘expectations’ of each rule. The name of this form is
DispExpect.frm.

67

For i = 1 to number of rules selected
‘If a rule is selected by the optimization process, it is a good rule.
 If Val(List1.Text) = number(i) Then
 Text3.Text = "GOOD RULE!"
 Exit For
 End If
Next i
‘If the number of good and bad trips are 0
If good(rownum) = 0 And bad(rownum) = 0 Then

Text3.Text = "Not Expressed Sufficiently In Data"
‘If the number of good trips is 1 and the number of bad trips is 0
ElseIf (good(rownum) = 1 And bad(rownum) = 0) Then

Text3.Text = "Insufficient Corroboration”
‘If the number of good trips is less than the number of bad trips
ElseIf good(rownum) <= bad(rownum) Then

Text3.Text = "BAD RULE"
End If
Figure 27: Making a ‘verdict’ about a rule, depending on the number of good and bad trips made
by it.

3.3 Known Issues

There are a few problems that the user of this program needs to be aware of. These

problems arise because of glitches in interaction of the program with the Windows

Operating System or the user. Although most of these errors were trapped, there are a few

more that need to be dealt with.

1. When the Start button or the Display button is hit either in the selection or

the prediction mode, the computer hangs. This happens because a large

part of the computer’s memory is used up for this process. This effectively

means that while this application is running, it is advisable that the user

68

run no other application. The user should wait till the program ends. The

time this takes will depend on the computer’s speed.

2. All instances of the EXCEL process have to be ended manually by hitting

‘End Task’ on the task manager (pressing ctr+alt+del) before hitting the

display button the second time consecutively. This needs to be done

because sometimes the embedded EXCEL object that the program uses

remains open. Also when too many instances of EXCEL are loaded,

Microsoft EXCEL stops responding to the program. Refer to Issue 6 in

[3]. This is the only major issue in this code.

3. The user is referred to [3] for more issues in this code. Those issues apply

to the present program also as those parts of Sharma’s code were inherited

in the present work.

69

CHAPTER IV

RESULTS AND DISCUSSION

4.1 Definition of Good and Bad Rules

The exhaustive-search method (as explained in Section 1.4.1.3) was used in order

to determine the best metrics to select only good rules and reject all bad rules. This relies

on the definition of good and bad rules.

A rule is said to be good if the logical relationship between its antecedent and

consequent translates into an observed and corroborated cause-and-effect relationship in

the data.

Consider Rule 148 for example. Its Antecedent states that Hot water at a high

temperature of T1 flowing at a medium rate of F1, mixes with cold water also flowing at

a medium rate of F2 and that this mixing persists for a low time interval. Logically this

should result in a short delay and a medium final temperature of T3, as is in fact stated by

the rule. Therefore, Rule 148 is a good rule.

70

As seen in the TSD shown in Figure 28, both selection criteria that were defined

in Section 2.5.1.1 to select rules, are satisfied by this rule.

1. The rule makes four good trips (trips into Quadrant II) which are more than the

minimum criterion of two, thus providing ample corroboration.

2. The Merit of the rule is 4, which is greater than the minimum criterion of 1 (no

trips were made into Quadrant IV).

Figure 28(a): TSD for Rule148 showing 4 ‘good’ trips and 0 ‘bad’ trips - IF Temp1 is HIGH &
F1 is MED & F2 is MED & Persistence is LOW THEN after SHORT delay Temp3 will be MED

Figure 28(b): Quadrant II zoomed in to depict the ‘good’ trips. Four trips satisfy the threshold
condition of five.

Consequently, a rule is said to be bad if it is inconsistent with the actual process

phenomena. Rule 229 is one such example. It shares the same antecedent as Rule 148 but

states that after a short delay, the final temperature T3 will be high. This is not a logical

consequence and therefore, Rule 229 is a bad rule.

0

0.5

1

0 0.5 1
Ta

Tc

0.5

0.85

0 0.5 1
Ta

Tc

(a) (b)

4
‘good’
trips

71

Figure 29(a): TSD for Rule 229 showing 4 ‘bad’ trips and 0 ‘good’ trips - IF Temp1 is HIGH &
F1 is MED & F2 is MED & Persistence is LOW THEN after SHORT delay Temp3 will be HIGH

Figure 29(b): Quadrant IV zoomed in to depict the ‘bad’ trips. Four trips satisfy the threshold
condition of five.

The TSD shown in Figure 29 corroborates this fact, as the rule is seen to make

four trips into Quadrant IV (four bad trips) and none into Quadrant II (zero good trips).

Thus neither selection criteria are satisfied, which leads to the rule being eliminated from

the final rule data-base as desired.

Some true and invalid rules may not be expressed in the data and so are never deemed as

good or bad.

4.2 Results

The results were generated for the selection phase and the prediction phase.

Note for the selection phase: The phenomena expressed by the simulator, used for

generating the data, are known. Hence it was known which rules are good and which

(a) (b)

0

0.5

1

0 0.5 1
Ta

Tc

0.15

0.5

0 0.5 1
Ta

Tc

4 ‘bad’
trips

72

rules are bad. The selection criteria were tested to determine if they selected good rules

and reject bad rules. This was a test on validation of the choice of Merit.

4.2.1 Selection - Without Noise

The simulator was used to generate data (for 2403 seconds). The code for the

simulator is listed in Appendix A. The ideal situation of no noise was first considered.

This data was then processed as described in Section 1.4.1.2. The TSDs for each of the

729 rules (generated by exhaustive search) were then generated, which were used to

determine if a rule was to be selected or not. Only rules satisfying both the selection

criteria (described in Section 2.5.1.1) were included in the final rule base. It was observed

that all the rules that were thus selected were good.

The selection criteria depended on the metric Merit which in turn depended on the

number of good or bad trips made by the rule. This metric alone was used to select good

rules from the data base.

4.2.1.1 Choice of Threshold Criteria

Whether or not a path qualified to be termed as a trip depended on the threshold

criteria (minimum number of consecutive points into or out of a quadrant). Initially, four

consecutive points was used as a threshold to term a path as a trip. But using four points

as a threshold caused one bad rule (Rule 169) to be selected and one good rule (Rule 138)

to be eliminated.

73

 For example Rule 169 which states that “IF Temp1 is LOW & F1 is LOW & F2 is

HIGH & Persistence is LOW THEN after SHORT delay Temp3 will be HIGH”, is

completely illogical and hence is a bad rule and should not be selected. Figure 30 depicts

its TSD.

0

0.5

1

0 0.5 1
Ta

Tc

Figure 30: TSD for Rule 169 (Bad Rule) - IF Temp1 is LOW & F1 is LOW & F2 is HIGH &
Persistence is LOW THEN after SHORT delay Temp3 will be HIGH.
Path 1 consisting of four points is considered as a good trip only if the threshold is set at four
points, making the total number of good trips=2. If the threshold is increased to five points, the
total number of good trips=1.

As seen in Figure 30, the threshold criterion determines whether or not Path 1 is

considered as a good trip. A threshold of four points makes Path 1 a good trip, thus

making the total number of good trips two. Since the number of good trips is now two,

and there are no bad trips, Merit equals 2 and both selection criteria are satisfied, thus

causing the rule to be selected, when in fact it should be eliminated.

Path 1

74

 On the other hand, a threshold of five points causes Path 1 to not be termed as a

trip. Hence, the total number of good trips reduces to one. The 1st selection criterion of

having a minimum of two good trips is now not satisfied and this rule is eliminated as is

desired. On the same lines, Rule 138 which states that “IF Temp1 is HIGH & F1 is LOW

& F2 is LOW & Persistence is HIGH THEN after SHORT delay Temp3 will be MED”,

is consistent with process phenomena and hence is a good rule and should be selected.

Figure 31a: TSD for rule 138 (Good Rule) - IF Temp1 is HIGH & F1 is LOW & F2 is LOW &
Persistence is HIGH THEN after SHORT delay Temp3 will be MED. Path 2 determines whether
or not the rule is good.

Figure 31b: Path 2 consisting of four points is considered as a bad trip only if threshold is set at
four points, making the total number of bad trips=2. If the threshold is increased to five points the
total number of bad trips = 1.

As shown in the TSD Rule 138 in Figure 31, the threshold criterion determines

whether or not Path 2 is considered as a bad trip. A threshold of four points makes Path 2

a bad trip, thus making the total number of bad trips two. Since the number of good trips

is two and the number of bad trips is also two, Merit equals 0 which is less than the

0

0.5

1

0 0.5 1
Ta

Tc

0.45

0.5

0.55

0.71 0.76
Ta

Tc

(a) (b)

Path 2 consists of 4
points (Considered
as a bad trip if
threshold = 4)

1st good
trip

2nd

good
trip

1st bad
trip

Path 2

75

selection criterion of one, thus causing the rule to be eliminated, when it should be

selected instead.

As a solution to avoid rejecting Rule 138, a threshold of five points causes Path 2

to not be termed as a trip thus reduces the number of bad trips to one. Now, the total

number of good trips is two and the number of bad trips is one, causing the Merit to equal

1. This causes both the selection criteria to be satisfied and this rule is hence selected into

the final rule base.

 Note: A method to determine the optimum threshold for a process needs to be

formulated (Refer to Section 5.2)

4.2.1.2 Evaluation of Rules

The simulator was run several times and it was observed that a threshold of five

points selected only good rules that were sufficiently represented in the data each time.

Using these criteria nine good rules and no bad rules were selected from an initial rule-

base of 729. The final list of rules is listed in Appendix B1.

Figures 28, 31, 32, 33 depict some of the rules selected to be a part of the final

rule-base. Further, it was also observed that increasing the threshold to seven points

selected only six good rules as it demanded more number of successive points in a path

for the path to qualify as a trip. Thus increasing the threshold determined how “strict” one

wished to be in defining good rules.

76

0

0.5

1

0 0.5 1
Ta

Tc

Figure 32: TSD for rule 97 - IF Temp1 is LOW & F1 is MED & F2 is HIGH & Persistence is
LOW THEN after SHORT delay Temp3 will be MED. Two good trips denote sufficient
corroboration. The Merit of the rule is 2. This rule is selected.

0

0.5

1

0 0.5 1
Ta

Tc

Figure 33: TSD for rule 122 - IF Temp1 is MED & F1 is MED & F2 is MED & Persistence is
MED THEN after SHORT delay Temp3 will be MED. Two good trips provide sufficient
corroboration. The Merit of the rule is 2. This rule is selected.

4.2.1.3 Comparison with Sharma’s Work

2 good trips
(Threshold=
5)

77

 Using the same simulator data under the same ideal (noise-less) conditions,

Sharma’s metrics and optimization procedure selected 306 rules. All rules with rank 0 or

1 were selected because they were either dominated by no other rule or just one more rule

respectively.

Using the same data used in the present work, it was observed that 76 rules were

termed as the best (76 rules had a rank of 0) after Sharma’s optimization procedure. But

74 of the 76 rules selected by Sharma, made zero good trips and zero bad trips, and the

other two made just one good trip and zero bad trips. Using the two selection criteria

proposed in the present work, none of the 76 rules were accepted as good rules in the

final data base. For rules that made zero good and zero bad trips, there were no instances

of the rule in Quadrants II and IV to decide if it was bad or not. Such rules were

eliminated. Rule 325 was one such example. Figure 34 depicts the TSD of Rule 325.

0

0.5

1

0 0.5 1
Ta

Tc

Figure 34: TSD for Rule 325 - IF Temp1 is LOW & F1 is LOW & F2 is LOW & Persistence is
LOW THEN after MED delay Temp3 will be MED. This rule was selected as a good rule using
Nitin’s metrics but was eliminated in the present work as it made zero good trips and zero bad
trips.

78

 Although some of these eliminated rules were good, they were not accepted into

the final rule base because the event they described did not exist within the data from

which the knowledge was being extracted.

Rules that made just one good trip and zero bad trips were also eliminated

because they did not satisfy either of the selection criteria. Rules 723, 635 were two such

examples. Their TSDs are shown in Figures 35, 36 respectively.

0

0.5

1

0 0.5 1
Ta

Tc

Figure 35: TSD for rule 723 - IF Temp1 is HIGH & F1 is HIGH & F2 is LOW & Persistence is
HIGH THEN after LONG delay Temp3 will be HIGH. This rule is not selected in the present
work because it makes just one good trip (threshold=5) which is less than the minimum criterion
of two. There is not enough corroboration.

79

0

0.5

1

0 0.5 1
Ta

Tc

Figure 36: TSD for rule 635 - IF Temp1 is HIGH & F1 is MED & F2 is MED & Persistence is
MED THEN after LONG delay Temp3 will be MED. This rule is not selected in the present work
because it makes just one good trip (threshold=5) which is less than the minimum criterion of
two. There is not enough corroboration.

Unlike in Sharma’s work, no bad rules were accepted as good because of scarce

data points in Quadrant II and no good rules were rejected as bad because of scarce data

points in Quadrant IV. This was achieved because the threshold condition made sure that

vagaries of numerical data were not considered as a trip. Also the corroboration criterion

made sure that sufficient evidence of the rule being good or bad existed. Figures 29, 37,

38 depict the TSDs of a few bad rules that were eliminated from the final rule base.

80

0

0.5

1

0 0.5 1
Ta

Tc

Figure 37: TSD for rule 41 - IF Temp1 is MED & F1 is MED & F2 is MED & Persistence is
MED THEN after SHORT delay Temp3 will be LOW. This is a bad rule and hence was
eliminated. It made two bad trips (Threshold=5).

0

0.5

1

0 0.5 1
Ta

Tc

Figure 38: TSD for rule 178 - IF Temp1 is LOW & F1 is MED & F2 is HIGH & Persistence is
LOW THEN after SHORT delay Temp3 will be HIGH. This is a bad rule and hence was
eliminated. It made two bad trips (Threshold=5).

81

4.2.2 Selection - With Noise

The simulator was then run several times by adding noise to the input variables.

The code is included in Appendix A. This was done to check the robustness of the rule

selection method. In one of the instances, the simulator was run for 3000 seconds. As

with the ideal case, the data was processed and an exhaustive search was done to

determine all possible rules (729). The TSDs for each rule were then examined to

determine the Merit for each rule and check for both the selection criteria. Again, it was

observed that even for noisy data only good rules were selected.

4.2.2.1 Choice of Threshold Criteria

The rules that were selected were found to be sensitive to the choice of the

threshold that determined whether a path could be termed as a trip.

A threshold of five points, selected a total of 25 rules. But, a few bad rules were

selected. As the threshold was increased to six points a few bad rules were eliminated.

But a threshold of seven points selected a total of 22 good rules. So a threshold of seven

points seemed like the optimum in order to generate good rules and was used to

determine the number of trips, when the process data was very noisy.

4.2.2.2 Evaluation of Rules

Rule 121 states that “IF Temp1 is MED & F1 is MED & F2 is MED &

Persistence is LOW THEN after SHORT delay Temp3 will be MED”, which is logically

right. This implies that Rule 121 is not a bad rule. Figure 39 depicts the TSD of rule 121.

82

When its TSD was examined, this rule was found to make 19 good trips and eight bad

trips with a threshold of seven points. Hence, the goodness of the rule was very well

corroborated. Also, it had a merit of 8 which was well above the minimum requirement

of 1. Thus, this rule was included in the final rule base. TSDs of some other rules that

were selected (112, 115) are shown in Figures 40, 41. The final rule-base is listed in

Appendix B2.

0

0.5

1

0 0.5 1
Ta

Tc

Figure 39: TSD for rule 121 - IF Temp1 is MED & F1 is MED & F2 is MED & Persistence is
LOW THEN after SHORT delay Temp3 will be MED. It made 19 good trips and eight bad trips.
This rule was selected.

19 good trips
(Threshold=7)

8 bad trips
(Threshold=7)

83

0

0.5

1

0 0.5 1
Ta

Tc

Figure 40: TSD for rule 112- IF Temp1 is MED & F1 is LOW & F2 is MED & Persistence is
LOW THEN after SHORT delay Temp3 will be MED. It made eight good trips and four bad trips.
This rule was selected.

0

0.5

1

0 0.5 1
Ta

Tc

Figure 41: TSD for rule 115 - IF Temp1 is MED & F1 is LOW & F2 is HIGH & Persistence is
LOW THEN after SHORT delay Temp3 will be MED. It made five good trips and two bad trips.
This rule was selected.

8 good trips
(Threshold=7)

4 bad trips
(Threshold=7)

5 good trips
(Threshold=7)

2 bad trips
(Threshold=7)

84

 Rules 115, 121,122, 127, 148 were found to be selected as good rules for both the

ideal and the noisy process data, thus reinforcing the robustness of these five rules.

It was observed however, that a threshold of seven points performed better with very

noisy data, and a threshold of five points performed well with data that was not too noisy.

4.2.2.3 Comparison with Sharma’s Work

Sharma’s metrics were then used to select good rules using the same noisy

process data as discussed above. His optimization procedure selected a total of 240 rules.

But none of the rules termed as the best by Sharma’s metrics were accepted as good rules

in the present work, using the two proposed selection criteria. A common trait among all

the rules selected by Sharma were that they all made zero good trips and zero bad trips,

which means there was no corroboration of the fact that the rule was good. They either

had too scarce points in Quadrant II or no points at all.

0

0.5

1

0 0.5 1
Ta

Tc

Figure 42: TSD for rule 247 - IF Temp1 is LOW & F1 is LOW & F2 is MED & Persistence is
LOW THEN after MED delay Temp3 will be LOW. It made zero good trips and zero bad trips.
This rule was eliminated.

85

 An example of a rule selected by Sharma is Rule 247.Figure 42 above depicts its

TSD. It states that “IF Temp1 is LOW & F1 is LOW & F2 is MED & Persistence is

LOW THEN after MED delay Temp3 will be LOW”, which is consistent with the

process phenomena, making it a theoretically good rule. However, this rule was not

selected into the final rule database in the present work because there were no instances

of this rule expressed in the data used to extract knowledge.

Figure 43 depicts the TSD of Rule 130 which is another example of a rule selected by

Sharma that was eliminated in the present work.

0

0.5

1

0 0.5 1
Ta

Tc

Figure 43: TSD for rule 130 - IF Temp1 is MED & F1 is HIGH & F2 is MED & Persistence is
LOW THEN after SHORT delay Temp3 will be MED. It made zero good trips and zero bad trips
(threshold=7). This rule was eliminated.

Figure 44 depicts the TSD of Rule 202 which states that “IF Temp1 is MED & F1

is MED & F2 is MED & Persistence is LOW THEN after SHORT delay Temp3 will be

HIGH”. This is clearly a bad rule because the consequent stated in the rule is not the

Path with 3
points –
Not a trip

86

effect that is expected from the cause stated by the antecedent of the rule. This rule made

three good trips and 22 bad trips. Thus it was eliminated, as desired.

0

0.5

1

0 0.5 1
Ta

Tc

Figure 44: TSD for rule 202 - IF Temp1 is MED & F1 is MED & F2 is MED & Persistence is
LOW THEN after SHORT delay Temp3 will be HIGH. It made three good trips and 22 bad trips
(threshold=7). This is a bad rule and was eliminated

4.2.3 Prediction

This phase is independent of the rule selection phase and helps predict future

outcomes based on historical data.

Process data was collected from the simulator (with noise) for 3541 seconds, of

which 2500 data points were considered to be ‘historical’ data and were used in the

selection mode. The remaining 1041 data points were considered as new data, for which

the distribution of consequents in the 10 zones were predicted using the information

gathered from the previous 2500 data points. New data was used in batches of 65 seconds

which was set as the window length for prediction, as described in Section 2.4.5.

87

 The historical data was put through the selection process mentioned in Section

2.5.1. Once the TSDs were constructed for all rules, the distribution of the consequents in

each of the 10 consequent zones was determined for each of the individual five

antecedent zones.

 For example, Figure 45 depicts the TSD of Rule 118. Based on historical data,

this rule made six good trips and two bad trips. Since it satisfied both the selection

criteria, it was selected into the final rule-base.

0

0.5

1

0 0.5 1
Ta

Tc

Figure 45: TSD for rule 118 based on ‘Historical’ Data - IF Temp1 is LOW & F1 is
MED & F2 is LOW & Persistence is LOW THEN after SHORT delay Temp3 will be
LOW. It made six good trips and two bad trips (threshold=7). This was one of the good
rules that were selected.

The consequent distribution in each antecedent zone was determined for Rule 118

based on historical data and then normalized to aid the calculation of Expectations. In

calculating the number of points in each zone, noise was eliminated by only considering

points which contributed to either a good or a bad trip based on the threshold criteria.

88

 New data was collected and processed; it was un-delayed and only the antecedents

were fuzzified [As described in Section 1.4.1.3]. The number of antecedent hits in each

of the five antecedent zones was calculated. For example in the new data, Rule 118 made

two hits in the first antecedent zone, one hit in the second antecedent zone and one hit in

the third antecedent zone. Figure 46 depicts the antecedent hits made by Rule 118 based

on new data.

0

0.5

1

0 0.5 1
Ta

Tc

Figure 46: TSD for rule 118 based on ‘new’ data, depicting the antecedent hits. Two hits were
made in the first antecedent zone, one hit in the second antecedent zone and one hit in the third
antecedent zone.

All the information gathered was then used to calculate the Expectations of the

consequent hits of this rule based on the antecedent hits in the new data. Section 2.4

details this calculation procedure. These expectations were first calculated individually

for each antecedent zone and then summed to yield the absolute expectations for the rule

in question. Finally these absolute expectations were normalized to yield normalized

expectations. Histograms were used to depict these Expectations. Figure 47 depicts the

89

individual expectations for Rule 118, for the first and the second antecedent zones,

respectively, based on the historical data of Rule 118 and the new hits the rule made.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
1
2
3
4
5
6
7
8
9

10

Zo
ne

of
Tr

ut
h

of
Co

ns
eq

ue
nt

Expectation
First Antecedent zone

0 0.1 0.2 0.3 0.4 0.5
1
2
3
4
5
6
7
8
9

10

Expectation
Second Antecedent zone

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

1
2
3
4
5
6
7
8
9

10

Expectation
Third Antecedent zone

Figure 47: Individual Absolute ‘Expectations’ for each of the three antecedent zones in which
Rule 118 made hits.

0 0.2 0.4 0.6 0.8 1 1.2
1
2
3
4
5
6
7
8
9

10

Zo
ne

of
Tr

ut
h

of
Co

ns
eq

ue
nt

Absolute Expectation
0 0.05 0.1 0.15 0.2 0.25 0.3

1
2
3
4
5
6
7
8
9

10

Zo
ne

of
Tr

ut
h

of
Co

ns
eq

ue
nt

Normalized Expectation
Figure 48: Cumulative Absolute and Normalized ‘Expectations’ for Rule 118.

Figure 48 depicts the cumulative absolute ‘expectations’ histogram for Rule 118,

obtained by summing the individual expectations for each zone and the normalized

expectations histogram obtained by normalizing the absolute expectations.

90

 By inspecting the expectation histogram we can infer that for the antecedent hits

made by Rule 118 based on new data, most of the consequents are predicted to lie in

Quadrant II, which in turn may mean that the rule may make another good trip in the

future. Similarly expectations were successfully generated for all rules in the initial rule

data-base.

The weighted mean average of the expectations was also calculated within 95%

confidence limits as described in Section 2.4.4. But since the data was not assumed to be

normally distributed, the weighted mean average provides as just an approximation of the

central tendency of the expected consequents. Late breaking research suggests the

calculation of median instead. This is discussed in Section 5.2.

For example, the weighted mean average of the expectations of Rule 10 was

found to be 0.6 within 95% confidence limits of 0.41, 0.79.But the median of the

expectations was 0.65. The difference in the mean and the median implies that the

distribution is definitely far from normal Gaussian distribution. Table I depicts the means,

medians for a few good rules.

Table II depicts predictions made at every five second interval over a time period

of 45 seconds, at a certain point in time. Table III depicts values of T3 based on what

actually happened (the simulator data). A comparison of the two tables denotes the

accuracy of the prediction.

91

Table I: This table denotes the comparison of weighted mean average and median of
‘expectations’ for a few good rules.

As denoted by Table II, Rule 118, 119 predict that T3 will be MED after SHORT

delay, at 10, 15, 20 seconds from the point in time where prediction begun. Table III

(which denotes the actual values and membership functions of T3 for all three fuzzy

categories at the same above-mentioned points in time) depicts that the actual T3 has µM

values of about 0.2 and µL values of about 0.8. This implies that the actual T3 was more

LOW than MED, making the predictions only partially correct.

Similarly, Rules 121, 122 predict that T3 will be MED after SHORT delay, at 35,

40, 45 seconds from the point in time from where prediction begun. Table III depicts that

the actual T3 has µM values of about 0.1 and µL values of about 0.9. This implies that the

actual T3 was more HIGH than MED, making the predictions only partially correct.

Rule number Weighted Mean
Average(Lower Confidence Limit,
Upper Confidence Limit)

Median

10 0.599 (0.41, 0.79) 0.65
13 0.71 (0.26, 0.98) 0.75
82 0.74 (0.51, 0.98) 0.75
85 0.71 (0.51, 0.96) 0.75
95 0.52 (0.2, 0.79) 0.55
109 0.62 (0.13, 0.9) 0.75
118 0.61 (0.22, 0.98) 0.65
119 0.61 (0.22, 0.98) 0.55
121 0.71 (0.28, 0.99) 0.75
122 0.75 (0.35, 0.98) 0.75
130 0.75 (0.7, 0.8) 0.75
226 0.65 (0.12, 1) 0.6
229 0.66 (0.13, 0.9) 0.75
235 0.89 (0.71, 1) 0.95

92

Table II: This table denotes the predictions made for six good rules at a certain point in
time.

As seen in Table II Rules 10, 230 predicted LOW and HIGH T3 values at 25 and

50 seconds from the point in time where prediction begun respectively. Table III depicts

that at 25 seconds the actual T3 has a µL of about 0.8 and a µM of about 0.2 making T3

more LOW than MED. Also, at 50 seconds the actual T3 has a µM of about 0.1 and a µH

of about 0.9 making T3 more HIGH than MED. Thus the predictions made by Rules 10,

230 were observed to be very accurate as can be seen in Table III.

Good Rule # 118 230 121
Good Rule

Consequent

after SHORT delay,
Temp3 will be MED

after SHORT delay,
Temp3 will be HIGH

after SHORT delay,
Temp3 will be MED

Time (Seconds) Expectation L.C.L U.C.L Expectation L.C.L U.C.L Expectation L.C.L U.C.L
5
10 0.71 0.24 0.99
15 0.61 0.23 0.98
20 0.57 0.22 0.98
25
30
35 0.74 0.36 0.97
40 0.69 0.26 0.99
45 0.75 0.34 0.98
50 0.69 0.31 0.98

Good Rule # 10 119 122
Good Rule

Consequent

after SHORT delay,
Temp3 will be LOW

after SHORT delay,
Temp3 will be MED

after SHORT delay,
Temp3 will be MED

Time (Seconds) Expectation L.C.L U.C.L Expectation L.C.L U.C.L Expectation L.C.L U.C.L
5
10
15 0.63 0.21 0.99
20 0.58 0.5 0.78
25 0.6 0.41 0.79
30 0.6 0.41 0.79
35 0.75 0.34 0.98
40 0.74 0.36 0.98
45 0.75 0.34 0.98
50

93

Thus, two of the six good rules made accurate predictions.The anamolies in

prediction can be owed to the fact that Table II lists predictions made by only six good

rules. If predictions made by all the selected good rules is analysed, more accurate results

are obtained.

Time (Sec) Actual T3 Prediction µL µM µH
10 13.7051 MED 0.8066 0.1934 0
15 13.75272 MED 0.8055 0.1945 0
20 13.75964 MED 0.8053 0.1947 0
25 14.71551 LOW 0.784 0.216 0
30 89.35258 LOW 0 0.1255 0.8745
35 89.58073 MED 0 0.1204 0.8796
40 89.58817 MED 0 0.1203 0.8797
45 89.58825 MED 0 0.1203 0.8797
50 88.99691 HIGH 0 0.1111 0.8888

Table III: This table denotes the actual values of the variable T3 at the same point in time
for which predictions were made, as depicted in Table II. The Low (µL), Medium (µM) and
High (µH) membership functions were calculated based on the fuzzy break points of 5, 50,
and 95.

