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CHAPTER 1 

 
INTRODUCTION 

Traditional drug delivery techniques, such as oral or intravenous administration, 

are often associated with problems relating to over- and under-dosing, interactions with 

the harsh gastro-intestinal environment, and/or the production of toxic by-products 

through metabolism in the liver. Often, a large dose of a drug is required to attain 

therapeutic levels of the drug in the blood plasma, which may result in toxicity to other 

organs [1]. An alternate delivery technique which offers improved therapeutic control 

(both temporal and spatial) is required.  

Recently, the technique of transdermal drug delivery (TDD) has gained popularity 

due to its ability to overcome most of the above problems. Transdermal technologies are 

employed for delivering a variety of therapeutic drugs. Currently, over 35 FDA-approved 

transdermal products are available for applications, including hormone replacement 

therapy, management of pain, angina, smoking cessation and neurological disorders such 

as Parkinson's diseases. Thus, a significant health benefit is derived from TDD and, 

consequently, there is a sizeable market potential for transdermally delivered therapeutic 

agents. For example, in 2005, the expected annual sales worldwide are $12.7 billion, 

which are projected to increase to $21.5 billion in 2010 and to $31.5 billion by 2015 [2].  

The goal of TDD is to maximize the rate of transport of the therapeutic agent 

through the skin and into systemic circulation, while minimizing the retention and 
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metabolism of the drug in the skin [3]. Human skin is considered to be one of the most 

efficient natural polymers. It serves as a barrier to transport of chemicals both in and out 

of the human body [4, 5]. Figure 1.1 illustrates the cross section of human skin. Human 

skin is composed of three layers (a) the avascular dermis composed of metabolically 

active basal cells and the inactive stratum corneum (SC), (b) the vascular dermis 

consisting of the blood vessels, and (c) the subcutaneous tissue consisting of adipocytes, 

hair follicles, sweat and sebaceous glands.  Each of these layers offers varying resistances 

to drug permeation [6, 7]. Several physical and chemical alternatives are currently being 

investigated for possible improvement of TDD. However, the economic viability and 

technical feasibility of using chemicals as penetration enhancers (CPEs) makes them the 

most attractive option [8].  

The basic requirement of TDD is that the drug penetrates the SC and is absorbed 

into systemic circulation. In general, the drug has two potential routes of entry: (a) across 

the SC, and (b) through hair follicles and sweat ducts, as shown in Figure 1.2. To 

permeate across the SC, the drug must first partition into the SC and then diffuse through 

the protein-lipid matrix. The drug then diffuses through the epidermis into systemic 

circulation. Permeation through hair follicles and sweat ducts involves diffusion through 

the pores and epidermis into the systemic circulation. Hair follicles and sweat ducts 

occupy only a small fraction of the total skin area and are believed to be insignificant 

factors in TDD [9]. Some recent studies [10], however, suggest that they may be a 

significant pathway for large polar molecules.  

Both physical and chemical methods have been proposed and implemented to 

increase permeation of drugs across the skin [11]. Physical approaches such as 
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iontophoresis [12] and sonophoresis [13, 14] are still at their inception and require further 

research before commercialization. One delivery mechanism that has been studied 

extensively and implemented commercially is the use of CPEs. Based on the mechanism 

of action, CPEs can be grouped into two classes: (a) chemicals that alter the structure of 

the skin lipids, and (b) chemicals that enhance the solubility of the drug in the skin lipids. 

Numerous CPEs have been identified and evaluated; however, none has proved to be 

truly effective or universally applicable [15]. Development of CPEs requires detailed 

analysis of several interrelated factors, including (a) structure and properties of human 

skin, (b) thermophysical properties of the penetration enhancer, and (c) the properties of 

the penetrant.  Williams [16] provides a detailed review on CPEs and their desirable 

thermophysical attributes. 

The current experimental techniques used for CPE development are time-

consuming and expensive. An attractive alternative (widely used for drug design) is 

“virtual synthesis,” in which structure-based QSPR models are coupled with powerful 

screening algorithms to identify viable drug molecules. However, the existing virtual 

screening methodology suffers from several limitations, including: (a) reliance on linear 

models in QSPR model development, (b) absence of a theoretical framework in the 

models used to describe thermophysical properties, (c) use of only off-the-shelf structural 

descriptors, (d) use of general-purpose heuristic algorithms for molecular screening, and 

(e) inadequate data for model development and testing. These combined limitations 

hinder progress toward effective virtual design algorithms for CPEs.  

 

 



4 
 

Objectives 

The primary goal of our research is to integrate non-linear quantitative-structure-

property-relationship (QSPR) modeling and robust genetic algorithms (GAs) to facilitate 

the design of improved CPEs. The specific objectives for accomplishing this goal were 

to: 

1. Identify the thermophysical properties pertinent in CPE design, and assemble 

reliable QSPR models for these properties. 

2. Develop improved QSPR models for skin sensitization and skin irritation 

using advanced non-linear modeling.  

3. Develop GA algorithms for generating new potential CPEs.  

4. Incorporate the property models and the GA algorithms into an effective 

platform for the virtual design of CPEs. 

Our basic premise is that novel, effective mathematical models can be developed 

to describe accurately the relationship between a molecular structure of a chemical and its 

CPE behavior, and that these models can form the basis for the “virtual design” of 

promising molecular structures for use as CPEs. The innovative integration of non-linear, 

theory-based QSPR modeling and robust GAs removes existing barriers to the use of 

computational chemistry in CPE design, and yields structure-based models to delineate 

the specific structural features of CPEs that are responsible for improved permeation of a 

drug through skin. The scientific knowledge gained in developing the models will be 

significant in drug development and therapeutic agent delivery design. 
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Thesis Organization 

This thesis is written in the “manuscript style” and is divided into three separate 

self-contained manuscripts. Since the same modeling strategy was adopted for skin 

sensitization and skin irritation, some sections of the individual chapters are repetitive. 

Also, the modeling methodology used in this study has been developed in collaboration 

with other members of the OSU Thermodynamics Research Group [17-19]. 

Consequently, similar documentation has been used. Chapters 2 deals with computer-

aided molecular design of CPEs using GAs and QSPR models, and Chapters 3 and 4 deal 

with the methodology adopted and the results obtained for modeling skin sensitization 

and skin irritation, respectively. Conclusions based on the efforts undertaken are given in 

each of these chapters. 
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Figure 1.1. Human skin cross section [20] 
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Figure 1.2. Potential routes for percutaneous absorption of drugs [21] 
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CHAPTER 2 

VIRTUAL DESIGN OF CHEMICAL 

PENETRATION ENHANCERS 

 

2.1. INTRODUCTION  

The rational design of molecules with desired properties challenges engineers 

attempting to meet the needs of various industries, including pharmaceuticals, polymers, 

petrochemicals, and construction [1-3]; especially, since the demand for newly-designed 

molecules that enhance current processes and satisfy more stringent operating  

requirements in technology has been increasing [4]. The traditional approach of 

discovering molecules with desired properties involves testing thousands of molecules for 

their chemical and physical properties, which is an expensive and laborious undertaking. 

Hence, rational design techniques, such as computer-aided molecular design (CAMD), 

have found wide application in recent years [4, 5].  

In contrast to traditional methodologies, CAMD methods expedite the design 

process by predicting the behavior of potential molecules using reliable property models. 

CAMD involves the design of new molecules based on a set of desired properties and can 

be classified as (a) forward CAMD, which involves computation of chemical, physical 

and biological properties from the molecular structure, and (b) inverse CAMD, which 

involves generation of a molecular structure with the desired properties [6, 7]. In 

pharmaceutical processes, CAMD is used to identify new drugs useful for targeted 

applications, while meeting design constraints such as minimal side effects and toxicity. 
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CAMD methods have been employed successfully for a large range of 

applications, including solvent design/selection [8], chloro-fluro-carbon (CFC) 

substitutes, alternative process fluids, polymer design [9], drug design [10], and design  

for novel molecules with superior properties [11]. A typical CAMD design algorithm 

features two key components, a method for generating candidate molecules and the 

models used to predict the pertinent physiochemical properties of the newly generated 

molecules. Although genetic algorithms (GA) have been used extensively for generating 

new molecular structures from seed molecules, the use of a large molecular database to 

identify potential molecules has also been reported [12, 13]. Property predictions of the 

generated molecules are usually done using group contribution methods, equation-of-

state approaches, and quantitative structure-property relationship (QSPR) models. Figure 

2.1 presents the various stages involved in CAMD, in general.  

In this work, a combination of genetic algorithms and QSPR techniques has been 

used to develop the CAMD algorithm for virtual design of chemical penetration 

enhancers (CPEs) for transdermal drug delivery. Extensive efforts have been expended in 

search of chemicals that enhance the penetration of therapeutic drugs through human 

skin. Although such CPEs can be valuable in increasing the amount and/or rate of drug 

delivery, they can also have undesirable effects, including skin irritation and toxicity. 

Thus, a distinct need exists for effective methods to identify new CPEs that provide 

optimum penetration enhancement with minimal side effects.  

The primary goal of this work is the integration of non-linear, QSPR modeling 

and robust GAs to facilitate the rational design of improved CPEs. Our basic premise is 

that novel, effective mathematical models can be developed to describe accurately the 
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relationship between a chemical’s molecular structure and its CPE behavior, and that 

these models can form the basis for the “virtual design” of promising molecular 

structures for use as CPEs. Ultimate benefits of such a design capability include: (a) 

identifying novel CPEs; (b) reducing the need for expensive and time-consuming 

experiments; and (c) setting the stage for the synthesis and commercialization of 

improved CPEs for use by the medical community.  

The work reported here proceeded in distinct stages, as described below. To 

begin, the target properties for design of CPEs were identified through a thorough 

literature survey and analysis of their molecular properties. Using a database of over 250 

CPEs cited in the literature as seed molecules, new molecules were generated using 

genetic operators such as crossover, mutation and functional group addition. QSPR 

models developed using artificial neural networks (ANNs) were used to predict the 

physiochemical properties such as skin penetration coefficient, octanol/water partition 

coefficient, melting point, skin sensitization and skin irritation of the newly generated 

molecules. The molecules were scored and screened before being passed to the next 

generation. To further validate the design methodology results, all identified potential 

CPEs were tested for toxicity and skin permeation through carefully designed 

experimental techniques, as detailed elsewhere [14, 15].  

 

2.2. COMPUTER-AIDED MOLECULAR DESIGN (CAMD) METHODS  

The traditional sequential method of molecular discovery for developing new 

chemicals requires expensive chemical synthesis followed by time-consuming 

experimental thermophysical property measurements. Often several hundred (and in the 
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case of drug design, several thousand) new molecules may be tested before a viable 

chemical is identified.  An attractive solution to these development problems is the use of 

virtual screening wherein (a) the physical synthesis of molecules is replaced by virtual 

synthesis, (b) the experimental property measurements are minimized through the use of 

accurate property prediction models, and (c) robust scoring modules guide the virtual 

screening algorithms toward the most feasible subset of molecules. The complexity of 

CAMD problems differ based on the targeted application and the computational 

techniques used. 

Several approaches for CAMD design have been proposed for diverse 

applications that vary in their solution strategy, complexity and the range of properties 

considered. A multi-step and multi-level approach for CAMD was presented by Harper 

and Gani [16]. A three step approach involving problem formulation (pre-design), 

compound identification (design) and result analysis (post-design) was proposed to be 

effective in CAMD. The molecules are screened using macroscopic representation of 

molecules and the selected molecules are further screened using microscopic 

representation. Application examples, such as design of a replacement solvent for liquid-

liquid extraction of phenol from wastewater and design of a benzene replacement, were 

presented to illustrate the application and efficacy of this approach. To overcome the 

limitations of group contribution methods for property predictions in CAMD, a new 

method using a combination of multi-level approach for molecular generation and 

property predictions using connectivity indices, fragments, and mixed methods has been 

proposed [5]. Cabezas [17] developed a CAMD technique that searches through a 

database of compounds to identify solvent molecules with desired properties, which 
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results in identification of molecules that already exist. Pretel et al. [18] employed a 

group contribution molecular design approach to synthesize molecular structures with 

desired solvent properties. The size of the combinatorial problem posed by the molecular 

synthesis procedure is reduced by group selection and physical and molecular constraints 

at different stages. Constantinou et al. [19] employed a group contribution approach to 

generate acyclic, cyclic and aromatic compounds of various degrees of complexity and 

size. Feasible solutions were found in each of the five case studies used to evaluate the 

efficacy of the CAMD technique.  

CAMD techniques have been implemented successfully by our research group for 

more than a decade to design solvents for extractive distillation [8, 20]. Our third-

generation chemical design algorithms developed for design of proprietary solvents [21] 

should be effective in CPE design, once calibrated properly for this application. A 

CAMD problem typically involves the following steps as proposed by Gani and 

coworkers [11, 16, 19, 22] and are described in greater detail in the following sections: 

� Problem formulation – The target physiochemical properties and their desired 

values are determined. To design chemical compounds that enhance skin 

penetration, properties that affect the enhancement capability of a chemical are 

identified. 

� Initial search – The list of molecules identified as potential CPEs in the literature 

are identified and introduced into the CAMD algorithm as parent molecules in the 

first generation. Thus, the genetic material that constitutes a good CPE can be 

provided to the algorithm at its inception. 
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� Molecule generation and testing – Using the list of candidate molecules, new 

molecules are generated and tested. The selected CAMD technique should be able 

to generate candidate molecules and evaluate the properties of the generated 

molecules. 

� Verification – The efficacy of the selected molecules is confirmed through 

experimental validation. 

2.2.1 Problem formulation 

 Identifying the desired target properties of the chemical compounds to be 

generated is the defining step in CAMD processes. A knowledge-based system is 

required to identify target properties, as well as their corresponding property values. 

Knowledge-based systems that specify the target properties and the acceptable values of 

the properties for solvent design have been extensively discussed [23]. Only a few 

systems that discuss problem formulation for novel drug design exist. Hence, the need for 

developing knowledge-based systems for novel drug discovery arises.  

Lipinski’s ‘rule of 5’ is one such expert system that predicts the solubility and 

permeability of the drug molecules based on four target properties [24], namely, the 

molecular weight, count of hydrogen bond donors, count of hydrogen bond acceptors and 

octanol/water partition coefficient (log Kow). The World Drug Index, a large 

computerized database consisting of approximately 50,000 drug molecules, was used for 

identifying the target properties of the drug molecules. Since our target is the 

identification of novel potential CPEs, extensive knowledge of the properties of the CPEs 

and their corresponding functionalities is needed.  
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The target molecules should be able to enhance the permeation of a selected drug 

through the skin without causing any harmful effects. After thorough analysis of the 

currently available CPEs and their properties, the following properties were identified as 

being significant for transdermal drug delivery:  

1. Molecular weight: Molecules with low molecular weights easily penetrate the 

skin due to their small size. Hence an upper limit of 500 was imposed on the 

molecular weight of potential CPEs [24-27].  

