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CHAPTER I 

 

 

INTRODUCTION 

 

 

Optimization is the use of specific methods to determine the most cost effective and 

efficient solution to a problem or design for a process, making it one of the major 

quantitative tools used on industrial decision making.  Optimization pervades the fields of 

science, engineering and business. In physics, for example, many different optimal 

principles are enunciated, which describe natural phenomena in the fields of optics and 

classical mechanics. Optimization is reflected in Statistical terms like “maximum 

likelihood,” minimum loss,” and “least squares”; and in business terms like “maximum 

profit,” “minimum use of resources,” “minimum cost,” and ”minimum effort”. 

Optimization is also important in engineering where a process can be described by a 

series of equations, or by experimental data. When a single performance criterion is 

considered, such as minimum cost, engineering optimization is used to find the values of 

the process variables which yield the best value of the performance criterion [1].   

 

Optimization can be easily explained by an example: 

Example 1.1: Minimize the function 

  ( ) ( ) 13
2 +−= xxf      (1.1) 
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The function ‘f’ is called the Objective Function (OF), the variable ‘x’ is the Decision 

Variable (DV). The function can be plotted for various values of x which will reveal that 

the optimum for the function is at x=3, where the objective function attains a value of 1. 

1.1.  Optimization methods 

There are two main categories of optimization. One is constrained optimization and the 

other is unconstrained optimization. Constrained optimization seeks the optima in a 

restricted region, which is defined using equality and inequality constraints, which are 

usually based on the probability of finding an optimum existing in the range. 

Unconstrained optimization seeks to determine an optimum in a range from -∞  to +∞ . 

These two classes are manly used in practice to attain economic benefits and empirical 

modeling [2]. For example, the optimization of a set of process setpoints seeking to 

minimize process costs falls under the former, and optimization of model parameters to 

fit experimental data falls under the latter and it is generally called empirical modeling.  

This work mainly deals with empirical model optimization. 

 

1.2. Empirical Modeling 

In many fields, it is incumbent to describe a series of data points in terms of an empirical 

relation, which is easy to understand and implement. If there is only one independent 

variable in the data representation, they can be plotted in Cartesian coordinates and a line 

drawn through the points can be the graphical representation of the data points [7]. In real 

life, however, the data points can be dependent on more than one independent variable, 

which makes it more difficult to graphically represent the data. In these situations, it 

becomes necessary to find a functional form to represent the data. The functional form is 
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of particular interest since it can be easily implemented in calculations on computers, and 

because of the ease in interpolation between data points. 

 

Typical relations for empirical models might be [1]: 

L+++= 22110 xaxaay  linear in the variables and coefficients, i.e they 

don’t have any exponents or indices associated with 

them. 

L+++= 2112

2

1110 xxaxaay  linear in the coefficients, nonlinear in the             

variables (x1,x2) 

( )
2

210

1

sasaa
sG

++
=  nonlinear in all the coefficients 

( )b
aNu Re=  nonlinear in the coefficient b (Nu: Nusselt Number;     

Re: Reynolds number) 

It has to be noted that the last two examples can me mathematically manipulated to give 

us linearized expressions, but they are nonlinear when considered as they are presented 

above. 

 

The determination of the coefficients of a model from empirical data can be done using 

the principles of least squares.  To compensate for the errors involved in experimental 

data, the number of data points should be greater than (about 3 times) the number of 

coefficients in the model. Least squares is just the application of optimization to obtain 

the “best” solution of the equations formed by implementing the data points to the model. 

In simpler terms, the sum of the squares of the errors between the predicted and the 



 4 

experimental values of the dependent variables for each data point is minimized. The 

resulting model will be the closest functional representation of noisy experimental data 

[1]. 

 

1.3.  Global Optimization 

In many optimization problems, there are one or more solutions, all termed as local 

minima, and the best solution, i.e. the solution that returns the lowest objective function 

value, is termed as the global minima. This is the most sought after solution of them all.  

 

A few examples of common multivariable optimizers used in the industry and in 

academia include, Marquardt-Levenberg, Gauss-Newton, Nelder-Mead Simplex, Hooke-

Jeeves, Broydon-Fletcher-Goldfarb-Shanno, and successive quadratic. The common 

element to all of these optimizers is in the fact that it generates only one optimum for a 

given starting point, and there is no guarantee that it is the best solution. These optimizers 

are consequently termed as local optimizers.  

 

The following example shows a series of data points being modeled by a neural network. 

The training of the said network yields a series of curves which have distinct differences 

between them. In each case, the data points are the same, i.e. the same process is being 

modeled using different initial values to start the optimization, but the neural network 

produces different curves to fit the same data. 
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Fig 1.1 (Clockwise from top left: a to d) 

A Neural Network being trained for a set of process data. 
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The model prediction in Fig 1.1a is significantly different from the rest of the figures,  

with sharp bends in the model. Fig 1.1b displays a smooth curve, but I notable bump is 

observed between x values of 40 and 65. figures 1.1c and 1.1d may look identical, but a 

close inspection reveals that the tail of the curve in the former is flat, but in the latter, it is 

observed to curve upwards. This example clearly indicates the fact that a single model 

can give us more than one result. 
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This brings us to the realm of global optimization, where there is a need to seek out not 

just “a” solution, but the “best” solution to an objective. There are several developing 

algorithms being used and studied, and even though they are effective, it has to be noted 

that none of these techniques actually guarantee identification of the global optima. A 

few are enumerated below [1]. 

 

Simulated Annealing: This refers to a class of metaheuristics based on an analogy to the 

annealing of metals. The method depends on randomization to diversify the search, both 

in selecting a move to evaluate (all moves to neighboring points is equally likely) and in 

deciding whether or not accept the move. The basic SA algorithm can use the metropolis 

algorithm (Johnston et al., 1989) to determine move acceptance, where downhill moves 

(where the difference in function values of the previous and present point is less than 

zero) are always accepted, and uphill moves (the above mentioned difference is greater 

than zero) are accepted with a probability. 

 

Tabu Search: The basic idea involves allowing the algorithm to make moves that would 

not be allowed in a conventional local optimization program, thus the term “Tabu”. An 

example of this would be to change search directions or to make large steps when the 

optimizer approaches an optimum, the intention being to skip the present valley in hopes 

that a better optimum might then be found. The tabu moves are usually specified as 

moves to solutions with particular attributes. The moves are also specified to keep 

previously performed moves from being reversed, or to prevent previously visited 

solution from being revisited. It is widely accepted in the field of Operations research. 
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Unfortunately, there is no general purpose tabu search software available, though it has 

been implemented in numerous problems. 

 

Genetic Algorithms: They are another idea which removes a major drawback of 

simulated annealing and tabu searches. Both of the latter operate by transforming single 

solution at a single step. The genetic algorithms, on the other hand, work with a 

population of solutions, i.e. a set of possible solutions, and this population is modified 

during each iteration by replacing one or more individuals (a single solution in the set) 

with new solutions, which are created by combining two individuals (crossover), or by 

changing an individual (mutation). The procedure is inspired by the evolution of 

populations of living organisms, whose chromosomes undergo crossover and mutation 

due to reproduction.  

 

Multistart Methods: they use standard, widely available nonlinear programming methods, 

i.e. local optimization techniques, in the search logic. The difference here lies in the fact 

that instead of using only one starting point, a series of points are used, and the optimizer 

is run for all the starting points, and then the best solution is selected as the global 

optimum. This method is simpler to use compared to the other methods discussed earlier 

since they do not involve added or new heuristics to the solution scheme, and they use 

optimization methods that have been effectively used and understood. The drawback lies 

in the fact that most of the solutions deal with local optima and this leads to a large 

amount of computing time going to waste. The starting points can be chosen randomly, or 

can be chosen based on a specific range of values. When we consider randomly chosen 
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points, there are various logics as described by Rinnoy, Kan and Timmer (1987, 1989) 

and more recently by Locatelli and Shoen (1999) which can be used [1].  

 

The present study explores the application of a global optimization search logic 

developed by Rhinehart and Iyer [4] for neural network training. The basis for the idea is 

in the mathematics involved in engineering reliability and in the training of neural 

networks which is effectively the nonlinear empirical modeling of the parameters of a 

neural network.  

 

1.4. Stopping Criteria 

A numerical optimization routine will always need a stopping criterion. It becomes 

necessary since it is the only means of stopping the algorithm once the optimum has been 

reached. The criterion should desirably stop the search when subsequent changed in the 

decision variable do not cause any improvements in the objective function value. 

Some of the commonly implemented stopping criteria include 

1. A threshold in the objective function value, which terminates the optimization 

process when the OF value is less than the set value. 

2. A threshold change in the objective function value, which terminates the 

optimization process when it observes no change in the OF value. 

3. A threshold change in the decision variable is another widely used criterion, 

which terminates the process when it observes no change in the DV values. 



 9 

4. A threshold change in the number if iterations, which terminates the optimization 

after carrying out a certain number of iterations irrespective of whether the 

desired values for the parameters are achieved. 

5. A threshold value on the square of the error between previous and present 

objective function values or decision variable values. 

6. A threshold value on the first derivative of the objective function approaches zero, 

indicating that the objective function is at the bottom of a valley, i.e. the optimum. 

7. A rise in the Standard Square deviation or Root mean Square of a validation set 

[2]. 

 

Factors 1 to 5 require an approximate knowledge of the optimum (before the optimization 

is carried out) to set up the thresholds. This is important since a loose threshold (set way 

away from the optimum) can lead to the procedure stopping before the optimum is 

attained. On the other hand, if the threshold is set far below the optimum, the optimizer 

may never find the optimum or it might take an unnecessarily large amount of time and 

computing power to find it, both of which are undesirable [2]. Factor 6 has the obvious 

disadvantage that it requires the objective function to be relatively simple to ensure that 

the derivative is known. More complex functions can use derivative knowledge using 

numerical methods, but the approximation can reduce the sensitivity of the criteria in 

general. Factor 7 doesn’t use the validation set in the optimization itself, and this can be a 

detriment to its proper application. 
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Numerically, when these ideas are implemented, the stopping criteria usually involve 

observing two or more successive values of the decision variable or the objective 

function. As the optimizer approached on optimum, the step sizes decreases and 

consequently, the difference between the successive function values decreases. When no 

significant difference is observed in the function values, which is determined by 

comparing the actual difference against a pre set threshold, the program terminates. This 

procedure, however, has one serious disadvantage. Small step lengths do not occur only 

when the optimum is nearby, but also when the search is moving through a narrow valley, 

where the ∆DV values are small, but the ∆OF values could be large. In this case the 

aforementioned difference (in this case the ∆DV) can go below the threshold before the 

sought optimum is actually reached [2]. A similar situation occurs when the optimizer is 

moving over a vary wide valley, where the opposite is true, i.e. we have small ∆DV 

values but small ∆ OF values, and the threshold in the ∆ OF values can lead to a 

premature termination of the trial. 

 

The probability of the optimizer attaining the global optimum depends on the initial guess 

that starts the trial. If the initial guess is too far from the global solution, the optimizer 

either 1) takes a long time to get to the appropriate values, or 2) becomes stuck in a local 

optimum. In these cases, it is convenient and prudent to restart the trial with a new 

starting guess. Hence, it is required to fix a maximum number of iterations within which 

the optimizer should find the optima. In case the search is not complete by the time the 

maximum limit is reached, the search is terminated, a new set of initial values are chosen 

and the trial is started again. 
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The various stopping criteria discussed above are scale dependent, starting point 

dependent, and optimization algorithm dependent, and the right choices require human 

supervision. Most of them also require a priori knowledge of the objective function under 

consideration [7]. This should be avoided when we evaluate optimization algorithms, 

since they can lead to misleading results. For example, in a practical situation, there 

might be a need to optimize a process model to obtain the values associated with it. Since 

no information about the threshold value of the process model (objective function) is 

available, it is quite difficult to set up the right threshold value. 

 

Consider the following example: 

Example 1.2: Minimize 

  ( ) 2 2 20f x x x= − −      (1.2) 

As illustrated in Figure 1.2, the optima for this function is at x=1, where the objective 

function has a value of -21. If the user were not to know this and use a threshold value for 

the objective function to be close to zero, the trial would stop at x=-3.5825 or at 

x=5.5825, which would be the roots of the polynomial equation,  but not the minima. 
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Fig 1.2 Optimization with threshold on objective function 
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We thus realize that the choice of most stopping criteria requires a priori information, 

and they can be scale dependent, application dependent, starting point dependent, and 

optimization algorithm dependent. Selection of the right stopping criterion feature or 

value would thus be a question of human supervision in the end [7]. 

 

The present work attempts to use the stopping criteria proposed by Cao and Rhinehart [3], 

for least squares optimization. This criterion is scale free, requires no prior knowledge of 

the optima, and stops the iteration when there is no statistical improvement in the data. 

The stopping criteria is combined with an initialization method proposed for neural 

network training [4] in order to provide a simple multistart global optimizer. 

Threshold of y 

X=-3.5825 X=5.5825 
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CHAPTER II 

 
 

DESCRIPTION OF METHODS USED 

 

Considering nonlinear optimization problems, the biggest issue is the tendency of the 

optimizer to get stuck in local minima. One of the ways to alleviate this problem is to run 

the optimizer repeatedly, starting with values based on a grid on the surface of the 

function or randomly generated values. Good examples of such applications are in neural 

network training, which always involves an optimization procedure to determine the 

weights of the network. Sha et al. have reported the use of 25 random starts in the use of 

neural networks for ship design. Park et al. have reported the results on prediction of 

sunspots based on 10 random starts.  

 

Rhinehart and Iyer [4], established a theoretical basis for the choice of the number of 

random starts in neural network training. The obvious implications of the study were that 

it can be extended to any other nonlinear optimization procedure. The concept used for 

this development was the “Best-of-N” or the “Weakest-Link-in-the-Chain” analysis. The 

present study applies this concept in regression modeling. 
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2.1. The Best-of-N or Weakest-link-in the-Chain Analysis 

A chain is only as strong as its weakest link. In other words, the strength of a chain on N 

links, each of whose strengths is a distributed variable, is the strength of the weakest link. 

When we consider an optimization problem where the optimizer is used repeatedly, 

starting with randomly selected values, each individual optimization can be analogous to 

a link in a chain. The performance of the optimizer on our case is determined by the Sum-

of-Squares Deviation (SSD) compared to a data set. This value is analogous to the 

strength of a link. The lowest error of several random starts is the strength of the weakest 

link. Consequently, the weakest link would mean the best solution among the repeated 

optimizations. 

 

To further develop the idea, consider the following case study [5]. In it, a neural network 

was trained 1000 times, from 1000 independent random initial values for weights.  
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Fig 2.1 Distribution of SSD for 1000 NN trainings 
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From Figure 2.1. it is observed that sometimes the training ended with a SSD value of 

about 0.24 [unit
2
]. This is Group 1, and represents the global optimum. Group 2 contains 

most of the training results; a broad local optimum centered around 3.75 as evidenced by 

the broad stopping range on the SSD.  

If connected by a smooth curve, and normalized so that the area under the curve equals 1, 

Figure 2.1 becomes Figure 2.2. 
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Fig 2.2 Normalized distribution fore 1000 NN trainings 
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The cumulative distribution can be obtained by integrating fx over all x values. Figure 2.2 

would thus yield Figure 2.3. 

Fig 2.3 Cumulative Distribution for 1000 NN trainings 
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Fx in fig 2.3 reads as the fraction of events which had a corresponding or lower Fx value 

for a given x value. For example, 50% of the events stopped with an x value of 
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0.37[unit
2
] or lower, or at a specific value of x = 0.23, only 10% or fewer events resulted 

in a better x value. 

 

Figure 2.3 also reveals that about 20% of the trainings fell in Group 1, and the remaining 

80% fell in Group 2. We also note that the figure is based on the initial Figure 2.1 which 

was a representation of the results of 1000 separate trainings. 

 

Now, if the neural network in consideration were to be trained about 100 times, 20% of 

the results would be expected to be in group 1, and 80% in group 2. The “best of 100” 

training histogram is shown in Figure 2.4. It has to be noted that in this case study, there 

was at least one point from Group 1 in each of the 10 cases, which in turn leads to only 

one bar in Figure 2.4.  

Fig 2.4 Best of 100 training histogram 
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And the CDF would be, 
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Fig 2.5 Best of 100 cumulative distribution 
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So, using N = 100 just about guarantees that the best of 100 will find the global optimum 

x-value of about 0.23[unit
2
]. 

 

If a best-of-5 strategy is employed, with 20% expected in Group 1, it would be expected 

that 1 out of 5 would be in Group 1. In reality, some sets of 5 will have no values in 

Group 1, and some sets of 5 will have 2, 3, 4, or even 5 values falling in Group 1. Thus, 

in a best-of-5 strategy, the chance that one of five ends up in Group 1 is better than 20%, 

but there is still a possibility that none will. 

 

After 248 trials, the histogram for a best-of-5 is shown in Figure 2.6. 
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Fig 2.6 Best of 5 Training Histogram 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.
2

0.
22

0.
24

0.
26

0.
28 0.

3
0.

32
0.
34

0.
36

0.
38 0.

4
0.
42

0.
44

0.
46

0.
48 0.

5

X [Units]2 

(SSD after optimization)

#
 t
im

e
s
 t
ri
a
in

in
g
 s

to
p
p
e
d
 w

ith
 c

o
rr

e
s
p
o
n
d
in

g
 S

S
D

 v
a
lu

e

 

From which the CDF is 

Fig 2.7 Best of 5 Cumulative Distribution 
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From this illustration, 50% of the best-of-5 would end up on an x value of 0.23 [unit
2
] or 

less. 