94

CHAPTER V

CONCLUSIONS AND RECOMMENDATIONS

The results presented in Chapter IV provide proof of concept for trips

(independent events) to be used as the basis of calculating metrics (Merit) used to select

good rules from an initial rule data-base, using truth-space evaluation as suggested by

Sharma. They also present the possibility of predicting future consequents based on

historical data using the merit Expectations.

5.1 Conclusions

These metrics are based on the Truth Space Diagram proposed by Sharma.

Efficient technologies like genetic algorithms can be used to generate rules and the TSD

approach can be used in conjunction, to optimize rule bases and evaluate rules using the

metrics proposed.

1. The two selection criteria proposed (involving corroboration and the metric Merit)

were able to select good and only good rules that were sufficiently expressed in

the data used for extracting knowledge. For rules that were selected, sufficient

evidence existed of the fact that they were good.

95

2. The proposed selection metric Merit in combination with minimum corroboration

(based on the concept of trips) alone is capable of selecting good, and only good,

rules from process data. There was no need to implement Pareto-optimization

techniques.

3. The threshold condition used to define paths that were trips, ensured that vagaries

in numerical data were not considered as an event. This removed the inclusion of

incorrect or bad rules in the final rule database.

4. The metric expectation, proposed for predicting consequents given the

antecedents, was used to predict future behavior of every rule. The predictions

were reasonably accurate.

5. Both proposed metrics were simple to calculate. The metric Merit did not require

normalization.

5.2 Issues and Recommendations

1. The most important issue with the metrics that are recommended in this work is

that there is no mathematical proof for them. They are purely intuitive. Proof of

concept however does exist as shown in Chapter IV.

2. In the present work the threshold that defined a trip was set at five data points for

ideal data and at seven data points for noisy data. These numbers though efficient,

are not claimed to be universal. A method to determine the threshold depending

on the application needs to be formulated.

96

3. The two selection criteria that were used in this work could also be subject to

change depending on the application. In the present study, the selection criteria

were set up such that, only rules that made at least two good trips and had a merit

of at least 1 were eligible to be included in the final rule data-base. While a

minimum of two good trips were required to corroborate the goodness of a rule, a

single bad trip was enough to corroborate the badness of a rule. Therefore, a rule

that made zero good trips and one bad trip was deemed as a bad rule, but a rule

that made one good trip and zero bad trips was not termed as good rule. This

made the selection criteria “strict”, but there needs to be a way to determine how

strict one should be in selecting good rules.

4. As discussed in Chapter II, there is enough evidence of the fact that the

distribution of points in the TSD cannot be assumed as Gaussian distribution. In

the prediction mode however, the weighted mean average was used as a measure

to denote the central tendency of the expected consequents, for the given

antecedents. This can be misleading in skewed distributions since it is greatly

influenced by extreme values. The Median may be more informative for skewed

distributions like those observed in the present work, since it is less sensitive to

extreme values. Hence, use of the median to report the central tendency is

recommended.

5. The boundaries of the TSD were fixed at certain values. Specifically, the TSD

was split into 4 quadrants of size 0.5 x 0.5 each. The sizes of these quadrants

could be customized depending on the process at hand. These boundaries form the

foundation of the present work. A path into a certain quadrant was qualified as a

97

trip if it satisfied the threshold condition. For example, if the Ta = 0.5 boundary is

moved (backwards) to Ta = 0.4, many paths that did not qualify as trips with the

Ta = 0.5 boundary, may now qualify as trips. This will affect the number of good

and bad trips made by a rule which in turn, may affect the rule’s conformation to

the selection criteria and hence its selection into the final rule-base. In the

prediction mode, more number of antecedent zones would be required to depict

the distribution of the consequents. Similarly, shifting any of the boundaries (Ta =

0.5, Tc = 0.5) backward or forward will affect the performance of both metrics.

6. Once good rules are selected into the final rule-base they need to ‘Ranked’ in

order to determine which rules are better than a certain rule. It is recommended

that the following possibilities be considered.

Rules of distinctly different antecedents and consequents should not be

compared. For example, Rule 7 states that “IF Temp1 is LOW & F1 is LOW &

F2 is HIGH & Persistence is LOW THEN after SHORT delay Temp3 will be

LOW”, and rule 121 states that “IF Temp1 is MED & F1 is MED & F2 is MED &

Persistence is LOW THEN after SHORT delay Temp3 will be MED”. Both rules

are ‘good’. The data shows that Rule 7 makes 2 good trips and 0 bad trips, which

implies that it has a merit of 2. On the other hand, Rule 121 makes 18 good trips

and 6 bad trips, implying that it has a merit of 12, which is much larger than the

merit of Rule 7. However, this does not mean that Rule 121 is better or that Rule

7 needs to be rejected. It just means that Rule 121 is ‘seen more’ in data. Thus

more instances of corroboration need not mean the rule is better.

98

Rules that have the same antecedent can be compared, assuming each

antecedent has a unique outcome. For example consider Rule 121 which states

that “IF Temp1 is MED & F1 is MED & F2 is MED & Persistence is LOW

THEN after SHORT delay Temp3 will be MED” and rule 607 which states that

“IF Temp1 is MED & F1 is MED & F2 is MED & Persistence is LOW THEN

after LONG delay Temp3 will be MED”. Both rules share the same antecedent,

but predict different consequents. Both rules are ‘good’, and both are selected.

But Rule 607 makes only two good trips and zero bad trips implying that its merit

is 2, which is much lesser than the merit (12) of rule 121. In this case, in can be

said that Rule 121 is “better” than Rule 607. Thus use of “better” is a distinction

only for rules of like antecedent.

If there are two valid mechanisms (antecedents of rules) that cause the

same effect (consequent), then both rules can be selected. This could imply that

both rules are incomplete and can be combined by the ‘OR’ operator. For

example, consider Rule 7 which states that “IF Temp1 is LOW & F1 is LOW &

F2 is HIGH & Persistence is LOW THEN after SHORT delay Temp3 will be

LOW” and Rule 10 which states that “IF Temp1 is LOW & F1 is MED & F2 is

LOW & Persistence is LOW THEN after SHORT delay Temp3 will be LOW”.

Both rules predict the same outcome but are caused by different causes. Both

rules are good and both are selected. Both rules make two good trips and zero bad

trips. They can be combined into one rule using the “OR” operator as follows: “If

99

(Temp1 is LOW & F1 is LOW & F2 is HIGH & Persistence is LOW) OR (IF

Temp1 is LOW & F1 is MED & F2 is LOW & Persistence is LOW) THEN after

SHORT delay Temp3 will be LOW”.

7. In the present work, since the phenomena expressed by the simulator are known.

It is also known whether a given rule is good or bad. This was used as an

advantage in determining the optimum threshold criteria. A trial-and-error method

was used to determine the optimum threshold criterion that selected good and

only good rules. Hence, a method to determine the optimum threshold for a

process, when all the phenomena are not known, needs to be formulated.

100

REFERENCES

(In order of appearance)

1. De Lima P. and Yen G.G., “A Truth Space Diagram temporal linguistic rule

extraction procedure using multiple objective Genetic Algorithm”, ISA

Transactions, 40(2), pp. 315-327, 2005.

2. Sharma N., “Metrics for evaluation of the goodness of linguistic rules”, Unpublished

Master’s Thesis, Oklahoma State University, Oklahoma, USA, 2003.

3. Su M., “Autonomous generation of cause-and-effect rules in dynamics processes”,

Unpublished PhD Proposal, Oklahoma State University, Oklahoma, USA, 2005.

4. Stephanopoulos G. and Han C., “Intelligent systems in process engineering: A

review”, Computers & Chemical Engineering, 20(6), pp. 743-791, 1996.

5. O’Shima E., “Computer aided plant operation,” Computers & Chemical Engineering,

7(4), pp. 311-329, 1983.

6. Hüllermeier E., “Special issue on fuzzy sets in knowledge discovery”, Fuzzy Sets and

Systems, Editorial, 149(1), pp. 1-3, 2005.

7. Zadeh L.A., “Outline of a new approach to the analysis of complex systems and

decision processes”, IEEE Transactions on Systems, Man and Cybernetics, SMC-

3, 28-44, 1973.

8. Yuan Y. and Zhuang H., “A genetic algorithm for generating fuzzy classification

rules”, Fuzzy Sets and Systems, 84(1), pp. 1-19, 1996.

101

9. Chen J.C. and Black JT., “A fuzzy-nets in-process (FNIP) system for tool-breakage

monitoring in end-milling operations”, International Journal of Machine Tools

and Manufacture, 37(6), pp. 783-800, 1997.

10. Herrera F., Lozano M. and Verdegay J.L., “A learning process for fuzzy control rules

using genetic algorithms,” Fuzzy Sets and Systems, 100(1), pp. 143-158, 1998.

11. Ngan P.S., Wong M.L., Lam W., Leung K.S. and Cheng C.Y., “Medical data mining

using evolutionary computation,” Artificial Intelligence in Medicine, 16(1), pp.

73-96, 1999.

12. Castillo L., Gonzalez A. and Perez R., “Including a simplicity criterion in the

selection of the best rule in a genetic fuzzy learning algorithm”, Fuzzy Sets and

Systems, 120(2), pp. 309-321, 2001.

13. Kim D. and Lee H.P., “An optimal design of neuro-FLC by Lamarckian co-

adaptation of learning and evolution,” Fuzzy Sets and Systems, 118(2), pp. 319-

337, 2001.

14. Ishibuchi H. and Yamamoto T., “Fuzzy rule selection by multi-objective genetic

local search algorithms and rule evaluation measures in data mining,” Fuzzy Sets

and Systems, 141(1), pp. 59-88, 2004.

15. Tan PN., Kumar V. and Srivastava J., “Selecting the right objective measure for

association analysis”, Information Systems, 29(4), pp. 293-313, 2004.

16. Wang H., Kwong S., Jin Y., Wei W. and Man K.F., “Multi-objective hierarchical

genetic algorithm for interpretable fuzzy rule-based knowledge extraction”, Fuzzy

Sets and Systems, 149(1), pp. 149-186, 2005.

102

APPENDIX A CODE LISTING

The following is the listing of the codes for every form used in the program.

The VBA code for the form Choose.frm is listed below.

'Algorithm for finding good rules from historical data using
'linguistic classification of input output variables using exhaustive search
'and for evaluation of rules using novel metrics.

'Uses .CSV files for input and output of data

'Preetica Kumar 12th June 2004
'NOTE: Some parts of this algorithm were inherited from
'previous code written by Nitin Sharma (Calculation of Ta, Tc,Persistence,linguistic
classification
'of input and output variables, exhaustive search of rules)

'Work done under Dr Rhinehart at Oklahoma State University

'This program asks the user whether he wishes to enter the selection mode or the
prediction mode

Private Sub Command1_Click()

Choose.Hide
Set Choose = Nothing

If Option1.Value = True Then
 SelMode.Show
Else
 PredMode.Show
End If

End Sub

Private Sub Option1_Click()
Option2.Value = False
End Sub

Private Sub Option2_Click()
Option1.Value = False
End Sub

103

The VBA code for the form SelMode.frm is listed below.

'Algorithm for the selection mode
'This program uses HISTORICAL DATA to create the initial rule-base(729 rules)
'by the exhaustive search method.
'It also calculates the value of the selection metric MERIT for each rule and
'the distribution of consequents in quadrants II,IV.

Public p As Variant, q As Variant 'counters

Public n As Variant 'rule number

Dim time() 'time
Dim t1() 'temperature 1
Dim f1() 'flow rate 1
Dim f2() 'flow rate 2
Dim t3s() 'temperature 3 after short delay
Dim t3m() 'temperature 3 after medium delay
Dim t3l() 'temperature 3 after long delay
Dim cp() 'combined persistance

'mua()=(T1(L,M,H),F1(L,M,H),F2(L,M,H),P(L,M,H))
Dim mua() As Double 'membership of antecedent
Dim muc() As Double 'membership of concequent
Dim filepath$
Dim filepersist$
Dim i As Integer 'counter of data point
Dim pa() As Double 'individual persistence of every variable in antecedent
Public runi As Integer

Dim tot As Integer
Dim samptime As Integer
Dim totaltime As Integer

Public prog As Integer

Sub lingpersclassify(i, tone, fone, ftwo)
'This subroutine calculates the combined persistence of the antecedent and
'classifies it into three fuzzy categories(L,M,H)
'written by Nitin Sharma

mua(10, i) = 0
mua(11, i) = 0
mua(12, i) = 0

104

'the combined persistence time is the minimum persistence time among all inputs
If pa(fone, i) >= pa(tone, i) Then
 If pa(ftwo, i) >= pa(tone, i) Then
 cp(i) = pa(tone, i)
 End If
End If

If pa(tone, i) >= pa(fone, i) Then
 If pa(ftwo, i) >= pa(fone, i) Then
 cp(i) = pa(fone, i)
 End If
End If

If pa(tone, i) >= pa(ftwo, i) Then
 If pa(fone, i) >= pa(ftwo, i) Then
 cp(i) = pa(ftwo, i)
 End If
End If

'Classification of persistance using 1-20-40 as limits
 If cp(i) = 1 Then mua(10, i) = 1
 If cp(i) >= 40 Then mua(12, i) = 1
 If cp(i) = 20 Then mua(11, i) = 1
 If cp(i) > 1 And cp(i) < 20 Then
 mua(10, i) = (20 - cp(i)) / (19)
 mua(11, i) = (cp(i) - 1) / (19)
 boogi = cp(i)
 End If
 If cp(i) > 20 And cp(i) < 40 Then
 mua(11, i) = (40 - cp(i)) / (20)
 mua(12, i) = (cp(i) - 20) / (20)
 End If
End Sub

Sub linguipersist(n, mua() As Double)
'This subroutine provides a linguistic label for the maximum persistence of each data
point
'written by Nitin Sharma

Dim X As Integer
Dim maxi() As Integer
ReDim maxi(1 To 3)
ReDim pa(1 To 9, 1 To n)

filepaths$ = filepath$ + "lingpers.csv"
Open filepaths$ For Output As #10

105

Print #10, "time,patl,patm,path,paf1l,paf1m,paf1h,paf2l,paf2m,paf2h"

For i = 2 To n
For k = 1 To 3 'k represents t1 f1 and f2 respectively
j = (3 * k - 2)

If mua(j, i) > mua(j + 1, i) Then

 If mua(j, i) > mua(j + 2, i) Then
 maxi(k) = j
 Else: maxi(k) = (j + 2)
 End If
 ElseIf mua(j, i) < mua(j + 1, i) Then
 If mua(j + 1, i) > mua(j + 2, i) Then
 maxi(k) = (j + 1)
 Else: maxi(k) = (j + 2)
 End If
End If

X = maxi(k)
 pa(X, i) = pa(X, i - 1) + 1

For l = j To (j + 2)
 If l <> maxi(k) Then pa(l, i) = 0
 Next l

Next k

Print #10, time(i); ","; pa(1, i); ","; pa(2, i); ","; pa(3, i); ","; pa(4, i); ","; pa(5, i); ",";
pa(6, i); ","; pa(7, i); ","; pa(8, i); ","; pa(9, i)

Next i

Close #10

End Sub

Sub TATC(n, mua() As Double, muc() As Double, pa() As Double, tot As Integer)

'Subroutine for calculating the truth of the antecedent and the truth of the
'consequent parts of the rules, using the predefined values of linguistic variables
'in the previous SUB. The number of iterations are Nx3x3x3x3x3x3 i.e. 7 loops
'in total cover N points and 729 rules in 81 categories.
'written by Nitin Sharma

'This subroutine also calculates the number of trips made into quadrant II, quadrant IV,

106

'the number of consequent hits in each of the 10 consequent zones for each of the 5
antecedent zones,
'the number of antecedent hits in each of the 5 antecedent zones.
'written by Preetica Kumar

time1 = Timer 'for time calculation
SelMode.MousePointer = 13

Dim zz, zx As Integer
Dim max, val As Integer
Dim goodtrip() As Single
Dim badtrip() As Single
Dim accuracy() As Single 'MERIT of each rule
Dim counter2() As Single
Dim counter() As Single
Dim slope As Double
Dim Y As Double
Dim X As Double
Dim ta() As Double
Dim ta2() As Double
Dim tc() As Double
Dim tasum() As Double
Dim kmax() As Single
Dim numpts() 'number of points in each 0.1x0.1 grid of quadrant II and quadrant IV
Dim hits() As Double 'number of antecedent hits in each of the 5 antecedent zones
Dim row, column As Integer
Dim ii, jj, pp, qq As Integer
Dim num As Integer
Dim k, l As Single
Dim filepath2$
Dim filepath3$

'strings for formulation of the rules
Dim clt1$()
Dim clf1$()
Dim clf2$()
Dim clp$()
Dim cld$()
Dim clt3$()
Dim rule$()

'Redimensioning of variables and initialization of certain linguistic string constants

ReDim clt1$(1 To 3)
ReDim clf1$(4 To 6)
ReDim clf2$(7 To 9)

107

ReDim clp$(10 To 12)
ReDim cld$(1 To 3)
ReDim clt3$(1 To 3)
ReDim rule$(1 To 729)
ReDim ta(1 To n)
ReDim tc(1 To n)
ReDim kmax(1 To 729)
ReDim cp(1 To n)
ReDim goodtrip(1 To 729)
ReDim badtrip(1 To 729)
ReDim accuracy(1 To 729)
ReDim counter(1 To n)
ReDim counter2(1 To n)
ReDim numpts(1 To 729, 1 To 10, 1 To 5)
ReDim hits(1 To 729, 1 To 5)
ReDim ta2(1 To n)
ReDim tasum(1 To n)

clt1(1) = "IF Temp1 is LOW"
clt1(2) = "IF Temp1 is MED"
clt1(3) = "IF Temp1 is HIGH"

clf1(4) = " & F1 is LOW"
clf1(5) = " & F1 is MED"
clf1(6) = " & F1 is HIGH"

clf2(7) = " & F2 is LOW"
clf2(8) = " & F2 is MED"
clf2(9) = " & F2 is HIGH"

clp(10) = " & Persistence is LOW"
clp(11) = " & Persistence is MED"
clp(12) = " & Persistence is HIGH"

cld(1) = " THEN after SHORT delay"
cld(2) = " THEN after MED delay"
cld(3) = " THEN after LONG delay"

clt3(1) = " Temp3 will be LOW"
clt3(2) = " Temp3 will be MED"
clt3(3) = " Temp3 will be HIGH"

'asking the user where he/she wants to save the files
answer:
answer$ = InputBox("Continue saving output files in same directory? Please type y
(Yes)// n (No) // q (Quit)", "Enter Information")

108

If answer$ = "y" Then
zz = Len(filepersist$)
zx = Len(filepaths$)
filepath$ = Left$(filepaths$, zx - zz)
ElseIf answer$ = "n" Then
filepath$ = InputBox("Please Enter target directory for output files", "Enter Information",
"e:\vbprogs\output\")
ElseIf answer$ = "q" Then
End
Else
text1.Text = "Please input y or n or q to proceed"
GoTo answer
End If

'Opening output files in the user-specified filepath

filepath2$ = filepath$ + "rulesheet.csv"
Open filepath2$ For Output As #12
filepath4$ = filepath$ + "combop.csv"
Open filepath4$ For Output As #14
filepath6$ = filepath$ + "tasums.csv"
Open filepath6$ For Output As #16
filepath100$ = filepath$ + "trips.csv"
Open filepath100$ For Output As #50
filepath101$ = filepath$ + "numpoints.csv"
Open filepath101$ For Output As #51

'Titles in the .CSV files
Print #51, "Number of Hits in each of the antecedent zones(HISTORICAL DATA)"
Print #51, "Rule,TaZone1, TaZone2,TaZone3,TaZone4,TaZone5"
Print #14, "r,i,cp,mua10,mua11,mua12"

r = 0
cat = 0

For theta = 1 To 3
 For tthree = 1 To 3
 cat = cat + 1
 For tone = 1 To 3
 For fone = 4 To 6
 For ftwo = 7 To 9
 For pers = 10 To 12

'this is indexing for the consequent part
a2 = tthree + 3
a3 = tthree + 6

109

'now calculate rule number
r = r + 1

'Visual bar for progress metering
prog = prog + 1
bar1.Value = prog

'Initialization of variables
goodtrip(r) = 0
badtrip(r) = 0

For i = 1 To 10
 For j = 1 To 5
 numpts(r, i, j) = 0
 Next j
Next i

For i = 1 To 5
 hits(r, i) = 0
Next i

'Create linguistic statement of rule and add to end of rulesheet file
rule(r) = Str(cat) + "," + Str(r) + "," + " " + clt1(tone) + clf1(fone) + clf2(ftwo) +
clp(pers) + cld(theta) + clt3(tthree)
Print #12, rule(r)

'Now to find which file to put data into, required for getting the correct filename and
filepath in windows
d$ = Chr$(34)
c$ = filepath$
a$ = Str$(r)
g = Len(a$)
q = g - 1
s$ = Right$(a$, q)
b$ = ".csv"
FileName$ = c$ + s$ + b$
FileName2$ = c$ + s$ + "NonSpurious.csv"
Open FileName$ For Output As #9
'Open FileName2$ For Output As #500

'Print #500, "Ta,Tc,GoodCount,BadCount"

110

'Main iteration for all datasets begins here

For i = 1 To n - 1

Call lingpersclassify(i, tone, fone, ftwo)

Print #14, r; ","; i; ","; cp(i); ","; mua(10, i); ","; mua(11, i); ","; mua(12, i)

'Calculation of truth of antecedent

If theta = 1 Then
kmax(r) = 2
ElseIf theta = 2 Then
kmax(r) = 10
ElseIf theta = 3 Then
kmax(r) = 50
End If

tasum(i) = 0
If i <= 60 Then
tasum(i) = 0
ta2(i) = (mua(tone, i) * mua(fone, i) * mua(ftwo, i) * mua(pers, i)) ^ (1 / 4)
ta(i) = ta2(i)
Else:
ta2(i) = (mua(tone, i) * mua(fone, i) * mua(ftwo, i) * mua(pers, i)) ^ (1 / 4)
For ff = 0 To kmax(r)
mudelay = 1 - ((kmax(r) - ff) / (kmax(r)))
tasum(i) = tasum(i) + (mudelay * ta2(i - ff))
Next ff
ta(i) = tasum(i) / kmax(r)
End If

'Calculation of truth of consequent
If theta = 1 Then
 tc(i) = muc(tthree, i)
 ElseIf theta = 2 Then: tc(i) = muc(a2, i)
 ElseIf theta = 3 Then: tc(i) = muc(a3, i)
End If

If r = 20 * Int((r / 20)) Then
Print #16, r; ","; tasum(i); ","; kmax(r); ","; ta(i)
End If

'To calculate the number of trips made into quadrant II

If ta(i) > 0.5 And ta(i) <= 1 And tc(i) > 0.5 And tc(i) <= 1 Then

111

 If i = 1 Then
 counter(i) = 1
 ' counter(i) is used to calculate the number of consecutive points in the quadrant
 Else: counter(i) = counter(i - 1) + 1
 End If

If counter(i) = tot Then
 'goodtrip(r) is used to calculate the number of good trips made by a rule
 goodtrip(r) = goodtrip(r) + 1
 End If

ElseIf ta(i) >= 0 And ta(i) <= 0.5 And tc(i) >= 0 And tc(i) <= 0.5 Then
 counter(i) = 0
ElseIf ta(i) >= 0 And ta(i) <= 0.5 And tc(i) > 0.5 And tc(i) <= 1 Then
 counter(i) = 0
ElseIf ta(i) > 0.5 And ta(i) <= 1 And tc(i) >= 0 And tc(i) <= 0.5 Then
 counter(i) = 0
End If

'To calculate the number of trips made into quadrant 4
If ta(i) > 0.5 And ta(i) <= 1 And tc(i) >= 0 And tc(i) <= 0.5 Then
 If i = 1 Then
 counter2(i) = 1
 Else: counter2(i) = counter2(i - 1) + 1
 End If

If counter2(i) = tot Then
 badtrip(r) = badtrip(r) + 1
 End If
ElseIf ta(i) >= 0 And ta(i) <= 0.5 And tc(i) >= 0 And tc(i) <= 0.5 Then counter2(i) = 0
ElseIf ta(i) >= 0 And ta(i) <= 0.5 And tc(i) > 0.5 And tc(i) <= 1 Then counter2(i) = 0
ElseIf ta(i) > 0.5 And ta(i) <= 1 And tc(i) > 0.5 And tc(i) <= 1 Then counter2(i) = 0
End If

' to identify only those Tas and Tcs that are non-spurious
If i <> 1 Then
 If (counter(i) = 0 And counter(i - 1) >= tot) Or (counter2(i) = 0 And counter2(i - 1) >=
tot) Then
 If (counter(i) = 0 And counter(i - 1) >= tot) Then
 max = counter(i - 1)

ElseIf (counter2(i) = 0 And counter2(i - 1) >= tot) Then
 max = counter2(i - 1)
 End If
 val = i - 1 - (max - 1)
 For j = 1 To max

112

'Calculation of the number of (non-spurious) hits of consequents in all regions(of size 0.1
by 0.1) of quadrants II,IV
 column = 0
 For k = 0.6 To 1 Step 0.1
 column = column + 1
 row = 0
 For l = 0.1 To 1.1 Step 0.1
 row = row + 1
 'Note:0 is included in the first consequent zone
 If l = 0.1 Then
 If ta(val) <= k And ta(val) > (k - 0.1) And tc(val) <= 0.1 And tc(val)
>= 0 Then
 numpts(r, row, column) = numpts(r, row, column) + 1
 End If
 Else:
 If ta(val) <= k And ta(val) > (k - 0.1) And tc(val) <= l And tc(val) >
(l - 0.1) Then
 numpts(r, row, column) = numpts(r, row, column) + 1
 End If
 End If
 Next l
 Next k

'Calculation of number of hits of antecedents in each of the 5 antecedent zones

If ta(val) <= 0.6 And ta(val) > 0.5 Then
 num = 1
 ElseIf ta(val) <= 0.7 And ta(val) > 0.6 Then
 num = 2
 ElseIf ta(val) <= 0.8 And ta(val) > 0.7 Then
 num = 3
 ElseIf ta(val) <= 0.9 And ta(val) > 0.8 Then
 num = 4
 ElseIf ta(val) <= 1 And ta(val) > 0.9 Then
 num = 5
 Else: GoTo continue
 End If

hits(r, num) = hits(r, num) + 1

continue:
 'Print #500, ta(val); ","; tc(val); ","; counter(val); ","; counter2(val)
 val = val + 1
 Next j

End If

113

End If

Print #9, cat; ","; r; ","; ta(i); ","; tc(i); ","; counter(i); ","; counter2(i)

Next i

'Calculating MERIT(metric 1) for each rule
'Note: The variable used for MERIT is 'accuracy'
accuracy(r) = goodtrip(r) - badtrip(r)

Close #9
'Close #500

For i = 1 To 5
 Print #51, ""; ","; ""; ","; ""; ","; ""; ","; ""; ","; ""; ","; hits(r, i); ","; "TotalHitsTaZone"
& i
Next i

For jjj = 1 To 10

Print #51, r; ","; numpts(r, jjj, 1); ","; numpts(r, jjj, 2); ","; numpts(r, jjj, 3); ",";
numpts(r, jjj, 4); ","; numpts(r, jjj, 5); ","; ""; ","; "TcZone" & jjj

Next jjj

Next pers
 Next ftwo
 Next fone
 Next tone
 Next tthree
Next theta

Print #50, "Rule,Good Trips, Bad Trips,, Merit"

For r = 1 To 729
 Print #50, r; ","; goodtrip(r); ","; badtrip(r); ","; ""; ","; accuracy(r)
Next r

Close #500
Close #12
Close #14
Close #16
Close #50
Close #51

time2 = Timer
text1.Text = "First part of programme is over using time=" + Str$(time2 - time1)

114

SelMode.MousePointer = 0

End Sub

Public Sub classify(n As Variant, t1() As Variant, f1() As Variant, f2() As Variant, t3s()
As Variant, t3m() As Variant, t3l() As Variant)
'sub for linguistic variable classification of all variables except persistence
'Written by Nitin Sharma

ReDim mua(1 To 12, 1 To n)
ReDim muc(1 To 9, 1 To n)