2. Octanol/water partition coefficient (Kow): Drugs with very low or high partition 

coefficient fail to reach systemic circulation [24, 26, 27]. Several ranges of log 

Kow values have been proposed in the literature for effective permeation 

enhancement. In this work, molecules with log Kow values in the range of 1-3 

were accepted and considered to indicate good permeation enhancement [25]. 

3. Melting point: Molecules with high melting points, due to their low solubility 

both in water and fat, are ineffective in transdermal drug delivery (TDD) [26], and 

only molecules with melting points less than 200° C were accepted [25]. 

4. Skin sensitization: The CPE should not cause any skin irritation or sensitization 

upon application [25]. All the newly generated molecules are scored using three 

independent skin sensitization QSPR models, and only those molecules that are 

classified as being non-sensitizers in all three models are passed to the next 

generation. 

5. Number of hydrogen donor groups: The sum of the hydrogen atoms linked to 

oxygen and nitrogen atoms in the molecule determines the total number of 

hydrogen-bond donor groups in a molecule. The permeability across the lipid bi-
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layer has been identified to be significantly lower for drugs with an excessive 

number of theses groups [24, 25]. Hence, a hydrogen-bond donor number upper 

limit of five was specified for acceptance of a molecule as a CPE. 

6. Number of hydrogen-acceptor groups: The total number of nitrogen, oxygen and 

fluorine atoms in the molecule (excluding nitrogen atoms with a formal positive 

charge, higher oxidation states and pyrrolyl forms) determines the total number of 

hydrogen-bond acceptor groups in a molecule. Presence of too many acceptor 

groups has been identified as a hindrance to the permeability across the lipid bi-

layer [24], and therefore an upper limit of 10 was used for the hydrogen-bond 

acceptor number. 

2.2.2 Initial search 

The genetic material (chemical structures) identified as effective CPEs are utilized 

by the GA to generate new potential chemical structures. Accordingly, a thorough 

literature search is required to assemble available CPE data. An exhaustive literature 

search focused on database compilation of CPE molecules was completed by Osborne 

and Henke [28]. Over 400 technical and patent literature sources were reviewed, and a 

dataset of 275 CPE molecules was compiled. Molecules that enhance skin permeability 

by reversibly altering the skin or by changing the physiochemical nature of the skin were 

included in the database. Additives that enhance the skin penetration by altering the 

solubility or changing the ionization state of the drug were not classified as CPEs.  

The chemical classes present in the database include fatty alcohols, fatty acids, 

fatty acid esters, fatty alcohol ethers, biologics, enzymes, amines, amides, complexing 

agents, macrocyclics, classical surfactants, pyrrolidones, ionic compounds, solvents and 
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azone-related compounds. In a recent article involving over 90 technical and patent 

literature sources, Thong et al. [29] studied CPE classification and mechanisms and 

provided a database of approximately 180 CPE molecules along with their chemical 

class, mechanism of action and examples of targeted drugs. The chemical classes of the 

CPE molecules in this database include sulfoxides, alkanones, alcohols, polyols, amides, 

pyrrolidones, fatty acids, fatty acid esters, surfactants, terpenes, organic acids, 

cyclodextrins and FDA-approved CPEs.  

These two databases were studied carefully and a new database (Oklahoma State 

University (OSU) CPE database) consisting of over 400 CPE molecules was compiled. 

The molecular structures of 272 CPEs, identified using multiple software applications, 

were used as seed molecules in our GA approach for CPE design. 

2.2.3 Molecular generation and testing 

Genetic algorithms:  While the desired properties and their target values, as well as the 

list of candidate molecules, depend on the specific CAMD application, the efficiency of 

the CAMD technique depends on the methods used for molecule generation and property 

evaluation [30]. Evolutionary techniques have been found useful in generating new 

molecules with desired properties. In molecular modeling, evolutionary computation 

involves searching for candidate molecules utilizing concepts developed in evolution and 

genetic science. One advantage of using evolutionary techniques is the ability to work 

simultaneously with a number of potential molecular candidates. Hence, the likelihood of 

identifying an optimum structure representing the global minimum in the search domain 

is high [31]. GAs introduced by Holland [32] are used widely and have proven effective 

as an evolutionary technique. For example, Venkatasubramanian et al. [1, 30] proposed 
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the use of GA for polymer design using CAMD.  In spite of the large search space and 

the complex nonlinear group interactions, the genetic design methodology has been 

successful in the identification of target molecules. 

A combination of GA and QSPR techniques has proven effective in the novel 

design of molecules [33]. Nachbar [6] used the GA-QSPR technique to generate 

molecules with desired properties, where a molecular encoding mechanism using valence 

states and relative probabilities for each atomic specie was used. A user interactive tool, 

“Molecule Evoluator,” was develop by Lameijer et al. [34] to design drug molecules 

using a “TreeSMILES” representation scheme. By specifying an upper and lower bound 

for the descriptors, such as the number of hydrogen donors/acceptors, the molecular 

weight, the log P (lipophilicity), the polar surface area, the number of rotatable bonds, 

and the number of aromatic systems and substituents, novel potential structures were 

found. Similarly, Douguet et al. [35] developed an expert system that generates new drug 

molecules with the desired shape, lipophilic and electronic properties using GA. 

GAs operate by generating new molecules in each generation through crossover 

and mutation of randomly-selected candidate molecules. All newly generated molecules 

undergo a scoring process where molecules are assigned a numerical score based on their 

property values. These molecules are screened, and those scoring well are passed to the 

next generation. Figure 2.2 summarizes the GA methodology for CPE design. Simplified 

Molecular Input Line Entry System (SMILES) notation was used for molecule 

representation in GA. Crossover and mutation operators were used for the generation of 

new molecules. Functional groups that were prominent in currently available CPEs were 

used during random mutation. Scoring and screening of the molecules was performed 
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using QSPR models for predicting properties such as octanol/water partition coefficient, 

permeation coefficient, melting point and toxicity. The non-linear QSPR models were 

developed using effective neural networks employing randomization of training data, 

random initialization of weights and random search for the best neural network for 

prediction of the desired property.  

Molecular representation:  Developing a GA for CPE molecular design requires an 

effective molecular representation scheme. Various methods for molecular representation 

are used in practice. Genetic graphs, MDL- file format, and SMILES [35, 36] are among 

the most popular molecular representation schemes. SMILES notation is a line/string 

notation that is human readable and can be transformed easily into a 2-D structure. 

Although the SMILES technique has a simple construction and few vocabulary rules, it 

encodes all the structural information found in an extended connection table. In this 

work, all seed molecules were converted to SMILES notation using OpenBabel software 

[37].  

Genetic operators:  GAs involve random selection of parent molecules to generate new 

offspring. To accomplish this, a variety of genetic operators and processes are used, as 

discussed below. 

1. Selection: The genetic algorithm has been designed on the basis of a 

probabilistic operator rather than a deterministic one, as used by the other 

optimization techniques. This means that the molecular growth is completed 

in a random fashion with priority given to those molecules possessing superior 

characteristics, and hence, a greater probability of selection. This is achieved 

by using what is called “Roulette Wheel Selection” [38]. Each of the parent 
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molecules is scored using a fitness function and the selection pressure for that 

molecule is determined. As the fitness score of the molecule increases, the 

molecule has a higher probability to be selected as a parent. Since widely 

accepted chemical penetration enhancers are used in this work, the selection 

pressure for the seed molecules in the first generation is identical. 

2. Crossover: The crossover operator creates an offspring by recombining the 

features of parents. Figure 2.3 shows two crossover operators: one-point 

crossover and two-point crossover. In one-point crossover, each of the parent 

molecules is cut at one location and the fragments are combined to form 

offspring with hybrid features. Two-point crossover involves selection of two 

cut points from each parent and mutual exchange of genetic information to 

form new molecules. Roulette wheel selection is used to choose between one-

point and two-point crossovers in each generation. 

3. Mutation: The mutation operator performs random changes in the parent 

molecule to produce a new offspring. Figure 2.4 presents an example of the 

various mutation operators used. The functional groups to be mutated and the 

number of mutations performed are selected randomly in each generation. The 

extent of the mutation rate determines the diversity of the offspring from the 

parent molecules. 

4. Other operators: Other genetic operators used for molecular generation 

include functional group addition, functional group deletion and bond 

substitution. Figure 2.4 presents examples of these operators. The functional 

groups to be added are selected from a pool of functional groups identified as 
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being prominent in the currently available CPEs. Thus, the genetic material 

that is prominent and has potential to yield good CPEs is retained throughout 

all generations. The functional group to be added or deleted is chosen 

randomly. 

Development of fitness function:  Scoring and screening of the generated molecules is a 

key step in any CAMD technique. A GA-based search technique typically analyzes a few 

thousand molecules before a suitable candidate is identified. Several techniques have 

been developed for scoring and screening of generated molecules. One such method is 

the rejection of candidates that do not satisfy the target property constraints. This method 

is effective only when the feasible region in the search space is large. All generated 

molecules are given a fitness score using a fitness function that is tailored to a specific 

problem. The fitness score can be evaluated in two ways: 

1. Assign a score to the molecule based on predicted property values.  

2. Specify an acceptable range for each of the properties under consideration. 

Each of these methods has advantages. By giving a score to each of the molecules 

through a set of property models, a minimum score for acceptance can be specified; thus, 

molecules are not rejected for violating one or more of the properties. For example, if 

four of the five properties under consideration for the molecule are within the acceptable 

range, then the molecule is accepted with a cutoff value of 0.8 (= 4/5) on a scale of 0 to 1. 

This approach ensures that genetic material is not lost completely. Alternatively, by 

specifying an acceptable range for each of the properties, only a few molecules that 

satisfy all the conditions are passed to the next generation. We believe a combination of 



23 
 

these two approaches, scoring of the initial generations and specifying a range at the final 

generations, provides an effective fitness evaluation routine. 

2.2.4 Verification 

 Careful experimental validations for skin permeation and toxicity are conducted 

on the candidate CPEs that demonstrate the greatest potential. Details on the 

experimental validation capability of the OSU Thermodynamics Research Group are 

beyond the scope of this study and are given elsewhere [14, 15]. 

 

2.3. RESULTS AND DISCUSSION 

2.3.1 QSPR models 

QSPR models for properties such as skin penetration coefficient, octanol/water 

partition coefficient, melting point, and skin sensitization were developed to predict the 

physiochemical properties of the newly-generated molecules. To ensure that the QSPR 

models have reliable prediction capabilities, molecular databases consisting of chemicals 

from diverse chemical classes and spanning a wide property range were used for model 

development. The chemical structures used for modeling are initially optimized using the 

Chem3D module available in Chem3DUltra [39]. To locate the lowest energy 

configuration, multiple initializations were used during the structure optimization. 

AMPAC 6.0 software [40] was then used to further refine the 3-D geometry of the 

structures. The final optimized structures from AMPAC are provided as inputs to 

commercial QSPR software to generate over 1200 molecular descriptors. A variety of 

constitutional, topological, geometrical, thermodynamic, quantum-chemical and 

electrostatic descriptors are generated using CODESSA [41]  and 154 functional group 
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descriptors are generated using Dragon [42]. The number of descriptors calculated for 

each molecule depends on the structural complexity of the molecule. Descriptors not 

calculated for a given molecule were set to zero in subsequent QSPR model development. 

The descriptor set generated from CODESSA and Dragon is orthogonalized to remove 

repetitive and insignificant descriptors. This reduced set still contained hundreds of 

descriptors.  

Using non-linear algorithms to find the best set of descriptors from hundreds of 

descriptors requires large amounts of computational time and is often impractical. 

Therefore, sequential multiple regression techniques were used to obtain a reduced set of 

descriptors. To ensure that non-linear relationships between descriptors and properties are 

not ignored, non-linear transformations of the descriptors were evaluated and an 

expanded set of descriptors were obtained before beginning the sequential regression 

analysis. The descriptor set is reduced to 40 descriptors using sequential regression 

analysis and further reduction is accomplished using the heuristic analysis available in 

CODESSA. The final set of descriptors is retained for non-linear regression.  

Robust ANN algorithms have been developed which are capable of:   

1. Finding the optimal network architecture 

2. Using cross-validation analysis to avoid over-fitting  

3. Dividing the data set systematically into training, validation and testing sub-

sets 

4. Employing effective normalization techniques  

5. Conducting multiple data randomizations and weight initializations  

6. Utilizing multiple performance functions for analyzing the network 
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The network performance was improved by studying networks with multiple transfer 

functions and numbers of neurons in the hidden layers.  Network architectures with one 

or two hidden layers has proven to be sufficient for non-linear regression and, hence, our 

algorithm searches for all possible one or two hidden layer architectures that satisfy a 

degree of freedom ratio (ratio of the number of network connections and the number of 

data points) lower limit of two [43]. The average of the property values predicted using 

three independent networks was used in order to nullify the effects of a single favorable 

network. 

2.3.2 CPE design 

A database comprised of 160 human skin permeation measurements was used to 

develop a skin permeation QSPR model. Our QSPR model for skin penetration 

coefficient is able to predict the penetration data considered within an absolute average 

percent deviation (%AAD) of 8.0 [44]. Similarly, 2029 octanol/water partition coefficient 

data [45], 970 melting point data and roughly 900 skin sensitization data [46] were used 

to develop the respective QSPR models. Data from local lymph node assay (LLNA) 

experimental procedure, guinea pig maximization test (GPMT) and Federal Institute for 

Health Protection of Consumers and Veterinary Medicine (BgVV) database were used to 

develop effective skin sensitization QSPR models. Since the experimental procedure and 

end-point ranking assigned to molecules by LLNA, GPMT and BgVV are different, three 

exclusive QSPR models were developed [46]. More details on the prediction networks 

used are provided in Table 2.1. Properties such as molecular weight, number of 

hydrogen-bond donors and number of hydrogen bond acceptors were calculated using 

commercially available software.   
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As stated earlier, 272 CPEs from the literature were used as input molecules for 

the first generation. Crossover and mutation operators were assigned equal probabilities 

of selection in the first generation and monitored in subsequent generations. Roughly 15 

functional groups identified to be prominent in literature CPEs were used in functional 

group addition mutations. After each generation, the offspring molecules are initially 

monitored to remove any invalid and large molecules. SMILES structure is used to 

generate the 2-D structure of the offspring molecules using ChemDraw software. The 3-

D structures are generated and optimized for minimum energy. Molecular descriptors are 

generated for property prediction using robust QSPR models already developed. For each 

property within the acceptable range, the score of the molecule was incremented by a 

value of 1. Thus a summary numerical score is assigned to each of the molecules 

generated. Molecules that passed all the screening tests and had a fitness score value of 8 

are accepted as potential CPEs. Figure 2.5 summarizes the scoring of the molecules in 

each generation. The retained molecules are sorted according to their log Kp value and 

the top 10% of the molecules are added to the parent molecule set to be used in the next 

generation. Approximately 1000 molecules were generated in each generation run and 

this procedure was repeated for five generations. Table 2.2 summarizes the results of the 

five generation runs. In general, slightly less than 20% of the molecules generated were 

considered candidate for further evaluation as CPEs. 