From Figure 2.7, we can infer that at x = 0.23 [unit
2
] would give us one of the best 15% 

of all possible stopping places. 
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In the process of developing a logic to define the desired number of independent starts, 

define FW as the confidence that at least one of the values generated is lower than or 

equal to a value in Group 1, i.e. an acceptable representation of the global optima. It can 

also be described as a representation of the CDF for the weakest link, from N links.  

 

First, observe how Fw changes with N: 

If it is desired that 99% of the trainings should find one of the best 10% the possible 

stopping outcomes, from Figure 2.8, 0.99 on FW at N = 5 indicates that 99% of the stops 

will end up with a value of x = 0.37[unit
2
] or less, which, Figure 2.3. then indicates is 

only in the best 85% of the best possible outcomes. From Figure 2.5, with N = 100, FW = 

0.99 reveals that 99% of the best-of-100 stops will have an x-value of 0.24 or less. Figure 

2.3 indicates that this would be in the best 19% of all possible values. This brings us to an 

observation that FW improves with an increasing N. 

Fig 2.8 Cumulative distribution with changing N 
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The idea can also be mathematically developed using probability [4]. Consider N 

independent training runs. The probability that any single optimization has a SSD value, 

x, less then or equal to “a” is FX(a) where ( )
0

a

X XF f x dx= ∫  is the value of the CDF at a. 

Then the probability of x > a is ( )1 XF a− , and the probability that all points of the 

sample (in our case, this can be defined as the OF values upon stopping), of size N, have 

a value greater than a specific value, a, is ( )1
N

XF a−   . Hence the probability that at 

least one of the elements has a lower value than, or equal to, a, is ( )1 1
N

XF a− −   . Since 

we have used FW to represent this earlier, we get the following expression: 

( ) ( )( )1 1
N

W XF a F a= − −   (2.1.1) 

Equation (2.1.1) explicitly defines the value of one of the three variables, in terms of the 

values of the other two. To reiterate them,  

N  The number of random, independent optimization starts from which the 

best will be chosen.  

X  The sum-of-squared deviations on any individual optimization.  

FX(a)  The fraction of random starts which would result in a value of X less than 

or equal to “a,” and 0 ≤ FX(a) ≤ 1.  

 

For Example, if FX(a) has a value of 0.2 this means that the X-value for the SSD is one of 

the best (lowest) 20% possible values. W is the best (lowest) value for x out of N starts. 

FW(a) is the fraction of the Best-of-N X-values that result in a value of W less then or 
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equal to “a,” ≤ FW(a) ≤ 1. If FW(a) has a value of 0.99, this means that there is only a 1% 

chance that the Best-of-N   X-values will be worse. 

 

However, the present study requires the determination of the required number of random 

starts, based on user-defined values of FW(a), the level of confidence, and FX(a), the 

percentage vicinity of the lower tail of the distribution, which the Best-of-N is expected 

to provide. This can be done by rearranging Equation (2.1.1) to give, 

( )( )
( )( )

ln 1

ln 1

W

X

F a
N

F a

−
=

−
   (2.1.2) 

 

2.2. Online identification of Steady State. 

In this exploration, the end point of an optimization procedure is identified using the 

concepts of steady state identification instead of the conventional methods of setting up 

thresholds [3]. The optimization parameter in nonlinear optimization of empirical data is 

the Sum of Square Deviations (SSD) between the data and the model. It has been 

observed that the Root Mean Square of the deviations (RMS) drops to an asymptotic 

minimum with progressive iterations.   

 

The novelty of the method lies in the evaluation of the RMS of a Random Subset (RMS 

RS) of the data (a different random subset for each iteration). This RMS RS appears as a 

noisy signal relaxing to its noisy steady state value as the iterations progress. By using a 

random subset of data, the noise is independently distributed, and, at steady state, when 

convergence has been achieved, the noise reflects the variance in the data. The noise is 

chi-square distributed, with an average equal to the standard error of the residual (model-
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to-data mismatch). When the noisy signal reaches a statistical steady state, the 

optimization has reached a point where there is no statistically significant improvement in 

the OF with respect to model standard error, and consequently the optimization should be 

stopped. Since the test looks at signal-to-noise ratio; it is scale independent. 

 

Paraphrasing the development by Rhinehart and Iyer [3], the design of this method is 

styled after the F-test type of statistic. It is the ratio of variances, R, as measures on the 

same set of data by two different methods. 

 

The primitive way of estimating variance would be: 

( )2
2

1

1
ˆ

1

N

i N

i

X X
N

σ
=

= −
− ∑      (2.2.1) 

The modification (or simplification) begins with a conventional exponentially weighted 

moving average or conventional first-order filter of a decision variable Xi. this requires 

little storage and s computationally fast. In algebraic notation: 

( )
11 11

i if i fX X Xλ λ
−

= + −      (2.2.2) 

where 0 < λ1 < 1. 

 

If the previous filtered value 
1if

X
−

is used to replace the sample mean, NX , a mean square 

deviation can be defined as: 

( )( )1

2
2

ii fv E X X
−

= −       (2.2.3) 

and can be estimated by: 
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( )
1

2
2

1

1
ˆ

1 i

N

i f

i

v X X
N −

=

= −
− ∑      (2.2.4) 

 

Assuming that {Xi} is uncorrelated, using the previous value of Xf, Xi-1, prevents 

autocorrelation between Xi and 
1if

X
−

, and allows one to easily estimate 2σ  and 2
v . 

Define: 

1ii i fd X X
−

= −        (2.2.5) 

if the process is at steady state conditions and there is no autocorrelation in the sequential 

measurement, then Xi and 
1if

X
−

are independent, then the variance on d is related to the 

variance on X and Xf [8]: 

2 2 2

fd X Xσ σ σ= +       (2.2.6) 

Further, for the exponentially weighted moving average, when {Xi} are independent and 

stationary, the variance on Xf from Equation (2.2.2) becomes [9]: 

2 21

11fX X

λ
σ σ

λ
=

−
      (2.2.7) 

Equations (2.2.6) and (2.2.7) yield: 

2 2 21 12 2

2 2
X d v

λ λ
σ σ

− −
= =      (2.2.8) 

from which the noise variance can be estimated if 2
v  is known. 

2 212
ˆ ˆ

2
X v

λ
σ

−
=        (2.2.9) 

However, Equation (2.2.4) is computationally expensive; so, use a filtered value instead 

of a traditional average: 

( ) ( )
1

2 2

, 2 2 , 11
if i i f f iv X X vλ λ
− −= − + −     (2.2.10) 
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If the process is stationary: 

( ) ( )( )1

2
2 2

, if i i fE v E X X v
−

= − =     (2.2.11) 

So, Equation (2.2.10) is an unbiased estimate of 2
v , and the variance of 2

,f iv  is: 

( ) ( )( )1

2
2 2

,

2

var var
2 if i i fv X X
λ
λ −

= −
−

    (2.2.12) 

which means that Equation (2.2.10) provides a computationally efficient, unbiased 

estimate of ( )
1

2

ii fX X
−

− . 

 

Then the estimate of the noise variance from this first approach will be: 

 

2 21
1, ,

2

2
i f is v

λ−
=       (2.2.13) 

 

Actually since Equation (2.2.10) requires 
1if

X
−

 one would compute Equation (2.2.10) 

before Equation (2.2.2) to eliminate the need to store the previous ‘average’. 

Using this method, 2

1,is will be increased from it’s steady-state value by a recent shift in 

the mean. Such a measure could be used to trigger the not-at-steady-state condition. 

However the threshold is dependent on both the measurements and the unknown process 

noise variance. 

 

The second method to estimate variance will use the mean squared differences of 

successive data. Define: 
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( )( )22

1i iE X Xδ −= −       (2.2.14) 

and 2δ could be estimated by: 

( ) ( )2

2, 1

1

2
i i iE s E X X −= −      (2.2.15) 

However, Equation (2.2.15) is computationally expensive; so, use a filtered approach: 

( ) ( )22 2

, 3 1 3 , 11f i i i f iX Xδ λ λ δ− −= − + −     (2.2.16) 

Again, Equation (2.2.16) gives an unbiased estimate of 2δ . 

When there is no autocorrelation in {x} the second estimate of the noise variance would 

be: 

2

,2

2,
2

f i

is
δ

=        (2.2.17) 

 

Taking the ratio of the two estimates of variance as determined by Equation (2.2.10) to 

Equation (2.2.14): 

( ) 22

1 ,1,

2 2

2, ,

2
f ii

i

i f i

vs
R

s

λ

δ

−
= =      (2.2.18) 

 

To summarize, use Equation (2.2.10) to calculate 2

,f iv , then use Equation (2.2.2) to 

calculate ,f iX , then use Equation (2.2.16) to calculate 2

,f iδ , and then use Equation (2.2.18) 

to calculate Ri. Each are direct, no logic, low storage, low operation calculations. In 

practice, it would be preferable to compare 2

,f i critRδ (Rcrit is the threshold value of R) to 

( ) 2

1 ,2 f ivλ− to prevent the possibility of a divide by zero in Equation (2.2.18). For each 
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observed variable, the method requires the direct and simple calculation of three filtered 

values. In total, there are three variables to be stored, 10 multiplications, eight additions, 

and one comparison per observed variable. 

 

There are three possible process behaviors which affect the value of R: 

1. If the process data is at steady-state (process mean is constant, additive noise is 

independent and identically distributed), the value of R will be near 1. 

2. If the process data mean shifts, or if the noise is autocorrelated, then R will be 

greater than 1. When there is a shift on mean, both the calculations of the mean 

will be influenced temporarily. The first calculation will increase more and persist 

longer, so R will be greater than 1 for a period of time, and that is the way that the 

not-at-steady-state condition can be identified. 

3. If the sequentially sampled variable values alternate between high and low 

extremes, then R will be less then 1. This doesn’t apply to optimization 

applications and is not considered in our study. 

 

The actual value of R, when implemented, is in effect a ratio of two noisy variables,and 

thus inherently has a good degree of noise associated with it. This can lead to the value of 

R being a normal distribution, and thus a threshold of R = 1 might not necessarily mean 

that the actual value of R is 1. to account for his sort of discrepancy, it is advisable to use 

a threshold value of 0.85, to ensure that the actual value of R is as close to 1.
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CHAPTER III 

 

 

METHODOLOGY 

 

3.1. Optimization routines: 

 

3.1.1. Direct methods: 

 

Direct Methods are those which require only objective values, not derivative knowledge, 

to proceed. It is assumed that f(x) is continuous and ▼f(x) may or may not exist but 

certainly is not available. These methods can be broadly classified into heuristic 

techniques and theoretical techniques. The former refer to search methods constructed 

from geometric intuition for which no performance guarantees other than empirical 

results can be stated. The following two heuristic methods are used in the present study: 

1. R. Russell Rhinehart’s heuristic optimizer 

2. Hooke-Jeeves Pattern Search Method 

 

R. Russell Rhinehart’s Heuristic Method 

The method resembles a Cyclic Search but incorporates a set of factors which cause the 

subsequent steps in a particular direction to expand or contract depending on the success 

of the step.  
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The algorithm is described below: 

 

Step 1. Define: 

 The starting point x
(0)

 

 The increments ∆
(k)

 for k = 1,2,3,…, N 

 The Expansion factor (Expand_factor) and  

The Contraction factor (Contract_factor) 

Step 2: x
(k+1)

 = x
(k)

 + ∆
(k)

 

Step 3: Was a lower point found? 

 Yes:  x
(k)

 = x
(k+1)

. 

  ∆
(k+1)

= ∆
(k)

 * Expand_factor 

 No:  x
(k+1)

 = x
(k)

. 

  ∆
(k+1)

= ∆
(k)

 * Contract_factor 

Step 4: Check for termination 

 Is the termination criteria satisfied? 

 Yes: Stop; current point approximates x
*
. 

No: Go to 2. 

 

Hooke Jeeves Pattern Search 

This algorithm was one of the first to incorporate the previous history of a sequence of 

iterations into the generation of a new search direction. It is basically a combination of a 

“exploratory moves” of the one-variable-at-a-time kind with “pattern” or acceleration 

moves regulated by a set of heuristics.  
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The algorithm is described below: 

 

Step 1. Define: 

 The starting point x
(0)

 

 The increments ∆k for k = 1,2,3,…, N 

 The step reduction factor α > 1 

Step 2. Perform Exploratory Search 

Step 3. Was exploratory search successful (i.e. was a lower point found)? 

 Yes: Go to 5. 

 No: Continue. 

Step 4. Check for termination 

 Is the termination criteria satisfied? 

 Yes: Stop; the current point approximates x
*
. 

 No: Reduce the increments: 

  k=1,2,3,…, N 

  Goto 2. 

Step 5. Perform the pattern move: 

  xp
(k+1)

 = x
(k)

 + (x
(k)

 – x
(k-1)

) 

Step 6. Perform exploratory search using xp
(k+1)

 as the base point; let the result be x
(k+1)

 

Step 7. if f(x
(k+1)

) < f(x
(k)

) 

 Yes: set x
(k-1)=

 x
(k)

 ; x
(k)

=x
(k+1)

. 

  Go to 5. 

 No: Go to 4. 
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3.1.2. Gradient based methods: 

 

The inherent problem in the direct methods is the excessive number of function 

evaluation required to locate the solution. This combined with the inherent desire to find 

stationary points motivates us to consider methods that employ gradient information to 

determine the search direction. The present study uses a Quasi-Newton search algorithm, 

namely, the Broyden-Fletcher-Goldfarb-Shanno (BFGS) Method, which exclusively uses 

first derivative information. 

The algorithm is described below: 

 

Step 1. Define: 

 The starting point x
(0)

 

 The increments ∆k for k = 1,2,3,…, N 

 The step reduction factor α > 1 

 Set search direction, s
(0)

 = -▼f(x
(0)

) 

 Hessian approximation, A
(0) 

= I 

Step 2: Perform a Line Search in the search direction (s
k
) to determine x

k+1
 

Step 3: Compute f(x
(k+1)

) and ▼f(x
(k+1)

) 

Step 4: Check for termination 

 True: Report results and Stop. 

 False: Continue to step 5. 

Step 5: Compute ∆x
k
 = x

k+1
 - x

k 

  
  ∆g

k
 = ▼f(x

(k+1)
) - ▼f(x

(k)
)
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Step 6: Compute A
k+1

 based on the following update formula: 

 
( ) ( )

( ) ( )
( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )kTk

Tkk
T

kTk

Tkk
k

kTk

Tkk
k

gx

xx

gx

gx

gx

gx

∆∆
∆∆

+








∆∆
∆∆

−








∆∆
∆∆

−=+
IAIA

1  

Step 7: compute the search direction using s
(k+1)

 = - A
(k+1) 

▼f(x
(k+1)

) 

 Repeat from step 2 onwards. 

 

3.2. Simulation: 

 

Since the objective of the study is to model nonlinear systems we need data sets to test 

our algorithm. The initial testing during the construction and debugging of the algorithm, 

was done on sets of contrived data, and the subsequent testing to observe the practical use 

of the algorithm was done on actual experimental data. 

 

3.2.1. Contrived Data: 

 The contrived data used in the study were representations of nonlinear systems 

with a sufficient degree of noise incorporated in them. Considering a nonlinear system 

involving only two variables, the initial set of contrived data used in the study, only 

incorporated noise in the dependent variable. The further testing of the algorithm was 

done on a different set of data with noise incorporated in both the dependent and the 

independent variables, which would give us a better approximation of a real world 

process with measurement uncertainties. In both cases the data is scaled between 0 and 1 

before it is implemented in the modeling procedure. 
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The following models were used in the modeling of the above described data: 

1. Third degree Polynomial: It is the simplest way to represent a nonlinear system. Here, 

we have “y” as a nonlinear function of “x,” but the power on each coefficient is unity, i.e. 

the model is linear in the parameters of optimization, and consequently, the regression 

modeling is trivial. 

It can be represented as: 

  y = A + B x + C x
2
 + D x

3
    (3.1) 

 

2. Neural Network. With the progression of order in the polynomial equation, we would 

find that the results are more accurate. The next step is to use a Neural Network. In this 

study, a two layered, bipolar sigmoidal neural network is used with two neurons in each 

layer. Larger neural networks are not used because it increases the computation time 

required by the computer for the evaluation of the weights. 

 

3.2.2. Experimental Data: 

 

Two-phase flow is the simultaneous flow of both gas and liquid phase fluids through a 

pipe or tube. There are five mail flow regimes associated with two-phase flow through 

pipes: bubble, slug, churn, annular, and mist. These flow regimes are characterized by the 

composition and flow characteristics of the fluid mixture. The present system under 

consideration is defined by the presence of air in a column of water. 
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The apparatus used consists of a vertical pipe for the air/water mixture, a control 

computer, pressure transducers, orifice meters, paired with control valves, piping, 

pressure gauges and rotameters for air flow and water flow respectively. The user can 

monitor and control the flow rates using the CAMILE control system. The flow rates of 

air and water are set using the control valves. Real time flow rates are monitored through 

the orifice meters. 

 

The modeling objective in this experiment is to model the pressure drop of the system 

based on a set of predetermined modeling equations. The optimizer routine is used to 

determine the coefficients in the model.  