CommonDialog1.DialogTitle = "Please Choose location and name for classification file"
CommonDialog1.Filter = "All Files (*.*)|*.*|Comma Delimited Input (*.csv)|*.csv"
CommonDialog1.FilterIndex = 2
CommonDialog1.ShowSave
filepathr$ = CommonDialog1.FileName
fileclassify$ = CommonDialog1.FileTitle
zz = Len(fileclassify$)
zx = Len(filepathr$)
filepath$ = Left$(filepathr$, zx - zz)

Open filepathr$ For Output As #2
Print #2,
"time,mua1,mua2,mua3,mua4,mua5,mua6,mua7,mua8,mua9,muc1,muc2,muc3,muc4,mu
c5,muc6,muc7,muc8,muc9"

For i = 1 To n
'Classification of t1 using 5-50-100 limits
 If t1(i) <= 5 Then mua(1, i) = 1
 If t1(i) >= 100 Then mua(3, i) = 1
 If t1(i) = 50 Then mua(2, i) = 1
 If t1(i) > 5 And t1(i) < 50 Then
 mua(1, i) = (50 - t1(i)) / (50 - 5)
 mua(2, i) = (t1(i) - 5) / (50 - 5)
 End If
 If t1(i) > 50 And t1(i) < 100 Then
 mua(2, i) = (100 - t1(i)) / (100 - 50)
 mua(3, i) = (t1(i) - 50) / (100 - 50)
 End If

'Classification of f1 using 1-15-29 limits
 If f1(i) <= 1 Then mua(4, i) = 1
 If f1(i) >= 29 Then mua(6, i) = 1
 If f1(i) = 15 Then mua(5, i) = 1
 If f1(i) > 1 And f1(i) < 15 Then

115

 mua(4, i) = (15 - f1(i)) / (14)
 mua(5, i) = (f1(i) - 1) / (14)
 End If
 If f1(i) > 15 And f1(i) < 29 Then
 mua(5, i) = (29 - f1(i)) / (14)
 mua(6, i) = (f1(i) - 15) / (14)
 End If

'Classification of f2 using 1-12-23 limits
 If f2(i) <= 1 Then mua(7, i) = 1
 If f2(i) >= 23 Then mua(9, i) = 1
 If f2(i) = 12 Then mua(8, i) = 1
 If f2(i) > 1 And f2(i) < 12 Then
 mua(7, i) = (12 - f2(i)) / (11)
 mua(8, i) = (f2(i) - 1) / (11)
 End If
 If f2(i) > 12 And f2(i) < 23 Then
 mua(8, i) = (23 - f2(i)) / (11)
 mua(9, i) = (f2(i) - 12) / (11)
 End If

'Classification of t3_after_short_delay using limits 5-50-95
 If t3s(i) <= 5 Then muc(1, i) = 1
 If t3s(i) >= 95 Then muc(3, i) = 1
 If t3s(i) = 50 Then muc(2, i) = 1
 If t3s(i) > 5 And t3s(i) < 50 Then
 muc(1, i) = (50 - t3s(i)) / (45)
 muc(2, i) = (t3s(i) - 5) / (45)
 End If
 If t3s(i) > 50 And t3s(i) < 95 Then
 muc(2, i) = (95 - t3s(i)) / (45)
 muc(3, i) = (t3s(i) - 50) / (45)
 End If

'Classification of t3_after_medium_delay using limits 5-50-95
 If t3m(i) <= 5 Then muc(4, i) = 1
 If t3m(i) >= 95 Then muc(6, i) = 1
 If t3m(i) = 50 Then muc(5, i) = 1
 If t3m(i) > 5 And t3m(i) < 50 Then
 muc(4, i) = (50 - t3m(i)) / (45)
 muc(5, i) = (t3m(i) - 5) / (45)
 End If
 If t3m(i) > 50 And t3m(i) < 95 Then
 muc(5, i) = (95 - t3m(i)) / (45)
 muc(6, i) = (t3m(i) - 50) / (45)
 End If

116

'Classification of t3_after_long_delay using limits 5-50-95
 If t3l(i) <= 5 Then muc(7, i) = 1
 If t3l(i) >= 95 Then muc(9, i) = 1
 If t3l(i) = 50 Then muc(8, i) = 1
 If t3l(i) > 5 And t3l(i) < 50 Then
 muc(7, i) = (50 - t3l(i)) / (45)
 muc(8, i) = (t3l(i) - 5) / (45)
 End If
 If t3l(i) > 50 And t3l(i) < 95 Then
 muc(8, i) = (95 - t3l(i)) / (45)
 muc(9, i) = (t3l(i) - 50) / (45)
 End If
Print #2, time(i); ","; mua(1, i); ","; mua(2, i); ","; mua(3, i); ","; mua(4, i); ","; mua(5, i);
","; mua(6, i); ","; mua(7, i); ","; mua(8, i); ","; mua(9, i); ","; muc(1, i); ","; muc(2, i); ","
_
; muc(3, i); ","; muc(4, i); ","; muc(5, i); ","; muc(6, i); ","; muc(7, i); ","; muc(8, i); ",";
muc(9, i)
Next i

Reset
Erase t1, f1, f2
text1.Text = text1.Text + vbCrLf + "Classify is done"

End Sub

Public Sub persist(n As Variant, t1() As Variant, f1() As Variant, f2() As Variant)

'This sub introduces the persistence term into the antecedent of the rules
'persistence is calculated by counting the number of minutes the current value
'of the 3 variables has persisted based on an error function and combines it
' to get the peristence product or weighting function that should be multiplied
'into the antecedent truth later in TATC, the counter is according to data point
'and not rule because persistence changes with time.

'Written by Nitin Sharma

Dim t1p(), f1p(), f2p()
ReDim t1p(1 To n)
ReDim f1p(1 To n)
ReDim f2p(1 To n)
ReDim cp(1 To n)

filepaths$ = filepath$ + "persist.csv"

Open filepaths$ For Output As #4

117

t1p(1) = 0
f1p(1) = 0
f2p(1) = 0
cp(1) = 0

Print #4, "time,t1p,f1p,f2p,cp"
Print #4, time(1); ","; t1p(1); ","; f1p(1); ","; f2p(1); ","; cp(1)

For i = 2 To n
If Abs(t1(i) - t1(i - 1)) <= 0.1 Then
 t1p(i) = t1p(i - 1) + 1
 Else: t1p(i) = 0
End If
If Abs(f1(i) - f1(i - 1)) <= 0.1 Then
 f1p(i) = f1p(i - 1) + 1
 Else: f1p(i) = 0
End If
If Abs(f2(i) - f2(i - 1)) <= 0.1 Then
 f2p(i) = f2p(i - 1) + 1
 Else: f2p(i) = 0
End If
cp(i) = (t1p(i) * f1p(i) * f2p(i)) ^ (1 / 3)
Print #4, time(i); ","; t1p(i); ","; f1p(i); ","; f2p(i); ","; cp(i)
Next i
text1.Text = text1.Text + vbCrLf + "Persist is done"

End Sub

Private Sub Command2_Click()
Opti.Show
End Sub

Private Sub dispmode_Click()
DispTSD.Show
End Sub

Private Sub Form_Unload(Cancel As Integer)
prog = 740
bar1.Value = prog
Unload Me
Set SelMode = Nothing
End
End Sub

Private Sub quit_Click()
Call Form_Unload(0)

118

End Sub

Private Sub start_Click()

q = InputBox("Please enter number of lines in input.csv including the header", "Enter
Information", "2605")
p = InputBox("Please enter the value of largest delay", "Enter Information", "60")

If p = "" Or q = "" Then
 text1.Text = "You did not enter value of variables"
 Else
 n = q - p

Call afterstart((n))
End If

End Sub

Public Sub afterstart(n As Variant)

'Main subroutine that calls all other subs
'Written by Nitin Sharma
'Modified by Preetica Kumar

prog = prog + 1
bar1.Value = prog

ReDim time(1 To n)
ReDim t1(1 To n)
ReDim f1(1 To n)
ReDim f2(1 To n)
ReDim t3s(1 To n)
ReDim t3m(1 To n)
ReDim t3l(1 To n)
'CommonDialog1.FileTitle = "input"
CommonDialog1.DialogTitle = "Please Choose input file"
CommonDialog1.Filter = "All Files (*.*)|*.*|Comma Delimited Input (*.csv)|*.csv"
CommonDialog1.FilterIndex = 2
CommonDialog1.ShowOpen
filepatha$ = CommonDialog1.FileName

Open filepatha$ For Input As #1
Input #1, a$, b$, c$, d$, e$, f$, g$ 'dummy variables for first line to remove the header
containing name of variables
'Print a$, b$, c$, d$, e$, f$, g$

For i = 1 To n 'input of data

119

Input #1, time(i), t1(i), f1(i), f2(i), t3s(i), t3m(i), t3l(i)
Next i

Call classify(n, t1(), f1(), f2(), t3s(), t3m(), t3l())
prog = prog + 1
bar1.Value = prog

Call linguipersist(n, mua())
prog = prog + 1
bar1.Value = prog

'Threshold criteria
totaltime = InputBox("Please enter the minimum amount of time to be spent in the good
quadrant(in seconds)", "Enter Info")
samptime = InputBox("Please enter the sampling time(in seconds)", "Enter Info")
tot = totaltime / samptime

Call TATC(n, mua(), muc(), pa(), tot)
SelMode.start.Enabled = False
text1.Text = text1.Text + vbCrLf + "Press Display for results"

End Sub

The VBA code for the form DispTSD.frm is listed below.

'Program that displays the TSD of each rule in the selection mode(for historical data)
'The TSD denotes the 'trips' made by each rule

Public runi As Integer
Public fpath$
Public fpathold$
Dim xlApp As Excel.Application
Dim xlbook As Excel.Workbook
Dim xlsheet As Excel.Worksheet
Dim rul$()
Dim gu() 'number of good trips
Dim ba() 'number of bad trips
Dim ac() 'MERIT of all rules

Public Sub initializer()
Set xlApp = New Excel.Application
End Sub

120

Public Sub diplay_Click()
'sub that displays the TSD

a = Len(filer.FileName)
b = a - 4
c$ = Left(filer.FileName, b)
d = val(c$)
Text2.Text = d
text1.Text = fpath$
Text3.Text = rul(d)
Text6.Text = "Number of good trips = " + Str(gu(d)) + vbCrLf + "Number of bad trips =
" + Str(ba(d)) + vbCrLf + " Merit = Good trips - Bad trips" + vbCrLf + Str(ac(d))
runi = runi + 1

If runi = 1 Then
 Call initializer
 xlApp.Application.DisplayAlerts = False
'ElseIf runi > 1 Then
 ' xlApp.Workbooks.Close
End If

'If fpath$ = fpathold$ Then
'text1.Text = "This file is already displayed, Choose another first to reopen"
'GoTo multipath
'End If

Set xlbook = xlApp.Workbooks.Open(fpath$)
Set xlsheet = xlbook.ActiveSheet

With xlApp
xlsheet.Range("C1:D2544").Select
Charts.Add
 ActiveChart.ChartType = xlXYScatterLines
 ActiveChart.SetSourceData Source:=xlsheet.Range("C1:D2544"), PlotBy _
 :=xlColumns

ActiveChart.Axes(xlValue).MajorGridlines.Select
 Selection.Delete
 ActiveChart.PlotArea.Select
 With Selection.Border
 .ColorIndex = 16
 .Weight = xlThin
 .LineStyle = xlContinuous
 End With
 With Selection.Interior

121

 .ColorIndex = 2
 .PatternColorIndex = 1
 .Pattern = xlSolid
 End With

ActiveChart.Legend.Delete

If Option1.Value = False And Option2.Value = False Then
 ActiveChart.Axes(xlCategory).Select
 With ActiveChart.Axes(xlCategory)
 .MinimumScaleIsAuto = True
 .MaximumScaleIsAuto = True
 .MinorUnit = 0.5
 .MajorUnit = 0.5
 .Crosses = xlAutomatic
 .ReversePlotOrder = False
 .ScaleType = xlLinear
 .DisplayUnit = xlNone
 End With
 ActiveChart.Axes(xlValue).Select
 With ActiveChart.Axes(xlValue)
 .MinimumScaleIsAuto = True
 .MaximumScale = 1
 .MinorUnit = 0.5
 .MajorUnit = 0.5
 .Crosses = xlAutomatic
 .ReversePlotOrder = False
 .ScaleType = xlLinear
 .DisplayUnit = xlNone
 End With

ElseIf Option1.Value = True Then
 ActiveChart.Axes(xlCategory).Select
 With ActiveChart.Axes(xlCategory)
 .MinimumScaleIsAuto = True
 .MaximumScaleIsAuto = True
 .MinorUnit = 0.5
 .MajorUnit = 0.5
 .Crosses = xlAutomatic
 .ReversePlotOrder = False
 .ScaleType = xlLinear
 .DisplayUnit = xlNone
 End With
 ActiveChart.Axes(xlValue).Select
 With ActiveChart.Axes(xlValue)
 .MinimumScale = 0.5

122

 .MaximumScale = 1
 .MinorUnit = 0.5
 .MajorUnit = 0.5
 .Crosses = xlAutomatic
 .ReversePlotOrder = False
 .ScaleType = xlLinear
 .DisplayUnit = xlNone
 End With

ElseIf Option2.Value = True Then

ActiveChart.Axes(xlCategory).Select
 With ActiveChart.Axes(xlCategory)
 .MinimumScaleIsAuto = True
 .MaximumScaleIsAuto = True
 .MinorUnit = 0.5
 .MajorUnit = 0.5
 .Crosses = xlAutomatic
 .ReversePlotOrder = False
 .ScaleType = xlLinear
 .DisplayUnit = xlNone
 End With
 ActiveChart.Axes(xlValue).Select
 With ActiveChart.Axes(xlValue)
 .MinimumScale = 0
 .MaximumScale = 0.5
 .MinorUnit = 0.5
 .MajorUnit = 0.5
 .Crosses = xlAutomatic
 .ReversePlotOrder = False
 .ScaleType = xlLinear
 .DisplayUnit = xlNone
 End With
 End If
 ActiveChart.PlotArea.Select
 With ActiveChart.Axes(xlCategory)
 .HasMajorGridlines = True
 .HasMinorGridlines = False
 End With
 With ActiveChart.Axes(xlValue)
 .HasMajorGridlines = True
 .HasMinorGridlines = False
 End With

For i = 1 To 2544

123

 If i <> 1 Then
 If xlsheet.Cells(i, 3) >= 0.5 And xlsheet.Cells(i, 4) > 0.5 Then

With ActiveChart.SeriesCollection(1).Points(i)
 .MarkerBackgroundColorIndex = 10
 .MarkerForegroundColorIndex = 10
 .MarkerStyle = xlDiamond
 .MarkerSize = 4
 .Shadow = False
 End With

With ActiveChart.SeriesCollection(1).Points(i).Border
 .ColorIndex = 10
 .Weight = xlThin
 End With

With ActiveChart.SeriesCollection(1).Points(i + 1).Border
 .ColorIndex = 10
 .Weight = xlThin
 End With
 End If
 If xlsheet.Cells(i, 3) >= 0.5 And xlsheet.Cells(i, 4) <= 0.5 Then

With ActiveChart.SeriesCollection(1).Points(i)
 .MarkerBackgroundColorIndex = 3
 .MarkerForegroundColorIndex = 3
 .MarkerStyle = xlDiamond
 '.Smooth = True
 .MarkerSize = 4
 .Shadow = False
 End With

With ActiveChart.SeriesCollection(1).Points(i).Border
 .ColorIndex = 3
 .Weight = xlThin
 End With

With ActiveChart.SeriesCollection(1).Points(i + 1).Border
 .ColorIndex = 3
 .Weight = xlThin
 End With

End If
 End If

Next i

124

End With

Set Chart1 = xlbook.ActiveChart
OLE2.CreateLink fpath$
OLE2.SizeMode = 1

fpathold$ = fpath$
DispTSD.Caption = "Display - " + "Rule #" + Str(d)
multipath:
End Sub

Private Sub direr_Change()

ChDir direr.path
End Sub

Private Sub driver_Change()
'Written by Nitin Sharma
On Error GoTo booga

direr.path = driver.Drive
ChDrive driver.Drive

booga:
text1.Text = "The disk is not ready"
driver.Drive = direr.path

End Sub

Private Sub filer_Click()
If Right(filer.path, 1) <> "\" Then
 fpath$ = filer.path + "\" + filer.FileName
 text1.Text = filer.path + "\" + filer.FileName
Else
 fpath$ = filer.path + filer.FileName
 text1.Text = filer.path + filer.FileName
End If
Option1.Value = False
Option2.Value = False
End Sub

Private Sub filer_DblClick()
Call DispTSD.diplay_Click
End Sub

125

Public Sub Form_Load()

ReDim rul$(1 To 729)
ReDim gu(1 To 729)
ReDim ba(1 To 729)
ReDim ac(1 To 729)

CommonDialog1.DialogTitle = "Where is the rulesheet (output) file located?"
CommonDialog1.Filter = "All Files (*.*)|*.*|Comma Delimited Input (*.csv)|*.csv"
CommonDialog1.FilterIndex = 2
CommonDialog1.ShowOpen
filepath2$ = CommonDialog1.FileName
filepath$ = Left(filepath2$, (Len(filepath2$) - Len("rulesheet.csv")))
Open filepath2$ For Input As #1
filepather$ = filepath$ + "trips.csv"
Open filepather$ For Input As #2
direr.path = filepath$

Input #2, title1$, title2$, title3$, emptySpace$, title4$
'Reinput data from metric files created in previous form
For r = 1 To 729
Input #1, ju$, bu$, rul(r)
Input #2, juju$, gu(r), ba(r), bubu$, ac(r)
Next r

Close #1
Close #2

SelMode.start.Enabled = False
End Sub

Private Sub Form_QueryUnload(Cancel As Integer, UnloadMode As Integer)
Call Form_Unload(0)
End Sub

Private Sub Form_Unload(Cancel As Integer)
'Written by Nitin Sharma
If runi >= 1 Then
Set xlsheet = Nothing
'xlbook.Close
'xlApp.Workbooks.Close
'Set xlbook = xlApp.Workbooks.Close(fpath$)
xlApp.quit
Set xlApp = Nothing
runi = 0
End If

126

SelMode.text1.Text = "Before Running Display Mode again please quit this window and
rerun the application"
SelMode.dispmode.Enabled = False
DispTSD.Hide
Set DispTSD = Nothing
DetectExcel
End Sub
Sub DetectExcel()
'Written by Nitin Sharma
Dim MyXL As Object ' Variable to hold reference
 ' to Microsoft Excel.
Dim ExcelWasNotRunning As Boolean ' Flag for final release.

On Error Resume Next
' Test to see if there is a copy of Microsoft Excel already running.
' Getobject function called without the first argument returns a
' reference to an instance of the application. If the application isn't
' running, an error occurs.
Set MyXL = GetObject(, "Excel.Application")

If MyXL <> Empty Then
 SelMode.text1.Text = "Excel is running and should quit on it's own when you close
SelMode, else close manually"
 MyXL.Visible = True
End If

'MyXL.quit
Err.Clear ' Clear Err object in case error occurred.

End Sub

Private Sub quit2_Click()
OLE2.Close
'Set xltrap = GetObject(, "Excel.Application")
'xlApp.Application.quit
'xlApp.Visible

Call Form_Unload(0)
End Sub

127

The code for the form opti.frm is listed below.

'This program optimizes the initial rule base
'using the following 2 selection criteria:
'1. Number of good trips >=2
'2. MERIT >=1
'It is used in the selection mode.
Dim rule$()
Dim rulnum() As Single
Dim num() As Single
Dim stmt$()
Dim gudtrip() As Single 'number of goos trips
Dim baddtrip() As Single 'number of bad trips
Dim gtrip() As Single
Dim btrip() As Single
Dim acc() As Single 'MERIT of each rule
Dim acc1() As Single
Dim counter As Integer
Dim path1$
Dim filepath7$
Dim filepath51$
Dim rulerank(1 To 729)

Private Sub Command1_Click()
Opti.Hide
Set Opti = Nothing
End Sub

Private Sub Form_Load()
'Sub for input of data

ReDim rulnum(1 To 729)
ReDim num(1 To 729)
ReDim stmt$(1 To 729)
ReDim gudtrip(1 To 729)
ReDim baddtrip(1 To 729)
ReDim gtrip(1 To 729)
ReDim btrip(1 To 729)
ReDim acc(1 To 729)
ReDim acc1(1 To 729)
ReDim rule$(1 To 729)

CommonDialog1.DialogTitle = "Please Choose the rulesheet file"
CommonDialog1.Filter = "All Files (*.*)|*.*|Comma Delimited Input (*.csv)|*.csv"

128

CommonDialog1.FilterIndex = 2
CommonDialog1.ShowOpen
filepath7$ = CommonDialog1.FileName

Open filepath7$ For Input As #2

path1$ = Left(filepath7$, (Len(filepath7$) - Len("rulesheet.csv")))
filepath51$ = path1$ + "trips.csv"
Open filepath51$ For Input As #101
Input #101, title1$, title2$, title3$, blah$, title4$

For i = 1 To 729 'input of data
 Input #2, a, b, rule$(i)
 Input #101, rulnum(i), gtrip(i), btrip(i), Dummy3$, acc(i)
Next i

Close #2
Close #101

SelMode.Command2.Enabled = False

Call optifinal

End Sub

Sub optifinal()
'sub for optimization of rule-base

Text2.Text = "Optimization has" + vbCrLf + "BEGUN"

filepath7$ = path1$ + "finalopti.csv"
Open filepath7$ For Output As #7

counter = 0
For i = 1 To 729
'checking for selection criteria
 If gtrip(i) > 1 And acc(i) >= 1 Then
 counter = counter + 1
 num(counter) = rulnum(i)
 stmt$(counter) = rule$(i)
 gudtrip(counter) = gtrip(i)
 baddtrip(counter) = btrip(i)
 acc1(counter) = acc(i)
 End If
Next i

129

'For i = 1 To counter
 'rulerank(i) = 0
'Next i

'For i = 1 To counter
 'For j = 1 To counter
 'If j <> i And acc1(j) > acc1(i) Then
 'rulerank(i) = rulerank(i) + 1
 'End If
 'Next j
'Next i

Print #7, "Rule no., Statement, Good trips, Bad trips"

For i = 1 To counter
 Print #7, num(i); ","; stmt$(i); ","; gudtrip(i); ","; baddtrip(i); ","; counter
 List1.AddItem (num(i))
Next i
Close #7

Text2.Text = "Optimization has been" + vbCrLf + "COMPLETED!"

End Sub

Private Sub List1_Click()
a = List1.ListIndex + 1
Text1.Text = "Good trips = " + Str(gudtrip(a)) + vbCrLf + "Bad trips = " +
Str(baddtrip(a))
End Sub

The code for the form PredMode.frm is listed below

'Algorithm for the prediction mode
'This program uses only the antecedents of NEW DATA to predict their outcomes for
each rule
'based on historical distribution information calculated in the selection mode.

Public p As Variant, q As Variant
Public n As Variant

Dim time()
Dim t1() 'temperature 1
Dim f1() 'flow rate 1
Dim f2() 'flow rate 2
Dim t3s() 'temperature 3 after short delay

130

Dim t3m() 'temperature 3 after medium delay
Dim t3l() 'temperature 3 after long delay
Dim cp() 'combined persistance

'mua()=(T1(L,M,H),F1(L,M,H),F2(L,M,H),P(L,M,H))
Dim mua() As Double 'membership of antecedent
Dim filepath$
Dim filepersist$
Dim filepatha$

Dim i As Integer 'counter of data point
Dim pa() As Double 'individual persistence of every variable in antecedent
Public progress As Integer 'variable to update the progress bar

Sub lingpersclassify(i, tone, fone, ftwo)
'This subroutine calculates the combined persistence of the antecedent and
'classifies it into three fuzzy categories(L,M,H)
'written by Nitin Sharma

mua(10, i) = 0
mua(11, i) = 0
mua(12, i) = 0

'the combined persistence time is the minimum persistence time among all inputs
If pa(fone, i) >= pa(tone, i) Then
 If pa(ftwo, i) >= pa(tone, i) Then
 cp(i) = pa(tone, i)
 End If
End If

If pa(tone, i) >= pa(fone, i) Then
 If pa(ftwo, i) >= pa(fone, i) Then
 cp(i) = pa(fone, i)
 End If
End If

If pa(tone, i) >= pa(ftwo, i) Then
 If pa(fone, i) >= pa(ftwo, i) Then
 cp(i) = pa(ftwo, i)
 End If
End If

'Classification of persist using 1-20-40 limits
 If cp(i) = 1 Then mua(10, i) = 1
 If cp(i) >= 40 Then mua(12, i) = 1
 If cp(i) = 20 Then mua(11, i) = 1

131

 If cp(i) > 1 And cp(i) < 20 Then
 mua(10, i) = (20 - cp(i)) / (19)
 mua(11, i) = (cp(i) - 1) / (19)
 boogi = cp(i)
 End If
 If cp(i) > 20 And cp(i) < 40 Then
 mua(11, i) = (40 - cp(i)) / (20)
 mua(12, i) = (cp(i) - 20) / (20)
 End If
End Sub

Sub TATC(n, mua() As Double, pa() As Double)
'Subroutine for calculating the truth of the antecedent , using the predefined values of
linguistic variables
'in the previous SUB. The number of iterations are Nx3x3x3x3x3x3 i.e. 7 loops
'in total cover N points and 729 rules in 81 categories.
'Written By Nitin Sharma, Modified by Preetica Kumar

'This subroutine also calculates the number of antecedent hits for new data
'Written by Preetica Kumar

Dim zz, zx As Integer

Dim slope As Double
Dim Y As Double
Dim X As Double
Dim ta() As Double
Dim tasum() As Double
Dim ta2() As Double
Dim kmax() As Single

Dim numpts()
Dim hits() As Double
Dim row, column As Integer
Dim ii, jj, pp, qq As Integer
Dim num As Integer
Dim k, l As Single

Dim filepath2$
Dim filepath3$

'Redimensioning of variables and initialization of certain linguistic string constants

ReDim cp(1 To n)

132

ReDim ta(1 To n)

ReDim hits(1 To 729, 1 To 5)

ReDim ta2(1 To n)
ReDim tasum(1 To n)
ReDim kmax(1 To 729)

'Asking the user where he wishes to save the files
answer:
answer$ = InputBox("Continue saving output files in same directory? Please type y
(Yes)// n (No) // q (Quit)", "Enter Information")
If answer$ = "y" Then
zz = Len(filepersist$)
zx = Len(filepaths$)
filepath$ = Left$(filepaths$, zx - zz)
ElseIf answer$ = "n" Then
filepath$ = InputBox("Please Enter target directory for output files", "Enter Information",
"e:\vbprogs\output\")
ElseIf answer$ = "q" Then
End
Else
Text1.Text = "Please input y or n or q to proceed"
GoTo answer
End If

'Opening output files in specified filepath

filepath4$ = filepath$ + "Predcombop.csv"
Open filepath4$ For Output As #14
filepath101$ = filepath$ + "Prednumpoints.csv"
Open filepath101$ For Output As #51

Print #51, "Rule,Antecedent Hits in each Ta Zone for NEW DATA"
Print #14, "r,i,cp,mua10,mua11,mua12"

r = 0
cat = 0
For theta = 1 To 3
 For tthree = 1 To 3
 cat = cat + 1
 For tone = 1 To 3
 For fone = 4 To 6
 For ftwo = 7 To 9
 For pers = 10 To 12

133

'this is indexing for the consequent part
a2 = tthree + 3
a3 = tthree + 6

'now calculate rule number
r = r + 1

progress = progress + 1
ProgressBar1.Value = progress

For i = 1 To 5
hits(r, i) = 0
Next i

'Main iteration for all datasets begins here

For i = 1 To n - 1

Call lingpersclassify(i, tone, fone, ftwo)

Print #14, r; ","; i; ","; cp(i); ","; mua(10, i); ","; mua(11, i); ","; mua(12, i)

'calculation of truth of antecedent

If theta = 1 Then
kmax(r) = 2
ElseIf theta = 2 Then
kmax(r) = 10
ElseIf theta = 3 Then
kmax(r) = 50
End If

tasum(i) = 0
If i <= 60 Then
tasum(i) = 0
ta2(i) = (mua(tone, i) * mua(fone, i) * mua(ftwo, i) * mua(pers, i)) ^ (1 / 4)
ta(i) = ta2(i)
Else:
ta2(i) = (mua(tone, i) * mua(fone, i) * mua(ftwo, i) * mua(pers, i)) ^ (1 / 4)
For ff = 0 To kmax(r)
mudelay = 1 - ((kmax(r) - ff) / (kmax(r)))
tasum(i) = tasum(i) + (mudelay * ta2(i - ff))
Next ff
ta(i) = tasum(i) / kmax(r)
End If