The molecules thus identified are further validated for skin permeation and skin 

irritation using carefully-designed experiments. The experimental work was done by 

other members of the OSU Thermodynamics Research Group and is not a part of this 

dissertation. However, a brief discussion of the experimental work is provided for 
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completeness. Molecules with a score of 8 and with high log Kp values in each generation 

were selected for experimental validation. In this work, insulin was the targeted drug to 

be delivered transdermally and, hence, the CPEs were experimentally validated for 

penetration enhancement of insulin. The skin permeation experimental procedures were 

validated by performing permeability measurements on four known CPEs using porcine 

skin, a Franz Cell, and High-Performance Liquid Chromatography (HPLC).  The 

resistance factor (RF) and the insulin flux obtained using the Franz cell and the HPLC 

method, respectively, for the experimentally validated molecules are presented in Table 

2.3. Chemical compounds with high RF and insulin flux values are considered effective 

in transdermal penetration. Further, the toxic effects of these enhancers were studied on 

(a) human foreskin fibroblasts (HFFs) with 3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide (MTT)-formazan assays at two different concentrations, 

and (b) porcine abdominal skin using histology and haemotoxylin/eosin (H/E) staining at 

the end of a 24-hour exposure period. A detailed discussion of the experimental 

procedures is beyond the scope of this paper and is given elsewhere [14, 15].  

One of the major limitations of experimental validation of the newly generated 

chemicals is the commercial availability of the chemicals. Often molecules with good 

permeation and fitness scores are not available commercially, and their experimental 

validation was rendered more difficult. As such, in this study, we elected to validate 

experimentally the molecules that are available commercially, even though they might 

not represent the highest fitness score in each generation. This limitation is further 

amplified by the fact that as the number of generations increases, the crossover and 
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mutations among molecules becomes extensive, which, in turn, leads to generation of 

greater numbers of novel molecules not available commercially.  

Although a CPE may permeate through the skin, its ability to enhance the 

permeation of insulin through the skin depends on chemical interaction effects between 

the CPE and insulin. This explains why some of the virtually designed CPEs were not 

effective in transporting insulin through the skin. Knowledge of CPE-drug interactions in 

the pre-design stage is highly desired to enhance the predictive capability of our CAMD 

algorithms for transdermal drug delivery. From the current CPE CAMD algorithm it has 

been observed that chemical compounds with hydrogen bonding groups and having log 

Kow values greater than 2.5 were effective in enhancing insulin permeation through the 

skin. Acids, alcohols, aldehydes, and ketones are some of the chemical classes found to 

be effective in enhancing insulin permeation through the skin.  Incorporating this 

knowledge in future insulin CPE CAMD algorithms will further enhance the predictive 

capabilities of virtual design. Also, using the currently identified insulin CPEs as seed 

molecules will be effective in developing insulin specific CPEs. 

The new molecules evolved in each generation are subjected to a series of steps 

(e.g., conversion of the SMILES structure of the molecule to 2-D structure, conversion 

from 2-D to 3-D structure, optimization of the 3-D structure for minimum energy using 

Chemoffice, re-optimization of the molecule using AMPAC, generation of descriptors, 

property prediction using the descriptors generated and scoring and screening based on 

the property values) before passing to the next generation. This process is laborious and 

becomes very difficult to implement as the number of generations increases. Further, the 

amount of human involvement required hinders the ability of the GA design program to 
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run multiple generations and limits the diversity in the population. Although some studies 

claim to have run multiple generations in their GA program, their discussion was limited 

concerning the optimization of the newly generated molecules. Hence, a need exists for 

an automation tool capable of performing multiple generations and achieving more 

genetic diversity with minimum manual effort. 

 

2.4. CONCLUSIONS 

Genetic algorithm-based virtual design of molecules possessing desired properties 

offers rapid and low-cost development opportunities. Our results indicate that integrating 

genetic algorithms and non-linear QSPR modeling offers a reliable CAMD algorithm for 

generation of potential chemical penetration enhancers (CPEs). Further, these results 

demonstrate the efficacy of this virtual design approach in identifying potential CPEs for 

transdermal drug delivery of insulin. 

The lack of accurate knowledge of the drug-chemical interactions in the pre-

design stage represents a limitation in the current methodology. The a priori knowledge 

of drug-chemical interactions would further improve the design ability of our newly-

developed algorithms, and thus, potentially reduce the number of experimental 

validations, which are often expensive and laborious. 

A need exists for a computational platform to orchestrate the creation of multiple 

generations of CPE candidates with greater genetic diversity and minimum manual 

intervention. Further, synthesis of the chemical compounds identified as effective CPEs 

would expand the list of insulin enhancers beyond the chemical structures available 

commercially, and this could potentially lead to identification of superior CPEs.  
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Figure 2.2. Virtual design of CPEs: Flow diagram 
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Figure 2.3. Crossover operators 
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Figure 2.4. Mutation and other operators 
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Figure 2.5: Scoring and screening of an offspring molecule 
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Table 2.1. Summary of QSPR models used for property prediction 

 

Property 
No. of datapoints  

used for modeling 

Range of property 

values 

 

No. of 

descriptors 

 

Neural 

network  

architecture 

R
2
 RMSE % Accuracy 

Melting point 965 14 – 586 K 20 20-14-7-1 0.9 25 K - 

Octanol/water 
partition coefficient (log Kow) 

2029 (-12) - 9.4 9 9-30-6-1 0.91 0.7 - 

Skin penetration 
coefficient (log Kp) 

160 (-5.6) - (-1.0) 10 10-5-3-1 0.9 0.36 - 

Skin sensitization        

LLNA 358 0 - 1 25 25-4-11-1  - 90 

GPMT 307 0 - 1 25 25-3-6-1  - 95 

BgVV 251 0 - 1 24 24-4-1  - 93 

 
 * RMSE = root-mean-squared error in property predictions 
   % Accuracy = percentage of correct classisfications 
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Table 2.2. Genetic algorithm results from each generation 

 

Generation 

number 

Number of seed  

molecules 

Total number of new  

molecules generated 

Accepted 

molecules:  

score of 8 

% of accepted  

molecules 

1 249 943 120 12.7 

2 269 978 155 15.9 

3 290 995 269 27.0 

4 311 1009 193 19.1 

5 331 909 156 17.2 

All 1450 4834 893 18.5 
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Table 2.3. Experimental results and predicted property values of CPEs 

 

Generation Chemical log Kow MW nHacc nHdon MP log Kp 
BgVV 

score 

GPMT 

score 

LLNA 

score 
RF 

INSULIN FLUX 

(10
-4

*IU/m
2
) 

1 OSU1 2.1 120.0 1.0 1.0 291.1 -1.5 0.2 0.1 0.2 1.4 ± 0.1 1.8 

 OSU2 2.8 128.0 1.0 1.0 242.9 -1.7 0.1 0.3 0.3 28 ± 7 8.1 

 OSU3 2.8 128.0 1.0 1.0 264.2 -1.7 0.2 0.1 0.1 17 ± 2 5.5 

 OSU4 2.7 72.1 0.0 0.0 124.2 -1.8 0.5 0.2 0.0 2.1 ± 0.1 1.9 

 OSU5 1.7 100.0 1.0 1.0 200.4 -1.9 0.1 0.3 0.3 2.1 ± 0.3 4.5 

 OSU6 2.0 130.0 0.0 0.0 199.0 -2.2 0.1 0.0 0.2 7 ± 1 6.8 

 OSU7 2.4 70.1 0.0 0.0 121.8 -2.2 0.1 0.1 0.1 7 ± 3 - 

 OSU8 1.0 86.1 1.0 1.0 193.4 -2.2 0.1 0.3 0.3 - 2.6 

 OSU9 2.2 144.0 0.0 0.0 208.4 -2.5 0.1 0.1 0.2 3 ± 1 4.5 

2 OSU10 2.9 168.3 1.0 1.0 233.1 -1.6 0.2 0.0 0.3 53 ± 6 10.5 

 OSU11 1.3 116.2 1.0 1.0 264.9 -2.3 0.1 0.1 0.0 5 ± 2 2.0 

 OSU12 1.1 87.2 1.0 1.0 131.5 -2.6 0.5 0.0 0.1 60 ± 8 6.6 

3 OSU13 1.6 116.2 0.0 0.0 175.8 -2.0 0.2 0.1 0.0 2 ± 1 3.0 

 OSU14 1.8 100.2 1.0 1.0 187.7 -2.1 0.1 0.1 0.3 14 ± 2 3.8 

 OSU15 2.5 129.2 1.0 1.0 262.2 -2.2 0.2 0.2 0.2 76 ± 8 10.3 

4 OSU16 2.1 114.2 1.0 1.0 221.8 -1.5 0.2 0.1 0.1 4 ± 2 3.1 

 OSU17 1.5 112.2 1.0 1.0 203.4 -1.9 0.2 0.4 0.2 4 ± 2 3.4 

5 OSU18 2.3 114.2 1.0 1.0 254.1 -1.4 0.1 0.1 0.1 5.0 ± 0.6 - 
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CHAPTER 3 

QUANTITATIVE STRUCTURE-PROPERTY RELATIONSHIPS  

MODELING OF SKIN SENSITIZATION 

 

3.1. INTRODUCTION 

The discovery of numerous new chemicals for various scientific applications 

involving humans creates the need for reliable assessment of their toxic effects.  

Extensive efforts have been made to identify test methods for evaluating toxicity of 

various chemical compounds [1, 2]. Among the toxicity-related issues, skin sensitization 

due to exposure to toxic chemical compounds has been a major work-related problem. In 

fact, it comprises up to 95% of the occupational contact dermatitis cases [3]. Skin 

sensitization is considered a human health risk that can be caused by skin contact with a 

wide range of chemicals, including those employed in cosmetics. Skin sensitization 

occurs when a foreign, low-molecular weight substance that acts as an allergen penetrates 

the skin and combines with skin proteins to produce an immune response. The initial 

exposure is called the sensitization phase and has no clinical symptoms. The delayed skin 

response from a later exposure to the allergen is called the elicitation phase [4]. Clinical 

symptoms include erythema (redness), vesicles, papules, scaling, and pruritus (itching). 

Common chemicals that cause of this type of allergy include metals (notably nickel), 

epoxy and acrylate chemicals, fragrances, preservatives, and many other natural 

chemicals [5]. 
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Studies that focused on understanding sensitization mechanisms suggest a number 

of requirements for a chemical to cause skin sensitization. The chemical (a) should be 

able to penetrate into the epidermis across the stratum corneum, (b) has to react with the 

protein, (c) has to induce local trauma, and (d) must be recognized by the immune system 

[4]. In practice, however, the process may be more complex when metabolic 

transformations of the chemical are involved. Often, the reaction between the chemical 

and protein is believed to be covalent in nature. Therefore, skin sensitization is 

underpinned by mechanisms based on chemical reactivity, where the chemical behaves as 

an electrophile and the protein behaves as a nucleophile [6]. There are various types of 

electrophile-nucleophile reactions encountered in skin sensitization, including Michael-

type reactions; SN2 reactions; SNAr reactions; acylation reactions and Schiff-base 

formation. A detailed description of each of these reactions is given elsewhere [7]. 

For many years, the guinea pig maximization test (GPMT) and the Buehler test, 

as described in the Organization for Economic Co-operation and Development (OECD) 

Guideline 406, were used as effective methods for assessing skin sensitization [8]. In 

GPMT, preliminary tests are performed to identify the maximum non-irritating dose. The 

chemical is then tested for skin sensitization using 15 to 20 animals for about five weeks; 

the tests including an induction phase, a rest period and a 24-hour topical challenge. The 

chemicals tested are grouped into categories based on the extent of positive response: 

strong sensitizers (70-100% positive), moderate sensitizers (30-70% positive), weak 

sensitizers (0-30% positive), and non-sensitizers (negative). Molecules that belong to the 

strong and moderate classes are classified as skin sensitizers [9]. Although the presence 

of readily available GPMT data for many available chemicals facilitates comparative 
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interpretation, the GPMT method is often not recommended because it uses one 

concentration and it does not provide any information about the thresholds. Open 

Epicutaneous Test (OET) is another potency investigating procedure that uses guinea 

pigs. In addition to determining whether a chemical causes skin sensitization, this 

procedure gives information about the dose responses in the induction and challenge 

phases.  This procedure is found to be superior to the GPMT and Buehler test because it 

uses a multiple dose regime to determine the dose responses and thresholds. However, 

guinea pig tests are expensive and often require a large number of animals to be killed 

[5]. About $6000 to $7000 and 24 to 32 guinea pigs are required to test a chemical using 

GPMT procedures [10]. Therefore, a strong incentive exists to find alternate methods that 

are more cost effective and require fewer animals.  

Recently, local lymph node assay (LLNA) described in the OECD Guideline 429 

has been accepted as a valid test method for assessing skin sensitization. This test 

provides both qualitative and quantitative measures of sensitization potency [11]. The 

costs associated with LLNA have been estimated to be $6000 along with the use of 16 to 

30 mice per chemical.  In comparison, the amount of chemical required was found to be 

much less than that used in the GPMT test, resulting in an additional cost reduction [10]. 

In LLNA, the classification is based on the chemical concentration necessary to induce a 

threefold or greater increase in lymph node cell proliferation activity in treated groups as 

compared to the control [6]. This concentration, known as the EC3 value, is estimated by 

linear interpolation of skin sensitization factors above and below the value of three on the 

LLNA dose response plot. A close association between the EC3 values and the relative 

skin sensitizing potential of chemicals among humans has been observed [5]. Thus, based 
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on the EC3 results obtained, a chemical is classified as being extreme, strong, moderate, 

weak and non-sensitizing [12].  

Although reliable test procedures for skin sensitization exist, their application is 

limited either by the time consumed or cost involved. Hence, computational techniques 

that reduce the effort and cost and ensure animal welfare are needed. Non-testing 

procedures such as quantitative structure-property relationships (QSPR) represent 

effective methods for in vitro prediction of physical properties of chemical compounds. 

QSPR models offer an attractive alternative since they have the potential to provide 

reliable property estimates based solely on chemical structure information. If structural 

information can be successfully decoded, the properties can be determined directly from 

the known chemical structure. QSPR studies have received a significant boost with the 

advent of high-speed computers. This has not only led to the development of new and 

more complex molecular descriptors and also has facilitated the application of QSPR 

models to properties that were previously infeasible due to computational intensity. 

QSPR models are now well established and are used to correlate varied, and often 

complex, physiochemical properties of molecules. The QSPR approach has been applied 

in different areas, and a detailed review of their applications can be found in one of our 

earlier publications [13]. 