 

It has to be noted that both models work only when the data provided is in one single 

regime, because the parameters being optimized have different values based on the 

different flow regimes. 

 

Lockhart-Martinelli Correlation 

The Bernoulli equation states that the mechanical energy of a fluid is constant between 

two points along a streamline. The pressure drop per unit length for a two-phase system 

between two points takes the form: 

g
L

P

L

P
TP

TP

f ⋅+






 ∆
=







 ∆− ρ       (3.2) 

TP

f

L

P








 ∆
=frictional pressure drop for two-phase flow 
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gTP ⋅ρ =hydrostatic pressure drop 

The frictional pressure drop term can be evaluated by using either of the following 

equations: 

( )

( )
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Where,
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 ∆
are the single phase frictional pressure drops for the gas and 

liquid phased calculated at their individual fluxes. They are calculated from the following 
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The ( )φ  terms are frictional multipliers that can be obtained from the Lockhart-Martinelli 

correlation, using the Martinelli multiplier which is defined as: 

g
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Which is then used in the following equations to yield gφ and lφ  
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+⋅+=
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φ
       (3.6) 

“C” is a constant that can be found in the literature, and it can be optimized. 

 

3.3. Application of the optimizer: 

 

The previous pages describes the various algorithms and the models used in the study. 

The application of this information is done using the following basic algorithm, which is 

modified depending on the optimizer and the model used. 

 

Step 1. Determine the number of data points to be used. 

Step 2. Inputs: 

 Dependent variables: coefficients of the model selected: 

 Percentage of Confidence (fraction between 0 and1) 

 Best Fraction of the data set required (fraction between 0 and 1) 

 Percentage of the dataset to be used in the Steady State Stopping Criterion. 

Step 3. Use the percentage of confidence and the best fraction, calculate the number of  

 trials required (Num_Trials). 

Step 4. Use the selected optimization routine to calculate the minima based on a random  

 starting point. The stopping criteria used in the routines are: 

1. Maximum number of iterations. 

2. Steady State Stopping Criterion 

Step 5. Repeat Step 4 for Num_Trials (the calculated number of trials) and store the  
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results of each trial, i.e. the Sum of Square Deviation and the values of the 

coefficients. 

Step 6. Find the lowest Sum of Square Deviation (SSD) from Step 5. 

Step 7. The coefficients corresponding to the lowest SSD will yield the global minima of  

 the given objective, and thus the closest model fitting the data. 

 

The function evaluations used in the optimization routine in Step 4, are a series of 

calculations which are used to determine the Sum of Square Deviation between the actual 

data and the points generated by the model based on the coefficients of that particular 

step. In the case of the Indirect method, the derivatives for the same are calculated based 

on a numerical forward difference approach, with an error order of one. Higher error 

orders and central difference approaches are avoided because of the increased number of 

calculations they require, and, thus increasing the time required for the computation. 
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3.4. Testing Best-of-N equation for best number of trials: 

 

The Best-of-N formula is based on a pre-defined confidence level, and the best fraction 

of all the possible answers. The best way to test the validity of the formula is by letting 

the optimizer run for a very large number (perhaps 100,000) of runs. The following 

algorithm is then employed to determine the validity of the formula used: 

 

 

 

Step 1. Use the Best-of-N formula to calculate the number of required runs. 

Step 2. Use the data set of (say) 10,000 runs, calculate the value of the sum of square  

 deviations that will correspond to the best fraction used in step 1. 

Step 3. Select the calculated number of runs randomly from the data set. 

Step 4. If at least one run yields answers less than or equal to the value calculated in step  

 2, the  step is a success. If not, the step is a failure. 

Step 5. Repeat steps 3 and 4, 1,000 times and count the number of successes in step 4. 

Step 6. If the percentage of successes (calculated from step 5) is similar to the percentage  

of confidence used in the neural network formula (Step 1) then the validity of the 

formula cannot be rejected. 

 

It has to be noted that the result obtained in Step 6 will not be exactly equal to the 

percentage of confidence used in the original formula. This can be attributed to the 
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amount of data acquired and the consequent changes in the standard deviation which is 

calculated based on the number of sets being considered.  

 

3.5. Testing the Steady State Stopping Criterion: 

 

The Steady State Stopping Criterion can be evaluated by plotting the sum of the square 

deviations with the filtered values against the number of trials. To test the criteria, the 

optimizer is run without the stopping criteria, and the parameters mentioned above, are 

plotted. The plots have to be observed to determine the accuracy of the predicted result 

and the optimum generated if the optimizer were to run based on a maximum number of 

iterations. If the results generated in both cases are the same, the Steady State Stopping 

Criterion can be validated. 
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CHAPTER IV 

 

 

RESULTS AND DISCUSSION 

 

The results obtained from both contrived data and experimental data are discussed below. 

Both contrived data sets were based on nonlinear models, and a series of nonlinear 

models were used to model them. The experimental data was based on Venkatram 

Padmanabhan’s thesis results [2], as well as independently generated data for pressure 

drop in a two-phase flow apparatus. 

 

4.1. Results from simulated data 

 

Two sets of contrived data were used in this study. Both sets were based on nonlinear 

models of varying complexity. In order to make the data representative of actual 

experimental data, noise was added to it using normally distributed random numbers with 

a set variance. In the first set of data (designated in future as Set A), the noise was 

incorporated only on the dependent variable. This can be mathematically described by: 

( )ˆ
noiseY Y X Y= +     (4.1) 

In real experimental data, the inaccuracies caused by measuring devices create 

uncertainty in the value of the independent variables too. To represent this, a second set 
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of data (designated as Set B), has noise incorporated in both the dependent variable and 

in the independent variable. This can be mathematically represented by: 

( )ˆ
noise noiseY Y X X Y= + +     (4.2) 

The data is fed to the optimizer and the resulting set of terminal values are used to check 

if the predicted curve fits the data or not. The goodness of the fit is checked based on the 

Sum of the Squared Deviations (SSD) and the average of the squared deviations between 

the model values and the actual values. The Steady State Stopping Criterion is checked 

for each situation against an optimization trial with an excessive number of iterations (in 

this case, 200 iterations). To simplify the presentation of the plots, a subsystem of case 

designations is used which is described in detail in Appendix D. 

 

The Weakest-Link-in-the-Chain analysis is validated against each optimization routine 

for a polynomial function (nonlinear in the dependent variable, but linear in the 

coefficients) and against a neural network (nonlinear in both response and coefficients). 

The results of this analysis are reported later on in this chapter.  

 

Optimization of models based on Set A: 

In Set A we are considering the data for the dependent variable ‘y’ to be noisy. This is 

generated by the Rand() function in MS EXCEL. The random numbers are Gaussian 

distributed and ranges from -0.5 to 0.5. 
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4.1.1 Model used: Third degree polynomial equation 

 

 2 3y a bx cx dx= + + +       (4.3) 

 

In terms of the optimization, the parameters ‘a’ to‘d’ are the decision variables that need 

to be determined by the optimizer. The optimization algorithms are written in Visual 

Basic for Applications (VBA), and the data is displayed on MS EXCEL.  

 

For the purposes of our study, we also run the optimizer for one trial using the Steady 

State Stopping Criterion, and then run the optimizer for the same initial guess without the 

Steady State Criteria. The limit of 200 iterations in each of the algorithms is used to 

terminate the search. The number 200 is used because it is about 4 to5 times the average 

number of iterations executed before the trial is terminated by the stopping criteria. The 

purpose of this endeavor is to determine the effectiveness of the stopping criterion in 

getting to the required minima for the trial. 

 

In each case, the Weakest-Link-in-the-Chain analysis is used to determine the best 

number of trials that would give us the best 10% of the solutions with a confidence of 

90%. On substituting the numbers in Equation 2.1.2, gives a result of 21.85434 runs. This 

number is rounded to 22 runs. It is also noted that the slightly higher number of runs 

would give us slightly better performance. The optimizer is run based on this number of 

required trials, and then the best answer from the set of 22 is selected and reported as the 
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global optimum for the given data. The threshold on Rstatistic in the Steady State Stopping 

Criterion is kept at 0.85 as per the discussion presented in Chapter II. 

 

In order to test the accuracy of the above mentioned formula, a separate series of 

excessive trial runs are executed. Then the formula is used to pick a certain number of 

trials, which are then used to determine if the required best fraction of the results is 

reported with the required confidence. This series of tests is reported later on in the 

chapter. 

 

Case 4.1.1.1 Optimization algorithm used: RRR’s optimizer 

 

The initial values of the four parameters in Equation (4.3) are randomly selected with 

each trial using the “rnd” function in Visual Basic for Applications, and the optimization 

was run for the required number of trials. The solution reported by the optimizer is given 

in Table 4.1 along with the SSD to give the reader an idea of the goodness of the fit. 

 

Table 4.1: Final Optimization results for Case 4.1.1.1 

Parameter a b c d SSD 

Value 0.414552 0.695335 -0.77846 0.282316 3.354435 

 

The procedure is repeated for a single trial with the Steady State Stopping Criterion, and 

the same initial guess of 2 for each parameter is used to run the trial again without the 
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stopping criteria. The value of 2 has no special significance. The only thing that matters 

is that both the runs described start from the same point. The plot of the RMS error versus 

the filtered value of the error for both cases are displayed below. 

 

Fig 4.1a RMS Error vs Filtered Error (Case A1) 
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Fig 4.1b RMS Error vs Filtered Error (Case A2) 
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the final results of the two runs are shown below. 

 

Table 4.2: Parameter values for Case (4.1.1) 

Parameters 
with Excessive 

iterations 
Steady State 

Stopping Criterion 

a 0.4144652 0.416332531 

b 0.70228147 0.671817207 

c -0.778293 -0.776080926 

d 0.26847124 0.335439205 

SSD 3.35395357 3.364525408 

 

From this we observe that there is a 0.314% improvement in the SSD when the Steady 

State Stopping Criterion is not used. It is also observed that the Stopping criteria 

terminated the trial at 32 iterations. 
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Case 4.1.1.2 Optimizer used: Hooke-Jeeves algorithm 

The “rnd” function is used again to generate random starting guesses for the optimizer. 

The optimizer is run for the calculated number of trials and the best answer is reported. 

 

Table 4.3: Final Optimization results for Case (4.1.1.2) 

Parameter a b c d SSD 

Value 0.415 0.702 -0.778 0.268 3.353952 

 

Again, a single trial is executed using an initial guess of 1 for each parameter and the 

results are compared with a similar trial with the same initial guess, but without the 

Steady State Stopping Criterion. 

 

Fig 4.2a RMS Error vs Filtered Error (Case B1) 
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Fig 4.2b RMS Error vs Filtered Error (Case B2) 
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The final results are shown below. 

From the results, it is observed that there is a 0.0005% difference between the SSD 

values, and the Steady State Stopping Criterion terminated the search in the thirty sixth 

iteration. 

Table 4.4: Parameter values for Case 4.1.1.2 

Parameters 
with Excessive 

iterations 
Steady State 

Stopping Criterion 

A 0.41456223 0.41484375 

B 0.70234375 0.703125 

C -0.7784996 -0.77890625 

D 0.26844101 0.26640625 

SSD 3.35395247 3.353969601 

Another point is noted in the case of the Hooke Jeeves algorithm. There were cases where 

the steady state criteria was observed to have taken more time to terminate a trial 

compared to conventional criteria based on threshold values of the error. The stopping 
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criterion was also observed to terminate the trials before other threshold based stopping 

criteria. On an observation of 22 trials, the other conventional stopping criteria terminated 

five trails, and the rest were terminated by the steady state stopping criterion. 

 

Case 4.1.1.3 Optimizer used: Broydon-Fletcher-Goldfarb-Shanno (BFGS) algorithm 

The same procedure as before is repeated, where the parameters are randomly selected 

before each trial and the best result is reported as the global minima.  

Table 4.5: Final Optimization results for Case (4.1.1.3) 

Parameter a b c d SSD 

Value 0.414514 0.702425 -0.77839 0.268191 3.353952533 

 

The Steady State Stopping Criterion is evaluated by running a trail with starting values of 

2 for each parameter and then running the same trial without the criteria. The results are 

displayed below: 
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Fig 4.3a RMS Error vs Filtered Error (Case C1) 
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Fig 4.3b RMS Error vs Filtered Error (Case C2) 
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Table 4.6: Parameter values for Case (4.1.1.3) 

Parameters 
with Excessive 

iterations 
Steady State 

Stopping Criterion 

A 0.41446524 0.41443425 

B 0.70228159 0.702190102 

C -0.7782931 -0.778233507 

D 0.26847101 0.268648939 

SSD 3.35395357 3.353954236 

 

It is observed that there is almost no difference between the SSD value reported in the 

two cases, and the stopping criteria terminated the trial at 28 iterations, which for the case 

of the BFGS optimizer is very advantageous if we consider the computation time 

required. 

 

4.1.2 Model used:  neural network 

 

A bipolar sigmoidal neural network is used to model the process. The neural network is 

nonlinear in terms of the parameters and in terms of the variables. 

 

Case 4.1.2.1 Optimizer used: RRR’s Optimizer 

The seven parameters of the neural network are randomly selected using the “rnd” 

function in VBA at the start of each new trial. The optimizer is run for the calculated 

number of trials and the best solution is reported. The SSD is also reported since it gives 

an idea of how close the neural network is to modeling the actual process. 
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Table 4.7: Final Optimization results for Case (4.1.2.1) 

Bias b-hidden x-hidden hidden-out SSD 

-1.669559 2.894438 -9.75150 -0.2449644 2.684418 

 -0.3494423 2.06260 0.51463575  

 

The Steady State Stopping Criterion is then tested by running one trial of the optimizer 

and comparing the results using the same initial guess and making the optimizer run for a 

large number of iterations (in this case 200). 

 

Fig 4.4a RMS Error vs Filtered Error (Case D1) 
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Fig 4.4b RMS Error vs Filtered Error (Case D2) 
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It is observed that the excessive iterations leads to an improvement of 0.02% from the 

solution presented by the Steady State Stopping Criterion, and the latter terminated the 

trial at 30 iterations which indicates that a lot of computation time is saved by the 

stopping criteria. 
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Table 4.8: Parameter values for Case (4.1.2.1) 

Parameters 
with Excessve 

iterations 
Steady State 

Stopping Criterion 

Bias 0.936509028 0.939408105 

2.513650257 2.513650257 
b-hidden 

0.058786107 0.058786107 

4.762602597 4.765501674 
x-hidden 

1.388032997 1.388032997 

0.486840389 0.486983553 
hidden-out 

0.354746384 0.354889548 

SSD 2.575424037 2.574843348 

 

 

Case 4.1.2.2 Optimizer used: Hooke Jeeves algorithm 

As before, the initial values of the seven parameters are randomly selected before each 

trial and the optimizer is run for the requisite number of trials before the best answer is 

selected to be reported as the global minima. 

Table 4.9: Final Optimization results for Case (4.1.2.2) 

Bias b-hidden x-hidden hidden-out SSD 

1.225656 1.551861 3.634135 0.654645 2.59205 

 -0.24638 0.837713 0.411149  

 

The Steady State Stopping Criterion is then tested by executing one trial of the optimizer 

with the stopping criteria and repeating the trial with the same initial values, but tiheout 

the stopping criteria and letting the optimizer run for the whole 200 iteration limit.  
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Fig 4.5a RMS Error vs Filtered Error (Case E1) 
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Fig 4.5b RMS Error vs Filtered Error (Case E2) 

0

1

2

3

4

5

6

0 50 100 150 200

Iterations

R
M

S
 E

rr
o

r 
&

 F
il

te
rd

 E
rr

o
r

RMS Error

Filtered Error

 

 

 



 55 

Table 4.10: Parameter values for Case (4.1.2.2) 

Parameters 
with Excessive 

iterations 
Steady State 

Stopping Criterion 

Bias 0.772053957 1.033696079 

-6.109157372 -0.481925535 
b-hidden 

2.412784433 -0.2510396 

-4.607173777 -2.191750145 
x-hidden 

1.679784012 -4.218929434 

3.590732861 -1.392207956 
hidden-out 

4.326978636 0.542894363 

SSD 2.70101234 3.04521071 

 

It is observed that there is a 12% improvement in the solution in this case. It can be 

attributed to the occurrence of  Type-II errors. 

 

Case 4.1.2.3 Optimizer used: BFGS algorithm 

As has been done before, the initial values are selected at the start of each new trial using 

the “rnd” function in VBA. The number of trials is determined based on the best fraction 

and confidence desired by the user and the best result among the trials is reported as the 

final answer to the requirement. 

 

Table 4.11: Final Optimization results for Case (4.1.2.3) 

Bias b-hidden x-hidden hidden-out SSD 

-1.181747 39.73161 70.82894 0.1546973 2.463505 

 -1.237346 3.087534 0.7797951  
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The stopping criteria is then tested by making one trial without using the Steady State 

Stopping Criterion and another trial using the same initial guess values and using the 

stopping criteria to terminate the run when steady state is attained. 