134

'calculation of number of hits of antecedents in each of the 5 antecedent zones

If ta(i) <= 0.6 And ta(i) > 0.5 Then
 num = 1
ElseIf ta(i) <= 0.7 And ta(i) > 0.6 Then
 num = 2
ElseIf ta(i) <= 0.8 And ta(i) > 0.7 Then
 num = 3
ElseIf ta(i) <= 0.9 And ta(i) > 0.8 Then
 num = 4
ElseIf ta(i) <= 1 And ta(i) > 0.9 Then
 num = 5
Else: GoTo continue
End If

hits(r, num) = hits(r, num) + 1

continue:
Next i

For jjj = 1 To 5
 Print #51, r; ","; hits(r, jjj)
Next jjj

Next pers
 Next ftwo
 Next fone
 Next tone
 Next tthree
Next theta

Close #14
Close #51

End Sub

Public Sub classify(n As Variant, t1() As Variant, f1() As Variant, f2() As Variant, t3s()
As Variant, t3m() As Variant, t3l() As Variant)
'subprogram for linguistic variable classification of data
'Written by Nitin Sharma

ReDim mua(1 To 12, 1 To n)
ReDim muc(1 To 9, 1 To n)

CommonDialog1.DialogTitle = "Please Choose location and name for classification file"
CommonDialog1.Filter = "All Files (*.*)|*.*|Comma Delimited Input (*.csv)|*.csv"

135

CommonDialog1.FilterIndex = 2
CommonDialog1.ShowSave
filepathr$ = CommonDialog1.FileName
fileclassify$ = CommonDialog1.FileTitle
zz = Len(fileclassify$)
zx = Len(filepathr$)
filepath$ = Left$(filepathr$, zx - zz)

Open filepathr$ For Output As #2
Print #2, "time,mua1,mua2,mua3,mua4,mua5,mua6,mua7,mua8,mua9"

For i = 1 To n
'Classification of t1 using 5-50-100 limits
 If t1(i) <= 5 Then mua(1, i) = 1
 If t1(i) >= 100 Then mua(3, i) = 1
 If t1(i) = 50 Then mua(2, i) = 1
 If t1(i) > 5 And t1(i) < 50 Then
 mua(1, i) = (50 - t1(i)) / (50 - 5)
 mua(2, i) = (t1(i) - 5) / (50 - 5)
 End If
 If t1(i) > 50 And t1(i) < 100 Then
 mua(2, i) = (100 - t1(i)) / (100 - 50)
 mua(3, i) = (t1(i) - 50) / (100 - 50)
 End If

'Classification of f1 using 1-15-29 limits
 If f1(i) <= 1 Then mua(4, i) = 1
 If f1(i) >= 29 Then mua(6, i) = 1
 If f1(i) = 15 Then mua(5, i) = 1
 If f1(i) > 1 And f1(i) < 15 Then
 mua(4, i) = (15 - f1(i)) / (14)
 mua(5, i) = (f1(i) - 1) / (14)
 End If
 If f1(i) > 15 And f1(i) < 29 Then
 mua(5, i) = (29 - f1(i)) / (14)
 mua(6, i) = (f1(i) - 15) / (14)
 End If

'Classification of f2 using 1-12-23 limits
 If f2(i) <= 1 Then mua(7, i) = 1
 If f2(i) >= 23 Then mua(9, i) = 1
 If f2(i) = 12 Then mua(8, i) = 1
 If f2(i) > 1 And f2(i) < 12 Then
 mua(7, i) = (12 - f2(i)) / (11)
 mua(8, i) = (f2(i) - 1) / (11)
 End If

136

 If f2(i) > 12 And f2(i) < 23 Then
 mua(8, i) = (23 - f2(i)) / (11)
 mua(9, i) = (f2(i) - 12) / (11)
 End If

Print #2, time(i); ","; mua(1, i); ","; mua(2, i); ","; mua(3, i); ","; mua(4, i); ","; mua(5, i);
","; mua(6, i); ","; mua(7, i); ","; mua(8, i); ","; mua(9, i)
Next i
Reset
Erase t1, f1, f2

Close #2
End Sub

Public Sub persist(n As Variant, t1() As Variant, f1() As Variant, f2() As Variant)

'This sub introduces the persistence term into the antecedent of the rules
'persistence is calculated by counting the number of minutes the current value
'of the 3 variables has persisted based on an error function and combines it
' to get the peristence product or weighting function that should be multiplied
'into the antecedent truth later in TATC, the counter is according to data point
'and not rule because persistence changes with time.
'Written by Nitin Sharma

Dim t1p(), f1p(), f2p()
ReDim t1p(1 To n)
ReDim f1p(1 To n)
ReDim f2p(1 To n)
ReDim cp(1 To n)

filepaths$ = filepath$ + "Predpersist.csv"

Open filepaths$ For Output As #4
t1p(1) = 0
f1p(1) = 0
f2p(1) = 0
cp(1) = 0

Print #4, "time,t1p,f1p,f2p,cp"
Print #4, time(1); ","; t1p(1); ","; f1p(1); ","; f2p(1); ","; cp(1)

For i = 2 To n
If Abs(t1(i) - t1(i - 1)) <= 0.1 Then
 t1p(i) = t1p(i - 1) + 1
 Else: t1p(i) = 0

137

End If
If Abs(f1(i) - f1(i - 1)) <= 0.1 Then
 f1p(i) = f1p(i - 1) + 1
 Else: f1p(i) = 0
End If
If Abs(f2(i) - f2(i - 1)) <= 0.1 Then
 f2p(i) = f2p(i - 1) + 1
 Else: f2p(i) = 0
End If
cp(i) = (t1p(i) * f1p(i) * f2p(i)) ^ (1 / 3)
Print #4, time(i); ","; t1p(i); ","; f1p(i); ","; f2p(i); ","; cp(i)
Next i
Close #4
End Sub

Sub Exp()
' Sub to calculate the 'EXPECTATIONS'(Metric 2) for all the rules

Dim prno(1 To 729) As Single
Dim ppts(1 To 729, 1 To 10, 1 To 5) 'historical distribution
Dim normpts(1 To 729, 1 To 10, 1 To 5) 'normalized historical distribution
Dim pdiaghit(1 To 729, 1 To 5, 1 To 5)
Dim PredHits(1 To 729, 1 To 5) As Double 'number of new antecedent hits in each of the
5 zones
Dim HistHits(1 To 729, 1 To 5) As Double 'number of historical antecedent hits in each
of the 5 zones
Dim product(1 To 729, 1 To 10, 1 To 5)
Dim pTotsum(1 To 729) As Single
Dim pexp(1 To 729, 1 To 10) As Double 'EXPECTATIONS for each rule in each of the
10 consequent zones
Dim pNormExp(1 To 729, 1 To 10) As Double
Dim pCumulativeExp(1 To 729) As Single
Dim pcdf(1 To 729, 1 To 10) As Double 'confidence factors for each of the 10
consequent zones
Dim plowlimit(1 To 729) As Single 'lower confidence limits
Dim puplimit(1 To 729) As Single 'upper confidence limits
Dim ptcmiddle(1 To 10) As Single
Dim ptcupper(1 To 10) As Single
Dim ptclower(1 To 10) As Single
Dim pweights(1 To 729) As Single
Dim pmean(1 To 729) As Single 'weighted mean average of the expectations

filepath55$ = filepath$ + "numpoints.csv"
Open filepath55$ For Input As #105

Input #105, title1$

138

Input #105, title1$, title2$, title3$, title4$, title5$, title6$

For r = 1 To 729
 For i = 1 To 5
 Input #105, Dummy10$, Dummy11$, Dummy12$, Dummy13$, Dummy14$,
Dummy15$, HistHits(r, i), Dummy16$
 Next i
 For i = 1 To 10
 Input #105, prno(r), ppts(r, i, 1), ppts(r, i, 2), ppts(r, i, 3), ppts(r, i, 4), ppts(r, i, 5),
Dummy17$, Dummy18$
 Next i
Next r

filepath54$ = filepath$ + "prednumpoints.csv"
Open filepath54$ For Input As #104

Input #104, title1$, title2$
For r = 1 To 729
 For i = 1 To 5
 Input #104, Dummy17$, PredHits(r, i)
 Next i
Next r

'converting the new antecedent hits to a diagonal matrix
For r = 1 To 729
 For i = 1 To 5
 For j = 1 To 5
 If i = j Then
 pdiaghit(r, i, j) = PredHits(r, i)
 Else
 pdiaghit(r, i, j) = 0
 End If
 Next j
 Next i
Next r
'calculating the number of normalized hits in the historical database.

For r = 1 To 729
 For i = 1 To 5
 For j = 1 To 10
 If HistHits(r, i) <> 0 Then
 normpts(r, j, i) = ppts(r, j, i) / HistHits(r, i)
 Else
 normpts(r, j, i) = 0
 End If

139

 Next j
 Next i
Next r
'sum of total antecedent hits made by new data
'For r = 1 To 729
 ' For i = 1 To 5
 ' sumPredHits(r) = sumPredHits(r) + PredHits(r, i)
 ' Next i
'Next r

' calculating the product of the number of points
'in each 0.1 x 0.1 grid with the number of hits in the 5 antecedent zones
For r = 1 To 729
 For k = 1 To 5
 For i = 1 To 10
 For j = 1 To 5
 product(r, i, k) = product(r, i, k) + (normpts(r, i, j) * pdiaghit(r, j, k))
 Next j
 Next i
 Next k
Next r

' adding all the points in each consequent zone
'to yield absolute EXPECTATIONS!
For r = 1 To 729
 For i = 1 To 10
 For j = 1 To 5
 pexp(r, i) = pexp(r, i) + product(r, i, j)
 Next j
 Next i
Next r

For r = 1 To 729
 pTotsum(r) = 0
Next r

'normalizing pexp to yield Normalized "Expectations"
For r = 1 To 729
 'calculation of the total sum of all the expectations for each rule
 For i = 1 To 10
 pTotsum(r) = pTotsum(r) + pexp(r, i)
 Next i
 'Normalizing Expectations(0-1)
 For i = 1 To 10
 If pTotsum(r) <> 0 Then
 pNormExp(r, i) = pexp(r, i) / pTotsum(r)

140

 Else: pNormExp(r, i) = 0
 End If
 Next i
Next r

'calculation of center of each bin
For i = 1 To 10
 ptclower(i) = (i - 1) * 0.1
 ptcupper(i) = i * 0.1
 ptcmiddle(i) = ptclower(i) + 0.05
Next i

' file to print the cumulative sums at each stage and the corresponding conf. factors.
filepath57$ = path1$ + "PredSums.csv"
Open filepath57$ For Output As #107

For r = 1 To 729
 For i = 1 To 10
 ' cumulative distribution function for each zone(cdf)to be used during interpolation
to determine (95%) confidence limits
 pCumulativeExp(r) = pCumulativeExp(r) + pNormExp(r, i)
 pcdf(r, i) = pCumulativeExp(r)
 Print #107, i; ","; pCumulativeExp(r); ","; pcdf(r, i)
 Next i
Next r

'calculating the weighted average: pmean
For r = 1 To 729
For i = 1 To 10
 pweights(r) = pNormExp(r, i) * ptcmiddle(i) + pweights(r)
Next i
'Since the total of the normalized expectations is 1
pmean(r) = pweights(r) / 1
Next r

' calculation of confidence limits by interpolation
For r = 1 To 729
 For i = 1 To 9
 If pmean(r) <> 0 Then

'right on target
 If pcdf(r, i) < 0.025 And pcdf(r, i + 1) > 0.975 Then
 plowlimit(r) = ptcupper(i) + (ptcupper(i + 1) - ptcupper(i)) * (0.025 - pcdf(r, i))
/ (pcdf(r, i + 1) - pcdf(r, i))

141

 puplimit(r) = ptcupper(i) + (ptcupper(i + 1) - ptcupper(i)) * (0.975 - pcdf(r, i)) /
(pcdf(r, i + 1) - pcdf(r, i))
 Exit For
 End If

'lower confidence limit
 If pcdf(r, i) < 0.025 And pcdf(r, i + 1) > 0.025 Then
 plowlimit(r) = ptcupper(i) + (ptcupper(i + 1) - ptcupper(i)) * (0.025 - pcdf(r, i))
/ (pcdf(r, i + 1) - pcdf(r, i))
 GoTo up
 End If
up:
 'upper confidence limit
 If pcdf(r, i) < 0.975 And pcdf(r, i + 1) > 0.975 Then
 puplimit(r) = ptcupper(i) + (ptcupper(i + 1) - ptcupper(i)) * (0.975 - pcdf(r, i)) /
(pcdf(r, i + 1) - pcdf(r, i))
 Exit For
 End If
 End If
 Next i
Next r

'file to store the absolute expected distribution values
filepath56$ = filepath$ + "PredExpectation.csv"
Open filepath56$ For Output As #106
'file to store the Normalized expected distribution values
filepath65$ = filepath$ + "PredNormalizedExpectation.csv"
Open filepath65$ For Output As #115

'file to store the predicted mean and upper and lower confidence limits.
filepath58$ = filepath$ + "PredFreshMetrics.csv"
Open filepath58$ For Output As #108
'file to store the individual expectations in each antecedent zone
filepath60$ = filepath$ + "PredIndividualExpectations.csv"
Open filepath60$ For Output As #110

Print #106, "Absolute Expectations for all rules"
Print #106,
"Rule,TcZone1,TcZone2,TcZone3,TcZone4,TcZone5,TcZone6,TcZone7,TcZone8,TcZo
ne9,TcZone10"
Print #108, "Rule,Mean Expectation, L.C.L(95%), U.C.L(95%)"

Print #115, "Normalized Expectations(0-1) for all rules"
Print #115,
"Rule,TcZone1,TcZone2,TcZone3,TcZone4,TcZone5,TcZone6,TcZone7,TcZone8,TcZo
ne9,TcZone10"

142

For i = 1 To 729

Print #106, prno(i); ","; pexp(i, 1); ","; pexp(i, 2); ","; pexp(i, 3); ","; pexp(i, 4); ",";
pexp(i, 5) _
 ; ","; pexp(i, 6); ","; pexp(i, 7); ","; pexp(i, 8); ","; pexp(i, 9); ","; pexp(i, 10)

Print #115, prno(i); ","; pNormExp(i, 1); ","; pNormExp(i, 2); ","; pNormExp(i, 3); ",";
pNormExp(i, 4); ","; pNormExp(i, 5) _
 ; ","; pNormExp(i, 6); ","; pNormExp(i, 7); ","; pNormExp(i, 8); ","; pNormExp(i, 9);
","; pNormExp(i, 10)

Print #108, prno(i); ","; pmean(i); ","; plowlimit(i); ","; puplimit(i)

For j = 1 To 10
 Print #110, prno(i); ","; product(i, j, 1); ","; product(i, j, 2); ","; product(i, j, 3);
","; product(i, j, 4); ","; product(i, j, 5)
 Next j
Next i

Close #104
Close #105
Close #106
Close #108
Close #110
Close #115

End Sub

Private Sub Command3_Click()
Unload Me
Call Form_Unload(0)
End Sub

Private Sub Form_Unload(Cancel As Integer)
Unload Me
Set PredMode = Nothing
End
End Sub

Private Sub Command1_Click()
'sub to take in information about the input file
q = InputBox("Please enter number of lines in the input file including the header", "Enter
Information", "2605")

143

p = InputBox("Please enter the value of largest delay", "Enter Information", "60")

If p = "" Or q = "" Then
 Text1.Text = "You did not enter value of variables"
 Else
 n = q - p

Call afterstart((n))
End If

End Sub

Sub linguipersist(n, mua() As Double)
'This subroutine provides a linguistic label for the maximum persistence of each data
point
'written by Nitin Sharma

Dim X As Integer
Dim maxi() As Integer
ReDim maxi(1 To 3)
ReDim pa(1 To 9, 1 To n)

filepaths$ = filepath$ + "Predlingpers.csv"
Open filepaths$ For Output As #10
Print #10, "time,patl,patm,path,paf1l,paf1m,paf1h,paf2l,paf2m,paf2h"

For i = 2 To n
For k = 1 To 3 'k represents t1 f1 and f2 respectively
j = (3 * k - 2)

If mua(j, i) > mua(j + 1, i) Then

 If mua(j, i) > mua(j + 2, i) Then
 maxi(k) = j
 Else: maxi(k) = (j + 2)
 End If
 ElseIf mua(j, i) < mua(j + 1, i) Then
 If mua(j + 1, i) > mua(j + 2, i) Then
 maxi(k) = (j + 1)
 Else: maxi(k) = (j + 2)
 End If
End If

'Persistence increases by one
 X = maxi(k)
 pa(X, i) = pa(X, i - 1) + 1

For l = j To (j + 2)

144

 If l <> maxi(k) Then pa(l, i) = 0
 Next l

Next k
Print #10, time(i); ","; pa(1, i); ","; pa(2, i); ","; pa(3, i); ","; pa(4, i); ","; pa(5, i); ",";
pa(6, i); ","; pa(7, i); ","; pa(8, i); ","; pa(9, i)
Next i

Close #10
End Sub

Public Sub afterstart(n As Variant)

'Main subroutine that calls all other subs
'Written by Nitin Sharma
'Modified by Preetica Kumar

ReDim time(1 To n)
ReDim t1(1 To n)
ReDim f1(1 To n)
ReDim f2(1 To n)
ReDim t3s(1 To n)
ReDim t3m(1 To n)
ReDim t3l(1 To n)

Text1.Text = "Calculation" + vbCrLf + "has BEGUN..."

CommonDialog1.DialogTitle = "Please Choose input file"
CommonDialog1.Filter = "All Files (*.*)|*.*|Comma Delimited Input (*.csv)|*.csv"
CommonDialog1.FilterIndex = 2
CommonDialog1.ShowOpen
filepatha$ = CommonDialog1.FileName

Open filepatha$ For Input As #1
Input #1, a$, b$, c$, d$, e$, f$, g$ '***dummy variables for first line to remove the
header containing name of variables
'Print a$, b$, c$, d$, e$, f$, g$

For i = 1 To n 'input of data
Input #1, time(i), t1(i), f1(i), f2(i), t3s(i), t3m(i), t3l(i)
Next i

Close #1
Call classify(n, t1(), f1(), f2(), t3s(), t3m(), t3l())
progress = progress + 1
ProgressBar1.Value = progress

145

Call linguipersist(n, mua())
progress = progress + 1
ProgressBar1.Value = progress

Call TATC(n, mua(), pa())

Call Exp
progress = progress + 1
ProgressBar1.Value = progress

Call historical_info
progress = progress + 1
ProgressBar1.Value = progress

Command1.Enabled = False

Text1.Text = "DONE!"
ProgressBar1.Value = 740

SelMode.start.Enabled = False

End Sub

Private Sub Command2_Click()

Load DispExpect
 DispExpect.Show
 Command2.Enabled = False

End Sub
Sub historical_info()

On Error GoTo errorhandler

ReDim rno(1 To 729)
ReDim pts(1 To 729, 1 To 10, 1 To 5)
ReDim hitno(1 To 729, 1 To 5)
ReDim sum(1 To 729, 1 To 10)
ReDim sum1(1 To 729)
ReDim totsum(1 To 729)
ReDim cdf(1 To 729, 1 To 10)
ReDim tcmiddle(1 To 10)
ReDim tclower(1 To 10)
ReDim tcupper(1 To 10)
ReDim lowlimit(1 To 729)

146

ReDim uplimit(1 To 729)
ReDim mean(1 To 729)
ReDim weights(1 To 729)

filepath53$ = filepath$ + "numpoints.csv"
Open filepath53$ For Input As #103

Input #103, title1$
Input #103, title1$, title2$, title3$, title4$, title5$, title6$
For r = 1 To 729
 For i = 1 To 5
 Input #103, Dummy10$, Dummy11$, Dummy12$, Dummy13$, Dummy14$,
Dummy15$, hitno(r, i), Dummy16$
 Next i
 For i = 1 To 10
 Input #103, rno(r), pts(r, i, 1), pts(r, i, 2), pts(r, i, 3), pts(r, i, 4), pts(r, i, 5),
Dummy17$, Dummy18$
 Next i
Next r

Close #103

'Adding all the points in each consequent zone.(row-wise)
For r = 1 To 729
For i = 1 To 10
 For j = 1 To 5
 sum(r, i) = sum(r, i) + pts(r, i, j)
 Next j
Next i
Next r
'Calculation of center of each bin
For i = 1 To 10
tclower(i) = (i - 1) * 0.1
tcupper(i) = i * 0.1
tcmiddle(i) = tclower(i) + 0.05
Next i

For r = 1 To 729
totsum(r) = 0
Next r

For r = 1 To 729
For i = 1 To 10
 totsum(r) = sum(r, i) + totsum(r)
Next i
Next r

147

filepath106$ = filepath$ + "sums.csv"
Open filepath106$ For Output As #56

For r = 1 To 729
 For i = 1 To 10
 ' Cumulative Distributive Function for each zone(CDF)to be used during
intrapolation of (95%) confidence limits
 If totsum(r) <> 0 Then
 sum1(r) = sum1(r) + sum(r, i)
 cdf(r, i) = sum1(r) / totsum(r)
 End If
 Print #56, i; ","; sum1(r); ","; cdf(r, i)
 Next i
Next r

'Calculating weighted average
For r = 1 To 729
For i = 1 To 10
 weights(r) = sum(r, i) * tcmiddle(i) + weights(r)
Next i
If totsum(r) <> 0 Then
mean(r) = weights(r) / totsum(r)
Else
mean(r) = 0
End If
Next r

'Calculation of confidence limits by intrapolation
For r = 1 To 729
 For i = 1 To 9
 If mean(r) <> 0 Then

'right on target
 If cdf(r, i) < 0.025 And cdf(r, i + 1) > 0.975 Then
 lowlimit(r) = tcupper(i) + (tcupper(i + 1) - tcupper(i)) * (0.025 - cdf(r, i)) /
(cdf(r, i + 1) - cdf(r, i))
 uplimit(r) = tcupper(i) + (tcupper(i + 1) - tcupper(i)) * (0.975 - cdf(r, i)) /
(cdf(r, i + 1) - cdf(r, i))
 Exit For
 End If

'lower confidence limit
 If cdf(r, i) < 0.025 And cdf(r, i + 1) > 0.025 Then
 lowlimit(r) = tcupper(i) + (tcupper(i + 1) - tcupper(i)) * (0.025 - cdf(r, i)) /
(cdf(r, i + 1) - cdf(r, i))

148

 GoTo up
 End If
up:
 'upper confidence limit
 If cdf(r, i) < 0.975 And cdf(r, i + 1) > 0.975 Then
 uplimit(r) = tcupper(i) + (tcupper(i + 1) - tcupper(i)) * (0.975 - cdf(r, i)) /
(cdf(r, i + 1) - cdf(r, i))
 Exit For
 End If
 End If
 Next i
Next r

filepath104$ = filepath$ + "expectation.csv"
filepath105$ = filepath$ + "Freshmetrics.csv"

Open filepath104$ For Output As #54
Open filepath105$ For Output As #55

For i = 1 To 729
 Print #54, rno(i); ","; sum(i, 1); ","; sum(i, 2); ","; sum(i, 3); ","; sum(i, 4); ","; sum(i,
5) _
 ; ","; sum(i, 6); ","; sum(i, 7); ","; sum(i, 8); ","; sum(i, 9); ","; sum(i, 10)

Print #55, rno(i); ","; mean(i); ","; lowlimit(i); ","; uplimit(i)
Next i

Close #54
Close #55
Close #56

'End of weighted mean calculations
Exit Sub

errorhandler:
If Err.number = 75 Or Err.number = 70 Then
 Resume Next
End If
Err.Raise Err

End Sub

The VBA code for the form DispExpect.frm is listed below.

'Program to display the 'expectations' for all rules in form of histograms.

149

'It is used in the prediction mode.

Public clickDisp1 As Integer
Dim xlApp As Excel.Application
Dim xlbook As Excel.Workbook
Dim xlsheet As Excel.Worksheet
Dim rul$()
Dim psum11() As Double
Dim runo() As Single
Dim plowcon(1 To 729) As Single
Dim pupcon(1 To 729) As Single
Dim pexp(1 To 729) As Single
Dim mean(1 To 729) As Single
Dim number() As Single
Dim good(1 To 729) As Single
Dim bad(1 To 729) As Single
Dim selected As Integer

Public filepath212$
Public path1$
Public filepath210$
Public rownum1 As Integer

Public Sub initializer()
Set xlApp = New Excel.Application

End Sub

Private Sub Display1_Click()
On Error GoTo errorhandler
clickDisp1 = clickDisp1 + 1

If clickDisp1 = 1 Then
 Call initializer
 xlApp.Application.DisplayAlerts = False

'ElseIf clickDisp1 > 1 Then
 ' xlApp.Workbooks.Close
End If
Set xlbook = xlApp.Workbooks.Open(filepath210$)
Set xlsheet = xlbook.ActiveSheet

With xlApp

xlsheet.Range(xlsheet.Cells(rownum1 + 2, 2), xlsheet.Cells(rownum1 + 2, 11)).Select

150

 Charts.Add
 ActiveChart.ChartType = xlBarClustered
 ActiveChart.SetSourceData Source:=xlsheet.Range(xlsheet.Cells(rownum1 + 2, 2),
xlsheet.Cells(rownum1 + 2, 11)), PlotBy:= _
 xlRows
 ActiveChart.PlotArea.Select
 Selection.ClearFormats
 ActiveChart.PlotArea.Select
 With Selection.Border
 .Weight = xlThin
 .LineStyle = xlAutomatic
 End With
 Selection.Interior.ColorIndex = xlNone
 'ActiveChart.Location Where:=xlLocationAsObject, Name:="sheet1"
 With ActiveChart
 .HasTitle = True
 .ChartTitle.Characters.Text = "Expectation Histogram"
 .Axes(xlCategory, xlPrimary).HasTitle = True
 .Axes(xlCategory, xlPrimary).AxisTitle.Characters.Text = "Tc"
 .Axes(xlValue, xlPrimary).HasTitle = True
 .Axes(xlValue, xlPrimary).AxisTitle.Characters.Text = "Expectation"
 End With
 With ActiveChart.Axes(xlCategory)
 .HasMajorGridlines = False
 .HasMinorGridlines = False
 End With
 With ActiveChart.Axes(xlValue)
 .HasMajorGridlines = False
 .HasMinorGridlines = False
 End With

ActiveChart.HasLegend = False
 ActiveChart.SeriesCollection(1).Select
 With ActiveChart.ChartGroups(1)
 .Overlap = 0
 .GapWidth = 0
 .HasSeriesLines = False
 .VaryByCategories = True
 End With
End With
Set Chart1 = xlbook.ActiveChart
OLE2.CreateLink filepath210$
OLE2.SizeMode = 1

Text2.Text = "NEW DATA" + vbCrLf + "***********" + vbCrLf + "Weighted mean
average" + vbCrLf + "TcMean =" & Str(pexp(rownum1)) _

151

+ vbCrLf + "Lower confidence(95%) limit" + vbCrLf + "TcLow =" &
Str(plowcon(rownum1)) _
+ vbCrLf + "Upper confidence(95%) limit" + vbCrLf + "TcHi =" &
Str(pupcon(rownum1)) _
+ vbCrLf + "HISTORICAL DATA" + vbCrLf + "***********" + vbCrLf + "Weighted
mean average" + vbCrLf + "TcMean =" & Str(mean(rownum1))

For i = 1 To selected
 If val(List1.Text) = number(i) Then
 Text3.Text = "GOOD RULE!"
 Exit For
 End If
Next i
If good(rownum1) = 0 And bad(rownum1) = 0 Then
Text3.Text = "Not Expressed Sufficiently In Data"
ElseIf (good(rownum1) = 1 And bad(rownum1) = 0) Then
Text3.Text = "Insufficient Corroboration"
ElseIf good(rownum1) <= bad(rownum1) Or (good(rownum1) = 0 And bad(rownum1) =
1) Then
Text3.Text = "BAD RULE"
End If

Exit Sub
errorhandler:
 Err.Raise Err
 Resume
End Sub

Private Sub Form_Load()
On Error GoTo errorhandler

ReDim psum11(1 To 729, 1 To 10)
ReDim runo(1 To 729)
ReDim rul$(1 To 729)

clickDisp1 = 0

CommonDialog2.DialogTitle = "Where is the rulesheet (output) file located?"
CommonDialog2.Filter = "All Files (*.*)|*.*|Comma Delimited Input (*.csv)|*.csv"
CommonDialog2.FilterIndex = 2
CommonDialog2.ShowOpen
filepath212$ = CommonDialog2.FileName
path1$ = Left(filepath212$, (Len(filepath212$) - Len("rulesheet.csv")))
Open filepath212$ For Input As #212

152

filepath210$ = path1$ + "PredNormalizedExpectation.csv"
Open filepath210$ For Input As #210

filepath204$ = path$ + "trips.csv"
Open filepath204$ For Input As #204
Input #204, title1$, title2$, title3$, blah$, title4$

filepath205$ = path1$ + "PredFreshMetrics.csv"
Open filepath205$ For Input As #205

filepath305$ = path1$ + "FreshMetrics.csv"
Open filepath305$ For Input As #305

filepath206$ = path$ + "finalopti.csv"
Open filepath206$ For Input As #206

Input #210, title1$
Input #210, title1$, title2$, title3$, title4$, title5$, title6$, title7$, title8$, title9$, title10$
Input #205, title1$, title2$, title3$, title4$
For i = 1 To 729
 Input #212, Dummy1$, runo(i), rul$(i)
 Input #210, Dummy2$, psum11(i, 1), psum11(i, 2), psum11(i, 3), psum11(i, 4),
psum11(i, 5), psum11(i, 6), psum11(i, 7), psum11(i, 8), psum11(i, 9), psum11(i, 10)
 Input #205, Dummy8$, pexp(i), plowcon(i), pupcon(i)
 Input #305, Dummy10$, mean(i), Dummy11$, Dummy12$
 Input #204, Dummy4$, good(i), bad(i), Dummy5$, Dummy6$
Next i

Input #206, dummy30$, dummy31$, dummy32$, dummy33$
Input #206, dummy35$, dummy36$, dummy37$, dummy38$, selected
Close #206

ReDim number(1 To selected)

filepath206$ = path$ + "finalopti.csv"
Open filepath206$ For Input As #206
Input #206, dummy30$, dummy31$, dummy32$, dummy33$
For i = 1 To selected
Input #206, number(i), dummy36$, dummy37$, dummy38$, dummy39$
Next i
Close #206

For i = 1 To 729
 List1.AddItem (i)
Next i

153

Close #204
Close #212
Close #210
Close #205
Close #305

Text1.Text = ""
Text2.Text = ""

Exit Sub

errorhandler:
If Err.number = 75 Or Err.number = 70 Then
 Resume Next
Else: Err.Raise Err

End If

End Sub
Private Sub Form_QueryUnload(Cancel As Integer, UnloadMode As Integer)
 Call Form_Unload(0)
End Sub
Private Sub Form_Unload(Cancel As Integer)

If clickDisp1 >= 1 Then
Set xlsheet = Nothing
Set xlbook = Nothing
xlApp.quit
Set xlApp = Nothing
OLE2.Close
clickDisp1 = 0
End If

DispExpect.Hide
Set DispExpect = Nothing

End Sub

Private Sub List1_Click()
rownum1 = List1.ListIndex + 1
Text1.Text = rul$(rownum1)

End Sub

Private Sub quit_Click()
OLE2.Close

154

Call Form_Unload(0)
End Sub

The following Q- Basic code listing is from the Hot and Cold water mixing simulator for
the case of With Noise.