Numerous QSPR models in the literature predict skin sensitization of chemical 

compounds with reasonable accuracy; however, most of these models are developed for a 

specific class of compounds. Hence, their general applicability is limited. A detail review 

of available literature models is provided in the next section.  

In the present work, an effort has been made to develop a QSPR skin sensitization model 
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with wider applicability. An extensive database comprised of test results from three test 

procedures were used for QSPR model development. This work focuses on the following 

objectives: 

(a) Developing QSPR models to predict skin sensitization, utilizing experimental 

procedures and the end-point rankings from the LLNA, GPMT and Federal 

Institute for Health Protection of Consumers and Veterinary Medicine (BgVV) 

databases.  (To do so, three separate QSPR models were developed.)  

(b) Improving the predictive capability of the QSPR models using a combination of 

literature, functional group and structural descriptors. 

 

3.2. SKIN SENSITIZATION MODELS 

Estimation of skin sensitization for chemical compounds requires reliable 

generalized predictive models. Skin sensitization of a chemical compound is often found  

to be dependent on three factors: the chemical reactivity, molecular size, and skin 

permeability [14]. The mechanistic pathway to cause skin sensitization is often class-

specific, multiple class-specific QSPR models are believed to be required for the separate 

classes. Hence, earlier QSPR models for skin sensitization were targeted for specific 

classes of chemicals. However, these class-specific models had limited predictive ability 

and were not universally applicable.  QSPR models capable of predicting toxicity for 

diverse datasets were developed to overcome this limitation. Comprehensive reviews of 

QSPR skin sensitization models are provided by Rodford and coworkers [15], Pease and 

coworkers [16], and Patlewicz and coworkers [14, 15].  



 

 47 

The models for prediction of skin sensitization can be classified into 

class/mechanism based QSPR models, statistical QSPR models and expert systems that 

are either statistically or knowledge based or both. The mechanistic models group  

chemicals according to their protein-chemical (nucleophile-electrophile) reaction 

mechanism to develop robust models to predict skin sensitization potential and potency. 

Some of the reaction mechanisms considered in such models include Michael-type 

reactions, SN2 reactions, SNAr reactions, acylation reactions, and Schiff-base formation. 

A detailed description of all the available mechanistic models has been provided by 

Patlewicz and coworkers [17]. However, the robustness of these models relies on the 

availability of a comprehensive reactivity database. Also, the mechanistic domain studies 

fail when a chemical compound cannot be classified accurately. Therefore studies that 

encompass a range of QSPR computational strategies involving physiochemical 

descriptors, structural alerts and statistically determined descriptors taken from a large 

pool of structural descriptors have been developed [18].  

Experimental data from LLNA, QSPR or BgVV have been used extensively, 

either exclusively or in combination, to develop a number of QSPR models utilizing 

structural descriptors. Although mechanistic interpretation of all the descriptors is not 

possible, a few studies have tried to address size and reactivity descriptors. Some of the 

models used a combination of descriptors and structural alerts to model skin sensitization.  

Cronin and Basketter [19], using a database of organic compounds from the 

guinea pig maximization test, developed a QSPR model that predicted 82.6% of the 

chemical compounds correctly. They used a combination of molecular descriptors and 27 

structural alerts to develop a linear regression model. Some of the significant parameters 
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found in the study include the HOMO-LUMO energy gap which accounts for the stability 

and reactivity of the molecule, Shannon index which accounts for the molecular size, and 

12 structural alerts that relate to the sites of chemical reactivity causing skin sensitization.  

A nonlinear analysis using artificial neural networks was later developed by Devillers 

[20] using the same parameters. Accuracies of 90% and 87% were observed for the 

training set and validation set, respectively.  

After LLNA was accepted as a valid test method for assessing skin sensitization, 

various QSPR models were published based on LLNA data or a combination of LLNA 

and GPMT data. In 1995, Ashby and coworkers [21] studied the structural activity 

relationship (SAR) of 106 LLNA tested chemical compounds and categorized sensitizing 

and non-sensitizing agents. Fedorowicz and co-workers [3] developed a QSPR model 

using LLNA data for 54 chemical compounds. An accuracy of 83% and 79% was 

observed for the training and validation sets using four molecular descriptors. Patlewicz 

and co-workers [22] evaluated two groups of fragrance chemicals – saturated aldehydes 

and unsaturated aldehydes using QSPR models relating the EC3 values derived from 

LLNA to physiochemical properties (reactivity and lipophilicity). In 2005, Dimitrov and 

co-workers [23] developed a SAR/QSPR model by integrating data from LLNA, GPMT 

and BgVV. Although the end-point ranking for each of these methods is different, data 

were reassessed using a unified three-category scale. Thus, a larger dataset containing 

634 chemicals with wide chemical diversity was obtained. The SAR/QSAR model 

classified correctly about 80% of the chemicals with significant sensitizing effect and 

72% of non-sensitizing chemicals. External validation was done using a set of 96 

chemicals, and 87% correct predictions were obtained. Recently, statistical QSPR models 
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utilizing 4-D finger print descriptors have been found to be effective for predicting skin 

sensitization. Logistic regression techniques were used to obtain QSPR models with 

accuracies close to 70% using LLNA data of 218 compounds [24]. 

A number of expert systems that combine the structure-toxicity relationships, 

knowledge of mechanisms and skin metabolism, or statistical analysis have been 

developed. Expert systems such as Derek for Windows (DfW), TOxicity Prediction 

Komputer-Assisted Technology (TOPKAT), Multi-CASE, Hazard Expert and TIssue 

MEtabolism Simulator for Skin Sensitization (TIMES-SS) have been found to be 

effective for predicting skin sensitization. However, their application is limited because 

the algorithms used to develop the expert systems are not fully described [14]. Local 

QSAR models using Relative Alkylation Index (RAI) approach relating the skin 

sensitization potency of a chemical compound to the dosage amounts, rate nucleophile-

electrophile rate constants and the octanol/water partition coefficients were developed for 

small sets of compounds. These models are effective in predicting skin sensitization for 

the targeted chemicals only [17].  

 

3.3. QSPR METHODOLOGY 

The development of a QSPR model for skin sensitization involves several distinct 

steps: (a) compilation of a data set, (b) generation and optimization of 3-D molecular 

structures, (c) calculation of molecular descriptors, (d) reduction of the number of 

descriptors, and (e) development of a regression model. To begin, reliable data for a 

variety of molecules must be assembled. Once this data set is characterized, the 3-D 

structures of the molecule are generated using commercial molecular visualization 
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software. Structure optimization and descriptor generation are performed using 

commercial QSPR software. The model development phase usually begins with linear 

analysis, where algorithms such as multiple-linear regression analysis, principal 

component analysis, heuristic analysis or partial least squares may be used. The best set 

of descriptors is then used to develop the non-linear QSPR model using artificial neural 

network algorithms. 

3.3.1 Dataset Compilation 

High quality data generated through good laboratory practices and complying 

with the OECD test guidelines have been used for modeling. The majority of the LLNA 

data (211 molecules) used originated from a study by Gerebrick and co-workers [25]. 

Other sources of LLNA data include publications by Langton and co-workers [26], 

Patlewicz and co-workers [14], and NIH publication no. 99-4494 [10]. The GPMT data 

were compiled from Cronin and co-workers [19] and Devillers and co-workers [20]. An 

expert group from Federal Institute for Health Protection of Consumers and Veterinary 

Medicine (BgVV) collected and evaluated data from the literature on substances with 

documented contact allergenic properties in human and animal experiments. The BgVV 

data of 244 chemicals with contact allergenic properties published by Schlede and co-

workers [27] were used in this study. In-house data of Unilever shared by Patlewicz were 

also added to the LLNA, GPMT and BgVV databases [28]. Potency categories described 

in the above mentioned sources were used in the present modeling effort.  

Oklahoma State University (OSU) LLNA database:  A database containing experimental 

LLNA data for 392 molecules was compiled from the above-mentioned sources. In terms 

of chemical diversity, the database contains experimental data pertaining to a number of 
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chemical classes, including aldehydes, ketones, aromatic amines, quinones and acrylates. 

It also includes compounds exhibiting various reaction mechanisms. The molecules are 

classified as non-sensitizers, weak, moderate, strong and extreme sensitizers, based on 

experimental EC3 values. The molecules were scored for their potency on a scale of 0-1.  

Since the LLNA data available in the literature are limited to a few hundred 

compounds, efforts were made to utilize all reliable experimental data for modeling. Of 

the 392 molecules, 96 are classified as either sensitizing or non-sensitizing (positive or 

negative). For these molecules, a score of 0 is assigned to non-sensitizers and a value of 

0.625 (average of weak potency and extreme potency) is assigned to sensitizers. Table 

3.1 summarizes the scoring of the LLNA data used. 

Of the 392 molecules, only 358 structures were considered for modeling. A total 

of 34 molecules were rejected for one the following reasons: (a) structure could not be 

found, (b) structure could not be optimized using ChemDraw 3D [29], or (c) molecular 

descriptors could not be generated for the structure. The molecular weight distribution of 

the 358 chemical compounds used for modeling is provided in Figure 3.1. All these 

molecules have molecular weights (<500), to be consistent with the chemicals known to 

be good skin permeants.  

In addition to chemical diversity, for the model to be able to predict skin 

sensitization effectively, the range of potencies used to train the model should be 

adequate.  As indicated by the EC3 values, the chemicals compiled in the database 

display a wide range of potencies. Specifically, the LLNA EC3 values show a range of 

potencies from weak allergens to extreme allergens. Accordingly, the chemicals are 

classified as weak, moderate, strong and extreme sensitizers. Figure 3.2 shows the 
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potency category distribution of the molecules considered. Non-sensitizers and weak 

sensitizers are classified as non-toxic and moderate, strong and extreme sensitizers are 

classified to be toxic. Hence, based on the scores assigned to each of the potency 

categories, all molecules that are in the range 0-0.375 are non-toxic, and the ones in the 

range of 0.375-1 are toxic. 

OSU GPMT database: A database containing experimental GPMT data for 334 chemical 

compounds was used for modeling skin sensitization. The molecules were categorized as 

being non-sensitizers, weak, moderate and strong sensitizers, and toxicity scores of 0, 

0.33, 0.66 and 1 were assigned, respectively. Molecules obtained from Unilever that are 

classified as being strong were given a score of 0.83 (average of moderate and strong) 

because the database classifies both moderate and strong sensitizers as being strong. 

Table 3.1 summarizes the scoring of GPMT molecules.  

Of the 334 molecules compiled, only 307 of them were used for modeling. The 

other 27 molecules were rejected for reasons discussed above. To develop a model 

applicable to a wide range of chemical compounds, we used training data with wide 

distributions of molecular weights and potency categories. The molecular weight 

distribution and the potency distribution of the final set of compounds are shown in 

Figures 3.3 and 3.4, respectively. Adequate representations of chemical compounds from 

different potency categories were used. Non-sensitizers and weak sensitizers were 

classified as being non-toxic, and moderate and strong sensitizers were classified as being 

toxic. On a scale of 0-1, molecules with toxicity scores in the range of 0-0.5 were 

classified as being non-toxic, and the ones in the range of 0.5-1 were classified as being 

toxic. 
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OSU BgVV database: The BgVV database containing allergic potency data for 272 

molecules was used for modeling. All the molecules are classified into three categories: 

A, B, and C, where A refers to molecules that are strong allergens, B refers to weak 

allergens, and C refers to molecules with very low or no allergic properties.  Toxicity 

scores of 1, 0.5, and 0 were assigned to A, B, and C categories, respectively, as shown in 

Table 3.1. Of the 272 molecules, 21 molecules are not included in the QSPR model for 

reasons discussed earlier. The final dataset included 251 molecules. The molecular 

weight distribution and potency category distributions are shown in the Figures 3.5 and 

3.6, respectively. Molecules belonging to Category A are classified as being toxic, and 

molecules belonging to Categories B and C are classified as being non-toxic. Hence, on a 

scale of 0-1, molecules with toxicity score 0-0.75 are non-toxic and 0.75-1 are classified 

as toxic. 

Data validation studies: Validation of the experimental procedures outlined above as test 

methods for assessing skin sensitization is critical before adopting such data for model 

development. A committee formed in 1999 compared LLNA data for 209 chemicals to 

the available GPMT and human skin sensitization data. The Interagency Coordinating 

Committee on the Validation of Alternative Methods (ICCVAM) with support from the 

National Toxicology Program Interagency Center for the Evaluation of Alternative 

Toxicological Methods (NICEATM) sponsored this independent scientific peer review to 

validate the LLNA test [10]. The statistics obtained from the study are shown in Tables 

3.2 and 3.3.  

Tests comparing LLNA and GPMT show an accuracy of 89% for the available 97 

chemical compounds with both GPMT and LLNA data. Comparing LLNA data to human 
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test data showed an accuracy of 72% for 74 molecules. While comparing the GPMT to 

human tests yielded an accuracy of 72% for 57 molecules. In terms of accuracy, 

sensitivity, specificity, and positive and negative predictability, the performance of the 

LLNA was similar to that of the GPMT. Equally important, the performance of the 

LLNA and the GPMT was similar when each was compared to human test data.  

An assessment of reliability was conducted using data for 2,4-

dinitrochlorobenzene (DNCB) and hexylcinnamic aldehyde (HCA). The two data sets 

consisted of EC3 values for DNCB tested twice in each of five laboratories, and HCA 

tested six times in each of two laboratories. This reliability analysis calculated the within-

laboratory consistency statistics and the between-laboratory consistency statistics. The 

results indicated agreement within 95% confidence limits [30]. 

3.3.2 Structure Generation and Optimization 

The first step in any QSPR modeling effort is the generation of chemical 

structures. Various chemical representations have been proposed in the literature. For 

example, OpenBabel software [31] has around 80 different representations for a given 

molecular structure. The most common way of representing a chemical is a two-

dimensional (2-D) sketch. However, using a 2-D representation does not provide a 

complete description of the molecule and lacks both shape and surface distribution 

information of the molecule. To have an effective QSPR model, the representation of a 

molecule should provide all the necessary structural information. This requires 

information about the atoms present, along with three dimensional (3-D) coordinates that 

provide a full spatial depiction of the molecule. A commercial package, ChemDraw [29] 

was used to generate the 2-D structures of the molecules. The 3-D structures were 
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generated for these molecules using Chem3DUltra [29]. Since more than one set of 3-D 

coordinates can satisfy the structural constraints (bond length and bond angle) for any 

given molecule, the conformation with the lowest energy must be located. The structures 

were initially optimized using the Chem3D module available in Chem3DUltra. To locate 

the lowest energy configuration multiple initializations were used during the structure 

optimization. AMPAC [32] was then used to further refine the 3-D geometry of the 

structures. Output files from AMPAC were used to calculate various descriptors. 

