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PREFACE

This study focused on developing generalized structure-based models for

predicting pure-fluid surface tensions and saturation viscosities. Reliable experimental

data for a wide range of molecular species were assembled from the DIPPR physical

property database. The Scaled-Variable-Reduced-Coordinate (SVRC) framework was

used to correlate the available data for the saturation properties under consideration.

Quantitative Structure-Property Relationships (QSPR) was used to generalize the SVRC

model parameters. Non-linear QSPR models involving a hybrid of Genetic Algorithms

(GA) and Artificial Neural Networks (ANN) were developed for the model parameters.

The hypothesis for this work was that an approach that calls for the use of theory

to develop the behavior model, and QSPR to generalize the parameters of such model, is

more effective than attempting to model the properties directly using QSPR. The quality

of the predictions obtained for a diverse group of molecules demonstrates the validity of

this integrated approach and provides credible evidence to support the above hypothesis.

Specifically, the SVRC-QSPR models, in general, were found to be capable of

providing generalized a priori predictions for surface tension and saturation viscosities

with an absolute average deviation (AAD) of approximately 2% using end-point input

data.
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CHAPTER 1

INTRODUCTION

Accurate knowledge of thermo-physical properties of pure gases, liquids, and

their mixtures is essential for chemical process design. Errors in the values of these

properties can have a significant impact on the engineering design and can also lead to

unexpected increases in the operating costs. Also these errors can propagate throughout

the design of the entire plant and may become amplified and threaten operability. Along

with the demand to optimize existing processes, an increasing need also exists for the

design of new cost-effective processes and the synthesis of new improved materials. The

traditional approach has been to determine the properties of these new materials

experimentally. However, experiments can be time consuming and expensive. An

alternate approach is to use thermo-physical property estimation methods. A viable

estimation method should have the following attributes: (1) be applicable to a diverse set

of compounds; (2) be applicable over a wide range of temperatures and pressures; (3)

require a minimum number of input parameters; (4) provide the probable confidence in

the predicted property; (5) provide reasonable accuracy relative to expected experimental

uncertainty; and (6) require minimum computation time [1].



2

Several prediction methods are often available to estimate a given thermo-physical

property for a specific group of compounds. However, as the heterogeneity in the

molecular structure of the compounds increases, property prediction becomes less

reliable and more time consuming [1]. Several approaches are generally used for

estimating thermo-physical properties, including: correlations (empirical, semi-empirical,

and theoretical) based on limited experimental data, group-contribution methods (i.e.,

atom, molecular fragments), quantitative structure-property relationships (QSPR),

theoretical models (e.g., equations of state), and molecular simulations. Correlations

requiring properties as input (such as boiling point temperatures, melting point

temperatures, or critical properties) are limited to compounds for which such

experimental data exist. Group-contribution methods can be applied to compounds when

the contribution parameters of chemical bonds, functional groups and/or atom types for

the compound of interest are available. They become less reliable for predicting

properties of compounds with multiple functional groups and for isomers [1]. Hence

there is a need for reliable generalized property models capable of a priori predictions of

pure-fluid properties of diverse systems, thereby reducing the burden of experimentation.

The need for specialized correlations for each saturation property amplifies the

usefulness of a unified and generalized framework for the prediction of pure-fluid

saturation properties. Researchers at Oklahoma State University (OSU) have developed

the scaled-variable-reduced-coordinate (SVRC) model [2, 3], based on corresponding

states theories (CST) and scaling laws. This model has provided precise representations

of pure-fluid behavior. Initially, generalized equations for the model parameters were

developed based on traditional physical properties (e.g., boiling point, acentric factor,
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etc.). The SVRC model provided accurate predictions for normal fluids. The results

obtained indicated that the trends produced by the SVRC model parameters can be used

in developing a reliable predictive model. However, generalizations for polar fluids were

less accurate, as the model generalizations did not account for the structural variations of

the different classes of compounds [3]. To overcome this problem, a different

generalization strategy was sought. Recently, Quantitative Structure-Property

Relationships (QSPR) modeling has proven to be effective in correlating the properties of

compounds in terms of their structures. The approach is based on a premise that any

property associated with the compound is encoded in its chemical structure. QSPR

provides information on the influence that the structure of a compound has on its

properties. However, most QSPR correlations have been based on multiple regression

correlations requiring a priori assumption of the mathematical form of the correlation

model. Such models do not consider the non-linearity that may exist among the input and

the output parameters. Also, most current QSPR models are limited to predictions at a

single temperature, and a need exists to extend this structure-based modeling to describe

the entire saturation range. To overcome the drawbacks of conventional QSPR models,

an approach that involves the use of QSPR methodology to generalize the model

parameters of the developed SVRC model was proposed by previous researchers at OSU

[4, 5]. In this approach, SVRC model was used to represent accurately the behavior of the

data, and QSPR was used to generalize the parameters in the model. In previous studies,

this approach proved to be more effective than the typical efforts to develop generalized

models directly using QSPR techniques [4, 5].
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Objectives

The goal of this research was to develop structure-based generalized models for the a

priori prediction of: (a) pure-fluid saturation phase viscosities and (b) pure-fluid surface

tensions. The specific objectives for accomplishing this goal were to:

1. Compile a reliable database of pure-fluid saturated phase viscosities and surface

tensions for model development and validation.

2. Extend the SVRC framework to correlate available data for the saturation

properties under consideration.

3. Build non-linear QSPR models to provide structure-based parameters for the

SVRC model.

4. Determine the efficacy of QSPR generalized models in providing a priori

predictions of the saturation properties considered within two to three times the

experimental uncertainty.

Thesis Organization

This thesis is written in the “manuscript style,” and it is divided into three separate

self-contained manuscripts. Since the same modeling strategy was adopted for all three

saturation properties under consideration, some sections of the individual chapters may

appear repetitive. Also, the modeling methodology used in this study has been developed

in collaboration with other members of the OSU Thermodynamics Research group [4, 6].

Consequently, similar documentation has been used. Chapters 2, 3, and 4 deal with the

methodology adopted and the results obtained for modeling liquid viscosity, vapor



5

viscosity, and surface tension, respectively. Conclusions based on the efforts undertaken

and suggestions for future directions for research are given in each of these chapters.
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CHAPTER 2

SVRC-QSPR MODEL FOR LIQUID VISCOSITIES

Introduction

Viscosity is an important transport property used in engineering design for

transportation and processing of fluids. Techniques for measuring the viscosities of fluids

have been available for many years. Despite their widespread use, however, many of

them are time-consuming, expensive, and unreliable. Operational and maintenance

problems plague the process of making experimental viscosity measurements [1]. These

problems are further amplified in the case of hazardous chemicals where handling and

storage cause problems.

Although conducting experimental measurements is still the preferred (most

accurate) method for determining the viscosity of many fluids, reliable models capable of

providing a priori predictions would certainly supplement the process, especially when

dealing with new and challenging chemicals. Currently, many correlations for estimating

liquid viscosities are available in the literature. However, most of these correlations have

a limited range of applicability and poor suitability for generalization.
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Generalizations made using these traditional physical properties do not capture the

subtleties of various chemical structures and, hence, provide poor predictions. Moreover,

the values for these physical properties are not available for numerous new and structurally

complex molecules. Quantitative structure-property relationship (QSPR) models offer an

attractive alternative since they have the potential to provide reliable property estimates

based on chemical structure information alone. Literature studies which use structural

descriptors for correlation of liquid viscosities have been published. However, currently

available QSPR models for liquid viscosity are limited to predictions at a single

temperature and/or are restricted to a narrow range of chemical species. Also, most of these

models use experimentally determined physical properties (e.g., critical temperature,

normal boiling point, etc.,) as descriptors and hence are restricted to compounds for which

these data are available (see, e.g., [14]).

Previously, researchers at Oklahoma State University (OSU) have developed a

unified framework for correlating saturation properties, which include vapor pressure and

liquid and vapor densities [2, 3]. This scaled-variable-reduced-coordinates (SVRC)

framework is based on the corresponding states theory (CST) and scaling-law behavior,

and, in general, it is capable of representing saturation properties within their experimental

uncertainties. In this work, the SVRC model is extended to correlate liquid viscosities in

the saturated region and the model parameters are generalized using structure-property

modeling.

A database of 1345 data points involving 78 fluids was used to develop the model,

and an external dataset containing 16,383 data points involving 638 fluids was used for

secondary validation. The approach involves using QSPR methodology to generalize the
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model parameters of the developed SVRC model; thus, we use the SVRC model to

correlate the liquid viscosities, and QSPR to generalize the parameters in the model. This

approach, in the past, has proven to be more effective than the typical efforts to develop

generalized models directly between the property and its descriptors using QSPR

techniques (see, e.g., [4]).

Liquid Viscosity Prediction Models

Estimation of viscosity for organic compounds that are yet to be synthesized

requires reliable generalized predictive models. Viscosity of gases is well described by the

kinetic theory. However, for dense gases and liquids, due to the existence of a wide variety

of intermolecular forces and degree of disorder among the molecules, a theoretical

description is difficult. Several models for predicting viscosities of dense gases and liquids

are available in the literature. A comprehensive review of some of these commonly used

models is provided by Reid and co-workers [5] and Monnery and co-workers [6]. The

models for prediction of liquid viscosity can be classified into theoretical, semi-theoretical

and empirical models. The theoretical models are mostly based on statistical mechanics

and molecular dynamics simulations. These models give rise to large deviations in

predictions which preclude their usage.

The semi-theoretical models have been based mostly on the following:

corresponding states principle, reaction rate theory, hard sphere theory, square well theory,

modified Chapman Enskog theory, free volume model, friction theory, Eyring's absolute

rate theory and significant structure theory. Monnery and co-workers [6] provide a

comprehensive review of the theory behind these models and their applicability. Apart
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from the approaches mentioned above, models that are strictly empirical are available in

abundance in the literature. A comprehensive review of some of the most commonly used

empirical models are summarized in detail elsewhere [6]. Recent literature efforts have

centered on modifications to absolute rate theory [7, 8], square well model [9], friction

theory [10], corresponding states principle [11], and significant structure theory [12]. 

A majority of the literature models rely on experimentally-measured physical

properties as input for their predictions. Although experimental data are available in the

literature for numerous compounds that have been already investigated, there arises a need

for a generalized model capable of providing a priori predictions for compounds that are

yet to be synthesized. This requires the establishment of a relationship between the

viscosity of the liquid and its chemical structure. The use of quantitative structure-property

relationship (QSPR) is one such approach where models are obtained on the basis of the

correlation between the experimental values of the property and descriptors reflecting the

molecular structure of the respective compounds.

Suzuki and co-workers in 1996 proposed the use of QSPR approach for prediction

of liquid viscosities [13]. Their approach assumed that the relationship between

experimental liquid viscosities and the other physicochemical properties or numerical

molecular descriptors can be expressed in the following multi-linear form:

01
log CXa ij

n

i ii +=∑ =
η

where log ηi is the logarithm of the liquid viscosity of compound j, ai is the coefficient of

the ith descriptor Xi, n is the number of descriptors in the model and Co is a constant. Using

a combination of partial least-squares (PLS) and QSPR techniques, they developed a nine-

descriptor model which included four key physical properties (molar refraction, critical
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temperature, molar magnetic susceptibility, and cohesive energy), and five structural

descriptors. A set of 237 compounds having diverse structures containing C, H, N, O, S, F,

Cl, Br and I were used in the study which gave a squared correlation coefficient (R2) of

0.92 and a root-mean-square error (RMSE) of 0.17 log mPa.S.

Again in 1997, Suzuki and co-workers [14] extended their multi-linear model by

including another 124 compounds and developed an alternative approach for predicting

liquid viscosity by applying neural network (NN) techniques. The non-linear model had a

R2 value of 0.93 and an RMSE of 0.16 log mPa.S for a prediction set of 124 compounds.

Based on the work of Suzuki and co-workers, Katritzky and co-workers developed a QSPR

model for predicting viscosities of a diverse set of compounds utilizing the CODESSA

descriptors derivable solely from the structure of the compounds [15]. They investigated

the liquid viscosities of 361 organic compounds containing C, H, N, O, S and halogens and

proposed a five-descriptor equation with a R2 of 0.854 and a standard error (S) of 0.22 log

mPa.S.

The above QSPR models are successful only in predicting the liquid viscosities at

one particular temperature (20 0C). A thorough review of the literature suggests that most

of the predictive methods found in the literature are restricted to a narrow range of

compounds and temperatures. However, a few of them are generalized and are applicable

over the entire saturation range. Further, the accuracy and reliability of these models are

difficult to state because (a) the testing methods adopted by the different authors lack a

common database, (b) the range and applicability of the testing has not been stated in the

literature [6], and (c) most of these models present large deviations in the near critical

region. Hence, there is a need for a generalized model utilizing a minimum number of
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parameters capable of predicting fluid viscosities over a wide temperature range and for a

diverse set of compounds.

Scaled-Variable-Reduced-Coordinate Framework

In previous studies [2, 3], the SVRC framework was used to correlate saturation

properties of a wide variety of organic molecules over the entire saturation range. The

general SVRC framework for correlation of thermo-physical properties is given as [2, 3]:

( ) ( )Y Y Y Y∞ ∞− − =α α α α ε0 Θ( )  (1)

or 

[ ]Y Y Yα α αε ε= + − ∞0 1Θ Θ( ) ( )  (2)

where

( ) ( )ε = − −∞ ∞X X X X 0 (3)

Θ(ε) is the correlating function, X is the correlating variable, Y is the saturation property at

given X, Y∞ is the asymptotic value of saturation property at X∞, Y0 is the initial value of

saturation property at X0 and α is the scaling exponent.

To correlate saturation properties, Equation (1) is recast for representing the various

properties between the triple and the critical points as:

( ){ }( )
Y Y Y Yc c t= − −α α α α

Θ
1

(4)

Applied specifically to liquid viscosity correlation, the above equation is written as:

( ){ }( )αααα η−η−η=η
1Θtcc (5)
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where, ηc and ηt are the critical and triple point viscosities, respectively. In this work, due

to restricted availability of data, the liquid viscosity data at the lowest and the highest

temperatures available were taken to be ηc and ηt for modeling purposes.

The functions Θ(ε) and α are defined as:

( ) ( )
( )A

A
B

−
−

=Θ
1

1 ε

ε (6)

( )
C

C
c +

ε+ε
α−α=α

1

1∆ (7)

Where

tc

c

TT

TT

−
−

=ε (8)

and

( )tc α−α=α∆ (9)

A, B and C are correlation constants, and αc and αt are the limiting values of α at the critical

temperature and triple point temperature, respectively. The SVRC model accounts for the

effects of temperature and chemical structure through the correlating function (Θ) and the

scaling function (α). In the current study, the value of ∆α in Equation (7) is taken to be

zero (or αc= αt = α ); thus, a single-parameter model is used.

QSPR Methodology

Computational techniques have gained popularity recently owing to the advances in

technology. They are increasingly used to address complex engineering and design

problems in chemical processing. The QSPR approach is among the computational
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methods gaining wide use. It is based on the assumption that a relationship exists between

the structure of a substance and its physical and chemical properties. QSPR uses quantum

mechanics to define the structure of the molecule in terms of a series of molecular

descriptors and then correlates the property in terms of these descriptors. The following

steps are part of any QSPR model development effort [16]: (a) generation of 3-D

structures, (b) optimization of 3-D structures, (c) calculation of descriptors, (d) reduction

of descriptors, and (e) development of a QSPR model. Figure 2.1 outlines the procedure

followed in the QSPR modeling effort undertaken. The procedure used to develop QSPR

generalization for the SVRC model parameter (α) are outlined in the following paragraphs.

Database Development

A property database of pure fluids including alkanes, refrigerants, aromatics and

alcohols was used in the SVRC model development for saturated liquid viscosities. The

data used in this study were compiled mainly from the DIPPR database [17]. The DIPPR

database, on the whole, contained 32,591 liquid viscosity data points involving 1200

fluids. This database was screened to include only organic compounds for which quality

experimental data (with reported errors of less than 5%) were available. Also, only datasets

with more than eight data points were included in the model development procedure. The

screened database contained over 1435 saturated liquid viscosities data points involving 82

fluids. To the extent possible, for each compound, we sought data that covered a wide

temperature range in the saturation region. Regression results for the SVRC model were

used to identify data points with percent absolute average deviations (% AAD) greater than

twice the overall regression %AAD of a compound; these points were then removed from

the database in an effort to remove data with relatively large uncertainty. Based on this
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procedure, a total of 90 data points were eliminated which constituted about 6.3% of the

total. The reduced database finally contained 1345 data points involving 78 fluids. A list of

the compounds used and the reduced temperature ranges for each molecule can be found in

Table A.1 of Appendix A. The final data set is more restricted than desired because

currently, limited experimental data are available in the literature for viscosities. Even

when available, they are often limited to a single temperature (298 K) or a narrow

temperature range. Further, reliable data near the critical point are nearly non-existent. This

may be attributed to the practical difficulties in measuring viscosity near the critical point.

Structure Generation

The first step in any QSPR modeling effort is the generation of chemical structures.

Various kinds of chemical representation have been proposed in the literature. The most

common way of representing a chemical is a two-dimensional (2-D) sketch [16]. However,

using a 2-D representation does provide a complete description of the molecule and cannot

be used conveniently for database storage and searching [16]. To have an efficient QSPR

model, the representation of a molecule should provide all the necessary structural

information. This requires information about the atoms present, along with three-

dimensional (3-D) coordinates that provide a full spatial depiction of the molecule. A

commercial package, ChemDraw [18] was used to generate the 3-D structures of the

molecules.

Structure Optimization

More than one set of 3-D coordinates can be generated for any given molecule.

Most molecules contain single bonds that join two atoms. Such bonds can usually rotate
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with a low-to-moderate energy barrier that changes the orientation of other atoms in the

structure and thereby the value of the descriptors [16]. In nature, all these representations

occur in differing probability and structure optimization must obtain a 3-D structure which

is most prominent and has the minimal potential energy surface. In this work, the 3-D

structures generated were first optimized using the MOPAC routine available in the

ChemDraw package and later commercial optimization software called AMPAC [19] was

used. The use of two optimization routines practically eliminated any un-optimized

structures. Description of the intricate details of 3-D structure generation and optimization

are beyond the scope of this work. More complete discussions can be found elsewhere [16,

19]. 

Descriptor Generation

Once an accurate 3-D structure of a chemical has been obtained, the next step

involves calculation of the molecular descriptors. The molecular descriptors calculated by

any commercial package are usually divided into (1) constitutional, (2) topological, (3)

geometrical, (4) electrostatic, (5) quantum-chemical and (6) thermodynamic. Details about

these classes of descriptors can be found elsewhere [16]. In this work, commercial

software called CODESSA [20] was used to generate the descriptors. Around 400

descriptors were generated for each molecule. The actual number of descriptors calculated

for each molecule varied based on the structural complexity of the molecule.

Descriptor Reduction

Many of the 400 descriptors generated for each molecule are not significant in

modeling liquid viscosities. The use of all available descriptors in the model development
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effort causes dimensionality problems. Further, the use of irrelevant or redundant

descriptors diminishes the performance of a QSPR model, especially when non-linear

algorithms are used in model development. Descriptor reduction (DR) is the process of

automating the discovery of potentially useful correlations from large sets of descriptors

[16]. The DR process involves the identification of the most relevant set of descriptors for

model development and is the most important step in all QSPR model development efforts.

Several different methods for DR are available in the literature. The most widely used

techniques are the principal-component analysis (PCA), partial least-squares (PLS), genetic

algorithms (GA), and neural networks (NNs) [16].

Most QSPR models developed have been based on multiple linear regression

correlations requiring a priori assumption of the (linear) form of the mathematical

correlation model. Such models do not consider the non-linearity that may exist among the

input parameters (descriptors) and the calculated property. The above deficiencies have

been addressed in the past using Artificial Neural Networks (ANN). Neural networks are

powerful tools for correlating, predicting and classifying large complex data sets. They can

deal successfully with non-linearity, handle noisy or irregular data, correlate hundreds of

variables or parameters, and provide generalized solutions [21]. However, commonly-used

neural network architectures, such as back propagation networks, demand extensive

training (using a significant amount of data) to develop a stable QSPR model [22]. This

places further demand on modeling efforts since reliable experimental data are not easily

available. Another Artificial Intelligence (AI) tool that has been used in QSPR model

development is Genetic Algorithms (GA) [23, 24]. Genetic search methods are based on

Darwinian models of natural selection and evolution. The general idea behind genetic
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algorithms is the evolutionary creation of a new population of entities from an earlier

generation through crossover and mutation processes and by passing on the fittest

offspring to the next generation [25]. This approach is ultimately expected to lead to

generations that become fitter through evolution thereby achieving the desired objective.

More details on GA can be found elsewhere [25]. 

Hybrid approaches using genetic algorithms and neural networks have also been

recently proposed and have shown good promise in developing accurate and robust QSPR

models [26, 27]. In this work, such a hybrid approach employing Genetic Algorithms and

Neural Networks was used to develop a generalized non-linear model for liquid viscosities.

QSPR Model Development

This work aimed at (a) demonstrating the ability of the SVRC model to precisely

represent saturated liquid viscosities using one regressed parameter, (b) examining the

efficacy of using QSPR algorithms to obtain estimates for SVRC parameter based on

chemical structure information using non-linear algorithms. Two case studies were

conducted in sequence to achieve these objectives:

Case 1. Determination of the SVRC parameter (α) by regressing experimental data

Case 2. Generalization of the SVRC parameter using non-linear structure-based models

The liquid viscosity model development was initiated with the regression of the

SVRC parameter (α) for each molecule (Case 1). As can be seen from Equations 5-7,

SVRC model for liquid viscosity has five parameters A, B, C, αc, and αt. Since, in the

current study, the value of ∆α (in Equation 7) is taken to be zero (or αc = αt = α), the model

becomes a four-parameter model. Among these, A, and C are treated as universal constants
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applicable to all fluids. Based on regression, the values of these constants are fixed to be

the following: A=1.33; C=0. B is the universal scaling exponent, which characterizes the

divergence of viscosity near the critical point. Several values for this exponent have been

proposed in the literature. A comparative study of these values is presented in Table 2.1.

However, when the exponent values suggested in the literature were used for fitting the

available experimental data, large errors were obtained. Therefore, based on subsequent

regressions, a value of 1.0 for B was selected for use with the two universal constants

(A=1.33; C=0), and the adjustable parameter (α). As shown in Figure 2.2, this combination

provided good representation of the data. The figure shows how well the model represents

the data using a combination of the constants suggested above. The lack of experimental

viscosity data close to the critical point precluded us from determining a precise value for

the critical exponent B that is reconcilable with the values proposed in the literature.

Structure-based model development for the model parameter (α) was initiated with

structure generation, optimization, and descriptor generation. Studies have shown that

structural descriptors are often highly correlated, leading to numerical instabilities

commonly referred to as multicollinearity. In such instances, this causes increasing

difficulty in disentangling the unique effects of each predictor (descriptor) on the response

variable. Multicollinearity results in highly unstable estimated regression coefficients, the

values of which are extremely sensitive to addition/removal of variables or small changes

in data points leading to erroneous results and interpretations [28]. To tackle this problem,

the use of orthogonal molecular descriptors has been suggested. The procedure of

orthogonalization focuses on the residuals of intercorrelation between descriptors thereby

ensuring that distinct structural characteristics of various descriptors are extracted and used
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as novel descriptors, which are free from mutual relatedness [28]. More information on the

procedure of orthogonalization and its use can be found elsewhere [28, 29]. In this work,

the descriptors generated by CODESSA were orthogonalized to obtain a subset of

descriptors from which all redundant information has been removed. Non-linear DR

techniques were then applied to this reduced subset of descriptors.

The non-linear modeling was performed using commercial software [30]. The

reduced subset of descriptors obtained from the orthogonalization step is exported to the

software which has a Microsoft ExcelTM interface. The software employs a Genetic

Algorithm (GA) to identify the best set of input variables for the model. A GA operates on

a population of individuals. The population changes from one generation to the next,

usually by combining characteristics of two "parent" individuals to create a "child"

individual. Every individual is assigned fitness and the concept of "survival of the fittest"

is implemented by selecting the fit parents more frequently than less fit parents to create

the next generation [30]. 

In this case, an "individual" is actually a set of descriptors. The fitness of a

descriptor is derived from the performance of a model that uses the descriptor's variable set

as inputs. The algorithm begins with descriptors that consist of small sets of variables.

Descriptors that produce good models are kept in the population and used to generate

descriptors that consist of larger sets of variables if necessary. In general, however, smaller

variable sets (that is, fewer model inputs) are preferred to larger variable sets. The fitness

of a descriptor (set of descriptors) is evaluated using Neural Networks. The software

constructs the actual neural network incrementally, using a technique known as cascade

correlation. Hidden units are periodically added, usually one or two at a time. Each time a
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hidden unit or pair of hidden units is added, weights are trained from several different

initialization values. Each initialization is referred to as a candidate. The best candidate is

established in the network, and then all the weights to the output node(s) of the network are

retrained.

There are several heuristics that provide guidance to the permissible number of

hidden neurons or choice of networks weights and criteria for termination of training. For

example, when determining the network architecture, the rule of thumb is to keep the ratio

of total observations (number of molecules) to adjustable parameters (network weights)

above two to avoid any chance effects. However, these rules are just for guidance and trial-

and-error investigation remains the reliable method for choosing the optimum parameters

[4]. To construct the neural network model, the data set containing 78 molecules were

randomly split into training and prediction (test) sets. The training and prediction sets

contained 70% and 30% of the data, respectively. After rigorous trial-and-error analysis, a

neural network was developed for the SVRC model parameter (α). Specifically, an 8-3-1 (8

descriptors - 3 hidden neurons - 1 output variable) architecture was obtained using the

training set. The SVRC parameters for the prediction set were then generated using the 8-

3-1 network. The efficacy of the neural network model, as indicated by its accuracy and

stability, is evaluated based on the quality of the model predictions (overall % AAD)

obtained from the SVRC model as given by Equation 5.

Results and Discussion

Table 2.2 presents the summary results for the case studies conducted. The entire

data set containing 78 molecules was correlated using a one-parameter SVRC model. As
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indicated by the results for Case 1, the SVRC model represents the liquid viscosities of the

diverse organic subset over a wide temperature range in the saturation region, with AAD of

0.7% using one regressed parameter.

The SVRC parameter (α) was then generalized using non-linear QSPR models

(Case 2). A hybrid approach employing Genetic Algorithms and Neural Networks was

used to identify the best non-linear model that provided accurate predictions. GA was used

to identify the best subset of descriptors and NN was used to evaluate the fitness of the

selected individuals (descriptors). A sigmoidal transfer function [30] was used and several

architectures were investigated by varying the number of hidden neurons. An 8-3-1

architecture for the parameter α was found to provide the best performance as measured

from the overall fit (%AAD) of the property predictions from the model. The number of

adjustable parameters in the network architectures was also found to obey the above

mentioned heuristic (ratio of number of systems used for training to the number of

adjustable parameters being greater than two). The descriptors generated from the non-

linear model are presented in Table 2.3. 

The generalized parameters obtained from the non-linear QSPR models are plotted

against the regressed values in Figure 2.3. The plot shows the efficacy of the neural

network model in predicting the parameters. Nonetheless, the limited data available for

training constrained the model development efforts resulting in poor predictions for some

of the molecules considered. Since, the viscosity values available at the maximum and

minimum temperatures were used for model development as a substitute for the viscosities

at the triple point and critical point actually required by the SVRC model, a study was

conducted to investigate the effect of variation in the temperature range employed on the
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model parameters. A random sample set of four compounds (2-methylhexane, dodecane,

tridecane, and tetradecane) was used for this study. The results presented in Table A.3 of

Appendix A suggest that small changes in the reduced temperature (about 0.01 to 0.05)

lead to significant change in the value of the SVRC model parameter. This prompted an

additional study on the effect of variations in the parameter α on viscosity predictions. As

indicated in Table A.4 of Appendix A, the viscosity predictions show a relatively weak

sensitivity to the SVRC parameter values; specifically, errors ranging from -75% to + 75%

in the model parameter α resulted in predictions within 10% AAD. Although these

deviations show a ten-fold increase in error, the quality of the predictions is comparable to

those of the literature models.

Figure 2.4 shows the percentage deviations in liquid viscosities obtained from data

regressions using the SVRC model. The figure indicates that most of the data points fall

within the ± 2% error bar. The prediction results for the liquid viscosities are depicted in

Figures 2.5-2.6. Figure 2.5 shows the percentage distribution of errors in the predicted

liquid viscosities. On average, the SVRC model was capable of representing the liquid

viscosities within 0.7% AAD, and the generalized SVRC-QSPR model was capable of

predicting the liquid viscosities with 1.7% AAD using end-point input data. From Figure

2.5, it is evident that the generalized SVRC-QSPR model predicts the liquid viscosities of

the majority of the data points with an AAD of less than 2% using end-point input data.

Figure 2.6 presents the percentage deviations in liquid viscosities for the training and the

prediction sets as function of the reduced temperature. Overall, five molecules had large

prediction errors (AAD greater than 5%). These include (a) 1-hexanol (6.8% AAD), (b) 1-
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pentanol, 2-methyl (13.7% AAD), (c) 2-pentanol, 4-methyl (9.6% AAD), (d) 1-octanol

(6.3% AAD), and (e) octadecanoic acid (10.2% AAD).  

To further validate the predictive capability of the SVRC-QSPR model, an external

data set from the DIPPR database that was not included in the model development was

used. The external dataset comprised of 15,794 data points involving 622 fluids.

Information regarding the molecules used for model validation can be found in Table A2

of Appendix A. This dataset differed from the one that was used for model development in

that it contained primarily liquid viscosity values that were obtained from other predictive

models and smoothing functions (as reported in the DIPPR database) and was not screened

for quality based on reported errors. The limited experimental data contained in this

database did not meet the screen criteria of the primary database used for model

development. The external dataset contained 47 classes of compounds of which 27 had

representation in the training set used in model development. The SVRC-QSPR model was

applied to the external dataset. Tables 2.5 and 2.6 present the quality of predictions

obtained for the different classes of compounds. Overall, the generalized SVRC-QSPR

model was capable of predicting the liquid viscosities of the fluids considered in the

external dataset with an AAD of 23%. The temperature ranges and AADs for individual

molecules used in the model development can be found in Table A2 of Appendix A.

Although the secondary validation process provides valuable insights regarding the

predictive ability of the developed generalized SVRC-QSPR model, only a guarded

judgment can be made based on this study since the liquid viscosity values reported in the

external dataset mostly come from other predictive models and smoothing functions with

relatively high reported errors.
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The primary goal of this study was to develop a generalized liquid viscosity model

capable of providing accurate a priori predictions (a) over a wide temperature range in the

saturation region, and (b) for a diverse set of molecules involving various functional

groups. The SVRC model provides good liquid viscosity representations (AAD of 0.7%

for 78 molecules) and predictions by the SVRC-QSPR model (AAD of 1.7%) in

comparison to other recommended literature models which, in general, have

correlative/predictive capabilities of 5-15 % AAD [5, 6].

The SVRC-QSPR viscosity predictions for a sample of the non-polar fluids were

compared to comparable predictions by the recommended literature model [5]. The two

models were applied to five heavy alkanes used in the model development because these

fluids are deemed to be suitable candidates for the literature model. A favorable

comparison is indicated for the SVRC-QSPR model, as indicated by the results shown in

Table A.5 of Appendix A.

As evidenced by the results, the generalized SVRC-QSPR model is capable of

correlating/predicting the liquid viscosities of a diverse set of molecules with varying

structural complexities. Also, our work attempts to model viscosities over a wide

temperature as opposed to the currently available QSPR models for liquid viscosities

which are restricted to single temperature (298 K) predictions [13-15].

This study was motivated by the fact that neither theory-based models nor neural

network based QSPR models alone could provide satisfactory liquid viscosity predictions

for diverse chemical compounds. Hence, we hypothesized that an approach, which calls for

the use of theory to develop the behavior model, and QSPR to generalize the parameters of

such model, is more effective. The quality of the liquid viscosity predictions obtained for



26

such a diverse group of molecules (30 classes involving 1345 data points) demonstrates the

validity of this integrated approach and provides credible evidence to support the above

hypothesis.

Conclusions

1. The SVRC framework successfully correlated liquid viscosities of a diverse subset

of organic molecules over a wide temperature range in the saturation region. The

SVRC model was able to represent liquid viscosities of 78 molecules with an AAD

of 0.7% on average when one regressed parameter was used for each substance.

2. The SVRC-QSPR model provide reasonable generalized predictions of liquid

viscosities, with average errors of less than 1.7%, based on structural descriptors

and end-point input data.

3. The generalized model was capable of making a priori predictions for an external

database of 622 compounds with average errors less than 23%.

4. The results of this study indicate that the use of theory-framed structure-property

modeling is effective in thermo-physical model generalization.

5. The limited database employed in the present work constrained the model

generalization efforts. These results, however, constitute a promising initial effort

in our quest to develop a robust and effective model based on a larger database.
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Recommendations

1. Prompt the acquisition of reliable experimental data for liquid viscosities closer to

the critical point to determine a precise value for the SVRC critical exponent.

2. Assemble a larger database of experimental measurements involving more diverse

molecular species over a wider range of temperature. Availability of such data

would facilitate better training of the neural network, which, in turn would lead to

the development of a more robust model capable of being extensively validated.

3. Develop a generalized QSPR model for the liquid viscosity at the triple point and

the critical point temperatures to serve as input data for the generalized SVRC-

QSPR model.

4. Extend the viscosity model to single-phase liquids in general.
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Figure 2.1. Overview of QSPR methodology [16]
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Figure 2.2. Variation of reduced liquid viscosity with temperature
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Figure 2.3. Comparison of regressed αc and calculated αc of the SVRC-QSPR model
for liquid viscosity
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Figure 2.4. Deviations in regressed liquid viscosities using the

SVRC model
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Figure 2.5. Distribution of errors (deviations) in predicted liquid viscosities

using the generalized SVRC-QSPR model
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Figure 2.6. Deviations in predicted liquid viscosities using the generalized SVRC-
QSPR model.
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Table 2.1. Predicted critical exponents characterizing the asymptotic temperature dependence for shear viscosity (η)

Investigator η
(varies as)

y Basis Year Remarks Reference

Fixman,
Deutch,
Mountain

ε-y 0.5 Mean Field
Theory

1962-67 [30]

Zwanzig finite Mean Field
Theory

1967-68 [30]

Kadanoff and
Swift

εy (ν-γ+α)/2 Scaling Theory 1968-69 The value of the
scaling exponent is
0.245

[30]

Kawasaki ε-y 0.5 Mean Field
Theory

1969 [30]

De Sobrino ln ε Mean Field
Theory

1969 [30]

Kawasaki ln ε or finite Scaling Theory 1970 [30]

Ferrell ln ε or finite Scaling Theory 1970 [30]

Halperin and
Hohenberg

ε-y 0.043 Renormalization
Group Theory

Since, ξ ~ ε-ν,
where, ν = 0.63

[31]

Ohta ε-y 0.031 Experimental 1977
Values calculated for
the following fluids:
Xenon and Ethane

[32]

Bhattacharjee
and Ferrell

ε-y 0.051
Mode-Coupling
Theory

1983 [33]

Bhattacharjee
and Ferrell

ε-y 0.042
Mode-Coupling
Theory

1986
Since, ξ ~ ε-ν,
Where, ν = 0.63

[33]
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Table 2.1. Predicted critical exponents characterizing the asymptotic temperature dependence for
shear viscosity (η) (contd.)

Investigator η
(varies as)

y Basis Year Remarks Reference

Berg and
Moldover

ε-y 0.041 Experimental 1990 Values calculated for
carbon dioxide and
xenon

[34]

Berg,
Moldover,
and Zimmerli

ε-y 0.043 Experimental 1999 Values calculated for
xenon

[31]

Jagannathan
and Yethiraj

ε-y 0.043 Molecular
Dynamics
Simulations

2004 Since, ξ ~ ε-ν,
where, ν = 0.63

[32]

* ε is the symbol used for reduced temperature measured from the critical temperature Tc and is given by ε = |T-Tc| / Tc and ν, γ, and α are critical
exponents of d=3 Ising model (fluid) with values of 0.638, 5/4, and 1/8 respectively [35].
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Table 2.2. Summary of results obtained using regressed and predicted SVRC parameters

Compound Name
Case-1

SVRC Regressed
Model (% AAD)

Case-2
SVRC-QSPR

Model (% AAD)

Reduced Temperature
Range (Tr)

Data points

3-METHYLPENTANE 0.5 0.5 0.53-0.66 11
2-METHYLHEXANE 0.3 0.4 0.52-0.69 25
DODECANE 0.3 1.7 0.40-0.65 24
TRIDECANE 0.5 1.1 0.40-0.70 16
TETRADECANE 0.3 1.6 0.40-0.61 23
HEXADECANE 0.9 0.9 0.41-0.78 10
HEPTADECANE 1.1 2.7 0.40-0.78 11
METHYLCYCLOPENTANE 0.2 1.0 0.47-0.66 30
ETHYLCYCLOPENTANE 0.3 0.3 0.44-0.66 28
BUTYLCYCLOHEXANE 0.8 0.8 0.38-0.57 8
CIS-DECALIN 1.5 3.2 0.35-0.64 27
TRANS-DECALIN 0.9 1.8 0.35-0.66 20
1-DECENE 1.1 2.2 0.44-0.67 22
1-HEXADECENE 0.4 0.4 0.38-0.52 9
BENZENE, 1,3-DIMETHYL- 0.5 0.7 0.44-0.58 12
BENZENE, BUTYL 1.1 1.1 0.42-0.55 13
BENZENE, DECYL 1.1 1.3 0.34-0.56 31
BIPHENYL 0.6 0.8 0.45-0.94 27
1,1':4', 1''-TERPHENYL 1.1 2.0 0.53-0.80 22
BENZENE, PENTYL 0.9 1.0 0.42-0.55 11
BENZENE, HEXYL 1.7 3.0 0.36-0.61 24
BENZENE, NONYL 1.2 1.7 0.34-0.54 25
BENZENE, TETRADECYL 0.3 0.5 0.35-0.47 10
BENZENE, ETHENYL 0.4 1.3 0.43-0.66 17
NAPHTHALENE, 1-METHYL- 1.0 1.1 0.35-0.48 9
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Table 2.2. Summary of results obtained using regressed and predicted SVRC parameters (contd.)

Compound Name
Case-1

SVRC Regressed
Model (% AAD)

Case-2
SVRC-QSPR

Model (% AAD)

Reduced
Temperature Range

(Tr)
Data points

NAPHTHALENE, 2-METHYL- 0.6 0.9 0.41-0.49 18
BENZALDEHYDE, 2-HYDROXY- 0.2 0.2 0.44-0.69 16
TRIOXANE,2,4,6-TRIMETHYL 0.9 1.2 0.49-0.67 13
2-BUTANONE 1.1 1.1 0.42-0.66 13
3-PENTANONE 0.3 0.3 0.49-0.66 19
2-PENTANONE 1.1 1.1 0.49-0.66 26
2-PYROLIDINONE 1.0 1.2 0.37-0.46 14
CYCLOPENTANONE 0.8 1.1 0.47-0.58 18
ETHANONE, 1-PHENYL- 0.5 0.5 0.42-0.52 19
1-HEXANOL 1.6 6.8 0.46-0.70 16
2-HEXANOL 2.1 2.1 0.48-0.70 13
1-PENTANOL, 2-METHYL- 2.8 13.7 0.46-0.68 15
1-BUTANOL, 3-METHYL- 1.7 3.8 0.47-0.70 19
1-HEPTANOL 1.0 1.9 0.46-0.71 8
2-PENTANOL, 4-METHYL- 2.0 9.6 0.49-0.69 15
1-OCTANOL 0.8 6.3 0.44-0.56 14
1-HEXADECANOL 2.4 2.9 0.42-0.74 14
CYCLOHEXANOL 0.3 3.9 0.46-0.66 8
2-PROPEN-1-OL 0.8 0.9 0.52-0.68 19
1,2-BENZENEDIOL 0.7 2.8 0.50-0.66 13
FORMIC ACID 0.4 0.7 0.48-0.64 18
PROPANOIC ACID 0.5 0.8 0.47-0.60 18
PROPANOIC ACID, 2-METHYL- 0.6 1.4 0.45-0.70 34
HEXANOIC ACID 0.6 0.7 0.44-0.56 27
DODECANOIC ACID 1.0 1.0 0.44-0.58 10
OCTADECANOIC ACID 0.6 10.2 0.43-0.59 9
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Table 2.2. Summary of results obtained using regressed and predicted SVRC parameters (contd.)