DECLARE SUB CLEAN ()
DECLARE SUB ATV (a$, time!, mode1!, mode2!, mdot3sp!, mdot3filt!, t3sp!, t3meas!,
o1!, o2!)
DECLARE SUB FILTINI ()
DECLARE SUB FILTER (mdot1meas!, mdot2meas!, mdot3meas!, mdot1filt!,
mdot2filt!, mdot3filt!)
DECLARE SUB DISPLAY (mode1, mode2, o1, o2, mdot1filt, mdot2filt, mdot3filt,
t1meas, t2meas, t3meas, mdot3sp, t3sp, theta)
DECLARE SUB OPERATOR (a$, mode1, mode2, o1, o2, mdot3sp, t3sp)
DECLARE SUB EVAL (mdot3sp, mdot3filt, t3sp, t3meas, o1, o2)
DECLARE SUB CTLINI ()
DECLARE SUB process (o1, o2, s1, s2, mdot1meas, mdot2meas, mdot3meas, t1meas,
t2meas, t3meas)
DECLARE SUB PLOTINI ()
DECLARE SUB CTL (mode1, mode2, mdot3sp, mdot3filt, t3sp, t3meas, o1, o2)
DECLARE SUB PLOT (o1, o2, mdot1filt, mdot2filt, mdot3filt, t1meas, t2meas, t3meas,
mdot3sp, t3sp)
DECLARE SUB PROCINI ()
 '

' CONTROL.BAS
 ' Spring 1998 CHENG-5xxx
 ' Dr. R. Russell Rhinehart, School of Chem. Engr. Oklahoma State U.
 ' 25 Dec 97
 '

' This program is a basis for CHENG-5xxx students to test their controllers.
 '

' The program models control valves, fluid flow, mixing of a hot and cold
 ' water in a pipe system, and flow and temperature measurement. It also
 ' contains a control subrouting for primitive PID T and F controllers.
 ' The students will write the code for various control strategys,
 ' filters, and goodness of control evaluations; tune their controllers;
 ' and explore the solutions for a variety of process events that cause
 ' control difficulty.
 '

' The program is structured so that each stage in the controller-process-
 ' evaluation system are written as subroutines. This MAIN program links and
 ' orders the execution of each subroutine.
 '

' The MAIN program calls subroutine PROCESS to dynamically simulate the

155

 ' fluid mixing process for a time interval, t, of 0.1 seconds. PROCESS
 ' simulates the final element dynamics, as well as the ChEs view of the
 ' process behavior (fluid dynamics and mixing). It also adds measurement
 ' bias and process beavior drifts that have an ARMA stochastic behavior.
 ' It also adds measurement noise and valve "stick-tion".
 '

' MAIN then calls subroutine FILT to filter noise from the measurements.
 '

' MAIN then calls subroutine CTL, where, eventually students will write
 ' the code for the various controllers and control strategies. Presently
 ' CTL contains two independent PID controllers, one for T control (manipulating
 ' O1) and one for F control (manipulating O2).
 '

' MAIN then calls subroutine EVAL, where, eventually students will write
 ' the code for the various goodness of control measures. Presently EVAL
 ' calculates T and F NISE.
 '

' MAIN then calls subroutine PLOT to generate a strip chart display
 ' of the controlled and manipulated variables.
 '

' Finally MAIN calls DISPLAY to refresh data on the screen.
 '

' On operator demand (by keyboard touches) MAIN will call subroutine
 ' OPERATOR to execute the operator-initiated (student-initiated) changes.
 ' See subroutine OPERATOR to see what INKEY touches start which commands.
 ' One of these commands is to initiate ATV tuning, an automatic tuning for
 ' PID controllers.
 '

' This sequence is then repeated. However, first MAIN initializes the
 ' devices, sets up common variables, and calls PLOTINI, PROCINI, and
 ' CTLINI to initialize the PLOT, PROCESS, and CTL subroutine variables.
 '

Dim plotvmax(10), plotvmin(10), plotvrng(10), plotvar(10), plotyo(10), tf(2000)
 COMMON SHARED plotvmax(), plotvmin(), plotvrng(), plotvar(), plotyo(), tf()
 COMMON SHARED numvar, plottime, reference, horizon, plotx, plotxo, ploty, time
 COMMON SHARED ap1, bp1, cp11b, cp12b, dp1, tauvp1
 COMMON SHARED ap2, bp2, cp21b, cp22b, dp2, tauvp2
 COMMON SHARED m1biasb, m2biasb, m3biasb, t1biasb, t2biasb, t3biasb
 COMMON SHARED taut1, taut2, taut3, t1inpb, t2inpb, tf1, tf2, tf3
 COMMON SHARED t, dt, timedelta
 COMMON SHARED dpp1b, hp1, power1
 COMMON SHARED dpp2b, hp2, power2
 COMMON SHARED enviro
 COMMON SHARED lambda1, lambda2, lambda3
 COMMON SHARED kc1, taui1, taud1, kc2, taui2, taud2, detune

156

 COMMON SHARED which$, tune, dataout
 COMMON SHARED iset3, isdo1, isemdot3, isdo2, isenumber
 COMMON SHARED o1, o2
Open "C:\data4.csv" For Output As #1
'PRINT #1, "time", "theta", "t3meas", "t1meas", "t2meas", "mdot3meas", "mdot1meas",
"mdot2meas"
Print #1, "time, t1meas, t2meas, mdot1meas, mdot2meas, t3meas"
Screen 12 'set-up screen for graphics, 640 X 350 x-y pixils, 82 X 25 x-y positions
Randomize ((Timer - 12300) / 3) 'randomize the seed for the random number generator
Cls
enviro = 1
tune = -1 'do not start with ATV tuning
dataout = 1 '**now start without data logging
 Call FILTINI
 Call CTLINI
 Call PROCINI
 Call PLOTINI

For Interval = 1 To 60000
 time = Interval * t
 If time = 20 Then
 dataout = 1
 End If

'Adding noise
 If 20 * Int(time / 20) = time Then
 o1 = Rnd * 100
 o2 = Rnd * 100
 t1inpb = Rnd * 100
 t2inpb = Rnd * 100
 End If

Call process(o1, o2, s1, s2, mdot1meas, mdot2meas, mdot3meas, t1meas, t2meas,
t3meas)
 a$ = INKEY$
 If a$ <> "" Then
 Call OPERATOR(a$, mode1, mode2, o1, o2, mdot3sp, t3sp)
 End If
 Call FILTER(mdot1meas, mdot2meas, mdot3meas, mdot1filt, mdot2filt,
mdot3filt)
 If tune = 1 Then
 Call ATV(a$, time, mode1, mode2, mdot3sp, mdot3filt, t3sp, t3meas, o1, o2)
 Else
 Call CLEAN
 End If
 Call CTL(mode1, mode2, mdot3sp, mdot3filt, t3sp, t3meas, o1, o2)

157

 Call PLOT(o1, o2, mdot1filt, mdot2filt, mdot3filt, t1meas, t2meas, t3meas,
mdot3sp, t3sp)
 Call EVAL(mdot3sp, mdot3filt, t3sp, t3meas, o1, o2)
 Call DISPLAY(mode1, mode2, o1, o2, mdot1filt, mdot2filt, mdot3filt, t1meas,
t2meas, t3meas, mdot3sp, t3sp, theta)
 If dataout = 1 Then
 If timedelta * Int(time / timedelta) = time Then '****log on every (timedelta)
second
 Print #1, time; ","; t1meas; ","; t2meas; ","; mdot1meas; ","; mdot2meas; ",";
t3meas; ","; theta
 End If
 End If
 Next Interval
Close #1
 ' Variable definitions
 ' plotvmax(10) maximum values of the plotted variables
 ' plotvmin(10) minimum values of the plotted variables
 ' plotvrng(10) calculated maximum minus minimum values, range of plotted variables
 ' plotvar(10) values of the plotted variables
 ' plotyo(10) pixel positions for the previous strip chart ordinate
 ' tf(200) array that holds the values for the fictitious temperature
 ' numvar number of variables plotted
 ' plottime time argument for the plotting routine, same as time
 ' reference time at the beginning of each strip chart sweep
 ' horizon time window of the strip chart
 ' plotx pixel position for the strip chart abscissa
 ' plotxo value of the previous plotx pixel position
 ' ploty pixel position for the strip chart ordinate
 ' time simulated time, seconds
 ' ap1 "a" coefficient value for process #1, kg/s^2/kPa
 ' bp1 "b" coefficient value for process #1, kg/s^2/m
 ' cp11b "c11" coefficient base value for process #1, kg/s^2/kg^2/min^2
 ' cp12b "c12" coefficient base value for process #1, kg/s^2/kg^2/min^2
 ' dp1 "d" coefficient value for process #1, kg/s^2/kg^2/min^2
 ' tauvp1 time constant for process valve #1, seconds
 ' ap2 "a" coefficient value for process #2, kg/s^2/kPa
 ' bp2 "d" coefficient value for process #2, kg/s^2/m
 ' cp21b "c21" coefficient base value for process #2, kg/s^2/kg^2/min^2
 ' cp22b "c22" coefficient base value for process #2, kg/s^2/kg^2/min^2
 ' dp2 "d" coefficient value for process #2, kg/s^2/kg^2/min^2
 ' tauvp2 time constant for process valve #2, seconds
 ' taut1 time constant for first temperature lag, seconds
 ' taut2 time constant for second temperature lag, seconds
 ' taut3 time constant for third temperature lag, seconds
 ' t1inpb process stream #1 inlet temperature base value, centigrade
 ' t2inpb process stream #2 inlet temperature base value, centigrade

158

 ' tf1 first lagged temperature at the fictitious sensor, centigrade
 ' tf2 second lagged temperature at the fictitious sensor, centigrade
 ' tf3 third lagged temperature at the fictitious sensor, centigrade
 ' t process sampling time and control period, seconds
 ' dt process integration time step, seconds
 ' dpp1b driving pressure drop base case for stream #1, kPa
 ' hp1 elevation head for stream #1, m
 ' power1 power coefficient for valve #1 characteristic
 ' dpp2b driving pressure drop base case for stream #2, kPa
 ' hp2 elevation head for stream #2, m
 ' power2 power coefficient for valve #2 characteristic
 ' enviro coefficient to toggle environmental effects on/off, 1 if on, 0 if off
 ' time simulated time, seconds
 ' interval controller sampling period and process integration time step, seconds
 ' o1 output of controller #1, % of full scale
 ' o2 output of controller #2, % of full scale
 ' s1 valve #1 stem position, fraction open
 ' s2 valve #2 stem position, fraction open
 ' mdot1meas measured value of flow rate of stream #1, kg/min
 ' mdot2meas measured value of flow rate of stream #2, kg/min
 ' mdot3meas measured value of combined flow rate, kg/min
 ' t3meas measured value of mixed temperature, centigrade
 ' a$ variable to store the value of INKEY$, alpha-numeric string
 ' INKEY$ BASIC function that inputs a keyboard hit, alpha-numeric string
 ' mode1 mode of controller #1, 1 if AUTO, 0 if MAN
 ' mode2 mode of controller #2, 1 if AUTO, 0 if MAN
 ' mdot3sp set point for total flow rate, kg/min
 ' t3sp set point for mixed temperature, centigrade
 ' lambda1 filter factor for the first-order noise filter on mdot1meas
 ' lambda2 filter factor for the first-order noise filter on mdot2meas
 ' lambda3 filter factor for the first-order noise filter on mdot3meas
 ' kc1 controller 1 gain, %output / kg/min
 ' taui1 controller 1 integral time, seconds
 ' taud1 controller 1 derivative time, seconds
 ' kc2 controller 2 gain, %output / centigrade
 ' taui2 controller 2 integral time, seconds
 ' taud2 controller 2 derivative time, seconds
 ' which$ variable that defines which controller is being ATV tested
 ' tune variable to indicate whether ATV tuning is desired
 ' dataout variable to indicate whether data is to be recorded in the output file
 ' iset3 integral of the squared error for t3meas
 ' isdo1 integral of the squared change in output of controller 1
 ' isemdot3 integral of the squared error for mdot3filt
 ' isdo2 integral of the squared change in output of controller 2
 ' isenumber count to normalize the ise and isdo
 ' m*bias bias on flow rate * measurement

159

 ' m*biasb base level for the bias on flow rate * measurement
 ' t*bias bias on temperature * measurement
 ' t*biasb base level for the bias on temperature * measurement

Static Sub ATV(a$, time, mode1, mode2, mdot3sp, mdot3filt, t3sp, t3meas, o1, o2)
 '

' ATV tuning
 ' NOTE 1 - I think that I used the ZN Ultimate rules for interacting for non-
interacting PID control
 ' NOTE 2 - need a better way to detect zero crossing in the presence of noise
 '

If a$ = "a" Or a$ = "A" Then 'you just got here, initialize the factors
 start = 0 'start time for the ATV test
 e = 0 'deviation from atvtarg
 eold = 0 'old deviation
 emax = 0 'maximum CV deviation from atvtarg in a cycle
 emin = 0 'minimum CV deviation from atvtarg in a cycle
 LOCATE 15, 1
 INPUT "Do you wish to implement ATV tuning on the O1-T3 loop (1) or O2-F3
(2)"; which$
 LOCATE 15, 1
 Print " "
 '

' initialize the atvtarg and set the controller to manual
 '

If which$ = "1" Then 'O1-T3 loop was chosen
 atvtarg = t3meas 'initialize the atvtarg with the first CV value
 mode1 = 0 'set the controller to MAN
 LOCATE 14, 1
 Print USING; "atvtarg = ###.# C"; atvtarg
 Else 'O2-F3 loop was chosen
 atvtarg = mdot3filt
 mode2 = 0
 LOCATE 14, 1
 Print USING; "atvtarg = ###.# kg/min"; atvtarg
 End If
 End If
 '

' ATV test controller #1
 '

If which$ = "1" Then
 If start = 0 Then 'if this is the first time initialize
 start = time 'start time for test
 Switch = time 'time when output was switched
 relay = 20 'output step size (high - low)
 o1 = o1 + relay / 2 'make the first output step, up, by 1/2 of the relay

160

 LOCATE 15, 1
 Print "ATV initiated on O1-T3 loop, T3 controller is overridden"
 End If
 If time - start > 15 Then 'hold the first bump for 15 seconds
 e = atvtarg - t3meas 'then calculate the deviation
 If e > emax Then emax = e 'set emax
 If e < emin Then emin = e 'set emin
 LOCATE 14, 1
 Print USING; "atvtarg = ###.# C emax = ###.### C emin = ###.### C ";
atvtarg; emax; emin
 If e * eold <= 0 Then 'if the error changed sign, the atvtarg was crossed
 If e < 0 Then 'if the error is negative
 o1 = o1 - relay 'then step the output down by 1/1 relay
 End If
 If e > 0 Then 'if the error is positive, then a cycle had finished
 o1 = o1 + relay 'then step the output up by 1/1 relay
 pu = time - Switch 'calculate the ultimate period
 ku = 4 * relay / (emax - emin) / 3.14159 'and the ultimate gain
 LOCATE 15, 1
 Print USING; "ATV O1-T3 in cycling mode. Ult. P. = ###.## sec Ult. Kc =
###.## %/C"; time - Switch; 4 * relay / (emax - emin) / 3.14159
 LOCATE 16, 1
 Print USING; "(Kc=###.#) (Kc=###.# taui=###.#) (Kc=###.# taui=###.#
taud=###.#)"; 0.5 * ku; 0.45 * ku; 0.83 * pu; 0.59 * ku; 0.5 * pu; 0.125 * pu
 o1 = o1 + 0.25 * relay * (emax + emin) / (emax - emin) 'shift o1 for symmetry
 emax = 0 'reset emax for the next cycle
 emin = 0 'reset emin for the next cycle
 Switch = time 'reset switch for the next cycle
 End If
 End If
 eold = e
 End If
 Else 'which = 2, ATV the flow loop
 If start = 0 Then
 start = time
 Switch = time
 relay = 30
 o2 = o2 + relay / 2
 LOCATE 15, 1
 Print "ATV initiated on O2-F3 loop, F3 controller is overridden"
 End If
 If time - start > 5 Then
 e = atvtarg - mdot3filt
 If e > emax Then emax = e
 If e < emin Then emin = e
 LOCATE 14, 1

161

 Print USING; "atvtarg = ###.# kg/min emax = ###.### kg/min emin = ###.###
kg/min"; atvtarg; emax; emin
 If e * eold <= 0 Then
 If e < 0 Then
 o2 = o2 - relay
 End If
 If e > 0 Then
 o2 = o2 + relay
 pu = time - Switch
 ku = 4 * relay / (emax - emin) / 3.14159
 LOCATE 15, 1
 Print USING; "ATV O2-F3 in cycling mode. Ult. P. = ###.## sec Ult. Kc =
###.## %/kg/min"; pu; ku
 LOCATE 16, 1
 Print USING; "(Kc=###.#) (Kc=###.# taui=###.#) (Kc=###.# taui=###.#
taud=###.#)"; 0.5 * ku; 0.45 * ku; 0.83 * pu; 0.59 * ku; 0.5 * pu; 0.125 * pu
 o2 = o2 + 0.25 * relay * (emax + emin) / (emax - emin) 'shift o2 for symmetry
 emax = 0
 emin = 0
 Switch = time
 End If
 End If
 eold = e
 End If
 End If
End Sub

Sub CLEAN()
 '

' clean the ATV messages from the screen
 '

LOCATE 14, 1
 Print " "
 LOCATE 15, 1
 Print " "
 LOCATE 16, 1
 Print " "
End Sub

Static Sub CTL(mode1, mode2, mdot3sp, mdot3filt, t3sp, t3meas, o1, o2)
 '

' Presently there are two independent, standard PID controllers here.
 ' One controls T3 by manipulating O1, the output to valve 1, the hot water
 ' valve. The other controls F3 by manipulating O2, the output to valve 2,
 ' the cold water valve. Because the process is interactive (O1 affects both
 ' T3 and F3), the controllers use the "BLT" method of detuning them jointly,

162

 ' after they were independently tuned by "ATV" for "QAD" process behavior.
 '

'
' Temperature controller

 If mode1 = 1 Then 'temperature controller in AUTO
 e1 = t3sp - t3meas 'reverse acting
 bias1 = bias1 + t * kc1 * e1 / taui1 / detune ^ 2 'adjustable bias, rectangle rule
 eant1 = e1 - taud1 * (t3meas - t3old) / t 'anticipated error, D-on-X
 t3old = t3meas
 o1 = kc1 * eant1 / detune + bias1 'proportional plus bias
 If o1 > 110 Then 'anti-windup provision
 o1 = 110
 bias1 = o1 - kc1 * eant1 / detune
 End If
 If o1 < -10 Then 'anti-windup provision
 o1 = -10
 bias1 = o1 - kc1 * eant1 / detune
 End If
 Else 'temperature controller in MAN
 t3sp = t3meas 'setpoint tracking, bumpless transfer
 t3old = t3meas 'no D spike, bumpless transfer
 bias1 = o1 'bias tracking, bumpless transfer
 End If
 '

' Flow controller
 '

If mode2 = 1 Then 'flow controller in AUTO
 e2 = mdot3sp - mdot3filt 'reverse acting
 bias2 = bias2 + t * kc2 * e2 / taui2 / detune ^ 2 'adjustable bias, rectangle rule
 eant2 = e2 - taud2 * (mdot3filt - mdot3old) / t 'anticipated error, D-on-X
 mdot3old = mdotfilt
 o2 = kc2 * eant2 / detune + bias2 'proportional plus bias
 If o2 > 110 Then 'anti-windup provision
 o2 = 110
 bias2 = o2 - kc2 * eant2 / detune
 End If
 If o2 < -10 Then 'anti-windup provision
 o2 = -10
 bias2 = o2 - kc2 * eant2 / detune
 End If
 Else 'flow controller in MAN
 mdot3sp = mdot3filt 'setpoint tracking, bumpless transfer
 mdot3old = mdot3filt
 bias2 = o2 'bias tracking, bumpless transfer
 End If
End Sub

163

Static Sub CTLINI()

 '
' Initial controller settings go here static makes them constant

 '
t = 0.1

 timedelta = 1 'log every timedelta seconds
 mode1 = 0 'controller 1 is in manual
 mode2 = 0 'controller 2 is in manual
 kc1 = 2 '% / centigrade
 taui1 = 12 'seconds
 taud1 = 3 'seconds
 kc2 = 8 '% / kg/min
 taui2 = 2.5 'seconds
 taud2 = 0 'seconds
 detune = 1 'dimensionless
End Sub

Sub DISPLAY(mdot1, mdot2, o1, o2, mdot1filt, mdot2filt, mdot3filt, t1meas, t2meas,
t3meas, mdot3sp, t3sp, theta)
 '

' subroutine to display variables and status on the screen
 '

LOCATE 17, 1
 Print USING; " theta = ###.##### time = ####"; theta; time
 Print USING; " o1 = ###.# o2 = ###.#"; o1; o2
 Print USING; "F1filt = ###.# F2filt = ###.#"; mdot1filt; mdot2filt
 Print USING; "T1meas = ###.### T2meas = ###.#"; t1meas; t2meas
 Print USING; "T3meas = ###.# F3filt = ###.#"; t3meas; mdot3filt
 Print USING; "T3sp = ###.# F3sp = ###.#"; t3sp; mdot3sp
 Print USING; "kc1=##.# taui1=##.# taud1=##.# kc2=##.# taui2=##.# taud2=##.#
detune=#.#"; kc1; taui1; taud1; kc2; taui2; taud2; detune
End Sub

Static Sub EVAL(mdot3sp, mdot3filt, t3sp, t3meas, o1, o2)
 '

' measures of control goodness are calculated here
 '

isenumber = isenumber + 1
 iset3 = iset3 + t * (t3sp - t3meas) ^ 2
 isdo1 = isdo1 + t * (o1 - o1old) ^ 2
 o1old = o1
 niset3 = iset3 / (isenumber * t)
 nisdo1 = isdo1 / (isenumber * t)
 isemdot3 = isemdot3 + t * (mdot3sp - mdot3filt) ^ 2
 isdo2 = isdo2 + t * (o2 - o2old) ^ 2

164

 o2old = o2
 nisemdot3 = isemdot3 / (isenumber * t)
 nisdo2 = isdo2 / (isenumber * t)
 '

' LOCATE Y,X locates the beginning of the subsequent print statement
 ' at Y text rows down from the top of the screen and X text columns to
 ' the right from the left of the screen. The screen is 22 rows by 75
 ' columns.
 ' PRINT USING " "; is a formatted print statement. # marks locations
 ' for numerical values.
 '

LOCATE 21, 35
 Print USING; " rmset = #.####^^^^ rmsef = #.####^^^^"; Sqr(niset3);
Sqr(nisemdot3)
 LOCATE 22, 35
 Print USING; "rmsdo1 = #.####^^^^ rmsdo2 = #.####^^^^"; Sqr(nisdo1);
Sqr(nisdo2)
End Sub

Static Sub FILTER(mdot1meas, mdot2meas, mdot3meas, mdot1filt, mdot2filt, mdot3filt)
 '

' subroutine to first-order filter the noisy process measurements
 ' lambda = 1-exp(T/taufilt)
 '

mdot1filt = lambda1 * mdot1meas + (1 - lambda1) * mdot1filt
 mdot2filt = lambda2 * mdot2meas + (1 - lambda2) * mdot2filt
 mdot3filt = lambda3 * mdot3meas + (1 - lambda3) * mdot3filt
End Sub

Static Sub FILTINI()
 '

' subroutine to initialize the filter coefficients
 '

lambda1 = 0.2
 lambda2 = 0.2
 lambda3 = 0.2
End Sub

Sub OPERATOR(a$, mode1, mode2, o1, o2, mdot3sp, t3sp)
 '

' operator initiated action is made here
 '

iset3 = 0 'Reset the goodness of control measures
 isdo1 = 0 ' "
 isemdot3 = 0 ' "
 isdo2 = 0 ' "

165

 isenumber = 0 ' "
 If a$ = "q" Or a$ = "Q" Then
 Close #1
 Stop 'key in "q" to stop the program
 End If
 If a$ = "a" Or a$ = "A" Then tune = -tune
 If a$ = "-" Then t1inpb = t1inpb - 5 '***add or subtract input temperature
 If a$ = "+" Then t1inpb = t1inpb + 5
 If a$ = "9" Or a$ = "L" Then dataout = -dataout
 If a$ = "n" Or a$ = "N" Then 'key in "n" to toggle enviro and disturbances
 If enviro = 1 Then
 enviro = 0
 Else
 enviro = 1
 End If
 End If
 If a$ = "1" Then 'key in "1" to toggle controller 1 MAN-AUTO
 If mode1 = 1 Then
 mode1 = 0
 Else
 mode1 = 1
 End If
 End If
 If a$ = "2" Then 'key in "2" to toggle controller 2 MAN-AUTO
 If mode2 = 1 Then
 mode2 = 0
 Else
 mode2 = 1
 End If
 End If
 '