 

Fig 4.6a RMS Error vs Filtered Error (Case F1) 
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Fig 4.6b RMS Error vs Filtered Error (Case F2) 
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Table 4.12: Parameter values for Case (4.1.2.3) 

Parameters 
with Excessve 

iterations 
Steady State 

Stopping Criterion 

Bias -1.976906984 0.32308939 

-1.53899143 -4.161999479 
b-hidden 

0.071812319 -6.689022244 

6.132983145 -2.037950908 
x-hidden 

-1.353032068 1.647607143 

0.430599932 -1.216941135 
hidden-out 

-0.422728368 0.566541194 

SSD 2.544638865 2.744895701 

 

It is observed that there is a 7% improvement in the SSD and this can be attributed to 

Type-II errors.  
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Another factor that was observed in the BFGS algorithm was that there was a large 

amount of computation time involved in most trials. This is because each iteration 

involves derivative calculations, which in the case of empirical modeling means the 

calculation of the SSD between the experimental data and the model values based on 

each change in a parameter. This also indicated that it might be inconvenient to use 

indirect optimization methods. Also, since numerical differentiation techniques are being 

used, it wouldn’t be prudent to use a higher degree differentiation technique since it 

would significantly increase the computation time involved. 

 

Optimization of Different models based on Set B: 

 

In Set B, we have errors associated with both the dependent and independent variables. It 

is a more realistic representation of a process since we have measurement disturbances to 

take into account too. As in the case of Set A, we set the same parameters for the 

Weakest-Link-in-the-Chain formula, i.e. a 90% confidence that one of the best 10% of 

the answers will be reported each time. In this series, the threshold value of the Rstatistic in 

the Steady State Stopping Criterion is kept at 1. The intention is to see if there are any 

problems that might arise which might not have been noticed in Set A. 
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4.1.3 Model used: Third degree polynomial equation 

  

Case 4.1.3.1 Optimization algorithm used: RRR’s optimizer 

 

The initial values of the four parameters in Equation (4.3) are randomly selected with 

each trial using the “rnd” function in Visual Basic for Applications, and the optimization 

was run for the required number of trials. The solution reported by the optimizer is given 

in Table 4.13 along with the SSD to give the reader an idea of the goodness of the fit. 

 

Table 4.13: Final Optimization results for Case (4.1.3.1) 

Parameter a b C D SSD 

Value 0.264408 0.3377009 -2.206826 -0.3796403 1.8214876 

 

The procedure is repeated for a single trial with the Steady State Stopping Criterion, and 

the same initial guess of 2 for each parameter is used to run the trial again without the 

stopping criteria. Again the value of 2 has no special significance.  
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Fig 4.7a RMS Error vs Filtered Error (Case G1) 
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Fig 4.7b RMS Error vs Filtered Error (Case G2) 
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The final results of the two runs are shown below. 
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Table 4.14: Parameter values for Case (4.1.3.1) 

Parameters 
with Excessive 

iterations 
Steady State 

Stopping Criterion 

a 0.26405963 0.2649534 

b 0.34507112 0.319404045 

c -2.205113 -2.211893244 

d -0.3938873 -0.332135875 

SSD 1.82145175 1.821900973 

 

From this we observe that there is a 0.0001% improvement in the SSD when we don’t 

use the Steady State Stopping Criterion. It is also observed that the Stopping criteria 

terminated the trial at 57 iterations. 

 

Case 4.1.3.2 Optimizer used: Hooke-Jeeves’ algorithm 

The “rnd” function is used again to generate random starting guesses for the optimizer. 

The optimizer is run for the calculated number of trials and the best answer is reported. 

 

Table 4.15: Final Optimization results for Case (4.1.3.2) 

Parameter a b c d SSD 

Value 0.26407 0.3452001 -2.20517 -0.394158 1.8214517 

 

Again, a single trial is executed using an initial guess of 1 for each parameter and the 

results are compared with a similar trial with the same initial guess, but without the 

Steady State Stopping Criterion. 
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Fig 4.8a RMS Error vs Filtered Error (Case H1) 
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Fig 4.8b RMS Error vs Filtered Error (Case H2) 
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The final results are shown below. 
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Table 4.16: parameter values for Case (4.1.3.2) 

Parameters 
with Excessive 

iterations 
Steady State 

Stopping Criterion 

A 0.26406336 0.264088535 

B 0.34533124 0.345412111 

C -2.2051062 -2.205220604 

D -0.3945288 -0.394643259 

SSD 1.82145177 1.821451806 

 

From the results, it is observed that there is a 0.00005% difference between the SSD 

values, and the Steady State Stopping Criterion terminated the search in the fifty second 

iteration. 

 

The point noted in the case of the Hooke Jeeves’ algorithm execution in Set A is noted 

again in this case. There were cases where the initial guess was inappropriate, and the 

final SSD reported at the end of the 100 iteration limit was worse than the genera minima 

reported. 

 

case 4.1.3.3 Optimizer used: Broydon-Fletcher-Goldfarb-Shanno (BFGS) algorithm 

The same procedure as before is repeated, where the parameters are randomly selected 

before each trial and the best result is reported as the global minima.  

Table 4.17: Final Optimization results for Case (4.1.3.3) 

Parameter a b c d SSD 

Value -3.203664 0.4466594 10.568484 -4.1892569 1.8214517 
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The Steady State Stopping Criterion is evaluated by running a trail with starting values of 

2 for each parameter and then running the same trial without the criteria. The results are 

displayed below: 

 

 

Fig 4.9a RMS Error vs Filtered Error (Case I1) 
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Fig 4.9b RMS Error vs Filtered Error (Case I2) 
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Table 4.18: parameter values for Case (4.1.3.3) 

Parameters 
with Excessive 

iterations 
Steady State 

Stopping Criterion 

A 0.26396833 0.263968352 

B 0.34498261 0.344982613 

C -2.2049263 -2.204926401 

D -0.3937965 -0.393796516 

SSD 1.82145183 1.821451823 

 

It is observed that there is almost no difference between the SSD value reported in the 

two cases, and the stopping criteria terminated the trial at 25 iterations, which for the case 

of the BFGS optimizer is very advantageous if we consider the computation time 

required. 
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4.1.4  Model used:  neural network 

 

Case 4.1.4.1 Optimizer used: RRR’s Optimizer 

 

The seven parameters of the neural network are randomly selected using the “rnd” 

function in VBA at the start of each new trial. The optimizer is run for the calculated 

number of trials and the best solution is reported. The SSD is also reported since it gives 

us an idea of how close the neural network is to modeling the actual process. 

Table 4.19: Final Optimization results for Case (4.1.4.1) 

Bias b-hidden x-hidden hidden-out SSD 

0.66989 -2.33702 -5.70278 -1.6659 0.835982 

 -0.55894 -1.15353 2.7867  

 

The Steady State Stopping Criterion is then tested by running one trial of the optimizer 

and comparing the results using the same initial guess and making the optimizer run for a 

large number of iterations (in this case 200). 
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Fig 4.10a RMS Error vs Filtered Error (Case J1) 
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Fig 4.10b RMS Error vs Filtered Error (Case J2) 
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Table 4.20: Parameter values for Case (4.1.4.1) 

Parameters 
with Excessve 

iterations 
Steady State 

Stopping Criterion 

Bias 0.42395801 0.579606397 

3.54516021 2.881790712 
b-hidden 

-0.6572138 0.702295161 

5.54636768 6.077587936 
x-hidden 

-0.8814934 1.239091187 

1.80828615 1.710634785 
hidden-out 

3.61551556 -2.678422714 

SSD 0.59914322 0.869499883 

 

 

It is observed that the excessive iterations leads to an significant improvement from the 

solution presented by the Steady State Stopping Criterion. From Figures 4.10a and 4.10b, 

we note that the steady state identifier doesn’t really track the gradual decrease in the 

errors. This is a typical example of the Type II error, where the null hypethesis is 

accepted even if it’s not true, i.e. the data window being observed by the identifier leads 

the latter to infer the attainment of steady state even if it has not been attained. One way 

to reduce Type-II error would be to sample more data for the purposes of steady state 

identification. Another factor coming into play is the threshold on the value of Rstatictic 

which identifies steady state. The value of 1 might be replaced by a lower value (say 

0.85). 
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Case 4.1.4.2 Optimizer used: Hooke Jeeves algorithm 

As before, the initial values of the 7 parameters are randomly selected before each trial 

and the optimizer is run for the requisite number of trials before the best answer is 

selected to be reported as the global minima. 

Table 4.21: Final Optimization for Case (4.1.4.2) 

Bias b-hidden x-hidden hidden-out SSD 

0.61757 2.08481 -3.734539 3.38889 0.4359 

 -0.69004 1.172703 5.41916  

 

The Steady State Stopping Criterion is then tested by executing one trial of the optimizer 

with the stopping criteria and repeating the trial with the same initial values, but tiheout 

the stopping criteria and letting the optimizer run for the whole 200 iteration limit.  

 

Fig 4.11a RMS Error vs Filtered Error (Case K1) 
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Fig 4.11b RMS Error vs Filtered Error (Case K2) 
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Table 4.22: Parameter values for Case (4.1.4.2) 

Parameters 
with Excessve 

iterations 
Steady State 

Stopping Criterion 

Bias 0.53955545 -0.425464964 

0.57256665 -2.420506859 
b-hidden 

2.32747602 1.066876841 

-0.8233908 3.634687185 
x-hidden 

-3.5987146 -1.47389946 

-6.0723837 3.808899975 
hidden-out 

2.95178108 5.161466551 

SSD 0.34193133 0.435365259 
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It is observed that there is a 20% improvement in the solution in this case. Figure 4.11a 

does indicate another case of Type-II error, even though the difference in the solutions is 

not as significant as in the previous case. 

 

Case 4.1.4.3 Optimizer used: BFGS algorithm 

As it has been done before, the initial values are selected at the start of each new trial 

using the “rnd” function in VBA. The number of trials is determined based on the best 

fraction and confidence desired by the user and the best result among the trials is reported 

as the final answer to the requirement. 

 

Table 4.23: Final Optimization results using for Case (4.1.4.3) 

Bias b-hidden x-hidden hidden-out SSD 

-0.29778 -1.82963 -1.499854 -7.07405 0.315093 

 3.553234 3.019008 -5.38718  

 

The stopping criteria is then tested by making one trial without using the Steady State 

Stopping Criterion and another trial using the same initial guess values and using the 

stopping criteria to terminate the run when steady state is attained. 
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Fig 4.12a RMS Error vs Filtered Error (Case L1) 
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Fig 4.12b RMS Error vs Filtered Error (Case L2) 
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Table 4.24: Parameter values for Case (4.1.4.3) 

Parameters 
with Excessve 

iterations 
Steady State 

Stopping Criterion 

Bias 0.26327861 0.308302404 

2.18081727 1.617539959 
b-hidden 

3.79800038 3.595572715 

-1.5764121 -1.366225855 
x-hidden 

-2.8347884 -3.175522809 

-8.2699408 -6.409117966 
hidden-out 

6.57475695 4.566487341 

SSD 0.3102657 0.316846743 

 

It is observed that there is a 7% improvement in the SSD, though it is not significant 

considering the actual numbers generated.  

 

4.2. Results from Experimental Data 

Two-phase flow is the simultaneous flow of a gas and a liquid in a pipe or tube. This is a 

very commonly observed phenomenon in chemical engineering unit operations, such as 

distillation columns, evaporators, reactors, condensers etc. in this study, we consider the 

two-phase flow of water and air in a vertical pipe. The fluid flow rates are measured 

using rotameters in coordination with orifice meters. And a control system is used to 

control the flow in the system. The CAMILE software is used to monitor and operate the 

control system. Pressure transducers measure the pressure at the top and bottom of the 

vertical column. All the data is assimilated by CAMILE, and reported in text files. The 

experimental data used are shown in Appendix D. 
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There are various methods used to model the pressure drop in two-phase flow. In this 

study, the Lockhart-Martinelli correlation is used to determine the same. A sample 

calculation is shown in Appendix B 

 

The Lockhart-Martinelli Correlation constant, C is readily available from the literature. 

The values change depending on the flow characteristics. And are shown in table  

 

Table 4.25: Flow Patterns of Fluid based on Reynolds number 

Flow Pattern Reynolds number 

Laminar Re<2000 

Turbulent 3000<Re<50000 

 

Table 4.26: Lockhart-Martinelli correlation constants for different vapor-liquid 

flow patterns. 

Liquid Vapor C 

Laminar Laminar 5 

Turbulent Laminar 10 

Laminar Turbulent 12 

Turbulent Turbulent 20 

 

The value of C is evidently dependent on the flow patterns of both the liquid and the 

vapor. To effectively correlate this in the calculation of the correlation constant by the 

optimizer, the following model is used: 

Re Reb c
C a=      (4.2) 
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The flow data obtained (presented in Appendix B) is classified into four groups based on 

the flow patterns of the liquid and the vapor. The objective of the present set of cases is to 

make the Lockhart-Martinelli model best predict the experimentally measured pressure 

drop for each of the four laminar-turbulent cases. The three coefficients, a, b, and c, are 

the DVs in each optimization. The effectiveness of the stopping criteria is tested by 

running the optimizer once and repeating the trial with the same initial guess, but without 

the stopping criteria. The maximum limit of 200 iterations is assumed to be adequate to 

ensure steady state. The goodness of the model itself is checked by plotting the 

experimental pressure drop values against the pressure drop values predicted by the 

model. The RRR’s Optimizer is used in the presentation of the cases. The classification 

and the results obtained in each case are discussed below. 

 

Case 4.2.1 Liquid Flow – Laminar 

  Vapor Flow – Laminar 

 

The values of a, b, c and the SSD for Laminar-Laminar flow is given in table 4.? 

Table 4.27: Final Optimization results for Laminar-Laminar Flow 

Parameter a b C SSD 

Value -1.59013 -1.67572 1.685488 0.28827 
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Fig 13: Experimental Pressure Drop vs Model Pressure Drop for Laminar-Laminar 

Flow 
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Fig 4.14a: RMS Error vs Filtered Error for Laminar-Laminar Flow with Steady 

State Stopping Criterion 
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Fig 4.14b: RMS Error vs Filtered Error for Laminar-Laminar Flow with Excessive 

Iterations 
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Table 4.28: Parameter values for Laminar-Laminar Flow 

 

Parameter 
With Excessive 

Iterations 
With SS 

a -0.61653 -1.45648 

b 0.447043 0.557754 

c -0.33146 -0.57551 

SSD 0.292015 0.292455 
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Case 4.2.2 Liquid Flow – Turbulent 

  Vapor Flow – Laminar 

Table 4.29: Final Optimization results for Turbulent-Laminar Flow 

 

Parameter a b c SSD 

Value 0.033814 1.501337 -0.97511 2.351466 

 

Fig 4.15: Experimental Pressure Drop vs Model Pressure Drop for Turbulent-

Laminar Flow 
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Fig 4.16a: RMS Error vs Filtered Error for Turbulent-Laminar flow with Steady 

State Stopping Criterion 
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Fig 4.16b: RMS Error vs Filtered Error for Turbulent-Laminar Flow with 

Excessive Iterations 
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Table 4.30: Parameter values for Turbulent-Laminar Flow 

 

Parameter 
With Excessive 

Iterations 
With SS 

a 4.543739 0.935582 

b 0.282529 0.794484 

c -0.21111 -0.59364 

SSD 2.355028 2.355656 

 

 

Case 4.2.3  Liquid Flow – Laminar 

  Vapor Flow – Turbulent 

Table 4.31: Final Optimization results for Laminar-Turbulent Flow 

 

Parameter a b c SSD 

Value 0.901514 -1.42825 1.169466 0.008928544 
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Fig 4.17 Experimental Pressure Drop vs Model Pressure Drop for Laminar-

Turbulent Flow 
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Fig 4.18a: RMS Error vs Filtered Error for Laminar-Turbulent flow with Steady 

State Stopping Criterion 
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Fig 4.18b: RMS Error vs Filtered Error for Laminar-Turbulent Flow with 

Excessive Iterations 
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Table 4.32: Parameter values for Laminar-Turbulent Flow 

 

Parameter 
With Excessive 

Iterations 
With SS 

a 0.74480862985 0.649 

b 0.807835642 0.828768 

c -0.677895135 -0.67923 
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SSD 0.008940903 0.008941 

 

Case 4.2.4  Liquid Flow – Turbulent 

  Vapor Flow – Turbulent 

Table 4.33: Final Optimization results for Laminar-Laminar Flow 

 

Parameter a b c SSD 

Value 0.076989 1.160383 -0.51798 2.805532 

 

Fig 4.19: Experimental Pressure Drop vs Model Pressure Drop for Turbulent-

Turbulent Flow 
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Fig 4.20a: RMS Error vs Filtered Error for Turbulent-Turbulent flow with Steady 

State Stopping Criterion 
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Fig 4.20b: RMS Error vs Filtered Error for Turbulent-Turbulent Flow with 

Excessive Iterations 



 85 

0

0.5

1

1.5

2

2.5

3

3.5

0 50 100 150 200

Iterations

R
M

S
 E

rr
o

r 
&

 F
il

te
re

d
 E

rr
o

r

 

 

Table 4.34: Parameter values for Laminar-Laminar Flow 

 

Parameter 
With Excessive 

Iterations 
With SS 

a 0.62626503185 0.51116580305 

b 0.793496239 0.79279523 

c -0.394532864 -0.371494198 

SSD 2.800624 2.811018 
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4.3. Results of the Best-of-N Analysis 

 

The Best-of-N analysis had been described in the previous chapter, and Equation (2.1.2) 

is used in the present study to calculate the number of trials the optimizer runs in order to 

determine the global optimum, i.e. the best possible model. It is also evident that the 

analysis is dependent on the stopping criteria terminating a trial at the local optimum. The 

previous sections can lead to a conclusion that the Steady State Stopping criterion does in 

fact do so, and one can progress with the analysis of the Best-of-N formula.  