Compound Name Case-1
SVRC Regressed

Model
(% AAD)

Case-2
SVRC-QSPR

Model (% AAD)

Reduced
Temperature

Range (Tr)

Data points

ACETIC ACID, ANHYDRIDE 0.3 0.4 0.45-0.67 19
PROPANOIC ACID, ANHYDRIDE 0.5 0.5 0.44-0.70 24
FORMIC ACID, PROPYL ESTER 0.5 0.5 0.51-0.66 18
ACETIC ACID, METHYL ESTER 0.6 0.6 0.54-0.82 38
ACETIC ACID, BUTYL ESTER 0.7 0.7 0.50-0.60 21
1-BUTANOL, 3-METHYL- 0.7 0.9 0.48-0.79 13
PROPANOIC ACID 0.8 0.8 0.51-0.66 20
PROPANOIC ACID, 2-METHYL- 0.4 0.8 0.50-0.67 13
BUTANOIC ACID, ETHYL ESTER 0.7 0.7 0.51-0.60 11
BENZOIC ACID,2-HYDROXY,METHYL ESTER 0.4 0.7 0.42-0.70 6
BENZOIC ACID, ETHYL ESTER 1.3 1.4 0.41-0.49 12
CARBONIC ACID, DIETHYL ESTER 1.4 1.8 0.49-0.68 22
ETHANEDIOIC ACID, DIETHYL ESTER 0.7 1.1 0.44-0.70 13
PROPANEDIOIC ACID, DIETHYL ESTER 1.0 1.0 0.44-0.46 11
PROPANE, 1-ETHOXY- 0.1 0.2 0.55-0.67 12
1,4-DIOXANE 0.5 0.5 0.49-0.64 20
PROPANE, 1,1'-OXYBIS- 0.5 3.0 0.29-0.68 15
ETHANE, 1,2-DIMETHOXY- 1.3 1.3 0.38-0.56 9
BENZENE, ETHOXY- 1.1 1.1 0.42-0.69 22
FURAN, TETRAHYDRO- 0.4 0.7 0.38-0.64 25
2-FURANMETHANOL 0.6 0.8 0.47-0.64 8
ETHANE,2DIFLUOROMETHOXYTRIFLUORO 0.4 0.4 0.56-0.75 20
BENZENE, 1-CHLORO-3-NITRO- 0.4 0.7 0.43-0.57 18
BENZENEACETONITRILE 0.6 0.6 0.40-0.65 10
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Table 2.2. Summary of results obtained using regressed and predicted SVRC parameters (contd.)

Compound Name

Case-1
SVRC Regressed

Model
(% AAD)

Case-2
SVRC-QSPR

Model (% AAD)

Reduced
Temperature

Range (Tr)
Data points

1,2-ETHANEDIOL, NITRATE 0.4 0.4 0.43-0.51 12
PHENOL, 2-METHOXY- 0.6 2.6 0.46-0.69 13
ACETALDEHYDE, TRICHLORO- 0.2 0.2 0.52-0.66 12

Overall % AAD 0.7 1.7
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Table 2.3. Descriptors obtained from non-linear modeling of SVRC liquid viscosity
model parameter αc

Descriptors

Molecular weight

Min e-n attraction for a C-H bond

PPSA-3 Atomic charge weighted PPSA [Quantum-Chemical PC]

Max electroph. react. index for a C atom

Min nucleoph. react. index for a O atom

ZX Shadow / ZX Rectangle

Randic index (order 3)

Number of O atoms
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Table 2.5. Results of secondary validation for the generalized SVRC-QSPR model using an external dataset

Chemical Classes Represented in the Training Set %AAD Datasets
1-ALKENES 22.5 17
ALKYLCYCLOPENTANES 12.2 11
ANHYDRIDES 10.1 8
AROMATIC ESTERS 22.7 3
CYCLOALIPHATIC ALCOHOLS 45.9 5
DIPHENYL/POLYAROMATICS 8.6 16
KETONES 6.4 33
METHYLALKANES 16.2 17
MULTIRING CYCLOALKANES 1.2 3
N-ALCOHOLS 42.4 20
N-ALIPHATIC ACIDS 6.3 14
N-ALKANES 26.7 28
N-ALKYLBENZENES 33.0 14
OTHER ALIPHATIC ACIDS 7.8 12
OTHER ALIPHATIC ALCOHOLS 31.1 29
OTHER ALKYLBENZENES 13.9 39
OTHER ETHERS/DIETHERS 5.6 2
OTHER MONOAROMATICS 7.3 18
OTHER POLYFUNCTIONAL C, H, O 1.6 3
OTHER SATURATED ALIPHATIC ESTERS 19.1 7
POLYFUNCTIONAL C, H, O, N 12.9 2
POLYOLS 28.5 30
PROPIONATES AND BUTYRATES 5.0 9
2,3,4-ALKENES 6.3 18
ACETATES 8.4 12
ALDEHYDES 2.9 28
ALKYLCYCLOHEXANES 7.7 17
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Table 2.6. Results of secondary validation for the generalized SVRC-QSPR model using an external dataset

Chemical Classes not Represented in the Training Set %AAD Datasets
ALKYNES 4.5 17
AROMATIC ALCOHOLS 19.4 16
AROMATIC CARBOXYLIC ACIDS 3.5 4
CYCLOALKANES 5.2 6
CYCLOALKENES 12.8 7
DIALKENES 3.7 23
DICARBOXYLIC ACIDS 2.3 3
DIMETHYLALKANES 10.3 16
ELEMENTS 18.1 4
ETHYL & HIGHER ALKENES 15.5 12
FORMATES 3.9 10
INORGANIC GASES 19.3 8
METHYLALKENES 11.7 16
NAPHTHALENES 11.1 15
OTHER ALKANES 20.9 23
OTHER CONDENSED RINGS 7.9 8
OTHER HYDROCARBON RINGS 12.5 3
POLYFUNCTIONAL ACIDS 4.0 2
TERPENES 11.9 8
UNSATURATED ALIPHATIC ESTERS 4.2 6



46

CHAPTER 3

SVRC-QSPR MODEL FOR VAPOR VISCOSITIES

Introduction

Viscosity is an important transport property used in engineering design for

transportation and processing of fluids. Techniques for measuring the viscosity of fluid

samples have been available in abundance for many years. Despite their widespread use,

however, many of them are time-consuming, expensive, and unreliable. Operational and

maintenance problems plague the process of making experimental viscosity

measurements [1]. These problems are further amplified in the case of hazardous

chemicals where handling and storage cause a problem. Although conducting

experimental measurements is still the preferred method for determining the desired

properties, reliable models capable of providing a priori predictions would certainly

supplement the process, especially when dealing with new and challenging chemicals.

The correlations available in the literature for predicting vapor viscosity currently have a

limited range of applicability or poor suitability for generalization. Further, most of the

literature models exhibit large errors near the critical point of the fluid and rely on

experimentally measured physical properties as input for their predictions.
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Generalizations made using these traditional physical properties do not capture the

subtleties of various chemical structures and hence provide poor predictions. Moreover, the

values for these physical properties are not available for numerous new and structurally

complex molecules. Quantitative structure-property relationship (QSPR) models offer an

attractive alternative since they have the potential to provide reliable property estimates based

on chemical structure information alone. Literature studies which use structural descriptors for

correlation of liquid viscosities have been published. However, currently available QSPR

models for liquid viscosity are limited to predictions at a single temperature and/or are

restricted to a narrow range of chemical species. Also, most of these models use

experimentally determined physical properties as descriptors and hence are restricted only for

those compounds for which these data are available.

Previously, researchers at Oklahoma State University (OSU) have developed a unified

framework for correlating saturation properties, which include vapor pressure, liquid and vapor

densities [2, 3]. This scaled-variable-reduced-coordinates (SVRC) model is based on the

corresponding states theory (CST) and scaling-law behavior, and, in general, it is capable of

representing saturation properties within their experimental uncertainties. In this work, we

attempt to extend the SVRC model to correlate saturated vapor viscosities and generalize the

model parameters using structure-property modeling. A database of 438 data points involving

29 fluids was used to develop this model and an external dataset containing 4746 data points

involving 475 fluids was used for secondary validation of the model. The approach involves

the use of QSPR methodology to generalize the SVRC model parameters. Specifically, we use

the SVRC model to correlate the vapor viscosities, and QSPR to generalize the parameters of
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such a model. This approach, in the past, has proven to be more effective than the typical

efforts to develop generalized models directly using QSPR techniques [see, e.g., 3]

Vapor Viscosity Prediction Models

Vapor phase viscosity is a function of momentum transfer by translation of the

molecules with relatively few collisions and is well described by the kinetic theory of gases.

The simplest kinetic model for estimating dilute-gas viscosity considers the molecules

comprising the gas as non-interacting rigid spheres of diameter σ and mass m moving at some

mean velocity and colliding with other such molecules after moving a ‘mean free path’

distance. The kinetic theory gives the following expression for computing dilute-gas viscosity

[5]: 

( )( )[ ]22123
0 /32 σπη mkT= (1)

To account for molecular interactions (attraction and repulsion due to intermolecular forces),

the Chapman-Enskog (CE) theory is normally applied. The CE theory treats the interaction

between the molecules and gives the following equation to compute viscosity [5]: 

( )( ) ( )[ ]))(/165 *2,222121 TmkTCE ωσπ=η (2)

The above equation contains the collision integral 2,2ω (T*). For hard spheres, the collision

integral is set to be unity. Otherwise, the collision integral is said to be a function of

dimensionless temperature and depends on the intermolecular potential function chosen. The

correlation for collision integral defined for Lennard-Jones intermolecular potential is given by

[5]: 

)()( **

*)( FTDTB EeCeTA −−− ++=ω (3)
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where, A = 1.16145, B = 0.14874, C = 0.52487, D = 0.77320, E = 2.16178 and F = 2.43787

[5]. The CE theory deals only with spherically symmetric mono-atomic molecules with no

internal degrees of freedom. Owing to the complexity in describing the dynamics of collisions

among the molecules, simple empirical correlations have been used for practical purposes [5].

A review of the most commonly used correlative and predictive methods to estimate vapor

viscosity has been done by Reid and co-workers [6] and Monnery and co-workers [5]. A brief

summary of efforts by authors in recent times is summarized in the following paragraph.

Zhang and co-workers [7] developed a correlation employing the thermo-physical

properties: critical temperature, critical pressure, critical specific volume, molecular weight

and acentric factor to predict the viscosity of halides within 5% of the measured values. Shan

and co-workers [8] developed a model for calculation of viscosity of trifluoromethane (R-23)

expressed in terms of temperature and density. The model is based on Eyring’s significant

structure theory and is applicable to a wide range of thermodynamic conditions including

dilute gas, liquid, saturated vapor, saturated liquid, critical and supercritical regions. The

authors claim an estimated accuracy of ±1% for their correlation. Hildwein and Stephen in

2005 developed a viscosity model for pure fluids based on the significant structure theory

(SST). The model uses five adjustable parameters that are determined from experimental data.

The model has the correlative capability to represent the saturated vapor viscosity in the range

of 1.6-6.9% for 14 non-polar and three polar compounds [9]. Reyes and co-workers [9] 

proposed a viscosity model based on the SST coupled with a cubic equation of state for the

simultaneous correlation of viscosities of pure liquids and gases (polar and non-polar) at

saturated conditions. The predictive capability of the model was tested on two pure fluids:
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water and propane. This model was capable of representing the saturated liquid and vapor

viscosities of these compounds with a %AAD of 3.7 and 3.4, respectively.

For practical engineering purposes, models with minimum number of parameters that

are amenable to generalization are required.

Scaled-Variable-Reduced-Coordinate Framework

In previous studies [2, 3], the SVRC framework was used to correlate saturation

properties of a wide variety of organic molecules over the entire saturation range. The SVRC

model utilizes corresponding states theory (CST) and scaling-law behavior.

The general SVRC framework for correlation of thermo-physical properties is given as

[1, 2]:

( ) ( )Y Y Y Y∞ ∞− − =α α α α ε0 Θ( )  (1)

Or

[ ]Y Y Yα α αε ε= + − ∞0 1Θ Θ( ) ( )  (2)

where,

( ) ( )ε = − −∞ ∞X X X X 0 (3)

Θ(ε) is the correlating function, X is the correlating variable, Y is the saturation property at

given X, Y∞ is the asymptotic value of saturation property at X∞, Y0 is the initial value of

saturation property at X0 and α is the scaling exponent.

To correlate saturation properties, Equation (1) is recast for representing the various

properties between the triple and the critical points as:
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( ){ }( )αααα −−=
1Θtcc YYYY (4)

Applied specifically to vapor viscosity, the above equation is written as:

( ){ }( )αααα η−η−η=η
1Θtcc (5)

where, ηc and ηt are the critical and triple point viscosities, respectively. In this work, due to

restricted availability of data, the vapor viscosity data at the lowest and the highest

temperatures available were taken to be ηc and ηt for modeling purposes.

The functions Θ(ε) and α are defined as:

( ) ( )
( )A

A
B

−
−

=ε
ε

1

1Θ (6)
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c

TT

TT

−
−

=ε (8)

and

( )tc α−α=α∆ (9)

A, B and C are correlation constants, αc and αt are the limiting values of α at the critical

temperature and triple point temperature, respectively. The SVRC model accounts for the

effects of temperature and chemical structure through the correlating function (Θ) and the

scaling function (α). In the current study, the value of ∆α (in Equation 7) is set to be zero (or

αc= αt= α); thus, a single-parameter model is used.
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QSPR Methodology

Computational techniques have gained popularity recently owing to the advances in

technology. They are increasingly used to address complex engineering and design problems in

chemical processing. The QSPR approach is among the computational methods gaining wide

use. It is based on the assumption that there exists a relationship between the structure of a

substance and its physical and chemical properties. QSPR uses quantum mechanics to define

the structure of the molecule in terms of a series of molecular descriptors and then correlates

the property in terms of these descriptors. The following steps are part of any QSPR model

development effort [10] (a) generation of 3-D structures, (b) optimization of 3-D structures, (c)

calculation of descriptors, (d) reduction of descriptors, and (e) development of a QSPR model.

The procedure used to develop QSPR generalization for the SVRC model parameters (αc, αt)

are outlined in the following paragraphs.

Database Development

A property database of pure fluids including alkanes, refrigerants, aromatics and

alcohols was used in the SVRC saturated vapor viscosities model development. The data used

in this study were compiled mainly from the DIPPR database [11]. The DIPPR database, on

the whole, contained 21,316 vapor viscosity data points involving 1666 fluids. This database

was screened to include only organic compounds for which quality experimental data (with

reported errors of less than 5%) was available. Also, only datasets with more than six data

points were included in the model development procedure. The screened database contained

over 459 saturated vapor viscosities data points involving 31 fluids. To the extent possible, for

each compound, we sought data that covered a wide temperature range in the saturation region.
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Data points with percent absolute average deviation (%AAD) greater than twice the overall

regression %AAD of a compound were eliminated from the database in an effort to remove

data with large uncertainties. Based on this procedure, a total of 21 data points were eliminated

which constituted about 8.4% of the total. The reduced database finally contained 420 data

points involving 28 fluids. A list of the compounds used and the reduced temperature ranges

for each molecule can be found in Table A.2 of Appendix A. It should be noted that currently,

limited experimental data are available in the literature for viscosities. Even when available,

they are restricted to a single temperature (298 K) or a narrow temperature range. Particularly,

data near the critical point is nearly non-existent. This maybe attributed to the practical

difficulties in measuring viscosity near the critical point.

Structure Generation

The first step in any QSPR modeling effort is the generation of chemical structures.

Various kinds of chemical representation have been proposed in the literature. The most

common way of representing a chemical is a two-dimensional (2-D) sketch [10]. But, the

drawback of using a 2-D representation is that it does not provide a complete description of the

molecule and cannot be conveniently used for database storage and searching [10]. To have an

efficient QSPR model, the representation of a molecule should provide all the necessary

structural information. This requires information about the atoms present, along with three-

dimensional (3-D) coordinates that provide a full spatial depiction of the molecule. A

commercial package, ChemDraw [12] was used to generate the 3-D structures of the

molecules.



54

Structure Optimization

More than one set of 3-D coordinates can be generated for any given molecule. Most

molecules contain single bonds that join two groups of atoms. Such bonds can usually rotate

with a low-to-moderate energy barrier that changes the orientation of other groups in the

structure and thereby the value of the descriptors [10]. In nature, all these representations occur

in differing probability and the objective of structure optimization is to obtain a 3-D structure

which is most prominent and has the minimal potential energy surface. In this work, the 3-D

structures generated were first optimized using the MOPAC routine available in the ChemDraw

package and later using commercial optimization software called AMPAC [13]. The use of two

optimization routines practically eliminated any un-optimized structures. Intricate details of 3-

D structure generation and optimization are beyond the scope of this work. A detailed

explanation can be found elsewhere [10, 13]. 

Descriptor Generation

Once an accurate 3-D structure of a chemical has been obtained, the next step involves

calculation of the molecular descriptors. The molecular descriptors calculated by any

commercial package are usually divided into (1) constitutional, (2) topological, (3)

geometrical, (4) electrostatic, (5) quantum-chemical and (6) thermodynamic. Details about

these classes of descriptors can be found elsewhere [10]. In this work, commercial software

called CODESSA [14] was used to generate the descriptors. Around 400 descriptors were

generated for each molecule. The actual number of descriptors calculated for each molecule

varied based on the structural complexity of the molecule.
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Descriptor Reduction

All the 400 descriptors generated for each molecule are not significant in modeling

vapor viscosities. The use of all available descriptors in the model development effort causes

dimensionality problems. Further, the use of irrelevant or redundant descriptors diminishes the

performance of a QSPR model, especially when non-linear algorithms are used in model

development. Descriptor reduction (DR) is the process of automating the discovery of

potentially useful correlations from large sets of descriptor data [10]. The DR process involves

the identification of the most relevant set of descriptors for model development and is the most

important step in all QSPR model development efforts. Several different methods for DR are

available in the literature. The most widely used techniques are the principal-component

analysis (PCA), partial least-squares (PLS), genetic algorithms (GA), and neural networks

(NNs) [10].

Most QSPR models developed have been based on multiple linear regression

correlations requiring a priori assumption of the form of the mathematical correlation model.

Such models do not consider the non-linearity that may exist among the input parameters and

the output properties. The above deficiencies have been addressed in the past using Artificial

Neural Networks (ANN). Neural networks are powerful tools for correlating, predicting and

classifying large complex data sets. It can successfully deal with non-linearity, handle noisy or

irregular data, correlate hundreds of variables or parameters, and provide generalized solutions

[15]. However, commonly-used neural network architectures, such as back propagation

networks, demand extensive training (using a significant amount of data) to develop a stable

QSPR model [16]. This places further demands on modeling efforts since reliable experimental

data are not easily available. Another Artificial Intelligence (AI) tool that has been used in
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QSPR model development is the Genetic Algorithms (GA) [17, 18]. Genetic search methods

are based on Darwinian models of natural selection and evolution. The general idea behind

genetic algorithms is the evolutionary creation of a new population of entities from an earlier

generation through crossover and mutation processes and by passing on the fittest offspring to

the next generation [19]. This approach is ultimately expected to lead to generations that

become fitter through evolution thereby achieving the desired objective. More details on GA

can be found elsewhere [19]. 

Hybrid approaches using genetic algorithms and neural networks have also been

recently proposed, and have shown good promise in developing accurate and robust QSPR

models [20, 21]. In this work, such a hybrid approach employing Genetic Algorithms and

Neural Networks was used to develop a generalized non-linear model for vapor viscosities.

QSPR Model Development

This work aimed at (a) demonstrating the ability of the SVRC model to precisely

represent saturated vapor viscosities using one regressed parameter, (b) examining the efficacy

of using QSPR algorithms to obtain estimates for the SVRC parameter based on chemical

structure information using non-linear algorithms. Two case studies were conducted in

sequence to achieve these objectives:

Case 1. Determination of the SVRC parameter (α) by regressing experimental data

Case 2. Generalization of the SVRC parameter using non-linear structure-based models

The vapor viscosity model development was initiated with the regression of the SVRC

parameter for each molecule (Case 1). As can be seen from Equations 5-7, the SVRC model

for vapor viscosity has five parameters A, B, C, αc, and αt. Since the value of ∆α is set to zero,
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αc becomes equal to αt and the model is reduced to a one-parameter (α) model. Amongst these,

A, and C are treated as universal constants applicable to all fluids. Based on regression, the

values of these constants are fixed to be the following: A=1.33; C=0. B is the universal scaling

exponent, which characterizes the divergence of viscosity near the critical point. Several values

for this exponent have been proposed in the literature. A comparative study of these values is

presented in Table 3.1. But, when the exponent values suggested in the literature were used for

fitting the available experimental data, large errors were obtained. So, based on subsequent

regressions, a value of 1.0 for B was used with the two universal constants (A=1.33; C=0), and

one adjustable parameters (αc = α). As shown in Figure 3.2, this combination of constants

provided good representation of the data. The lack of experimental viscosity data close to the

critical point precluded us from determining a precise value for the critical exponent B that is

reconcilable with the values proposed in the literature. The parameter α is treated as substance

specific. A rigorous generalization strategy based on chemical structure information alone was

adopted.

Structure-based model development was initiated with structure generation,

optimization, and descriptor generation. Studies have shown that structural descriptors are

often highly correlated leading to numerical instabilities commonly referred to as

multicollinearity. In such instances, it becomes increasingly difficult to disentangle the unique

effects of each predictor (descriptor) on the response variable. Multicollinearity results in

highly unstable estimated regression coefficients, the values of which are extremely sensitive

to addition/removal of variables or small changes in data points leading to erroneous results

and interpretations [22]. To tackle this problem, the use of orthogonal molecular descriptors

was suggested. The procedure of orthogonalization focuses on the residuals of intercorrelation
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between descriptors thereby ensuring that distinct structural characteristics of various

descriptors are extracted and used as novel descriptors, which are free from mutual relatedness

[22]. More information on the procedure of orthogonalization and its use can be found

elsewhere [22, 23]. In this work, the descriptors generated by CODESSA were orthogonalized

to obtain a subset of descriptors from which all redundant information has been removed. Non-

linear DR techniques were then applied to this reduced subset of descriptors.

The non-linear modeling was performed using commercial software [24]. The reduced

subset of descriptors obtained from the orthogonalization step is exported to the software

which has a Microsoft ExcelTM interface. The software employs GA to identify the best set of

input variables for the model. GA operates on a population of individuals. The population

changes from one generation to the next, usually by combining characteristics of two "parent"

individuals to create a "child" individual. Every individual is assigned fitness and the concept

of "survival of the fittest" is implemented by selecting the fit parents more frequently than less

fit parents to create the next generation [25]. 

In this case, an "individual" is actually a set of descriptors. The fitness of a descriptor is

derived from the performance of a model that uses the descriptor's variable set as inputs. The

algorithm begins with descriptors that consist of small sets of variables. Descriptors that

produce good models are kept in the population and used to generate descriptors that consist of

larger sets of variables if necessary. In general, however, smaller variable sets (that is, fewer

model inputs) are preferred to larger variable sets. The fitness of a descriptor is evaluated using

Neural Networks. The software constructs the actual neural network incrementally, using a

technique known as cascade correlation. Hidden units are periodically added, usually one or

two at a time. Each time a hidden unit or pair of hidden units is added, weights are trained from
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several different initialization values. Each initialization is referred to as a candidate. The best

candidate is established in the network, and then all the weights to the output node(s) of the

network are retrained.

There are several heuristics that provide guidance to the permissible number of hidden

neurons or choice of networks weights and criteria for termination of training. For example,

when determining the network architecture, the rule of thumb is to keep the ratio of total

observations (number of molecules) to adjustable parameters (network weights) above two to

avoid any chance effects. However, these rules are just for guidance and trial-and-error

investigation remains the reliable method for choosing the optimum parameters [4]. To

construct the neural network model, the data set containing 28 molecules were randomly split

into training and prediction (test) sets. The training and prediction sets contained 70% and 30%

of the data, respectively. After rigorous trial-and-error analysis, a neural network was

developed for the SVRC model parameter (α). Specifically, a 5-2-1 (5 descriptors - 2 hidden

neurons - 1 output variable) architecture was obtained using the training set. The SVRC

parameters for the prediction set were then generated using the 5-2-1 network. The efficacy of

the neural network model, as indicated by its accuracy and stability, is evaluated based on the

quality of the model predictions (overall % AAD) obtained from the SVRC model as given by

Equation 5.

Results and Discussion

Table 3.2 presents the summary results for the case studies conducted. The entire data

set containing 28 molecules was correlated using a one-parameter SVRC model. As indicated

by the results for Case 1, the SVRC model represents the vapor viscosities of the diverse
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organic subset over a wide temperature range in the saturation region, with AAD of 0.4% using

one regressed parameter.

The SVRC parameter (α) was then generalized using non-linear QSPR models (Case

2). A hybrid approach employing Genetic Algorithms and Neural Networks was used to

identify the best non-linear model that provided accurate predictions. GA was used to identify

the best subset of descriptors and NN was used to evaluate the fitness of the selected

individuals (descriptors). A Tan H transfer function [24] was used and several architectures

were investigated by varying the number of hidden neurons. A 5-2-1 architecture for the

parameter, α, was found to provide the best performance as measured from the overall %AAD

of the property predictions from the model. The number of adjustable parameters in the

network architectures for both the model parameters was also found to obey the above

mentioned heuristic (ratio of number of systems used for training to the number of adjustable

parameters being greater than two). The descriptors generated from the non-linear model are

presented in Table 3.3. 

A comparison plot between the regressed SVRC parameters and the parameters

calculated from the non-linear QSPR models is presented in Figure 3.3. The plot shows the

efficacy of the neural network model in predicting the parameters. The limited data available

for training constrained the model development efforts resulting in poor predictions for some

of the molecules considered. Figure 3.4 shows the percentage deviations in vapor viscosities

obtained from data regressions using the SVRC model. The figure indicates that most of the

data points fall within the ± 2% error bar.
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The prediction results for the vapor viscosities are depicted in Figures 3.5-3.6. Figure

3.5 shows the percentage distribution of errors in the predicted vapor viscosities while Figure

3.6 represents the percentage deviations in vapor viscosities for the training and the prediction

sets with respect to the reduced temperature. From Figures 3.5 and 3.6, it is evident that the

generalized SVRC-QSPR model predicts the vapor viscosities of the majority of the data

points with an AAD of 2%. On average, the SVRC model was capable of representing the

vapor viscosities with an AAD of 0.4% and the generalized SVRC-QSPR model was capable

of predicting the vapor viscosities with an AAD of 0.6% using end-point input data.

To further validate the predictive capability of the SVRC-QSPR model, an external

data set from the DIPPR database that was not included in the model development was used.

The external dataset comprised of 5707 data points involving 679 fluids. A list of the

molecules used for the external validation is provided in Table B.2 of Appendix B. This dataset

differed from the one that was used for model development in that it primarily contained vapor

viscosity values that were obtained from other predictive models and smoothing functions (as

reported in the DIPPR database) and was not screened for quality based on reported errors. The

limited experimental data contained in this database did not meet the screen criteria of the

primary database used for model development. The external dataset contained 47 classes of

compounds of which seven had representation in the training set used in model development.

The data in the external dataset were culled to separate the classes of compounds that had

representation in the training set from the ones that did not. The generalized SVRC-QSPR

model was initially applied to fluids belonging to chemical classes which had representation in

the training set (1456 data points involving 125 fluids (datasets)).
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The predictions obtained from the model were compared to the values reported in the

external dataset. In general, the model was capable of predicting the vapor viscosities of fluids

belonging to a majority of the chemical classes with an AAD of <5%. Table 3.4 shows the

AADs obtained for the different classes of compounds in the external dataset that had

representation in the training set. The generalized model was then applied to fluids belonging

to chemical classes that did not have representation in the training set (4251 data points

involving 554 fluids). The results for the same are presented in Table 3.5. With few exceptions,

the results indicate that the classes of compounds that are represented in the training set have

lower prediction errors than the ones that do not have representation.

Although the secondary validation process provides valuable insights regarding the

predictive ability of the developed generalized SVRC-QSPR model, only a guarded judgment

can be made based on this study since the vapor viscosity values reported in the external

dataset mostly come from other predictive models and smoothing functions with relatively

high reported errors.

The primary goal of this study was to develop a generalized vapor viscosity model

capable of providing accurate a priori predictions (a) over a wide temperature range in the

saturation region, and (b) for a diverse set of molecules involving various functional groups.

Our model provides good vapor viscosity representations (AAD of 0.4% for 28 molecules) and

predictions (AAD of 0.6%) in comparison to other recommended literature models which, in

general, have correlative/predictive capabilities of 5-15 %AAD [5, 6]. The predictions obtained

were compared to the models recommended in the literature [5]. The results obtained for

selected polar and non-polar compounds are presented in Table B.3 of Appendix B. A

favorable comparison is indicated for the SVRC-QSPR model.
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As evidenced by the results, the generalized SVRC-QSPR model is capable of

correlating/predicting the vapor viscosities of a diverse set of molecules with varying structural

complexities.

This study asserts that neither EOS models nor neural network based QSPR models

alone could provide satisfactory vapor viscosity predictions for diverse chemical compounds.

Hence, we hypothesized that an approach, which calls for the use of theory to develop the

behavior model, and QSPR to generalize the parameters of such model, is more effective. The

quality of the vapor viscosity predictions obtained for such a diverse group of molecules

demonstrates the validity of this integrated approach and provides credible evidence to support

the above hypothesis.

Conclusions

1. The SVRC framework successfully correlated vapor viscosities of a diverse subset of

organic molecules over a wide temperature range in the saturation region. The SVRC

model was able to represent vapor viscosities of 28 molecules with an AAD of 0.4% on

average when one adjustable parameter was used for each substance.

2. The SVRC-QSPR model provides reasonable generalized predictions of vapor

viscosities, with average errors of less than 0.6%, based on structural descriptors and

end-point input data.

3. The generalized model was capable of making a priori predictions for an external

database of 679 compounds with an overall AAD of 2.7%.

4. The results of this study indicate that the use of theory-framed structure-property

modeling is effective in thermo-physical model generalization.
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5. The limited database employed in the present work constrained the model

generalization efforts. These results, however, constitute a promising initial effort in

our quest to develop a robust and effective model based on a larger database.

Recommendations

1. Prompt the acquisition of reliable experimental data for vapor viscosities closer to the

critical point to determine a precise value for the SVRC critical exponent.

2. Assemble a larger database of experimental measurements involving more diverse

molecular species over a wider range of temperature. Availability of such data would

facilitate better training of the neural network, which, in turn, would lead to the

development of a more robust model capable of being extensively validated.

3. Develop a generalized QSPR model for the liquid viscosity at the triple point and the

critical point temperatures to serve as input data for the generalized SVRC-QSPR

model.

4. Extend the viscosity model to single-phase gases in general.
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Figure 3.1. Overview of QSPR methodology [10]
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Figure 3.2. Variation of reduced vapor viscosity with temperature
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Figure 3.3. Comparison of regressed αc and calculated αc of the SVRC-QSPR

model for vapor viscosity
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Figure 3.4. Deviations in regressed vapor viscosities using the

SVRC model

-4

-3

-2

-1

0

1

2

3

4

0 0.2 0.4 0.6 0.8 1

(Tc-T)/(Tc-Tt)

%
D

ev
ia

ti
o

n
in

p
ro

p
er

ty
10

0*
((
η e

xp
-η

ca
lc
)/
η e

xp
)



72

Figure 3.5. Distribution of errors (deviations) in predicted vapor viscosities

using the generalized SVRC-QSPR model
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Figure 3.6. Deviations in predicted vapor viscosities using the generalized

SVRC-QSPR model
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Table 3.1. Predicted critical exponents characterizing the asymptotic temperature dependence for shear viscosity (η)

Investigator η
(varies as)

y Basis Year Remarks Reference

Fixman,
Deutch,
Mountain

ε-y 0.5 Mean Field
Theory

1962-67 [24]

Zwanzig finite Mean Field
Theory

1967-68 [24]

Kadanoff and
Swift

εy (ν-γ+α)/2 Scaling Theory 1968-69 The value of the
scaling exponent is
0.245

[24]

Kawasaki ε-y 0.5 Mean Field
Theory

1969 [24]

De Sobrino ln ε Mean Field
Theory

1969 [24]

Kawasaki ln ε or finite Scaling Theory 1970 [24]

Ferrell ln ε or finite Scaling Theory 1970 [24]

Halperin and
Hohenberg

ε-y 0.043 Renormalization
Group Theory

Since, ξ ~ ε-ν,
where, ν = 0.63

[25]

Ohta ε-y 0.031 Experimental 1977
Values calculated for
the following fluids:
Xenon and Ethane

[26]

Bhattacharjee
and Ferrell

ε-y 0.051
Mode-Coupling
Theory

1983 [27]

Bhattacharjee
and Ferrell

ε-y 0.042
Mode-Coupling
Theory

1986
Since, ξ ~ ε-ν,
Where, ν = 0.63

[27]
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Table 3.1. Predicted critical exponents characterizing the asymptotic temperature dependence
for shear viscosity (η) (contd.)

Investigator η
(varies as)

y Basis Year Remarks Reference

Berg and
Moldover

ε-y* 0.041 Experimental 1990 Values calculated for
carbon dioxide and
xenon

[28]

Berg,
Moldover,
and Zimmerli

ε-y 0.043 Experimental 1999 Values calculated for
xenon

[25]

Jagannathan
and Yethiraj

ε-y 0.043 Molecular
Dynamics
Simulations

2004 Since, ξ ~ ε-ν,
where, ν = 0.63

[25]

*ε is the symbol used for reduced temperature measured from the critical temperature Tc and is given by ε |T-Tc| / Tc and ν, γ, and α
are critical exponents of d=3 Ising model (fluid) with values of 0.638, 5/4, and 1/8 respectively [30].
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Table 3.2. Summary of results obtained using regressed and predicted SVRC parameters

Compound Name Case 1: %AAD of
SVRC Model Regressions

Case 2: %AAD of
Generalized SVRC-QSPR

Model

Data
points

Reduced
Temperature

Range (Tr)
PENTANE 0.3 0.4 9 0.64-1.00
HEPTANE, 2-METHYL- 0.4 1.0 7 0.64-0.98
HEPTANE, 3-METHYL- 0.1 0.1 6 0.63-0.97
HEPTANE, 4-METHYL- 0.8 0.8 6 0.64-0.94
NONANE 1.2 1.2 16 0.46-0.96
TRIDECANE 0.3 0.4 17 0.41-1.00
TETRADECANE 0.3 0.9 22 0.39-0.97
PENTADECANE 0.2 0.6 17 0.42-0.99
HEXADECANE 0.2 0.5 20 0.38-0.97
CYCLOPROPANE 0.7 0.7 21 0.74-1.00
CYCLOPENTANE 0.8 0.9 13 0.58-0.89
CYCLOHEXANE 0.4 0.4 13 0.58-1.00
ETHENE 0.05 0.1 8 0.68-0.97
1-PROPENE 0.3 0.4 21 0.53-0.97
BENZENE 0.5 1.1 49 0.51-0.98
BENZENE, METHYL- 1.0 1.1 15 0.56-0.89
SULFUR DIOXIDE 0.6 0.6 12 0.58-0.98
2-PROPANOL 0.2 0.2 9 0.77-0.97
ETHANE, CHLORO- 0.9 0.9 11 0.46-0.92
METHANE, CHLOROTRIFLUORO 0.7 0.7 6 0.81-0.99
METHANE, BROMO- 0.3 0.8 11 0.59-0.84
CARBON DISULFIDE 0.7 0.8 11 0.50-0.98
WATER-d2 0.2 0.8 11 0.43-0.58
R152A 0.02 0.1 35 0.63-0.97
R134A 0.1 1.1 14 0.65-0.92
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Table 3.2. Summary of results obtained using regressed and predicted SVRC parameters (contd.)

Compound Name Case 1: %AAD of
SVRC Model Regressions

Case 2: %AAD of
Generalized SVRC-QSPR

Model

Data
points

Reduced
Temperature

Range (Tr)
R32 0.1 0.1 13 0.64-0.98
R125 0.1 0.2 13 0.66-0.98
R124 0.02 0.4 14 0.68-0.83

Overall %AAD 0.4 0.6
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Table 3.3. Descriptors obtained from non-linear modeling of SVRC vapor viscosity
model parameter αc

Descriptors

Number of single bonds

Number of rings

Molecular volume/XYZ Box

Max partial charge for a H atom [Zefirov's PC]

WNSA-2 Weighted PNSA (PNSA2*TMSA/1000) [Zefirov's PC]
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Table 3.4. Results of secondary validation for the generalized SVRC-QSPR model
using an external dataset

Chemical classes represented in the training set %AAD Datasets
METHYLALKANES 3.4 17
N-ALKANES 4.6 29
CYCLOALKANES 1.2 6
1-ALKENES 1.9 20
N-ALKYLBENZENES 2.2 15
INORGANIC GASES 2.9 8
OTHER ALIPHATIC ALCOHOLS 1.2 30
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Table 3.5. Results of secondary validation for the generalized SVRC-QSPR model
using an external dataset

Chemical classes not represented in the training set %AAD Datasets
TERPENES 1.3 8
2.9 2.9 20
ACETATES 4.1 12
ALDEHYDES 1.6 28
ALKYLCYCLOHEXANES 1.1 17
ALKYLCYCLOPENTANES 0.9 11
ALKYNES 2.6 17
ANHYDRIDES 2.3 8
AROMATIC ALCOHOLS 1.3 16
AROMATIC CARBOXYLIC ACIDS 2.8 4
AROMATIC ESTERS 6.5 3
CYCLOALIPHATIC ALCOHOLS 0.4 10
CYCLOALKANES 1.2 6
CYCLOALKENES 1.3 15
DIALKENES 1.5 26
DICARBOXYLIC ACIDS 0.9 4
DIMETHYLALKANES 1.5 16
DIPHENYL/POLYAROMATICS 2.7 19
ELEMENTS 2.7 4
ETHYL & HIGHER ALKENES 2.0 12
FORMATES 0.6 10
INORGANIC GASES 2.9 8
KETONES 1.5 33
POLYFUNCTIONAL ACIDS 3.4 17
METHYLALKENES 1.6 16
MULTIRING CYCLOALKANES 0.5 3
N-ALCOHOLS 1.2 20
N-ALIPHATIC ACIDS 1.8 15
POLYFUNCTIONAL C, H, O, N 3.5 2
POLYOLS 2.7 35
NAPHTHALENES 1.5 15
OTHER ALIPHATIC ACIDS 4.6 16
PROPIONATES AND BUTYRATES 3.8 9
OTHER ALKANES 3.6 25
OTHER ALKYLBENZENES 1.4 46
OTHER CONDENSED RINGS 0.5 10
OTHER ETHERS/DIETHERS 0.3 2
OTHER HYDROCARBON RINGS 0.5 16
OTHER MONOAROMATICS 1.8 19
OTHER POLYFUNCTIONAL C, H, O 0.9 3
OTHER SATURATED ALIPHATIC ESTERS 3.6 7
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CHAPTER 4

SVRC-QSPR MODEL FOR SURFACE TENSIONS

Introduction

Surface Tension (ST) is of importance for many processes and phenomena, such

as gas injection displacement, flow through porous media, mass and heat transfer.