' change output if in manual
 '

If a$ = "3" And mode1 = 0 Then o1 = o1 - 5 'key in "3" lower o1 in MAN
 If a$ = "#" And mode1 = 0 Then o1 = o1 + 5 'key in "#" raise o1 in MAN
 If a$ = "4" And mode2 = 0 Then o2 = o2 - 5 'key in "4" lower o2 in MAN
 If a$ = "$" And mode2 = 0 Then o2 = o2 + 5 'key in "$" raise o2 in MAN
 '

' limit output to between -10 and 110 %
 '

If o1 > 110 Then o1 = 110
 If o1 < -10 Then o1 = -10
 If o2 > 110 Then o2 = 110
 If o2 < -10 Then o2 = -10
 '

' change setpoint if in automatic - method 1:

166

 '
If a$ = "5" And mode1 = 1 Then t3sp = t3sp - 2 'key in "5" lower tsp in AUTO

 If a$ = "%" And mode1 = 1 Then t3sp = t3sp + 2 'key in "%" raise tsp in AUTO
 If a$ = "6" And mode2 = 1 Then mdot3sp = mdot3sp - 2 'key in "6" lower mdotsp in
AUTO
 If a$ = "^" And mode2 = 1 Then mdot3sp = mdot3sp + 2 'key in "^" raise mdotsp in
AUTO
 '

' change setpoint if in automatic - method 2:
 '

If a$ = "s" Or a$ = "S" Then
 LOCATE 16, 35
 Print "Enter one of these setpoints:"
 LOCATE 17, 35
 Print "t3, f3"
 LOCATE 18, 35
 INPUT "Which value do you wish to change"; b$
 If b$ = "t3" And mode1 = 1 Then
 LOCATE 19, 35
 INPUT "Enter t3sp value, C"; t3sp
 End If
 If b$ = "f3" And mode2 = 1 Then
 LOCATE 19, 35
 INPUT "Enter mdot3sp value, kg/min"; mdot3sp
 End If
 '

' erase on-screen trash
 '

LOCATE 16, 35
 Print " "
 LOCATE 17, 35
 Print " "
 LOCATE 18, 35
 Print " "
 LOCATE 19, 35
 Print " "
 End If
 '

' if tuning is desired
 '

If a$ = "t" Or a$ = "T" Then
 LOCATE 16, 35
 Print "Enter one of these parameters:"
 LOCATE 17, 35
 Print "kc1, taui1, taud1, kc2, taui2, taud2, detune"
 LOCATE 18, 35

167

 INPUT "Which value do you wish to change"; b$
 If b$ = "kc1" Then
 LOCATE 19, 35
 INPUT "Enter kc1 value, %/C"; kc1
 End If
 If b$ = "taui1" Then
 LOCATE 19, 35
 INPUT "Enter taui1 value, s"; taui1
 End If
 If b$ = "taud1" Then
 LOCATE 19, 35
 INPUT "Enter taud1 value, s"; taud1
 End If
 If b$ = "kc2" Then
 LOCATE 19, 35
 INPUT "Enter kc2 value, %/kg/min"; kc2
 End If
 If b$ = "taui2" Then
 LOCATE 19, 35
 INPUT "Enter taui2 value, s"; taui2
 End If
 If b$ = "taud2" Then
 LOCATE 19, 35
 INPUT "Enter taud2 value, s"; taud2
 End If
 If b$ = "detune" Then
 LOCATE 19, 35
 INPUT "Enter detune value"; detune
 End If
 '

' erase on-screen trash
 '

LOCATE 16, 35
 Print " "
 LOCATE 17, 35
 Print " "
 LOCATE 18, 35
 Print " "
 LOCATE 19, 35
 Print " "
 End If
End Sub

Static Sub PLOT(o1, o2, mdot1filt, mdot2filt, mdot3filt, t1meas, t2meas, t3meas,
mdot3sp, t3sp)

168

 '
' This routine plots the scaled variables on a strip chart display

 '
' PLOT.BAS

 ' R. Russell Rhinehart Company
 ' 10 October 1994
 '

' After calculating the variable values assign them to the plot variables
 '

plottime = time 'simulated time, seconds
 plotvar(1) = o1 'output of controller 1, %
 plotvar(2) = o2 'output of controller 2, %
 plotvar(3) = mdot1filt 'filtered flow rate 1, kg/min
 plotvar(4) = mdot2filt 'filtered flow rate 2, kg/min
 plotvar(5) = mdot3filt 'filtered total flow rate, kg/min
 plotvar(6) = t1meas 'measured temperature, centigrade
 plotvar(7) = t2meas 'measured temperature, centigrade
 plotvar(8) = t3meas 'measured temperature, centigrade
 plotvar(9) = mdot3sp 'flow 3 setpoint, kg/min
 plotvar(10) = t3sp 'temperature 3 setpoint, centigrade
 '

' Plot routine
 '

If plottime - reference >= horizon Then ' locate the x position
 reference = reference + horizon
 plotxo = 50
 Line (plotxo, 20)-(plotxo, 160), 15
 Line (plotx, 20)-(plotx, 160), 15
 Line (plotx, 161)-(plotx, 168), 14
 End If
 plotx = 50 + Int(0.5 + 580 * (plottime - reference) / horizon)
 If 50 + 58 * Int((plotx - 50) / 58) = plotx Then Line (plotx, 20)-(plotx, 160), 15
 Line (plotx + 1, 20)-(plotx + 1, 160), 14
 Line (plotx, 161)-(plotx, 168), 0
 Line (plotx - 1, 161)-(plotx - 1, 168), 14
 For plotyy = 20 To 160 Step 14
 Line (plotx, plotyy)-(plotx + 1, plotyy), 15
 Next plotyy
 For ploti = 1 To numvar
 ploty = 160 - 140 * (plotvar(ploti) - plotvmin(ploti)) / plotvrng(ploti)
 If ploty < 20 Then ploty = 20
 If ploty > 160 Then ploty = 160
 Line (plotxo, plotyo(ploti))-(plotx, ploty), ploti
 plotyo(ploti) = ploty
 Next ploti
 plotxo = plotx

169

End Sub

Static Sub PLOTINI()
 ' This routine initializes the strip chart display plot subroutine
 '

' PLOT.BAS
 ' R. Russell Rhinehart Company
 ' 10 October 1994
 '

' initialize the plotting variables
 '

plotxo = 50 ' time = 0 position on the screen
 numvar = 10 ' number of variables to plot, maximum = 10
 horizon = 60 ' strip chart horizon, seconds
 plotvmax(1) = 100 ' maximum value for controller #1 output, %
 plotvmin(1) = 0 ' minimum value for controller #1 output, %
 plotvmax(2) = 100 ' maximum value for controller #2 output, %
 plotvmin(2) = 0 ' minimum value for controller #2 output, %
 plotvmax(3) = 30 ' maximum value for flow rate #1, kg/min
 plotvmin(3) = 0 ' minimum value for flow rate #1, kg/min
 plotvmax(4) = 30 ' maximum value for flow rate #2, kg/min
 plotvmin(4) = 0 ' minimum value for flow rate #2, kg/min
 plotvmax(5) = 60 ' maximum value for total flow rate, kg/min
 plotvmin(5) = 0 ' minimum value for total flow rate, kg/min
 plotvmax(6) = 100 ' maximum value for mixed temperature, C
 plotvmin(6) = 0 ' minimum value for mixed temperature, C
 plotvmax(7) = 100 ' maximum value for temperature 1, C
 plotvmin(7) = 0 ' minimum value for temperature 1, C
 plotvmax(8) = 100 ' maximum value for temperature 2, C
 plotvmin(8) = 0 ' minimum value for temperature 2, C
 plotvmax(9) = 60 ' maximum value for flow3 setpoint, kg/min
 plotvmin(9) = 0 ' minimum value for flow3 setpoint, kg/min
 plotvmax(10) = 100 ' maximum value for temperature 3 setpoint, C
 plotvmin(10) = 0 ' minimum value for temperature 3 setpoint, C
 ' repeat for all plotted variables
 reference = 0 ' time of the beginning of each strip chart
 '

' Initialize the graph
 ' (setup lables, background, grid lines, and initial points)
 '

LOCATE 1, 1
 Print USING; "PV's (fraction of full scale) VERSUS TIME (fraction of window =
####.# seconds)"; horizon
 For plotj = 0 To 1 Step 0.5 ' lable the y axis
 ploty = 2 + 10 * plotj
 LOCATE ploty, 1

170

 Print USING; "#.##"; 1 - plotj
 Next plotj
 For ploti = 0 To 1.01 Step 0.1 ' lable the x axis
 plotx = 6 + 71 * ploti
 LOCATE 13, plotx
 Print USING; "#.##"; ploti;
 Next ploti
 Line (40, 13)-(640, 168), 14, BF ' fill in the background
 For plotyy = 20 To 160 Step 14 ' draw the horizontal grid
 Line (50, plotyy)-(630, plotyy), 15
 Next plotyy
 For plotxx = 50 To 630 Step 58 ' draw the vertical grid
 Line (plotxx, 20)-(plotxx, 160), 15
 Next plotxx
 For ploti = 1 To numvar ' calculate the plot variable
 ' ranges and initial locations
 plotvrng(ploti) = plotvmax(ploti) - plotvmin(ploti)
 ploty = 160 - 140 * (plotvar(ploti) - plotvmin(ploti)) / plotvrng(ploti)
 If ploty < 20 Then ploty = 20
 If ploty > 160 Then ploty = 160
 plotyo(ploti) = ploty
 Next ploti
End Sub

Static Sub process(o1, o2, s1, s2, mdot1meas, mdot2meas, mdot3meas, t1meas,
t2meas, t3meas)
 '

' Subroutine to model the flow rates and temperatures. There are several
 ' sections to this routine. First, if enviro is active, stochastic models
 ' are used to change the flow rate driving pressures, flow pressure loss
 ' coefficients, and inlet stream temperatures. Also, if enviro is active,
 ' control valve action is subject to "sticktion." Next, the ODEs that
 ' dynamically model the valve stem positions, and the coupled ODEs that
 ' dynamically model the flow rates and mixture temperature are solved
 ' using the second order Runge-Kutta method. Since the ODE-modeled
 ' temperature is the mixing point temperature, the temperature values are
 ' placed in an array so that the transport-delayed value can be used for
 ' the fluid temperature at the sensor. Since the transport delay is
 ' variable, the how-far-back-in-the-array index, nt, is calculated from
 ' the transport delay, theta. The "clock" concept is used for efficient
 ' array management. The temperature sensor is modeled as a third order ODE.
 ' Finally, noise is added to the flow rate measurement to simulate orifice
 ' turbulence noise.
 '

'
' if enviro is active then add drift and spikes to the pressure drops

171

 '
ddpp1 = 0.999 * ddpp1 + 0.015 * dpp1b * (Rnd - 0.5) * enviro 'drift

 If Rnd < 0.01 Then spike1 = 50 * (Rnd - 0.5) * enviro 'spike
 spike1 = 0.9 * spike1 'fade the spike
 dpp1 = dpp1b '+ ddpp1 + spike1 <<<<<<*****making sure no spikes
 ddpp2 = 0.999 * ddpp2 + 0.015 * dpp2b * (Rnd - 0.5) * enviro 'drift
 If Rnd < 0.01 Then spike2 = 50 * (Rnd - 0.5) * enviro 'spike
 spike2 = 0.9 * spike2 'fade the spike
 dpp2 = dpp2b '+ ddpp2 + spike2 <<<<<<<<******ditto
 '

' if enviro is active then add drift to the flow pressure loss factors
 '****here i made sure again that no drift is there
 dcp11 = 0.999 * dcp11 + 0.015 * cp11b * (Rnd - 0.5) * enviro 'drift
 cp11 = cp11b '+ dcp11
 dcp12 = 0.999 * dcp12 + 0.015 * cp12b * (Rnd - 0.5) * enviro 'drift
 cp12 = cp12b '+ dcp12
 dcp21 = 0.999 * dcp21 + 0.015 * cp21b * (Rnd - 0.5) * enviro 'drift
 cp21 = cp21b '+ dcp21
 dcp22 = 0.999 * dcp22 + 0.015 * cp22b * (Rnd - 0.5) * enviro 'drift
 cp22 = cp22b '+ dcp22
 '

' if enviro is active then add drift to the inlet temperatures
 ' ***ditto
 dt1in = 0.999 * dt1in + 0.015 * t1inpb * (Rnd - 0.5) * enviro 'drift
 t1inp = t1inpb '+ dt1in
 dt2in = 0.999 * dt2in + 0.015 * t2inpb * (Rnd - 0.5) * enviro 'drift
 t2inp = t2inpb '+ dt2in
 '

' If enviro is active then add "sticktion" hysteresis to the valves.
 ' Deadband is the amount of change in valve position the controller must
 ' call for before the valve stem will move. Here, deadband is either 0 %
 ' or 2.5 %. Dels1 and dels2 are the valve stem position changes that the
 ' controller wants. Note: If sticktion is present, and the valve position
 ' is 2 % open, and the controller wants it closed (o = 0 %), then the valve
 ' will stay at 2 % open! This is real. To fix it, controllers are designed
 ' so that their output goes from -10 % to 110 %, or so. Ideally the 0-100 %
 ' controller output is converted to a 4-20 mA d.c. current "signal" then to
 ' a 3-15 psig pneumatic "signal" which operates the valve. Ideally the stem
 ' position goes from 0 to 1 as the pressure goes from 3 to 15 psig. Allowing
 ' the controller output to range from -10 to 110 %, ideally causes the
 ' pneumatic signal to range from 1.8 to 16.2 psig which, hopefully, will
 ' overcome both sticktion and calibration errors in the D/A and i/p devices,
 ' and, thereby, allow the valve to fully close and to fully open.
 '

deadband = 0.025 * enviro * 0 'deadband<<****making sure it is 0
 current1 = 4 + o1 * 16 / 100 'i1 from A/D conversion of o1

172

 current2 = 4 + o2 * 16 / 100 'i2 from A/D conversion of o2
 p1targ = 3 + (current1 - 4) * 12 / 16 'p1 target from i/p conversion of i1
 p2targ = 3 + (current2 - 4) * 12 / 16 'p2 target from i/p conversion of i2
 '

' In the following segment of code, the ODEs are solved using a
 ' second-order Rung-Kutta method with an integration time step that
 ' is one tenth of the control interval (dt = t/10).
 '

' Calculate the R-K k1s for p1, p2, mdot1, mdot2, tf1, tf2, and tf3.
 ' The IF statements either allow for sticktion or prevent numerical
 ' overflow. If the valves are nearly closed, then f1 or f2 are extremely
 ' small, and their contributions to the Ks are large negative. The -20
 ' is a relatively large negative value.
 '

For i = 1 To 10
 '

' Calculate the transport delay from the mixing point to the temperature
 ' sensor 1.06 meters down stream. Then, nt, the nearest integer number of
 ' sample intervals backward in the clock array. Then, ifind, the array
 ' location of that transport-delayed temperature. Note, this deadtime
 ' delayed temperature is the influence for the third-order lagged sensor
 ' temperature.
 '

SHARED theta
 If (mdot1 + mdot2) > 0.1 Then 'if mdot total is greater than the minimum
 theta = 80 / (mdot1 + mdot2) '****calculate transport delay doubled the value
of Lt from 20 to 80
 Else
 theta = 800 'limit delay to maximum allowed by tf(200)
 End If
 'OPEN "c:theta.dat" FOR OUTPUT AS #2
 'PRINT #2, theta
 'CLOSE #2
 nt = Int(theta / t + 0.5) 'Number of Time intervals in delay
 If nt > ntold + 1 Then nt = ntold + 1 'can't sample fluid past the sensor
 If nt > 1999 Then nt = 1999 'can't sample around the tf(200) "clock"
 ntold = nt
 ifind = iput - nt 'calculate the find location
 If ifind < 0 Then ifind = ifind + 2001 'increment it if it passes 12 O'clock
 '

' calculate the R-K k1s
 '

k1p1 = (p1targ - p1) / tauvp1 'rate of change of p1, now, due to p1targ
 k1p2 = (p2targ - p2) / tauvp2 'rate of change of p2, now, due to p2targ
 f1 = s1 ^ power1 'inherrent valve characteristic from stem
 If f1 > 0.0001 Then

173

 k1mdot1 = ap1 * dpp1 + bp1 * hp1 - cp11 * mdot1 ^ 2 - cp12 * (mdot1 + mdot2) ^
2 - dp1 * mdot1 ^ 2 / f1 ^ 2
 Else
 k1mdot1 = -20
 End If
 If k1mdot1 < -20 Then k1mdot1 = -20
 f2 = s2 ^ power2 'inherent valve characteristic from stem
 If f2 > 0.0001 Then
 k1mdot2 = ap2 * dpp2 + bp2 * hp2 - cp21 * mdot2 ^ 2 - cp22 * (mdot1 + mdot2) ^
2 - dp2 * mdot2 ^ 2 / f2 ^ 2
 Else
 k1mdot2 = -20
 End If
 If k1mdot2 < -20 Then k1mdot2 = -20
 k1tf1 = (tf(ifind) - tf1) / taut1
 k1tf2 = (tf1 - tf2) / taut2
 k1tf3 = (tf2 - tf3) / taut3
 k1tt1 = (t1inp - tt1) / 10
 k1tt2 = (t2inp - tt2) / 10
 '

' Use the k1s to estimate where the state variables might go.
 ' The h addended to the state variable indicates Hypothesized.
 ' The limits are for physical reality.
 '

p1h = p1 + dt * k1p1
 p2h = p2 + dt * k1p2
 dels1h = (p1h - 3) / 12 - s1 'change in s1 that the p1h would make w/o sticktion
 dels2h = (p2h - 3) / 12 - s2 'change in s2 that the p2h would make w/o sticktion
 If Abs(dels1h) > deadband Then s1h = s1 + dels1h 's1 only changes if p1
overcomes sticktion
 If Abs(dels2h) > deadband Then s2h = s2 + dels2h 's2 only changes if p2
overcomes sticktion
 mdot1h = mdot1 + dt * k1mdot1
 mdot2h = mdot2 + dt * k1mdot2
 tf1h = tf1 + dt * k1tf1
 tf2h = tf2 + dt * k1tf2
 tf3h = tf3 + dt * k1tf3
 tt1h = tt1 + dt * k1tt1
 tt2h = tt2 + dt * k1tt2
 If s1h < 0 Then s1h = 0
 If s1h > 1 Then s1h = 1
 If s2h < 0 Then s2h = 0
 If s2h > 1 Then s2h = 1
 If mdot1h < 0 Then mdot1h = 0
 If mdot2h < 0 Then mdot2h = 0
 '

174

 ' Calculate the R-K k2s for s1, s2, mdot1, mdot2, tf1, tf2, and tf3.
 ' The IF statements either allow for sticktion or prevent numerical overflow.
 '

k2p1 = (p1targ - p1h) / tauvp1
 k2p2 = (p2targ - p2h) / tauvp2
 f1h = s1h ^ power1
 If f1h > 0.0001 Then
 k2mdot1 = ap1 * dpp1 + bp1 * hp1 - cp11 * mdot1h ^ 2 - cp12 * (mdot1h +
mdot2h) ^ 2 - dp1 * mdot1h ^ 2 / f1h ^ 2
 Else
 k2mdot1 = -20
 End If
 If k2mdot1 < -20 Then k2mdot1 = -20
 f2h = s2h ^ power2
 If f2h > 0.0001 Then
 k2mdot2 = ap2 * dpp2 + bp2 * hp2 - cp21 * mdot2h ^ 2 - cp22 * (mdot1h +
mdot2h) ^ 2 - dp2 * mdot2h ^ 2 / f2h ^ 2
 Else
 k2mdot2 = -20
 End If
 If k2mdot2 < -20 Then k2mdot2 = -20
 k2tf1 = (tf(ifind) - tf1h) / taut1
 k2tf2 = (tf1h - tf2h) / taut2
 k2tf3 = (tf2h - tf3h) / taut3
 k2tt1 = (t1inp - tt1h) / 10
 k2tt2 = (t2inp - tt2h) / 10
 '

' Use the k1s and k2s to estimate where the state variables will go.
 ' The limits are for physical reality.
 '

p1 = p1 + dt * (k1p1 + k2p1) / 2
 p2 = p2 + dt * (k1p2 + k2p2) / 2
 dels1 = (p1 - 3) / 12 - s1
 dels2 = (p2 - 3) / 12 - s2
 If Abs(dels1) > deadband Then s1 = s1 + dels1
 If Abs(dels2) > deadband Then s2 = s2 + dels2
 mdot1 = mdot1 + dt * (k1mdot1 + k2mdot1) / 2
 mdot2 = mdot2 + dt * (k1mdot2 + k2mdot2) / 2
 tf1 = tf1 + dt * (k1tf1 + k2tf1) / 2
 tf2 = tf2 + dt * (k1tf2 + k2tf2) / 2
 tf3 = tf3 + dt * (k1tf3 + k2tf3) / 2
 tt1 = tt1 + dt * (k1tt1 + k2tt1) / 2
 tt2 = tt2 + dt * (k1tt2 + k2tt2) / 2
 If s1 < 0 Then s1 = 0
 If s1 > 1 Then s1 = 1
 If s2 < 0 Then s2 = 0

175

 If s2 > 1 Then s2 = 1
 If mdot1 < 0 Then mdot1 = 0
 If mdot2 < 0 Then mdot2 = 0
 Next i
 '

' Place tf3 into the array for delayed retrieval. "iput," the put index,
 ' has to be updated for the next sampling interval.
 '

If (mdot1 + mdot2) > 0.01 Then
 tf(iput) = (mdot1 * t1inp + mdot2 * t2inp) / (mdot1 + mdot2)
 End If
 iput = iput + 1
 If iput = 2001 Then iput = 0 're start iput values at 12 O'clock
 '

' If enviro is active, then add noise and bias to the flow measurements
 ' and bias to the temperature measurement.
 ' here noise is removed completely with bias also neautralised
 m1bias = 0.95 * m1bias + 0.05 * m1biasb * enviro
 m2bias = 0.95 * m2bias + 0.05 * m2biasb * enviro
 m3bias = 0.95 * m3bias + 0.05 * m3biasb * enviro
 t1bias = 0.95 * t1bias + 0.05 * t1biasb * enviro
 t2bias = 0.95 * t2bias + 0.05 * t2biasb * enviro
 t3bias = 0.95 * t3bias + 0.05 * t3biasb * enviro
 mdot1meas = mdot1 * (1 + m1bias + (Sqr(-0.002 * Log(Rnd)) * Sin(2 * 3.14159 *
Rnd)) * enviro)
 mdot2meas = mdot2 * (1 + m2bias + (Sqr(-0.002 * Log(Rnd)) * Sin(2 * 3.14159 *
Rnd)) * enviro)
 mdot3meas = (mdot1 + mdot2) '* (1 + m3bias + 0 * (SQR(-.002 * LOG(RND)) *
SIN(2 * 3.14159 * RND)) * enviro)
 t1meas = tt1 '+ t1bias
 t2meas = tt2 '+ t2bias
 t3meas = tf3 '+ t3bias
End Sub

Sub PROCINI()
 '

' Routine to initialize the process parameter values
 '

enviro = 1 'environmental effects are on
 dt = t / 10 'integration and control periods, sec
 ap1 = 0.3016 'A for Process #1
 bp1 = 2.9576 'B for Process #1
 cp11b = 0.003979 'C #1 for Process #1, Base value
 cp12b = 0.01082 'C #2 for Process #1, Base value
 dp1 = 0.002327 'D for Process #1
 dpp1b = 30 'Differential Pressure for Process #1

176

 hp1 = 2 'Height of hydrostatic head Process #1
 tauvp1 = 1 'Valve TAU for Process #1
 ddpp1 = 0 'Deviation of Differential Pressure for Process #1
 dcp11 = 0 'Deviation of C #1 for Process #1
 dcp12 = 0 'Deviation of C #2 for Process #1
 power1 = 2 'value of power for valve #1 characteristic
 t1inpb = 100 'INlet Temperature Base value for Process #1
 ap2 = 0.3427
 bp2 = 3.3609
 cp21b = 0.008139
 cp22b = 0.0123
 dp2 = 0.01058
 dpp2b = 60
 hp2 = -1
 tauvp2 = 1.5
 ddpp2 = 0
 dcp21 = 0
 dcp22 = 0
 power2 = 2
 t2inpb = 20
 taut1 = 0.6 'Temperature sensor TAU for 1st lag***values changed
 taut2 = 0.4 'Temperature sensor TAU for 2nd lag
 taut3 = 0.3 'Temperature sensor TAU for 3rd lag
 tf1 = t2inpb 'Fictitious Temperature #1
 tf2 = t2inpb 'Fictitious Temperature #2
 tf3 = t2inpb 'Fictitious Temperature #3
 For i = 0 To 2000
 tf(i) = t2inpb 'array that holds the Fictitious Temperatures for delay
 Next i
 m1biasb = 0.1 - 0.2 * Rnd
 m2biasb = 0.1 - 0.2 * Rnd
 m3biasb = 0.1 - 0.2 * Rnd
 t1biasb = 2 - 4 * Rnd
 t2biasb = 2 - 4 * Rnd
 t3biasb = 2 - 4 * Rnd
 'mdot1 = 5 '<***here start the mdot's
 'mdot2 = 5
 o1 = 100
 o2 = 100
End Sub

177

The following Q- Basic code listing is from the Hot and Cold water mixing simulator for
the case of Without Noise.

DECLARE SUB CLEAN ()
DECLARE SUB ATV (a$, time!, mode1!, mode2!, mdot3sp!, mdot3filt!, t3sp!, t3meas!,
o1!, o2!)
DECLARE SUB FILTINI ()
DECLARE SUB FILTER (mdot1meas!, mdot2meas!, mdot3meas!, mdot1filt!,
mdot2filt!, mdot3filt!)
DECLARE SUB DISPLAY (mode1, mode2, o1, o2, mdot1filt, mdot2filt, mdot3filt,
t1meas, t2meas, t3meas, mdot3sp, t3sp, theta)
DECLARE SUB OPERATOR (a$, mode1, mode2, o1, o2, mdot3sp, t3sp)
DECLARE SUB EVAL (mdot3sp, mdot3filt, t3sp, t3meas, o1, o2)
DECLARE SUB CTLINI ()
DECLARE SUB PROCESS (o1, o2, s1, s2, mdot1meas, mdot2meas, mdot3meas,
t1meas, t2meas, t3meas)
DECLARE SUB PLOTINI ()
DECLARE SUB CTL (mode1, mode2, mdot3sp, mdot3filt, t3sp, t3meas, o1, o2)
DECLARE SUB PLOT (o1, o2, mdot1filt, mdot2filt, mdot3filt, t1meas, t2meas, t3meas,
mdot3sp, t3sp)
DECLARE SUB PROCINI ()
 '

' CONTROL.BAS
 ' Spring 1998 CHENG-5xxx
 ' Dr.R.Russell Rhinehart, School of Chem. Engr. Oklahoma State U.
 ' 25 Dec 97
 '

' This program is a basis for CHENG-5xxx students to test their controllers.
 '

' The program models control valves, fluid flow, mixing of a hot and cold
 ' water in a pipe system, and flow and temperature measurement. It also
 ' contains a control subrouting for primitive PID T and F controllers.
 ' The students will write the code for various control strategys,
 ' filters, and goodness of control evaluations; tune their controllers;
 ' and explore the solutions for a variety of process events that cause
 ' control difficulty.
 '

' The program is structured so that each stage in the controller-process-
 ' evaluation system are written as subroutines. This MAIN program links and
 ' orders the execution of each subroutine.