3.3.3 Descriptor Generation 

The final optimized structures from AMPAC were provided as inputs to 

commercial QSPR software to generate over 1200 molecular descriptors. A variety of 

constitutional, topological, geometrical, thermodynamic, quantum-chemical and 

electrostatic descriptors were generated using CODESSA [33], and 154 functional group 

descriptors were generated using Dragon [34]. The number of descriptors calculated for 

each molecule depends on the structural complexity of the molecule. Descriptors that 

were not calculated for a given molecule were set to zero in the subsequent QSPR model 

development. 

3.3.4 Descriptor Reduction 

All the descriptors generated for a specific molecule are not significant in 

modeling. The use of all available descriptors in the model development causes 

dimensionality problems and diminishes the performance of a QSPR model, especially 

when non-linear algorithms are used in model development [35]. Descriptor reduction is 

the process of automating the identification of the most relevant set of descriptors for 

model development and is among the critical steps in QSPR modeling efforts. Different 
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methods for reduction are available in the literature [36]. The most widely used 

techniques are the principal-component analysis (PCA), partial least-squares (PLS), 

genetic algorithms (GA), and neural networks (NNs) [35]. Most QSPR models  have 

been based on multiple linear regression correlations, which requires a priori assumption 

of the form of the mathematical correlation model. However, linear regression analysis 

ignores the possibility of non-linear relationships between the descriptors and the 

property being modeled. The use of such linear approaches often leads to loss of critical 

information and results in models with poor predictive abilities [37].  

To ensure that the non-linear relationships are accounted for in the QSPR models, 

non-linear transformations of all the descriptors were calculated, and an expanded set of 

descriptors was generated. The expanded set of descriptors was used to find the best set 

of descriptors through sequential selection. The best descriptor from the expanded set is 

selected and combined sequentially with the remaining descriptors. Then the best two-

descriptor combination is retained and combined with each of the remaining descriptors. 

The sequence continues until a set of 40 descriptors has been identified. Heuristic 

regression available in CODESSA was used to further reduce the number of descriptors. 

The optimal set of descriptors was retained for artificial neural network (ANN) analysis. 

3.3.5 Literature Descriptors 

For a valid and reliable predictive model, some mechanistic interpretation of the 

relationship between the property and descriptors would appear possible [38]. However, 

such interpretation is often not possible for all the descriptors due to the complexities of 

the property-descriptor relation. A detailed review of the literature indicates that chemical 

reactivity, molecular size, and skin permeability are important determinants of skin 
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sensitization. The chemical reactivity of a molecule can be related to the HOMO and 

LUMO energies. Molecules with low HOMO-LUMO energy-gaps have low kinetic 

stability and are favorable to addition or removal of electrons, thus forming activated 

complexes [39]. The frontier orbital approximations state that a molecule preferably 

reacts with the molecule whose frontier orbitals are closest in energy. Thus, a nucleophile 

(protein) tends to react with a electrophile (molecule) having the lowest LUMO energy 

[40]. This approximation was validated by analyzing the LUMO energies of the chemical 

compounds for three data sets used. The LUMO energies were observed to be relatively 

lower for compounds that were tested as positive for skin sensitization in the animal tests.  

Skin penetration ability is an important factor for the risk assessment of 

chemicals. The chemical compound should be able to permeate into the skin to cause skin 

sensitization. Therefore, the permeability of the chemical in the skin becomes an 

important factor to model skin sensitization. However, due to the limited amount of 

experimental data available on skin permeability, robust QSPR models for its prediction 

do not exist.  Nevertheless, Barratt and coworkers [9] did find that the molecular volume 

and the octanol/water partition coefficient are important determinants of skin 

permeability.  

 

3.4. QSPR MODEL DEVELOPMENT 

 This work sought to (a) demonstrate the ability of non-linear QSPR models to 

predict skin sensitization of a chemical compound, (b) examine the efficacy of using data 

from three different skin sensitization test procedures (LLNA, GPMT, and BgVV)  for 

predicting skin sensitization, (c) utilize descriptors from multiple QSPR software to 
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identify the most significant descriptors for the prediction of skin sensitization, and (d) 

determine the efficiency of using a combination of literature, functional group and 

structural descriptors. The following specific case studies were conducted to achieve 

these objectives: 

Case Study 1: Using literature descriptors to develop a QSPR model for skin 

sensitization. 

Case Study 2: Improve the results obtained in Case Study 1 by including 

functional group and structural descriptors in the QSPR model. 

Case Study 3: Develop three separate non-linear QSPR models to describe data 

from the LLNA, GPM T and BgVV datasets. 

Each case study provided valuable guidance to the development of the final QSPR model.  

3.4.1 Linear Model Development  

Choosing the best set of descriptors that encode the property of interest is a 

challenging optimization problem. Fast and reliable regression techniques are required to 

obtain a reduced set of descriptors, based on discarding repetitive and insignificant 

descriptors through orthogonalization and non-linear sequential reduction. Multi-linear 

techniques available in commercial software packages are used to obtain linear regression 

models. CODESSA includes linear regression analysis techniques that include (a) multi-

linear regression, (b) principal-component regression, (c) partial least-squares regression, 

and (d) heuristic regression. In the search for the best multi-linear correlation equation for 

a large set of descriptors, the major problem is connected with the mutual collinearity of 

descriptors, which leads to instability of regression coefficients, overestimated standard 

errors, and critical loss of predictive information. One way to avoid this effect is by 
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reducing the non-orthogonal set of the natural descriptors into a set of orthogonal factors. 

The latter, being linear combinations of the natural scales,  preserves the information 

content whereas the negative effects of the scales multi-collinearity is removed in the 

subsequent regressions. In this work, heuristic regression analysis technique was used to 

obtain the best linear regression model after orthogonalization and non-linear sequential 

reduction of descriptors.  

3.4.2 Non-Linear Model Development  

Linear regression analysis ignores any possible non-linear relationships between 

the property and its descriptors. Thus, the use of  linear approaches can lead to loss of 

critical information, and the resultant models may have poor predictive abilities. To 

ensure that the non-linear relationships are accounted for in the QSPR models, the 

optimal descriptor set from heuristic analysis was retained for ANN analysis. 

ANN Analysis:  The efficacy and efficiency of supervised learning in multilayer neural 

networks strongly depends on the network topology, the transfer functions, the learning 

rule, and the initial values of the weights. Optimal values for these items are usually 

unknown a priori because they depend on the particular training set to be considered and 

on the nature of the solution. A feed forward back-propagation neural network model 

with improved network architecture, consistency, data randomization, allocation of 

training/validation data, and automated network initialization was used for the non-linear 

model development [41]. The model searches for all possible combinations of hidden 

layer units that result in a degree of freedom ratio (ratio of the number of network 

connections and the number of data points) value greater than two.  
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 The input dataset was divided into training, validation and testing sets containing 

70%, 15% and 15% of the data, respectively. Overtraining of the network, which results 

in poor predictive capability, is avoided by use of the cross-validation set with an early-

stopping method. The training set is used for computing the gradient and updating the 

network weights and biases. The validation set chosen should be representative of all 

points in the training set for optimal performance. The error in predictions for the 

validation set is monitored during the training process. The validation error normally 

decreases during the initial phase of training, as does the training set error. However, 

when the network begins to over fit the data, the error for the validation set begins to rise. 

When the validation error increases for a specified number of iterations, training is 

stopped, and the weights and biases at the minimum of the validation error are retained. 

 By training the network starting from several different initial conditions, the 

robustness of the network performance can be verified. Multiple randomizations of the 

data and initializations of the weights are used to obtain the best network, as suggested by 

Iyer and Rhinehart [42]. The inputs and targets are normalized to have zero mean and 

unity standard deviation, which ensures that exceptionally large-valued descriptors do not 

bias the network. The Nguyen-Widrow algorithm is used to initialize weights and biases, 

which are updated using a Levenberg-Marquardt optimization technique. The transfer 

functions and the performance function of the network are tailored to find the best 

possible network. The final network is further evaluated using sum of squared errors, 

average-absolute deviations, weighted average-absolute deviations, root-mean-squared 

error, number of wrong classifications and correlation coefficient, when applicable.   
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3.5. RESULTS AND DISCUSSION 

 Table 3.4 and 3.5 contain a brief summary of the modeling results. Literature 

descriptors such as the molecular volume accounting for the size of the molecule, 

HOMO-LUMO energy gap accounting for the reactivity of the molecule and 

octanol/water partition coefficient (log Kow) accounting for the skin penetration ability 

were forced into the final QSPR models. Initially, the QSPR models were developed 

using only literature descriptors (Case 1). Although these models were comparable to the 

models cited in the literature, the errors exceeded the desired level. Therefore, around 

1200 structural descriptors and 154 functional descriptors were analyzed to obtain a 

QSPR model with the best predictive ability. Non-linear transformations of the 

descriptors were evaluated to identify any non-linear relationships during descriptor 

reduction. Although the inclusion of these descriptors improved the model predictions, 

additional improvements were desired, and hence, non-linear neural network based 

models were developed. 

 The results obtained using literature descriptors are outlined in Table 3.4. 

Accuracies of 74%, 80% and 73% were obtained for the LLNA, GPMT and BgVV 

datasets, respectively. In addition to low accuracies, the literature-descriptor models had 

large deviations from the experimental values. Also, using only these descriptors to 

predict skin sensitization of diverse chemical compounds may lead to large errors since 

all the effects may not be captured by these descriptors alone. Therefore, molecular 

descriptors that can account for other skin sensitization effects in addition to those 

accounted by the literature descriptors were included to obtain accurate predictions.  
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 Skin sensitization of a compound is often associated with the presence of alerting 

groups that react covalently with the protein. In this work, we have attempted to identify 

functional groups that show significant correlation with skin sensitization along with 

other molecular descriptors. For this purpose, 154 functional group descriptors were 

generated using Dragon software. These descriptors were added to the molecular 

descriptor set during the descriptor reduction process. Non-linear transformations of these 

descriptors were evaluated and a sequential regression analysis technique was used to 

reduce the set of descriptors for model development. The network performance improved 

with the inclusion of more descriptors, but the stability of the network was reduced. 

Hence, deciding on the number of descriptors is a trade-off between the performance and 

stability of the network.  

 Our main objective was to develop a QSPR model that can predict accurately the 

skin sensitization values for a diverse set of compounds. Therefore, careful analysis was 

made to determine the optimal set of descriptors for the best predictive network. The total 

number of significant descriptors was found to be 25 for the LLNA and GPMT QSPR 

models and 22 for the BgVV QSPR model. The final sets of descriptors used in the 

models are listed in Table 3.6. Descriptors accounting for molecular size and reactivity 

were found to be significant, along with other functional group descriptors. Further 

analysis using the descriptor sets was conducted using ANNs. The ANN model results 

are summarized in Table 3.5. The predictions obtained for each of the three QSPR 

models improved significantly when structural descriptors were included in the model 

development. Accuracies of 90%, 95% and 90% were obtained using 25-4-11-1, 25-3-6-
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1, and 22-4-1 network architectures for the LLNA, GPMT and BgVV QSPR models, 

respectively. Figures 3.7-3.9 present the error distribution for each of the models.  

To develop the optimum network architecture, multiple neural network runs with 

mean-absolute error, mean-squared error, sum-squared error, and mean-squared error 

with regularization performance functions were conducted. The results obtained using 

mean-squared error performance function was found to give the best results for skin 

sensitization modeling. Similarly, the network performance was improved by studying 

networks with multiple transfer functions and number of neurons in the hidden layers.  

The current model for skin sensitization improves on other similar literature 

models in several respects, including (a) use of a large dataset consisting of diverse 

chemical classes and potency categories; (b) use of a combination of literature and 

structural descriptors; (c) use of descriptors from multiple QSPR software to assure 

model superiority and stability; (d) use of non-linear transformations during descriptor 

reduction to obtain the most suitable set of descriptors; (e) examining the efficacy of both 

linear and non-linear QSPR models; and (f) use of robust non-linear neural networks with 

multiple randomizations and initializations to ensure network stability. Our model is also 

capable of predicting the skin sensitization potency of a molecule on a scale of 0-1. Thus, 

a reasonable gradation for the level of potency is provided for the chemical compound 

using the LLNA, GPMT and BgVV QSPR models. In addition, an estimate of the dosage 

levels can be obtained using the LLNA skin sensitization score.    
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3.6. CONCLUSIONS 

Following are the conclusions drawn based on this study: 

1. Our new structure-based, non-linear models are capable of predicting the skin 

sensitization of a chemical compound with 90% accuracy for the three datasets 

considered. 

2. Descriptors that account for size, reactivity and skin penetration were confirmed 

to be significant in modeling skin sensitization. 

3. The results of this study indicate that the use of structural descriptors coupled 

with previously identified descriptors provide improved estimates of skin 

sensitization. 

4. The use of three QSPR models to predict skin sensitization of a chemical 

compound is effective since the end-point ranking system is different in each of 

these models. 

5. Our new approach of identifying non-linear relationships between descriptors and 

physical property through non-linear transforms during descriptor reduction 

reduces the drawbacks associated with linear reduction techniques. 