Liquid/vapor surface tensions need to be accurately predicted because they control

processes in which the liquid phase is finely dispersed. For instance, the parameters

characterizing the transport of vapor (gas) or liquid (oil) in a porous medium (such as

capillary pressure, relative permeabilities and the residual liquid saturation), are strongly

dependent on the ST. ST values are, thus, necessary to simulate compositional and gas

injection processes in petroleum recovery. At low values, it is the dominant fluid property

which determines relative permeabilities and residual liquid saturations in gas condensate

systems. Favorable recovery conditions of high relative permeabilities and low residual

condensate saturations have been found at STs less than 0.1 mN/m. The low ST region

occurs near the critical point. There are very few experimental results in this region to test

the effectiveness of correlations to predict STs. 
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The correlations available in the literature for predicting ST currently have a

limited range of applicability or poor suitability for generalization. Further, most of the

literature models exhibit large errors near the critical point of the fluid and rely on

experimentally measured physical properties as input for their predictions. Although

experimental data are available in the literature for several compounds that have been

already investigated, there arises a need for a generalized model capable of providing a

priori predictions for compounds yet to be synthesized.

Previously, researchers at Oklahoma State University (OSU) have developed a

unified framework for correlating saturation properties, which includes vapor pressure,

liquid and vapor densities [1, 2]. This scaled-variable-reduced-coordinates (SVRC)

model is based on the corresponding states theory (CST) and scaling-law behavior and in

general is capable of representing saturation properties within their experimental

uncertainties. In this work, we attempt to extend the SVRC model to correlate ST and

generalize the model parameters using structure-property modeling. A database of 2829

data points involving 198 fluids was used to develop this model. When the model was

applied to an external dataset containing 10,951 data points involving 685 fluids, the ST

data were predicted, on average, within 5% of the reported values. The approach involves

the use of QSPR methodology to generalize the model parameters of the developed

SVRC model. Specifically, we use SVRC to develop the behavior model, and QSPR to

generalize the SVRC model parameters. This approach, in the past, has proven to be

more effective than the typical efforts to develop generalized models directly using QSPR

techniques [see, e.g., 3].
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Surface Tension Prediction Models

Several models are available in the literature for prediction of ST. While most of

these models are empirical in nature, there are some which have a sound theoretical basis.

Among the earliest works, MacLeod (1923) suggested that the ST can be expressed in

terms of the liquid and vapor densities by the following equation [4]:

( )VLP ρρσ −=4
1

(1)

where P is a temperature independent parameter and ρL and ρV are the liquid and vapor

densities, respectively. Sugden (1932) named the parameter P as the parachor and

proposed that it can be estimated from structure. The parachor equation has been the most

widely used equation in the industry.

Over the years, various methods for estimating the parachors for pure fluids have

been proposed in the literature. Quale used experimental values of ST and density to

estimate the parachors using an additive scheme to correlate them with molecular

structure. The values of P calculated using this scheme are listed elsewhere [4]. Fanchl in

1990 proposed a correlation for estimating parachors of high molecular weight

compounds [5]. Ali in 1995 made a comparison of seven existing correlations available

for parachor estimation and proposed his own to estimate the parachors of C7+

compounds and other pseudo components [6]. Schechter in 1995 back-calculated the

parachors of 139 compounds using ST and density data obtained from experiments

conducted by previous investigators [7]. Broseta in 1995 used critical scaling theory to

relate the parachor of a pure compound to its critical temperature, critical pressure and

acentric factor [8]. Zuo and co-workers developed a generalized corresponding states

model based on two reference fluids and a parachor-correlation for prediction of
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interfacial tensions of non-polar and weakly-polar pure fluids and mixtures [9]. Cumber

developed an improved parachor correlation for ST prediction of hydrocarbons based on

fluid composition [10].

Various modifications to the parachor equation have been proposed by

researchers extending it to multi-component mixtures. Gasem and co-workers [11] made

a comparative study of three commonly used correlations that are based on the parachor

equation for prediction of ST of multi-component mixtures and suggested the use of 3.6

as the value of scaling exponent as opposed to the value of 4.0 used in Equation 1.

Although widely used, the parachor equation requires the values of liquid and vapor

densities for ST prediction. An equation of state would normally be used to compute

these values in case experimental values are not available. However, equations of state

currently available in the literature do not give accurate and reliable predictions of liquid

and vapor densities. The errors in computation of these values would translate into larger

errors in the values of predicted ST. Dandekar [12] studied the qualitative and

quantitative effects of such inaccuracies in ST predictions. From his study, he concluded

that an error of 10% in liquid or vapor density can result in an error up to 200% in the

estimated ST. This raises doubts about the reliability of the parachor equation. A review

of various other empirical correlations used to predict ST is detailed elsewhere [4].

Other theoretical methods to correlate and predict ST are based on the following

theories: corresponding states theory, Gibbs method, perturbation theory, integral

equation theory, density gradient theory and the density functional theory (DFT) [13]. Lu

and co-workers [13] used the Barker–Henderson (BH) perturbation theory and statistical

associating fluid theory (SAFT) to develop a thermodynamic method based on the DFT
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to predict the ST of polar and associating fluids. The STs for four pure non-associating

polar fluids and 11 associating fluids over a wide temperature range were predicted with

an average deviation of 2.9%. Do and coworkers [14] used the molecular structure theory

to describe ST. They modeled the fluid as a set of mono-layers and accounted for

interaction among molecules in a layer and the interaction between layers [14]. Recently,

Esposito and co-workers proposed a correlation that accounted for the effect of interfacial

curvature on ST [15].

Most of the above-mentioned models available in the literature rely on

experimentally measured physical properties as input for their predictions. Although

experimental data are available in the literature for several compounds that have been

already investigated, there arises a need for a generalized model capable of providing a

priori predictions for compounds that are yet to be synthesized. This requires the

establishment of a relationship between the ST of the liquid and its chemical structure.

The use of quantitative structure property relationship (QSPR) is one such approach

where models are obtained on the basis of the correlation between the experimental

values of the property and descriptors reflecting the molecular structure of the respective

compounds.

Kavun and co-workers in 1995 evaluated over 450 molecular descriptors in

developing a QSPR model for ST and proposed an eight-descriptor model that fitted ST

data of 72 organic chemicals with an R2 value of 0.955:
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where, qmax and qmin are maximal and minimal charges on the atoms; Σq(Hal) is the net

charge on halogen atoms; Ss and Suns are the surface area of saturated and unsaturated
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apolar surface of the molecule; Sp is the area of the polar van der Waals surface; N is the

number of atoms, and iχî is the valence index of connectivity. However, when the model

was applied to an external testing set of 22 chemicals, the ST data were predicted within

30% of the measured values [16]. Egemen and coworkers [16] proposed a group

contribution method employing a multiple step-wise linear regression procedure to

predict ST of liquid organic solvents:
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where, m represents the number of various types of atoms/bonds and n represents the

count of each type of atom/bond in the molecule. The proposed model was developed

using a training set of 349 chemicals which could fit the experimental ST values with a

R2 value of 0.75. The model was then used to predict the ST of an external testing set

consisting of 44 chemicals. The model could predict the ST values of the testing set with

a R2 value of 0.89. Although the model seems promising, the predictions were obtained

over a narrow temperature range of 20-300 C and the model could predict ST values

within ~10% of the measured values.

Kaufmann and coworkers [17] proposed an eight descriptor model for predicting

the ST of 213 common organic solvents. Their linear model developed using multi-linear

regression (MLR) technique had training set R2 value of 0.914 and a prediction set R2

value of 0.915. Their non-linear model developed using 8-6-1 neural network architecture

had a training set R2 of 0.965 and a prediction set R2 value of 0.976. The average percent

error of the predictions using this model was 5.3% for the training set, 6.1% for the cross-

validation set, and 6.4% for the prediction set. Knotts and co-workers [18] proposed to

improve the Macleod-Sugden-Quayle (MSQ) method for predicting ST. They coupled
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experimental ST data from DIPPR database and TSAR (a commercial QSPR software

package) to predict parachors used in the MSQ method. The values of liquid density and

vapor density used in estimating the parachors were obtained from the DIPPR correlation

and the Soave equation, respectively. The improved correlation could fit the experimental

ST values for 649 compounds with an AAD of 3.2%.

A thorough review of the literature suggests that most of the predictive methods

found in the literature are restricted to a narrow range of compounds and temperatures.

Few of these models are generalized and applicable over the entire saturation range.

Furthermore, the accuracy and reliability of these are difficult to state because the testing

methods adopted by the different authors lack a common database and the range and

applicability of the testing have not been stated in the literature. In addition, most of these

models present large deviations in the near critical region. Hence there arises a need for a

generalized model utilizing minimum number of parameters capable of predicting the ST

of pure fluids over the entire saturation range (triple to critical point).

Scaled-Variable-Reduced-Coordinate Framework

In previous studies [1, 2], the SVRC framework was used to correlate saturation

properties of a wide variety of organic molecules over the entire saturation range. The

SVRC model utilizes corresponding states theory (CST) and scaling-law behavior.

The general SVRC framework for correlation of thermo-physical properties is

given as [1, 2]:

( ) ( )Y Y Y Y∞ ∞− − =α α α α ε0 Θ( )  (1)
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or 

[ ]Y Y Yα α αε ε= + − ∞0 1Θ Θ( ) ( )  (2)

where,

( ) ( )ε = − −∞ ∞X X X X 0 (3)

Θ(ε) is the correlating function, X is the correlating variable, Y is the saturation property

at given X, Y∞ is the asymptotic value of saturation property at X∞, Y0 is the initial value

of saturation property at X0 and α is the scaling exponent.

To correlate saturation properties, Equation (1) is recast for representing the

various properties between the triple and the critical points as:

( ){ }( )
Y Y Y Yc c t= − −α α α α

Θ
1

(4)

Since, the ST becomes zero at the critical point, the ST correlation is written as:

ασ=σ
1

Θt (5)

where, σt is the ST at the triple point. In this work, due to restricted availability of data,

the ST at the lowest available temperature was taken to be σt for modeling purposes.

The functions Θ(ε) and α are defined as:
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A, B and C are correlation constants; αc is the limiting value of α at the critical

temperature. The SVRC model accounts for the effects of temperature and chemical

structure through the correlating function (Θ) and the scaling function (α).

QSPR Methodology

Computational techniques have gained popularity recently owing to the advances

in technology. They are increasingly used to address complex engineering and design

problems in chemical processing. The QSPR approach is among the computational

methods gaining wide use. It is based on the assumption that there exists a relationship

between the structure of a substance and its physical and chemical properties. QSPR uses

quantum mechanics to define the structure of the molecule in terms of a series of

molecular descriptors and then correlates the property in terms of these descriptors. The

following steps are part of any QSPR model development effort [19] (a) generation of 3-

D structures, (b) optimization of 3-D structures, (c) calculation of descriptors, (d)

reduction of descriptors, and (e) development of a QSPR model. Figure 4.1 describes the

procedure followed in the QSPR modeling effort undertaken. The procedure used to

develop QSPR generalization for the SVRC model parameter (αc) is outlined in the

following paragraphs.

Database Development

A property database of pure fluids including a wide range of compounds

belonging to diverse chemical classes was used in the SVRC surface tension model

development. The data used in this study were gathered mainly from the DIPPR database



90

[20] and a compilation by Jasper [21]. A database containing 2901 data points involving

200 fluids was used in the model development. This database was screened to include

only fluids for which quality experimental data (with reported errors of less than 5%)

were available. Also, only datasets with more than eight data points were included in the

model development procedure. To the extent possible, for each compound, we sought

data that covered a wide temperature range in the saturation region. Data points with

%AAD (absolute average deviation) greater than thrice the overall regression %AAD (~

5%) of a compound were eliminated from the database in an effort to remove data with

relatively large uncertainties. Based on this procedure, a total of 72 data points were

eliminated which constituted about 2% of the total. The reduced database finally

contained 2829 data points involving 198 fluids. A list of the compounds used and the

reduced temperature ranges for each molecule can be found in Table C.1 of Appendix C.

Structure Generation

The first step in any QSPR modeling effort is the generation of chemical

structures. Various kinds of chemical representation have been proposed in the literature.

The most common way of representing a chemical is a two-dimensional (2-D) sketch

[19]. But, the drawback of using a 2-D representation is that it does not provide a

complete description of the molecule and cannot be conveniently used for database

storage and searching [19]. To have an efficient QSPR model, the representation of a

molecule should provide all the necessary structural information. This requires

information about the atoms present, along with three-dimensional (3-D) coordinates that

provide a full spatial depiction of the molecule. A commercial package, ChemDraw [22]

was used to generate the 3-D structures of the molecules.
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Structure Optimization

More than one set of 3-D coordinates can be generated for any given molecule.

Most molecules contain single bonds that join two groups of atoms. Such bonds can

usually rotate with a low-to-moderate energy barrier that changes the orientation of other

groups in the structure and thereby the value of the descriptors [19]. In nature, all these

representations occur in differing probability and the objective of structure optimization is

to obtain a 3-D structure which is most prominent and has the minimal potential energy

surface. In this work, the 3-D structures generated were first optimized using the MOPAC

and MM2 routines available in the ChemDraw package and later using another

commercial optimization software called AMPAC [23]. The use of two optimization

routines practically eliminated any un-optimized structures. Intricate details of 3-D

structure generation and optimization are beyond the scope of this work. A detailed

explanation can be found elsewhere [19, 23].

Descriptor Generation

Once an accurate 3-D structure of a chemical has been obtained, the next step

involves calculation of the molecular descriptors. The molecular descriptors calculated by

any commercial package are usually divided into (1) constitutional, (2) topological, (3)

geometrical, (4) electrostatic, (5) quantum-chemical and (6) thermodynamic. Details

about these classes of descriptors can be found elsewhere [19]. In this work, commercial

software called CODESSA [24] was used to generate the descriptors. Around 400

descriptors were generated for each molecule. The actual number of descriptors

calculated for each molecule varied based on the structural complexity of the molecule.
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Descriptor Reduction

All the 400 descriptors generated for each molecule are not significant in

modeling ST. The use of all available descriptors in the model development effort causes

dimensionality problems. Further, the use of irrelevant or redundant descriptors

diminishes the performance of a QSPR model, especially when non-linear algorithms are

used in model development. Descriptor reduction (DR) is the process of automating the

discovery of potentially useful correlations from large sets of descriptor data [19]. The

DR process involves the identification of the most relevant set of descriptors for model

development and is the most important step in all QSPR model development efforts.

Several different methods for DR are available in the literature. The most widely used

techniques are the principal-component analysis (PCA), partial least-squares (PLS),

genetic algorithms (GA), and neural networks (NNs) [19].

Most QSPR models developed have been based on multiple linear regression

correlations requiring a priori assumption of the form of the mathematical correlation

model. Such models do not consider the non-linearity that may exist among the input

parameters and the output properties. The above deficiencies have been addressed in the

past using Artificial Neural Networks (ANN). Neural networks are powerful tools for

correlating, predicting and classifying large complex data sets. It can successfully deal

with non-linearity, handle noisy or irregular data, correlate hundreds of variables or

parameters, and provide generalized solutions [25]. However, commonly-used neural

network architectures, such as back propagation networks, demand extensive training

(using a significant amount of data) to develop a stable QSPR model [26]. This places

further demands on modeling efforts since reliable experimental data are not easily
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available. Another Artificial Intelligence (AI) tool that has been used in QSPR model

development are the Genetic Algorithms (GA) [27, 28]. Genetic search methods are

based on Darwinian models of natural selection and evolution. The general idea behind

GA is the evolutionary creation of a new population of entities from an earlier generation

through crossover and mutation processes and by passing on the fittest offspring to the

next generation [29]. This approach is ultimately expected to lead to generations that

become fitter through evolution thereby achieving the desired objective. More details on

GA can be found elsewhere [29].

Hybrid approaches using genetic algorithms and neural networks have also been

recently proposed, and have shown good promise in developing accurate and robust

QSPR models [30, 31]. In this work, such a hybrid approach employing Genetic

Algorithms and Neural Networks was used to develop a generalized non-linear model for

STs.

QSPR Model Development

This work aimed at (a) demonstrating the ability of the SVRC model to precisely

represent ST using one regressed parameter, (b) examining the efficacy of using QSPR

algorithms to obtain estimates for the SVRC parameter based on chemical structure

information using non-linear algorithms. Two case studies were conducted in sequence to

achieve these objectives:

Case 1. Determination of the SVRC parameter (αc) by regressing experimental data

Case 2. Generalization of the SVRC parameter using non-linear structure-based models
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The ST model development was initiated with the regression of the SVRC

parameter for each molecule (Case 1). As can be seen from Equations 5-7, the SVRC

model for ST has four parameters A, B, C, and α (αc.in this case) Amongst these, A, and

C are treated as universal constants applicable to all fluids. Based on regression, the

values of these constants are fixed to be the following: A=1.0004; C=1.33. B is the

universal scaling exponent, which characterizes the divergence of ST near the critical

point. Based on a thorough literature review, a widely accepted value for this exponent,

1.26, was chosen as the value for B. As shown in Figure 4.2, this combination of

constants provided good representation of the data. The other parameter, αc was treated as

substance specific. A rigorous generalization strategy based on chemical structure

information alone was adopted.

Structure-based model development was initiated with structure generation,

optimization, and descriptor generation. Studies have shown that structural descriptors

are often highly correlated leading to numerical instabilities commonly referred to as

multi-collinearity. In such instances, it becomes increasingly difficult to disentangle the

unique effects of each predictor (descriptor) on the response variable. Multi-collinearity

results in highly unstable estimated regression coefficients, the values of which are

extremely sensitive to addition/removal of variables or small changes in data points

leading to erroneous results and interpretations [32]. To tackle this problem, the use of

orthogonal molecular descriptors is suggested by studies in the literature. The procedure

of orthogonalization focuses on the residuals of intercorrelation between descriptors

thereby ensuring that distinct structural characteristics of various descriptors are extracted

and used as novel descriptors, which are free from mutual relatedness [32]. More
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information on the procedure of orthogonalization and its use can be found elsewhere

[32, 33]. In this work, the descriptors generated by CODESSA were orthogonalized to

obtain a subset of descriptors from which all redundant information has been removed.

Non-linear DR techniques were then applied to this reduced subset of descriptors.

The non-linear modeling was performed using commercial software [34]. The

reduced subset of descriptors obtained from the orthogonalization step is exported to the

software which has a Microsoft ExcelTM interface. The software employs GA to identify

the best set of input variables for the model. A GA operates on a population of

individuals. The population changes from one generation to the next, usually by

combining characteristics of two "parent" individuals to create a "child" individual. Every

individual is assigned fitness and the concept of "survival of the fittest" is implemented

by selecting the fit parents more frequently than less fit parents to create the next

generation [34].

In this case, an "individual" is actually a set of descriptors. The fitness of a

descriptor is derived from the performance of a model that uses the descriptor's variable

set as inputs. The algorithm begins with descriptors that consist of small sets of variables.

Descriptors that produce good models are kept in the population and used to generate

descriptors that consist of larger sets of variables if necessary. In general, however,

smaller variable sets (that is, fewer model inputs) are preferred to larger variable sets. The

fitness of a descriptor is evaluated using Neural Networks. The software constructs the

actual neural network incrementally, using a technique known as cascade correlation.

Hidden units are periodically added, usually one or two at a time. Each time a hidden unit

or pair of hidden units is added, weights are trained from several different initialization
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values. Each initialization is referred to as a candidate. The best candidate is established

in the network, and then all the weights to the output node(s) of the network are retrained.

There are several heuristics that provide guidance as to the permissible number of

hidden neurons or choice of networks weights and criteria for termination of training. For

example, when determining the network architecture, the rule of thumb is to keep the

ratio of total observations (number of molecules) to adjustable parameters (network

weights) above two to avoid any chance effects. However, these rules are just

approximations and trial-and-error investigation remains a reliable method for choosing

the best parameters [3]. After rigorous trial-and-error analysis, a 12-1-1 (12 descriptors-1

hidden neurons-1 output variable) architecture was adopted for the parameter αc. To

validate the neural network model, the data set containing 198 molecules were randomly

split into training and prediction (test) sets. The prediction and training sets contained

30%, and 70% of the data, respectively. The SVRC parameter for ST was predicted using

the final network obtained after training and cross validation. The predicted parameter

was then applied in the SVRC model (Equation 5). The extent of training and the stability

of the neural network model were validated based on the quality of the model predictions

obtained (overall %AAD).

Results and Discussion

Table 4.1 presents the summary results for the case studies conducted. The entire

data set containing 198 molecules was correlated using a one-parameter SVRC model. As

indicated by the results for Case 1, the SVRC model represents the STs of the diverse



97

organic subset over a wide temperature range in the saturation region, with AAD of 0.6%

using one regressed parameter.

The SVRC parameter was then generalized using non-linear QSPR models (Case

2). A hybrid approach employing Genetic Algorithms and Neural Networks was used to

identify the best non-linear model that provided accurate predictions. GA was used to

identify the best subset of descriptors and NN was used to evaluate the fitness of the

selected individuals (descriptors). A sigmoidal transfer function was used and several

architectures were investigated by varying the number of hidden neurons. A 12-1-1

architecture for the parameter αc was found to provide the best performance as measured

from the overall %AAD of the property predictions from the model. The numbers of

adjustable parameters in the network architecture for the model parameter was also found

to obey the above mentioned heuristic (ratio of number of systems used for training to the

number of adjustable parameters being greater than two). The descriptors generated from

the non-linear model can be found in Table 4.2.

Analysis of our preliminary prediction results for Case 2 indicated that there were

13 molecules which had large prediction errors (>2% AAD), which include (a) hexane

(2.5% AAD), (b) 1, 1, 3, 1-Terphenyl (3.4% AAD), (c) 3-pentanone (3.0% AAD), (d)

methanol (3.1% AAD), (e) ethanol, 2-Butoxy (2.3% AAD), (f) ethane, 1,1'-Oxybis, 2-

Chloro- (4.6% AAD), (g) 1-hexanamine (6.4% AAD), (h) hydrogen (7.4% AAD), (i)

acetic anhydride (3.8% AAD), (j) methyl formate (3.6% AAD), (k) isobutane (4.1%

AAD), (l) 1-pentanol, 3-methyl (4.3% AAD), (m) cyclopentene (4.1% AAD), (n) ethanol,

2-amino (4.1% AAD). These 15 fluids were isolated for further analysis. The source of

prediction errors was surmised to be the choice of critical propertied used. Previous
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studies in the literature [3] have discussed the influence of errors on critical temperature

on model stability and have suggested that critical temperatures could vary as much as

3%, depending on the apparatus and operating procedures. Therefore, when a 3%

variation was allowed in the critical temperature, a reduction in errors was noticed. The

overall AAD for the 198 fluids reduced to 1.2% from 1.4%.

Figure 4.3 shows a comparison between the regressed SVRC parameter and the

SVRC parameter predicted from structure using the non-linear QSPR model. Figure 4.4 

shows the percentage deviations in vapor viscosities obtained from data regressions using

the SVRC model. The prediction results for the STs are depicted in Figures 4.5-4.6.

Figure 4.5 shows the percentage distribution of errors in the predicted STs. On average,

the SVRC model was capable of representing the STs with an AAD of 0.6% and the

generalized SVRC-QSPR model was capable of predicting the STs with an AAD of

1.2%. For developing the non-linear model, the entire dataset was divided into training

and prediction sets each containing 70% and 30 % of the data, respectively. Figure 4.6

represents the percentage deviations in STs for the training and the prediction sets with

respect to the reduced temperature. From Figure 4.5, it is evident that the generalized

SVRC-QSPR model predicts the STs of the majority of the data points with an AAD of

2%.

To further validate the predictive capability of the SVRC-QSPR model, an

external data set from the DIPPR database that was not included in the model

development was used. The external dataset comprised of 7048 data points involving 687

fluids. A list of the molecules used for the external validation is provided in Table C.2 of

Appendix C. This dataset differed from the one that was used for model development in
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that it primarily contained ST values that were obtained from other predictive models

and smoothing functions (as reported in the DIPPR database) and was not screened for

quality based on reported errors. The limited experimental data contained in this database

did not meet the screen criteria of the primary database used for model development. The

external dataset contained 47 classes of compounds of which 28 had representation in the

training set used in model development.

The data in the external dataset were culled to separate the classes of compounds

that had representation in the training set from the ones that did not. The generalized

SVRC-QSPR model was initially applied to fluids belonging to chemical classes which

had representation in the training set (3743 data points involving 213 fluids (datasets)).

The predictions obtained from the model were compared to the values reported in the

external dataset. However, fluids belonging to some classes of compounds, mainly, ‘N-

Alkylbenzenes’, ‘Methylalkanes’, and ‘Methylalkenes’, ‘n-Alcohols’, and ‘Aromatic

Esters’ exhibited large prediction errors (>10% AAD). This might be attributed to the fact

that there was not adequate representation for these classes of compounds in the training

set. For example, in the case of ‘Aromatic Esters’, the training set had simple fluids like

‘benzoic acid, methyl ester, benzoic acid, ethyl ester, and benzoic acid, phenylmethyl

ester’, while the external dataset contained structurally more complex aromatic esters (for

example, ‘1,2-benzenedicarboxylic acid, bis(2-ethylhexyl) ester, 1,2-benzenedicarboxylic

acid, di-isooctyl ester’ etc.). Table 3.5 shows the AADs obtained for the different classes

of compounds in the external dataset that had representation in the training set. The

generalized model was then applied to fluids belonging to chemical classes that did not

have representation in the training set (3743 data points involving 429 fluids). The results
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for the same are presented in Table 3.6. In general, the generalized SVRC-QSPR model

was capable of making a priori predictions for the compounds in the external database

with an overall AAD of ~6%.

With few exceptions, in general, the classes of compounds that are represented in

the training set have lower prediction errors than the ones that do not have representation.

Although, the secondary validation process provides valuable insights regarding the

predictive ability of the developed generalized SVRC-QSPR model, only a guarded

judgment can be made based on this study since majority of the ST values reported in the

external dataset mostly come from other predictive models and smoothing functions with

relatively high reported errors.

The primary goal of this study was to develop a generalized ST model capable of

providing accurate a priori predictions (a) over a wide temperature range in the saturation

region, and (b) for a diverse set of molecules involving various functional groups. Our

model provides good ST representations (AAD of 0.6% for 198 molecules) and

predictions (1.2% AAD) in comparison to other recommended literature models which in

general are capable of providing predictions within 5-10% [35]. The predictions obtained

were compared to the models recommended in the literature [5]. The results obtained for

selected polar and non-polar compounds are presented in Tabled C.3 and C.4 of

Appendix C. A favorable comparison is indicated for the SVRC-QSPR model.

As evidenced by the results, the generalized SVRC-QSPR model is capable of

correlating/predicting the STs of a diverse set of molecules with varying structural

complexities. Also, our work attempts to model STs over a wide temperature as opposed
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to the currently available QSPR models which are restricted to single temperature (298

K) predictions [17, 18].

In this study, we hypothesized that an approach, which calls for the use of theory

to develop the behavior model, and QSPR to generalize the parameters of such model, is

more effective. The quality of the ST predictions obtained for such a diverse group of

molecules (48 classes involving 2924 data points) demonstrates the validity of this

integrated approach and provides credible evidence to support the above hypothesis.

Conclusions

1. Our SVRC framework successfully correlated STs of a diverse subset of organic

molecules over a wide temperature range in the saturation region. The SVRC

model was able to represent STs of 198 molecules with an AAD of 0.6% on

average when one adjustable parameter was used for each substance.

2. The SVRC-QSPR models provide excellent generalized predictions of STs, with

average errors of less than 1.2%, based on structural descriptors and end-point

input data.

3. The generalized SVRC-QSPR model was capable of making a priori predictions

for the compounds in the external database with an overall AAD of ~6%.

4. The results of this study indicate that the use of theory-framed structure-property

modeling is effective in thermo-physical model generalization.

5. The limited database employed in the present work constrained the model

generalization efforts. These results, however, constitute a promising initial effort

in our quest to develop a robust and effective model based on a larger database.
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Recommendations

1. Assemble a larger database of experimental measurements involving more diverse

molecular species. Availability of such data would facilitate better training of the

neural network, which, in turn, would lead to the development of a more robust

model capable of being extensively validated.

2. Develop a generalized QSPR model for predicting surface tensions at the triple

point temperatures to serve as input data for the generalized SVRC-QSPR model.



103

References

1. Shaver, R.D., R.L. Robinson, Jr., and K.A.M. Gasem, A Framework for the
Prediction of Saturation Properties: Vapor Pressures. Fluid Phase Equilibria, 1991.
64: p. 141-163.

2. Shaver, R.D., R.L. Robinson, Jr., and K.A.M. Gasem, A Framework for the
Prediction of Saturation Properties: Liquid Density. Fluid Phase Equilibria, 1992. 64:
p. 81-98.

3. Godavarthy, S., R.L. Robinson, Jr., and K.A.M. Gasem, SVRC-QSPR Model for
Predicting Saturated Vapor Pressures of Pure Fluids. Fluid Phase Equilibria, Volume
246, Issues 1-2, 25 August 2006, Pages 39-51.

4. Reid, R.C., et al., The Properties of Gases and Liquids. 1987, New York: McGraw-
Hill.

5. Fanchl, J.R., Calculation of parachors for compositional simulation. An update. SPE
Reservoir Engineering, 1990. v 5(n 3): p. p 433-436.

6. Ali, J.K., Prediction of Parachors of Petroleum Cuts and Pseudocomponents. Fluid
Phase Equilibria, 1995. 95: p. 383-398.

7. Schechter, D.S.G., B. Parachors Based on Modern Physics and Their Uses in IFT
Prediction of Reservoir Fluids. in Proceedings - SPE Annual Technical Conference
and Exhibition. 1995. Dallas, TX, USA: Society of Petroleum Engineers (SPE),
Richardson, TX, USA.

8. Broseta, D.R., Karine. Parachors in Terms of Critical Temperature, Critical Pressure
and Acentric Factor. in Proceedings of the 1995 SPE Annual Technical Conference
and Exhibition. 1995. Dallas, TX, USA.

9. Zuo, Y.-X.S., E.H., Corresponding-States and Parachor Models for the Calculation of
Interfacial Tensions. Canadian Journal of Chemical Engineering, 1997. v 75(n 6): p.
1130-1137.

10. Cumber, P., Surface Tension Prediction for Hydrocarbons and its Application to
Level Swell Modeling. Journal of Hazardous Materials, 2002. A 89: p. 127-139.

11. Gasem, K.A.M., et al., Test of prediction Methods for Interfacial Tensions of CO2

and Ethane in Hydrocarbon Solvents. Fluid Phase Equilibria, 1989. 53: p. 39-50.

12. Dandekar, A.Y., Sensitivity Analysis of Interfacial Tension Predictions for
Hydrocarbon Fluids. Petroleum Science and Technology, 2004. v 22 (n 9-10): p.
1161-1172.



104

13. Lu, J.-F., et al., Application of Density Functional Theory for Predicting the Surface
Tension of Pure Polar and Associating Fluids. Fluid Phase Equilibria, 2002. 194-197:
p. 755-769.

14. Do, D.D., E. Ustinov, and H.D. Do, Phase Equilibria and Surface Tension of Pure
Fluids Using a Molecular Layer Structure Theory (MLST) Model. Fluid Phase
Equilibria, 2003. 204: p. 309-326.

15. Espósito, R.O., F.W. Tavares, and M. Castier, Phase Equilibrium Calculations for
Confined Fluids, Including Surface Tension Prediction Models. Brazilian Journal of
Chemical Engineering, 2005. 22(1): p. 93-104.

16. Egemen, E., N. Nirmalakhandan, and C. Trevizo, Predicting Surface Tension of
Liquid Organic Solvents. Environ. Sci. Technol., 2000. 34: p. 2596-2600.

17. Kauffman, G.W. and P.C. Jurs, Prediction of Surface Tension, Viscosity, and
Thermal Conductivity for Common Organic Solvents Using Quantitative Structure-
Property Relationships. J. Chem. Inf. Comput. Sci., 2001. 41: p. 408-418.

18. Knotts, T.A., et al., Use of the DIPPR Database for Development of QSPR
Correlations: Surface Tension. J. Chem. Eng. Data, 2001. 46: p. 1007-1012.

19. S. S. Godavarthy, Design of Improved Solvents for Extractive Distillation,
Oklahoma State University, Ph.D. Dissertation, 2004.

20. Project 801, Physical and Thermodynamic Property Database. 1999, Design Institute
for Physical Property Data.

21. Jasper, J.J., The Surface Tension of Pure Liquid Compounds. Journal of Physical and
Chemical Reference Data, 1972. 1: p. 841.

22. ChemDraw 8.0. 2004, Cambridge Software.

23. AMPAC 6.0. 1997, Semichem Inc.

24. CODESSA 2.63. 1998, Semichem Inc.

25. Yaffe, D.L., A Neural Network Approach for Estimating Physicochemical Properties
Using Quantitative Structure-Property Relationships (QSPRs), University of
California: Los Angeles, Ph.D. Thesis, 2001.

26. Ravindranath, D., Structure-Based Generalized Models for Pure-Fluid Saturation
Properties and Activity Coefficients, Oklahoma State University: Stillwater, M.S.
Thesis, 2005



105

27. Mitchell, B. and C.P. Jurs, Prediction of Autoignition Temperatures of Organic
Compounds from Molecular Structure. J. Chem. Inf. Comput. Sci, 1997. 37: p. 538-
547.

28. Wessel, M.D., J.M. Sutter, and C.P. Jurs, Prediction of Reduced Ion Mobility
Constants of Organic Compounds from Molecular Structure. Anal. Chem, 1996. 68:
p. 4237-4243.

29. Venkatasubramanian, V., K. Chan, and J.M. Caruthers, Computer-Aided Molecular
Design Using Genetic Algorithms. Computers Chem. Engng, 1994. 18(9): p. 833-
844.

30. Mitchell, B. and C.P. Jurs, Prediction of Infinite Dilution Activity Coefficients of
Organic Compounds in Aqueous Solution from Molecular Structure. J. Chem. Inf.
Comput. Sci., 1998. 38: p. 200-209.

31. Wessel, M.D., et al., Prediction of Human Intestinal Absorption of Drug Compounds
from Molecular Structure. Molecular Modeling and Prediction of Bioavailability,
2000: p. 249-255.

32. Randic, M., Orthogonal Molecular Descriptors. New J. Chem, 1991. 15: p. 517-525.

33. Lucic, B., et al., The Structure-Property Models Can Be Improved Using the
Orthogonalized Descriptors. J. Chem. Inf Comput. Sci., 1995. 35: p. 532-538.

34. NeuralWare, Predict 3.10. Feb 2003: Carnegie, PA15106-2700.

35. Reid, R.C., J.M. Prausnitz, and B.E. Poling, The Properties of Gases and Liquids. 4
ed. 1987: McGraw Hill.



106

Figure 4.1. Overview of QSPR Methodology [20]
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Figure 4.2. Variation of reduced surface tension with temperature

1.00E+00

1.00E+01

1.00E+02

1.00E+03

1.00E+04

1.00E+05

0.01 0.10 1.00

Reduced Temperature, (1-Tr)

R
ed

u
ce

d
S

u
rf

ac
e

T
en

si
o

n
(σ

r)

Hexane-Experimenta [19]

Hexane-Predicted



108

Figure 4.3. Comparison of regressed αc and calculated αc of the
SVRC-QSPR model for surface tension
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Figure 4.4. Deviations in regressed surface tensions using the
SVRC model
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Figure 4.5. Distribution of errors (deviations) in predicted surface tensions using
the generalized SVRC-QSPR model
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Figure4.6. Deviations in predicted surface tensions using the generalized
SVRC-QSPR model
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Table 4.1. Summary of results using regressed and predicted SVRC Model Parameters

Chemical Class Case 1: %AAD of
SVRC Model
Regressions

Case 2: %AAD of
Generalized SVRC-QSPR Model

Datasets

SULFIDES/THIOPHENES 1.08 1.19 02
SILANES/SILOXANES 0.72 0.85 08
PROPIONATES AND BUTYRATES 0.66 0.76 05
POLYFUNCTIONAL C, H, O, N 0.33 0.43 03
POLYFUNCTIONAL C, H, O, HALIDE 0.32 0.66 01
POLYFUNCTIONAL C, H, N, HALIDE, (O) 0.28 1.23 02
POLYFUNCTIONAL AMIDES/AMINES 0.17 0.30 01
OTHER SATURATED ALIPHATIC ESTERS 0.39 1.01 03
OTHER POLYFUNCTIONAL C, H, O 1.15 1.77 03
OTHER INORGANICS 1.44 1.44 01
OTHER ETHERS/DIETHERS 1.40 2.07 04
OTHER ALKYLBENZENES 0.72 1.18 15
OTHER ALIPHATIC AMINES 0.44 0.56 01
OTHER ALIPHATIC ALCOHOLS 0.70 1.26 10
OTHER ALIPHATIC ACIDS 0.79 2.87 01
ORGANIC SALTS 0.53 1.54 03
NITRILES 0.44 0.85 02
N-ALKYLBENZENES 0.39 1.06 05
N-ALKANES 0.41 1.10 08
N-ALIPHATIC PRIMARY AMINES 1.54 4.76 01
N-ALIPHATIC ACIDS 0.75 2.27 04
N-ALCOHOLS 0.48 1.28 11
MULTIRING CYCLOALKANES 0.58 0.89 02
METHYLALKENES 0.75 0.75 01
METHYLALKANES 0.74 1.39 06
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Table 4.1. Summary of results using regressed and predicted SVRC Model Parameters (contd.)