178

 '
' The MAIN program calls subroutine PROCESS to dynamically simulate the

 ' fluid mixing process for a time interval, t, of 0.1 seconds. PROCESS
 ' simulates the final element dynamics, as well as the ChEs view of the
 ' process behavior (fluid dynamics and mixing). It also adds measurement
 ' bias and process beavior drifts that have an ARMA stochastic behavior.
 ' It also adds measurement noise and valve "stick-tion".
 '

' MAIN then calls subroutine FILT to filter noise from the measurements.
 '

' MAIN then calls subroutine CTL, where, eventually students will write
 ' the code for the various controllers and control strategies. Presently
 ' CTL contains two independent PID controllers, one for T control (manipulating
 ' O1) and one for F control (manipulating O2).
 '

' MAIN then calls subroutine EVAL, where, eventually students will write
 ' the code for the various goodness of control measures. Presently EVAL
 ' calculates T and F NISE.
 '

' MAIN then calls subroutine PLOT to generate a strip chart display
 ' of the controlled and manipulated variables.
 '

' Finally MAIN calls DISPLAY to refresh data on the screen.
 '

' On operator demand (by keyboard touches) MAIN will call subroutine
 ' OPERATOR to execute the operator-initiated (student-initiated) changes.
 ' See subroutine OPERATOR to see what INKEY touches start which commands.
 ' One of these commands is to initiate ATV tuning, an automatic tuning for
 ' PID controllers.
 '

' This sequence is then repeated. However, first MAIN initializes the
 ' devices, sets up common variables, and calls PLOTINI, PROCINI, and
 ' CTLINI to initialize the PLOT, PROCESS, and CTL subroutine variables.
 '

DIM plotvmax(10), plotvmin(10), plotvrng(10), plotvar(10), plotyo(10), tf(2000)
 COMMON SHARED plotvmax(), plotvmin(), plotvrng(), plotvar(), plotyo(), tf()
 COMMON SHARED numvar, plottime, reference, horizon, plotx, plotxo, ploty, time
 COMMON SHARED ap1, bp1, cp11b, cp12b, dp1, tauvp1
 COMMON SHARED ap2, bp2, cp21b, cp22b, dp2, tauvp2
 COMMON SHARED m1biasb, m2biasb, m3biasb, t1biasb, t2biasb, t3biasb
 COMMON SHARED taut1, taut2, taut3, t1inpb, t2inpb, tf1, tf2, tf3
 COMMON SHARED t, dt, timedelta
 COMMON SHARED dpp1b, hp1, power1
 COMMON SHARED dpp2b, hp2, power2
 COMMON SHARED enviro

179

 COMMON SHARED lambda1, lambda2, lambda3
 COMMON SHARED kc1, taui1, taud1, kc2, taui2, taud2, detune
 COMMON SHARED which$, tune, dataout
 COMMON SHARED iset3, isdo1, isemdot3, isdo2, isenumber
 COMMON SHARED o1, o2
OPEN "F:\VBPROGS\rules2\Newruns\testdata.csv" FOR OUTPUT AS #1
'PRINT #1, "time", "theta", "t3meas", "t1meas", "t2meas", "mdot3meas", "mdot1meas",
"mdot2meas"
PRINT #1, "time, t1meas, mdot1meas, mdot2meas, t3meas"
SCREEN 12 'set-up screen for graphics, 640 X 350 x-y pixils, 82 X 25 x-y positions
RANDOMIZE ((TIMER - 12300) / 3) 'randomize the seed for the random number
generator
CLS
enviro = 1
tune = -1 'do not start with ATV tuning
dataout = -1 '**now start without data logging
 CALL FILTINI
 CALL CTLINI
 CALL PROCINI
 CALL PLOTINI

FOR interval = 1 TO 600000
 time = interval * t
 IF time = 20 THEN
 dataout = 1
 END IF

IF 20 * INT(time / 20) = time THEN

IF time > 0 AND time < 200 THEN o1 = o1 - 10
 IF time > 200 AND time < 400 THEN o2 = o2 - 10
 IF time > 400 AND time < 600 THEN o1 = o1 + 10
 IF time > 600 AND time < 800 THEN o2 = o2 + 10

IF time > 800 AND time < 1000 THEN o1 = o1 - 10
 IF time > 1000 AND time < 1200 THEN o2 = o2 - 10
 IF time > 1200 AND time < 1400 THEN o1 = o1 + 10
 IF time > 1400 AND time < 1600 THEN o2 = o2 + 10

IF time > 1600 AND time < 1800 THEN o1 = o1 - 10
 IF time > 1800 AND time < 2000 THEN o2 = o2 - 10
 IF time > 2000 AND time < 2200 THEN o1 = o1 + 10
 IF time > 2200 AND time < 2400 THEN o2 = o2 + 10

IF time = 820 THEN t1inpb = t1inpb + 40
 IF time = 1620 THEN t1inpb = t1inpb + 40

180

END IF

CALL PROCESS(o1, o2, s1, s2, mdot1meas, mdot2meas, mdot3meas, t1meas,

t2meas, t3meas)
 a$ = INKEY$
 IF a$ <> "" THEN
 CALL OPERATOR(a$, mode1, mode2, o1, o2, mdot3sp, t3sp)
 END IF
 CALL FILTER(mdot1meas, mdot2meas, mdot3meas, mdot1filt, mdot2filt,
mdot3filt)
 IF tune = 1 THEN
 CALL ATV(a$, time, mode1, mode2, mdot3sp, mdot3filt, t3sp, t3meas, o1,
o2)
 ELSE
 CALL CLEAN
 END IF
 CALL CTL(mode1, mode2, mdot3sp, mdot3filt, t3sp, t3meas, o1, o2)
 CALL PLOT(o1, o2, mdot1filt, mdot2filt, mdot3filt, t1meas, t2meas, t3meas,
mdot3sp, t3sp)
 CALL EVAL(mdot3sp, mdot3filt, t3sp, t3meas, o1, o2)
 CALL DISPLAY(mode1, mode2, o1, o2, mdot1filt, mdot2filt, mdot3filt,
t1meas, t2meas, t3meas, mdot3sp, t3sp, theta)
 IF dataout = 1 THEN
 IF timedelta * INT(time / timedelta) = time THEN '****log on every
(timedelta) second
 PRINT #1, time; ","; t1meas; ","; mdot1meas; ","; mdot2meas; ",";
t3meas; ","; theta
 END IF
 END IF
 NEXT interval
CLOSE #1
 '

' Variable definitions
 '

' plotvmax(10) maximum values of the plotted variables
 ' plotvmin(10) minimum values of the plotted variables
 ' plotvrng(10) calculated maximum minus minimum values, range of plotted variables
 ' plotvar(10) values of the plotted variables
 ' plotyo(10) pixel positions for the previous strip chart ordinate
 ' tf(200) array that holds the values for the fictitious temperature
 ' numvar number of variables plotted
 ' plottime time argument for the plotting routine, same as time
 ' reference time at the beginning of each strip chart sweep
 ' horizon time window of the strip chart
 ' plotx pixel position for the strip chart abscissa

181

 ' plotxo value of the previous plotx pixel position
 ' ploty pixel position for the strip chart ordinate
 ' time simulated time, seconds
 ' ap1 "a" coefficient value for process #1, kg/s^2/kPa
 ' bp1 "b" coefficient value for process #1, kg/s^2/m
 ' cp11b "c11" coefficient base value for process #1, kg/s^2/kg^2/min^2
 ' cp12b "c12" coefficient base value for process #1, kg/s^2/kg^2/min^2
 ' dp1 "d" coefficient value for process #1, kg/s^2/kg^2/min^2
 ' tauvp1 time constant for process valve #1, seconds
 ' ap2 "a" coefficient value for process #2, kg/s^2/kPa
 ' bp2 "d" coefficient value for process #2, kg/s^2/m
 ' cp21b "c21" coefficient base value for process #2, kg/s^2/kg^2/min^2
 ' cp22b "c22" coefficient base value for process #2, kg/s^2/kg^2/min^2
 ' dp2 "d" coefficient value for process #2, kg/s^2/kg^2/min^2
 ' tauvp2 time constant for process valve #2, seconds
 ' taut1 time constant for first temperature lag, seconds
 ' taut2 time constant for second temperature lag, seconds
 ' taut3 time constant for third temperature lag, seconds
 ' t1inpb process stream #1 inlet temperature base value, centigrade
 ' t2inpb process stream #2 inlet temperature base value, centigrade
 ' tf1 first lagged temperature at the fictitious sensor, centigrade
 ' tf2 second lagged temperature at the fictitious sensor, centigrade
 ' tf3 third lagged temperature at the fictitious sensor, centigrade
 ' t process sampling time and control period, seconds
 ' dt process integration time step, seconds
 ' dpp1b driving pressure drop base case for stream #1, kPa
 ' hp1 elevation head for stream #1, m
 ' power1 power coefficient for valve #1 characteristic
 ' dpp2b driving pressure drop base case for stream #2, kPa
 ' hp2 elevation head for stream #2, m
 ' power2 power coefficient for valve #2 characteristic
 ' enviro coefficient to toggle environmental effects on/off, 1 if on, 0 if off
 ' time simulated time, seconds
 ' interval controller sampling period and process integration time step, seconds
 ' o1 output of controller #1, % of full scale
 ' o2 output of controller #2, % of full scale
 ' s1 valve #1 stem position, fraction open
 ' s2 valve #2 stem position, fraction open
 ' mdot1meas measured value of flow rate of stream #1, kg/min
 ' mdot2meas measured value of flow rate of stream #2, kg/min
 ' mdot3meas measured value of combined flow rate, kg/min
 ' t3meas measured value of mixed temperature, centigrade
 ' a$ variable to store the value of INKEY$, alpha-numeric string
 ' INKEY$ BASIC function that inputs a keyboard hit, alpha-numeric string
 ' mode1 mode of controller #1, 1 if AUTO, 0 if MAN
 ' mode2 mode of controller #2, 1 if AUTO, 0 if MAN

182

 ' mdot3sp set point for total flow rate, kg/min
 ' t3sp set point for mixed temperature, centigrade
 ' lambda1 filter factor for the first-order noise filter on mdot1meas
 ' lambda2 filter factor for the first-order noise filter on mdot2meas
 ' lambda3 filter factor for the first-order noise filter on mdot3meas
 ' kc1 controller 1 gain, %output / kg/min
 ' taui1 controller 1 integral time, seconds
 ' taud1 controller 1 derivative time, seconds
 ' kc2 controller 2 gain, %output / centigrade
 ' taui2 controller 2 integral time, seconds
 ' taud2 controller 2 derivative time, seconds
 ' which$ variable that defines which controller is being ATV tested
 ' tune variable to indicate whether ATV tuning is desired
 ' dataout variable to indicate whether data is to be recorded in the output file
 ' iset3 integral of the squared error for t3meas
 ' isdo1 integral of the squared change in output of controller 1
 ' isemdot3 integral of the squared error for mdot3filt
 ' isdo2 integral of the squared change in output of controller 2
 ' isenumber count to normalize the ise and isdo
 ' m*bias bias on flow rate * measurement
 ' m*biasb base level for the bias on flow rate * measurement
 ' t*bias bias on temperature * measurement
 ' t*biasb base level for the bias on temperature * measurement

SUB ATV (a$, time, mode1, mode2, mdot3sp, mdot3filt, t3sp, t3meas, o1, o2) STATIC
 '

' ATV tuning
 ' NOTE 1 - I think that I used the ZN Ultimate rules for interacting for non-
interacting PID control
 ' NOTE 2 - need a better way to detect zero crossing in the presence of noise
 '

IF a$ = "a" OR a$ = "A" THEN 'you just got here, initialize the factors
 start = 0 'start time for the ATV test
 e = 0 'deviation from atvtarg
 eold = 0 'old deviation
 emax = 0 'maximum CV deviation from atvtarg in a cycle
 emin = 0 'minimum CV deviation from atvtarg in a cycle
 LOCATE 15, 1
 INPUT "Do you wish to implement ATV tuning on the O1-T3 loop (1) or O2-F3
(2)"; which$
 LOCATE 15, 1
 PRINT " "
 '
 ' initialize the atvtarg and set the controller to manual
 '
 IF which$ = "1" THEN 'O1-T3 loop was chosen

183

 atvtarg = t3meas 'initialize the atvtarg with the first CV value
 mode1 = 0 'set the controller to MAN
 LOCATE 14, 1
 PRINT USING "atvtarg = ###.# C"; atvtarg
 ELSE 'O2-F3 loop was chosen
 atvtarg = mdot3filt
 mode2 = 0
 LOCATE 14, 1
 PRINT USING "atvtarg = ###.# kg/min"; atvtarg
 END IF
 END IF
 '

' ATV test controller #1
 '

IF which$ = "1" THEN
 IF start = 0 THEN 'if this is the first time initialize
 start = time 'start time for test
 switch = time 'time when output was switched
 relay = 20 'output step size (high - low)
 o1 = o1 + relay / 2 'make the first output step, up, by 1/2 of the relay
 LOCATE 15, 1
 PRINT "ATV initiated on O1-T3 loop, T3 controller is overridden"
 END IF
 IF time - start > 15 THEN 'hold the first bump for 15 seconds
 e = atvtarg - t3meas 'then calculate the deviation
 IF e > emax THEN emax = e 'set emax
 IF e < emin THEN emin = e 'set emin
 LOCATE 14, 1
 PRINT USING "atvtarg = ###.# C emax = ###.### C emin = ###.### C ";
atvtarg; emax; emin
 IF e * eold <= 0 THEN 'if the error changed sign, the atvtarg was crossed
 IF e < 0 THEN 'if the error is negative
 o1 = o1 - relay 'then step the output down by 1/1 relay
 END IF
 IF e > 0 THEN 'if the error is positive, then a cycle had finished
 o1 = o1 + relay 'then step the output up by 1/1 relay
 pu = time - switch 'calculate the ultimate period
 ku = 4 * relay / (emax - emin) / 3.14159 'and the ultimate gain
 LOCATE 15, 1
 PRINT USING "ATV O1-T3 in cycling mode. Ult. P. = ###.## sec Ult.
Kc = ###.## %/C"; time - switch; 4 * relay / (emax - emin) / 3.14159
 LOCATE 16, 1
 PRINT USING "(Kc=###.#) (Kc=###.# taui=###.#) (Kc=###.#
taui=###.# taud=###.#)"; .5 * ku; .45 * ku; .83 * pu; .59 * ku; .5 * pu; .125 * pu
 o1 = o1 + .25 * relay * (emax + emin) / (emax - emin) 'shift o1 for
symmetry

184

 emax = 0 'reset emax for the next cycle
 emin = 0 'reset emin for the next cycle
 switch = time 'reset switch for the next cycle
 END IF
 END IF
 eold = e
 END IF
 ELSE 'which = 2, ATV the flow loop
 IF start = 0 THEN
 start = time
 switch = time
 relay = 30
 o2 = o2 + relay / 2
 LOCATE 15, 1
 PRINT "ATV initiated on O2-F3 loop, F3 controller is overridden"
 END IF
 IF time - start > 5 THEN
 e = atvtarg - mdot3filt
 IF e > emax THEN emax = e
 IF e < emin THEN emin = e
 LOCATE 14, 1
 PRINT USING "atvtarg = ###.# kg/min emax = ###.### kg/min emin =
###.### kg/min"; atvtarg; emax; emin
 IF e * eold <= 0 THEN
 IF e < 0 THEN
 o2 = o2 - relay
 END IF
 IF e > 0 THEN
 o2 = o2 + relay
 pu = time - switch
 ku = 4 * relay / (emax - emin) / 3.14159
 LOCATE 15, 1
 PRINT USING "ATV O2-F3 in cycling mode. Ult. P. = ###.## sec Ult.
Kc = ###.## %/kg/min"; pu; ku
 LOCATE 16, 1
 PRINT USING "(Kc=###.#) (Kc=###.# taui=###.#) (Kc=###.#
taui=###.# taud=###.#)"; .5 * ku; .45 * ku; .83 * pu; .59 * ku; .5 * pu; .125 * pu
 o2 = o2 + .25 * relay * (emax + emin) / (emax - emin)'shift o2 for
symmetry
 emax = 0
 emin = 0
 switch = time
 END IF
 END IF
 eold = e
 END IF

185

 END IF
END SUB

SUB CLEAN
 '

' clean the ATV messages from the screen
 '

LOCATE 14, 1
 PRINT " "
 LOCATE 15, 1
 PRINT " "
 LOCATE 16, 1
 PRINT " "
END SUB

SUB CTL (mode1, mode2, mdot3sp, mdot3filt, t3sp, t3meas, o1, o2) STATIC
 '

' Presently there are two independent, standard PID controllers here.
 ' One controls T3 by manipulating O1, the output to valve 1, the hot water
 ' valve. The other controls F3 by manipulating O2, the output to valve 2,
 ' the cold water valve. Because the process is interactive (O1 affects both
 ' T3 and F3), the controllers use the "BLT" method of detuning them jointly,
 ' after they were independently tuned by "ATV" for "QAD" process behavior.
 '

'
' Temperature controller

 '
IF mode1 = 1 THEN 'temperature controller in AUTO

 e1 = t3sp - t3meas 'reverse acting
 bias1 = bias1 + t * kc1 * e1 / taui1 / detune ^ 2 'adjustable bias, rectangle rule
 eant1 = e1 - taud1 * (t3meas - t3old) / t 'anticipated error, D-on-X
 t3old = t3meas
 o1 = kc1 * eant1 / detune + bias1 'proportional plus bias
 IF o1 > 110 THEN 'anti-windup provision
 o1 = 110
 bias1 = o1 - kc1 * eant1 / detune
 END IF
 IF o1 < -10 THEN 'anti-windup provision
 o1 = -10
 bias1 = o1 - kc1 * eant1 / detune
 END IF
 ELSE 'temperature controller in MAN
 t3sp = t3meas 'setpoint tracking, bumpless transfer
 t3old = t3meas 'no D spike, bumpless transfer
 bias1 = o1 'bias tracking, bumpless transfer
 END IF

186

 '
' Flow controller

 '
IF mode2 = 1 THEN 'flow controller in AUTO

 e2 = mdot3sp - mdot3filt 'reverse acting
 bias2 = bias2 + t * kc2 * e2 / taui2 / detune ^ 2 'adjustable bias, rectangle rule
 eant2 = e2 - taud2 * (mdot3filt - mdot3old) / t 'anticipated error, D-on-X
 mdot3old = mdotfilt
 o2 = kc2 * eant2 / detune + bias2 'proportional plus bias
 IF o2 > 110 THEN 'anti-windup provision
 o2 = 110
 bias2 = o2 - kc2 * eant2 / detune
 END IF
 IF o2 < -10 THEN 'anti-windup provision
 o2 = -10
 bias2 = o2 - kc2 * eant2 / detune
 END IF
 ELSE 'flow controller in MAN
 mdot3sp = mdot3filt 'setpoint tracking, bumpless transfer
 mdot3old = mdot3filt
 bias2 = o2 'bias tracking, bumpless transfer
 END IF
END SUB

SUB CTLINI STATIC
 '

' Initial controller settings go here static makes them constant
 '

t = .1
 timedelta = 1 'log every timedelta seconds
 mode1 = 0 'controller 1 is in manual
 mode2 = 0 'controller 2 is in manual
 kc1 = 2 '% / centigrade
 taui1 = 12 'seconds
 taud1 = 3 'seconds
 kc2 = 8 '% / kg/min
 taui2 = 2.5 'seconds
 taud2 = 0 'seconds
 detune = 1 'dimensionless
END SUB

SUB DISPLAY (mdot1, mdot2, o1, o2, mdot1filt, mdot2filt, mdot3filt, t1meas,
t2meas, t3meas, mdot3sp, t3sp, theta)
 '

' subroutine to display variables and status on the screen
 '

187

 LOCATE 17, 1
 PRINT USING " theta = ###.##### time = ####"; theta; time
 PRINT USING " o1 = ###.# o2 = ###.#"; o1; o2
 PRINT USING "F1filt = ###.# F2filt = ###.#"; mdot1filt; mdot2filt
 PRINT USING "T1meas = ###.### T2meas = ###.#"; t1meas; t2meas
 PRINT USING "T3meas = ###.# F3filt = ###.#"; t3meas; mdot3filt
 PRINT USING "T3sp = ###.# F3sp = ###.#"; t3sp; mdot3sp
 PRINT USING "kc1=##.# taui1=##.# taud1=##.# kc2=##.# taui2=##.# taud2=##.#
detune=#.#"; kc1; taui1; taud1; kc2; taui2; taud2; detune
END SUB

SUB EVAL (mdot3sp, mdot3filt, t3sp, t3meas, o1, o2) STATIC
 '

' measures of control goodness are calculated here
 '

isenumber = isenumber + 1
 iset3 = iset3 + t * (t3sp - t3meas) ^ 2
 isdo1 = isdo1 + t * (o1 - o1old) ^ 2
 o1old = o1
 niset3 = iset3 / (isenumber * t)
 nisdo1 = isdo1 / (isenumber * t)
 isemdot3 = isemdot3 + t * (mdot3sp - mdot3filt) ^ 2
 isdo2 = isdo2 + t * (o2 - o2old) ^ 2
 o2old = o2
 nisemdot3 = isemdot3 / (isenumber * t)
 nisdo2 = isdo2 / (isenumber * t)
 '

' LOCATE Y,X locates the beginning of the subsequent print statement
 ' at Y text rows down from the top of the screen and X text columns to
 ' the right from the left of the screen. The screen is 22 rows by 75
 ' columns.
 ' PRINT USING " "; is a formatted print statement. # marks locations
 ' for numerical values.
 '

LOCATE 21, 35
 PRINT USING " rmset = #.####^^^^ rmsef = #.####^^^^"; SQR(niset3);
SQR(nisemdot3)
 LOCATE 22, 35
 PRINT USING "rmsdo1 = #.####^^^^ rmsdo2 = #.####^^^^"; SQR(nisdo1);
SQR(nisdo2)
END SUB

SUB FILTER (mdot1meas, mdot2meas, mdot3meas, mdot1filt, mdot2filt, mdot3filt)
STATIC
 '

' subroutine to first-order filter the noisy process measurements

188

 ' lambda = 1-exp(T/taufilt)
 '

mdot1filt = lambda1 * mdot1meas + (1 - lambda1) * mdot1filt
 mdot2filt = lambda2 * mdot2meas + (1 - lambda2) * mdot2filt
 mdot3filt = lambda3 * mdot3meas + (1 - lambda3) * mdot3filt
END SUB

SUB FILTINI STATIC
 '

' subroutine to initialize the filter coefficients
 '

lambda1 = .2
 lambda2 = .2
 lambda3 = .2
END SUB

SUB OPERATOR (a$, mode1, mode2, o1, o2, mdot3sp, t3sp)
 '

' operator initiated action is made here
 '

iset3 = 0 'Reset the goodness of control measures
 isdo1 = 0 ' "
 isemdot3 = 0 ' "
 isdo2 = 0 ' "
 isenumber = 0 ' "
 IF a$ = "q" OR a$ = "Q" THEN
 CLOSE #1
 STOP 'key in "q" to stop the program
 END IF
 IF a$ = "a" OR a$ = "A" THEN tune = -tune
 IF a$ = "-" THEN t1inpb = t1inpb - 5 '***add or subtract input temperature
 IF a$ = "+" THEN t1inpb = t1inpb + 5
 IF a$ = "9" OR a$ = "L" THEN dataout = -dataout
 IF a$ = "n" OR a$ = "N" THEN 'key in "n" to toggle enviro and disturbances
 IF enviro = 1 THEN
 enviro = 0
 ELSE
 enviro = 1
 END IF
 END IF
 IF a$ = "1" THEN 'key in "1" to toggle controller 1 MAN-AUTO
 IF mode1 = 1 THEN
 mode1 = 0
 ELSE
 mode1 = 1
 END IF

189

 END IF
 IF a$ = "2" THEN 'key in "2" to toggle controller 2 MAN-AUTO
 IF mode2 = 1 THEN
 mode2 = 0
 ELSE
 mode2 = 1
 END IF
 END IF
 '

' change output if in manual
 '

IF a$ = "3" AND mode1 = 0 THEN o1 = o1 - 5 'key in "3" lower o1 in MAN
 IF a$ = "#" AND mode1 = 0 THEN o1 = o1 + 5 'key in "#" raise o1 in MAN
 IF a$ = "4" AND mode2 = 0 THEN o2 = o2 - 5 'key in "4" lower o2 in MAN
 IF a$ = "$" AND mode2 = 0 THEN o2 = o2 + 5 'key in "$" raise o2 in MAN
 '

' limit output to between -10 and 110 %
 '

IF o1 > 110 THEN o1 = 110
 IF o1 < -10 THEN o1 = -10
 IF o2 > 110 THEN o2 = 110
 IF o2 < -10 THEN o2 = -10
 '

' change setpoint if in automatic - method 1:
 '

IF a$ = "5" AND mode1 = 1 THEN t3sp = t3sp - 2 'key in "5" lower tsp in AUTO
 IF a$ = "%" AND mode1 = 1 THEN t3sp = t3sp + 2 'key in "%" raise tsp in AUTO
 IF a$ = "6" AND mode2 = 1 THEN mdot3sp = mdot3sp - 2 'key in "6" lower mdotsp
in AUTO
 IF a$ = "^" AND mode2 = 1 THEN mdot3sp = mdot3sp + 2 'key in "^" raise mdotsp
in AUTO
 ' change setpoint if in automatic - method 2:
 '

IF a$ = "s" OR a$ = "S" THEN
 LOCATE 16, 35
 PRINT "Enter one of these setpoints:"
 LOCATE 17, 35
 PRINT "t3, f3"
 LOCATE 18, 35
 INPUT "Which value do you wish to change"; b$
 IF b$ = "t3" AND mode1 = 1 THEN
 LOCATE 19, 35
 INPUT "Enter t3sp value, C"; t3sp
 END IF
 IF b$ = "f3" AND mode2 = 1 THEN
 LOCATE 19, 35

190

 INPUT "Enter mdot3sp value, kg/min"; mdot3sp
 END IF
 ' erase on-screen trash
 LOCATE 16, 35
 PRINT " "
 LOCATE 17, 35
 PRINT " "
 LOCATE 18, 35
 PRINT " "
 LOCATE 19, 35
 PRINT " "
 END IF
 '

' if tuning is desired
 '

IF a$ = "t" OR a$ = "T" THEN
 LOCATE 16, 35
 PRINT "Enter one of these parameters:"
 LOCATE 17, 35
 PRINT "kc1, taui1, taud1, kc2, taui2, taud2, detune"
 LOCATE 18, 35
 INPUT "Which value do you wish to change"; b$
 IF b$ = "kc1" THEN
 LOCATE 19, 35
 INPUT "Enter kc1 value, %/C"; kc1
 END IF
 IF b$ = "taui1" THEN
 LOCATE 19, 35
 INPUT "Enter taui1 value, s"; taui1
 END IF
 IF b$ = "taud1" THEN
 LOCATE 19, 35
 INPUT "Enter taud1 value, s"; taud1
 END IF
 IF b$ = "kc2" THEN
 LOCATE 19, 35
 INPUT "Enter kc2 value, %/kg/min"; kc2
 END IF
 IF b$ = "taui2" THEN
 LOCATE 19, 35
 INPUT "Enter taui2 value, s"; taui2
 END IF
 IF b$ = "taud2" THEN
 LOCATE 19, 35
 INPUT "Enter taud2 value, s"; taud2
 END IF

191

 IF b$ = "detune" THEN
 LOCATE 19, 35
 INPUT "Enter detune value"; detune
 END IF
 '

' erase on-screen trash
 '

LOCATE 16, 35
 PRINT " "
 LOCATE 17, 35
 PRINT " "
 LOCATE 18, 35
 PRINT " "
 LOCATE 19, 35
 PRINT " "
 END IF
END SUB

SUB PLOT (o1, o2, mdot1filt, mdot2filt, mdot3filt, t1meas, t2meas, t3meas, mdot3sp,
t3sp) STATIC
 '

' This routine plots the scaled variables on a strip chart display
 '

' PLOT.BAS
 ' R. Russell Rhinehart Company
 ' 10 October 1994
 '

' After calculating the variable values assign them to the plot variables
 '

plottime = time 'simulated time, seconds
 plotvar(1) = o1 'output of controller 1, %
 plotvar(2) = o2 'output of controller 2, %
 plotvar(3) = mdot1filt 'filtered flow rate 1, kg/min
 plotvar(4) = mdot2filt 'filtered flow rate 2, kg/min
 plotvar(5) = mdot3filt 'filtered total flow rate, kg/min
 plotvar(6) = t1meas 'measured temperature, centigrade
 plotvar(7) = t2meas 'measured temperature, centigrade
 plotvar(8) = t3meas 'measured temperature, centigrade
 plotvar(9) = mdot3sp 'flow 3 setpoint, kg/min
 plotvar(10) = t3sp 'temperature 3 setpoint, centigrade
 '