6. Using multiple data randomizations, multiple weight initializations, and non-

linear descriptor reduction techniques proved to be effective in developing stable 

non-linear regression models. 
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Figure 3.1. Molecular weight distribution of the LLNA chemical compounds 
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Figure 3.2. Potency distribution of the LLNA chemical compounds 

 



 

 70 

0

20

40

60

80

100

120

140

160

[0,100] [100,200] [200,300] [300,400] [400,*]

Molecular weight

N
u

m
b

e
r 

o
f 

C
h

e
m

ic
a
ls

 
Figure 3.3. Molecular weight distribution of the GPMT chemical compounds 
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Figure 3.4. Potency distribution of the GPMT chemical compounds 
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Figure 3.5. Molecular weight distribution of the BgVV chemical compounds 
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Figure 3.6. Potency distribution of the BgVV chemical compounds 
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Figure 3.7. Distribution of absolute deviation in predicted LLNA 

 skin sensitization score 
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Figure 3.8. Distribution of absolute deviation in predicted GPMT 

 skin sensitization score 
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Figure 3.9. Distribution of absolute deviation in predicted BgVV  

skin sensitization score 
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Table 3.1. Skin sensitization scores of chemical compounds based on classification 

 

LLNA   GPMT   BgVV  

Classification Toxicity score  Classification Toxicity score  Category Toxicity score 

Non-sensitizer 0  Non-sensitizer 0  C 0 

Weak sensitizer 0.25  Weak sensitizer 0.33  B 0.5 

Moderate sensitizer 0.5  Moderate sensitizer 0.66  A 1 

Sensitizers(unclassified) 0.625  Strong-sensitizers(Unilever) 0.83    

Strong sensitizer 0.75  Strong  sensitizer 1    

Extreme sensitizer 1       
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Table 3.2. Comparative evaluation of the LLNA database 

 

Comparison Number Sensitivity
1
 Specificity

2
 

Positive 

predictivity
3
 

Negative 

predictivity
4
 

Accuracy
5
 

  % Number % Number % Number % Number % Number 

LLNA vs. 
GPMT 

97 91% (62/68) 83% (24/29) 93% (62/67) 80% (24/30) 89% (86/97) 

LLNA vs. 
human 

74 72% (49/68) 67% (4/6) 96% (49/51) 17% (4/23) 72% (53/74) 

GPMT vs. 
human 

57 70% (38/54) 100% (3/3) 100% (38/38) 16% (3/19) 72% (41/57) 

 
1 Sensitivity: The proportion of all positive chemicals that are correctly classified as positive in a test. 
2 Specificity: The proportion of all negative chemicals that are correctly classified as negative in a test. 
3 Positive predictivity: The proportion of correct positive responses among materials testing positive. 
4 Negative predictivity: The proportion of correct negative responses among materials testing negative. 
5 Accuracy: The proportion of correct outcomes. 
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Table 3.3. Comparative evaluation of the LLNA database limited to compounds with LLNA, guinea pig, and human data 

 

Comparison Number Sensitivity Specificity 
Positive 

predictivity 

Negative 

predictivity 
Accuracy 

  % Number % Number % Number % Number % Number 

LLNA vs. 
human 

57 72% (39/54) 67% (2/3) 98% (39/40) 12% (2/17) 72% (41/57) 

GPMT vs. 
human 

57 70% (38/54) 100% (3/3) 100% (38/38) 17% (3/19) 72% (41/57) 

LLNA vs. 
human 

62 73% (43/59) 67% (2/3) 98% (43/44) 11% (2/18) 73% (45/62) 
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Table 3.4. Performance of QSPR models using literature descriptors 

 

Comparison 
Data 

Points 
Sensitivity Specificity Accuracy 

  % Number % Number % Number 

LLNA 358 77% (134/175) 72% (132/183) 74% (266/358) 

GPMT 307 90% (141/156) 70% (107/151) 80% (248/307) 

BgVV 251 66% (71/107) 83% (120/144) 73% (191/251) 

 

 
 
 
 

Table 3.5. Performance of QSPR models using a combination of literature and 

structural descriptors 

 

Comparison 
Data 

points 
Sensitivity Specificity Accuracy 

  % Number % Number % Number 

LLNA 358 92% (154/175) 88% (168/183) 90% (322/358) 

GPMT 307 95% (148/156) 95% (144/151) 95% (292/307) 

BgVV 251 82% (88/107) 96% (138/144) 90% (223/251) 

 

 

 

 

 

 

 

 



 

 

7
9

Table 3.6. Final set of descriptors used in QSPR models 

 

LLNA  

Relative number of N  atoms nArCOOH 
Number of benzene rings nRCOOR 
Average Structural Information content (order 0) nRCONHR 
Average Information content (order 2) nArCONHR 
Molecular volume nRCOX 
HOMO - LUMO energy gap nArCHO 
Min net atomic charge for a C atom nArCO 
HASA-1/TMSA [Quantum-Chemical PC] nROH 
Max valency of a C atom kow 
Min resonance energy for a C-C bond Max electroph. reaction index for a S atom 
Zero point vibrational energy Max total interaction for a Br-C bond 
nCs Max electroph. reaction index for a F atom 
nR=Cs  

GPMT  

Molecular volume nCbH 
DPSA-1 Difference in CPSAs (PPSA1-PNSA1) [Zefirov's PC] nArCONHR 
HOMO - LUMO energy gap nArOCON 
Min electroph. reaction index for a C atom nRCOX 
Max electroph. reaction index for a C atom nRCHO 
WNSA-1 Weighted PNSA (PNSA1*TMSA/1000) [Quantum-Chemical PC] nArNH2 
FPSA-3 Fractional PPSA (PPSA-3/TMSA) [Quantum-Chemical PC] nRNHR 
FNSA-3 Fractional PNSA (PNSA-3/TMSA) [Quantum-Chemical PC] nOHs 
RPCS Relative positive charged SA (SAMPOS*RPCG) [Quantum-Chemical PC] kow 
RNCS Relative negative charged SA (SAMNEG*RNCG) [Quantum-Chemical PC] Min 1-electron reaction index for a Cl atom 
Min (>0.1) bond order of a C atom Min 1-electron reaction index for a Br atom 
Max bond order of a H atom Max total interaction for a C-S bond 
nCrt  
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Table 3.6 (cont’d). Final set of descriptors used in QSPR models 

 

BgVV  

Molecular volume 
WNSA-3 Weighted PNSA (PNSA3*TMSA/1000)  
[Zefirov's PC] 

LUMO energy Relative number of N  atoms 

Kow 1X BETA polarizability (DIP) 

RPCG Relative positive charge (QMPOS/QTPLUS) [Zefirov's PC] nArOR 

Average Bonding Information content (order 0) nOxiranes 

DPSA-2 Difference in CPSAs (PPSA2-PNSA2) [Zefirov's PC] Max partial charge for a O  atom [Zefirov's PC] 

Min partial charge for a C  atom [Zefirov's PC] nArNO2 

Number of bonds Molecular surface area 

Max SIGMA-PI bond order Avg 1-electron reaction index for a N atom 

HA dependent HDCA-2/TMSA [Quantum-Chemical PC] Max 1-electron reaction index for a N atom 

HA dependent HDSA-1 [Quantum-Chemical PC] nROCON 
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CHAPTER 4 

QUANTITATIVE STRUCTURE-PROPERTY RELATIONSHIPS 

 MODELING OF SKIN IRRITATION 

 

4.1. INTRODUCTION 

Skin diseases and injuries are the most common job-related problems in industries 

such as manufacturing, food production, construction, machine tool operation, printing, 

metal plating, leather processing, engine service, landscaping, farming, or forestry. All 

industrially important chemicals are assessed for their skin irritation or corrosive ability 

and the results are listed in Material Safety Data Sheets (MSDS) to ensure the safety of 

the workers. According to the Organization for Economic Co-operation and Development 

(OECD) test guideline 404 [1], skin irritation is defined as “the production of reversible 

damage of the skin following the application of a test substance for up to 4 hours.” For 

many years, the Draize rabbit skin test has been widely accepted for assessing the skin 

irritation potential of chemicals. In this test, 0.5  mL of the chemical of interest is applied 

to albino rabbit skin for four hours and kept under clinical observation for 14 days for 

signs of erythema and edema [2]. Although the Draize test provides reliable estimates of 

skin irritation, it is often criticized as being cruel to the test animals; hence, the incentive 

for developing predictive procedures for estimating skin irritation potential of chemicals 

has been increasing [3]. 

In the last few decades, various in vitro and in silico skin irritation test methods 

have been proposed as replacements for in vivo tests. Promising in vitro methods that 
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have been evaluated include EpiDerm, EPISKIN, PREDISKIN, the non-perfused pig ear 

model, and the mouse skin integrity function test (SIFT) [3]. However, none of the 

alternate test procedures has been accepted as a valid replacement to the Draize test by 

OECD [4]. In silico methods for predicting skin irritation include expert systems and 

structure-activity models that express the skin irritation potential of a chemical as a 

function of a set of physiochemical properties and structural descriptors. The application 

of these in silico models is limited by the availability of the necessary input 

physiochemical properties such as octanol/water partition coefficient, melting point, lipid 

solubility, aqueous solubility, surface tension and vapor pressure. Often the properties of 

the novel chemicals are not readily available, rendering these in silico models 

inapplicable. The limited applicability of these procedures calls for development of novel 

prediction methods that use only structural descriptors to estimate the skin irritation 

potential. 

Quantitative structure-property relationships (QSPR) modeling offers an attractive 

alternative because successful models have the potential to provide reliable property 

estimates based solely on chemical structure information. That is, if structural 

information can be successfully decoded, the properties can be determined simply from 

the chemical structure.  

QSPR studies have gained impetus with the advent of high-speed computers. This 

has not only led to the development of new and more complex molecular descriptors, but 

it has also been instrumental in the application of QSPR models to properties that were 

previously infeasible due to computational intensity. QSPR models are now well 

established and are used to correlate varied, and often complex, physiochemical 
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properties of molecules. The QSPR approach has been applied in different areas and a 

detailed review of its applications can be found in one of our earlier publications [5, 6].  

As outlined in the next section, various QSPR models have been proposed for 

predicting skin irritation potential of molecules. However, these models are restricted to a 

limited number of classes of molecules, thus lacking in their general applicability.  

In this work, we have developed a skin irritation QSPR model using rabbit Draize 

test data for 189 compounds consisting of chemicals from various classes. We have 

evaluated the predictive ability of several QSPR models based on literature descriptors, 

group contribution descriptors and structural descriptors, used alone or in combination. A 

QSPR model utilizing only structural descriptors was developed first, then its predictive 

ability was improved by using a combination of the literature, functional group and 

structural descriptors. Robust artificial neural network models with superior capabilities 

were used for non-linear model development. The physical significance of the final set of 

descriptors was studied and external validation of the QSPR model was performed using 

data from human-patch tests. 

 

4.2. SKIN IRRITATION MODELS 

Although in vivo tests for skin irritation cannot be replaced entirely, they can be 

reduced considerably by initial screening of chemical compounds using in vitro and in 

silico methods. While a number of in vitro methods have been proposed in the literature, 

to date, there are no validated in vitro tests that can replace the Draize test. A detailed 

review of the currently available in vitro techniques is discussed elsewhere [7, 8]. The in 

silico techniques offer an attractive alternative due to their ease of use and low cost in 
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comparison to the in vitro techniques. In this section, a review of the in silico techniques 

available in the literature is presented. A comprehensive review of the available in silico 

techniques for predicting skin irritation potential of chemical has been reported by Saliner 

et al. [9].  

Physiochemical properties that have been found to be significant for modeling 

skin irritation include molecular volume, dipole moment, molecular shape, the over all 

number of atoms, steric effects, molar refractivity, acidic dissociation constant (pKa), 

absolute hardness, and the octanol/water partition coefficient (log Kow) [9]. Among these 

properties, log Kow has been found to be most significant since it provides a quantitative 

measure of partitioning between aqueous and lipid phases [10]. One of the earliest 

attempts to model skin irritation using structure-activity relationships (SARs)  was done 

by Enslein et al. [11]. Separate models were developed for aromatic and aliphatic 

compounds using molecular connectivity indices, sub-structural keys and molecular 

length parameters. Since the database used did not provide numerical scores, the models 

use skin irritation severity ratings. Smith et al. [12] developed a SAR model to 

discriminate skin irritant esters from non-irritant esters using nineteen physiochemical 

parameters that represent the transport, electronic and steric properties. Human skin 

irritation data of 42 esters were used to generate ten sub-models using multiple random 

sampling of the database. The sensitivity and specificity values ranged from 0.846 to 

0.923 and 0.615 to 0.923, respectively. The results indicate that physiochemical 

parameters of esters relate to their skin irritation effects in humans, and chemical 

partitioning and intermolecular reactions are important components of the response. 

Smith et al. [13] developed an iterative SAR model for human skin irritation.  The model 
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predictions were validated experimentally and these test results were incorporated into 

the database to refine the model. A total of 34 irritants from the rabbit test were selected 

of which 16 were predicted by the model to be positive and 18 to be negative. These 

chemicals were further tested experimentally using human patch test and the results were 

incorporated into the database to refine the model. However, as the SAR models were 

based on limited data, the accuracy of the models was not satisfactory, thus emphasizing 

the need for experimental validation of models and their further refinement as new data 

become available.  

Hayashi et al. [14] studied QSAR for skin irritation potential using 24 phenols. 

Absolute hardness, LUMO and log Kow were used to fit a regression function to the skin 

irritation scores obtained from a rabbit Draize test study. An R value of 0.85 was 

obtained. The model predictions were further validated using a set of six additional 

phenols, and good correlations with the expected skin irritation scores were observed. 

Berner et al. [15] studied the influence of pKa on skin irritation and found the two to be 

highly correlated for the chemical compounds examined. Kodithala et al. [16] used a 

membrane interaction QSAR (MI-QSAR) technique to predict the skin irritation potential 

of 20 hydroxy organic compounds. The MI-QSAR skin irritation predictions were 

compared to the traditional 2-D-QSAR predictions to prove the superiority of MI-QSAR 

approach.  

 In addition to the QSAR models, a number of expert systems that use a 

knowledge base to determine the skin irritation potential of a chemical have been 

developed. These expert systems find the skin irritation potential of a chemical either by 

relating the existing physiochemical properties of chemicals or through pattern 
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recognition algorithms. A number of papers describing the currently available expert 

systems have been published [3, 9, 10, 17]. Some of the widely used expert systems are 

German Federal Institute for Risk Assessment Decision Support System (BfR-DSS), 

DEREK for Windows (DEREKfW), HazardExpert, MULTICASE, Computer-Aided 

Chemistry (CAChe) program, Substructure-Based Computerized Chemical Selection 

Expert System (SuCCSES), OASIS, and TOxicity Prediction Komputer-Assisted 

Technology (TOPKAT). Saliner et al. [9] have provided a detailed review of each of 

these expert systems. The expert systems are applicable to a wide range of chemical 

structures in contrast to the currently available QSAR models. However, the application 

of these models to predict skin irritation requires as input several physiochemical 

properties such as octanol/water partition coefficient, melting point, lipid solubility, 

aqueous solubility, surface tension and vapor pressure. Thus, prediction of skin irritation 

potential using these models often requires other models capable of estimating the 

required input physiochemical properties. 

 

4.3. QSPR METHODOLOGY 

The development of a QSPR model for skin irritation involves several distinct 

steps: (a) compilation of an experimental data set, (b) generation and optimization of 3-D 

molecular structures, (c) calculation of molecular descriptors, (d) reduction of the number 

of descriptors, and (e) development of a regression model. To begin, a data set of 

molecules chosen from reliable sources must be assembled. Once this dataset is analyzed 

using target property distribution and chemical diversity, the 3-D structures of the 

molecule are generated using commercial molecular visualization software. Structure 
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optimization and descriptor generation are performed using commercial QSPR software. 

Model development usually begins with linear analysis and algorithms such as multiple-

linear regression analysis, principal component analysis, heuristic analysis or partial least 

squares may be used. In the optimal scenario, the best set of descriptors is then used to 

develop a non-linear QSPR model using artificial neural network algorithms. 

4.3.1 Dataset Compilation 

High quality data generated through good laboratory practice and complying with 

the OECD test guidelines has been used for modeling. The majority of the data are 

acquired from Bagley et al. [18], who cite Draize skin irritation test data for 176 

chemicals. However, since 29 structures were tested more than once, a total of 215 data 

points are obtained. Other sources of Draize test data include publications by Hayashi et 

al. [14] and Kodithala et al. [16], who report skin irritation data for 30 phenols and 22 

hydroxy organic compounds, respectively. The primary irritation index (PII) scores 

reported in these sources were used for modeling.  