Chemical Class Case 1: %AAD of
SVRC Model
Regressions

Case 2: %AAD of
Generalized SVRC-QSPR Model

Datasets

KETONES 0.63 1.42 09
INORGANIC GASES 0.87 1.69 02
FORMATES 0.73 1.25 06
EPOXIDES 0.15 0.73 02
ELEMENTS 0.45 0.45 01
DIPHENYL/POLYAROMATICS 0.84 1.27 05
DIMETHYLALKANES 0.22 0.87 01
CYCLOALKENES 0.38 0.83 02
C3 & HIGHER ALIPHATIC CHLORIDES 0.46 0.64 02
C,H,F COMPOUNDS 0.63 0.88 06
C, H, NO2 COMPOUNDS 0.61 1.13 07
C, H, MULTIHALOGEN COMPOUNDS 0.43 1.01 06
C, H, I COMPOUNDS 0.58 0.77 02
C, H, F COMPOUNDS 0.71 1.39 04
AROMATIC ESTERS 0.83 0.94 03
AROMATIC CHLORIDES 0.32 0.50 01
AROMATIC AMINES 0.63 1.20 07
AROMATIC ALCOHOLS 0.65 0.81 01
ANHYDRIDES 0.63 1.46 02
ALIPHATIC ETHERS 0.46 1.23 03
ALDEHYDES 0.27 1.77 03
ACETATES 0.49 1.23 10
OTHER ALIPHATIC AMINES 0.90 1.30 01
1-ALKENES 0.40 1.23 08
OTHER SATURATED ALIPHATIC ESTERS 1.60 1.87 01

Overall %AAD 0.6 1.2
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Table 4.2. Descriptors obtained from non-linear modeling of the model

parameter αc

Descriptors

Gravitation index (all bonds)

Average Information content (order 2)

Average Bonding Information content (order 2)

HA dependent HDSA-2 [Zefirov's PC]

HA dependent HDSA-2/SQRT(TMSA) [Zefirov's PC]

HACA-2 [Zefirov's PC]

HOMO-1 energy

FHACA Fractional HACA (HACA/TMSA) [Quantum-Chemical PC]

HA dependent HDSA-2/TMSA [Quantum-Chemical PC]

Max nucleoph. react. index for a O atom

PPSA-2 Total charge weighted PPSA [Quantum-Chemical PC]

Min resonance energy for a C-S bond
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Table 4.3. Results of secondary validation for the generalized SVRC-QSPR model
using an external dataset

Chemical classes represented in the training
set

%AAD Datasets

1-ALKENES 1.3 19
ACETATES 2.0 11
ALDEHYDES 4.2 32
ANHYDRIDES 3.2 15
AROMATIC ESTERS 10.0 4
CYCLOALKENES 7.0 9
DIMETHYLALKANES 6.7 16
DIPHENYL/POLYAROMATICS 6.1 18
ELEMENTS 4.7 6
FORMATES 5.7 10
INORGANIC GASES 5.0 8
KETONES 6.5 23
METHYLALKANES 7.6 17
METHYLALKENES 7.6 16
MULTIRING CYCLOALKANES 1.4 3
N-ALCOHOLS 7.7 20
N-ALIPHATIC ACIDS 6.7 15
N-ALKANES 6.5 29
N-ALKYLBENZENES 7.5 15
OTHER ALIPHATIC ACIDS 6.4 16
OTHER ALIPHATIC ALCOHOLS 6.8 30
OTHER ALKANES 7.2 22
OTHER ALKYLBENZENES 6.1 35
OTHER ETHERS/DIETHERS 2.8 2
OTHER MONOAROMATICS 6.0 19
OTHER POLYFUNCTIONAL C, H, O 3.3 3
OTHER SATURATED ALIPHATIC ESTERS 2.5 7
PROPIONATES AND BUTYRATES 4.6 9
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Table 4.4. Results of secondary validation for the generalized SVRC-QSPR model
using an external dataset

Chemical classes not represented in the training set %AAD Datasets
2,3,4-ALKENES 1.5 19
ALKYLCYCLOHEXANES 3.9 16
ALKYLCYCLOPENTANES 3.3 10
ALKYNES 3.2 7
AROMATIC ALCOHOLS 3.4 5
AROMATIC CARBOXYLIC ACIDS 6.8 4
CYCLOALIPHATIC ALCOHOLS 7.7 10
CYCLOALKANES 9.9 6
DIALKENES 5.7 26
DICARBOXYLIC ACIDS 7.0 4
ETHYL & HIGHER ALKENES 7.1 12
NAPHTHALENES 6.0 15
OTHER CONDENSED RINGS 6.3 10
OTHER HYDROCARBON RINGS 6.0 16
POLYFUNCTIONAL ACIDS 6.6 2
POLYFUNCTIONAL C, H, O, N 13.7 2
POLYOLS 6.5 35
TERPENES 4.9 8
UNSATURATED ALIPHATIC ESTERS 5.4 6
2,3,4-ALKENES 4.9 16 
ALKYLCYCLOHEXANES 1.8 14
ALKYLCYCLOPENTANES 2.3 12
ALKYNES 3.6 13
AROMATIC CARBOXYLIC ACIDS 3.2 9
AROMATIC CHLORIDES 4.1 10
C, H, BR COMPOUNDS 3.2 14
C1/C2 ALIPHATIC CHLORIDES 2.9 18
CYCLOALIPHATIC ALCOHOLS 3.2 8
CYCLOALKANES 1.8 4
DIALKENES 7.3 23
DICARBOXYLIC ACIDS 3.7 13
ETHYL & HIGHER ALKENES 2.9 12
INORGANIC ACIDS 6.9 5
INORGANIC BASES 4.3 1
INORGANIC HALIDES 9.5 11
ISOCYANATES/DIISOCYANATES 6.4 3
MERCAPTANS 3.2 14
NAPHTHALENES 5.4 15
NITROAMINES 1.5 4
ORGANIC/INORGANIC COMPOUNDS 5.9 3
OTHER AMINES, IMINES 4.3 31
OTHER CONDENSED RINGS 3.9 8
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Table 4.4. Results of secondary validation for the generalized SVRC-QSPR model
using an external dataset (contd.)

Chemical classes not represented in the training set %AAD Datasets
OTHER HYDROCARBON RINGS 3.8 12
OTHER MONOAROMATICS 8.1 14
OTHER POLYFUNCTIONAL ORGANICS 11.8 4
PEROXIDES 2.0 10
POLYFUNCTIONAL ACIDS 4.5 19
POLYFUNCTIONAL C, H, N, HALIDE, (O) 5.6 9
POLYFUNCTIONAL C, H, O, N 5.3 19
POLYFUNCTIONAL C, H, O, S 7.8 11
POLYFUNCTIONAL ESTERS 5.0 18
POLYOLS 9.1 22
TERPENES 5.5 8
UNSATURATED ALIPHATIC ESTERS 3.8 19
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APPENDIX A

THE SVRC-QSPR MODEL FOR LIQUID VISCOSITIES:
DATABASE USED FOR MODEL DEVELOPMENT AND

VALIDATION
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Table A.1. Liquid viscosity data used in model development [1]

Compound
Reduced

Temperature
Range

Data
Points

Classification

3-METHYLPENTANE 0.53-0.66 11 PR
2-METHYLHEXANE 0.52-0.69 25 PR
DODECANE 0.40-0.65 24 TR
TRIDECANE 0.40-0.70 16 TR
TETRADECANE 0.40-0.61 23 TR
HEXADECANE 0.41-0.78 10 TR
HEPTADECANE 0.40-0.78 11 TR
METHYLCYCLOPENTANE 0.47-0.66 30 TR
ETHYLCYCLOPENTANE 0.44-0.66 28 TR
BUTYLCYCLOHEXANE 0.38-0.57 8 PR
cis-DECALIN 0.35-0.64 27 TR
trans-DECALIN 0.35-0.66 20 TR
1-DECENE 0.44-0.67 22 TR
1-HEXADECENE 0.38-0.52 9 TR
BENZENE, 1,3-DIMETHYL- 0.44-0.58 12 PR
BENZENE,BUTYL 0.42-0.55 13 TR
BENZENE,DECYL 0.34-0.56 31 TR
BIPHENYL 0.45-0.94 27 TR
1,1':4', 1''-TERPHENYL 0.53-0.80 22 TR
BENZENE,PENTYL 0.42-0.55 11 PR
BENZENE,HEXYL 0.36-0.61 24 TR
BENZENE,NONYL 0.34-0.54 25 TR 
BENZENE,TETRADECYL 0.35-0.47 10 TR
BENZENE,ETHENYL 0.43-0.66 17 TR
NAPHTHALENE, 1-METHYL- 0.35-0.48 9 PR
NAPHTHALENE, 2-METHYL- 0.41-0.49 18 TR
BENZALDEHYDE, 2-HYDROXY- 0.44-0.69 16 TR
TRIOXANE,2,4,6-TRIMETHYL 0.49-0.67 13 TR
2-BUTANONE 0.42-0.66 13 TR
3-PENTANONE 0.49-0.66 19 PR
2-PENTANONE 0.49-0.66 26 TR
2-PYROLIDINONE 0.37-0.46 14 TR
CYCLOPENTANONE 0.47-0.58 18 PR
ETHANONE, 1-PHENYL- 0.42-0.52 19 PR
1-HEXANOL 0.46-0.70 16 TR
2-HEXANOL 0.48-0.70 13 TR
1-PENTANOL, 2-METHYL- 0.46-0.68 15 PR 
1-BUTANOL, 3-METHYL- 0.47-0.70 19 PR
1-HEPTANOL 0.46-0.71 8 TR
2-PENTANOL, 4-METHYL- 0.49-0.69 15 TR
1-OCTANOL 0.44-0.56 14 TR
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Table A.1. Liquid viscosity data used in model development

Compound Reduced
Temperature

Range

Data
Points

Classification

1-HEXADECANOL 0.42-0.74 14 TR
CYCLOHEXANOL 0.46-0.66 8 TR
2-PROPEN-1-OL 0.52-0.68 19 TR
1,2-BENZENEDIOL 0.50-0.66 13 TR
FORMIC ACID 0.48-0.64 18 TR
PROPANOIC ACID 0.47-0.60 18 TR
PROPANOIC ACID, 2-METHYL- 0.45-0.70 34 TR
HEXANOIC ACID 0.44-0.56 27 TR
DODECANOIC ACID 0.44-0.58 10 TR
OCTADECANOIC ACID 0.43-0.59 9 TR
ACETIC ACID, ANHYDRIDE 0.45-0.67 19 TR
PROPANOIC ACID, ANHYDRIDE 0.44-0.70 24 TR
FORMIC ACID, PROPYL ESTER 0.51-0.66 18 TR
ACETIC ACID, METHYL ESTER 0.54-0.82 38 TR
ACETIC ACID, BUTYL ESTER 0.50-0.60 21 TR
1-BUTANOL, 3-METHYL- 0.48-0.79 13 TR
PROPANOIC ACID 0.51-0.66 20 PR
PROPANOIC ACID, 2-METHYL- 0.50-0.67 13 PR
BUTANOIC ACID, ETHYL ESTER 0.51-0.60 11 PR
BENZOIC ACID,2-
HYDROXY,METHYL ESTER

0.42-0.70 6
TR

BENZOIC ACID, ETHYL ESTER 0.41-0.49 12 TR
CARBONIC ACID, DIETHYL ESTER 0.49-0.68 22 TR
ETHANEDIOIC ACID, DIETHYL
ESTER

0.44-0.70 13
TR

PROPANEDIOIC ACID, DIETHYL
ESTER

0.44-0.46 11
TR

PROPANE, 1-ETHOXY- 0.55-0.67 12 TR
1,4-DIOXANE 0.49-0.64 20 PR
PROPANE, 1,1'-OXYBIS- 0.29-0.68 15 TR
ETHANE, 1,2-DIMETHOXY- 0.38-0.56 9 PR
BENZENE, ETHOXY- 0.42-0.69 22 TR
FURAN, TETRAHYDRO- 0.38-0.64 25 TR
2-FURANMETHANOL 0.47-0.64 8 TR
ETHANE,2DIFLUOROMETHOXYT
RIFl

0.56-0.75 20
PR

BENZENE, 1-CHLORO-3-NITRO- 0.43-0.57 18 TR
BENZENEACETONITRILE 0.40-0.65 10 TR
1,2-ETHANEDIOL, NITRATE 0.43-0.51 12 TR
PHENOL, 2-METHOXY- 0.46-0.69 13 TR
ACETALDEHYDE, TRICHLORO- 0.52-0.66 12 TR
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Table A2. Liquid viscosity data used for external validation

Compound Name
Reduced

Temperature
Range

%AAD Data points

METHANE 0.46-1.00 24.7 59
ETHANE 0.30-1.00 39.9 136
PROPANE 0.23-1.00 44.1 155
PROPANE, 2-METHYL- 0.28-0.98 39.9 73
BUTANE 0.31-1.00 37.7 126
BUTANE, 2-METHYL- 0.49-0.66 0.3 12
PROPANE, 2,2-DIMETHYL- 0.60-0.70 0.4 13
HEXANE 0.34-1.00 31.9 115
PENTANE, 2-METHYL- 0.24-0.67 10.9 31
PENTANE, 3-METHYL- 0.53-0.66 0.7 11
BUTANE, 2,2-DIMETHYL- 0.55-0.66 1.9 10
BUTANE, 2,3-DIMETHYL- 0.55-0.63 6.8 13
HEPTANE 0.33-1.00 32.2 122
HEXANE, 2-METHYL- 0.29-0.69 5.0 39
HEXANE, 3-METHYL- 0.29-0.68 7.5 18
PENTANE, 3-ETHYL- 0.29-0.67 8.0 12
PENTANE, 2,2-DIMETHYL- 0.29-0.79 30.3 24
PENTANE, 2,3-DIMETHYL- 0.28-0.67 12.5 17
PENTANE, 2,4-DIMETHYL- 0.33-0.66 4.8 16
PENTANE, 3,3-DIMETHYL- 0.26-0.67 18.2 12
BUTANE, 2,2,3-TRIMETHYL- 0.47-0.67 1.0 13
OCTANE 0.37-1.00 28.2 135
HEPTANE, 2-METHYL- 0.29-0.97 40.2 23
HEPTANE, 3-METHYL- 0.27-0.68 12.4 14
HEPTANE, 4-METHYL- 0.27-0.68 12.4 14
HEXANE, 3-ETHYL- 0.48-0.68 0.4 14
HEXANE, 2,2-DIMETHYL- 0.28-0.68 16.7 14
HEXANE, 2,3-DIMETHYL- 0.48-0.68 4.9 14
HEXANE, 2,4-DIMETHYL- 0.49-0.69 0.3 11
HEXANE, 2,5-DIMETHYL- 0.33-0.70 9.6 16
HEXANE, 3,3-DIMETHYL- 0.26-0.67 16.4 14
HEXANE, 3,4-DIMETHYL- 0.48-0.67 5.1 14
PENTANE, 3-ETHYL-2-METHYL- 0.28-0.69 11.2 11
PENTANE, 3-ETHYL-3-METHYL- 0.32-0.66 6.1 14
PENTANE, 2,2,3,TRIMETHYL- 0.29-0.68 13.4 23
PENTANE, 2,2,4-TRIMETHYL- 0.32-1.00 62.1 54
PENTANE, 2,3,3-TRIMETHYL- 0.30-0.79 25.7 14
PENTANE, 2,3,4-TRIMETHYL- 0.29-0.78 15.4 14
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Table A2. Liquid viscosity data used for external validation (contd.)

Compound Name Reduced
Temperature

Range
%AAD Data points

BUTANE, 2,2,3,3-TETRAMETHYL- 0.52-0.80 17.8 22
NONANE 0.37-1.00 32.2 112
HEXANE, 2,2,5-TRIMETHYL- 0.29-0.68 4.9 11
HEPTANE, 3,3,5-TRIMETHYL- 0.27-0.80 33.8 11
HEXANE,2,4,4-TRIMETHYL- 0.28-0.79 36.2 21
PENTANE, 3,3-DIETHYL- 0.39-0.67 0.6 11
PENTANE, 2,2,3,3,-TETRAMETHYL- 0.43-0.80 9.7 10
PENTANE, 2,2,3,4-TETRAMETHYL- 0.26-0.80 35.1 10
PENTANE, 2,2,4,4-TETRAMETHYL- 0.36-0.80 22.1 10
PENTANE, 2,3,3,4-TETRAMETHYL- 0.28-0.80 33.7 20
TETRACOSANE, 2,6,10,15,19,23-
HEXAMETHYL- 0.25-0.61 69.6 36
DECANE 0.39-0.99 26.8 145
HEXANE, 2,2,5,5-TETRAMETHYL- 0.45-0.80 10.6 10
UNDECANE 0.39-1.01 30.4 122
DODECANE 0.40-1.00 29.2 152
TRIDECANE 0.40-1.01 29.6 195
TETRADECANE 0.40-0.99 27.4 200
PENTADECANE 0.40-0.99 31.4 187
HEXADECANE 0.40-0.99 29.9 199
HEPTADECANE 0.40-0.98 27.9 173
OCTADECANE 0.40-0.98 32.0 163
NONADECANE 0.40-0.98 35.2 192
OCTANE, 2,2-DIMETHYL- 0.37-0.71 3.7 11
EICOSANE 0.40-0.98 34.9 220
HENEICOSANE 0.40-0.81 5.5 19
DOCOSANE 0.40-0.97 31.5 28
TRICOSANE 0.40-0.82 6.4 23
TETRACOSANE 0.41-0.99 23.7 12
PENTACOSANE 0.40-0.84 6.5 16
HEXACOSANE 0.40-0.99 30.2 36
HEPTACOSANE 0.40-0.84 5.3 11
OCTACOSANE 0.40-1.00 27.5 26
NONACOSANE 0.40-0.85 6.0 11
NONANE, 3-METHYL- 0.31-0.72 10.1 14
NONANE, 2-METHYL- 0.33-0.97 40.6 53
NONANE, 4-METHYL- 0.29-0.71 14.1 14
NONANE, 5-METHYL 0.30-0.71 10.3 14
OCTANE, 2-METHYL- 0.33-0.98 37.4 22
OCTANE, 3-METHYL- 0.28-0.70 12.3 11
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Table A2. Liquid viscosity data used for external validation (contd.)

Compound Name Reduced
Temperature

Range
%AAD Data points

OCTANE, 4-METHYL- 0.27-0.70 14.4 11
3-ETHYLHEPTANE 0.27-0.69 27.5 13
HEPTANE, 2,2-DIMETHYL- 0.28-0.69 18.1 11
UNDECANE, 3-METHYL- 0.33-0.74 7.5 10
CYCLOPROPANE 0.37-0.80 2.1 10
CYCLOBUTANE 0.40-0.80 0.7 10
CYCLOPENTANE 0.49-0.63 0.8 13
CYCLOPENTANE, METHYL- 0.47-0.66 2.1 45
CYCLOPENTANE, ETHYL- 0.45-0.66 0.4 46
CYCLOPENTANE, 1,1-DIMETHYL- 0.37-0.65 0.5 11
CYCLOPENTANE, 1,2-DIMETHYL-, cis- 0.39-0.80 13.8 22
CYCLOPENTANE, 1,2-DIMETHYL-,
trans- 0.28-0.79 32.4 22
CYCLOPENTANE, 1,3-DIMETHYL-, cis- 0.25-0.65 13.5 11
CYCLOPENTANE, 1,3-DIMETHYL-,
trans- 0.25-0.65 13.8 11
CYCLOPENTANE, PROPYL- 0.43-0.64 2.2 33
CYCLOPENTANE,(1-METHYLETHYL)- 0.27-0.67 12.0 13
CYCLOPENTANE, 1-ETHYL-1-
METHYL- 0.22-0.67 25.4 11
CYCLOPENTANE, 1-BUTYL- 0.27-0.69 18.1 25
CYCLOHEXANE 0.50-1.00 18.3 87
CYCLOHEXANE, METHYL- 0.37-0.69 8.4 74
CYCLOHEXANE, ETHYL- 0.41-0.63 1.5 36
CYCLOHEXANE, 1,1-DIMETHYL- 0.41-0.66 0.6 11
CYCLOHEXANE, 1,2-DIMETHYL-, cis- 0.37-0.65 15.8 43
CYCLOHEXANE, 1,2-DIMETHYL-,
trans- 0.31-0.66 7.3 16
CYCLOHEXANE, 1,3-DIMETHYL-, cis- 0.33-0.66 5.2 16
CYCLOHEXANE, 1,3-DIMETHYL-,
trans- 0.31-0.66 7.1 32
CYCLOHEXANE, 1,4-DIMETHYL-, cis- 0.31-0.66 8.4 16
CYCLOHEXANE, 1,4-DIMETHYL-,
trans- 0.40-0.67 5.8 34
CYCLOHEXANE, 1,3,5-TRIMETHYL-,
trans 0.31-0.69 10.7 11
CYCLOHEXANE, PROPYL- 0.39-0.60 3.3 35
CYCLOHEXANE, (1-METHYL ETHYL)- 0.29-0.68 14.9 14
CYCLOHEXANE,-1,2,3,4-
TETRAMETHYL- 0.31-0.70 12.8 10
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Table A2. Liquid viscosity data used for external validation (contd.)

Compound Name Reduced
Temperature

Range
%AAD Data points

CYCLOHEXANE, BUTYL- 0.38-0.80 8.3 36
cis-DECALIN 0.35-0.64 1.8 54
trans-DECALIN 0.35-0.66 1.1 54
1,1'-BICYCLOHEXYL 0.40-0.42 0.5 5
CYCLOHEXANE, 1,1-DIETHYL- 0.27-0.74 17.5 16
CYCLOHEXANE, DECYL- 0.36-0.43 3.2 12
CYCLOHEPTANE 0.44-0.80 1.0 11
CYCLOOCTANE 0.44-0.80 8.7 20
CYCLOHEXANE, trans-1,4-DIETHYL 0.48-0.48 0.0 1
HEPTANE, 2,6-DIMETHYL- 0.29-0.69 14.5 11
3-ETHYLPENTANE, 2-2-DIMETHYL- 0.29-0.68 12.8 11
3-ETHYLPENTANE, 2,4-DIMETHYL- 0.26-0.68 22.4 11
ETHENE 0.37-0.99 30.7 44
1-PROPENE 0.24-0.99 32.3 31
1-BUTENE 0.40-0.57 0.8 9
2-BUTENE, (Z)- 0.31-0.77 6.0 18
2-BUTENE, (E)- 0.39-0.78 5.5 18
1-PROPENE, 2-METHYL- 0.32-0.82 10.2 21
1-PENTENE 0.39-0.59 0.6 11
2-PENTENE, (Z)- 0.26-0.65 2.2 11
2-PENTENE, (E)- 0.28-0.65 1.2 11
1-BUTENE, 2-METHYL- 0.29-0.64 1.4 11
1-BUTENE, 3-METHYL- 0.60-0.68 1.7 10
2-BUTENE, 2-METHYL- 0.30-0.66 3.0 19
1-HEXENE 0.43-0.66 3.7 20
2-HEXENE, (Z)- 0.26-0.67 5.2 11
2-HEXENE, (E)- 0.27-0.66 3.1 11
3-HEXENE, (Z)- 0.27-0.66 4.3 11
3-HEXENE, (E)- 0.31-0.67 0.8 11
1-PENTENE, 2-METHYL- 0.27-0.66 3.2 16
1-PENTENE, 3-METHYL 0.24-0.65 10.5 11
1-PENTENE, 4-METHYL- 0.24-0.64 8.8 8
2-PENTENE, 2-METHYL- 0.27-0.66 4.5 11
2-PENTENE, 3-METHYL-,(Z)- 0.27-0.66 4.4 11
1-HEXENE, 4-METHYL- 0.25-0.96 44.6 47
2-PENTENE, 4-METHYL-, (Z)- 0.28-0.66 4.3 11
2-PENTENE, 4-METHYL-, (E)- 0.26-0.64 5.9 11
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Table A2. Liquid viscosity data used for external validation (contd.)

Compound Name Reduced
Temperature

Range
%AAD Data points

PENTANE, 3-METHYLENE- 0.28-0.97 36.5 47
1-BUTENE, 2,3-DIMETHYL- 0.23-0.65 12.6 11
1-BUTENE, 3,3-DIMETHYL- 0.33-0.64 0.7 11
2-BUTENE, 2,3-DIMETHYL- 0.38-0.64 1.3 11
1-PENTENE, 2-ETHYL- 0.30-0.98 34.4 49
1-HEPTENE 0.51-0.69 3.2 20
2-HEPTENE, (Z)- 0.26-0.67 9.2 11
2-HEPTENE, (E)- 0.30-0.67 3.0 11
3-HEPTENE, (E)- 0.25-0.68 10.4 11
1-HEXENE, 2-METHYL- 0.30-0.97 33.2 48
1-PENTENE, 3-ETHYL- 0.28-1.04 41.4 50
1-HEXENE, 3-METHYL- 0.28-0.97 39.0 47
1-HEXENE, 3-ETHYL- 0.31-0.65 10.5 14
1-HEPTENE, 4-METHYL- 0.25-0.67 10.4 11
1-BUTENE, 2,3,3-TRIMETHYL- 0.48-0.69 2.1 30
3-HEPTENE, (Z)- 0.32-0.69 2.5 11
1-OCTENE 0.33-0.67 0.7 11
2-OCTENE, (E)- 0.30-0.68 1.1 11
1-PENTENE, 2,4,4-TRIMETHYL- 0.30-0.99 37.9 47
2-PENTENE, 2,4,4-TRIMETHYL- 0.46-0.65 2.7 14
HEPTANE, 3-METHYLENE- 0.44-0.67 1.2 33
NONENE 0.37-0.98 32.7 28
1-DECENE 0.37-0.98 33.6 31
1-TRIDECENE 0.37-0.97 30.4 48
1-TETRADECENE 0.38-0.97 32.4 62
1-PENTADECENE 0.38-0.98 30.2 98
1-HEXADECENE 0.38-0.97 28.6 69
1-OCTADECENE 0.39-0.98 32.4 60
HEPTENE, 6-METHYL- 0.32-0.69 2.6 10
CYCLOPENTENE 0.27-0.80 14.4 15
CYCLOHEXENE 0.49-0.67 1.7 30
CYCLOHEPTENE 0.36-0.65 0.4 11
CYCLOOCTENE 0.34-0.66 2.0 11
2-OCTENE, (Z) 0.30-0.95 25.4 23
3-OCTENE, (E)- 0.28-0.69 7.6 11
4-OCTENE, (Z)- 0.27-0.70 10.1 10
4-OCTENE, (E)- 0.31-0.68 3.5 11
3-OCTENE, (Z)- 0.26-0.70 12.8 10
1-HEPTADECENE 0.39-0.97 28.1 66
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Table A2. Liquid viscosity data used for external validation (contd.)

Compound Name Reduced
Temperature

Range
%AAD Data points

1-NONADECENE 0.39-0.98 32.5 76
1-EICOSENE 0.39-0.98 30.4 64
CYCLOPENTENE, 1-METHYL- 0.27-0.80 14.3 13
CYCLOPENTENE, 3-METHYL- 0.22-0.80 27.7 10
CYCLOPENTENE, 4-METHYL- 0.21-0.80 28.9 10
HEXENE, 2,3-DIMETHYL- 0.31-0.68 4.9 10
CYCLOHEXENE, 1-METHYL-4-(1-
METHYLETHENYL)-, (R)- 0.31-0.80 36.6 23
CYCLOHEXENE, 1-METHYL-4-(1-
METHYLETHYLIDENE)- 0.30-0.68 4.3 11
1,2-BUTADIENE 0.30-0.96 9.9 22
1,3-BUTADIENE 0.60-0.78 2.9 10
1,2-PENTADIENE 0.27-0.63 2.3 11
1,3-PENTADIENE, (Z)- 0.37-0.63 1.8 8
1,3-PENTADIENE, (E)- 0.44-0.61 0.5 8
1,4-PENTADIENE 0.26-0.62 1.2 11
2,3-PENTADIENE 0.30-0.64 3.4 11
ISOPRENE 0.56-0.63 0.6 17
1,5-HEXADIENE 0.26-0.65 2.7 11
1,2-BUTADIENE, 3-METHYL 0.33-0.63 2.0 11
1,3-CYCLOPENTADIENE, METHYL- 0.28-0.80 14.2 11
1,4-HEXADIENE 0.26-0.66 2.2 10
2,4-HEXADIENE, (E,E)- 0.43-0.65 1.1 11
1,3-CYCLOPENTADIENE 0.37-0.79 10.6 23
4,7-METHANO-1H-INDENE, 3a,4,7,7a-
TETRAHYDRO- 0.32-0.67 5.4 11
1,3-CYCLOHEXADIENE, 2-METHYL-5-
(1-METHYLETHYL)- 0.31-0.68 4.2 11
CYCLOHEXENE, 3-METHYLENE-6-(1-
METHYLETHYL)- 0.31-0.68 4.2 11
1,3-BUTADIENE, 2,3-DIMETHYL- 0.38-0.63 1.7 21
2,4-HEXADIENE, (E,Z)- 0.33-0.65 2.0 11
1,5-HEXADIENE, 2,5-DIMETHYL- 0.35-0.68 0.9 10
2,4-HEXADIENE, 2,5-DIMETHYL- 0.48-0.80 1.6 10
1,3-CYCLOHEXADIENE 0.52-0.64 0.4 7
1,4-CYCLOHEXADIENE 0.39-0.63 1.9 10
1,5-CYCLOOCTADIENE 0.32-0.80 13.8 11
(3E)-1,3-PENTADIENE, 2-METHYL- 0.40-0.66 1.6 15
ETHYNE 0.50-0.89 2.1 5
1-PROPYNE 0.43-0.93 1.8 11
1-BUTYNE 0.44-0.85 2.6 10
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Table A2. Liquid viscosity data used for external validation (contd.)

Compound Name Reduced
Temperature

Range
%AAD Data points

2-BUTYNE 0.51-0.78 1.3 11
1-PENTYNE 0.35-0.78 4.2 11
3-HEXYNE 0.31-0.79 8.2 11
2-HEXYNE 0.34-0.79 6.2 11
2-PENTYNE 0.32-0.80 6.2 10
1-HEXYNE 0.27-0.80 9.2 11
1-BUTEN-3-YNE, 2-METHYL- 0.33-0.79 3.0 11
1-OCTYNE 0.34-0.82 5.6 11
1-BUTEN-3-YNE 0.38-0.80 1.5 11
1-BUTYNE, 3-METHYL- 0.40-0.79 2.0 11
1-PENTEN-3-YNE 0.29-0.79 7.8 11
1-PENTEN-4-YNE 0.30-0.80 4.0 11
BENZENE, 1,1'-(1,2-ETHYNEDIYL)BIS- 0.40-0.68 2.3 11
1-NONYNE 0.37-0.82 5.0 10
1-DECYNE 0.37-0.82 6.4 10
BENZENE 0.50-0.97 10.8 53
BENZENE, METHYL- 0.30-0.98 39.2 50
BENZENE, 1,2-DIMETHYL- 0.43-0.66 1.2 28
BENZENE, 1,3-DIMETHYL- 0.44-0.67 0.8 30
BENZENE, 1,4-DIMETHYL- 0.47-0.67 0.6 23
BENZENE, PROPYL- 0.39-0.66 2.5 49
BENZENE, 1-METHYLETHYL- 0.24-0.97 59.9 53
BENZENE, 1-ETHYL-2-METHYL- 0.30-0.97 37.2 22
BENZENE, 1-ETHYL-3-METHYL- 0.28-0.67 15.0 11
BENZENE, 1-ETHYL-4-METHYL- 0.44-0.55 0.3 21
BENZENE, 1,2,3-TRIMETHYL- 0.37-0.67 4.4 11
BENZENE, 1,2,4-TRIMETHYL- 0.35-0.68 5.5 16
BENZENE, 1,3,5-TRIMETHYL- 0.36-0.67 8.2 21
BENZENE, BUTYL- 0.38-0.64 2.8 55
BENZENE, (2-METHYLPROPYL)- 0.34-0.68 4.7 11
BENZENE, (1-METHYLPROPYL)- 0.24-0.66 51.4 29
BENZENE, (1,1-DIMETHYLETHYL)- 0.33-0.66 6.4 11
BENZENE, 1-METHYL-2-(1-
METHYLETHYL)- 0.31-0.81 8.6 26
BENZENE, 1-METHYL-3-(1-
METHYLETHYL)- 0.32-0.81 6.7 26
BENZENE, 1-METHYL-4-(1-
METHYLETHYL)- 0.32-0.80 22.9 41
BENZENE, 1,2-DIETHYL- 0.36-0.68 5.9 11
BENZENE, 1,3-DIETHYL- 0.29-0.68 11.8 11
BENZENE, 1,4-DIETHYL- 0.35-0.68 3.1 11
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Table A2. Liquid viscosity data used for external validation (contd.)

Compound Name Reduced
Temperature

Range
%AAD Data points

BENZENE, 1,2,3,4-TETRAMETHYL- 0.39-0.69 6.9 10
BENZENE, 1,2,3,5-TETRAMETHYL- 0.37-0.69 7.8 11
BENZENE,-1,2,4,5-TETRAMETHYL- 0.52-0.68 0.8 11
BENZENE, 1-tert-BUTYL-4-ETHYL 0.34-0.71 7.2 10
BENZENE, 1,4-BIS(1,1-
DIMETHYLETHYL)- 0.50-0.72 0.6 14
BENZENE, 1,3-bis(1-METHYLETHYL)- 0.31-0.69 15.2 13
BENZENE, 1,4-bis(1-METHYLETHYL)- 0.37-0.69 0.4 11
BENZENE, 1,2,4-TRIETHYL- 0.29-0.72 27.4 10
BENZENE, 1,2,3-TRIETHYL- 0.32-0.72 21.7 10
BENZENE, HEPTYL- 0.31-0.97 43.0 95
BENZENE, 1,2,3,5-TETRAETHYL 0.36-0.74 22.6 10
BENZENE, DECYL- 0.34-0.97 39.3 123
BENZENE, HEXAETHYL- 0.54-0.77 2.3 12
BENZENE, CYCLOHEXYL- 0.37-0.79 19.9 33
BIPHENYL 0.45-0.94 0.9 30
1,1':4', 1''-TERPHENYL 0.52-0.80 9.2 39
1,1':3', 1''-TERPHENYL 0.41-0.82 4.2 37
BENZENE, 1,1'-ETHYLIDENEBIS- 0.35-0.48 5.2 9
BENZENE, 1,1'-METHYLENEBIS- 0.39-0.70 1.7 20
BENZENE, (PHENYLETHYL)- 0.43-0.48 0.0 2
BENZENE, 1,1',1''-
METHYLIDYNETRIS- 0.42-0.73 5.2 13
BENZENE, PENTYL- 0.30-0.98 45.7 74
BENZENE, HEXYL- 0.30-0.98 50.9 136
BENZENE, OCTYL- 0.33-0.97 35.1 52
BENZENE, NONYL- 0.34-0.98 37.7 117
BENZENE, UNDECYL- 0.34-0.97 39.2 115
BENZENE, TRIDECYL- 0.35-0.98 44.1 111
BENZENE, TETRADECYL- 0.35-0.97 34.5 58
BENZENE, DODECYL- 0.34-0.97 37.8 88
1-ETHYL-3,5-DIMETHYL BENZENE 0.29-0.69 19.3 11
2-ETHYL-1,3-DIMETHYL BENZENE 0.38-0.68 4.9 11
BENZENE, 2-ETHYL-1,4-DIMETHYL- 0.33-0.69 9.4 11
BENZENE, 1-ETHYL-,2,4-DIMETHYL- 0.32-0.69 8.7 11
4-ETHYL-1,2-DIMETHYLBENZENE 0.31-0.68 13.1 11
BENZENE, 1-ETHYL-2,3-DIMETHYL- 0.33-0.68 11.9 11
BENZENE, 1,1'-(1,1,2,2-
TETRAMETHYL-1,2-ETHANEDIYL)bis- 0.49-0.80 40.9 22
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Table A2. Liquid viscosity data used for external validation (contd.)

Compound Name Reduced
Temperature

Range
%AAD Data points

BENZENE, (1-METHYLENEPROPYL)- 0.38-0.68 2.3 11
BENZENE, (1-METHYL-1-PROPENYL)-
,(E)- 0.36-0.67 1.4 11
BENZENE, (1-METHYL-1-PROPENYL)-
, (Z) 0.42-0.68 0.5 11
BENZENE, 1-METHYL-2-PROPYL- 0.32-0.97 30.9 55
BENZENE, 1-METHYL-3-PROPYL- 0.29-0.98 41.5 56
BENZENE, 1-METHYL-4-
PROPYLBENZENE 0.32-0.98 37.6 54
BENZENE,1,1',1''-(1-ETHANYL-2-
YLIDENE)tris- 0.39-0.74 11.7 10
BENZENE, 1,1',1'',1'''-
METHANETETRAYLTETRAKIS- 0.57-0.76 1.6 10
BENZENE, 1-ETHYL-4-(2
PHENYLETHYL)- 0.38-0.73 9.0 10
BENZENE, ETHENYL- 0.43-0.66 2.0 26
BENZENE, 1-ETHENYL-2-METHYL- 0.31-0.66 10.6 11
BENZENE, 1-ETHENYL-3-METHYL- 0.28-0.67 12.7 11
BENZENE, 1-ETHENYL-2-ETHYL- 0.30-0.69 18.6 15
BENZENE, 1-ETHENYL-3-ETHYL- 0.26-0.69 24.7 15
BENZENE, 1-ETHENYL-4-ETHYL- 0.33-0.69 4.6 15
BENZENE, 1-ETHENYL-4-METHYL- 0.36-0.66 0.5 11
BENZENE, (1-METHYLETHENYL)- 0.38-0.66 0.9 12
BENZENE, 1,3-DIETHENYL- 0.30-0.69 8.1 11
BENZENE, ETHYNYL- 0.35-0.80 8.2 12
BENZENE, 1-ETHENYL-4-(2-
METHYLPROPYL) 0.34-0.71 6.0 11
BENZENE, 1-PROPENYL-,(Z)- 0.32-0.67 3.7 10
BENZENE, 1-PROPENYL-,(E)- 0.36-0.67 0.7 10
BENZENE, 1-ETHENYL-4-(1-
METHYLETHENYL)- 0.33-0.71 6.6 10
NAPHTHALENE 0.47-0.85 7.0 33
NAPHTHALENE, 1-METHYL- 0.31-0.66 9.0 87
NAPHTHALENE, 2-METHYL- 0.39-0.49 1.6 31
NAPHTHALENE, 1-ETHYL- 0.35-0.80 10.1 10
NAPHTHALENE, 1,2,3,4-
TETRAHYDRO- 0.38-0.62 3.2 22
NAPHTHALENE, 2,6-DIMETHYL- 0.49-0.79 9.2 22
NAPHTHALENE, 1-PHENYL- 0.38-0.80 5.6 11
NAPHTHALENE, 1-NONYL- 0.34-0.79 29.1 18
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Table A2. Liquid viscosity data used for external validation (contd.)

Compound Name Reduced
Temperature

Range
%AAD Data points

NAPHTHALENE, 1-BUTYL- 0.39-0.80 3.1 7
NAPHTHALENE, 1-DECYL- 0.34-0.80 11.0 8
NAPHTHALENE, 1-HEXYL- 0.34-0.80 17.9 9
NAPHTHALENE, 2,7-DIMETHYL- 0.48-0.80 21.8 22
NAPHTHALENE, 1-HEXYL-1,2,3,4-
TETRAHYDRO- 0.26-0.80 30.8 11
FLUORANTHENE 0.42-0.55 1.5 12
NAPHTHALENE, 1-PROPYL- 0.35-0.80 5.7 11
NAPHTHALENE, 2-ETHYL 0.37-0.47 1.4 6
BENZENE, 1,1',1''-(1-ETHENYL-2-
YLIDENE)TRIS- 0.38-0.74 20.4 21
BENZENE, 1,1',1'',1'''-(1,2-
ETHENEDIYLIDENE)TETRAKIS- 0.50-0.76 13.6 21
BENZENE, 1,1'-(1,2-ETHENEDIYL)BIS-,
(Z)- 0.35-0.68 10.0 10
BENZENE, 1,1'-(1,2-ETHENEDIYL)BIS-,
(E)- 0.49-0.71 1.0 10
BENZENE, 1,3-DIMETHOXY-5-(2-
PHENYLETHENYL)-,(E)- 0.39-0.80 9.3 15
9H-FLUORENE 0.47-0.65 2.1 16
1H-INDENE 0.40-0.80 33.5 25
ANTHRACENE 0.56-0.68 14.8 20
PHENANTHRENE 0.43-0.66 0.7 14
CHRYSENE 0.60-0.72 0.0 2
PYRENE 0.45-0.75 31.0 13
ACENAPHTHYLENE, 1,2-DIHYDRO- 0.46-0.61 4.4 14
1H-INDENE, 2,3-DIHYDRO- 0.40-0.57 4.0 18
1,3-CYCLOHEXADIENE, 1-METHYL-4-
(1-METHYLETHYL)- 0.35-0.69 1.1 10
1,4-CYCLOHEXADIENE, 1-METHYL-4-
(1-METHYLETHYL)- 0.34-0.68 1.2 10
BENZ(a)ANTHRACENE 0.44-0.80 8.5 19
BICYCLO(2.2.1)HEPTANE, 2,2-
DIMETHYL-3-METHYLENE- 0.50-0.57 0.0 2
BICYCLO(3.1.1)HEPT-2-ENE, 2,6,6-
TRIMETHYL- 0.33-0.79 20.4 19
BICYCLO(3.1.1)HEPTANE, 6,6-
DIMETHYL-2-METHYLENE 0.33-0.80 23.4 11
NITROUS OXIDE 0.59-0.97 25.6 36
DINITROGEN OXIDE 0.59-0.93 26.4 24
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Table A2. Liquid viscosity data used for external validation (contd.)