 

The present analysis of the Best-of-N formula is done based on running the optimizers on 

different models, and datasets, for a large number of trials (in this case 10,000) each 

starting with a random initial set of values. The analysis algorithm described in Section 

3.4 is implemented on each set of points thus obtained. The algorithm is programmed in 

VBA and is reproduced in Appendix (C). The final result of the algorithm gives us the 

confidence with which the Best-of-N formula can predict the optimum within the 

predetermined best fraction of the results generated by a specific optimization algorithm. 

The testing algorithm also generates a cumulative distribution for the data, which is used 

in determining the higher limit for the required best fraction of the results. For the present 

set of discussed cases, it is required to be 90% confident that one of the best 10% of the 

results will be reported each time. 

 

It has to be noted that the number of trials (10,000) though notably large, is not the same 

as an infinite number of runs, and consequently, the probabilities involved in Equation 
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(2.3) would not be absolutely accurate, and consequently, a fair degree of accuracy is 

assumed to be associated with them. In mathematical terms, we can say that the 

confidence in the results (as predicted by the above mentioned algorithm) is normally 

distributed, with  

.n pµ =           (4.3.1) 

2 . .n p qσ =           (4.3.2) 

where µ is the mean, n is the number of sets involved, and p is the required probability, 

and q =(1-p). 

 

Considering the present situation, Equation (2.3) gives us 22 trials, and we have 10,000 

points. This gives us (10000/22) ≈ 454 sets, i.e. n; p is 0.9 based on the required 

confidence, and q is 0.1. 

 

From Equations (4.3.1) and (4.3.2), we get µ = 409.1, and σ = 6.3957. If we were to 

consider 3µ σ± ⋅ , a result between 94.336 % and 85.88% cannot be rejected. 

 

Case 4.3.1 Model Used:  Neural Network 

  Optimizer: RRR’s Algorithm 

  Dataset: Set A 

The cumulative distribution of the 10000 datapoints is given in Figure 4.21. the testing 

algorithm reveals that the best 10% of the answers are reported 89.8% of the times  when 

22 sets of points are considered as predicted by the Best-of-N formula. 

Fig 4.21: Cumulative Distribution for Case (4.3.1) 
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Case 4.3.2 Model Used:  Third degree Polynomial Equation 

  Optimizer: RRR’s Algorithm 

  Dataset: Set A 

The cumulative distribution of the 10000 datapoints is given in Figure 4.22. the testing 

algorithm reveals that the best 10% of the answers are reported 89.4% of the times  when 

we consider 22 sets of points as predicted by the Best-of-N formula. 

Fig 4.22: Cumulative Distribution for Case (4.3.2) 



 89 

0

2000

4000

6000

8000

10000

12000

1.821450 1.821455 1.821460 1.821465 1.821470 1.821475

SSD [Unit2]

F
x

 

Case 4.3.3 Model Used:  Neural Network 

  Optimizer: RRR’s Algorithm 

  Dataset: Set B 

The cumulative distribution of the 10000 datapoints is given in fig 4.23. the testing 

algorithm reveals that the best 10% of the answers are reported 87.6% of the times  when 

we consider 22 sets of points as predicted by the Best-of-N formula. From the discussion 

presented in the beginning of this section, this would be in the range where the formula 

can not be rejected. 

Fig 4.23: Cumulative Distribution for Case (4.3.3) 



 90 

0

2000

4000

6000

8000

10000

12000

0 2 4 6 8 10 12 14 16 18

SSD [Unit2]

F
x

 

Case 4.3.4 Model Used:  Third Degree Polynomial 

  Optimizer: RRR’s Algorithm 

  Dataset: Set B 

The cumulative distribution of the 10000 datapoints is given in fig 4.??. the testing 

algorithm reveals that the best 10% of the answers are reported 92.9% of the times  when 

we consider 22 sets of points as predicted by the Best-of-N formula. This is under the 

range that was calculated for a normal distribution. 

Fig 4.24: Cumulative Distribution for Case (4.3.4) 
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Case 4.3.5 Model Used:  Neural Network 

  Optimizer: Hooke Jeeves Algorithm 

  Dataset: Set A 

The cumulative distribution of the 10000 datapoints is given in fig 4.??. the testing 

algorithm reveals that the best 10% of the answers are reported 91.4% of the times  when 

we consider 22 sets of points as predicted by the Best-of-N formula. This falls within the 

range of the normal distribution for the given data, and the formula can not be rejected. 

Fig 4.25: Cumulative Distribution for Case (4.3.5) 
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Case 4.3.6 Model Used:  Neural Network 

  Optimizer: Hooke Jeeves Algorithm 

  Dataset: Set B 

The cumulative distribution of the 10000 datapoints is given in fig 4.??. the testing 

algorithm reveals that the best 10% of the answers are reported 90.6% of the times  when 

we consider 22 sets of points as predicted by the Best-of-N formula. 

Fig 4.26: Cumulative Distribution for Case (4.3.6) 
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Case 4.3.7 Model Used:  Neural Network 

  Optimizer: BFGS Algorithm 

  Dataset: Set A 

The cumulative distribution of the 10000 datapoints is given in fig 4.??. the testing 

algorithm reveals that the best 10% of the answers are reported 92.4% of the times  when 

we consider 22 sets of points as predicted by the Best-of-N formula. 
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Fig 4.27: Cumulative Distribution for Case (4.3.7) 
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Case 4.3.8 Model Used:  Neural Network 

  Optimizer: BFGS Algorithm 

  Dataset: Set B 

The cumulative distribution of the 10000 datapoints is given in fig 4.??. the testing 

algorithm reveals that the best 10% of the answers are reported 91.0% of the times  when 

we consider 22 sets of points as predicted by the Best-of-N formula. 

Fig 4.28: Cumulative Distribution for Case (4.3.8) 
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Case 4.3.9 Model Used:  Lockahrt-Martinelli 

  Optimizer: RRR Algorithm 

  Dataset: Pressure Drop data for Laminar-Laminar Flow 

The cumulative distribution of the 10000 datapoints is given in fig 4.??. the testing 

algorithm reveals that the best 10% of the answers are reported 94.2% of the times  when 

we consider 22 sets of points as predicted by the Best-of-N formula. 

Fig 4.29: Cumulative Distribution for Case (4.3.8) 
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to summarize the results of this section, the following tables are presented. Table 3?a is 

based on a 90% confidence that the best 10% of the solutions will be reported and Table 

3?b is based on a 95% confidence that the best 5% of the solutions will be reported. 

 

Table 4.35a Results of Best-of-N analysis: Percentage of occurrence of the best 10% 

of the solutions. 

Data Set Model RRR HJ BFGS 

NN 89.8 91.4 92.4 
A 

Poly 89.4 - - 

NN  87.6 90.6 91 
B 

Poly 92.9 - - 

2-Phase 
PD L-M 94.2 - - 
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Table 4.35a Results of Best-of-N analysis: Percentage of occurrence of the best 10% 

of the solutions. 

Data Set Model RRR HJ BFGS 

NN 95.6 94.5 97.5 
A 

Poly 98.1 - - 

NN  93.7 95.5 96.1 
B 

Poly 95.3 - - 

2-Phase 
PD L-M 99 - - 

 

 

4.4 Discussions 

 

The Steady State Stopping Criterion has been applied in earlier work [3,2] in neural 

network training, and in other examples of nonlinear optimization. At the same time, the 

Best-of-N analysis has been used exclusively in neural network training [4].  

 

The algorithm combining the two ideas is observed to be successful in modeling noisy 

data, and in modeling pressure drop data for a two-phase flow system. the algorithm is 

shown to be capable of reporting the desired globally optimum model for given process 

data.  

 

The stopping criterion is seen to provide successful results in most cases. The stopping 

criterion is observed to terminate the trial fairly quickly, and in most cases the excessive 

iterations do not generate significantly better answers. This also reinforces the results 

obtained in the testing of the Best-of-N starting method. Considering the former, it has 

been observed that keeping the threshold on Rstatistic to be 0.85 has its advantages over the 



 97 

previously used value of 1. The studies on Set B also indicate that the stopping criteria 

can sometimes fail at detecting steady state because of the occurrence of Type-II errors. 

In the specific case of Figures 4.12a and 4.12b, it can be visually confirmed that a lower 

Rstatictic threshold can improve the performance of the stopping criteria. At the same time, 

one has to appreciate that the use of the Best-of-N formula helps these situations because 

the results are still generated with the same confidence irrespective of the set threshold in 

the stopping criteria. The issues of the type-II errors arising in the steady state 

identification require more scrutiny, and the use of a lower threshold for Rstatistic also 

warrants more detailed study. 

 

Previous studies have claimed that no a priori information is required in selecting Fw(a) 

and Fx(a)to determine N. However we do not guarantee that the method will give us the 

desired results every time. A counter example to this effect can be a surface with shallow 

optima all over, and one global minimum located at a very narrow valley, i.e. there is 

only a 1% chance of ever hitting the global minimum. In this case, choosing the best 10% 

of the results will not yield a good optimum, and a choice of the best 0.5% might give an 

N large enough that the global minimum could be found. 

 

The Best-of-N method has one distinct disadvantage akin to most multisart optimizers, i.e. 

they consume a considerable amount of computation time. Snyman and Fatti, have 

developed an approach to determine N based on Baysean statistics. In this, the optimizer 

is started ‘n’ times initially. The CDF of the RMS results (the OF) provides information 

about the distribution of the OF values, and this, along with a user specified confidence, 
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helps determine the value of N needed. In effect, instead of doing unnecessarily excessive 

runs, the algorithm looks at each new solution as it is generated to determine (or to 

update) how many runs will it be necessary to generate the global optima. Further work 

can be carried out in this regard, where the logic could replace the Best-of-N criteria or 

the two ideas could be combined. 

 

Another point to be noted in the exercise as a whole is the calculation of the SSD 

between the model and the experimental data. The present work uses a simple definition 

of the error in the calculation, but there are more accurate methods being studied. The 

VBA code used in the present study is effective, but it takes up a lot of computational 

burden in the process. The code can be streamlined by reevaluation of the necessary 

calculations. This can also help in the application of the logic in more indirect methods 

involving the evaluation of the derivatives of the objective function, which, in the case of 

empirical modeling, can be extremely time consuming.
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CHAPTER V 

 

 

CONCLUSION 

 

The Best-of-N analysis originally developed to determine the number of random starts 

required in neural network training has been extended to more generic empirical 

modeling applications. It has been combined with the previously studied Steady State 

Stopping Criterion to develop a global optimization logic for nonlinear empirical 

modeling. 

The combined logic has been tested on a variety of modeling objectives, and applications. 

The steady state stopping criterion successfully determines the point of termination in 

each individual trial, and the Best-of-N analysis is analyzed to prove that the user defined 

confidence in finding the global minimum is met. It can thus be concluded that the 

combined logic, as a whole, gives successful and efficient results. 

 

Further research is warranted in the removal of Type-II errors that may occur in the 

identification of steady state, and in determining the optimum threshold for the Rstatistic in 

the steady state identifier. The Best-of-N starting methods can also be studied further in 

attempts to reduce the number of trials involved in obtaining a specific objective. The 

present algorithm is effective in its execution, but the code can be streamlined with 

respect to the calculations involving the computation of the SSD.  
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The logic can be applied in commercial modeling applications subject to the 

dissemination of the above findings and the streamlining of the computational burden 

involved in the modeling process. 
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APPENDIX A 

CONTRIVED DATA 

 

 

The first set of contrived data is based on the following model equation: 

20
5expy

x

 =  
 

 

to make the data reflect an actual process, a normally distributed random error is 

introduced with a variance of 1 unit. A set of 30 data points are selected for the study. 

 

Table A.1: Contrived Data with errors incorporated in the dependent variable  

(Set A) 

Serial No. x y 

1 1 0.361161 

2 4 -0.38911 

3 7 0.578485 

4 10 0.67641 

5 13 0.583247 

6 16 0.944263 

7 19 1.342423 

8 22 2.017296 

9 25 2.233575 

10 28 2.318014 

11 31 3.023673 

12 34 2.981573 

13 37 2.704862 
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Serial No. x y 

14 40 3.498605 

15 43 2.965337 

16 46 2.785793 

17 49 3.486505 

18 52 3.809234 

19 55 3.587298 

20 58 3.163685 

21 61 3.996238 

22 64 3.26411 

23 67 3.782867 

24 70 4.056131 

25 73 3.730098 

26 76 3.401893 

27 79 3.678942 

28 82 3.547743 

29 85 3.626967 

30 88 4.330047 
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The second set of contrived data attempts to realize an actual process more accurately. 

There are errors associated with both the dependent and independent variables. The 

original data is based on the following model: 

( )( )2
exp 30 0.5y x= − −  

Both the dependent and independent variables have normally distributed random errors 

incorporated in them. The base value of x used in the table below is the basis of the 

calculation of both the x and y values, both of which have errors with a variance of 0.4 

and 1 associated with them respectively. Here, the base x refers to the nominal value 

believed to be true by the experiment, and x is the actual but unknowable value. Y is thus 

measured from x (which is already noisy) and has it’s own noise incorporated too. 

 

Table A.2: Contrived Data with errors associated with both dependent and 

independent variables (Set B) 

Serial No. Base x x y 

1 0 0.050184 -0.05865 

2 0.025 0.053933 0.027031 

3 0.05 0.121355 0.043433 

4 0.075 0.05717 0.014812 

5 0.1 0.117694 0.040712 

6 0.125 0.12364 0.038379 

7 0.15 0.139239 0.024217 

8 0.175 0.207925 0.070216 

9 0.2 0.224697 0.054074 

10 0.225 0.216106 0.143239 

11 0.25 0.296369 0.113829 
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Serial No. Base x x y 

12 0.275 0.256715 0.210443 

13 0.3 0.32142 0.285091 

14 0.325 0.33107 0.383834 

15 0.35 0.365156 0.522981 

16 0.375 0.306388 0.587964 

17 0.4 0.415347 0.754327 

18 0.425 0.475975 0.829305 

19 0.45 0.436924 0.878163 

20 0.475 0.478253 0.940252 

21 0.5 0.495903 0.965767 

22 0.525 0.521928 1.025498 

23 0.55 0.552716 0.932712 

24 0.575 0.607042 0.868465 

25 0.6 0.590964 0.747658 

26 0.625 0.565694 0.596703 

27 0.65 0.612117 0.515776 

28 0.675 0.630977 0.422942 

29 0.7 0.662263 0.342466 

30 0.725 0.753676 0.275027 

31 0.75 0.777691 0.165545 

32 0.775 0.763522 0.079979 

33 0.8 0.772853 0.032768 

34 0.825 0.87461 -0.01089 

35 0.85 0.788645 -0.00213 

36 0.875 0.908301 0.007084 

37 0.9 0.896038 -0.01642 

38 0.925 0.859823 0.005293 

39 0.95 0.943584 0.020634 
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Serial No. Base x x y 

40 0.975 1.035687 0.040919 

41 1 0.996513 0.004479 
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APPENDIX B 

PRESSURE DROP DATA  

AND 

 EXAMPLE CALCUALTIONS FOR PRESSURE DROP  

IN TWO-PHASE FLOW 

 

 

 

      
large air 

flow 
small air 

flow 
liquid flow 

rate Water Ht. 
S. 

no. Delta_Pr. dP_STF FI_1_Filt FI_2_Filt FI_3_Filt (m) 

      (ft
3
/min) (ft

3
/min) (kg/hr) W_Ht_Filt 

1 0.0507 0.0508 1.3498 0.0510 91.1077 0.0334 

2 0.0688 0.0688 1.5193 0.0516 92.5997 0.0371 

3 0.0479 0.0479 1.5942 0.0475 90.4832 0.0334 

4 0.0515 0.0515 1.6495 0.0509 92.2022 0.0335 

5 0.0381 0.0381 1.6680 0.0513 89.0564 0.0244 

6 4.3754 4.3164 24.9847 0.0544 519.5394 3.0113 

7 4.2531 4.2510 24.9838 0.0537 520.4920 3.0191 

8 4.1076 4.2632 24.9760 0.0518 513.5342 3.0412 

9 4.4256 4.4681 24.9957 0.0557 525.4731 3.0210 

10 6.6422 4.9260 12.1766 0.0635 295.2589 3.8030 

11 6.6132 6.6132 1.3310 0.0477 88.4521 4.6495 

12 6.5460 6.5460 1.3907 0.0479 88.3032 4.6502 

13 6.6422 6.6422 1.6260 0.0499 90.5244 4.6483 

14 6.5842 6.5842 1.5733 0.0496 89.6316 4.6484 

15 6.6224 6.6224 1.3945 0.0481 89.0713 4.6542 

16 4.1848 3.9782 1.5374 1.0012 497.4645 2.8596 

17 4.6788 4.1810 1.6143 1.0012 496.4514 2.8711 

18 4.2142 4.0723 1.6453 1.0011 494.1385 2.8379 

19 5.3232 4.1241 1.5262 1.0010 484.4626 2.8457 

20 3.7591 4.0752 1.4381 0.7254 417.8737 2.7753 

21 3.0983 2.9573 6.9099 0.0535 506.7354 2.0248 

22 3.1356 3.1676 6.9465 0.0548 518.5857 2.0634 

23 2.2391 2.9537 6.9189 0.0524 526.2402 2.0251 

24 3.2055 2.8058 6.8981 0.0526 514.9471 2.1135 

25 2.6775 2.9935 7.0390 0.0532 505.1873 2.0855 
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large air 

flow 
small air 

flow 
liquid flow 

rate Water Ht. 
S. 