' Plot routine
 '

IF plottime - reference >= horizon THEN ' locate the x position
 reference = reference + horizon
 plotxo = 50

192

 LINE (plotxo, 20)-(plotxo, 160), 15
 LINE (plotx, 20)-(plotx, 160), 15
 LINE (plotx, 161)-(plotx, 168), 14
 END IF
 plotx = 50 + INT(.5 + 580 * (plottime - reference) / horizon)
 IF 50 + 58 * INT((plotx - 50) / 58) = plotx THEN LINE (plotx, 20)-(plotx, 160), 15
 LINE (plotx + 1, 20)-(plotx + 1, 160), 14
 LINE (plotx, 161)-(plotx, 168), 0
 LINE (plotx - 1, 161)-(plotx - 1, 168), 14
 FOR plotyy = 20 TO 160 STEP 14
 LINE (plotx, plotyy)-(plotx + 1, plotyy), 15
 NEXT plotyy
 FOR ploti = 1 TO numvar
 ploty = 160 - 140 * (plotvar(ploti) - plotvmin(ploti)) / plotvrng(ploti)
 IF ploty < 20 THEN ploty = 20
 IF ploty > 160 THEN ploty = 160
 LINE (plotxo, plotyo(ploti))-(plotx, ploty), ploti
 plotyo(ploti) = ploty
 NEXT ploti
 plotxo = plotx
END SUB

SUB PLOTINI STATIC
 '

' This routine initializes the strip chart display plot subroutine
 '

' PLOT.BAS
 ' R. Russell Rhinehart Company
 ' 10 October 1994
 '

' initialize the plotting variables
 '

plotxo = 50 ' time = 0 position on the screen
 numvar = 10 ' number of variables to plot, maximum = 10
 horizon = 60 ' strip chart horizon, seconds
 plotvmax(1) = 100 ' maximum value for controller #1 output, %
 plotvmin(1) = 0 ' minimum value for controller #1 output, %
 plotvmax(2) = 100 ' maximum value for controller #2 output, %
 plotvmin(2) = 0 ' minimum value for controller #2 output, %
 plotvmax(3) = 30 ' maximum value for flow rate #1, kg/min
 plotvmin(3) = 0 ' minimum value for flow rate #1, kg/min
 plotvmax(4) = 30 ' maximum value for flow rate #2, kg/min
 plotvmin(4) = 0 ' minimum value for flow rate #2, kg/min
 plotvmax(5) = 60 ' maximum value for total flow rate, kg/min
 plotvmin(5) = 0 ' minimum value for total flow rate, kg/min
 plotvmax(6) = 100 ' maximum value for mixed temperature, C

193

 plotvmin(6) = 0 ' minimum value for mixed temperature, C
 plotvmax(7) = 100 ' maximum value for temperature 1, C
 plotvmin(7) = 0 ' minimum value for temperature 1, C
 plotvmax(8) = 100 ' maximum value for temperature 2, C
 plotvmin(8) = 0 ' minimum value for temperature 2, C
 plotvmax(9) = 60 ' maximum value for flow3 setpoint, kg/min
 plotvmin(9) = 0 ' minimum value for flow3 setpoint, kg/min
 plotvmax(10) = 100 ' maximum value for temperature 3 setpoint, C
 plotvmin(10) = 0 ' minimum value for temperature 3 setpoint, C
 ' repeat for all plotted variables
 reference = 0 ' time of the beginning of each strip chart
 '

' Initialize the graph
 ' (setup lables, background, grid lines, and initial points)
 LOCATE 1, 1
 PRINT USING "PV's (fraction of full scale) VERSUS TIME (fraction of
window = ####.# seconds)"; horizon
 FOR plotj = 0 TO 1 STEP .5 ' lable the y axis
 ploty = 2 + 10 * plotj
 LOCATE ploty, 1
 PRINT USING "#.##"; 1 - plotj
 NEXT plotj
 FOR ploti = 0 TO 1.01 STEP .1 ' lable the x axis
 plotx = 6 + 71 * ploti
 LOCATE 13, plotx
 PRINT USING "#.##"; ploti;
 NEXT ploti
 LINE (40, 13)-(640, 168), 14, BF ' fill in the background
 FOR plotyy = 20 TO 160 STEP 14 ' draw the horizontal grid
 LINE (50, plotyy)-(630, plotyy), 15
 NEXT plotyy
 FOR plotxx = 50 TO 630 STEP 58 ' draw the vertical grid
 LINE (plotxx, 20)-(plotxx, 160), 15
 NEXT plotxx
 FOR ploti = 1 TO numvar ' calculate the plot variable
 ' ranges and initial locations
 plotvrng(ploti) = plotvmax(ploti) - plotvmin(ploti)
 ploty = 160 - 140 * (plotvar(ploti) - plotvmin(ploti)) / plotvrng(ploti)
 IF ploty < 20 THEN ploty = 20
 IF ploty > 160 THEN ploty = 160
 plotyo(ploti) = ploty
 NEXT ploti
END SUB

SUB PROCESS (o1, o2, s1, s2, mdot1meas, mdot2meas, mdot3meas, t1meas, t2meas,
t3meas) STATIC

194

 ' Subroutine to model the flow rates and temperatures. There are several
 ' sections to this routine. First, if enviro is active, stochastic models
 ' are used to change the flow rate driving pressures, flow pressure loss
 ' coefficients, and inlet stream temperatures. Also, if enviro is active,
 ' control valve action is subject to "sticktion." Next, the ODEs that
 ' dynamically model the valve stem positions, and the coupled ODEs that
 ' dynamically model the flow rates and mixture temperature are solved
 ' using the second order Runge-Kutta method. Since the ODE-modeled
 ' temperature is the mixing point temperature, the temperature values are
 ' placed in an array so that the transport-delayed value can be used for
 ' the fluid temperature at the sensor. Since the transport delay is
 ' variable, the how-far-back-in-the-array index, nt, is calculated from
 ' the transport delay, theta. The "clock" concept is used for efficient
 ' array management. The temperature sensor is modeled as a third order ODE.
 ' Finally, noise is added to the flow rate measurement to simulate orifice
 ' turbulence noise.
 ' if enviro is active then add drift and spikes to the pressure drops
 ddpp1 = .999 * ddpp1 + .015 * dpp1b * (RND - .5) * enviro 'drift
 IF RND < .01 THEN spike1 = 50 * (RND - .5) * enviro 'spike
 spike1 = .9 * spike1 'fade the spike
 dpp1 = dpp1b '+ ddpp1 + spike1 <<<<<<*****making sure no spikes
 ddpp2 = .999 * ddpp2 + .015 * dpp2b * (RND - .5) * enviro 'drift
 IF RND < .01 THEN spike2 = 50 * (RND - .5) * enviro 'spike
 spike2 = .9 * spike2 'fade the spike
 dpp2 = dpp2b '+ ddpp2 + spike2 <<<<<<<<******ditto
 '

' if enviro is active then add drift to the flow pressure loss factors
 '****here i made sure again that no drift is there
 dcp11 = .999 * dcp11 + .015 * cp11b * (RND - .5) * enviro 'drift
 cp11 = cp11b '+ dcp11
 dcp12 = .999 * dcp12 + .015 * cp12b * (RND - .5) * enviro 'drift
 cp12 = cp12b '+ dcp12
 dcp21 = .999 * dcp21 + .015 * cp21b * (RND - .5) * enviro 'drift
 cp21 = cp21b '+ dcp21
 dcp22 = .999 * dcp22 + .015 * cp22b * (RND - .5) * enviro 'drift
 cp22 = cp22b '+ dcp22
 ' if enviro is active then add drift to the inlet temperatures
 ' ***ditto
 dt1in = .999 * dt1in + .015 * t1inpb * (RND - .5) * enviro 'drift
 t1inp = t1inpb '+ dt1in
 dt2in = .999 * dt2in + .015 * t2inpb * (RND - .5) * enviro 'drift
 t2inp = t2inpb '+ dt2in
 ' If enviro is active then add "sticktion" hysteresis to the valves.
 ' Deadband is the amount of change in valve position the controller must
 ' call for before the valve stem will move. Here, deadband is either 0 %
 ' or 2.5 %. Dels1 and dels2 are the valve stem position changes that the

195

 ' controller wants. Note: If sticktion is present, and the valve position
 ' is 2 % open, and the controller wants it closed (o = 0 %), then the valve
 ' will stay at 2 % open! This is real. To fix it, controllers are designed
 ' so that their output goes from -10 % to 110 %, or so. Ideally the 0-100 %
 ' controller output is converted to a 4-20 mA d.c. current "signal" then to
 ' a 3-15 psig pneumatic "signal" which operates the valve. Ideally the stem
 ' position goes from 0 to 1 as the pressure goes from 3 to 15 psig. Allowing
 ' the controller output to range from -10 to 110 %, ideally causes the
 ' pneumatic signal to range from 1.8 to 16.2 psig which, hopefully, will
 ' overcome both sticktion and calibration errors in the D/A and i/p devices,
 ' and, thereby, allow the valve to fully close and to fully open.
 '

deadband = .025 * enviro * 0 'deadband<<****making sure it is 0
 current1 = 4 + o1 * 16 / 100 'i1 from A/D conversion of o1
 current2 = 4 + o2 * 16 / 100 'i2 from A/D conversion of o2
 p1targ = 3 + (current1 - 4) * 12 / 16 'p1 target from i/p conversion of i1
 p2targ = 3 + (current2 - 4) * 12 / 16 'p2 target from i/p conversion of i2
 '

' In the following segment of code, the ODEs are solved using a
 ' second-order Rung-Kutta method with an integration time step that
 ' is one tenth of the control interval (dt = t/10).
 '

' Calculate the R-K k1s for p1, p2, mdot1, mdot2, tf1, tf2, and tf3.
 ' The IF statements either allow for sticktion or prevent numerical
 ' overflow. If the valves are nearly closed, then f1 or f2 are extremely
 ' small, and their contributions to the Ks are large negative. The -20
 ' is a relatively large negative value.
 '

FOR i = 1 TO 10
 '

' Calculate the transport delay from the mixing point to the temperature
 ' sensor 1.06 meters down stream. Then, nt, the nearest integer number of
 ' sample intervals backward in the clock array. Then, ifind, the array
 ' location of that transport-delayed temperature. Note, this deadtime
 ' delayed temperature is the influence for the third-order lagged sensor
 ' temperature.
 '

SHARED theta
 IF (mdot1 + mdot2) > .1 THEN 'if mdot total is greater than the minimum
 theta = 80 / (mdot1 + mdot2) '****calculate transport delay doubled the
value of Lt from 20 to 80
 ELSE
 theta = 800 'limit delay to maximum allowed by tf(200)
 END IF
 'OPEN "c:theta.dat" FOR OUTPUT AS #2
 'PRINT #2, theta

196

 'CLOSE #2
 nt = INT(theta / t + .5) 'Number of Time intervals in delay
 IF nt > ntold + 1 THEN nt = ntold + 1 'can't sample fluid past the sensor
 IF nt > 1999 THEN nt = 1999 'can't sample around the tf(200) "clock"
 ntold = nt
 ifind = iput - nt 'calculate the find location
 IF ifind < 0 THEN ifind = ifind + 2001 'increment it if it passes 12 O'clock
 '

' calculate the R-K k1s
 '

k1p1 = (p1targ - p1) / tauvp1 'rate of change of p1, now, due to p1targ
 k1p2 = (p2targ - p2) / tauvp2 'rate of change of p2, now, due to p2targ
 f1 = s1 ^ power1 'inherrent valve characteristic from stem
 IF f1 > .0001 THEN
 k1mdot1 = ap1 * dpp1 + bp1 * hp1 - cp11 * mdot1 ^ 2 - cp12 * (mdot1 +
mdot2) ^ 2 - dp1 * mdot1 ^ 2 / f1 ^ 2
 ELSE
 k1mdot1 = -20
 END IF
 IF k1mdot1 < -20 THEN k1mdot1 = -20
 f2 = s2 ^ power2 'inherent valve characteristic from stem
 IF f2 > .0001 THEN
 k1mdot2 = ap2 * dpp2 + bp2 * hp2 - cp21 * mdot2 ^ 2 - cp22 * (mdot1 +
mdot2) ^ 2 - dp2 * mdot2 ^ 2 / f2 ^ 2
 ELSE
 k1mdot2 = -20
 END IF
 IF k1mdot2 < -20 THEN k1mdot2 = -20
 k1tf1 = (tf(ifind) - tf1) / taut1
 k1tf2 = (tf1 - tf2) / taut2
 k1tf3 = (tf2 - tf3) / taut3
 k1tt1 = (t1inp - tt1) / 10
 k1tt2 = (t2inp - tt2) / 10

' Use the k1s to estimate where the state variables might go.
 ' The h addended to the state variable indicates Hypothesized.
 ' The limits are for physical reality.

p1h = p1 + dt * k1p1
 p2h = p2 + dt * k1p2
 dels1h = (p1h - 3) / 12 - s1 'change in s1 that the p1h would make w/o sticktion
 dels2h = (p2h - 3) / 12 - s2 'change in s2 that the p2h would make w/o sticktion
 IF ABS(dels1h) > deadband THEN s1h = s1 + dels1h 's1 only changes if p1
overcomes sticktion
 IF ABS(dels2h) > deadband THEN s2h = s2 + dels2h 's2 only changes if p2
overcomes sticktion

197

 mdot1h = mdot1 + dt * k1mdot1
 mdot2h = mdot2 + dt * k1mdot2
 tf1h = tf1 + dt * k1tf1
 tf2h = tf2 + dt * k1tf2
 tf3h = tf3 + dt * k1tf3
 tt1h = tt1 + dt * k1tt1
 tt2h = tt2 + dt * k1tt2
 IF s1h < 0 THEN s1h = 0
 IF s1h > 1 THEN s1h = 1
 IF s2h < 0 THEN s2h = 0
 IF s2h > 1 THEN s2h = 1
 IF mdot1h < 0 THEN mdot1h = 0
 IF mdot2h < 0 THEN mdot2h = 0

' Calculate the R-K k2s for s1, s2, mdot1, mdot2, tf1, tf2, and tf3.
 ' The IF statements either allow for sticktion or prevent numerical overflow.

k2p1 = (p1targ - p1h) / tauvp1
 k2p2 = (p2targ - p2h) / tauvp2
 f1h = s1h ^ power1
 IF f1h > .0001 THEN
 k2mdot1 = ap1 * dpp1 + bp1 * hp1 - cp11 * mdot1h ^ 2 - cp12 * (mdot1h +
mdot2h) ^ 2 - dp1 * mdot1h ^ 2 / f1h ^ 2
 ELSE
 k2mdot1 = -20
 END IF
 IF k2mdot1 < -20 THEN k2mdot1 = -20
 f2h = s2h ^ power2
 IF f2h > .0001 THEN
 k2mdot2 = ap2 * dpp2 + bp2 * hp2 - cp21 * mdot2h ^ 2 - cp22 * (mdot1h +
mdot2h) ^ 2 - dp2 * mdot2h ^ 2 / f2h ^ 2
 ELSE
 k2mdot2 = -20
 END IF
 IF k2mdot2 < -20 THEN k2mdot2 = -20
 k2tf1 = (tf(ifind) - tf1h) / taut1
 k2tf2 = (tf1h - tf2h) / taut2
 k2tf3 = (tf2h - tf3h) / taut3
 k2tt1 = (t1inp - tt1h) / 10
 k2tt2 = (t2inp - tt2h) / 10
 '

' Use the k1s and k2s to estimate where the state variables will go.
 ' The limits are for physical reality.
 '

p1 = p1 + dt * (k1p1 + k2p1) / 2
 p2 = p2 + dt * (k1p2 + k2p2) / 2

198

 dels1 = (p1 - 3) / 12 - s1
 dels2 = (p2 - 3) / 12 - s2
 IF ABS(dels1) > deadband THEN s1 = s1 + dels1
 IF ABS(dels2) > deadband THEN s2 = s2 + dels2
 mdot1 = mdot1 + dt * (k1mdot1 + k2mdot1) / 2
 mdot2 = mdot2 + dt * (k1mdot2 + k2mdot2) / 2
 tf1 = tf1 + dt * (k1tf1 + k2tf1) / 2
 tf2 = tf2 + dt * (k1tf2 + k2tf2) / 2
 tf3 = tf3 + dt * (k1tf3 + k2tf3) / 2
 tt1 = tt1 + dt * (k1tt1 + k2tt1) / 2
 tt2 = tt2 + dt * (k1tt2 + k2tt2) / 2
 IF s1 < 0 THEN s1 = 0
 IF s1 > 1 THEN s1 = 1
 IF s2 < 0 THEN s2 = 0
 IF s2 > 1 THEN s2 = 1
 IF mdot1 < 0 THEN mdot1 = 0
 IF mdot2 < 0 THEN mdot2 = 0
 NEXT i
 '

' Place tf3 into the array for delayed retrieval. "iput," the put index,
 ' has to be updated for the next sampling interval.
 '

IF (mdot1 + mdot2) > .01 THEN
 tf(iput) = (mdot1 * t1inp + mdot2 * t2inp) / (mdot1 + mdot2)
 END IF
 iput = iput + 1
 IF iput = 2001 THEN iput = 0 're start iput values at 12 O'clock
 '

' If enviro is active, then add noise and bias to the flow measurements
 ' and bias to the temperature measurement.
 ' here noise is removed completely with bias also neautralised
 m1bias = .95 * m1bias + .05 * m1biasb * enviro
 m2bias = .95 * m2bias + .05 * m2biasb * enviro
 m3bias = .95 * m3bias + .05 * m3biasb * enviro
 t1bias = .95 * t1bias + .05 * t1biasb * enviro
 t2bias = .95 * t2bias + .05 * t2biasb * enviro
 t3bias = .95 * t3bias + .05 * t3biasb * enviro
 mdot1meas = mdot1 * (1 + m1bias + (SQR(-.002 * LOG(RND)) * SIN(2 * 3.14159 *
RND)) * enviro)
 mdot2meas = mdot2 * (1 + m2bias + (SQR(-.002 * LOG(RND)) * SIN(2 * 3.14159 *
RND)) * enviro)
 mdot3meas = (mdot1 + mdot2) '* (1 + m3bias + 0 * (SQR(-.002 * LOG(RND)) *
SIN(2 * 3.14159 * RND)) * enviro)
 t1meas = tt1 '+ t1bias
 t2meas = tt2 '+ t2bias
 t3meas = tf3 '+ t3bias

199

END SUB

SUB PROCINI
 ' Routine to initialize the process parameter values
 enviro = 1 'environmental effects are off
 dt = t / 10 'integration and control periods, sec
 ap1 = .3016 'A for Process #1
 bp1 = 2.9576 'B for Process #1
 cp11b = .003979 'C #1 for Process #1, Base value
 cp12b = .01082 'C #2 for Process #1, Base value
 dp1 = .002327 'D for Process #1
 dpp1b = 30 'Differential Pressure for Process #1
 hp1 = 2 'Height of hydrostatic head Process #1
 tauvp1 = 1 'Valve TAU for Process #1
 ddpp1 = 0 'Deviation of Differential Pressure for Process #1
 dcp11 = 0 'Deviation of C #1 for Process #1
 dcp12 = 0 'Deviation of C #2 for Process #1
 power1 = 2 'value of power for valve #1 characteristic
 t1inpb = 20 'INlet Temperature Base value for Process #1
 ap2 = .3427
 bp2 = 3.3609
 cp21b = .008139
 cp22b = .0123
 dp2 = .01058
 dpp2b = 60
 hp2 = -1
 tauvp2 = 1.5
 ddpp2 = 0
 dcp21 = 0
 dcp22 = 0
 power2 = 2
 t2inpb = 10
 taut1 = .6 'Temperature sensor TAU for 1st lag***values changed
 taut2 = .4 'Temperature sensor TAU for 2nd lag
 taut3 = .3 'Temperature sensor TAU for 3rd lag
 tf1 = t2inpb 'Fictitious Temperature #1
 tf2 = t2inpb 'Fictitious Temperature #2
 tf3 = t2inpb 'Fictitious Temperature #3
 FOR i = 0 TO 2000
 tf(i) = t2inpb 'array that holds the Fictitious Temperatures for delay
 NEXT i
 m1biasb = .1 - .2 * RND
 m2biasb = .1 - .2 * RND
 m3biasb = .1 - .2 * RND
 t1biasb = 2 - 4 * RND
 t2biasb = 2 - 4 * RND

200

 t3biasb = 2 - 4 * RND
 'mdot1 = 5 '<***here start the mdot's
 'mdot2 = 5
 o1 = 100
 o2 = 100
END SUB

201

APPENDIX B1 FINAL RULE DATA-BASE (WITHOUT-NOISE)

The following rules were selected for the case of no noise, and with a threshold of 5 data
points.

Rule
no. Statement

97
IF Temp1 is LOW & F1 is MED & F2 is HIGH & Persistence is LOW
THEN after SHORT delay Temp3 will be MED

115
IF Temp1 is MED & F1 is LOW & F2 is HIGH & Persistence is LOW
THEN after SHORT delay Temp3 will be MED

121
IF Temp1 is MED & F1 is MED & F2 is MED & Persistence is LOW
THEN after SHORT delay Temp3 will be MED

122
IF Temp1 is MED & F1 is MED & F2 is MED & Persistence is MED
THEN after SHORT delay Temp3 will be MED

124
IF Temp1 is MED & F1 is MED & F2 is HIGH & Persistence is LOW
THEN after SHORT delay Temp3 will be MED

127
IF Temp1 is MED & F1 is HIGH & F2 is LOW & Persistence is LOW
THEN after SHORT delay Temp3 will be MED

130
IF Temp1 is MED & F1 is HIGH & F2 is MED & Persistence is LOW
THEN after SHORT delay Temp3 will be MED

138
IF Temp1 is HIGH & F1 is LOW & F2 is LOW & Persistence is HIGH
THEN after SHORT delay Temp3 will be MED

148
IF Temp1 is HIGH & F1 is MED & F2 is MED & Persistence is LOW
THEN after SHORT delay Temp3 will be MED

202

APPENDIX B2 FINAL RULE DATA-BASE (WITH NOISE)

The following rules were selected for the case of with noise, and using a threshold of 7
data points.

Rule
no. Statement

7
IF Temp1 is LOW & F1 is LOW & F2 is HIGH & Persistence is LOW
THEN after SHORT delay Temp3 will be LOW

10
IF Temp1 is LOW & F1 is MED & F2 is LOW & Persistence is LOW THEN
after SHORT delay Temp3 will be LOW

19
IF Temp1 is LOW & F1 is HIGH & F2 is LOW & Persistence is LOW
THEN after SHORT delay Temp3 will be LOW

94
IF Temp1 is LOW & F1 is MED & F2 is MED & Persistence is LOW THEN
after SHORT delay Temp3 will be MED

95
IF Temp1 is LOW & F1 is MED & F2 is MED & Persistence is MED THEN
after SHORT delay Temp3 will be MED

110
IF Temp1 is MED & F1 is LOW & F2 is LOW & Persistence is MED THEN
after SHORT delay Temp3 will be MED

112
IF Temp1 is MED & F1 is LOW & F2 is MED & Persistence is LOW THEN
after SHORT delay Temp3 will be MED

113
IF Temp1 is MED & F1 is LOW & F2 is MED & Persistence is MED THEN
after SHORT delay Temp3 will be MED

115
IF Temp1 is MED & F1 is LOW & F2 is HIGH & Persistence is LOW
THEN after SHORT delay Temp3 will be MED

118
IF Temp1 is MED & F1 is MED & F2 is LOW & Persistence is LOW THEN
after SHORT delay Temp3 will be MED

119
IF Temp1 is MED & F1 is MED & F2 is LOW & Persistence is MED THEN
after SHORT delay Temp3 will be MED

121
IF Temp1 is MED & F1 is MED & F2 is MED & Persistence is LOW THEN
after SHORT delay Temp3 will be MED

122
IF Temp1 is MED & F1 is MED & F2 is MED & Persistence is MED THEN
after SHORT delay Temp3 will be MED

123
IF Temp1 is MED & F1 is MED & F2 is MED & Persistence is HIGH
THEN after SHORT delay Temp3 will be MED

127
IF Temp1 is MED & F1 is HIGH & F2 is LOW & Persistence is LOW
THEN after SHORT delay Temp3 will be MED

128
IF Temp1 is MED & F1 is HIGH & F2 is LOW & Persistence is MED
THEN after SHORT delay Temp3 will be MED

129
IF Temp1 is MED & F1 is HIGH & F2 is LOW & Persistence is HIGH
THEN after SHORT delay Temp3 will be MED

203

Statement

139
IF Temp1 is HIGH & F1 is LOW & F2 is MED & Persistence is LOW
THEN after SHORT delay Temp3 will be MED

148
IF Temp1 is HIGH & F1 is MED & F2 is MED & Persistence is LOW
THEN after SHORT delay Temp3 will be MED

149
IF Temp1 is HIGH & F1 is MED & F2 is MED & Persistence is MED
THEN after SHORT delay Temp3 will be MED

226
IF Temp1 is HIGH & F1 is MED & F2 is LOW & Persistence is LOW
THEN after SHORT delay Temp3 will be HIGH

607
IF Temp1 is MED & F1 is MED & F2 is MED & Persistence is LOW THEN
after LONG delay Temp3 will be MED

VITA

Preetica Kumar

Candidate for the Degree of

Master of Science

Thesis: IMPROVED QUALITY METRICS FOR LINGUISTIC RULE SELECTION

Major Field: Chemical Engineering

Biographical:

Personal Data: Born in Bhopal, M.P, India, on July 31st, 1982, the daughter of
Kumar and Geetha Ranganathan.

Education: Received Bachelor of Science degree in Chemical Engineering from

Osmania University College of Technology, Hyderabad, A.P, India in
May 2003. Completed the Requirements for the Master of Science
degree with a major in Chemical Engineering at Oklahoma State
University in July, 2005.

Experience: Conducted research at the Indian Institute of Chemical

Technology, Hyderabad, A.P, India; employed by Oklahoma State
University, Department of Chemical Engineering as a graduate research
assistant; Oklahoma State University, Department of Chemical
Engineering, 2004 to present; employed by Oklahoma State University,
Department of Chemical Engineering as a teaching assistant; Oklahoma
State University, Department of Chemical Engineering, 2003 to present.

Professional Memberships: Phi Kappa Phi Honor Society; Omega Chi Epsilon

Honor Society; Instrumentation, Systems and Automation Society.

Name: Preetica Kumar Date of Degree: May, 2006

Institution: Oklahoma State University Location: Stillwater, Oklahoma

Title of Study: IMPROVED QUALITY METRICS FOR LINGUISTIC RULE

SELECTION

Pages in Study: 203 Candidate for the Degree of Master of Science

Major Field: Chemical Engineering

Scope and Method of Study: The objective of this study was to explore improved robust

metrics for the selection and evaluation of linguistic cause and effect rules and to
predict future outcomes to some extent. A hot and cold water mixer simulator was
used to generate the data which was then processed to incorporate temporal
information about the process. After the data was fuzzified, an exhaustive search
produced the initial rule database. A Truth Space Diagram (TSD) was then
generated for each rule. The first metric “Merit” was calculated based on the
number of “trips” made by each rule into Quadrants II, IV of the TSD. This
metric was used to select the best rules, along with a minimum corroboration
criterion. The second metric “Expectation” was determined from historical data to
predict the expected truth of consequent given the truth of antecedent, for new
data. Histograms were used to denote the absolute and normalized expectations.

Findings and Conclusions: The concept of using “trips” into the quadrants helped isolate

independent events in the data and corroboration. Thus rules could be termed
good or bad with more certainty. The metric “Merit” was very simple to calculate,
did not require normalization, and was independent of the total number of points
in the data-set. The two selection criteria proposed were found to select good and
only good rules. The metric “Expectation” was used to determine the certainty of
a selected rule’s prediction, with a confidence limit of 95%. Adding noise to the
data did not affect the efficiency of the selection procedure.
Thus, the final rule database consisted only of the best rules. Truth of the
consequent was successfully predicted based on historical data.

ADVISOR’S APPROVAL: Dr. R. Russell Rhinehart