Compound Name Reduced
Temperature

Range
%AAD Data points

HYDROGEN 0.42-0.99 21.6 52
NITROGEN 0.48-0.99 17.8 40
CARBON MONOXIDE 0.52-0.99 6.4 46
CARBON DIOXIDE 0.72-1.00 33.8 48
OXYGEN 0.35-0.98 30.6 94
SULFUR DIOXIDE 0.56-0.93 22.4 16
SULFUR TRIOXIDE 0.59-0.67 4.3 16
NITROGEN OXIDE (NO) 0.61-1.00 25.7 18
BROMINE 0.46-0.58 2.5 22
OZONE 0.30-0.62 9.6 9
PROPANAL 0.38-0.64 2.4 21
3-CYCLOHEXENE-1-
CARBOXALDEHYDE 0.38-0.80 2.8 15
HEPTANAL 0.37-0.68 2.6 19
HEXANAL 0.37-0.67 0.5 11
OCTANAL 0.39-0.70 1.4 11
NONANAL 0.39-0.71 3.7 16
HEXANAL, 2-ETHYL- 0.33-0.71 2.2 11
ETHANEDIAL 0.58-0.65 0.5 12
HEXANAL, 2-METHYL- 0.39-0.70 0.8 11
HEXANAL, 3-METHYL- 0.39-0.70 0.6 11
2-PENTENAL, 2-METHYL- 0.39-0.68 2.3 10
2-HEXENAL, 2-ETHYL- 0.39-0.71 0.6 10
DECANAL 0.40-0.72 2.1 11
UNDECANAL 0.40-0.73 14.0 16
1-DODECANAL 0.40-0.73 2.8 11
TRIDECANAL 0.40-0.74 6.2 16
BUTANAL, 2-METHYL 0.50-0.58 1.3 4
3-METHYL-BUTANAL 0.41-0.67 2.7 23
2-PROPENAL 0.44-0.70 1.5 10
2-BUTENAL, (Z)- 0.29-0.80 14.1 15
trans-CROTONALDEHYDE 0.35-0.66 0.6 11
2-PROPENAL, 2-METHYL- 0.36-0.63 1.2 12
BENZENEACETALDEHYDE, alpha-
METHYL- 0.42-0.69 0.4 10
BENZALDEHYDE, 2-METHYL- 0.34-0.68 5.3 11
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Table A2. Liquid viscosity data used for external validation (contd.)

Compound Name Reduced
Temperature

Range
%AAD Data points

BENZALDEHYDE, 4-METHYL- 0.42-0.68 1.2 11
BENZALDEHYDE 0.36-0.64 6.9 30
BENZALDEHYDE, 2-HYDROXY- 0.43-0.69 4.9 22
BENZALDEHYDE, 4-HYDROXY- 0.48-0.48 0.0 1
1,4-BENZENEDICARBOXALDEHYDE 0.53-0.70 0.0 10
BENZALDEHYDE, 3-METHYL- 0.36-0.68 1.3 10
1,3,5-TRIOXANE, 2,4,6-TRIMETHYL- 0.49-0.69 1.9 14
2-PROPANONE 0.44-0.64 0.7 21
2-BUTANONE 0.35-1.00 12.8 67
3-PENTANONE 0.49-0.67 0.7 30
2-PENTANONE, 4-METHYL- 0.33-0.68 18.7 29
2-PENTANONE, 3-METHYL- 0.29-0.68 12.4 11
3-HEPTANONE 0.39-0.69 3.2 11
4-HEPTANONE 0.40-0.68 2.4 19
3-HEXANONE 0.37-0.67 2.2 12
2-PENTANONE 0.49-0.66 1.3 31
2-BUTANONE, 3-METHYL- 0.33-0.66 5.9 11
2-HEXANONE 0.37-0.68 2.6 16
2-HEPTANONE 0.45-0.64 1.5 18
2-HEXANONE, 5-METHYL- 0.33-0.68 8.0 12
3-PENTEN-2-ONE, 4-METHYL- 0.46-0.52 6.4 9
2-BUTANONE, 3,3-DIMETHYL- 0.39-0.66 2.5 17
4-HEPTANONE, 2,6-DIMETHYL- 0.44-0.51 4.9 7
3-PENTANONE, 2,4-DIMETHYL- 0.36-0.69 4.8 13
2-PYRROLIDINONE 0.37-0.46 2.9 23
2-PYRROLIDINONE, 1-METHYL- 0.35-0.65 23.0 24
5-NONANONE 0.42-0.72 2.6 10
2-NONANONE 0.41-0.72 3.6 12
9,10-ANTHRACENEDIONE 0.62-0.72 7.5 12
2,4-PENTANEDIONE 0.42-0.55 10.0 7
2-CYCLOHEXEN-1-ONE, 3,5,5-
TRIMETHYL- 0.37-0.68 15.2 14
CYCLOPENTANONE 0.36-0.79 32.6 45
CYCLOHEXANONE 0.42-0.56 3.6 22
2-OCTANONE 0.40-0.71 2.7 10
METHANONE, DIPHENYL- 0.36-0.80 21.4 22
ETHANONE, 1-PHENYL- 0.40-0.67 6.9 40
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Table A2. Liquid viscosity data used for external validation (contd.)

Compound Name Reduced
Temperature

Range
%AAD Data points

2-OXETANONE 0.35-0.79 1.1 11
2(3H)-FURANONE, DIHYDRO- 0.31-0.80 36.2 22
2-OXEPANONE 0.35-0.80 21.9 16
2(3H)-FURANONE, DIHYDRO-5-
METHYL- 0.33-0.80 15.2 10
2-METHYL, 3-PENTANONE- 0.36-0.68 3.0 10
3-BUTEN-2-ONE, 3-METHYL 0.39-0.65 0.2 11
(1,1'-BICYCLOHEXYL)-2-ONE 0.36-0.80 4.8 15
2,5-CYCLOHEXADIENE-1,4-DIONE 0.57-0.66 0.5 11
2-OXETANONE, 4-METHYLENE- 0.43-0.80 4.8 11
ETHENONE 0.35-0.60 0.7 10
METHANOL 0.34-0.65 6.8 35
ETHANOL 0.53-0.82 11.7 47
1-PROPANOL 0.29-0.98 82.2 57
2-PROPANOL 0.37-0.70 33.6 24
1-BUTANOL 0.33-0.97 74.6 48
1-PROPANOL, 2-METHYL- 0.39-0.99 75.6 59
2-PROPANOL, 2-METHYL- 0.58-0.89 6.7 37
1-PENTANOL 0.43-0.69 19.4 32
2-PENTANOL 0.46-0.61 10.4 25
2-BUTANOL, 2-METHYL- 0.48-0.69 5.2 39
1-PROPANOL, 2,2-DIMETHYL- 0.60-0.70 3.6 12
1-HEXANOL 0.40-0.97 54.8 41
2-HEXANOL 0.43-0.96 40.4 45
1-PENTANOL, 2-METHYL- 0.44-0.97 47.9 25
1-PENTANOL, 3-METHYL- 0.47-0.71 6.5 15
3-PENTANOL, 3-METHYL- 0.48-0.67 1.0 12
3-PENTANOL 0.40-0.97 74.3 52
1-HEXANOL, 2-ETHYL- 0.32-0.72 53.2 12
1-HEXANOL, 2-METHYL- 0.37-0.74 40.4 10
1-BUTANOL, 3-METHYL- 0.47-0.70 9.2 36
2-BUTANOL, 3-METHYL- 0.46-0.71 17.5 32
1-HEPTANOL 0.38-0.97 64.0 38
2-HEPTANOL 0.42-0.98 41.3 28
1-HEXANOL, 5-METHYL- 0.49-0.73 12.8 11
2-PENTANOL, 4-METHYL- 0.48-0.69 1.9 15
1-OCTANOL 0.40-0.97 52.4 24
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Table A2. Liquid viscosity data used for external validation (contd.)

Compound Name Reduced
Temperature

Range
%AAD Data points

2-OCTANOL 0.42-0.99 41.5 28
1-NONANOL 0.41-0.97 42.7 14
2-NONANOL 0.37-0.72 42.4 16
1-DECANOL 0.41-0.98 45.2 24
1-UNDECANOL 0.42-0.97 43.2 36
1-NONANOL, 8-METHYL- 0.33-0.80 50.2 10
1-DODECANOL 0.41-0.98 42.1 32
1-TRIDECANOL 0.41-0.96 34.8 51
1-TETRADECANOL 0.42-0.98 36.3 58
1-PENTADECANOL 0.42-0.98 32.7 17
1-HEXADECANOL 0.42-0.97 37.4 75
1-HEPTADECANOL 0.42-0.98 39.0 55
1-OCTADECANOL 0.42-0.98 37.5 53
1-BUTANOL, 2-ETHYL- 0.41-0.72 36.8 10
1-EICOSANOL 0.42-0.98 46.8 17
1-NONADECANOL 0.42-0.98 45.6 19
CYCLOHEXANOL 0.45-0.66 17.8 22
CYCLOHEXANOL, 1-METHYL- 0.44-0.80 40.4 22
CYCLOHEXANOL, 4-METHYL-, cis- 0.48-0.79 66.9 23
CYCLOHEXANOL, 4-METHYL-, trans- 0.47-0.79 100.2 23
CYCLOHEXANOL, 5-METHYL-2-1(1-
METHYLETHYL)-[1R-{1 ALPHA, 2-
BETA, 5 ALPHA}] 0.48-0.80 4.2 15
1-NAPHTHALENEMETHANOL,
DECAHYDRO-5-(5-HYDROXY-3-
METHYL-3-PENTENYL)-1,4a-
DIMETHYL-6-METHYLENE-, [1S-
[1Alpha,4aAlpha,5Alpha(E),8aBeta]] 0.40-0.66 5.2 15
Alpha,Alpha,4-TRIMETHYL-3-
CYCLOHEXENE-1-METHANOL 0.37-0.68 41.2 17
CYCLOHEXANOL, 1-METHYL-4-(1-
METHYLETHENYL) 0.44-0.80 43.9 16
1-NONANOL, 2-BUTYL- 0.40-0.79 39.0 15
1-UNDECANOL, 2-METHYL- 0.40-0.78 38.3 15
2-FURANMETHANOL, TETRAHYDRO- 0.46-0.46 0.0 3
2-PROPEN-1-OL 0.52-0.68 1.7 22
BENZENEMETHANOL, alpha,alpha-
DIMETHYL- 0.47-0.72 6.5 15
1-OCTANOL, 2-BUTYL 0.29-0.78 61.2 15
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Table A2. Liquid viscosity data used for external validation (contd.)

Compound Name Reduced
Temperature

Range
%AAD Data points

PHENOL, 2,3-DIMETHYL- 0.48-0.67 14.0 11
PHENOL, 2,4-DIMETHYL 0.49-0.67 11.9 11
PHENOL, 2,5-DIMETHYL- 0.50-0.67 2.7 20
PHENOL, 2,6-DIMETHYL- 0.46-0.67 20.8 11
PHENOL, 3,4-DIMETHYL- 0.48-0.65 8.4 20
PHENOL, 3,5-DIMETHYL- 0.41-0.66 12.7 21
2-PROPYN-1-OL 0.38-0.66 24.0 13
BENZENEMETHANOL 0.40-0.48 2.9 14
PHENOL 0.42-0.99 43.4 65
PHENOL, 2-METHYL- 0.42-0.66 5.3 21
PHENOL, 3-METHYL- 0.39-0.66 3.9 39
PHENOL, 4-METHYL- 0.39-0.66 3.8 34
PHENOL, 2-ETHYL- 0.38-0.68 42.1 10
1,4-BENZENEDIOL 0.54-0.80 3.6 15
PHENOL, 4-ETHYL- 0.44-0.68 37.0 11
PHENOL, 4-(1,1-DIMETHYLETHYL)- 0.51-0.70 18.6 10
PHENOL, 4,4'-(1-
METHYLETHYLIDENE)bis- 0.51-0.98 59.2 52
PHENOL, NONYL- 0.35-0.61 76.9 26
1,2-ETHANEDIOL 0.36-0.63 19.5 80
ETHANOL, 2,2'-OXYBIS- 0.39-0.57 5.7 21
ETHANOL, 2,2'-(1,2-
ETHANEDIYLBIS(OXY))BIS- 0.29-0.87 43.2 63
ETHANOL, 2,2'-(OXYBIS(2,1-
ETHANEDIYLOXY))BIS- 0.37-0.54 2.3 12
1,2-PROPANEDIOL 0.37-0.74 62.6 33
1,3-PROPANEDIOL 0.34-0.67 38.3 15
PROPANOL, OXYBIS- 0.36-0.80 67.1 17
1,3-PROPANEDIOL, 2,2-DIMETHYL- 0.64-0.80 2.8 15
PROPANOL,((1-METHYL-1,2-
ETHANEDIYL)bis(oxy))bis- 0.40-0.80 35.6 6
1,3-PROPANEDIOL, 2-METHYL- 0.43-0.69 4.4 3
1,2-BUTANEDIOL 0.43-0.64 22.3 10
2,4-PENTANEDIOL, 2-METHYL- 0.35-0.76 71.2 15
1,2,3-PROPANETRIOL 0.27-0.56 93.3 83
1,2,4-BUTANETRIOL 0.43-0.43 0.0 1
1,2-BENZENEDIOL, 4-(1,1-
DIMETHYLETHYL-) 0.43-0.80 13.1 15
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Table A2. Liquid viscosity data used for external validation (contd.)

Compound Name Reduced
Temperature

Range
%AAD Data points

1,3-PENTANEDIOL, 2,2,4-TRIMETHYL 0.48-0.48 0.0 1
1,3-PENTANEDIOL, 2-METHYL 0.38-0.76 39.9 15
2,3-BUTANEDIOL 0.46-0.74 35.4 11
2-BUTENE-1,4-DIOL, (Z)- 0.42-0.74 42.7 25
1,4-BUTANEDIOL 0.44-0.70 12.9 14
1,5-PENTANEDIOL 0.36-0.64 59.6 47
1,6-HEXANEDIOL 0.40-0.63 59.2 37
1,2-BENZENEDIOL 0.50-0.66 1.2 14
1,3-BENZENEDIOL 0.51-0.66 3.6 9
1,3-PROPANEDIOL, 2,2-
BIS(HYDROXYMETHYL)- 0.33-0.81 35.0 17
1,3-PROPANEDIOL, 2-ETHYL-2-
(HYDROXYMETHYL)- 0.49-0.49 0.0 1
1,2,3-BENZENETRIOL 0.49-0.70 17.0 10
FORMIC ACID 0.48-0.64 1.8 20
ACETIC ACID 0.49-0.68 7.8 51
PROPANOIC ACID 0.46-0.69 1.2 43
DECANOIC ACID 0.42-0.74 12.4 14
BUTANOIC ACID 0.45-0.70 3.9 40
BUTANOIC ACID, 2-METHYL-, (+ -) 0.46-0.70 2.8 12
PENTANOIC ACID 0.45-0.57 2.9 23
NONANOIC ACID 0.41-0.51 1.3 10
PROPANOIC ACID, 2-METHYL- 0.45-0.70 1.3 34
BUTANOIC ACID, 3-METHYL- 0.39-0.72 13.4 16
HEXANOIC ACID 0.44-0.56 1.1 31
HEXANOIC ACID, 2-METHYL- 0.66-0.80 2.2 15
1,4-CYCLOHEXANEDICARBOXYLIC
ACID, trans- 0.42-0.52 4.3 10
OCTANOIC ACID 0.41-0.76 18.5 12
UNDECANOIC ACID 0.41-0.71 7.6 10
CYCLOPENTANEACETIC ACID 0.58-0.74 2.5 10
PROPANOIC ACID, 2,2'-OXYBIS- 0.44-0.62 5.4 16
DODECANOIC ACID 0.42-0.78 16.7 11
TRIDECANOIC ACID 0.44-0.48 1.9 8
TETRADECANOIC ACID 0.44-0.60 4.8 19
2-BUTENOIC ACID, (Z)- 0.45-0.68 1.5 11
2-BUTENOIC ACID, (E)- 0.52-0.68 0.7 11
OCTADECANOIC ACID 0.43-0.59 6.8 18
2-PROPENOIC ACID 0.42-0.75 6.5 24
2-PROPENOIC ACID, 2-METHYL- 0.42-0.65 0.5 11
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Table A2. Liquid viscosity data used for external validation (contd.)

Compound Name Reduced
Temperature

Range
%AAD Data points

9-OCTADECENOIC ACID(Z)- 0.38-0.60 9.9 26
9,12-OCTADECADIENOIC ACID(Z,Z)- 0.35-0.80 50.7 21
BENZOIC ACID 0.53-0.56 7.7 7
BENZOIC ACID, 2-METHYL- 0.55-0.63 1.4 7
BENZOIC ACID, 4-METHYL- 0.59-0.70 1.3 11
BENZOIC ACID, 2-HYDROXY- 0.58-0.80 2.6 16
HEXANEDIOIC ACID 0.54-0.58 0.0 2
2-BUTENEDIOIC ACID (Z)- 0.52-0.73 2.6 11
1,2-BENZENEDICARBOXYLIC ACID 0.58-0.74 3.7 11
ETHANEPEROXOIC ACID 0.53-0.68 2.1 5
ACETIC ACID, ANHYDRIDE 0.45-0.67 0.6 30
PROPANOIC ACID, ANHYDRIDE 0.44-0.70 0.8 26
BUTANOIC ACID, ANHYDRIDE 0.46-0.64 1.2 15
2,5-FURANDIONE, DIHYDRO- 0.49-0.66 0.2 11
2H-PYRAN-2,6(3H)-DIONE, DIHYDRO- 0.39-0.63 19.6 14
1,3-ISOBENZOFURANDIONE 0.51-0.70 24.9 21
2,5-FURANDIONE 0.46-0.59 2.3 8
5-ISOBENZOFURANCARBOXYLIC
ACID, 1,3-DIHYDRO-1,3-DIOXO- 0.49-0.74 30.9 16
FORMIC ACID, METHYL ESTER 0.56-0.62 1.9 17
FORMIC ACID, ETHYL ESTER 0.54-0.61 0.6 15
FORMIC ACID, PROPYL ESTER 0.51-0.66 1.4 25
FORMIC ACID, BUTYL ESTER 0.52-0.66 2.9 9
FORMIC ACID, 2-METHYLPROPYL
ESTER 0.53-0.67 0.7 11
FORMIC ACID, PENTYL ESTER 0.35-0.69 5.4 13
FORMIC ACID, OCTYL ESTER 0.36-0.72 8.9 13
FORMIC ACID, NONYL ESTER 0.37-0.74 8.2 10
FORMIC ACID, DECYL ESTER 0.37-0.75 8.6 10
FORMIC ACID, ETHENYL ESTER 0.40-0.64 0.7 11
ACETIC ACID, METHYL ESTER 0.54-0.82 4.4 38
ACETIC ACID, ETHYL ESTER 0.52-0.90 6.9 28
ACETIC ACID, PROPYL ESTER 0.50-0.86 8.5 23
ACETIC ACID, BUTYL ESTER 0.50-0.63 2.3 35
ACETIC ACID, 2-METHYLPROPYL
ESTER 0.52-0.66 2.6 9
1-BUTANOL, 3-METHYL-, ACETATE 0.48-0.79 2.7 20
ACETIC ACID, 2-PROPENYL ESTER 0.53-0.83 15.3 25
ACETIC ACID, 1-METHYLETHYL
ESTER 0.38-0.68 4.3 16
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Table A2. Liquid viscosity data used for external validation (contd.)

Compound Name Reduced
Temperature

Range
%AAD Data points

ACETIC ACID, 1-METHYLPROPYL
ESTER 0.40-0.69 1.8 11
ACETIC ACID, ETHENYL ESTER 0.53-0.64 0.4 13
PROPANOIC ACID, METHYL ESTER 0.52-0.66 1.1 20
PROPANOIC ACID, ETHYL ESTER 0.50-0.67 0.9 27
PROPANOIC ACID, PROPYL ESTER 0.35-0.68 4.6 16
PROPANOIC ACID, BUTYL ESTER 0.31-0.70 13.4 13
BUTANOIC ACID, PROPYL ESTER 0.46-0.93 16.8 25
PROPANOIC ACID, ETHENYL ESTER 0.42-0.66 0.2 11
BUTANOIC ACID, METHYL ESTER 0.49-0.67 1.7 36
BUTANOIC ACID, ETHYL ESTER 0.48-0.69 0.8 28
PROPANOIC ACID, 2-METHYL-,
PROPYL ESTER 0.36-0.71 5.9 12
2-PROPENOIC ACID, METHYL ESTER 0.51-0.69 6.6 16
ACRYLIC ACID, ETHYL ESTER 0.50-0.71 1.7 9
2-PROPENOIC ACID, PROPYL ESTER 0.48-0.67 0.3 11
NONANOIC ACID, BUTYL ESTER 0.35-0.77 16.7 10
PENTANOIC ACID, BUTYL ESTER 0.29-0.72 26.7 20
BUTANOIC ACID, 3-METHYL-, ETHYL
ESTER 0.30-0.69 16.0 11
2-PROPENOIC ACID, 2-METHYL-,
METHYL ESTER 0.49-0.69 3.0 11
METHACRYLIC ACID, ETHYL ESTER 0.39-0.66 4.2 21
2-PROPENOIC ACID, 2-METHYL-,
PROPYL ESTER 0.31-0.69 9.7 10
1,2-BENZENEDICARBOXYLIC ACID,
BIS(2-ETHYLHEXYL) ESTER 0.29-0.46 44.4 41
1,2-BENZENEDICARBOXYLIC ACID,
HEPTYL, NONYL ESTER 0.34-0.37 0.0 2
ACETIC ACID, PENTYL ESTER 0.34-0.80 22.8 39
ACETIC ACID, 2-ETHYLHEXYL
ESTER 0.28-0.73 28.8 12
ACETIC ACID, PHENYLMETHYL
ESTER 0.32-0.70 23.6 13
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Table A.3. Influence of variation in temperature range used to regress the SVRC
model parameters

Reduced Temperature
Range Used

α

Base Case
2-Methylhexane 0.52-0.69 -0.0813
Dodecane 0.40-0.65 -0.4378
Tridecane 0.40-0.70 -0.4609
Tetradecane 0.40-0.61 -0.3977

Case-I 
2-Methylhexane 0.52-0.67 -0.0967
Dodecane 0.42-0.54 -0.3718
Tridecane 0.41-0.55 -0.4269
Tetradecane 0.40-0.54 -0.3593

Case-II
2-Methylhexane 0.53-0.67 0.0009
Dodecane 0.43-0.54 -0.3628
Tridecane 0.43-0.55 -0.3027
Tetradecane 0.40-0.54 -0.3646

Case-III
2-Methylhexane 0.53-0.65 0.0105
Dodecane 0.43-0.48 -0.0175
Tridecane 0.43-0.49 -0.0769
Tetradecane 0.40-0.54 -0.3624
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Table A.4. Sensitivity of liquid viscosity predictions to errors in model parameters

Error introduced in the
model parameter (α)

(Deviation from regressed values) -75% -50% -25% -5% 0% 5% 25% 50% 75%

Overall %AAD in predictions 9.4 6 2.9 0.9 0.7 0.9 2.8 5.2 7.4
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Table A.5. Comparison of liquid viscosity predictions for selected compounds

Compound name Reduced
Temperature

Range

VCL
Method

(%AAD)*+

SVRC-QSPR
Model

(%AAD)
Dodecane 0.40-0.65 2.1 1.7
Tridecane 0.40-0.70 3.0 1.1
Tetradecane 0.40-0.61 4.3 1.6
Hexadecane 0.41-0.78 16.4 0.9
Heptadecane 0.40-0.78 13.5 2.7

*Method recommended by Reid, Sherwood and Prausnitz (Reid, R.C., J.M. Prausnitz, and B.E. Poling, The
Properties of Gases and Liquids. 4 ed. 1987: McGraw Hill.)
+ VCL – Van Velzen, Cardozo, and Langenkamp
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APPENDIX B

THE SVRC-QSPR MODEL FOR VAPOR VISCOSITIES:
DATABASE USED FOR MODEL DEVELOPMENT AND

VALIDATION
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Table B1. Vapor viscosity data used for model development

Compound Name
Reduced

Temperature
Range

Data
points

Classification

PENTANE 0.64-1.00 9 TR
HEPTANE, 2-METHYL- 0.64-0.98 7 TR
HEPTANE, 3-METHYL- 0.63-0.97 6 PR
HEPTANE, 4-METHYL- 0.64-0.94 6 TR
NONANE 0.46-0.96 16 TR
TRIDECANE 0.41-1.00 17 PR
TETRADECANE 0.39-0.97 22 TR
PENTADECANE 0.42-0.99 17 TR
HEXADECANE 0.38-0.97 20 TR
CYCLOPROPANE 0.74-1.00 21 TR
CYCLOPENTANE 0.58-0.89 13 PR
CYCLOHEXANE 0.58-1.00 13 TR
ETHENE 0.68-0.97 8 PR
1-PROPENE 0.53-0.97 21 TR
BENZENE 0.51-0.98 49 TR
BENZENE, METHYL- 0.56-0.89 15 TR
SULFUR DIOXIDE 0.58-0.98 12 TR
2-PROPANOL 0.77-0.97 9 TR
ETHANE, CHLORO- 0.46-0.92 11 PR
METHANE, CHLOROTRIFLUORO 0.81-0.99 6 TR
METHANE, BROMO- 0.59-0.84 11 TR
CARBON DISULFIDE 0.50-0.98 11 TR
WATER-d2 0.43-0.58 11 TR
ETHANE, 1,1-DIFLUORO (R-152A) 0.63-0.97 35 PR
ETHANE, 1,1,1,2-TETRAFLUORO 0.65-0.92 14 TR
ETHANE, DIFLUORO 0.64-0.98 13 PR
ETHANE, PENTAFLUORO 0.66-0.98 13 TR
ETHANE, 1-CHLORO-1,2,2,2-
TETRAFLUORO

0.68-0.83 14 TR
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Table B2. Vapor viscosity data used for external validation

Compound Name Reduced
Temperature

Range
%AAD Data

points

METHANE 0.47-1.00 4.2 24
ETHANE 0.60-0.99 1.5 48
PROPANE 0.23-0.98 3.4 60
PROPANE, 2-METHYL- 0.28-0.98 3.7 57
BUTANE 0.32-0.99 6.1 65
PENTANE 0.64-1.00 1.6 24
BUTANE, 2-METHYL- 0.25-1.00 2.8 41
PROPANE, 2,2-DIMETHYL- 0.58-1.00 2.8 36
HEXANE 0.64-0.99 1.0 15
PENTANE, 2-METHYL- 0.55-0.94 2.0 7
PENTANE, 3-METHYL- 0.67-0.93 0.4 3
BUTANE, 2,2-DIMETHYL- 0.66-0.93 2.1 8
BUTANE, 2,3-DIMETHYL- 0.60-0.93 1.1 9
HEPTANE 0.63-0.98 2.1 17
HEXANE, 2-METHYL- 0.53-0.96 1.6 8
HEXANE, 3-METHYL- 0.68-0.92 0.2 3
PENTANE, 3-ETHYL- 0.68-0.91 0.3 3
PENTANE, 2,2-DIMETHYL- 0.68-0.92 0.3 3
PENTANE, 2,3-DIMETHYL- 0.68-0.91 0.0 3
PENTANE, 2,4-DIMETHYL- 0.66-0.93 0.5 10
PENTANE, 3,3-DIMETHYL- 0.67-0.91 0.2 3
BUTANE, 2,2,3-TRIMETHYL- 0.65-0.85 0.8 4
OCTANE 0.61-0.99 4.5 20
HEPTANE, 2-METHYL- 0.64-0.98 1.6 10
HEPTANE, 3-METHYL- 0.63-0.97 1.5 9
HEPTANE, 4-METHYL- 0.64-0.94 2.4 9
HEXANE, 3-ETHYL- 0.69-0.91 0.2 3
HEXANE, 2,2-DIMETHYL- 0.69-0.92 0.2 3
HEXANE, 2,3-DIMETHYL- 0.69-0.91 0.2 3
HEXANE, 2,4-DIMETHYL- 0.69-0.91 0.1 3
HEXANE, 2,5-DIMETHYL- 0.70-0.92 0.1 3
HEXANE, 3,3-DIMETHYL- 0.69-0.90 0.2 3
HEXANE, 3,4-DIMETHYL- 0.69-0.90 0.1 3
PENTANE, 3-ETHYL-2-METHYL- 0.69-0.90 0.2 3
PENTANE, 3-ETHYL-3-METHYL- 0.32-0.88 4.7 5
PENTANE, 2,2,3,TRIMETHYL- 0.68-0.90 0.1 3
PENTANE, 2,2,4-TRIMETHYL- 0.51-0.91 4.0 18
PENTANE, 2,3,3-TRIMETHYL- 0.68-1.00 0.4 4
PENTANE, 2,3,4-TRIMETHYL- 0.68-0.90 0.1 3
BUTANE, 2,2,3,3-TETRAMETHYL- 0.66-0.99 0.6 7
NONANE 0.46-0.96 1.8 17
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Table B2. Vapor viscosity data used for external validation (contd.)

Compound Name Reduced
Temperature

Range
%AAD Data

points

HEXANE, 2,2,5-TRIMETHYL- 0.29-0.94 6.7 5
HEPTANE, 3,3,5-TRIMETHYL- 0.27-0.88 6.3 5
HEXANE,2,4,4-TRIMETHYL- 0.28-1.00 7.9 11
PENTANE, 3,3-DIETHYL- 0.69-0.97 0.3 4
PENTANE, 2,2,3,3,-TETRAMETHYL- 0.43-0.97 3.1 5
PENTANE, 2,2,3,4-TETRAMETHYL- 0.26-0.89 7.1 5
PENTANE, 2,2,4,4-TETRAMETHYL- 0.36-0.97 4.7 5
PENTANE, 2,3,3,4-TETRAMETHYL- 0.28-0.89 7.0 10
TETRACOSANE, 2,6,10,15,19,23-
HEXAMETHYL- 0.27-0.98 3.3 9
DECANE 0.45-0.99 1.9 19
HEXANE, 2,2,3,3-TETRAMETHYL- 0.35-0.91 4.0 5
HEXANE, 2,2,5,5-TETRAMETHYL- 0.45-0.87 1.7 4
UNDECANE 0.50-0.94 2.2 10
DODECANE 0.47-0.99 3.1 12
TRIDECANE 0.41-1.00 0.5 17
TETRADECANE 0.39-0.97 0.9 22
PENTADECANE 0.39-0.99 0.6 18
HEXADECANE 0.38-0.97 2.0 26
HEPTADECANE 0.54-0.95 7.1 10
OCTADECANE 0.54-0.95 8.0 10
NONADECANE 0.53-0.95 16.6 13
OCTANE, 2,2-DIMETHYL- 0.37-0.89 3.7 5
EICOSANE 0.52-0.95 13.7 10
HENEICOSANE 0.40-0.99 1.8 9
DOCOSANE 0.40-0.98 1.8 9
TRICOSANE 0.40-0.97 8.4 9
TETRACOSANE 0.40-1.00 7.3 18
PENTACOSANE 0.40-0.99 10.3 10
HEXACOSANE 0.40-0.98 10.5 10
HEPTACOSANE 0.48-0.97 0.8 3
OCTACOSANE 0.40-0.96 8.0 18
NONACOSANE 0.48-0.96 0.9 3
NONANE, 3-METHYL- 0.31-0.97 7.1 6
NONANE, 2-METHYL- 0.33-0.98 6.7 6
NONANE, 4-METHYL- 0.29-0.96 7.9 6
NONANE, 5-METHYL 0.30-0.97 7.3 6
NONANE, 2,2,4,4,6,8,8-
HEPTAMETHYL- 0.24-0.91 2.7 6
OCTANE, 2-METHYL- 0.33-0.95 5.5 5
OCTANE, 3-METHYL- 0.71-0.90 0.8 3
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Table B2. Vapor viscosity data used for external validation (contd.)

Compound Name Reduced
Temperature

Range
%AAD Data

points

OCTANE, 4-METHYL- 0.71-0.91 0.4 3
3-ETHYLHEPTANE 0.27-0.98 7.1 6
HEPTANE, 2,2-DIMETHYL- 0.28-0.93 7.0 5
UNDECANE, 3-METHYL- 0.33-0.99 6.6 6
CYCLOPROPANE 0.69-1.00 0.8 29
CYCLOBUTANE 0.62-0.93 2.1 7
CYCLOPENTANE 0.35-0.89 2.8 17
CYCLOPENTANE, METHYL- 0.65-0.89 0.2 3
CYCLOPENTANE, ETHYL- 0.66-0.99 0.1 4
CYCLOPENTANE, 1,1-DIMETHYL- 0.37-0.95 0.8 5
CYCLOPENTANE, 1,2-DIMETHYL-, cis- 0.66-0.99 0.1 4
CYCLOPENTANE, 1,2-DIMETHYL-,
trans- 0.66-0.89 0.1 3
CYCLOPENTANE, 1,3-DIMETHYL-, cis- 0.25-0.88 1.2 5
CYCLOPENTANE, 1,3-DIMETHYL-,
trans- 0.25-0.87 1.1 5
CYCLOPENTANE, PROPYL- 0.26-0.99 1.3 6
CYCLOPENTANE,(1-METHYLETHYL)- 0.27-0.90 1.3 5
CYCLOPENTANE, 1-ETHYL-1-
METHYL- 0.22-0.97 1.8 6
CYCLOPENTANE, 1-BUTYL- 0.27-0.95 1.8 11
CYCLOHEXANE 0.58-1.00 0.4 13
CYCLOHEXANE, METHYL- 0.65-0.98 0.1 4
CYCLOHEXANE, ETHYL- 0.27-0.88 1.9 5
CYCLOHEXANE, 1,1-DIMETHYL- 0.66-0.97 0.1 4
CYCLOHEXANE, 1,2-DIMETHYL-, cis- 0.67-0.96 0.0 4
CYCLOHEXANE, 1,2-DIMETHYL-,
trans- 0.67-0.97 0.2 4
CYCLOHEXANE, 1,3-DIMETHYL-, cis- 0.67-0.97 0.2 4
CYCLOHEXANE, 1,3-DIMETHYL-,
trans- 0.67-0.97 0.1 4
CYCLOHEXANE, 1,4-DIMETHYL-, cis- 0.66-0.97 0.2 4
CYCLOHEXANE, 1,4-DIMETHYL-,
trans- 0.40-0.98 0.5 5
CYCLOHEXANE, 1,3,5-TRIMETHYL-,
trans 0.31-0.91 0.6 5
CYCLOHEXANE, PROPYL- 0.67-0.94 2.1 5
CYCLOHEXANE, (1-METHYL ETHYL)- 0.29-0.94 1.3 6
CYCLOHEXANE,-1,2,3,4-
TETRAMETHYL- 0.31-0.87 0.8 5
CYCLOHEXANE, BUTYL- 0.30-0.97 5.7 8
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Table B2. Vapor viscosity data used for external validation (contd.)

Compound Name Reduced
Temperature

Range
%AAD Data

points

cis-DECALIN 0.33-0.94 0.7 6
trans-DECALIN 0.35-0.97 0.5 6
1,1'-BICYCLOHEXYL 0.71-0.97 0.2 5
CYCLOHEXANE, 1,1-DIETHYL- 0.27-0.98 2.2 7
CYCLOHEXANE, DECYL- 0.36-0.94 1.4 7
CYCLOHEPTANE 0.44-0.98 0.7 5
CYCLOOCTANE 0.45-0.93 0.3 10
CYCLOHEXANE, trans-1,4-DIETHYL 0.31-0.93 1.0 8
HEPTANE, 2,6-DIMETHYL- 0.29-0.86 5.7 5
3-ETHYLPENTANE, 2-2-DIMETHYL- 0.29-0.99 7.3 6
3-ETHYLPENTANE, 2,4-DIMETHYL- 0.26-0.97 8.6 6
ETHENE 0.60-0.99 0.8 41
1-PROPENE 0.52-1.00 1.6 58
1-TRIACONTENE 0.39-0.95 0.9 11
1-BUTENE 0.70-0.94 0.2 6
2-BUTENE, (Z)- 0.67-0.90 0.5 10
2-BUTENE, (E)- 0.68-0.99 1.9 14
1-PROPENE, 2-METHYL- 0.32-0.96 1.7 28
1-PENTENE 0.23-0.99 2.1 26
2-PENTENE, (Z)- 0.35-0.88 1.0 4
2-PENTENE, (E)- 0.28-0.82 1.3 4
1-BUTENE, 2-METHYL- 0.29-0.91 3.4 4
1-BUTENE, 3-METHYL- 0.60-0.96 1.3 28
2-BUTENE, 2-METHYL- 0.30-0.91 2.2 17
1-HEXENE 0.50-0.99 3.6 28
2-HEXENE, (Z)- 0.67-0.92 0.2 3
2-HEXENE, (E)- 0.67-0.92 0.2 3
3-HEXENE, (Z)- 0.27-0.94 7.5 5
3-HEXENE, (E)- 0.31-0.97 4.6 5
1-PENTENE, 2-METHYL- 0.27-0.84 0.6 4
1-PENTENE, 3-METHYL 0.24-0.95 0.7 5
1-PENTENE, 4-METHYL- 0.66-0.93 0.1 3
2-PENTENE, 2-METHYL- 0.66-0.92 0.2 3
2-PENTENE, 3-METHYL-,(Z)- 0.27-0.94 1.6 5
1-HEXENE, 4-METHYL- 0.25-0.89 2.2 5
2-PENTENE, 4-METHYL-, (Z)- 0.66-0.93 0.3 3
2-PENTENE, 4-METHYL-, (E)- 0.66-0.93 0.1 3
PENTANE, 3-METHYLENE- 0.28-0.84 1.8 4



148

Table B2. Vapor viscosity data used for external validation (contd.)

Compound Name Reduced
Temperature

Range
%AAD Data

points

1-BUTENE, 2,3-DIMETHYL- 0.23-0.82 3.4 4
1-BUTENE, 3,3-DIMETHYL- 0.33-0.85 1.6 4
2-BUTENE, 2,3-DIMETHYL- 0.38-0.88 2.9 4
1-PENTENE, 2-ETHYL- 0.31-0.92 1.4 5
1-HEPTENE 0.47-0.98 3.2 30
2-HEPTENE, (Z)- 0.68-0.90 0.1 3
2-HEPTENE, (E)- 0.30-0.91 6.0 5
3-HEPTENE, (E)- 0.25-0.89 7.4 5
1-HEXENE, 2-METHYL- 0.32-0.93 5.7 5
1-PENTENE, 3-ETHYL- 0.28-0.92 1.1 5
1-HEXENE, 3-METHYL- 0.28-0.92 2.1 5
1-HEXENE, 3-ETHYL- 0.32-0.95 0.2 9
1-HEPTENE, 4-METHYL- 0.30-0.93 2.9 9
1-BUTENE, 2,3,3-TRIMETHYL- 0.31-0.93 1.7 5
3-HEPTENE, (Z)- 0.68-0.91 0.1 3
1-OCTENE 0.50-0.95 2.2 27
2-OCTENE, (E)- 0.69-0.90 0.0 3
1-PENTENE, 2,4,4-TRIMETHYL- 0.33-0.99 6.0 5
2-PENTENE, 2,4,4-TRIMETHYL- 0.30-0.97 2.1 5
HEPTANE, 3-METHYLENE- 0.33-0.97 0.9 5
NONENE 0.32-0.98 7.0 24
1-DECENE 0.34-0.91 3.2 5
1-UNDECENE 0.35-0.96 2.6 6
1-DODECENE 0.36-0.94 1.6 6
1-TRIDECENE 0.37-0.92 1.2 6
1-TETRADECENE 0.38-0.90 1.1 6
1-PENTADECENE 0.38-1.00 1.5 7
1-HEXADECENE 0.38-0.98 1.4 7
1-OCTADECENE 0.39-0.95 1.2 7
HEPTENE, 6-METHYL- 0.32-0.98 0.2 5
CYCLOPENTENE 0.27-0.84 0.1 4
CYCLOHEXENE 0.64-0.98 0.3 4
trans-2-EICOSENE 0.38-1.00 0.8 10 
trans-2-PENTADECENE 0.77-0.95 0.3 4
CYCLOHEPTENE 0.36-0.95 1.0 5
CYCLOOCTENE 0.34-0.89 0.6 5
2-OCTENE, (Z) 0.30-0.95 6.5 5
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Table B2. Vapor viscosity data used for external validation (contd.)