Oklahoma State University (OSU) Draize test database: A database containing 

experimental Draize skin irritation test data of 205 molecules has been compiled from the 

above sources. The database contains experimental data including the chemical classes 

represented by acids, acrylates, alcohols, aldehydes, amides, amines, brominated 

derivatives, chlorinated solvents, esters, ethers, fatty acids, halogenated aromatics, 

hydrocarbons, inorganics, ketones, nitrils, phenols, sulphur containing compounds, and 

triglycerides. The skin irritation effects of the chemicals have been graded according to 

the scale proposed by OECD test guideline 404 [1, 2] shown in Table 4.1. The chemicals 
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are graded for erythema and edema using experimental data and a PII is calculated from 

these grades using the following equation:  

animals ofnumber 3

hr 24/48/72at  grades edema hr  24/48/72at  grades erythema
  (PII)Index  IrritationPrimary 

×

+
=
∑ ∑  

The value of PII ranges from 0 to 8, where chemicals with 0 PII value have no 

erythema and edema formation, and those with a value of 8 have severe effects. 

Chemicals for which there are multiple PII test data were averaged to get a unique skin 

irritation score. Since the Draize test data available in the open literature were limited to a 

few hundred compounds, efforts were made to utilize all reliable experimental data for 

modeling. Molecules for which the PII could not be determined due to the severity of 

effects were given a score of 8, the maximum possible PII value. Experimental data for 

mixtures and fragrance oils were not included in the database. 

Of the 205 molecules, only 189 structures were considered for modeling. A total 

of 16 molecules were rejected due to one the following reasons: (a) structure could not be 

found, (b) structure could not be optimized using ChemDraw [19], or (c) molecular 

descriptors could not be generated for the structure.  

In addition to chemical diversity, for the model to be able to predict skin irritation 

efficiently, the range of potencies used to train the model should be adequate. Figure 4.1 

shows the PII distribution of the data considered in the present modeling.  

4.3.2 Structure Generation and Optimization 

The first step in QSPR modeling is the generation of chemical structure for each 

molecule included in the modeling effort. Various schemes for chemical representation 

have been proposed in the literature. For example, Open Babel software [20] includes 

about 80 different representations for a given molecular structure. The most common way 
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of representing a chemical is a two-dimensional (2-D) sketch. However, using a 2-D 

representation does not provide a complete description of the molecule and lacks shape 

and surface distribution information of the molecule. To develop an effective QSPR 

model, the representations of the molecules should provide all the necessary structural 

information. This requires information about the atoms present, along with three 

dimensional (3-D) coordinates that provide a full spatial depiction of the molecule. A 

commercial package, ChemDraw [19] was used to generate the 2-D structures of the 

molecules. The 3-D structures were generated for these molecules using Chem3DUltra 

[19]. Since more than one set of 3-D coordinates that satisfy the structural constraints 

(bond length and bond angle) can be generated for a given molecule, the conformation 

with the lowest energy must be located. The structures were initially optimized using the 

Chem3D module available in Chem3DUltra. To locate the lowest energy configuration, 

multiple initializations were used during the structure optimization. AMPAC 6.0 [21] was 

then used to further refine the 3-D geometry of the structures. The output files from 

AMPAC were used to calculate various descriptors. 

4.3.3 Descriptor Generation 

The final optimized structure from AMPAC was used as input to commercial 

QSPR software to generate over 1200 molecular descriptors for a given molecule. A 

variety of constitutional, topological, geometrical, thermodynamic, quantum-chemical 

and electrostatic descriptors are generated by CODESSA  [22] and 154 functional group 

descriptors are generated by Dragon [23]. The number of descriptors calculated for each 

molecule depends on the structural complexity of the molecule. Descriptors that were not 
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pertinent for a given molecule were set to zero in the subsequent QSPR model 

development. 

4.3.4 Descriptor Reduction 

Not all the descriptors generated for a molecule are significant in modeling. The 

use of all available descriptors in the model development effort causes dimensionality 

problems and diminishes the performance of a QSPR model, especially when non-linear 

algorithms are used in model development [6]. Descriptor reduction is the process of 

automating the discovery of potentially useful correlations from large sets of descriptor 

data. This process involves the identification of the most relevant set of descriptors for 

model development and is an important step in QSPR modeling [24]. Different methods 

for reduction are available in the literature. The most widely used techniques are the 

principal-component analysis (PCA), partial least-squares (PLS), genetic algorithms 

(GA), and neural networks (NNs) [6]. Most QSPR models developed are multiple-linear 

regression correlations, which require a priori assumption of the form of the 

mathematical correlation between the property and its descriptors. However, linear 

regression analysis ignores any non-linear relationships between the descriptors and 

properties. The use of linear approaches often leads to loss of critical information and 

results in models with poor predictive abilities [25].  

To ensure that the non-linear relationships are accounted for in the QSPR models, 

non-linear transformations of all the descriptors were calculated, and an expanded set of 

descriptors was generated. The expanded set of descriptors was used to find the best set 

of descriptors through sequential selection. The best descriptor from the expanded set 

was selected and combined sequentially with the remaining descriptors. Then, the best 
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two-descriptor combination was retained and combined with each of the remaining 

descriptors. The sequence continued until a set of 40 descriptors was identified. Heuristic 

regression available in CODESSA was used to further reduce the number of descriptors. 

The optimal set of descriptors was retained for artificial neural network (ANN) analysis. 

4.3.5 Literature Descriptors 

If a mechanistic interpretation of the relationship between the property and its 

descriptor set can be formulated, it provides increased confidence in the accuracy and 

validity of the model [26]. However, such interpretation is often not possible for all the 

descriptors due to the complexities involved. A detailed review of the literature indicates 

that the chemical reactivity, molecular size, and skin permeability are important 

determinants of skin irritation. The chemical reactivity of a molecule can be determined 

using the HOMO and LUMO energies. Molecules with low HOMO-LUMO energy gaps 

have low kinetic stability and are favorably inclined to add or remove electrons, thus 

forming activated complexes [27]. Although skin permeability is significant in modeling 

skin irritation, the absence of readily available skin permeation prediction models often 

leads to the use of log Kow values to represent the skin permeation ability of a chemical. 

 

4.4. QSPR MODEL DEVELOPMENT 

 The present work aimed at (a) demonstrating the ability of non-linear QSPR 

modeling to predict the skin irritation potential of a chemical compounds, (b) examining 

the efficacy of using a combination of literature, functional group and structural 

descriptors for model development, (c) using descriptors from multiple QSPR software to 

identify the most significant descriptors, and (d) validating the final QSPR model using 
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an external dataset. The following specific case studies were conducted to achieve these 

objectives: 

Case 1: Developing a QSPR model using literature descriptors. 

Case 2: Identifying any significant functional group contributions to skin irritation 

using functional group descriptors from Dragon. 

Case 3: Developing a QSPR model to predict skin irritation using only structural 

descriptors from CODESSA. 

Case 4: Developing a final robust QSPR model using a combination of literature, 

functional group and structural descriptors. 

Case 5: Validating the final QSPR model using skin irritation data from other 

experimental tests. 

The case studies conducted in the sequence above provided valuable guidance to the 

development of the final QSPR model.  

4.4.1 Linear Model Development  

Selecting the set of descriptors that best encodes information on the property of 

interest is a difficult optimization problem. Fast and reliable regression techniques are 

required to obtain a reduced set of descriptors after discarding the correlated and 

insignificant descriptors through orthogonalization and non-linear sequential reduction 

[6]. Multi-linear techniques available in commercial software packages are used to obtain 

linear regression models. The following linear regression analysis techniques are 

provided in CODESSA: (a) multi-linear regression, (b) principal-component regression, 

(c) partial-least squares regression, and (d) heuristic regression. In the search for the best 

multi-linear correlation equation for a large set of descriptors, the major problem is 
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connected with mutual collinearity of descriptors which leads to instability of regression 

coefficients, overestimated standard errors, and critical loss of predictive information [6]. 

One way to avoid this effect is by transforming the non-orthogonal set of the natural 

descriptors into a set of orthogonal factors. The latter, being linear combinations of the 

natural descriptors, preserves the information content while removing the negative effects 

of the scales multi-collinearity from the subsequent regressions. In this work, the 

heuristic regression analysis technique available in CODESSA was used to obtain the 

best linear regression model after orthogonalization and non-linear sequential reduction 

of descriptors.  

4.4.2 Non-Linear Model Development  

Linear regression analysis ignores the non-linear relationships between property 

and descriptors. To ensure that the non-linear relationships are accounted for in the QSPR 

models, the optimal descriptor set from the heuristic analysis was retained for ANN 

analysis. 

 ANN Analysis: The efficacy and efficiency of supervised learning in multilayer 

neural networks strongly depends on the network topology, the transfer functions, the 

learning rule, and the initial values of the weights. Optimal instances for these items are 

usually unknown a priori because they depend mainly on the particular training set to be 

considered and on the nature of the solution. A feed forward back-propagation neural 

network model with an improved network architecture, consistency, data randomization, 

allocation of training/validation data, and automated network initialization is used for the 

non-linear model development [28]. The model searches for all possible combinations of 

hidden layer units that result in a degree of freedom ratio (ratio of the number of network 
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connections and the number of data points) value greater than two. The input dataset is 

divided into training, validation and testing sets with 70% of data assigned to training set, 

15% to validation set and 15% to testing set. Overtraining of the network, which results 

in poor predictive capability, is avoided by use of the cross-validation set with an early-

stopping method. The training set is used for computing the gradient and updating the 

network weights and biases. The validation set chosen should be representative of all 

molecular types in the training set for optimal performance. The error on the validation 

set is monitored during the training process. The validation error normally decreases 

during the initial phase of training, as does the training set error. However, when the 

network begins to over-fit the data, the error in the validation set typically begins to rise. 

When the validation error increases for a specified number of iterations, the training is 

stopped, and the weights and biases at the minimum validation error are retained.   

By training the network starting from several different initial conditions the 

robustness of the network performance can be verified. Multiple randomizations of the 

data and initializations of the weights are used to obtain the best network, as suggested by 

Iyer and Rhinehart [29]. The inputs and targets are normalized to have zero mean and 

unity standard deviation, which ensures that exceptionally large-valued descriptors do not 

bias the network. The Nguyen-Widrow algorithm is used to initialize weights and biases, 

which are updated using a Levenberg-Marquardt optimization technique. The transfer 

functions and the performance function of the network are tailored to find the best 

possible network.  

The final network is evaluated further using correlation coefficient (R2), sum-of-

squared errors, average-absolute deviations, weighted-average-absolute deviations, root-
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mean-squared error (RMSE), number of wrong classifications and correlation coefficient, 

when applicable.   

 

4.5. RESULTS AND DISCUSSION 

Schultz et al. [30] suggested that an ideal QSPR model should: (1) consider an 

adequate number of molecules for sufficient statistical representation, (2) have a wide 

range of quantified toxic potency, and (3) yield to mechanistic interpretation. In this 

work, skin irritation data for 189 molecules of diverse classes with a wide range of 

potency distribution have been considered. Further, to interpret mechanistically the final 

set of descriptors, the correlation of the descriptors with the molecular size, reactivity and 

penetration ability (factors that are believed to highly influence the skin irritation 

potential) was studied. Four case studies were conducted to build an effective skin 

irritation QSPR model. Each case study, analyzed in sequence, provided valuable 

guidance to the development of the final QSPR model.   

Table 4.2 presents a brief summary of the results obtained for the Cases 1-4.  

Initially, models were developed using only the literature descriptors (Case 1). Although 

the performance of these models was comparable to the models cited in the literature, the 

error in these models exceeded the desired error level. Therefore, around 1200 structural 

descriptors and 154 functional descriptors were analyzed to obtain a QSPR model with 

the best predictive ability. Non-linear transformations of the descriptors were evaluated to 

identify any non-linear relationships during descriptor reduction. Although the inclusion 

of these descriptors improved the model predictions, additional improvements were 

desired, and hence, non-linear neural network based models were developed. 
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 Our first non-linear QSPR model used only descriptors identified in the literature. 

Figure 4.2 illustrates the property predictions obtained in Case 1. The symbols in the 

plots denote the property estimate obtained from the model while the solid line represents 

perfect predictions (45° line). R2 and RMSE values of 0.41 and 1.66 were obtained, 

respectively. The results show that using only the literature descriptors for modeling skin 

irritation is inadequate, and additional structural descriptors are required to account for 

skin irritation effects of diverse chemical classes.  

The functional group contributions to the property predictions were studied using 

154 functional group descriptors evaluated using Dragon (Case 2). The significant 

functional groups identified in this case study are listed in Table 4.3, and Figure 4.3 

presents the property predictions. More details on the functional groups used for model 

development are illustrated in the Dragon manual. To further improve the property 

predictions, 1200 structural descriptors were generated using CODESSA and a non-linear 

prediction model was developed (Case 3). The descriptors used and the model predictions 

are illustrated in Table 4.3 and Figure 4.4, respectively. R2 and RMSE values of 0.69 and 

1.19 were obtained, respectively. This model used only structural descriptors; hence, 

application of this model to any new structure requires no a priori estimation of 

physiochemical properties of chemicals.  

A final model, combining the literature, functional and structural descriptors was 

developed to obtain the best predictive ability (Case 4). Three molecules that were 

assigned a PII score of 8 were found to be outliers and subsequently removed. A neural 

network model with 13-3-8-1 architecture utilizing 13 descriptors was found to give the 

best predictions for the remaining 186 chemical compounds. Table 4.3 presents the final 



 

 97 

set of descriptors used for model development. The final model for skin irritation 

predicted with an R2 of 0.78. Further, the RMSE value obtained was 1.05, showing the 

efficacy of using a combined set of descriptors. Figure 4.5 shows the property estimates 

obtained from the final QSPR model. An ideal QSPR model should yield to mechanistic 

interpretation of the input parameters used for model predictions. For this, the descriptors 

obtained were further investigated to identify any correlation with molecular size, 

reactivity and skin permeation ability using CODESSA. The values of log Kow and log Kp 

for the chemical compounds were obtained using QSPR prediction models developed by 

our group. Figure 4.6 illustrates that the descriptors in the final model are indeed highly 

correlated with these properties.  

To further validate the predictive capability of the QSPR model, an external data 

set from the Tornier et al. [31] that was not included in the model development was used. 

The external dataset contained 22 chemical compounds. A list of the molecules used for 

the external validation is provided in Table 4.4. This dataset differed from the one that 

was used for model development in that it primarily contained skin irritation 

classification values from European Union (EU), human patch, SkinEthic direct 

application and SkinEthic patch test [31]. Figure 4.7 shows a comparison of the 

classification system used in the EU and human patch test. More details on the 

classification used are provided elsewhere [32]. The predictions obtained from the model 

were compared to the experimental results reported in the external dataset as illustrated in 

the Table 4.4. Classifying the molecules with PII in the range 0-2 as non-irritants (NI) 

and 2-8 as irritants (I), the model predictions were found to be in good agreement with 

the experimental data for a large part of the dataset. Of the 22 molecules validated, lactic 
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acid is the only molecule that was not consistent with any of the test procedures. 