no. Delta_Pr. dP_STF FI_1_Filt FI_2_Filt FI_3_Filt (m) 

      (ft
3
/min) (ft

3
/min) (kg/hr) W_Ht_Filt 

26 4.8066 5.0599 1.4871 0.5015 516.2134 3.6626 

27 5.6527 5.2805 1.5952 0.5011 517.7882 3.6403 

28 5.1833 5.1967 1.6012 0.5010 517.1487 3.6385 

29 4.7757 5.3291 1.3940 0.5000 519.9964 3.6841 

30 5.2051 5.2203 1.7096 0.5006 515.9110 3.6371 

31 5.2872 5.2872 1.4949 0.0504 102.3022 3.7237 

32 5.3022 5.3022 1.5885 0.0518 101.6442 3.7253 

33 5.2826 5.2826 1.5451 0.0517 101.3847 3.7269 

34 5.3060 5.3060 1.4748 0.0511 101.0812 3.7267 

35 5.1835 5.1835 1.6051 0.0503 100.5808 3.7672 

36 3.0200 3.0019 1.5660 0.5015 99.8789 2.1164 

37 2.9130 2.9137 1.3943 0.5012 99.9950 2.0793 

38 2.8286 2.8286 1.5553 0.5014 99.9650 2.0742 

39 2.7656 2.8260 1.3057 0.5004 99.8528 2.0707 

40 2.9677 2.9228 1.3522 0.1949 100.9842 2.0342 

41 3.2543 3.2543 1.2259 0.0480 99.8881 2.3033 

42 3.2596 3.2596 1.2069 0.0498 100.2032 2.3040 

43 3.3017 3.3017 1.4645 0.0517 101.5342 2.3096 

44 3.2772 3.2772 1.2805 0.0473 99.9780 2.3085 

45 3.7305 3.7305 1.4216 0.0521 101.1915 2.3161 

46 4.1507 3.4547 1.3397 1.0008 297.1745 2.3546 

47 2.8382 3.3660 1.3290 1.0005 299.4958 2.3747 

42 3.2596 3.2596 1.2069 0.0498 100.2032 2.3040 

43 3.3017 3.3017 1.4645 0.0517 101.5342 2.3096 

44 3.2772 3.2772 1.2805 0.0473 99.9780 2.3085 

45 3.7305 3.7305 1.4216 0.0521 101.1915 2.3161 

46 4.1507 3.4547 1.3397 1.0008 297.1745 2.3546 

47 2.8382 3.3660 1.3290 1.0005 299.4958 2.3747 

48 3.6234 3.5409 1.3920 1.0002 298.5453 2.3681 

49 2.7378 3.3277 1.5377 1.0003 304.5260 2.3544 

50 2.9877 3.2834 1.3748 0.6925 241.8319 2.2926 

51 3.1209 2.7576 7.0204 0.0509 496.4620 1.9407 

52 2.7202 2.7473 7.0880 0.0537 506.1500 2.1037 

53 3.2052 2.7254 7.0773 0.0531 502.9768 2.1059 

54 1.9616 2.5210 6.9554 0.0512 502.3859 1.9336 

55 3.1072 2.7301 7.0119 0.0547 504.0659 2.0360 

56 1.4118 1.4118 7.0717 0.0510 99.3628 0.9594 

57 1.4246 1.4246 6.9956 0.0514 100.1572 0.9835 

58 1.3984 1.3984 6.9280 0.0481 98.4197 0.9171 

59 1.3768 1.3768 6.9778 0.0514 99.0677 0.9765 
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large air 

flow 
small air 

flow 
liquid flow 

rate Water Ht. 
S. 

no. Delta_Pr. dP_STF FI_1_Filt FI_2_Filt FI_3_Filt (m) 

      (ft
3
/min) (ft

3
/min) (kg/hr) W_Ht_Filt 

60 1.4579 1.4579 6.9697 0.0499 98.8602 0.9545 

61 1.1030 1.1030 1.5693 0.0492 99.2359 0.7712 

62 1.1041 1.1041 1.7420 0.0491 98.4339 0.7674 

63 1.0864 1.0864 1.4532 0.0503 98.4255 0.7726 

64 1.0923 1.0923 1.4741 0.0511 98.3083 0.7760 

65 1.0722 1.0722 1.4127 0.0511 100.2193 0.7680 

 

 

Example Calculation: 

 

Density of Air 

The density of air at ambient conditions can be found from the ideal gas law which 

requires pressure (P), and  molecular weight (MW), the gas constant (R), and temperature 

(T): 

avg

g

avg

MWP

RT
ρ =      (i) 

For example: 

3 3 3

24.9 742.2

0.06313 1.0135
.

998.9 *293.15
.

m

m
g

lb
mmHg

lb kglbmol

mmhg ft ft m
K

lbmol K

ρ
∗

= = =  

In this work, the pressure represents the average pressure in the two-phase flow column, 

and the temperature represents the water temperature. The molecular weight of 24.9 

lbm/lbmole represents that of saturated air at the water temperature. 
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Density of Water 

3 3
28.282 998.77

kg kg

ft m
ρ = =  

 

Void Fraction and Two-Phase Density 

The void fraction is calculated based on the height of the liquid in the column and the 

height of the column. 

g v
g

total

Vol h

Vol h
ε = =    (ii) 

 

2.6021
0.4783

5.44
g

m

m
ε = =  

 

The two-phase density is then calculated using, 

( ). 1 .TP g g g lρ ε ρ ε ρ= + −    (iii) 

For example: 

( )3 3 3
0.4783*1.0135 1 0.4783 *998.77 521.5133TP

kg kg kg

m m m
ρ = + − =  

 

Reynolds’ Number 

The Reynolds’ number for the liquid is defined as: 

Re l
l

l

Dm

Aµ
=

&
     (iv) 

Where, 
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 D = Diameter of pipe or tube 

 lm& = mass flow rate of liquid 

 A = Cross sectional area of pipe or tube 

 lµ = viscosity of liquid 

For example: 

4 2

0.026 *0.1372

Re 5878.1117

5.57 10 *0.00109
l

kg
m

s
kg

m
ms

−
= =

×
 

Similarly for the gas: 

Re
g

g

g

Dm

Aµ
=

&
     (v) 

For example: 

4 2

0.026 *0.00123

Re 1780.3518

5.57 10 *3.23 05
l

kg
m

s
kg

m E
ms

−
= =

× −
 

Observing the Reynolds numbers in our example, the Liquid is in turbulent flow, and the 

gas is in laminar flow for this example. Hence, the Lockhart-Martinelli constant is given 

by the following Equation [2]: 

Re Rei ib c

i i l gC a=     (vi) 

0.7549 0.36640.26464*5878.1117 *1780.3518 11.9417C
−= =  
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Mass Fraction, xg 

The mass fraction of the gas can be calculated as shown below. The mass fraction of the 

liquid can be easily determined by taking the difference of xg from 1. this is taken into 

account in the subsequent equations. 

0.00123
0.00889

0.00123 0.1372

g

g

l g

m
x

m m
= = =

+ +
 

 

Friction Factor, f 

The friction factor for the fluid flow can be given by the following relation. 

64 64
0.01088

Re 5878.1117
l

l

f = = =  

 

64 64
0.03594

Re 1780.3518
g

g

f = = =  

Note that the fluids are both in laminar flow. If the liquid is in turbulent flow, the 

following relation can be used: 

The Martinelli multiplier is calculated as follows. 

( )
( )

2

2

2

1

f

l g gl

f
g g l

g

P

f xL
X

P f x

L

ρ

ρ

∆ 
  − = =
∆ 

 
 

   (vii) 

( )
( )

2

2

2

0.01088* 1 0.00889 *1.0135
3.8130

0.03594* 0.00889 *998.77
X

−
= =  

1.9526X =  
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The frictional multiplier that results from the Lockhart-Martinelli correlation is then 

given by 

( )2
21g CX Xφ = + +      (viii) 

( )2

1 11.9417*1.9526 3.8130 28.3399gφ = + + =  

 

The single phase frictional pressure drops for the gas phase is given by: 

( )
2 2

2
20.00123

2. . . 2*0.03594* *0.00889
5.57 04

13.3550
. 1.0135*0.026

g g
f

gg

m
f x

P PaA E

L D mρ

   
   ∆  −   − = = = 

 
 

 

The hydrostatic head is thus calculated by: 

. 521.5133*9.8 5204.7034TP

Pa
P g

m
ρ∆ = = =  

The two-phase frictional pressure drop is given by the following relation: 

( )2

. 13.3550*28.3399 375.699
f f

g

TP g

P P Pa

L L m
φ

∆ ∆   
− = − = =   
   

 

 

Thus the total pressure drop per unit length is obtained by combining the hydrostatic head 

and the two-phase pressure drop. 

5204.7034 375.699 5580.4029
f

P Pa

L m

∆ 
− = + = 
 
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Multiplying the above with the height of the column, we obtain the pressure prop for a 

two-phase system. 

( ) 5580.4029 *5.44 30357.3922 4.4018
Pa

P m Pa Psi
m

− ∆ = = =  
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APPENDIX C 

COMPUTER PROGRAMS 

 

All the programming is done on Visual Basic for Applications based on MS EXCEL. The 

three main programs involved are generic enough that minor modifications are required 

when a different function is used. 

 

This is the list of Public variables used in the entire set of programs. 

'Prithwijit Ghoshal 

'List of Public variables used between the optimization routines 

Public zip As Integer 

 

Public Xe() As Double   'acutal X 

Public Ye() As Double   'acutal Y 

Public Xs() As Double   'x scaled 

Public Ys() As Double   'y scaled 

'used in scaling the contrived data 

'definitions are obvious from the var. names 

Public Xmax As Double 

Public Xmin As Double 

Public Ymin As Double 

Public Ymax As Double 

Public Xmid As Double 

Public Ymid As Double 

 

Public NumTrials As Integer 'number of trials 

Public nt As Integer        'counter for output 
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Public Npoints As Integer   'number of data points 

Public Nrand As Integer     'number of random picks.. % of Npoints 

 

'variables defined for the SS stopping criteria 

Public Nf, Df, Xf, Sumold 

 

'used in the actual optimization routine 

'to track changes in the x values 

Public X(20) As Double 

Public xo(20) As Double 

Public dX(20) As Double 

 

Subroutines: these routines are common to all the three optimization routines with minor 

modifications for BFGS, which are shown later. 

 

This routine takes the data and scales it between -0.8 and 0.8. These scaled values are 

used in the actual calculations. 

 

Sub Initial_Calculations() 

'Prithwijit Ghoshal 

'to be called by the main HRo routine once and stores the restuls in a globally 

defined array set 

    ActiveWorkbook.Sheets("Sheet1").Activate 

Dim I As Integer 

 

 

    For I = 1 To Npoints 

        Xe(I) = Cells(12 + I, 3).Value 

        Ye(I) = Cells(12 + I, 4).Value 



 117 

    Next I 

    'finding the max and min values of x and y 

    'will be used to scale them 

    Xmax = Xe(1) 

    Xmin = Xe(1) 

    Ymax = Ye(1) 

    Ymin = Ye(1) 

     

    For I = 2 To Npoints 

        If Xmax < Xe(I) Then: Xmax = Xe(I) 

        If Xmin > Xe(I) Then: Xmin = Xe(I) 

        If Ymax < Ye(I) Then: Ymax = Ye(I) 

        If Ymin > Ye(I) Then: Ymin = Ye(I) 

    Next I 

    Xmid = (Xmin + Xmax) / 2 

    Ymid = (Ymin + Ymax) / 2 

    'scaling X and Y and performing the rest of the calculations 

    For I = 1 To Npoints 

        'scaling X and Y 

        Xs(I) = 0.8 * (Xe(I) - Xmid) / (Xmax - Xmid) 

        Ys(I) = 0.8 * (Ye(I) - Ymid) / (Ymax - Ymid) 

        'output 

        Cells(12 + I, 5).Value = Xs(I) 

        Cells(12 + I, 6).Value = Ys(I) 

         

    Next I 

End Sub 
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This routine is the one which is subject to change dependent on the function being used. 

Here, the model and the actual data are compared and the SSD is evaluated. 

 

Sub Calculations(xp() As Double, _ 

                sqdev() As Double, _ 

                SSD As Double) 

'Prithwijit Ghoshal 

'performs the calculations required to find the SSD between model and data 

     

'variable declaration 

    Dim I As Integer 

     

    Dim Ys_Model() As Double 

    Dim Y_Model() As Double 

     

    ReDim Ys_Model(1 To Npoints) 

    ReDim Y_Model(1 To Npoints) 

     

    ActiveWorkbook.Sheets("Sheet1").Activate 

'reinitializing the value of SSD 

SSD = 0# 

'    'scaling X and Y and performing the rest of the calculations 

' 

    For I = 1 To Npoints 

        Ys_Model(I) = FF(xp(1), xp(2), xp(3), xp(4), Xs(I)) 

 

        'converting to unscaled 

        Y_Model(I) = Ymid + Ys_Model(I) * (Ymax - Ymid) / 0.8 

         

        sqdev(I) = (Y_Model(I) - Ye(I)) ^ 2 
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        SSD = SSD + sqdev(I) 

    Next I 

     

    'output section 

    For I = 1 To Npoints 

        Cells(12 + I, 7).Value = Ys_Model(I) 

        Cells(12 + I, 8).Value = Y_Model(I) 

        Cells(12 + I, 9).Value = sqdev(I) 

    Next I 

    Cells(7, 9).Value = SSD 

         

     

     

End Sub 

 

This is the Steady State Stopping Criterion. It picks out a random set of the deviations 

(without repetitions in the random selection) and uses the data to calculate an RMS value 

that is compared to a filtered value of the error to determine steady state. 

 

Sub Steady_State(sqdev() As Double, SS As String) 

'R Russell Rhinehart 

'Modified: Prithwijit Ghoshal 

'Steady State Stopping Criterion 

' selection with out replacement. 

Dim Index() As Integer 

ReDim Index(1 To Nrand) 

Sum = 0 

SS = "N" 

Call RANDOM(Index()) 
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For L = 1 To Nrand 

    Sum = Sum + sqdev(Index(L)) 

    Cells(L, 35) = Index(L) 

Next L 

Sum = Sqr(Sum) 

''Cells(zip + 1, 39) = Sum 

 

 

Nf = 0.2 * (Xf - Sum) ^ 2 + 0.8 * Nf 

Df = 0.2 * (Sum - Sumold) ^ 2 + 0.8 * Df 

Sumold = Sum 

Xf = 0.2 * Sum + 0.8 * Xf 

RStatistic = 1.8 * Nf / Df 

 

''Cells(zip + 1, 40) = Xf 

If RStatistic < 0.85 Then 

    SS = "Y" 

    Cells(nt + 1, 15) = Nf 

    Cells(nt + 1, 16) = Df 

    Cells(nt + 1, 17) = Xf 

    Cells(nt + 1, 13) = RStatistic 

    Cells(nt + 1, 14) = SS 

End If 

Cells(6, 12) = Nf 

Cells(7, 12) = Df 

Cells(8, 12) = Xf 

Cells(4, 12) = RStatistic 

Cells(5, 12) = SS 

 

End Sub 
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This is a small program that was created to select random numbers without repetitions 

and assign them to an array of specified size. 

 

Sub RANDOM(A() As Integer) 

'Prithwijit Ghoshal 

'finds a set of random numbers without repititions 

'set stored and transferred in array A() 

 

'variable declaration 

     

    Dim I As Integer    'loop counter 

    Dim K As Integer    'loop counter 

For I = 1 To Nrand 

    A(I) = Int(Rnd() * (Npoints) + 1) 

    For K = 1 To I - 1 

        If A(K) = A(I) Then 

            A(I) = Int(Rnd() * (Npoints) + 1) 

            K = 0 

        End If 

    Next K 

Next I 

 

End Sub 

This is another program used to make the code more generic. This finds the number of 

data points the program will be required to handle. 

 

Sub Find_Points() 

'Prithwijit Ghoshal 

'finds the number of data points provided for the modeling procedure 

 

    ActiveWorkbook.Sheets("Sheet1").Activate 
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    Do While (Cells(13 + Npoints, 3).Value <> "") 

        Npoints = Npoints + 1 

    Loop 

     

End Sub 

 

The next program is used at the end of all the trials. It finds the smallest SSD value 

among the ones found and reports the corresponding model parameters. 

 

Sub FInal_Pick() 

'Prithwijit Ghoshal 

'picking the lowest of the set and reporting it.. 

Dim locate As Integer   'location of lowest SSD 

Dim Min As Double   'lowest SSD 

Dim I As Integer    'loop ocunter 

Dim xp(1 To 4) As Double 

Dim sqdev(1 To 100) As Double 

Dim SSD As Double 

 

Min = 100000# 

locate = 0# 

 

'find and locate the minimum.. 

For I = 1 To 22 'NumTrials 

    If Min > Sheet1.Cells(1 + I, 32) Then 

        Min = Sheet1.Cells(1 + I, 32) 

        locate = I 

    End If 

Next I 

 

'outputthe result 
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Sheet1.Cells(2, 2) = Sheet1.Cells(1 + locate, 19) 

Sheet1.Cells(2, 3) = Sheet1.Cells(1 + locate, 20) 

Sheet1.Cells(2, 4) = Sheet1.Cells(1 + locate, 21) 

Sheet1.Cells(2, 5) = Sheet1.Cells(1 + locate, 22) 

For I = 1 To 4 

    xp(I) = Sheet1.Cells(2, 1 + I) 

Next I 

Call Calculations(xp(), sqdev(), SSD) 

 

 

 

End Sub 

 

Main Program (RRR’s  Heuristic Optimizer) 

The program is based on the algorithm described in Chapter 3. 