Compound Name Reduced
Temperature

Range
%AAD Data

points

3-OCTENE, (E)- 0.69-0.90 0.1 3
4-OCTENE, (Z)- 0.27-0.93 7.4 5
4-OCTENE, (E)- 0.31-0.89 5.2 5
3-OCTENE, (Z)- 0.26-0.93 7.9 5
1-HEPTADECENE 0.39-0.93 1.1 6
1-NONADECENE 0.39-0.94 1.2 7
1-EICOSENE 0.39-0.93 1.1 7
CYCLOHEXENE, 4-ETHENYL- 0.67-0.97 0.1 4
CYCLOPENTENE, 1-METHYL- 0.27-0.97 1.0 5
CYCLOPENTENE, 3-METHYL- 0.22-0.97 4.2 5
CYCLOPENTENE, 4-METHYL- 0.21-0.96 2.8 5
HEXENE, 2,3-DIMETHYL- 0.31-0.96 1.6 5
CYCLOHEXENE, 1-METHYL-4-(1-
METHYLETHENYL)-, (R)- 0.31-0.92 2.3 6
CYCLOHEXENE, 1-METHYL-4-(1-
METHYLETHYLIDENE)- 0.30-0.90 1.1 6
CYCLOHEXENE,1-(2-PROPENYL) 0.31-0.87 1.9 5
1,2-BUTADIENE 0.30-0.91 1.7 10
1,3-BUTADIENE 0.39-0.97 0.6 8
1,2-PENTADIENE 0.27-0.96 5.5 5
1,3-PENTADIENE, (Z)- 0.64-0.91 0.2 3
1,3-PENTADIENE, (E)- 0.63-0.90 0.1 3
1,4-PENTADIENE 0.62-0.92 0.4 3
2,3-PENTADIENE 0.30-0.98 1.9 5
ISOPRENE 0.64-0.92 0.1 3
1,5-HEXADIENE 0.26-0.94 3.9 5
1,2-BUTADIENE, 3-METHYL 0.33-0.84 1.6 4
1,3-CYCLOPENTADIENE, METHYL- 0.28-0.91 1.3 5
1,4-HEXADIENE 0.26-0.83 1.3 4
2,4-HEXADIENE, (E,E)- 0.43-0.86 0.3 4
1,3-CYCLOPENTADIENE 0.37-0.99 4.1 9
4,7-METHANO-1H-INDENE, 3a,4,7,7a-
TETRAHYDRO- 0.46-0.99 0.5 6
1,3-CYCLOHEXADIENE, 2-METHYL-5-(1-
METHYLETHYL)- 0.34-0.94 0.8 6
CYCLOHEXENE, 3-METHYLENE-6-(1-
METHYLETHYL)- 0.34-0.94 1.0 6
1,3-BUTADIENE, 2,3-DIMETHYL- 0.38-0.98 0.7 11
2,4-HEXADIENE, (E,Z)- 0.33-0.94 0.6 5
3-METHYL-1,4-PENTADIENE 0.27-0.89 0.2 6
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Table B2. Vapor viscosity data used for external validation (contd.)

Compound Name Reduced
Temperature

Range
%AAD Data

points

1,5,9-CYCLODODECATRIENE,(E,E,Z) 0.34-0.90 0.2 6
1,5-HEXADIENE, 2,5-DIMETHYL- 0.35-0.98 5.2 5
2,4-HEXADIENE, 2,5-DIMETHYL- 0.48-0.88 1.3 4
1,3-CYCLOHEXADIENE 0.29-0.88 3.9 5
1,4-CYCLOHEXADIENE 0.39-1.00 0.5 5
1,5-CYCLOOCTADIENE 0.32-0.93 1.3 6
(3E)-1,3-HEXADIENE 0.40-0.94 0.4 6
(3E)-1,3-PENTADIENE, 2-METHYL- 0.40-0.93 2.2 6
ETHYNE 0.63-0.98 1.5 10
1-PROPYNE 0.43-0.93 1.5 16
1-BUTYNE 0.48-0.85 0.1 9
2-BUTYNE 0.37-0.98 4.6 10
1-PENTYNE 0.35-0.87 1.1 4
3-HEXYNE 0.31-0.92 1.2 5
2-HEXYNE 0.34-0.93 5.2 5
2-PENTYNE 0.32-0.96 0.8 5
1-HEXYNE 0.27-0.93 6.6 5
1-BUTEN-3-YNE, 2-METHYL- 0.33-0.83 2.3 4
1-OCTYNE 0.34-0.96 5.3 5
1-BUTEN-3-YNE 0.38-0.92 2.3 4
1-BUTYNE, 3-METHYL- 0.40-0.92 1.6 4
1-PENTEN-3-YNE 0.29-0.94 4.2 5
1-PENTEN-4-YNE 0.30-0.97 1.9 5
BENZENE, 1,1'-(1,2-ETHYNEDIYL)BIS- 0.69-0.99 0.2 7
1-NONYNE 0.37-0.97 1.8 25
1-DECYNE 0.37-0.97 2.0 24
BENZENE 0.49-0.98 0.7 50
BENZENE, METHYL- 0.30-0.92 3.7 20
BENZENE, ETHYL- 0.29-0.93 3.2 12
BENZENE, 1,2-DIMETHYL- 0.39-0.92 3.0 8
BENZENE, 1,3-DIMETHYL- 0.37-0.92 3.8 8
BENZENE, 1,4-DIMETHYL- 0.44-0.98 5.0 13
BENZENE, PROPYL- 0.27-0.99 4.9 12
BENZENE, 1-METHYLETHYL- 0.28-0.99 7.2 21
BENZENE, 1-ETHYL-2-METHYL- 0.30-0.99 3.6 6
BENZENE, 1-ETHYL-3-METHYL- 0.28-1.00 4.2 6
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Table B2. Vapor viscosity data used for external validation (contd.)

Compound Name Reduced
Temperature

Range
%AAD Data

points

BENZENE, 1-ETHYL-4-METHYL- 0.33-0.88 1.4 5
BENZENE, 1,2,3-TRIMETHYL- 0.37-0.88 0.7 5
BENZENE, 1,2,4-TRIMETHYL- 0.35-0.88 0.5 5
BENZENE, 1,3,5-TRIMETHYL- 0.36-0.90 2.0 18
BENZENE, BUTYL- 0.28-0.97 2.5 6
BENZENE, (2-METHYLPROPYL)- 0.34-0.87 0.3 5
BENZENE, (1-METHYLPROPYL)- 0.67-0.92 0.3 4
BENZENE, (1,1-DIMETHYLETHYL)- 0.67-0.92 0.1 4
BENZENE, 1-METHYL-2-(1-
METHYLETHYL)- 0.31-0.98 3.5 13
BENZENE, 1-METHYL-3-(1-
METHYLETHYL)- 0.32-1.00 3.0 14
BENZENE, 1-METHYL-4-(1-
METHYLETHYL)- 0.32-0.99 3.1 14
BENZENE, 1,2-DIETHYL- 0.68-0.93 0.2 4
BENZENE, 1,3-DIETHYL- 0.69-0.93 0.1 4
BENZENE, 1,4-DIETHYL- 0.35-0.87 0.9 5
BENZENE, 1,2,3,4-TETRAMETHYL- 0.39-0.97 0.7 6
BENZENE, 1,2,3,5-TETRAMETHYL- 0.37-0.92 0.9 6
BENZENE,-1,2,4,5-TETRAMETHYL- 0.52-0.95 0.1 5
BENZENE, 1-tert-BUTYL-4-ETHYL 0.34-0.97 1.3 6
BENZENE, 1,4-BIS(1,1-
DIMETHYLETHYL)- 0.50-0.90 0.5 5
BENZENE, PENTAMETHYL- 0.45-0.97 0.6 6
BENZENE, 1,3-bis(1-METHYLETHYL)- 0.70-0.92 0.1 4
BENZENE, 1,4-bis(1-METHYLETHYL)- 0.70-1.00 0.1 5
BENZENE, 1,2,4-TRIETHYL- 0.29-0.94 2.0 6
BENZENE, HEXAMETHYL- 0.58-0.99 0.1 6
BENZENE, 1,2,3-TRIETHYL- 0.32-0.95 2.3 6
BENZENE, HEPTYL- 0.32-0.96 2.1 7
BENZENE, 1,2,3,5-TETRAETHYL 0.36-0.94 1.2 6
BENZENE, DECYL- 0.34-1.00 1.8 7
BENZENE, PENTAETHYL 0.28-0.89 0.8 6
BENZENE, HEXAETHYL- 0.54-0.99 0.1 6
BENZENE, CYCLOHEXYL- 0.38-0.91 1.1 6
BIPHENYL 0.44-0.94 10.3 20
1,1':4', 1''-TERPHENYL 0.41-0.98 6.0 32
1,1':3', 1''-TERPHENYL 0.41-1.00 7.8 29
1,1':2', 1''-TERPHENYL 0.38-0.99 14.6 32
BENZENE, 1,1'-ETHYLIDENEBIS- 0.70-1.00 0.4 6
BENZENE, 1,1'-METHYLENEBIS- 0.39-0.91 4.9 16
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Table B2. Vapor viscosity data used for external validation (contd.)

Compound Name Reduced
Temperature

Range
%AAD Data

points

BENZENE, (PHENYLETHYL)- 0.71-0.99 0.2 6
BENZENE, 1,1',1''-
METHYLIDYNETRIS- 0.42-0.99 0.8 8
BENZENE, PENTYL- 0.29-1.00 2.2 7
BENZENE, HEXYL- 0.30-0.93 1.8 6
BENZENE, OCTYL- 0.33-0.95 2.0 7
BENZENE, NONYL- 0.34-0.90 1.5 6
BENZENE, UNDECYL- 0.35-0.99 1.8 7
BENZENE, TRIDECYL- 0.36-0.96 1.6 7
BENZENE, TETRADECYL- 0.36-0.95 1.5 7
BENZENE, DODECYL- 0.35-0.97 1.7 7
1-ETHYL-3,5-DIMETHYL BENZENE 0.29-0.91 2.4 6
2-ETHYL-1,3-DIMETHYL BENZENE 0.38-0.93 1.6 6
BENZENE, 2-ETHYL-1,4-DIMETHYL- 0.33-0.92 1.1 6
BENZENE, 1-ETHYL-,2,4-DIMETHYL- 0.32-0.90 1.5 6
4-ETHYL-1,2-DIMETHYLBENZENE 0.31-0.90 1.6 6
BENZENE, 1-ETHYL-2,3-DIMETHYL- 0.69-1.00 0.1 5
BENZENE, 1,1'-(1,1,2,2-
TETRAMETHYL-1,2-ETHANEDIYL)bis- 0.49-0.93 0.6 7
BENZENE, (1-METHYLENEPROPYL)- 0.38-0.94 1.2 6
BENZENE, (1-METHYL-1-PROPENYL)-
,(E)- 0.36-0.91 1.3 6
BENZENE, (1-METHYL-1-PROPENYL)-
, (Z) 0.42-0.97 1.5 6
BENZENE, 1-METHYL-2-PROPYL- 0.32-0.98 0.2 6
BENZENE, 1-METHYL-3-PROPYL- 0.29-0.98 0.3 6
BENZENE, 1-METHYL-4-
PROPYLBENZENE 0.32-0.99 0.9 6
BENZENE,1,1',1''-(1-ETHANYL-2-
YLIDENE)tris- 0.39-0.92 0.7 7
BENZENE, 1,1',1'',1'''-
METHANETETRAYLTETRAKIS- 0.57-0.97 0.4 9
BENZENE, 1,1',1'',1'''-(1,2-
ETHANEDIYLIDENE)TETRAKIS- 0.59-0.93 0.5 6
BENZENE, 1-ETHYL-4-(2
PHENYLETHYL)- 0.38-0.99 1.3 7
BENZENE, 1,2-DIMETHYL-3-PROPYL- 0.36-1.00 0.2 12
BENZENE, 1,2,3-TRIMETHYL-4-
ETHYL- 0.37-0.94 0.1 7
BENZENE, 1,2,4-TRIMETHYL-3-
ETHYL- 0.37-0.95 0.1 7
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Table B2. Vapor viscosity data used for external validation (contd.)

Compound Name Reduced
Temperature

Range
%AAD Data

points

BENZENE, 1,2,4-TRIMETHYL-5-
ETHYL- 0.38-0.97 0.1 7
1,1'-(1,2-ETHANEDIYL)BIS(4-ETHYL-)
BENZENE 0.44-0.98 0.5 8
BENZENE, ETHENYL- 0.38-0.98 13.2 16
BENZENE, 1-ETHENYL-2-METHYL- 0.31-0.91 1.8 6
BENZENE, 1-ETHENYL-3-METHYL- 0.28-0.90 2.2 6
BENZENE, 1-ETHENYL-2-ETHYL- 0.30-0.98 0.5 9
BENZENE, 1-ETHENYL-3-ETHYL- 0.26-0.96 0.2 9
BENZENE, 1-ETHENYL-4-ETHYL- 0.33-0.99 0.3 9
BENZENE, 1-ETHENYL-4-METHYL- 0.36-0.93 0.9 6
BENZENE, (1-METHYLETHENYL)- 0.38-0.89 1.1 5
BENZENE, 1,3-DIETHENYL- 0.30-0.98 1.4 7
BENZENE, ETHYNYL- 0.35-0.88 0.4 5
BENZENE, 1-ETHENYL-4-(2-
METHYLPROPYL) 0.34-0.95 1.9 7
BENZENE, 1-PROPENYL-,(Z)- 0.32-0.97 0.5 6
BENZENE, 1-PROPENYL-,(E)- 0.36-0.99 0.2 6
BENZENE, 1-ETHENYL-4-(1-
METHYLETHENYL)- 0.28-0.99 2.7 7
BENZENE, 1-(1,1-DIMETHYLETHYL)-
4-ETHENYL- 0.33-0.93 1.3 6
NAPHTHALENE 0.30-0.99 6.4 12
NAPHTHALENE, 1-METHYL- 0.31-0.97 0.8 7
NAPHTHALENE, 2-METHYL- 0.40-0.91 0.3 6
NAPHTHALENE, 1-ETHYL- 0.33-0.91 1.1 7
NAPHTHALENE, 1,2,3,4-
TETRAHYDRO- 0.33-0.96 3.0 12
NAPHTHALENE, 2,6-DIMETHYL- 0.49-0.96 0.2 7
NAPHTHALENE, 1-PHENYL- 0.72-0.99 0.2 7
NAPHTHALENE, 1-NONYL- 0.34-0.92 1.5 8
NAPHTHALENE, 1-DECYL- 0.76-1.00 0.1 7
NAPHTHALENE, 1-BUTYL- 0.32-0.97 1.3 8
NAPHTHALENE, 1-HEXYL- 0.31-0.95 1.7 8
NAPHTHALENE, 2,7-DIMETHYL- 0.48-0.96 0.5 7
NAPHTHALENE, 1-HEXYL-1,2,3,4-
TETRAHYDRO- 0.26-0.98 3.5 8
FLUORANTHENE 0.42-0.96 1.0 9
NAPHTHALENE, 1-PROPYL- 0.34-1.00 1.9 8
NAPHTHALENE, 2-ETHYL 0.35-0.92 0.6 7
1H-INDENE, 1-METHYL- 0.67-0.97 0.3 5
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Table B2. Vapor viscosity data used for external validation (contd.)

Compound Name Reduced
Temperature

Range
%AAD Data

points

1H-INDENE, 2-METHYL- 0.39-0.90 0.5 6
1H-INDENE, 1,2,3-TRIMETHYL- 0.48-0.92 0.5 6
3a,4,7,7a-TETRAHYDRODIMETHYL-
4,7-METHANO-1H-INDENE 0.33-0.99 0.8 9
INDENE, 1-PHENYL- 0.43-0.99 1.0 8
BENZENE, 1,1',1''-(1-ETHENYL-2-
YLIDENE)TRIS- 0.38-0.95 1.1 9
BENZENE, 1,1',1'',1'''-(1,2-
ETHENEDIYLIDENE)TETRAKIS- 0.50-0.95 0.4 10
BENZENE, 1,1'-(1,2-ETHENEDIYL)BIS-,
(Z)- 0.35-0.97 1.0 7
BENZENE, 1,1'-(1,2-ETHENEDIYL)BIS-,
(E)- 0.71-0.96 0.2 6
BENZENE, 1,3-DIMETHOXY-5-(2-
PHENYLETHENYL)-,(E)- 0.37-0.97 0.3 12
9H-FLUORENE 0.69-1.00 0.3 7
1H-INDENE 0.40-0.98 1.0 6
ANTHRACENE 0.71-0.97 0.1 7
PHENANTHRENE 0.43-0.99 1.0 8
CHRYSENE 0.54-0.97 0.4 9
PYRENE 0.45-1.00 0.9 9
ACENAPHTHYLENE, 1,2-DIHYDRO- 0.69-0.96 0.2 6
ACENAPHTHALENE 0.46-0.99 0.7 7
TRICYLCO(3.3.1.13,7)DECANE 0.66-1.00 0.1 5
BICYCLO(2.2.1)HEPT-2-ENE, 5-
ETHENYL- 0.31-0.95 0.9 6
3,5,1,7-
(1,2,3,4)BUTANETETRAYLNAPHTHAL
ENE, DECAHYDRO- 0.66-0.96 0.1 6
1,3-
DIMETHYLTRICYCLO[3.3.1.1(3,7)]DE
CANE 0.35-0.97 1.2 12
BICYCLO(2,2,1)HEPT-2-ENE,2-
METHYL 0.37-0.94 0.6 5
BICYLCO(2,2,1)HEPT-2-ENE)5-ETHYL- 0.32-0.89 0.5 5
1H-INDENE, 2,3-DIHYDRO- 0.32-1.00 0.5 7
1,3-CYCLOHEXADIENE, 1-METHYL-4-
(1-METHYLETHYL)- 0.34-0.94 0.5 6
1,4-CYCLOHEXADIENE, 1-METHYL-4-
(1-METHYLETHYL)- 0.33-0.92 0.8 6
BICYCLO(2.2.1)HEPT-2-ENE 0.55-0.90 1.0 4
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Table B2. Vapor viscosity data used for external validation (contd.)

Compound Name Reduced
Temperature

Range
%AAD Data

points

BENZ(a)ANTHRACENE 0.44-0.96 0.9 9
NAPHTHACENE 0.64-0.97 0.1 9
7-ETHENYL-1,2,3,4,4a,4b,5,6,7,9,10-10a-
DODECAHYDRO-1,4a,7-TRIMETHYL-
1-PHENANTHRENECARBOXYLIC
ACID 0.61-0.97 0.4 12
[1R-(1 alpha,4 abeta,4 balpha,7 alpha,10
aalpha)]-7ETHENYL-
1,2,3,4,4a,4b,5,6,7,8,10,10a-
DODECAHYDRO-1,4a,7-TRIMETHYL-
1-PHENANTHRENECARBOXYLIC
ACID 0.54-0.98 0.4 13
BICYCLO(2.2.1)HEPTANE, 2,2-
DIMETHYL-3-METHYLENE- 0.50-0.92 0.2 5
BICYCLO(3.1.1)HEPT-2-ENE, 2,6,6-
TRIMETHYL- 0.33-0.94 1.6 6
BICYCLO(3.1.1)HEPTANE, 6,6-
DIMETHYL-2-METHYLENE 0.33-0.94 0.9 6
NITROUS OXIDE (N2O) 0.32-0.97 6.5 27
NITROGEN DIOXIDE (NO2) 0.70-1.00 4.2 28
OXYGEN 0.52-0.97 2.0 38
HYDROGEN 0.30-0.90 6.7 10
NITROGEN 0.50-0.99 1.4 37
CARBON MONOXIDE 0.55-0.85 1.2 6
CARBON DIOXIDE 0.56-1.00 0.6 39
SULFUR DIOXIDE 0.46-1.00 1.4 47
SULFUR TRIOXIDE 0.40-0.91 4.0 6
NITROGEN OXIDE (NO) 0.61-1.00 1.7 10
BROMINE 0.48-0.84 0.6 22
OZONE 0.31-0.94 3.7 5
PROPANAL 0.38-0.96 4.6 12
3-CYCLOHEXENE-1-
CARBOXALDEHYDE 0.27-0.99 4.7 9
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Table B2. Vapor viscosity data used for external validation (contd.)

Compound Name Reduced
Temperature

Range
%AAD Data

points

HEPTANAL 0.37-0.93 1.9 5
HEXANAL 0.37-0.96 2.9 5
OCTANAL 0.39-0.97 0.9 6
NONANAL 0.39-0.95 1.5 6
HEXANAL, 2-ETHYL- 0.72-0.99 0.2 4
ETHANEDIAL 0.65-0.92 0.1 3
HEXANAL, 2-METHYL- 0.40-0.91 1.3 5
HEXANAL, 3-METHYL- 0.39-0.91 3.3 5
2-PENTENAL, 2-METHYL- 0.39-0.95 3.2 5
2-HEXENAL, 2-ETHYL- 0.39-0.92 2.9 5
DECANAL 0.72-0.95 0.0 4
UNDECANAL 0.40-0.92 2.2 6
1-DODECANAL 0.74-0.94 0.1 4
TRIDECANAL 0.40-0.99 2.6 7
BUTANAL, 2-METHYL 0.39-0.91 2.2 6
3-METHYL-BUTANAL 0.41-0.92 2.4 6
2-PROPENAL 0.54-0.91 2.1 6
2-BUTENAL, (Z)- 0.29-0.98 2.1 6
trans-CROTONALDEHYDE 0.66-0.99 0.2 4
2-PROPENAL, 2-METHYL- 0.64-0.89 0.5 3
BENZENEACETALDEHYDE, alpha-
METHYL- 0.42-1.00 0.2 6
BENZALDEHYDE, 2-METHYL- 0.34-1.00 0.6 7
BENZALDEHYDE, 4-METHYL- 0.68-0.98 0.6 5
BENZALDEHYDE 0.65-0.96 0.1 5
BENZALDEHYDE, 2-HYDROXY- 0.40-1.00 1.2 6
BENZALDEHYDE, 4-HYDROXY- 0.46-0.96 0.1 8
1,4-BENZENEDICARBOXALDEHYDE 0.53-0.99 0.6 6
BENZALDEHYDE, 3-METHYL- 0.36-0.97 0.4 6
1,3,5-TRIOXANE, 2,4,6-TRIMETHYL- 0.69-1.00 0.4 4
2-PROPANONE 0.67-0.97 0.6 9
2-BUTANONE 0.37-1.00 2.6 19
3-PENTANONE 0.42-0.96 1.1 10
2-PENTANONE, 4-METHYL- 0.33-0.96 3.3 11
2-PENTANONE, 3-METHYL- 0.29-0.87 0.1 5
3-HEPTANONE 0.39-0.95 0.1 5
4-HEPTANONE 0.40-0.96 0.1 5
3-HEXANONE 0.37-0.91 0.6 5
2-PENTANONE 0.67-0.89 0.3 3
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Table B2. Vapor viscosity data used for external validation (contd.)

Compound Name Reduced
Temperature

Range
%AAD Data

points

2-BUTANONE, 3-METHYL- 0.33-0.98 5.1 5
2-HEXANONE 0.37-0.96 1.2 5
2-HEPTANONE 0.39-0.94 0.8 5
2-HEXANONE, 5-METHYL- 0.70-0.99 0.1 4
3-PENTEN-2-ONE, 4-METHYL- 0.67-0.97 0.1 4
2-BUTANONE, 3,3-DIMETHYL- 0.39-0.94 3.1 5
4-HEPTANONE, 2,6-DIMETHYL- 0.37-1.00 3.7 6
3-PENTANONE, 2,4-DIMETHYL- 0.36-0.90 0.6 5
2-PYRROLIDINONE 0.37-0.96 3.6 7
2-PYRROLIDINONE, 1-METHYL- 0.35-0.92 3.5 6
5-NONANONE 0.42-0.93 0.8 5
2-NONANONE 0.41-0.91 2.3 5
9,10-ANTHRACENEDIONE 0.62-0.95 0.9 7
2,4-PENTANEDIONE 0.39-0.97 3.7 6
2-CYCLOHEXEN-1-ONE, 3,5,5-
TRIMETHYL- 0.68-0.97 4.5 10
CYCLOPENTANONE 0.36-0.97 4.5 10
CYCLOHEXANONE 0.37-0.89 0.9 5
2-OCTANONE 0.40-0.92 1.7 5
METHANONE, DIPHENYL- 0.70-0.95 0.1 6
ETHANONE, 1-PHENYL- 0.41-0.97 1.0 6
2-OXETANONE 0.35-0.90 2.0 6
2(3H)-FURANONE, DIHYDRO- 0.65-1.00 7.6 12
2-OXEPANONE 0.63-0.96 0.1 6
2(3H)-FURANONE, DIHYDRO-5-
METHYL- 0.33-0.91 1.6 6
2-METHYL, 3-PENTANONE- 0.36-0.98 3.9 5
3-BUTEN-2-ONE, 3-METHYL 0.39-0.94 0.4 5
(1,1'-BICYCLOHEXYL)-2-ONE 0.31-0.95 1.1 7
2,5-CYCLOHEXADIENE-1,4-DIONE 0.57-0.93 0.1 5
2-OXETANONE, 4-METHYLENE- 0.43-0.91 1.4 6
ETHENONE 0.54-0.95 0.2 4
METHANOL 0.53-0.98 0.9 16
ETHANOL 0.53-0.99 1.3 43
1-PROPANOL 0.51-0.99 1.6 20
2-PROPANOL 0.54-1.00 0.6 22
1-BUTANOL 0.62-0.98 7.0 18
1-PROPANOL, 2-METHYL- 0.37-0.97 2.2 19
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Table B2. Vapor viscosity data used for external validation (contd.)

Compound Name Reduced
Temperature

Range
%AAD Data

points

2-PROPANOL, 2-METHYL- 0.60-0.94 1.4 5
1-PENTANOL 0.47-1.00 2.5 13
2-PENTANOL 0.70-0.97 0.5 6
2-BUTANOL, 2-METHYL- 0.49-0.92 1.1 7
1-BUTANOL, 2-METHYL- 0.34-0.96 3.0 5
1-PROPANOL, 2,2-DIMETHYL- 0.70-0.98 0.2 6
1-HEXANOL 0.46-0.99 2.6 15
2-HEXANOL 0.38-0.97 2.1 5
1-PENTANOL, 2-METHYL- 0.37-0.94 1.7 5
1-PENTANOL, 3-METHYL- 0.35-0.95 1.5 5
3-PENTANOL, 3-METHYL- 0.43-0.87 0.1 4
3-PENTANOL 0.37-1.00 1.4 5
1-HEXANOL, 2-ETHYL- 0.70-0.94 0.5 4
1-HEXANOL, 2-METHYL- 0.37-0.95 3.8 5
1-BUTANOL, 3-METHYL- 0.27-0.91 4.8 8
2-BUTANOL, 3-METHYL- 0.34-0.99 0.9 5
1-HEPTANOL 0.71-0.97 0.4 4
2-HEPTANOL 0.40-0.95 2.3 5
1-HEXANOL, 5-METHYL- 0.49-0.95 0.3 5
2-PENTANOL, 4-METHYL- 0.71-0.97 0.5 6
1-OCTANOL 0.72-0.96 0.4 4
2-OCTANOL 0.38-0.92 1.0 5
1-NONANOL 0.73-0.95 0.5 4
2-NONANOL 0.37-0.89 3.1 5
1-DECANOL 0.73-0.95 0.5 4
1-UNDECANOL 0.41-0.97 2.3 6
1-NONANOL, 8-METHYL- 0.77-1.00 0.4 4
1-DODECANOL 0.74-1.00 0.2 5
1-TRIDECANOL 0.75-0.99 0.7 5
1-TETRADECANOL 0.75-0.98 0.2 5
1-PENTADECANOL 0.42-0.96 2.6 7
1-HEXADECANOL 0.76-0.97 0.1 5
1-HEPTADECANOL 0.77-0.97 0.4 5
1-OCTADECANOL 0.77-0.97 0.1 5
1-BUTANOL, 2-ETHYL- 0.72-0.92 0.3 3
1-EICOSANOL 0.78-0.96 0.3 5
1-NONADECANOL 0.42-1.00 0.5 8
CYCLOHEXANOL 0.46-1.00 0.8 6
CYCLOHEXANOL, 1-METHYL- 0.44-0.95 0.3 6
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Table B.2. Vapor viscosity data used for model validation

Compound Name Reduced
Temperature

Range
%AAD Data

points

CYCLOHEXANOL, 2-METHYL-, cis- 0.71-0.99 0.2 4
CYCLOHEXANOL, 2-METHYL-, trans- 0.71-0.99 0.2 4
CYCLOHEXANOL, 3-METHYL-, cis- 0.71-0.97 0.6 4
CYCLOHEXANOL, 3-METHYL-, trans- 0.70-0.97 0.2 4
CYCLOHEXANOL, 4-METHYL-, cis- 0.71-0.98 0.2 4
CYCLOHEXANOL, 4-METHYL-, trans- 0.71-0.98 0.1 4
cyclohexanol, 5-methyl-2-1(1-methylethyl)-[1R-{1
alpha, 2-beta, 5 alpha}] 0.48-1.00 0.4 6
STIGMAST-5-EN-3-OL,(3beta)- 0.43-0.98 1.0 9
1-NAPHTHALENEMETHANOL, DECAHYDRO-5-
(5-HYDROXY-3-METHYL-3-PENTENYL)-1,4a-
DIMETHYL-6-METHYLENE-, [1S-
[1Alpha,4aAlpha,5Alpha(E),8aBeta]] 0.48-0.98 0.1 8
Alpha,Alpha,4-TRIMETHYL-3-CYCLOHEXENE-1-
METHANOL 0.46-0.97 0.3 8
CYCLOHEXANOL, 1-METHYL-4-(1-
METHYLETHENYL) 0.46-0.98 0.8 8
1-NONANOL, 2-BUTYL- 0.40-0.93 0.1 8
1-UNDECANOL, 2-METHYL- 0.40-0.95 0.1 8
2-FURANMETHANOL, TETRAHYDRO- 0.71-0.96 1.3 8
2-PROPEN-1-OL 0.68-0.91 0.3 3
BENZENEMETHANOL, alpha,alpha-DIMETHYL- 0.47-0.99 0.5 6
1-OCTANOL, 2-BUTYL 0.29-0.98 0.4 9
PHENOL, 2,3-DIMETHYL- 0.48-0.98 0.4 6
PHENOL, 2,4-DIMETHYL 0.68-0.97 0.0 5
PHENOL, 2,5-DIMETHYL- 0.49-0.90 1.2 5
PHENOL, 2,6-DIMETHYL- 0.46-1.00 0.7 6
PHENOL, 3,4-DIMETHYL- 0.46-0.97 1.1 6
PHENOL, 3,5-DIMETHYL- 0.47-0.99 0.2 6
2-PROPYN-1-OL 0.67-0.98 0.3 4
BENZENEMETHANOL 0.36-0.93 0.6 6
PHENOL 0.29-0.97 5.1 24
PHENOL, 2-METHYL- 0.44-0.99 7.3 11
PHENOL, 3-METHYL- 0.67-0.97 0.4 5
PHENOL, 4-METHYL- 0.67-0.97 0.4 5
PHENOL, 2-ETHYL- 0.38-0.96 0.2 6
1,4-BENZENEDIOL 0.54-0.99 0.6 7
PHENOL, 4-ETHYL- 0.44-0.97 0.6 6
PHENOL, 4-(1,1-DIMETHYLETHYL)- 0.51-0.98 0.1 6
PHENOL, 4,4'-(1-METHYLETHYLIDENE)bis- 0.34-0.99 12.8 7
PHENOL, NONYL 0.36-0.99 1.5
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Table B2. Vapor viscosity data used for external validation (contd.)

Compound Name Reduced
Temperature

Range
%AAD Data

points

1,2-ETHANEDIOL 0.36-0.93 0.2 6
ETHANOL, 2,2'-OXYBIS- 0.35-0.97 4.6 19
ETHANOL, 2,2'-(1,2-
ETHANEDIYLBIS(OXY))BIS- 0.26-0.98 15.8 26
ETHANOL, 2,2'-(OXYBIS(2,1-
ETHANEDIYLOXY))BIS- 0.76-0.95 8.9 10
1,2-PROPANEDIOL 0.34-0.98 2.5 14
1,3-PROPANEDIOL 0.34-0.96 1.2 7
PROPANOL, OXYBIS- 0.76-0.99 0.3 4
1,3-PROPANEDIOL, 2,2-DIMETHYL- 0.64-0.95 0.2 4
2-BUTYNE-1,4-DIOL 0.48-0.90 1.5 5
PROPANOL,((1-METHYL-1,2-
ETHANEDIYL)bis(oxy))bis- 0.34-0.97 5.0 6
1,3-PROPANEDIOL, 2-METHYL- 0.26-0.91 1.0 6
1,2-BUTANEDIOL 0.32-0.96 3.8 6
1,3-BUTANEDIOL 0.29-0.95 2.4 6
2,4-PENTANEDIOL, 2-METHYL- 0.36-0.93 2.9 8
1,2,3-PROPANETRIOL 0.33-0.99 4.4 19
1,2,3-BUTANETRIOL 0.37-0.95 0.3 9
1,2,4-BUTANETRIOL 0.39-0.99 2.5 9
1,2-BENZENEDIOL, 4-(1,1-
DIMETHYLETHYL-) 0.43-0.91 1.8 6
1,3-PENTANEDIOL, 2,2,4-TRIMETHYL 0.48-0.97 1.3 6
1,3-PENTANEDIOL, 2-METHYL 0.38-0.94 0.9 10
2,3-BUTANEDIOL 0.46-0.92 1.8 5
2-BUTENE-1,4-DIOL, (Z)- 0.42-0.89 1.7 5
2-BUTENE-1,4-DIOL, (E)- 0.45-0.92 1.1 5
1,4-BUTANEDIOL 0.44-0.98 2.1 9
1,5-PENTANEDIOL 0.38-1.00 2.7 10
1,6-HEXANEDIOL 0.46-0.97 3.1 9
1,2-BENZENEDIOL 0.49-0.98 1.5 7
1,3-BENZENEDIOL 0.47-1.00 2.0 8
1,3-PROPANEDIOL, 2,2-
BIS(HYDROXYMETHYL)- 0.81-0.99 0.2 5
1,3-PROPANEDIOL, 2-ETHYL-2-
(HYDROXYMETHYL)- 0.79-0.96 0.3 5
1,2,3-BENZENETRIOL 0.49-0.97 1.3 7
D-GLUCITOL 0.42-0.93 2.7 8
FORMIC ACID 0.47-0.99 1.3 13
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Table B2. Vapor viscosity data used for external validation (contd.)

Compound Name Reduced
Temperature

Range
%AAD Data

points

ACETIC ACID 0.46-0.97 4.5 24
PROPANOIC ACID 0.42-0.99 1.7 14
DECANOIC ACID 0.42-1.00 3.1 7
ETHANEDIOIC ACID 0.58-0.97 0.8 7
BUTANOIC ACID 0.44-0.93 1.3 12
BUTANOIC ACID, 2-METHYL-, (+ -) 0.70-0.95 0.2 4
PENTANOIC ACID 0.37-0.97 0.2 6
NONANOIC ACID 0.40-0.90 1.8 6
PROPANOIC ACID, 2-METHYL- 0.38-0.88 1.3 5
BUTANOIC ACID, 3-METHYL- 0.39-0.92 0.2 5
HEXANOIC ACID 0.41-0.90 0.3 5
HEXANOIC ACID, 2-METHYL- 0.35-0.92 0.3 8
1,4-CYCLOHEXANEDICARBOXYLIC
ACID, trans- 0.66-0.98 0.8 8
OCTANOIC ACID 0.42-0.93 2.1 6
UNDECANOIC ACID 0.41-0.98 2.6 7
CYCLOPENTANEACETIC ACID 0.41-0.97 0.1 6
PROPANOIC ACID, 2,2'-OXYBIS- 0.58-1.00 0.6 5
DODECANOIC ACID 0.43-0.98 2.1 7
TRIDECANOIC ACID 0.42-0.96 3.1 7
TETRADECANOIC ACID 0.43-0.95 2.2 7
HEXADECANOIC ACID 0.43-0.93 0.4 7
2-BUTENOIC ACID, (Z)- 0.45-1.00 1.2 6
2-BUTENOIC ACID, (E)- 0.52-0.91 0.4 5
OCTANOIC ACID, 2-METHYL 0.35-0.97 0.1 9
OCTADECANOIC ACID 0.43-0.99 0.1 8
2-PROPENOIC ACID 0.45-0.93 11.4 12
2-PROPENOIC ACID, 2-METHYL- 0.44-0.97 0.4 6
9-OCTADECENOIC ACID(Z)- 0.37-0.91 0.3 7
9,12-OCTADECADIENOIC ACID(Z,Z)- 0.35-0.91 0.5 7
BENZOIC ACID 0.53-0.93 0.4 6
BENZOIC ACID, 2-METHYL- 0.50-1.00 1.5 7
BENZOIC ACID, 4-METHYL- 0.59-0.94 0.5 6
BENZOIC ACID, 2-HYDROXY- 0.58-0.96 0.4 6
HEXANEDIOIC ACID 0.53-0.95 1.2 7
2-BUTENEDIOIC ACID (Z)- 0.52-0.95 0.9 6
1,2-BENZENEDICARBOXYLIC ACID 0.80-0.98 0.2 5
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Table B2. Vapor viscosity data used for external validation (contd.)