Although the secondary validation process provides valuable insights regarding the 

predictive ability of the developed QSPR model, only a guarded judgment can be made 

based on this study since the test data reported in the external dataset mostly come from 

different experimental technique.  

Table 4.5 illustrates a comparison of the current QSPR model results with 

literature skin irritation prediction models. The current model for skin irritation improves 

on other similar literature models in several aspects, including (a) the use of a large 

dataset consisting of a wide array of functional groups of significance to most chemical 

processes; (b) use of descriptors from multiple QSPR software to assure model 

superiority and stability; (c) use of non-linear transformations during descriptor reduction 

to obtain the most suitable set of descriptors; (d) mechanistic interpretation of the final 

non-linear QSPR models; and (e) extensive validation of models to assure robustness and 

predictive ability.  As evidenced by the results, the QSPR model is capable of predicting 

the skin irritation potential of a diverse set of molecules with varying structural 

complexities. 

 

4.6. CONCLUSIONS 

Following are the conclusions drawn based on this study: 

1. The QSPR model was able to predict the skin irritation potential of diverse 

chemical compounds successfully with an R2 of 0.78.  

2. The results of this study indicate that using a combination of literature, functional 

group, and structural descriptors are effective in QSPR modeling of skin irritation. 
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3. The final set of descriptors obtained showed good correlation with the molecular 

size, reactivity and skin penetration characteristics of chemical compounds, thus 

accounting for mechanistic interpretation. 

4. The final QSPR model was effective in estimating the skin irritation potential of 

diverse chemical compounds for an external dataset containing 22 compounds.  

5. Although the database employed contained experimental data for diverse 

compounds, expansion of the database as additional experimental data become 

available would facilitate the further development of the current model. 

 
 
 
 



 

 100 

REFERENCES 

 

[1] OECD, Guideline for Testing of Chemicals No. 404: Acute dermal 

irritation/corrosion, Paris, France, 1992. 

[2] J. H. Draize, G. Woodard, and H. O. Calvery, "Methods for the study of irritation 
and toxicity of substances applied topically to the skin and mucous membranes," 
Journal of Pharmacology and Experimental Therapeutics, vol. 82, pp. 377-390, 
1944. 

[3] P. A. Botham, L. K. Earl, J. H. Fentem, R. Roguet, and J. J. M. van de Sandt, 
"Alternative methods for skin irritation testing: the current status," Alternatives to 

Laboratory Animals, vol. 22, pp. 195-211, 1998. 

[4] I. Gerner and E. Schlede, "Introduction of in vitro data into local 
irritation/corrosion testing strategies by means of SAR considerations: 
Assessment of chemicals," Toxicology Letters, vol. 127, pp. 169-175, 2002. 

[5] S. S. Godavarthy, R. L. Robinson, and K. A. M. Gasem, "Improved structure–
property relationship models for prediction of critical properties," Fluid Phase 

Equilibria, vol. 264, pp. 122-136, 2008. 

[6] S. S. Godavarthy, "Design of improved solvents for extractive distillation," Ph. D. 
Dissertation, Oklahoma State University, Stillwater, OK, 2004. 

[7] T. Welss, D. A. Basketter, and K. R. Schröder, "In vitro skin irritation: facts and 
future. State of the art review of mechanisms and models," Toxicology In Vitro, 

vol. 18, pp. 231-243, 2004. 

[8] A. L. Chew and H. I. Maibach, "In vitro methods to predict skin irritation," 
Irritant Dermatitis, 2006. 

[9] A. G. Saliner, G. Patlewicz, and A. P. Worth, "A review of (Q) SAR models for 
skin and eye irritation and corrosion," QSAR & Combinatorial Science, vol. 27, 
pp. 49-59, 2008. 

[10] R. D. Combes and P. Judson, "The use of artificial intelligence systems for 
predicting toxicity," Pesticide Science, vol. 45, pp. 179-194, 1995. 

[11] K. Enslein, H. H. Borgstedt, B. W. Blake, and J. B. Hart, "Prediction of rabbit 
skin irritation severity by structure-activity relationships," In Vitro Toxicology, 

vol. 1, pp. 129-147, 1987. 

[12] J. S. Smith, O. T. Macina, N. B. Sussman, M. I. Luster, and M. H. Karol, "A 
robust structure-activity relationship (SAR) model for esters that cause skin 
irritation in humans," Toxicological Sciences, vol. 55, pp. 215-222, 2000. 



 

 101 

[13] J. S. Smith, O. T. Macina, N. B. Sussman, M. H. Karol, and H. I. Maibach, 
"Experimental validation of a structure–activity relationship model of skin 
irritation by esters," Quantitative Structure-Activity Relationship, vol. 19, pp. 467-
474, 2000. 

[14] M. Hayashi, Y. Nakamura, K. Higashi, H. Kato, F. Kishida, and H. Kaneko, "A 
quantitative structure–activity relationship study of the skin irritation potential of 
phenols," Toxicology In Vitro, vol. 13, pp. 915-922, 1999. 

[15] B. Berner, A. Nangia, and H. I. Maibach, "Influence of pKa on skin irritancy 
potential of chemicals," In Vitro Skin Toxicology, Irritation, Phototoxicity, 

Sensitization, pp. 29–36, 1994. 

[16] K. Kodithala, A. J. Hopfinger, E. D. Thompson, and M. K. Robinson, "Prediction 
of Skin Irritation from Organic Chemicals Using Membrane-Interaction QSAR 
Analysis," Toxicological Sciences, vol. 66, pp. 336-346, 2002. 

[17] J. C. Dearden, M. D. Barratt, R. Benigni, D. W. Bristol, R. D. Combes, M. T. D. 
Cronin, P. N. Judson, M. P. Payne, A. M. Richard, and M. Tichy, "The 
development and validation of expert systems for predicting toxicity," 
Alternatives to Laboratory Animals, vol. 25, pp. 223-252, 1997. 

[18] D. M. Bagley, J. R. Gardner, G. Holland, R. W. Lewis, J. F. Regnier, D. A. 
Stringer, and A. P. Walker, "Skin irritation: Reference chemicals data bank," 
Toxicology In Vitro, vol. 10, pp. 1-6, 1996. 

[19] ChemBioOffice 11.0, Cambridge Software, 2008. 

[20] C. Morley, "OpenBabelGUI 2.0.2," 2006. 

[21] AMPAC 6.0., Semichem Inc., 1997. 

[22] CODESSA 2.7.8., Semichem Inc., 2007. 

[23] Talete srl, DRAGON 5.4 for Windows (Software for molecular descriptor 
calculations), 2006. 

[24] A. Jegadeesan, "Structure-based generalized models for selected pure-fluid 
saturation properties," Master Thesis, Oklahoma State University, Stillwater, OK, 
2006. 

[25] S. S. Godavarthy, R. L. Robinson, and K. A. M. Gasem, "Improved structure–
property relationship models for prediction of critical properties," Fluid Phase 

Equilibria, vol. 264, pp. 122-136, 2007. 

[26] M. D. Barratt, "Prediction of toxicity from chemical structure," Cell Biology and 

Toxicology, vol. 16, pp. 1-13, 2000. 

[27] J. Aihara, "Correlation found between the HOMO–LUMO energy separation and 
the chemical reactivity at the most reactive site for isolated-pentagon isomers of 
fullerenes," Physical Chemistry Chemical Physics, vol. 2, pp. 3121-3125, 2000. 

[28] H. Demuth, M. Beale, and M. Hagan, "Neural Network Toolbox™ 6," 
MathWorks Inc., 2008. 



 

 102 

[29] M. S. Iyer and R. R. Rhinehart, "A method to determine the required number of 
neural-networktraining repetitions," IEEE Transactions on Neural Networks, vol. 
10, pp. 427-432, 1999. 

[30] T. W. Schultz, M. T. D. Cronin, J. D. Walker, and A. O. Aptula, "Quantitative 
structure–activity relationships (QSARs) in toxicology: a historical perspective," 
Journal of Molecular Structure: THEOCHEM, vol. 622, pp. 1-22, 2003. 

[31] C. Tornier, M. Rosdy, and H. I. Maibach, "In vitro skin irritation testing on 
reconstituted human epidermis: Reproducibility for 50 chemicals tested with two 
protocols," Toxicology In Vitro, vol. 20, pp. 401-416, 2006. 

[32] D. A. Basketter, M. Chamberlain, H. A. Griffiths, M. Rowson, E. Whittle, and M. 
York, "The classification of skin irritants by human patch test," Food and 

Chemical Toxicology, vol. 35, pp. 845-852, 1997. 

 



 

 103 

0

10

20

30

40

50

60

70

[0-1] [1-2] [2-3] [3-4] [4-5] [5-6] [6-7] [7-8]

PII range

N
u

m
b

e
r 

o
f 

c
h

e
m

ic
a
l 

c
o

m
p

o
u

n
d

s

 
Figure 4.1. PII distribution of the data used for QSPR modeling 
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Figure 4.2. QSPR model predictions using literature descriptors (Case 1) 
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Figure 4.3. QSPR model predictions using functional group descriptors (Case 2) 
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Figure 4.4. QSPR model predictions using structural descriptors  

from CODESSA (Case 3) 
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Figure 4.5. QSPR model predictions using literature, functional group  

and structural descriptors (Case 4) 
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Figure 4.6. Correlation of the final set of descriptors with the molecular size, reactivity and skin penetration ability 
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Figure 4.7. Classification of skin irritation hazard [32] 
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Table 4.1. Grading scale for skin reactions [1] 

 

Erythema and eschar formation grade Scale 

No erythema 0 

Very slight erythema (barely perceptible) 1 

Well defined erythema 2 

Moderate to severe erythema 3 

Severe erythema (beet redness) to slight eschar formation (injuries in depth) 4 

  

Edema formation grade  

No edema 0 

Very slight edema (barely perceptible) 1 

Slight edema (edges of area well defined by definite raising) 2 

Moderate edema (raised approximately 1 mm) 3 

Severe edema (raised more than 1 mm and extending beyond the area of exposure) 4 

 
 
 

Table 4.2. Summary of results obtained for modeling of skin irritation 

 

Case  Descriptors used N* Nd* 
Neural network 

 architecture 
RMSE R

2
 

1 Literature 189 4 4-7-1-1 1.7 0.41 

2 Functional group 189 16 16-5-1-1 1.3 0.62 

3 Structural 189 19 19-4-1-1 1.2 0.69 

4 
Literature, functional, 

and structural 
186 13 13-3-8-1 1.1 0.78 

* N = Number of molecules 
  Nd = Number of descriptors



 

 

1
0
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Table 4.3. Descriptors used for model development 
 

Case 1 Case 2 Case 3 Case 4 

HOMO energy nHAcc 
FNSA-2 Fractional PNSA (PNSA-2/TMSA) 
[Quantum-Chemical PC] 

nHAcc 

LUMO energy nRNH2 Avg 1-electron react. index for a O atom Min nucleoph. react. index for a N atom 

log Kow nRNR2 Tot molecular 2-center resonance energy 
Min partial charge for a C  atom 
[Zefirov's PC] 

Molecular weight nCH2RX Avg nucleoph. react. index for a N atom 
Max partial charge for a H  atom 
[Zefirov's PC] 

 nArX Moment of inertia C Tot molecular 2-center resonance energy 

 nRCN 
RNCS Relative negative charged SA 
(SAMNEG*RNCG) [Zefirov's PC] 

Avg 1-electron react. index for a O atom 

 nCrt Min electroph. react. index for a Cl atom 
Average Structural Information content 
(order 1) 

 nR=CX2 
DPSA-1 Difference in CPSAs 
(PPSA1-PNSA1) [Quantum-Chemical PC] 

nArOR 

 nCconj Kier shape index (order 3) Relative number of double bonds 

 nCrq Tot dipole of the molecule nCRX3 

 nCRX3 Kier shape index (order 2) nCrt 

 nROH 
PNSA-2 Total charge weighted PNSA 
[Quantum-Chemical PC] 

nOHs 

 nCp Min 1-electron react. index for a S atom nCp 

 nCs Min total interaction for a C-C bond  

 nArOH ALFA polarizability (DIP)  

  Max 1-electron react. index for a N atom  

  Min 1-electron react. index for a O atom  

  Max net atomic charge for a F atom  

  
DPSA-1 Difference in CPSAs 
(PPSA1-PNSA1) [Zefirov's PC] 
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Table 4.4. External validation of the model and corresponding experimental data 

 

Chemical compound EU class 

Human  

patch 

class 

SkinEthic 

direct 

 application 

class 

SkinEthic  

patch 

class 

Predicted PII Predicted class 

2-Propanol NC NC I NI 0.6 NI 

Isopropyl palmitate NC NC NI NI 3.9 I 

Dimethyl sulphoxide NC R38 I NI/I 5.1 I 

Lactic acid NC R38 I I 0.5 NI 

Triethanolamine NC NC I NI 1.1 NI 

Dodecanol NC NC NI NI 3.3 I 

Tween 80 NC NC NI NI 5.9 I 

Propylene glycol NC NC NI NI 0.5 NI 

Ethanol NC NC I NI 2.2 I 

Octanoic acid R34 R38 I I 3.6 I 

Heptanoic acid R34 R38 I I 4.8 I 

1-Decanol R38 NC I I 3.9 I 

Decanoic acid R38 R38 I I 2.6 I 

Dodecanoic acid R38 NC I I 2.4 I 

N,N-Dimethyl-N-dodecylaminobetaine R38 R38 I NI/I 5.8 I 

Acetic acid R38 NC I I 2.8 I 

Hydrochloric acid R38 NC I NI 3.2 I 

Benzalkonium chloride R38 R38 I I 2.9 I 

Octanol R38 NC I I 4.9 I 

Geraniol R38 NC I I 2.7 I 

Linalyl acetate R38 NC I I 4.7 I 

Hexanol R38 NC I I 6.8 I 
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Table 4.5. Comparison of current QSPR model with similar literature models 

 

Author [reference] No. of compounds Chemical class 
No. of inputs 

to the model 
Model type R

2
 

Hayashi et al. 
[14] 

13 Phenols 2 Linear 0.67 

 11 Phenols 2 Linear 0.52 

      

Kodithala et al. 
[16] 

20 Hydroxy alcohols 1 Linear 0.54 

 20 Hydroxy alcohols 2 Linear 0.62 

 20 Hydroxy alcohols 3 Linear 0.76 

 20 Hydroxy alcohols 4 Linear 0.86 

 13 Aliphatic alcohols 3 Linear 0.95 

 9 Phenols 4 Linear 0.94 

      

This work 186 Diverse classes 13 Non-linear 0.78 
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