 

Sub HRO() 

'R Russell Rhinehart, Prithwijit Ghoshal 

'Heuristic random number based optimizer formulated by RRR 

'incorporates the Weakest-Link-in-the-Chain strategy for global optimization 

'incorporates Steady State Stopping Criterion 

'Modified 

'Oct 15, 2007 

'Oct 16, 2007 

 

'variable declaration 

    Dim Yold As Double 

    Dim Y As Double 

     

    Dim SS As String 
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    Dim SQRDev() As Double 

     

    Dim Trial_timer As Double 

    Dim Total_timer As Double 

     

     

    Total_timer = Timer 

    ActiveWorkbook.Sheets("Sheet1").Activate 

N = 4  'decision variables 

M = 200  'number of iterations 

 

zip = 1 

 

Call Find_Points 

 

ReDim Xe(1 To Npoints) 

ReDim Ye(1 To Npoints) 

ReDim Xs(1 To Npoints) 

ReDim Ys(1 To Npoints) 

ReDim SQRDev(1 To Npoints) 

 

Nrand = Round(Cells(3, 8).Value * Npoints / 100) 

 

Call Initial_Calculations 

 

Expand_Factor = 1.5 

Contract_Factor = -0.5 / Expand_Factor 

 

 

'to run one trial 

conf = Cells(1, 9) / 100   '90 
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bestfract = Cells(1, 11) / 100      '10 

NumTrials = 1 

    If conf < 1 And conf > 0 And bestfract < 1 And bestfract > 0 Then NumTrials = 

Int(0.5 + Log(1 - conf) / Log(1 - bestfract)) 

    Cells(5, 2) = NumTrials 

''check phase 

'numtrials = 1 

'input 

 For nt = 1 To NumTrials 

    Range(Cells(1, 38), Cells(201, 40)).Clear 

 

   'random start using a range of +5 to -5 

    'xo(1) = Rnd * 4 - 2 

 

    For K = 1 To N 

        xo(K) = Rnd * 8# - 4# 

    Next K 

        'data echo 

        'Cells(2, 2).Value = xo(1) 

            For K = 0 To N - 1 

                Cells(2, 2 + K) = xo(K + 1) 

                'Cells(3, 2 + K) = xo(4 + K) 

            Next K 

         

        For I = 1 To N 

           X(I) = xo(I) 

           dX(I) = 0.1 

        Next I 

        'Worksheets("Neural Network").Calculate 

        Call Calculations(X(), SQRDev(), Yold) 

         Cells(7, 9) = Yold 
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        Y = Yold 

 

    For J = 1 To M                'limit of 100 iterations 

        For I = 1 To N                   'N is the number of decision variables 

            Cells(1, 1) = J 

            Cells(2, 1) = I 

            X(I) = xo(I) + dX(I)         'xo(i) is the base point, dx(i) is the proposed 

change 

             

            'output 

            'Cells(2, 2).Value = X(1) 

 

            For K = 0 To 3 

                Cells(2, 2 + K) = X(1 + K) 

                'Cells(3, 2 + K) = X(4 + K) 

            Next K 

            Call Calculations(X(), SQRDev(), Y) 

                Cells(7, 9) = Y 

                 

            If Y < Yold Then 

                xo(I) = X(I) 

                dX(I) = dX(I) * Expand_Factor 

                Yold = Y 

                 

            Else 

                X(I) = xo(I) 

                dX(I) = Contract_Factor * dX(I)        '0.5 is the contraction factor. You 

could use another number 

                Call Calculations(X(), SQRDev(), Y) 

            End If 

            'output 
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            'Cells(2, 2).Value = X(1) 

            For K = 0 To 3 

                Cells(2, 2 + K) = X(K) 

                'Cells(3, 2 + K) = X(4 + K) 

            Next K 

            Cells(zip + 1, 38) = zip 

         

             

        Next I 

        Cells(J + 1, 38) = J 

        zip = J 

        'introducing the Steady State Stopping Criterion after each set of iterations 

                     completes 

        Call Steady_State(SQRDev(), SS) 

            If SS = "Y" Then 

                Cells(1 + nt, 18).Value = nt 

                For K = 0 To 3 

                    Cells(1 + nt, 19 + K).Value = xo(K + 1) 

                Next K 

 

                Cells(1 + nt, 32).Value = Yold 

                Cells(1 + nt, 33).Value = Timer - Trial_timer 

                'time required for each iteration 

                'get out of the trial 

                GoTo 101 

            End If 

    Next J 

     

101 

Call Calculations(xo(), SQRDev(), Y) 

    'zip = 0 



 128 

 

 

Next nt 

Cells(1 + nt, 33) = Timer - Total_timer 

 

Call FInal_Pick 

 

End Sub 

 

 

 

 

Main Program: Hooke Jeeves Optimizer 

The program is split into two sections. The first is the main program described below, 

where we have the Best-of-N formula repeating the trials, and consequently reporting the 

model with the smallest SSD. 

 

Sub Hooke_Jeeves() 

' Prithwijit Ghoshal 

'Modified 

'Oct 15, 2007 

'Oct 16, 2007 

 

'variable declaration 

    Dim Yold As Double 

    Dim Y As Double 

     

     

     

    Dim Trial_timer As Double 

    Dim Total_timer As Double 
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    Total_timer = Timer 

    ActiveWorkbook.Sheets("Sheet1").Activate 

N = 7  'decision variables 

M = 200  'number of iterations 

 

zip = 1 

 

Call Find_Points 

 

ReDim Xe(1 To Npoints) 

ReDim Ye(1 To Npoints) 

ReDim Xs(1 To Npoints) 

ReDim Ys(1 To Npoints) 

ReDim SQRDev(1 To Npoints) 

 

Nrand = Round(Cells(3, 8).Value * Npoints / 100) 

 

Call Initial_Calculations 

 

Expand_Factor = 1.5 

Contract_Factor = -0.5 / Expand_Factor 

 

 

'to run one trial 

conf = Cells(1, 9) / 100   '90 

bestfract = Cells(1, 11) / 100      '10 

NumTrials = 1 

    If conf < 1 And conf > 0 And bestfract < 1 And bestfract > 0 Then NumTrials = 

Int(0.5 + Log(1 - conf) / Log(1 - bestfract)) 
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    Cells(5, 2) = NumTrials 

For nt = 1 To NumTrials 

    Range(Cells(1, 38), Cells(201, 40)).Clear 

 

   'random start using a range of +5 to -5 

    xo(1) = Rnd * 4 - 2 

 

    For K = 1 To 7 

        xo(K) = Rnd * 4 - 2# 

    Next K 

        'data echo 

        Cells(2, 2).Value = xo(1) 

            For K = 1 To 3 

                Cells(2, 2 + K) = xo(1 + K) 

                Cells(3, 2 + K) = xo(4 + K) 

            Next K 

    HookeJeevesD 0.0001, 200, 7, 0.1, True, False, 1, xo(), Y, 1 

     

                Cells(1 + nt, 19).Value = xo(1) 

                Cells(1 + nt, 20).Value = xo(2) 

                Cells(1 + nt, 24).Value = xo(3) 

                Cells(1 + nt, 28).Value = xo(4) 

                Cells(1 + nt, 21).Value = xo(5) 

                Cells(1 + nt, 25).Value = xo(6) 

                Cells(1 + nt, 29).Value = xo(7) 

                Cells(1 + nt, 32).Value = Y 

                Cells(1 + nt, 33).Value = Timer - Trial_timer 

Next nt 

 

End Sub 
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This is the second subroutine which is based on the Hooke Jeeves’ algorithm described in 

Chapter 3. 

 

Sub HookeJeevesD(dEpsilon As Double, lngMaxIter As Long, iDim As Integer, _ 

                dAlpha As Double, bUserPatt As Boolean, bDebug As Boolean, _ 

                lngFun As Long, aX() As Double, dFXFinal As Double, _ 

                lngTotFunCall As Long) 

'T Judson Wooters,Prithwijit Ghoshal 

Dim arrXSolve() As Double 

Dim arrXCurr() As Double 

Dim arrXPast() As Double 

Dim arrXDel() As Double 

Dim arrFXSolve(1 To 4) As Double 

Dim dFXPast As Double 

Dim dMin As Double 

Dim iMin As Long 

Dim iCount As Integer 

Dim lngFunCall As Long 

Dim lngPts As Long 

Dim lngActPts As Long 

Dim bPattern As Boolean 

Dim bFoundMin As Boolean 

Dim K As Long 

Dim J As Long 

Dim N As Long 

Dim P As Long 

 

bPattern = False 

bFoundMin = False 

lngTotFunCall = 0 
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ReDim arrXCurr(1 To iDim + 7) 

ReDim arrXPast(1 To iDim) 

ReDim arrXDel(1 To iDim) 

ReDim arrXSolve(1 To 4, 1 To iDim) 

 

For K = 1 To iDim 

    arrXSolve(2, K) = aX(K) 

Next K 

 

lngPts = lngPts + 1 

lngActPts = lngActPts + 1 

 

For K = 1 To iDim 

    arrXCurr(K) = arrXSolve(2, K) 

Next K 

 

Call Calculations(arrXCurr(), SQRDev(), arrFXSolve(2)) 

 

For K = 0 To lngMaxIter 

    zip = K + 1 

    Cells(zip + 1, 38) = zip 

 

    If Not bPattern Then 

        For N = 1 To iDim 

            arrXSolve(1, N) = arrXSolve(2, N) 

        Next N 

        arrFXSolve(1) = arrFXSolve(2) 

    End If 
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    iCount = 0 

     

    For J = 1 To iDim 

        DiscExplore arrXSolve(), arrFXSolve, dAlpha, iDim, J, lngFun, lngFunCall, 

_ 

                    arrXDel() 

         

         

        dMin = arrFXSolve(2) 

        iMin = 2 

        For N = 2 To 4 

            If dMin > arrFXSolve(N) Then 

                dMin = arrFXSolve(N) 

                iMin = N 

            End If 

        Next N 

         

        If iMin <> 2 Then 

            For N = 1 To iDim 

                arrXSolve(2, N) = arrXSolve(iMin, N) 

            Next N 

            arrFXSolve(2) = arrFXSolve(iMin) 

             

        End If 

        If J < iDim Then 

            lngFunCall = 0 

        End If 

    Next J 

    'steady state check 

    Call Steady_State(SQRDev(), SS) 

    If SS = "Y" Then 
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        bFoundMin = True 

        Exit For 

    End If 

     

    If arrFXSolve(1) = arrFXSolve(2) Then 

        If dAlpha < dEpsilon Then 

            bFoundMin = True 

            Exit For 

        End If 

        dAlpha = dAlpha / 2 

         

        If bPattern Then 

            bPattern = False 

        End If 

    ElseIf (arrFXSolve(1) - arrFXSolve(2)) < dEpsilon And _ 

            (arrFXSolve(1) - arrFXSolve(2)) > 0 Then 

        If dAlpha < dEpsilon Then 

            bFoundMin = True 

            Exit For 

        Else 

            dAlpha = dAlpha / 2 

        End If 

    ElseIf arrFXSolve(1) - arrFXSolve(2) > 0 And bUserPatt Then 

        For N = 1 To iDim 

            arrXPast(N) = arrXSolve(1, N) 

        Next N 

        dFXPast = arrFXSolve(1) 

        For N = 1 To iDim 

            arrXSolve(1, N) = arrXSolve(2, N) 

        Next N 

        arrFXSolve(1) = arrFXSolve(2) 
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        'pattern jump 

        For N = 1 To iDim 

            arrXSolve(2, N) = arrXSolve(2, N) + (arrXSolve(2, N) - arrXPast(N)) 

        Next N 

        For N = 1 To iDim 

            arrXCurr(N) = arrXSolve(2, N) 

        Next N 

        Call Calculations(arrXCurr(), SQRDev(), arrFXSolve(2)) 

 

        bPattern = True 

    ElseIf bUserPatt Then 

        For N = 1 To iDim 

            arrXSolve(2, N) = arrXSolve(1, N) 

        Next N 

        arrFXSolve(2) = arrFXSolve(1) 

        bPattern = False 

    End If 

     

    lngTotFunCall = lngTotFunCall + lngFunCall 

    lngFunCall = 0 

 

Next K 

 

If Not bFoundMin And bDebug Then 

    For N = 1 To iDim 

        Sheet2.Cells(6, 9 + N).Value = arrXSolve(2, N) 

    Next N 

    Sheet2.Cells(7, 9).Value = "May not have found minimum" 

End If 

 

For K = 1 To iDim 
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    aX(K) = arrXSolve(2, K) 

Next K 

dFXFinal = arrFXSolve(2) 

 

End Sub 

Sub DiscExplore(arrXSolve() As Double, arrFXSolve() As Double, dAlpha As 

Double, _ 

                iDim As Integer, iIndex As Long, lngFun As Long, lngFunCall As 

Long, _ 

                arrXDel() As Double) 

'T Judson Wooters,Prithwiit Ghoshal 

Dim arrXCurr() As Double 

Dim K As Long 

Dim J As Long 

 

ReDim arrXCurr(1 To iDim + 7) 

 

For K = 3 To 4 

    For J = 1 To iDim 

        arrXSolve(K, J) = arrXSolve(2, J) 

    Next J 

Next K 

 

arrXSolve(3, iIndex) = arrXSolve(2, iIndex) + dAlpha 

For K = 1 To iDim 

    arrXCurr(K) = arrXSolve(3, K) 

Next K 

Call Calculations(arrXCurr(), SQRDev(), arrFXSolve(3)) 

arrXSolve(4, iIndex) = arrXSolve(2, iIndex) - dAlpha 

For K = 1 To iDim 

    arrXCurr(K) = arrXSolve(4, K) 
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Next K 

Call Calculations(arrXCurr(), SQRDev(), arrFXSolve(4)) 

 

End Sub 

 

 

 

Main Program: Broydon-Fletcher-Goldfarb-Shanno (BFGS) 

 

This is again split into a number of sections. The first is using the Best-of-N formula to 

repeat trials, and consequently finds the lowest SSD for the solution. 

 

Sub B_F_G_S() 

'Prithwijit Ghoshal 

'Modified 

'Feb 24, 2008 

' 

 

'variable declaration 

    Dim Yold As Double 

    Dim Y As Double 

     

     

     

    Dim Trial_timer As Double 

    Dim Total_timer As Double 

     

     

    Total_timer = Timer 

    ActiveWorkbook.Sheets("Sheet1").Activate 

N = 4  'decision variables 
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M = 200  'number of iterations 

 

zip = 1 

 

Call Find_Points 

 

ReDim Xe(1 To Npoints) 

ReDim Ye(1 To Npoints) 

ReDim Xs(1 To Npoints) 

ReDim Ys(1 To Npoints) 

ReDim SQRDev(1 To Npoints) 

 

Nrand = Round(Cells(3, 8).Value * Npoints / 100) 

 

Call Initial_Calculations 

 

Expand_Factor = 1.5 

Contract_Factor = -0.5 / Expand_Factor 

 

 

'to run one trial 

conf = Cells(1, 9) / 100   '90 

bestfract = Cells(1, 11) / 100      '10 

NumTrials = 1 

    If conf < 1 And conf > 0 And bestfract < 1 And bestfract > 0 Then NumTrials = 

Int(0.5 + Log(1 - conf) / Log(1 - bestfract)) 

    Cells(5, 2) = NumTrials 

    NumTrials = 1 

For nt = 1 To NumTrials 

    Range(Cells(1, 38), Cells(201, 40)).Clear 
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    'initializations 

    Nf = 0# 

    Df = 0# 

    Xf = 0# 

     

   'random start using a range of +5 to -5 

    xo(1) = Rnd * 4 - 2 

 

    For K = 1 To 7 

        xo(K) = Rnd * 4 - 2# 

    Next K 

        'data echo 

        Cells(2, 2).Value = xo(1) 

            For K = 1 To 3 

                Cells(2, 2 + K) = xo(1 + K) 

                Cells(3, 2 + K) = xo(4 + K) 

            Next K 

    'HookeJeevesD 0.0001, 200, 4, 0.1, True, False, 1, xo(), Y, 1 

    BFGS 0.0001, 200, 13, 1, 0.0001, False, True, 1, 100, 0.001, xo(), Y, 1 

                Cells(1 + nt, 19).Value = xo(1) 

                Cells(1 + nt, 20).Value = xo(2) 

                Cells(1 + nt, 24).Value = xo(3) 

                Cells(1 + nt, 28).Value = xo(4) 

                Cells(1 + nt, 32).Value = Y 

                Cells(1 + nt, 33).Value = Timer - Trial_timer 

Next nt 

Call Final_Pick 

End Sub 
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This is used to find the derivatives of the required objective function based on a forward 

difference. 