Compound Name Reduced
Temperature

Range
%AAD Data

points

ETHANEPEROXOIC ACID 0.49-0.89 55.2 9
ACETIC ACID, ANHYDRIDE 0.33-0.98 3.2 22
PROPANOIC ACID, ANHYDRIDE 0.37-0.98 9.1 12
BUTANOIC ACID, ANHYDRIDE 0.31-0.93 0.1 6
PHENANTHRENECARBOXYLIC ACID,
1,2,3,4,4a,5,6,9,10,10a-DECAHYDRO-
1,4a-DIMETHYL-7-(1-
METHYLETHYL)-, [1R-
(1Alpha,4aBeta,10aAlpha)]- 0.56-0.97 0.8 12
2,5-FURANDIONE, DIHYDRO- 0.49-0.93 4.1 14
2H-PYRAN-2,6(3H)-DIONE, DIHYDRO- 0.39-0.95 0.4 8
1,3-ISOBENZOFURANDIONE 0.70-0.95 0.5 5
2,5-FURANDIONE 0.45-0.92 1.0 6
5-ISOBENZOFURANCARBOXYLIC
ACID, 1,3-DIHYDRO-1,3-DIOXO- 0.75-0.98 0.2 8
FORMIC ACID, METHYL ESTER 0.62-0.92 0.2 4
FORMIC ACID, ETHYL ESTER 0.54-0.98 2.6 10
FORMIC ACID, PROPYL ESTER 0.65-0.93 0.3 4
FORMIC ACID, BUTYL ESTER 0.54-0.98 0.6 6
FORMIC ACID, 2-METHYLPROPYL
ESTER 0.67-0.90 0.4 4
FORMIC ACID, PENTYL ESTER 0.35-0.90 0.2 5
FORMIC ACID, OCTYL ESTER 0.36-0.95 0.1 6
FORMIC ACID, NONYL ESTER 0.37-0.88 0.3 5
FORMIC ACID, DECYL ESTER 0.37-0.99 0.2 6
FORMIC ACID, ETHENYL ESTER 0.40-0.88 0.8 4
ACETIC ACID, METHYL ESTER 0.82-0.97 0.1 3
ACETIC ACID, ETHYL ESTER 0.36-1.00 7.8 16
ACETIC ACID, PROPYL ESTER 0.68-0.91 4.3 6
ACETIC ACID, BUTYL ESTER 0.35-0.97 4.5 8
ACETIC ACID, 2-METHYLPROPYL
ESTER 0.31-0.98 17.6 21
1-BUTANOL, 3-METHYL-, ACETATE 0.33-0.88 9.8 9
ACETIC ACID, 2-PROPENYL ESTER 0.68-0.90 0.4 3
ACETIC ACID, 1-METHYLETHYL
ESTER 0.68-0.92 0.4 3
ACETIC ACID, 1-METHYLPROPYL
ESTER 0.69-0.90 0.4 3
ACETIC ACID, ETHENYL ESTER 0.35-0.98 2.7 15
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Table B2. Vapor viscosity data used for external validation (contd.)

Compound Name Reduced
Temperature

Range
%AAD Data

points

PROPANOIC ACID, METHYL ESTER 0.66-0.94 4.4 7
PROPANOIC ACID, ETHYL ESTER 0.54-0.92 1.5 13
PROPANOIC ACID, PROPYL ESTER 0.70-0.91 5.9 6
PROPANOIC ACID, BUTYL ESTER 0.31-1.00 8.8 9
BUTANOIC ACID, PROPYL ESTER 0.30-1.00 10.1 25
PROPANOIC ACID, ETHENYL ESTER 0.67-0.95 0.3 6
BUTANOIC ACID, METHYL ESTER 0.68-0.90 0.2 3
BUTANOIC ACID, ETHYL ESTER 0.69-0.90 0.4 3
PROPANOIC ACID, 2-METHYL-,
PROPYL ESTER 0.35-0.97 3.1 10
2-PROPENOIC ACID, METHYL ESTER 0.51-1.00 1.5 13
ACRYLIC ACID, ETHYL ESTER 0.53-1.00 3.2 12
2-PROPENOIC ACID, PROPYL ESTER 0.48-0.99 2.0 5
NONANOIC ACID, BUTYL ESTER 0.35-0.98 4.7 6
PENTANOIC ACID, BUTYL ESTER 0.29-0.93 6.4 6
BUTANOIC ACID, 3-METHYL-, ETHYL
ESTER 0.30-0.92 3.0 5
2-PROPENOIC ACID, 2-METHYL-,
METHYL ESTER 0.49-0.97 3.2 11
METHACRYLIC ACID, ETHYL ESTER 0.68-0.99 0.3 4
1,2-BENZENEDICARBOXYLIC ACID,
BIS(2-ETHYLHEXYL) ESTER 0.82-0.99 17.2 8
1,2-BENZENEDICARBOXYLIC ACID,
DIISOOCTYL ESTER 0.26-0.99 2.0 9
ACETIC ACID, PENTYL ESTER 0.70-0.99 1.3 8
ACETIC ACID, 2-ETHYLHEXYL
ESTER 0.73-0.98 0.1 4

ACETIC ACID, PHENYLMETHYL
ESTER 0.32-0.94 0.2 6
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Table B.3. Comparison of vapor viscosity predictions for selected compounds

Compound
name

Reduced
Temperature Range

Lucas *
Method
(%AAD)

SVRC-QSPR
Model

(%AAD)
Pentane 0.64-0.98 1.7 0.3
Cyclohexane 0.58-0.94 2.9 0.4
Sulfur Dioxide 0.58-0.98 1.9 0.6 
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APPENDIX C

THE SVRC-QSPR MODEL FOR SURFACE TENSIONS: DATABASE
USED FOR MODEL DEVELOPMENT AND VALIDATION
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Table C1 Surface tension data used in model development

Compound Name
Reduced

Temperature
Range

Data
points

%AAD Reference

ETHANE 0.39-0.97 21 1.8 [1]
PROPANE 0.52-0.98 16 1.6 [1]
BUTANE 0.55-0.74 13 1.0 [1]
HEXANE 0.54-0.98 28 1.0 [1]
HEPTANE 0.52-0.93 30 2.0 [1]
PENTANE, 2,3-DIMETHYL- 0.45-0.66 15 0.9 [1]
OCTANE 0.41-0.88 31 2.5 [1]
CIS-DECALIN 0.35-0.64 27 2.2 [1]
TRANS-DECALIN 0.35-0.66 26 1.6 [1]
2-BUTENE, 2-METHYL- 0.43-0.75 22 0.8 [1]
CYCLOPENTENE 0.49-0.64 16 2.3 [1]
CYCLOHEXENE 0.43-0.62 30 0.8 [1]
BENZENE, METHYL- 0.46-0.63 11 0.4 [1]
BENZENE, 1,2-DIMETHYL- 0.43-0.59 11 0.2 [1]
BENZENE, 1,3,5-TRIMETHYL- 0.40-0.68 21 1.8 [1]
BIPHENYL 0.48-0.81 13 1.0 [1]
1,1':4', 1''-TERPHENYL 0.55-0.74 15 2.0 [1]
1,1':3', 1''-TERPHENYL 0.41-0.74 20 1.4 [1]
1,1':2', 1''-TERPHENYL 0.41-0.73 18 2.0 [1]
BENZENE, 1,1'-METHYLENEBIS- 0.40-0.48 12 2.4 [1]
SULFUR TRIOXIDE 0.60-0.96 13 3.0 [1]
3-PENTANONE 0.50-0.92 17 1.8 [1]
3-HEXANONE 0.51-0.62 13 0.6 [1]
CYCLOHEXANONE 0.44-0.55 12 1.5 [1]
METHANOL 0.54-0.97 23 1.0 [1]
ETHANOL 0.53-0.96 23 1.8 [1]
1-BUTANOL 0.49-0.73 20 1.7 [1]
1-HEXANOL 0.47-0.64 11 0.8 [1]
2-HEXANOL 0.48-0.71 15 0.5 [1]
1-PENTANOL, 2-METHYL- 0.46-0.68 14 0.9 [1]
1-PENTANOL, 3-METHYL- 0.46-0.70 16 2.4 [1]
2-PENTANOL, 4-METHYL- 0.49-0.71 16 0.7 [1]
1-NONANOL 0.41-0.56 12 0.5 [1]
PHENOL, 3-METHYL- 0.41-0.64 14 0.8 [1]
FORMIC ACID 0.49-0.59 12 0.6 [1]
PROPANOIC ACID, 2-METHYL- 0.48-0.67 15 2.9 [1]
DODECANOIC ACID 0.43-0.56 17 0.9 [1]
TETRADECANOIC ACID 0.43-0.55 17 1.1 [1]
HEXADECANOIC ACID 0.43-0.54 13 0.3 [1]
ACETIC ACID, ANHYDRIDE 0.48-0.53 14 0.4 [1]
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Table C1. Surface tension data used in model development (contd.)

Compound Name Reduced
Temperature

Range

%AAD Data
points

Reference

ACETIC ACID, PROPYL ESTER 0.52-0.68 0.4 12 [1]
ACETIC ACID, 2-METHYLPROPYL
ESTER

0.50-0.68
2.4

14 [1]

PROPANOIC ACID, ETHYL ESTER 0.52-0.65 0.6 11 [1]
BUTANOIC ACID, METHYL ESTER 0.51-0.92 1.9 14 [1]
BUTANOIC ACID, ETHYL ESTER 0.49-0.69 0.6 11 [1]
ACETIC ACID, PENTYL ESTER 0.48-0.60 0.3 11 [1]
ACETIC ACID, HEXYL ESTER 0.47-0.58 0.6 12 [1]
BENZOIC ACID, PHENYLMETHYL
ESTER

0.36-0.59
2.7

11 [1]

BENZOIC ACID, METHYL ESTER 0.41-0.68 0.5 15 [1]
BENZOIC ACID, ETHYL ESTER 0.39-0.68 0.8 16 [1]
CARBONIC ACID, DIETHYL
ESTER

0.50-0.63
0.4

16 [1]

ETHANEDIOIC ACID, DIETHYL
ESTER

0.41-0.74
1.8

19 [1]

PROPANEDIOIC ACID, DIETHYL
ESTER

0.39-0.68
2.6

14 [1]

ETHANE, 1,1'-OXYBIS- 0.62-0.91 1.3 16 [1]
ETHANE, 1,1-DIETHOXY- 0.53-0.70 0.7 11 [1]
OXIRANE 0.48-0.63 0.6 11 [1]
BENZENE, METHOXY- 0.44-0.66 0.8 16 [1]
BENZENE, ETHOXY- 0.39-0.69 2.5 14 [1]
BENZENE, 1,1'-OXYBIS- 0.38-0.68 1.8 13 [1]
FURAN, TETRAHYDRO- 0.51-0.65 0.5 17 [1]
PROPANE, 1,2 DICHLORO- 0.50-0.65 1.2 11 [1]
BENZENE, 1,4-DICHLORO- 0.48-0.65 0.5 11 [1]
METHANE,
DICHLORODIFLUORO-

0.71-0.90
3.4

25 [1]

METHANE, TRICHLOROFLUORO- 0.50-0.78 2.6 30 [1]
ETHANE, 1,2-DICHLORO-1,1,2,2-
TETRAFLUORO-

0.65-0.83
0.9

18 [1]

ETHANE, 1,2-DIBROMO-1,1,2,2-
TETRAFLUORO-

0.60-0.75
1.5

11 [1]

METHANE, DIFLUORO- 0.76-0.93 1.9 12 [1]
ETHANE, 1,1,1-TRIFLUORO- 0.79-0.92 1.3 19 [1]
ETHANE, PENTAFLUORO- 0.69-0.98 0.7 21 [1]
ETHANE, IODO- 0.51-0.62 1.1 11 [1]
BENZENE, IODO- 0.40-0.59 0.6 12 [1]
ETHANE, 1,1-DICHLORO-2,2,2-
TRIFLUORO-

0.55-0.93
0.5 18 [1]
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Table C1. Surface tension data used in model development (contd.)

Compound Name Reduced
Temperatur

e Range

%AAD Data
points

Reference

1-PROPANAMINE, N-PROPYL- 0.52-0.66 0.6 14 [1]
ETHANAMINE, N-ETHYL- 0.58-0.66 1.3 12 [1]
HYDRAZINE 0.42-0.54 2.1 18 [1]
ETHANOL, 2-AMINO- 0.43-0.53 0.3 13 [1]
BENZENEMETHANAMINE 0.43-0.53 0.6 17 [1]
BENZENAMINE, 2-METHYL- 0.38-0.66 2.3 14 [1]
BENZENAMINE, 3-METHYL- 0.42-0.60 1.1 16 [1]
BENZENAMINE, 4-METHYL- 0.46-0.70 1.5 13 [1]
QUINOLINE 0.36-0.86 2.7 14 [1]
METHANE, NITRO- 0.47-0.64 0.9 23 [1]
ETHANE, NITRO- 0.46-0.65 1.1 20 [1]
PROPANE, 1-NITRO- 0.45-0.60 1.4 12 [1]
PROPANE, 2-NITRO- 0.46-0.61 0.9 13 [1]
HYDROCYANIC ACID 0.57-0.65 0.3 15 [1]
BENZENE, 1-METHYL-2-NITRO- 0.38-0.65 2.8 21 [1]
BENZENE, 1-METHYL-4-NITRO- 0.44-0.66 1.5 22 [1]
PYRIDINE 0.44-0.63 1.5 13 [1]
BENZENAMINE, N,N-
DIMETHYL-

0.41-0.65
1.6

14 [1]

ETHANE, 1,1'-THIOBIS- 0.51-0.65 0.4 14 [1]
THIOPHENE 0.50-0.58 1.2 18 [1]
ETHANE, 1,1'-OXYBIS(2-
CHLORO-

0.43-0.54
0.7

12 [1]

BENZENE, NITRO- 0.39-0.66 2.6 26 [1]
BENZENE, 1-METHOXY-2-
NITRO-

0.38-0.59
1.2

13 [1]

SILANE, TRICHLORO- 0.55-0.65 2.2 23 [1]
SILANE, TETRACHLORO- 0.54-0.65 2.0 14 [1]
HEXAMETHYLDISILOXANE 0.43-0.69 2.7 50 [1]
CYCLOTETRASILOXANE,
OCTAMETHYL-

0.50-0.55
0.9

15 [1]

WATER-D2 0.43-0.76 1.4 24 [1]
DOTRIACONTANE 0.41-0.49 0.4 12 [1]
DODECANOIC ACID, METHYL
ESTER

0.40-0.51
0.9

12 [1]

PROPANE, 1,3-DICHLORO- 0.48-0.60 0.5 14 [1]
ETHANE, 1,1,1,2-TETRAFLUORO- 0.68-0.97 1.4 28 [1]
ETHANE, 1,1,2-TRICHLORO-
1,2,2-TRIFLUORO-

0.56-0.76
0.9

26 [1]

1-HEXANAMINE 0.42-0.66 4.8 16 [1]
3-BUTENENITRILE 0.49-0.62 0.2 15 [1]
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Table C1. Surface tension data used in model development (contd.)

Compound Name
Reduced

Temperature
Range

Data
points

%AAD Reference

FORMAMIDE 0.38-0.45 0.5 12 [1]
ETHANOL, 2-METHOXY- 0.51-0.64 0.8 13 [1]
ETHANOL, 2-ETHOXY- 0.52-0.63 0.8 15 [1]
ETHANOL, 2-BUTOXY- 0.46-0.55 4.1 11 [1]
TRISILOXANE, OCTAMETHYL- 0.52-0.58 1.3 11 [1]
DIMETHYL SUCCINATE 0.44-0.68 1.9 17 [1]
BENZENAMINE, 4-CHLORO- 0.46-0.61 0.2 15 [1]
SULFUROUS ACID, DIETHYL
ESTER

0.45-0.58
1.4

17 [1]

HYDROGEN 0.39-0.71 0.4 9 [1]
SILANE, TRICHLOROMETHYL- 0.57-0.76 1.1 11 [1]
SILANE, CHLOROTRIMETHYL- 0.55-0.65 2.6 11 [1]
BENZENE, 1,2-DICHLORO-4-
NITRO-

0.42-0.63
1.8

10 [1]

TETRASILOXANE,
DECAMETHYL-

0.49-0.56
0.5

15 [1]

PROPANENITRILE, 2-
HYDROXY-

0.45-0.57
0.2

13 [1]

SULFURIC ACID, DIETHYL
ESTER

0.38-0.54
1.5

12 [1]

PARALDEHYDE 0.49-0.64 1.5 10 [2]
BENZALDEHYDE 0.41-0.54 0.4 10 [2]
2-FURALDEHYDE 0.42-0.56 2.4 10 [2]
ACETIC ANHYDRIDE 0.43-0.65 2.1 11 [2]
BUTYL ALCOHOL 0.50-0.66 0.4 10 [2]
ISOBUTYL ALCOHOL 0.53-0.70 3.4 10 [2]
PENTANOL 0.48-0.64 0.2 10 [2]
3-METHYL-1-BUTANOL 0.49-0.65 0.6 10 [2]
2-PENTANOL 0.51-0.67 2.7 10 [2]
2-METHOXYETHANE 0.50-0.66 1.9 10 [2]
2-BUTOXYETHANE 0.45-0.59 0.8 10 [2]
1-NONANOL 0.42-0.56 0.8 10 [2]
1-DECANOL 0.41-0.54 1.1 10 [2]
ETHYL ACETATE 0.54-0.71 0.3 10 [2]
PROPYL ACETATE 0.52-0.68 1.5 10 [2]
BUTYL ACETATE 0.49-0.65 1.2 10 [2]
ISOBUTYL ACETATE 0.51-0.67 1.3 10 [2]
SEC-BUTYL ACETATE 0.51-0.67 1.6 10 [2]
1-PENTYL ACETATE 0.47-0.62 0.6 10 [2]
3-METHYLBUTYL ACETATE 0.51-0.67 1.8 10 [2]
HEXYL ACETATE 0.46-0.60 0.7 10 [2]
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Table C1. Surface tension data used in model development (contd.)

Compound Name Reduced
Temperature

Range

%AAD Data
points

Reference

METHYL FORMATE 0.60-0.79 0.8 10 [2]
BUTYL FORMATE 0.51-0.67 0.5 10 [2]
1-PENTYL FORMATE 0.49-0.65 0.3 10 [2]
HEXYL FORMATE 0.47-0.62 0.3 9 [2]
PROPYL PROPIONATE 0.53-0.70 2.6 10 [2]
BUTYL PROPIONATE 0.48-0.63 0.9 10 [2]
CYCLOPENTANONE 0.45-0.60 0.6 11 [2]
CYCLOHEXANONE 0.43-0.57 3.2 11 [2]
ETHYLBENZENE 0.46-0.61 0.2 10 [2]
PROPYLBENZENE 0.44-0.59 0.9 10 [2]
CUMENE 0.45-0.59 0.6 10 [2]
BUTYLBENZENE 0.43-0.57 0.9 10 [2]
ISOBUTYLBENZENE 0.44-0.57 0.3 10 [2]
SEC-BUTYLBENZENE 0.43-0.56 0.5 10 [2]
TERT-BUTYLBENZENE 0.43-0.57 0.6 10 [2]
PENTYLBENZENE 0.42-0.55 0.3 10 [2]
1-PHENYLHEXANE 0.41-0.54 0.5 10 [2]
O-XYLENE 0.45-0.59 0.2 10 [2]
M-XYLENE 0.46-0.61 0.2 10 [2]
O-ETHYLTOLUENE 0.44-0.57 0.4 10 [2]
M-ETHYLTOLUENE 0.45-0.59 1.3 10 [2]
P-ETHYLTOLUENE 0.44-0.58 1.0 10 [2]
O-DIETHYLBENZE 0.42-0.56 0.4 10 [2]
M-DIETHYLBENZE 0.43-0.56 1.2 10 [2]
P-DIETHYLBENZENE 0.43-0.57 0.7 10 [2]
2-METHYL-1-PENTENE 0.48-0.64 0.3 11 [2]
4-METHYL-2-PENTENE 0.50-0.68 0.6 11 [2]
3-METHYL-1-PENTENE 0.49-0.66 1.8 11 [2]
3-METHYL-3-PENTENE 0.50-0.67 0.3 11 [2]
2-HEXANOL 0.49-0.66 0.1 11 [2]
1-OCTENE 0.50-0.66 0.4 9 [2]
1-NONENE 0.48-0.63 0.2 9 [2]
1-DECENE 0.46-0.61 0.2 9 [2]
1-UNDECENE 0.44-0.59 0.2 10 [2]
1-DODECENE 0.43-0.57 0.1 10 [2]
1-TRIDECENE 0.42-0.55 0.2 10 [2]
1-TETRADECENE 0.41-0.54 0.2 10 [2]
1-PENTADECENE 0.40-0.53 0.2 10 [2]
3-ETHYLPENTANE 0.47-0.65 0.8 11 [2]
2-METHYLHEXANE 0.48-0.69 1.2 12 [2]
3-METHYLHEXANE 0.47-0.68 1.2 12 [2]
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Table C1. Surface tension data used in model development (contd.)

Compound Name Reduced
Temperature

Range

%AAD Data
points

Reference

3-ETHYL, 2-
METHYLPENTANE

0.50-0.66
0.7

11 [2]

3-ETHYL, 3-
METHYLPENTANE

0.49-0.65 0.9 11 [2]

2-BUTANONE 0.54-0.66 2.6 9 [2]
2-PENTANONE 0.51-0.65 2.6 10 [2]
3-HEXANONE 0.49-0.62 2.1 10 [2]
4-HEPTANONE 0.47-0.59 1.3 10 [2]
DIFLUOROMETHANE (R-32) 0.78-0.95 2.0 13 [4]
CHLOROTETRAFLUOROET
HANE (R-124)

0.70-0.87 1.2 15 [5]

MONOCHLORODIFLUOROE
THANE (R-142B)

0.67-0.83 0.8 16 [4]

DIFLUOROETHANE (R-152A) 0.71-0.89 0.4 19 [4]
PROPANE 0.74-0.99 1.2 30 [6]
ISOBUTANE 0.67-0.98 0.8 29 [6]
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Table C2. Surface tension data used for model validation

Compound Name Reduced
Temperature

Range
%AAD Data points

METHANE 0.47-1.00 11.5 18
ETHANE 0.39-0.99 4.2 36
PROPANE 0.50-0.99 21.2 36
PROPANE, 2-METHYL- 0.50-0.72 0.8 9
BUTANE 0.48-0.75 2.6 30
PENTANE 0.54-0.67 0.3 11
BUTANE, 2-METHYL- 0.55-0.66 0.3 12
PROPANE, 2,2-DIMETHYL- 0.59-0.89 1.8 11
HEXANE 0.54-0.97 3.9 29
PENTANE, 2-METHYL- 0.55-0.67 0.6 8
PENTANE, 3-METHYL- 0.54-0.66 0.2 8
BUTANE, 2,2-DIMETHYL- 0.56-0.64 0.7 6
BUTANE, 2,3-DIMETHYL- 0.55-0.63 0.4 6
HEPTANE 0.52-0.93 0.9 31
HEXANE, 2-METHYL- 0.46-0.69 0.8 16
HEXANE, 3-METHYL- 0.45-0.68 0.5 17
PENTANE, 3-ETHYL- 0.45-0.67 0.6 25
PENTANE, 2,2-DIMETHYL- 0.29-0.90 1.1 33
PENTANE, 2,3-DIMETHYL- 0.45-0.66 0.5 17
PENTANE, 2,4-DIMETHYL- 0.47-0.68 0.7 14
PENTANE, 3,3-DIMETHYL- 0.45-0.66 0.6 24
BUTANE, 2,2,3-TRIMETHYL- 0.47-0.88 2.9 13
OCTANE 0.41-0.89 0.8 43
HEPTANE, 2-METHYL- 0.49-0.67 1.1 25
HEPTANE, 3-METHYL- 0.49-0.66 0.9 23
HEPTANE, 4-METHYL- 0.49-0.66 0.6 22
HEXANE, 3-ETHYL- 0.48-0.66 0.7 23
HEXANE, 2,2-DIMETHYL- 0.50-0.68 1.0 23
HEXANE, 2,3-DIMETHYL- 0.49-0.66 0.5 23
HEXANE, 2,4-DIMETHYL- 0.49-0.67 0.6 23
HEXANE, 2,5-DIMETHYL- 0.50-0.68 0.9 23
HEXANE, 3,3-DIMETHYL- 0.49-0.66 0.7 23
HEXANE, 3,4-DIMETHYL- 0.48-0.66 0.8 23
PENTANE, 3-ETHYL-2-METHYL- 0.48-0.66 0.6 23
PENTANE, 3-ETHYL-3-METHYL- 0.47-0.65 0.5 12
PENTANE, 2,2,3,TRIMETHYL- 0.49-0.66 0.9 14
PENTANE, 2,2,4-TRIMETHYL- 0.50-0.67 0.5 14
PENTANE, 2,3,3-TRIMETHYL- 0.48-0.65 0.8 23
PENTANE, 2,3,4-TRIMETHYL- 0.48-0.66 0.7 23
BUTANE, 2,2,3,3-TETRAMETHYL- 0.52-0.90 3.0 13
NONANE 0.48-0.66 0.8 12
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Table C2. Surface tension data used for model validation (contd.)

Compound Name Reduced
Temperature

Range
%AAD Data points

HEXANE, 2,2,5-TRIMETHYL- 0.48-0.59 0.3 7
HEPTANE, 3,3,5-TRIMETHYL- 0.27-0.90 1.5 14
HEXANE,2,4,4-TRIMETHYL- 0.47-0.57 0.8 8
PENTANE, 3,3-DIETHYL- 0.45-0.55 0.1 8
PENTANE, 2,2,3,3,-TETRAMETHYL- 0.45-0.55 0.3 15
PENTANE, 2,2,3,4-TETRAMETHYL- 0.46-0.56 0.4 16
PENTANE, 2,2,4,4-TETRAMETHYL- 0.48-0.58 0.2 16
PENTANE, 2,3,3,4-TETRAMETHYL- 0.45-0.55 0.5 8
TETRACOSANE, 2,6,10,15,19,23-
HEXAMETHYL-

0.27-0.77 17.4 11

DECANE 0.46-0.64 1.0 12
HEXANE, 2,2,3,3-TETRAMETHYL- 0.35-0.90 2.6 14
HEXANE, 2,2,5,5-TETRAMETHYL- 0.45-0.90 1.1 11
UNDECANE 0.44-0.62 0.8 12
DODECANE 0.43-0.60 0.8 12
TRIDECANE 0.41-0.63 0.8 35
TETRADECANE 0.41-0.61 1.0 30
PENTADECANE 0.40-0.60 1.6 32
HEXADECANE 0.41-0.59 1.3 33
HEPTADECANE 0.40-0.53 1.7 27
OCTADECANE 0.39-0.53 1.3 32
NONADECANE 0.39-0.52 1.5 38
OCTANE, 2,2-DIMETHYL- 0.37-0.89 1.3 11
EICOSANE 0.38-0.51 1.3 38
HENEICOSANE 0.38-0.85 3.8 12
DOCOSANE 0.37-0.85 4.7 12
TRICOSANE 0.40-0.85 5.3 9
TETRACOSANE 0.40-0.85 6.9 9
PENTACOSANE 0.36-0.85 3.0 12
HEXACOSANE 0.36-0.85 3.7 19
HEPTACOSANE 0.40-0.85 7.8 10
OCTACOSANE 0.40-0.85 4.9 9
NONACOSANE 0.40-0.85 5.6 10
NONANE, 3-METHYL- 0.31-0.90 1.5 11
NONANE, 2-METHYL- 0.33-0.90 2.8 11
NONANE, 4-METHYL- 0.29-0.89 5.6 11
NONANE, 5-METHYL 0.30-0.89 2.2 11
NONANE, 2,2,4,4,6,8,8-
HEPTAMETHYL-

0.24-0.90 21.4 13

OCTANE, 2-METHYL- 0.47-0.57 0.6 9
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Table C2. Surface tension data used for model validation (contd.)

Compound Name Reduced
Temperature

Range
%AAD Data points

OCTANE, 3-METHYL- 0.46-0.57 0.7 9
OCTANE, 4-METHYL- 0.47-0.57 0.5 9
3-ETHYLHEPTANE 0.46-0.57 0.6 8
HEPTANE, 2,2-DIMETHYL- 0.28-0.90 1.2 25
UNDECANE, 3-METHYL- 0.33-0.90 2.6 11
CYCLOPROPANE 0.37-0.89 2.9 11
CYCLOBUTANE 0.40-0.90 5.5 17
CYCLOPENTANE 0.50-0.63 2.9 15
CYCLOPENTANE, METHYL- 0.48-0.66 0.9 24
CYCLOPENTANE, ETHYL- 0.45-0.66 0.7 21
CYCLOPENTANE, 1,1-DIMETHYL- 0.46-0.68 0.8 15
CYCLOPENTANE, 1,2-DIMETHYL-, cis- 0.39-0.88 1.0 14
CYCLOPENTANE, 1,2-DIMETHYL-,
trans-

0.28-0.90 5.9 14

CYCLOPENTANE, 1,3-DIMETHYL-, cis- 0.25-0.89 7.3 11
CYCLOPENTANE, 1,3-DIMETHYL-,
trans-

0.25-0.89 4.5 11

CYCLOPENTANE, PROPYL- 0.43-0.63 0.7 21
CYCLOPENTANE,(1-METHYLETHYL)- 0.43-0.63 0.3 14
CYCLOPENTANE, 1-ETHYL-1-
METHYL-

0.22-0.89 3.0 14

CYCLOPENTANE, 1-BUTYL- 0.41-0.60 0.6 21
CYCLOHEXANE 0.49-0.66 0.3 20
CYCLOHEXANE, METHYL- 0.44-0.62 1.7 16
CYCLOHEXANE, ETHYL- 0.42-0.58 1.1 15
CYCLOHEXANE, 1,1-DIMETHYL- 0.46-0.56 0.2 15
CYCLOHEXANE, 1,2-DIMETHYL-, cis- 0.45-0.55 0.8 15
CYCLOHEXANE, 1,2-DIMETHYL-,
trans-

0.46-0.56 0.2 15

CYCLOHEXANE, 1,3-DIMETHYL-, cis- 0.46-0.56 0.5 15
CYCLOHEXANE, 1,3-DIMETHYL-,
trans-

0.46-0.56 0.3 15

CYCLOHEXANE, 1,4-DIMETHYL-, cis- 0.46-0.56 0.2 15
CYCLOHEXANE, 1,4-DIMETHYL-,
trans-

0.47-0.57 0.8 15

CYCLOHEXANE, 1,3,5-TRIMETHYL-,
trans

0.31-0.84 1.7 11

CYCLOHEXANE, PROPYL- 0.41-0.54 0.5 10
CYCLOHEXANE, (1-METHYL ETHYL)- 0.42-0.53 1.0 19
CYCLOHEXANE,-1,2,3,4-
TETRAMETHYL-

0.31-0.90 2.4 11
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Table C2. Surface tension data used for model validation (contd.)

Compound Name Reduced
Temperature

Range
%AAD Data points

CYCLOHEXANE, BUTYL- 0.40-0.51 0.9 10
cis-DECALIN 0.35-0.64 3.1 43
trans-DECALIN 0.35-0.66 2.4 44
1,1'-BICYCLOHEXYL 0.40-0.50 0.4 14
CYCLOHEXANE, 1,1-DIETHYL- 0.27-0.90 3.0 11
CYCLOHEXANE, DECYL- 0.35-0.50 1.5 27
CYCLOHEPTANE 0.44-0.65 1.2 19
CYCLOOCTANE 0.44-0.58 1.6 11
CYCLOHEXANE, trans-1,4-DIETHYL 0.31-0.90 2.6 20
HEPTANE, 2,6-DIMETHYL- 0.47-0.64 0.4 25
3-ETHYLPENTANE, 2-2-DIMETHYL- 0.46-0.57 0.5 15
3-ETHYLPENTANE, 2,4-DIMETHYL- 0.46-0.56 0.3 15
ETHENE 0.40-0.68 4.9 21
1-PROPENE 0.53-0.69 0.8 12
1-TRIACONTENE 0.39-0.90 22.3 15
1-BUTENE 0.48-0.79 1.0 16
2-BUTENE, (Z)- 0.31-0.88 3.1 16
2-BUTENE, (E)- 0.59-0.68 7.3 5
1-PROPENE, 2-METHYL- 0.53-0.70 1.8 15
1-PENTENE 0.52-0.64 0.9 6
2-PENTENE, (Z)- 0.60-0.64 0.3 4
2-PENTENE, (E)- 0.60-0.64 0.9 4
1-BUTENE, 2-METHYL- 0.29-0.89 2.8 16
1-BUTENE, 3-METHYL- 0.52-0.66 0.4 9
2-BUTENE, 2-METHYL- 0.43-0.75 1.0 33
1-HEXENE 0.56-0.66 0.5 7
2-HEXENE, (Z)- 0.26-0.88 5.5 11
2-HEXENE, (E)- 0.27-0.90 5.0 11
3-HEXENE, (Z)- 0.27-0.90 4.5 11
3-HEXENE, (E)- 0.31-0.88 5.9 11
1-PENTENE, 2-METHYL- 0.27-0.90 3.1 11
1-PENTENE, 3-METHYL 0.24-0.89 2.4 11
1-PENTENE, 4-METHYL- 0.24-0.89 3.5 11
2-PENTENE, 2-METHYL- 0.27-0.89 5.7 11 
2-PENTENE, 3-METHYL-,(Z)- 0.27-0.89 3.5 11
1-HEXENE, 4-METHYL- 0.25-0.88 2.4 11
2-PENTENE, 4-METHYL-, (Z)- 0.28-0.90 3.7 10
2-PENTENE, 4-METHYL-, (E)- 0.26-0.90 3.7 10
PENTANE, 3-METHYLENE- 0.28-0.88 4.7 11
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Table C2. Surface tension data used for model validation (contd.)

Compound Name Reduced
Temperature

Range
%AAD Data points

1-BUTENE, 2,3-DIMETHYL- 0.23-0.89 5.3 11
1-BUTENE, 3,3-DIMETHYL- 0.33-0.90 2.4 12
2-BUTENE, 2,3-DIMETHYL- 0.38-0.90 0.7 12
1-PENTENE, 2-ETHYL- 0.31-0.90 4.8 11
1-HEPTENE 0.53-0.66 0.1 9
2-HEPTENE, (Z)- 0.26-0.89 5.9 11
2-HEPTENE, (E)- 0.30-0.89 3.0 11
3-HEPTENE, (E)- 0.25-0.88 3.3 11
1-HEXENE, 2-METHYL- 0.32-0.89 3.6 11
1-PENTENE, 3-ETHYL- 0.28-0.90 4.2 11
1-HEXENE, 3-METHYL- 0.28-0.90 1.2 11
1-HEXENE, 3-ETHYL- 0.31-0.69 1.3 20
1-HEPTENE, 4-METHYL- 0.30-0.69 1.5 20
1-BUTENE, 2,3,3-TRIMETHYL- 0.31-0.89 4.4 11
3-HEPTENE, (Z)- 0.25-0.89 5.4 11
1-OCTENE 0.50-0.66 0.3 11
2-OCTENE, (E)- 0.32-0.89 4.1 11
1-PENTENE, 2,4,4-TRIMETHYL- 0.33-0.89 1.4 11
2-PENTENE, 2,4,4-TRIMETHYL- 0.30-0.90 3.1 14
HEPTANE, 3-METHYLENE- 0.33-0.90 3.2 11
NONENE 0.48-0.63 0.5 11
1-DECENE 0.46-0.61 0.5 23
1-UNDECENE 0.43-0.59 0.6 23
1-DODECENE 0.42-0.57 0.7 18
1-TRIDECENE 0.41-0.55 0.7 12
1-TETRADECENE 0.40-0.54 1.0 27
1-PENTADECENE 0.39-0.53 0.7 16
1-HEXADECENE 0.39-0.52 0.9 27
1-OCTADECENE 0.39-0.50 1.4 11
HEPTENE, 6-METHYL- 0.32-0.90 1.2 14
CYCLOPENTENE 0.27-0.90 3.3 30
CYCLOHEXENE 0.43-0.62 0.9 39
trans-2-EICOSENE 0.38-0.90 6.7 15
trans-2-PENTADECENE 0.40-0.89 4.1 19
CYCLOHEPTENE 0.48-0.56 1.1 4
CYCLOOCTENE 0.34-0.90 1.1 12
2-OCTENE, (Z) 0.30-0.90 7.5 10
3-OCTENE, (E)- 0.28-0.89 4.5 11
4-OCTENE, (Z)- 0.27-0.90 1.3 10
4-OCTENE, (E)- 0.31-0.89 3.8 11
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Table C2. Surface tension data used for model validation (contd.)

Compound Name Reduced
Temperature

Range
%AAD Data points

3-OCTENE, (Z)- 0.26-0.90 1.8 10
1-HEPTADECENE 0.40-0.51 0.9 20
1-NONADECENE 0.39-0.49 1.2 18
1-EICOSENE 0.39-0.48 1.3 9
CYCLOHEXENE, 4-ETHENYL- 0.27-0.77 2.3 9
CYCLOPENTENE, 1-METHYL- 0.27-0.90 2.7 17
CYCLOPENTENE, 3-METHYL- 0.22-0.90 1.2 13
CYCLOPENTENE, 4-METHYL- 0.21-0.90 6.2 13
HEXENE, 2,3-DIMETHYL- 0.31-0.90 1.2 14
CYCLOHEXENE, 1-METHYL-4-(1-
METHYLETHENYL)-, (R)-

0.43-0.65 1.0 21

CYCLOHEXENE, 1-METHYL-4-(1-
METHYLETHYLIDENE)-

0.30-0.90 6.0 11

CYCLOHEXENE,1-(2-PROPENYL) 0.31-0.90 1.1 11
1,2-BUTADIENE 0.30-0.99 49.9 22
1,3-BUTADIENE 0.39-0.97 5.1 24
1,2-PENTADIENE 0.27-0.89 6.6 11
1,3-PENTADIENE, (Z)- 0.27-0.89 8.0 11
1,3-PENTADIENE, (E)- 0.37-0.89 6.2 11
1,4-PENTADIENE 0.26-0.89 35.0 14
2,3-PENTADIENE 0.30-0.88 4.8 11
ISOPRENE 0.26-0.88 5.8 11
1,5-HEXADIENE 0.26-0.89 0.7 16
1,2-BUTADIENE, 3-METHYL 0.33-0.90 10.3 11
1,3-CYCLOPENTADIENE, METHYL- 0.28-0.89 2.4 11
1,4-HEXADIENE 0.26-0.90 5.2 13
2,4-HEXADIENE, (E,E)- 0.43-0.89 0.5 11
1,3-CYCLOPENTADIENE 0.37-0.88 11.6 14
4,7-METHANO-1H-INDENE, 3a,4,7,7a-
TETRAHYDRO-

0.46-0.89 31.9 11

1,3-CYCLOHEXADIENE, 2-METHYL-5-
(1-METHYLETHYL)-

0.34-0.89 11.4 11

CYCLOHEXENE, 3-METHYLENE-6-(1-
METHYLETHYL)-

0.34-0.90 7.0 11

1,3-BUTADIENE, 2,3-DIMETHYL- 0.38-0.89 1.7 11
2,4-HEXADIENE, (E,Z)- 0.33-0.89 4.1 11
3-METHYL-1,4-PENTADIENE 0.27-0.90 3.1 18
1,5,9-CYCLODODECATRIENE,(E,E,Z) 0.34-0.90 2.3 11
1,5-HEXADIENE, 2,5-DIMETHYL- 0.35-0.90 3.0 10
2,4-HEXADIENE, 2,5-DIMETHYL- 0.48-0.90 5.1 10
1,3-CYCLOHEXADIENE 0.29-0.90 12.2 14
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Table C2. Surface tension data used for model validation (contd.)

Compound Name Reduced
Temperature

Range
%AAD Data points

1,4-CYCLOHEXADIENE 0.39-0.90 5.2 10
1,5-CYCLOOCTADIENE 0.32-0.89 16.9 12
(3E)-1,3-HEXADIENE 0.40-0.90 1.7 15
(3E)-1,3-PENTADIENE, 2-METHYL- 0.40-0.90 2.2 15
ETHYNE 0.59-0.95 2.7 11
1-PROPYNE 0.58-0.93 4.9 12
1-BUTYNE 0.55-0.85 7.0 20
2-BUTYNE 0.51-1.03 13.2 20
1-PENTYNE 0.35-0.89 30.0 17
3-HEXYNE 0.31-0.88 4.8 11
2-HEXYNE 0.34-0.90 5.5 11
2-PENTYNE 0.32-0.90 14.1 13
1-HEXYNE 0.27-0.89 1.0 12
1-BUTEN-3-YNE, 2-METHYL- 0.33-0.90 7.6 11
1-OCTYNE 0.34-0.90 2.4 22
1-BUTEN-3-YNE 0.40-0.88 4.3 11
1-BUTYNE, 3-METHYL- 0.40-0.89 7.4 11
1-PENTEN-3-YNE 0.29-0.89 4.3 11
1-PENTEN-4-YNE 0.30-0.90 4.5 11
BENZENE, 1,1'-(1,2-ETHYNEDIYL)BIS- 0.40-0.89 0.8 11
1-NONYNE 0.37-0.90 2.5 15
1-DECYNE 0.37-0.90 2.2 15
BENZENE 0.49-0.65 3.4 26
BENZENE, METHYL- 0.46-0.63 0.6 32
BENZENE, ETHYL- 0.44-0.61 1.2 29
BENZENE, 1,2-DIMETHYL- 0.43-0.59 0.4 33
BENZENE, 1,3-DIMETHYL- 0.44-0.61 0.8 22
BENZENE, 1,4-DIMETHYL- 0.44-0.61 0.7 21
BENZENE, PROPYL- 0.43-0.59 0.5 20
BENZENE, 1-METHYLETHYL- 0.43-0.59 0.8 31
BENZENE, 1-ETHYL-2-METHYL- 0.42-0.57 0.5 23
BENZENE, 1-ETHYL-3-METHYL- 0.43-0.59 1.4 26
BENZENE, 1-ETHYL-4-METHYL- 0.43-0.58 1.4 23
BENZENE, 1,2,3-TRIMETHYL- 0.41-0.56 4.2 24
BENZENE, 1,2,4-TRIMETHYL- 0.42-0.58 0.2 27
BENZENE, 1,3,5-TRIMETHYL- 0.40-0.68 1.4 38
BENZENE, BUTYL- 0.41-0.57 0.8 20
BENZENE, (2-METHYLPROPYL)- 0.42-0.57 0.4 16
BENZENE, (1-METHYLPROPYL)- 0.41-0.56 0.8 29



179

Table C2. Surface tension data used for model validation (contd.)

Compound Name Reduced
Temperature

Range
%AAD Data points

BENZENE, (1,1-DIMETHYLETHYL)- 0.41-0.57 0.8 27
BENZENE, 1-METHYL-2-(1-
METHYLETHYL)-

0.31-0.90 3.3 14

BENZENE, 1-METHYL-3-(1-
METHYLETHYL)-

0.32-0.91 2.2 14

BENZENE, 1-METHYL-4-(1-
METHYLETHYL)-

0.32-0.90 6.1 33

BENZENE, 1,2-DIETHYL- 0.41-0.56 0.8 13
BENZENE, 1,3-DIETHYL- 0.41-0.56 1.5 15
BENZENE, 1,4-DIETHYL- 0.42-0.57 1.1 13
BENZENE, 1,2,3,4-TETRAMETHYL- 0.39-0.90 1.4 13
BENZENE, 1,2,3,5-TETRAMETHYL- 0.37-0.90 1.9 14
BENZENE,-1,2,4,5-TETRAMETHYL- 0.52-0.90 3.7 13
BENZENE, 1-tert-BUTYL-4-ETHYL 0.34-0.90 2.1 10
BENZENE, 1,4-BIS(1,1-
DIMETHYLETHYL)-

0.50-0.90 1.8 11

BENZENE, PENTAMETHYL- 0.41-0.90 1.1 14
BENZENE, 1,3-bis(1-METHYLETHYL)- 0.31-0.89 36.7 14
BENZENE, 1,4-bis(1-METHYLETHYL)- 0.37-0.89 0.8 14
BENZENE, 1,2,4-TRIETHYL- 0.29-0.84 3.2 10
BENZENE, HEXAMETHYL- 0.58-0.90 6.7 11
BENZENE, 1,2,3-TRIETHYL- 0.32-0.90 5.4 12
BENZENE, HEPTYL- 0.38-0.52 1.3 17
BENZENE, 1,2,3,5-TETRAETHYL 0.36-0.90 1.6 11
BENZENE, DECYL- 0.36-0.50 1.3 35
BENZENE, PENTAETHYL 0.28-0.90 2.6 11
BENZENE, HEXAETHYL- 0.54-0.90 1.9 11
BENZENE, CYCLOHEXYL- 0.38-0.90 10.3 11
BIPHENYL 0.46-0.94 2.8 23
1,1':4', 1''-TERPHENYL 0.55-0.80 3.2 20
1,1':3', 1''-TERPHENYL 0.41-0.82 2.4 31
1,1':2', 1''-TERPHENYL 0.40-0.84 3.3 29
BENZENE, 1,1'-ETHYLIDENEBIS- 0.33-0.90 6.3 13
BENZENE, 1,1'-METHYLENEBIS- 0.39-0.91 2.4 25
BENZENE, (PHENYLETHYL)- 0.42-0.89 4.6 13
BENZENE, 1,1',1''-
METHYLIDYNETRIS-

0.42-0.90 4.1 19

BENZENE, PENTYL- 0.40-0.55 0.7 36
BENZENE, HEXYL- 0.30-0.83 4.7 26
BENZENE, OCTYL- 0.38-0.51 1.3 16
BENZENE, NONYL- 0.37-0.50 0.8 13
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Table C2. Surface tension data used for model validation (contd.)

Compound Name Reduced
Temperature

Range
%AAD Data points

BENZENE, UNDECYL- 0.35-0.90 5.8 11
BENZENE, TRIDECYL- 0.36-0.84 8.7 13
BENZENE, TETRADECYL- 0.36-0.84 9.5 13
BENZENE, DODECYL- 0.35-0.84 7.8 10
1-ETHYL-3,5-DIMETHYL BENZENE 0.29-0.90 4.9 14
2-ETHYL-1,3-DIMETHYL BENZENE 0.38-0.89 3.6 14
BENZENE, 2-ETHYL-1,4-DIMETHYL- 0.33-0.89 4.5 14
BENZENE, 1-ETHYL-,2,4-DIMETHYL- 0.32-0.89 5.2 14
4-ETHYL-1,2-DIMETHYLBENZENE 0.31-0.89 3.8 14
BENZENE, 1-ETHYL-2,3-DIMETHYL- 0.33-0.89 6.4 14
BENZENE, 1,1'-(1,1,2,2-
TETRAMETHYL-1,2-ETHANEDIYL)bis-

0.49-0.90 2.2 11

BENZENE, (1-METHYLENEPROPYL)- 0.38-0.89 2.9 11
BENZENE, (1-METHYL-1-PROPENYL)-
,(E)-

0.36-0.89 3.6 11

BENZENE, (1-METHYL-1-PROPENYL)-
, (Z)

0.42-0.89 1.3 11

BENZENE, 1-METHYL-2-PROPYL- 0.32-0.90 4.1 13
BENZENE, 1-METHYL-3-PROPYL- 0.29-0.90 10.6 13
BENZENE, 1-METHYL-4-
PROPYLBENZENE

0.32-0.90 14.3 13

BENZENE,1,1',1''-(1-ETHANYL-2-
YLIDENE)tris-

0.39-0.84 3.0 9

BENZENE, 1,1',1'',1'''-
METHANETETRAYLTETRAKIS-

0.57-0.90 2.8 10

BENZENE, 1,1',1'',1'''-(1,2-
ETHANEDIYLIDENE)TETRAKIS-

0.59-0.90 3.0 10

BENZENE, 1-ETHYL-4-(2
PHENYLETHYL)-

0.38-0.90 3.5 11

BENZENE, 1,2-DIMETHYL-3-PROPYL- 0.36-0.70 4.3 23
BENZENE, 1,2,3-TRIMETHYL-4-
ETHYL-

0.37-0.78 1.7 10

BENZENE, 1,2,4-TRIMETHYL-3-
ETHYL-

0.37-0.78 1.3 10

BENZENE, 1,2,4-TRIMETHYL-5-
ETHYL-

0.38-0.78 1.8 10

1,1'-(1,2-ETHANEDIYL)BIS(4-ETHYL-)
BENZENE

0.44-0.80 2.3 10

BENZENE, ETHENYL- 0.43-0.65 14.0 9
BENZENE, 1-ETHENYL-2-METHYL- 0.31-0.89 5.9 14
BENZENE, 1-ETHENYL-3-METHYL- 0.28-0.89 4.8 14
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Table C2. Surface tension data used for model validation (contd.)

Compound Name Reduced
Temperature

Range
%AAD Data points

BENZENE, 1-ETHENYL-2-ETHYL- 0.30-0.90 5.5 15
BENZENE, 1-ETHENYL-3-ETHYL- 0.26-0.90 7.2 18
BENZENE, 1-ETHENYL-4-ETHYL- 0.33-0.90 7.1 18
BENZENE, 1-ETHENYL-4-METHYL- 0.36-0.89 26.4 11
BENZENE, (1-METHYLETHENYL)- 0.38-0.89 6.8 13
BENZENE, 1,3-DIETHENYL- 0.30-0.89 6.4 11
BENZENE, ETHYNYL- 0.35-0.90 9.8 11
BENZENE, 1-ETHENYL-4-(2-
METHYLPROPYL)

0.34-0.90 4.4 11

BENZENE, 1-PROPENYL-,(Z)- 0.32-0.90 12.6 10
BENZENE, 1-PROPENYL-,(E)- 0.36-0.90 7.9 10
BENZENE, 1-ETHENYL-4-(1-
METHYLETHENYL)-

0.28-0.83 6.2 9

BENZENE, 1-(1,1-DIMETHYLETHYL)-
4-ETHENYL-

0.33-0.90 2.9 10

NAPHTHALENE 0.49-0.66 2.1 21
NAPHTHALENE, 1-METHYL- 0.31-0.90 2.3 34
NAPHTHALENE, 2-METHYL- 0.40-0.89 1.4 19
NAPHTHALENE, 1-ETHYL- 0.35-0.48 1.7 13
NAPHTHALENE, 1,2,3,4-
TETRAHYDRO-

0.38-0.52 0.6 18

NAPHTHALENE, 2,6-DIMETHYL- 0.38-0.89 10.1 14
NAPHTHALENE, 1-PHENYL- 0.38-0.89 3.6 11
NAPHTHALENE, 1-NONYL- 0.34-0.89 11.3 11
NAPHTHALENE, 1-DECYL- 0.34-0.89 13.3 14
NAPHTHALENE, 1-BUTYL- 0.35-0.47 1.2 17
NAPHTHALENE, 1-HEXYL- 0.34-0.46 1.5 12
NAPHTHALENE, 2,7-DIMETHYL- 0.38-0.90 11.6 14
NAPHTHALENE, 1-HEXYL-1,2,3,4-
TETRAHYDRO-

0.26-0.90 8.1 11

FLUORANTHENE 0.42-0.90 4.1 11
NAPHTHALENE, 1-PROPYL- 0.35-0.48 0.3 15
NAPHTHALENE, 2-ETHYL 0.35-0.48 0.8 18
1H-INDENE, 1-METHYL- 0.40-0.90 1.9 11
1H-INDENE, 2-METHYL- 0.39-0.90 2.2 11
1H-INDENE, 1,2,3-TRIMETHYL- 0.48-0.89 1.9 11
INDENE, 1-PHENYL- 0.40-0.89 2.8 10
BENZENE, 1,1',1''-(1-ETHENYL-2-
YLIDENE)TRIS-

0.38-0.89 2.2 11

BENZENE, 1,1',1'',1'''-(1,2-
ETHENEDIYLIDENE)TETRAKIS-

0.50-0.90 4.9 11
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Table C2. Surface tension data used for model validation (contd.)

Compound Name Reduced
Temperature

Range
%AAD Data points

BENZENE, 1,1'-(1,2-ETHENEDIYL)BIS-,
(Z)-

0.35-0.90 1.5 10

BENZENE, 1,1'-(1,2-ETHENEDIYL)BIS-,
(E)-

0.49-0.90 0.8 10

BENZENE, 1,3-DIMETHOXY-5-(2-
PHENYLETHENYL)-,(E)-

0.37-0.90 11.0 15

9H-FLUORENE 0.47-0.90 4.3 10
1H-INDENE 0.40-0.90 59.0 26
ANTHRACENE 0.56-0.90 5.8 12
PHENANTHRENE 0.43-0.89 6.8 13
CHRYSENE 0.54-0.89 2.6 11
PYRENE 0.45-0.89 4.7 11
ACENAPHTHYLENE, 1,2-DIHYDRO- 0.46-0.64 0.5 16
ACENAPHTHALENE 0.46-0.90 1.3 11
TRICYLCO(3.3.1.13,7)DECANE 0.77-0.90 1.9 10
BICYCLO(2.2.1)HEPT-2-ENE, 5-
ETHENYL-

0.37-0.84 36.1 9

3,5,1,7-
(1,2,3,4)BUTANETETRAYLNAPHTHAL
ENE, DECAHYDRO-

0.66-0.90 3.3 11

1,3-
DIMETHYLTRICYCLO[3.3.1.1(3,7)]DE
CANE

0.35-0.90 2.6 20

BICYCLO(2,2,1)HEPT-2-ENE,2-
METHYL

0.37-0.90 3.2 11

BICYLCO(2,2,1)HEPT-2-ENE)5-ETHYL- 0.32-0.90 3.7 11
1H-INDENE, 2,3-DIHYDRO- 0.32-0.98 25.3 39
1,3-CYCLOHEXADIENE, 1-METHYL-4-
(1-METHYLETHYL)-

0.34-0.89 3.7 11

1,4-CYCLOHEXADIENE, 1-METHYL-4-
(1-METHYLETHYL)-

0.33-0.89 9.2 11

BICYCLO(2.2.1)HEPT-2-ENE 0.55-0.89 1.3 11
BICYCLO(2,2,1)HEPT-2-ENE, 5-
ETHYLIDENE-

0.31-0.90 3.6 11

BENZ(a)ANTHRACENE 0.44-0.90 9.4 11
NAPHTHACENE 0.64-0.90 4.0 11
7-ETHENYL-1,2,3,4,4a,4b,5,6,7,9,10-10a-
DODECAHYDRO-1,4a,7-TRIMETHYL-
1-PHENANTHRENECARBOXYLIC
ACID

0.61-0.90 2.6 20
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Table C2. Surface tension data used for model validation (contd.)

Compound Name Reduced
Temperature

Range
%AAD Data points

[1R-(1 alpha,4 abeta,4 balpha,7 alpha,10
aalpha)]-7ETHENYL-
1,2,3,4,4a,4b,5,6,7,8,10,10a-
DODECAHYDRO-1,4a,7-TRIMETHYL-
1-PHENANTHRENECARBOXYLIC
ACID

0.54-0.90 4.4 20

BICYCLO(2.2.1)HEPTANE, 2,2-
DIMETHYL-3-METHYLENE-

0.50-0.90 2.1 14

BICYCLO(3.1.1)HEPT-2-ENE, 2,6,6-
TRIMETHYL-

0.44-0.64 2.3 40

BICYCLO(3.1.1)HEPTANE, 6,6-
DIMETHYL-2-METHYLENE

0.44-0.66 1.2 11

NITROUS OXIDE (N2O) 0.56-0.95 3.3 18
NITROGEN DIOXIDE (NO2) 0.61-0.89 3.0 13
OXYGEN 0.45-0.58 0.6 7
HYDROGEN 0.42-0.96 10.5 28
NITROGEN 0.56-0.71 0.5 6
CARBON MONOXIDE 0.61-0.69 1.5 6
CARBON DIOXIDE 0.73-1.00 18.5 25
SULFUR DIOXIDE 0.52-0.75 3.3 17
SULFUR TRIOXIDE 0.60-0.96 3.1 13
NITROGEN OXIDE (NO) 0.63-0.67 2.7 5
FLUORINE 0.46-0.59 1.7 23
CHLORINE 0.46-0.78 2.3 12
BROMINE 0.48-0.57 0.6 9
OZONE 0.30-0.90 3.3 18
FORMALDEHYDE 0.44-0.89 26.5 11
ACETALDEHYDE 0.32-0.88 19.7 17
PROPANAL 0.38-0.90 19.8 11
3-CYCLOHEXENE-1-
CARBOXALDEHYDE

0.27-0.90 8.9 15

BUTANAL 0.33-0.90 14.7 18
PROPANAL, 2-METHYL- 0.41-0.88 14.4 11
PENTANAL 0.32-0.89 15.4 18
HEPTANAL 0.37-0.90 11.3 20
HEXANAL 0.37-0.90 12.0 10
OCTANAL 0.39-0.87 6.2 11
NONANAL 0.39-0.87 15.3 11
HEXANAL, 2-ETHYL- 0.33-0.89 15.2 11
ETHANEDIAL 0.58-0.89 18.6 11
HEXANAL, 2-METHYL- 0.39-0.90 14.8 10
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Table C2. Surface tension data used for model validation (contd.)

Compound Name Reduced
Temperature

Range
%AAD Data points

HEXANAL, 3-METHYL- 0.39-0.90 13.2 10
2-PENTENAL, 2-METHYL- 0.39-0.90 14.8 11
2-HEXENAL, 2-ETHYL- 0.39-0.90 16.8 11
DECANAL 0.40-0.87 3.9 11
UNDECANAL 0.40-0.82 13.6 10
1-DODECANAL 0.40-0.87 16.9 11
TRIDECANAL 0.40-0.82 16.6 10
BUTANAL, 2-METHYL 0.39-0.90 11.9 16
3-METHYL-BUTANAL 0.41-1.00 18.6 18
2-PROPENAL 0.37-0.88 18.7 20
2-BUTENAL, (Z)- 0.29-1.00 22.2 12
trans-CROTONALDEHYDE 0.35-0.90 16.4 10
2-PROPENAL, 2-METHYL- 0.36-0.90 19.0 11
BENZENEACETALDEHYDE, alpha-
METHYL-

0.42-0.90 6.2 16

BENZALDEHYDE, 2-METHYL- 0.34-0.90 14.5 11
BENZALDEHYDE, 4-METHYL- 0.43-0.90 11.8 11
BENZALDEHYDE 0.41-0.54 1.7 23
BENZALDEHYDE, 2-HYDROXY- 0.40-0.68 1.6 15
BENZALDEHYDE, 4-HYDROXY- 0.40-0.55 2.2 15
1,4-BENZENEDICARBOXALDEHYDE 0.53-0.90 15.1 10
BENZALDEHYDE, 3-METHYL- 0.36-0.90 10.7 11
1,3,5-TRIOXANE, 2,4,6-TRIMETHYL- 0.48-0.69 1.5 15
2-PROPANONE 0.54-0.70 2.4 20
2-BUTANONE 0.56-0.60 0.6 6
3-PENTANONE 0.49-0.89 2.3 33
2-PENTANONE, 4-METHYL- 0.34-0.68 7.8 31
2-PENTANONE, 3-METHYL- 0.29-0.89 13.8 21
3-HEPTANONE 0.48-0.60 1.3 21
4-HEPTANONE 0.48-0.60 2.3 23
3-HEXANONE 0.49-0.62 2.0 23
2-PENTANONE 0.51-0.65 1.8 35
2-BUTANONE, 3-METHYL- 0.33-0.90 8.3 21
2-HEXANONE 0.49-0.62 2.0 25
2-HEPTANONE 0.47-0.59 2.0 18
2-HEXANONE, 5-METHYL- 0.33-0.90 15.3 11
3-PENTEN-2-ONE, 4-METHYL- 0.37-0.88 10.6 20
2-BUTANONE, 3,3-DIMETHYL- 0.39-0.89 7.6 21
4-HEPTANONE, 2,6-DIMETHYL- 0.37-0.89 4.9 16
3-PENTANONE, 2,4-DIMETHYL- 0.36-0.90 8.4 11
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Table C2. Surface tension data used for model validation (contd.)

Compound Name Reduced
Temperature

Range
%AAD Data points

2-PYRROLIDINONE 0.37-0.90 42.4 11
2-PYRROLIDINONE, 1-METHYL- 0.35-0.90 15.0 17
5-NONANONE 0.45-0.57 1.3 27
2-NONANONE 0.44-0.55 4.8 27
9,10-ANTHRACENEDIONE 0.62-0.90 8.6 11
2,4-PENTANEDIONE 0.44-0.55 2.3 11
2-CYCLOHEXEN-1-ONE, 3,5,5-
TRIMETHYL-

0.37-0.89 7.2 13

CYCLOPENTANONE 0.45-0.60 0.9 23
CYCLOHEXANONE 0.43-0.57 3.4 23
2-OCTANONE 0.40-0.90 11.0 26
METHANONE, DIPHENYL- 0.34-0.63 2.5 19
ETHANONE, 1-PHENYL- 0.41-0.64 1.5 17
2-OXETANONE 0.35-0.89 6.0 11
2(3H)-FURANONE, DIHYDRO- 0.31-0.89 3.9 11
2-OXEPANONE 0.35-0.90 2.6 11
2(3H)-FURANONE, DIHYDRO-5-
METHYL-

0.33-0.90 12.2 11

2-METHYL, 3-PENTANONE- 0.36-0.90 18.8 21
3-BUTEN-2-ONE, 3-METHYL 0.39-0.88 14.4 11
(1,1'-BICYCLOHEXYL)-2-ONE 0.31-0.90 6.9 11
2,5-CYCLOHEXADIENE-1,4-DIONE 0.58-0.65 0.6 4
2-OXETANONE, 4-METHYLENE- 0.43-0.89 1.7 12
ETHENONE 0.33-0.90 34.0 11
METHANOL 0.53-0.99 5.9 44
ETHANOL 0.53-1.00 4.2 50
1-PROPANOL 0.53-0.68 2.2 17
2-PROPANOL 0.54-0.70 3.5 23
1-BUTANOL 0.49-0.73 2.4 33
1-PROPANOL, 2-METHYL- 0.52-0.68 1.9 15
2-PROPANOL, 2-METHYL- 0.57-0.67 3.5 8
1-PENTANOL 0.46-0.99 19.8 44
2-PENTANOL 0.49-0.88 4.2 38
2-BUTANOL, 2-METHYL- 0.50-0.69 3.4 28
1-BUTANOL, 2-METHYL- 0.34-0.84 8.1 25
1-PROPANOL, 2,2-DIMETHYL- 0.60-0.89 8.4 11
1-HEXANOL 0.45-0.99 9.4 66
2-HEXANOL 0.47-0.71 0.8 27
1-PENTANOL, 2-METHYL- 0.45-0.68 0.3 42
1-PENTANOL, 3-METHYL- 0.47-0.72 2.0 42
3-PENTANOL, 3-METHYL- 0.48-0.67 1.0 43
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Table C2. Surface tension data used for model validation (contd.)

Compound Name Reduced
Temperature

Range
%AAD Data points

3-PENTANOL 0.37-0.90 9.4 16
1-HEXANOL, 2-ETHYL- 0.32-0.90 13.2 12
1-HEXANOL, 2-METHYL- 0.37-0.90 9.3 11
1-BUTANOL, 3-METHYL- 0.27-0.90 3.9 37
2-BUTANOL, 3-METHYL- 0.34-0.90 11.2 13
1-HEPTANOL 0.43-0.59 1.1 17
2-HEPTANOL 0.45-0.61 0.4 12
1-HEXANOL, 5-METHYL- 0.49-0.90 24.2 11
2-PENTANOL, 4-METHYL- 0.48-0.71 0.3 42
1-OCTANOL 0.42-0.57 2.5 35
2-OCTANOL 0.43-0.59 4.0 21
1-NONANOL 0.41-0.56 0.6 22
2-NONANOL 0.37-0.81 9.9 22
1-DECANOL 0.40-0.54 0.7 22
1-UNDECANOL 0.39-0.53 1.0 13
1-NONANOL, 8-METHYL- 0.33-0.89 12.0 11
1-DODECANOL 0.41-0.52 10.2 35
1-TRIDECANOL 0.40-0.90 9.6 11
1-TETRADECANOL 0.39-0.90 6.4 22
1-PENTADECANOL 0.42-0.90 17.2 10
1-HEXADECANOL 0.39-0.90 4.6 26
1-HEPTADECANOL 0.42-0.90 23.7 10
1-OCTADECANOL 0.38-0.90 5.4 27
1-BUTANOL, 2-ETHYL- 0.27-0.89 7.4 13
1-EICOSANOL 0.42-0.90 25.5 13
1-NONADECANOL 0.42-0.90 22.5 10
CYCLOHEXANOL 0.45-0.57 1.5 12
CYCLOHEXANOL, 1-METHYL- 0.44-0.90 15.5 11
CYCLOHEXANOL, 2-METHYL-, cis- 0.46-0.90 4.7 15
CYCLOHEXANOL, 2-METHYL-, trans- 0.44-0.90 2.6 15
CYCLOHEXANOL, 3-METHYL-, cis- 0.43-0.88 8.2 12
CYCLOHEXANOL, 3-METHYL-, trans- 0.44-0.90 1.6 12
CYCLOHEXANOL, 4-METHYL-, cis- 0.42-0.90 8.9 16
CYCLOHEXANOL, 4-METHYL-, trans- 0.43-0.90 5.8 16
cyclohexanol, 5-methyl-2-1(1-
methylethyl)-[1R-{1 alpha, 2-beta, 5
alpha}]

0.48-0.89 1.0 11

STIGMAST-5-EN-3-OL,(3beta)- 0.43-0.90 17.8 11
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Table C2. Surface tension data used for model validation (contd.)

Compound Name Reduced
Temperature

Range
%AAD Data points

1-NAPHTHALENEMETHANOL,
DECAHYDRO-5-(5-HYDROXY-3-
METHYL-3-PENTENYL)-1,4a-
DIMETHYL-6-METHYLENE-, [1S-
[1Alpha,4aAlpha,5Alpha(E),8aBeta]]

0.48-0.96 10.0 14

Alpha,Alpha,4-TRIMETHYL-3-
CYCLOHEXENE-1-METHANOL

0.43-0.90 5.9 17

CYCLOHEXANOL, 1-METHYL-4-(1-
METHYLETHENYL)

0.44-0.90 4.9 16

1-NONANOL, 2-BUTYL- 0.40-0.90 9.5 15
1-UNDECANOL, 2-METHYL- 0.40-0.90 10.3 16
2-FURANMETHANOL, TETRAHYDRO- 0.46-0.68 1.6 14
2-PROPEN-1-OL 0.50-0.68 1.5 18
BENZENEMETHANOL, alpha,alpha-
DIMETHYL-

0.47-0.89 3.5 11

1-OCTANOL, 2-BUTYL 0.29-0.90 12.9 16
PHENOL, 2,3-DIMETHYL- 0.48-0.89 5.5 11
PHENOL, 2,4-DIMETHYL 0.44-0.67 1.1 24
PHENOL, 2,5-DIMETHYL- 0.44-0.67 1.2 19
PHENOL, 2,6-DIMETHYL- 0.43-0.90 5.4 12
PHENOL, 3,4-DIMETHYL- 0.43-0.65 3.4 19
PHENOL, 3,5-DIMETHYL- 0.44-0.66 0.5 19
2-PROPYN-1-OL 0.51-0.57 0.4 4
BENZENEMETHANOL 0.40-0.63 19.7 18
PHENOL 0.39-0.65 1.0 21
PHENOL, 2-METHYL- 0.41-0.76 6.0 26
PHENOL, 3-METHYL- 0.41-0.76 4.3 66
PHENOL, 4-METHYL- 0.42-0.76 7.2 55
PHENOL, 2-ETHYL- 0.38-0.90 21.3 11
1,4-BENZENEDIOL 0.54-0.86 4.7 10
PHENOL, 4-ETHYL- 0.44-0.89 10.3 11
PHENOL, 4-(1,1-DIMETHYLETHYL)- 0.51-0.89 8.0 11
PHENOL, 4,4'-(1-
METHYLETHYLIDENE)bis-

0.54-0.89 7.8 10

PHENOL, NONYL- 0.36-0.88 4.7 12
1,2-ETHANEDIOL 0.41-0.57 1.9 11
ETHANOL, 2,2'-OXYBIS- 0.39-0.70 2.3 11
ETHANOL, 2,2'-(1,2-
ETHANEDIYLBIS(OXY))BIS-

0.38-0.71 1.9 9

ETHANOL, 2,2'-(OXYBIS(2,1-
ETHANEDIYLOXY))BIS-

0.34-0.90 7.2 12
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Table C2. Surface tension data used for model validation (contd.)

Compound Name Reduced
Temperature

Range
%AAD Data points

1,2-PROPANEDIOL 0.34-0.90 7.9 17
1,3-PROPANEDIOL 0.41-0.57 1.4 9
PROPANOL, OXYBIS- 0.36-0.89 13.3 12
1,3-PROPANEDIOL, 2,2-DIMETHYL- 0.64-0.90 11.5 10
2-BUTYNE-1,4-DIOL 0.48-0.90 21.9 10
PROPANOL,((1-METHYL-1,2-
ETHANEDIYL)bis(oxy))bis-

0.34-0.90 2.3 11

1,3-PROPANEDIOL, 2-METHYL- 0.26-0.83 32.3 9
1,2-BUTANEDIOL 0.32-0.90 19.2 10
1,3-BUTANEDIOL 0.29-0.90 7.7 15
2,4-PENTANEDIOL, 2-METHYL- 0.36-0.90 2.5 11
1,2,3-PROPANETRIOL 0.35-0.53 2.6 36
1,2,3-BUTANETRIOL 0.38-0.88 15.8 15
1,2,4-BUTANETRIOL 0.39-0.90 31.3 15
1,2-BENZENEDIOL, 4-(1,1-
DIMETHYLETHYL-) 

0.43-0.90 12.0 10

1,3-PENTANEDIOL, 2,2,4-TRIMETHYL 0.48-0.90 11.8 11
1,3-PENTANEDIOL, 2-METHYL 0.38-0.90 22.6 20
2,3-BUTANEDIOL 0.46-0.89 14.1 11
2-BUTENE-1,4-DIOL, (Z)- 0.42-0.90 21.9 10
2-BUTENE-1,4-DIOL, (E)- 0.45-0.90 22.4 10
1,4-BUTANEDIOL 0.44-0.89 3.7 16
1,5-PENTANEDIOL 0.38-0.89 5.3 12
1,6-HEXANEDIOL 0.43-0.90 12.1 11
1,2-BENZENEDIOL 0.49-0.60 1.2 9
1,3-BENZENEDIOL 0.46-0.56 2.6 7
1,3-PROPANEDIOL, 2,2-
BIS(HYDROXYMETHYL)-

0.69-0.89 4.0 11

1,3-PROPANEDIOL, 2-ETHYL-2-
(HYDROXYMETHYL)-

0.47-0.89 8.4 12

1,2,3-BENZENETRIOL 0.49-0.90 3.8 10
D-GLUCITOL 0.42-0.89 1.3 11
FORMIC ACID 0.49-0.62 1.0 21
ACETIC ACID 0.49-0.61 2.2 25
PROPANOIC ACID 0.48-0.60 1.7 23
DECANOIC ACID 0.42-0.90 8.5 15
ETHANEDIOIC ACID 0.58-0.90 26.9 11
BUTANOIC ACID 0.47-0.59 2.3 27
BUTANOIC ACID, 2-METHYL-, (+ -) 0.30-0.89 27.0 11
PENTANOIC ACID 0.45-0.57 2.0 23
NONANOIC ACID 0.40-0.90 16.4 16
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Table C2. Surface tension data used for model validation (contd.)

Compound Name Reduced
Temperature

Range
%AAD Data points

PROPANOIC ACID, 2-METHYL- 0.48-0.67 2.8 26
BUTANOIC ACID, 3-METHYL- 0.46-0.71 5.7 15
HEXANOIC ACID 0.41-0.90 8.9 16
HEXANOIC ACID, 2-METHYL- 0.35-0.90 20.0 15
1,4-CYCLOHEXANEDICARBOXYLIC
ACID, trans-

0.66-0.90 17.7 11

OCTANOIC ACID 0.42-0.90 10.5 14
UNDECANOIC ACID 0.41-0.90 18.9 12
CYCLOPENTANEACETIC ACID 0.41-0.90 21.6 11
PROPANOIC ACID, 2,2'-OXYBIS- 0.58-0.90 12.4 11
DODECANOIC ACID 0.43-0.90 5.5 28
TRIDECANOIC ACID 0.42-0.90 10.8 12
TETRADECANOIC ACID 0.43-0.55 2.1 32
HEXADECANOIC ACID 0.43-0.54 1.2 14
2-BUTENOIC ACID, (Z)- 0.45-0.67 9.7 6
2-BUTENOIC ACID, (E)- 0.52-0.89 41.9 11
OCTANOIC ACID, 2-METHYL 0.35-0.95 18.2 14
OCTADECANOIC ACID 0.43-0.85 6.5 15
2-PROPENOIC ACID 0.45-0.89 12.2 23
2-PROPENOIC ACID, 2-METHYL- 0.44-0.90 29.4 11
9-OCTADECENOIC ACID(Z)- 0.38-0.58 0.5 4
9,12-OCTADECADIENOIC ACID(Z,Z)- 0.35-0.89 2.9 11
BENZOIC ACID 0.53-0.90 13.5 16
BENZOIC ACID, 2-METHYL- 0.55-0.63 2.5 7
BENZOIC ACID, 4-METHYL- 0.59-0.90 18.0 11
BENZOIC ACID, 2-HYDROXY- 0.58-0.90 12.5 11
HEXANEDIOIC ACID 0.53-0.90 14.8 11
2-BUTENEDIOIC ACID (Z)- 0.52-0.90 22.9 11
1,2-BENZENEDICARBOXYLIC ACID 0.58-0.89 14.8 11
1,3-BENZENEDICARBOXYLIC ACID 0.62-0.89 23.0 11
ETHANEPEROXOIC ACID 0.49-0.89 60.5 16
ACETIC ACID, ANHYDRIDE 0.42-0.63 2.4 28
PROPANOIC ACID, ANHYDRIDE 0.37-0.90 4.9 25
BUTANOIC ACID, ANHYDRIDE 0.31-0.89 16.3 14
PHENANTHRENECARBOXYLIC ACID,
1,2,3,4,4a,5,6,9,10,10a-DECAHYDRO-
1,4a-DIMETHYL-7-(1-
METHYLETHYL)-, [1R-
(1Alpha,4aBeta,10aAlpha)]-

0.56-1.00 12.6 20

2,5-FURANDIONE, DIHYDRO- 0.49-0.89 5.2 11
2H-PYRAN-2,6(3H)-DIONE, DIHYDRO- 0.39-0.89 7.0 11
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Table C2. Surface tension data used for model validation (contd.)

Compound Name Reduced
Temperature

Range
%AAD Data points

1,3-ISOBENZOFURANDIONE 0.51-0.89 2.7 16
2,5-FURANDIONE 0.45-0.90 12.8 11
5-ISOBENZOFURANCARBOXYLIC
ACID, 1,3-DIHYDRO-1,3-DIOXO-

0.49-0.90 3.6 11

FORMIC ACID, METHYL ESTER 0.58-0.77 1.7 14
FORMIC ACID, ETHYL ESTER 0.56-0.62 2.3 13
FORMIC ACID, PROPYL ESTER 0.53-0.64 2.6 9
FORMIC ACID, BUTYL ESTER 0.51-0.67 1.8 12
FORMIC ACID, 2-METHYLPROPYL
ESTER

0.51-0.67 2.0 12

FORMIC ACID, PENTYL ESTER 0.49-0.65 1.4 13
FORMIC ACID, OCTYL ESTER 0.36-0.89 2.6 14
FORMIC ACID, NONYL ESTER 0.37-0.90 1.6 10
FORMIC ACID, DECYL ESTER 0.37-0.90 1.7 10
FORMIC ACID, ETHENYL ESTER 0.40-0.91 8.6 17
ACETIC ACID, METHYL ESTER 0.56-0.66 1.5 8
ACETIC ACID, ETHYL ESTER 0.54-0.71 1.3 18
ACETIC ACID, PROPYL ESTER 0.52-0.68 0.4 15
ACETIC ACID, BUTYL ESTER 0.49-0.65 0.4 14
ACETIC ACID, 2-METHYLPROPYL
ESTER

0.50-0.68 2.4 24

1-BUTANOL, 3-METHYL-, ACETATE 0.33-0.91 1.3 20
ACETIC ACID, 2-PROPENYL ESTER 0.52-0.60 0.1 7
ACETIC ACID, 1-METHYLETHYL
ESTER

0.53-0.66 0.9 15

ACETIC ACID, 1-METHYLPROPYL
ESTER

0.51-0.67 9.5 18

ACETIC ACID, ETHENYL ESTER 0.35-0.89 1.1 14
PROPANOIC ACID, METHYL ESTER 0.53-0.65 0.3 10
PROPANOIC ACID, ETHYL ESTER 0.52-0.65 0.4 11
PROPANOIC ACID, PROPYL ESTER 0.50-0.69 0.4 18
PROPANOIC ACID, BUTYL ESTER 0.31-0.90 4.5 24
BUTANOIC ACID, PROPYL ESTER 0.46-0.63 0.2 17
PROPANOIC ACID, ETHENYL ESTER 0.35-0.90 3.2 11
BUTANOIC ACID, METHYL ESTER 0.49-0.92 0.9 26
BUTANOIC ACID, ETHYL ESTER 0.48-0.69 0.5 25
PROPANOIC ACID, 2-METHYL-,
PROPYL ESTER

0.47-0.64 0.5 27

2-PROPENOIC ACID, METHYL ESTER 0.37-0.89 4.2 22
ACRYLIC ACID, ETHYL ESTER 0.37-0.89 2.4 22
2-PROPENOIC ACID, PROPYL ESTER 0.36-0.89 1.6 11
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Table C2. Surface tension data used for model validation (contd.)

Compound Name Reduced
Temperature

Range
%AAD Data points

NONANOIC ACID, BUTYL ESTER 0.35-0.82 1.9 10
PENTANOIC ACID, BUTYL ESTER 0.29-0.89 3.5 16
BUTANOIC ACID, 3-METHYL-, ETHYL
ESTER

0.50-0.69 0.7 10

2-PROPENOIC ACID, 2-METHYL-,
METHYL ESTER

0.40-0.89 6.7 12

METHACRYLIC ACID, ETHYL ESTER 0.39-0.89 5.8 11
2-PROPENOIC ACID, 2-METHYL-,
PROPYL ESTER

0.37-0.89 2.0 11

1,2-BENZENEDICARBOXYLIC ACID,
BIS(2-ETHYLHEXYL) ESTER

0.36-0.84 10.2 11

1,2-BENZENEDICARBOXYLIC ACID,
DIISOOCTYL ESTER

0.30-0.85 4.6 11

1,2-BENZENEDICARBOXYLIC ACID,
HEPTYL, NONYL ESTER

0.29-0.90 8.0 15

ACETIC ACID, PENTYL ESTER 0.47-0.62 0.4 23
ACETIC ACID, 2-ETHYLHEXYL
ESTER

0.28-0.89 3.0 11

ACETIC ACID, PHENYLMETHYL
ESTER

0.32-0.72 8.9 8
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Table C.3. Comparison of surface tension predictions for non-polar compounds

Compound name Reduced
Temperature

Range

Parachor Method
(Gold Hammer)*+

(%AAD)

CST Method
(Brock and Bird)*

(%AAD)

SVRC-QSPR
Model

(%AAD)
Ethane 0.39-0.97 3.0 2.4 1.8

Propane 0.52-0.98 5.5 1.5 1.6

* Methods recommended by Reid, Sherwood and Prausnitz (Reid, R.C., J.M. Prausnitz, and B.E. Poling, The Properties of
Gases and Liquids. 4 ed. 1987: McGraw Hill.)+ The ρLb value used for calculation in the Parachor Method

(Gold Hammer)*+ comes from the NIST database

Table C.4. Comparison of surface tension predictions for polar compounds

Compound name Reduced
Temperature

Range
(%AAD)

Parachor Method
(Gold Hammer)*

(%AAD)

SVRC-QSPR
Model

(%AAD)

Methanol 0.54-0.97 15.4 1.0
Ethanol 0.53-0.99 4.4 4.2
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