 

Function fF_Der1FD(aX() As Double, lngIndex As Long, iDim As Integer, _ 

                    dStep As Double, lngFun As Long, lngFunCall As Long, _ 

                    aXDel() As Double) As Double 

' T. Judson Wooters 29-MAR-2007 

‘Modified: Prithwijit Ghoshal 

' Function used to determine derivative using 4 data points and central difference 

' Inputs:       aX()        array of current iteration x locations 

'               lngIndex    determines which element to base derivative on 

'               iDim        # of dimensions 

'               dStep       stepsize for finite difference 

'               lngFun      function number corresponding to function in Newton 

Interface Module 

'               lngDerCall  keeps track of derivative calls 

'               aXDel()     dummy variable, used with other programs which access 

fFX function 

' Output:       fF_Der1FD   Derivative 

                 

 

Dim aFX(1 To 5) As Double           ' function evaluation for all 5 points 

Dim aXCurr() As Double              ' temporary location for x locations 

Dim K As Integer                    ' counter variable 

 

ReDim aXCurr(1 To iDim) 

 

For K = 1 To iDim 

    aXCurr(K) = aX(K)               ' Load temporary x's 

Next K 

Call Calculations(aX(), SQRDev(), aFX(3)) 
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'   X(Curr+1) 

aXCurr(lngIndex) = aX(lngIndex) + dStep 

Call Calculations(aXCurr(), SQRDev(), aFX(4)) 

End Function 

 

This is the main routine which is based on the BFGS algorithm described in Chapter 3. 

 

Sub BFGS(dEpsilon As Double, lngMaxIter As Long, iDim As Integer, _ 

            dLambda As Double, dStep As Double, bDebug As Boolean, _ 

            bLineNR As Boolean, lngFun As Long, lngMaxIterNR As Long, _ 

            dEpsilonNR As Double, aX() As Double, dFXFinal As Double, _ 

            lngTotFunCall As Long) 

' T. Judson Wooters, 29-MAR-2007 

' Main BFGS (Quasi-Newton) program to find minimum, inputs explained in 

RunBFGS sub 

 

Dim aXNext() As Double          ' new set of x values based on iteration 

Dim aXPrev() As Double          ' old set of x values used to reset algorithm 

Dim aI() As Double              ' identity matrix 

Dim aSearch() As Double         ' search direction vector 

Dim aBDelInv() As Double        ' inverse B difference matrix 

Dim aBNegInv() As Double        ' negative inverse B matrix 

Dim aBInv() As Double           ' inverse B matrix 

Dim aF_Der1() As Double         ' vector of 1st derivatives 

Dim aF_Der1Prev() As Double     ' previous vector of 1st derivatives 

Dim aPosDef() As Double         ' intermediate array in determining if B inverse is 

pos def 

Dim aXDel() As Double           ' used in line searching by Newton module (stores 

search dir) 

Dim aXDiff() As Double          ' difference in x between iterations 
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Dim aGDiff() As Double          ' difference in 1st derivatives between iterations 

Dim aInt1() As Double           ' intermediate array in BFGS 

Dim aInt2() As Double           ' intermediate array in BFGS 

Dim aInt3() As Double           ' intermediate array in BFGS 

Dim aInt4() As Double           ' intermediate array in BFGS 

Dim aInt5() As Double           ' intermediate array in BFGS 

Dim dFX As Double               ' function evaluation 

Dim dFXNext As Double           ' function evaluation based on next x values 

Dim dLambdaIn As Double         ' default step for multiplication with search 

direction 

Dim dPosDef As Double           ' intermediate value in determining if B inverse is 

pos def 

Dim dSearch As Double           ' intermediate value in determining if search 

direction is improving 

Dim dInt4 As Double             ' intermediate value in BFGS 

Dim dInt5_1 As Double           ' intermediate value in BFGS 

Dim dInt5_2 As Double           ' intermediate value in BFGS 

Dim dMagGrad As Double          ' magnitude of 1st derivatives, used with 

stopping criteria 

Dim lngFunCall As Long          ' number of function calls per iteration 

Dim lngDerCall As Long          ' number of derivative calls per iteration 

Dim bCauchy As Boolean          ' True = current iteration is steepest decent 

Dim bPosDef As Boolean          ' True = positive definate 

Dim bMinFound As Boolean        ' True = algorithm finished meeting the 

stopping criteria 

Dim K As Long                   ' counting variable 

Dim J As Long                   ' counting variable 

Dim N As Long                   ' counting variable 

 

' ----- INITIALIZE VARIABLES ----- 

dLambdaIn = dLambda 
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bCauchy = True 

bMinFound = False 

dFXFinal = 0 

lngTotFunCall = 0 

 

ReDim aXNext(1 To iDim) 

ReDim aI(1 To iDim, 1 To iDim) 

ReDim aBInv(1 To iDim, 1 To iDim) 

ReDim aBNegInv(1 To iDim, 1 To iDim) 

ReDim aBDelInv(1 To iDim, 1 To iDim) 

ReDim aF_Der1(1 To iDim) 

ReDim aPosDef(1 To iDim) 

ReDim aSearch(1 To iDim) 

ReDim aXDel(1 To iDim) 

ReDim aXDiff(1 To iDim) 

ReDim aGDiff(1 To iDim) 

ReDim aF_Der1Prev(1 To iDim) 

ReDim aXPrev(1 To iDim) 

ReDim aInt1(1 To iDim) 

ReDim aInt2(1 To iDim, 1 To iDim) 

ReDim aInt3(1 To iDim, 1 To iDim) 

ReDim aInt4(1 To iDim, 1 To iDim) 

ReDim aInt5(1 To iDim, 1 To iDim) 

 

For K = 1 To iDim 

    For J = 1 To iDim 

        If K = J Then 

            aI(K, J) = 1 

        Else 

            aI(K, J) = 0 

        End If 
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    Next J 

Next K 

 

Call Calculations(aX(), SQRDev(), dFX) 

     

 

 

' ----- BEGIN BFGS ALGORITHM ----- 

For K = 0 To lngMaxIter 

    zip = K + 1 

    Cells(zip + 1, 38) = zip 

     

    ' Find array of first derivatives 

    For J = 1 To iDim 

        aF_Der1(J) = fF_Der1FD(aX(), J, iDim, dStep, lngFun, lngFunCall, 

aXDel()) 

    Next J 

     

    ' If steepest decent iteration, B inverse is the identity matrix 

    If bCauchy Then 

        For J = 1 To iDim 

            For N = 1 To iDim 

                aBInv(J, N) = aI(J, N) 

            Next N 

        Next J 

    ' If BFGS step, find B inverse using update calculations 

    Else 

        For J = 1 To iDim 

            aXDiff(J) = aX(J) - aXPrev(J) 

            aGDiff(J) = aF_Der1(J) - aF_Der1Prev(J) 

        Next J 
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        MatVect aGDiff(), aBInv(), aInt1(), iDim 

        For J = 1 To iDim 

            aInt1(J) = aXDiff(J) - aInt1(J) 

        Next J 

        VectVectT aInt1(), aXDiff(), aInt2(), iDim 

        VectVectT aXDiff(), aInt1(), aInt3(), iDim 

        dInt4 = fVectTVect(aGDiff(), aXDiff(), iDim) 

        If dInt4 = 0 Then Exit For 

        For J = 1 To iDim 

            For N = 1 To iDim 

                aInt4(J, N) = (aInt2(J, N) + aInt3(J, N)) / dInt4 

            Next N 

        Next J 

        dInt5_1 = fVectTVect(aInt1(), aGDiff(), iDim) 

        dInt5_2 = (fVectTVect(aGDiff(), aXDiff(), iDim)) ^ 2 

        VectVectT aXDiff(), aXDiff(), aInt5(), iDim 

        For J = 1 To iDim 

            For N = 1 To iDim 

                aInt5(J, N) = (dInt5_1 / dInt5_2) * aInt5(J, N) 

                aBDelInv(J, N) = aInt4(J, N) - aInt5(J, N) 

                aBInv(J, N) = aBInv(J, N) + aBDelInv(J, N) 

            Next N 

        Next J 

    End If 

     

    ' Negative of B inverse matrix 

    For J = 1 To iDim 

        For N = 1 To iDim 

            aBNegInv(J, N) = -aBInv(J, N) 

        Next N 

    Next J 
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    ' Determine if search direction is improving 

    MatVect aF_Der1(), aBNegInv(), aSearch(), iDim 

    dSearch = fVectTVect(aF_Der1(), aSearch(), iDim) 

     

    ' Determine if B inverse is positive definate 

    VectTMat aX(), aBInv(), aPosDef(), iDim 

    dPosDef = fVectTVect(aPosDef(), aX(), iDim) 

     

    If dPosDef >= 0 And dSearch < 0 Then 

        bPosDef = True 

    Else 

        bPosDef = False 

    End If 

     

    ' If matrix is positive definate, find new x values 

    If bPosDef Then 

        ' Find best 10% of dlambda to make f(x) decrease with 95% confidence 

        ' interval using RRR paper on neural network training 

        For N = 1 To 30 

            If bLineNR Then 

                ' newton raphson line search 

                Newton dLambda, dEpsilonNR, lngMaxIterNR, "Min,” dStep, aX(), _ 

                        aSearch(), False, -1, iDim, lngFun, lngFunCall 

            End If 

            For J = 1 To iDim 

                aXNext(J) = aX(J) + dLambda * aSearch(J) 

            Next J 

            'dFXNext = fFX(0, aXNext(), aXDel(), 0, lngFun, iDim, lngFunCall) 

            Call Calculations(aXNext(), SQRDev(), dFXNext) 
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            If dFXNext < dFX Then Exit For 

            If bLineNR Then 

                dLambda = 10 ^ (RandomNum(-6, 1)) 

            End If 

        Next N 

        bCauchy = False 

    ' If matrix not positive definate, repeat this iteration using steepest decent 

    Else 

        bCauchy = True 

    End If 

     

         

 

    ' If the current iteration is positive definate (calculated new x values), 

    ' check for termination 

    'steady state check 

    If bPosDef Then 

        Call Steady_State_1(SQRDev(), SS) 

        If SS = "Y" Then 

            bFoundMin = True 

            Exit For 

        End If 

End If 

     

    ' Replace current step with next step 

    For J = 1 To iDim 

        aF_Der1Prev(J) = aF_Der1(J) 

        aXPrev(J) = aX(J) 

        aX(J) = aXNext(J) 

    Next J 

    dFX = dFXNext 
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    lngTotFunCall = lngTotFunCall + lngFunCall 

    lngFunCall = 0 

    lngDerCall = 0 

     

    ' Reset BFGS variables 

    For J = 1 To iDim 

        aInt1(J) = 0 

        For N = 1 To iDim 

            aInt2(J, N) = 0 

            aInt3(J, N) = 0 

            aInt4(J, N) = 0 

            aInt5(J, N) = 0 

            aBDelInv(J, N) = 0 

        Next N 

    Next J 

Next K 

 

' If the minimum was not found by meeting stopping criteria, raise a flag 

If Not bMinFound And bDebug Then 

    MsgBox "Min may not have been found" 

    For J = 1 To iDim 

        'shtBFGS.Cells(6, 9 + J).Value = aX(J) 

    Next J 

    'shtBFGS.Cells(6, 16).Value = dFX 

End If 

 

dFXFinal = dFXNext 

 

End Sub 
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The following is a set of routines created for matrix manipulations. 

 

Sub VectTMat(aVect() As Double, aMat() As Double, aVectOut() As Double, 

iDim As Integer) 

' T Judson Wooters, 29-MAR-2007 

' Subprogram to multiply a transposed vector with a matrix 

' Inputs:       aVect()     transposed vector 

'               aMat()      matrix 

'               iDim        number of dimensions 

' Outputs:      aVectOut()  resulting vector 

                 

Dim dSum As Double 

Dim J As Long 

Dim N As Long 

 

    For J = 1 To iDim 

        dSum = 0 

        For N = 1 To iDim 

            dSum = dSum + aVect(N) * aMat(N, J) 

        Next N 

        aVectOut(J) = dSum 

    Next J 

 

End Sub 

 

Sub MatVect(aVect() As Double, aMat() As Double, aVectOut() As Double, 

iDim As Integer) 

' T Judson Wooters, 29-MAR-2007 

' Subprogram to multiply a matrix with a vector 

' Inputs:       aVect()     vector 

'               aMat()      matrix 
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'               iDim        number of dimensions 

' Outputs:      aVectOut()  resulting vector 

 

Dim dSum As Double 

Dim J As Long 

Dim N As Long 

 

    For J = 1 To iDim 

        dSum = 0 

        For N = 1 To iDim 

            dSum = dSum + aVect(N) * aMat(J, N) 

        Next N 

        aVectOut(J) = dSum 

    Next J 

 

End Sub 

 

Sub VectVectT(aVect1() As Double, aVect2() As Double, aMatOut() As Double, 

iDim As Integer) 

' T Judson Wooters, 29-MAR-2007 

' Subprogram to multiply a vector with a transposed vector 

' Inputs:       aVect1()    vector 

'               aVect2()    transposed vector 

'               iDim        number of dimensions 

' Outputs:      aMatOut()   resulting matrix 

 

Dim dSum As Double 

Dim J As Long 

Dim N As Long 

 

    For J = 1 To iDim 



 151 

        For N = 1 To iDim 

            aMatOut(J, N) = aVect1(J) * aVect2(N) 

        Next N 

    Next J 

 

End Sub 

 

Function fVectTVect(aVect1() As Double, aVect2() As Double, iDim As Integer) 

As Double 

' T Judson Wooters, 29-MAR-2007 

' Function to multiply a transposed vector with a vector 

' Inputs:       aVect1()    transposed vector 

'               aVect2()    vector 

'               iDim        number of dimensions 

' Outputs:      fVectTVect   resulting scaler 

 

Dim J As Long 

 

    For J = 1 To iDim 

        fVectTVect = fVectTVect + aVect1(J) * aVect2(J) 

    Next J 

 

End Function 

This is a modified Subroutine that looks at a complete selection of the deviations and not 

a random one. 

 

Sub Steady_State_1(sqdev() As Double, SS As String) 

‘Prithwijit Ghoshal 

‘modified SS criteria to accommodate the BFGS routine. Without random picks 

' selection with out replacement. 
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Dim Index() As Integer 

ReDim Index(1 To Nrand) 

Sum = 0 

SS = "N" 

Call RANDOM(Index()) 

For L = 1 To Nrand 

Sum = Sum + sqdev(Index(L)) 

Cells(L, 35) = Index(L) 

Next L 

Sum = Sqr(Sum) 

Cells(zip + 1, 39) = Sum 

Nf = 0.2 * (Xf - Sum) ^ 2 + 0.8 * Nf 

Df = 0.2 * (Sum - Sumold) ^ 2 + 0.8 * Df 

Sumold = Sum 

Xf = 0.2 * Sum + 0.8 * Xf 

RStatistic = 1.8 * Nf / Df 

 

Cells(zip + 1, 40) = Xf 

If RStatistic < 1 Then 

    SS = "Y" 

    Cells(nt + 1, 15) = Nf 

    Cells(nt + 1, 16) = Df 

    Cells(nt + 1, 17) = Xf 

    Cells(nt + 1, 13) = RStatistic 

    Cells(nt + 1, 14) = SS 

End If 

Cells(6, 12) = Nf 

Cells(7, 12) = Df 

Cells(8, 12) = Xf 

Cells(4, 12) = RStatistic 

Cells(5, 12) = SS 
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End Sub 

 

Functions: 

This can be used by changing the Calculations subroutine to use the function “AA” and 

by changing the number of decision variables involved in the required optimizer. 

 

The first function is the Neural Network created by Dr R. Russell Rhinehart. 

 

Function AA(X, B, w11, w12, w13, w14, w21, w22, w23, w24, w1, w2, w3, w4) 

'   R. Russell Rhinehart   Neural Network Demo Program 

'   School of Chemical Engineering, Oklahoma State university 

'   rrr@okstate.edu 

'   Last revised November 2005 

' 

'   Program computes the NN output for a 1-input-1-output NN with input bias, 

'   three hidden layer neurons, and one output neuron.  NN transfer function 

'   is bi-polar sigmoidal.  Training is by EXCEL Solver add in. 

' 

 

Dim WIH(2, 4)   'Weights on hidden layer 

Dim WHO(4)      'weights on output layer 

Dim N(4)        'Neuron Output 

 

' 

'   Get values of weights from spreadsheet 

' 

 

WIH(1, 1) = w11 

WIH(1, 2) = w12 
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WIH(1, 3) = w13 

WIH(1, 4) = w14 

WIH(2, 1) = w21 

WIH(2, 2) = w22 

WIH(2, 3) = w23 

WIH(2, 4) = w24 

WHO(1) = w1 

WHO(2) = w2 

WHO(3) = w3 

WHO(4) = w4 

 

For J = 1 To 2      'for each of the hidden neurons 

    z = B * WIH(1, J) + X * WIH(2, J)                   'calculate weighted input 

    N(J) = (Exp(z) - Exp(-z)) / (Exp(z) + Exp(-z))      'calculate neuron output 

Next J 

 

    z = N(1) * WHO(1) + N(2) * WHO(2) + N(3) * WHO(3) + N(4) * WHO(4) 

'calculate weighted input for output neuron 

    AA = (Exp(z) - Exp(-z)) / (Exp(z) + Exp(-z))        'calculate neuron output for 

output neuron 

 

End Function 
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This is a simple third order polynomial function 

 

Function FF(A As Double, B As Double, C As Double, D As Double, X As 

Double) As Double 

'Prithwijit Ghoshal 

'November 07, 2007 

'Polynomial function 

 

FF = A + B * X + C * X ^ 2 + D * X ^ 3 

 

End Function 
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APPENDIX D 

CASE INDEX FOR STEADY STATE VS EXCESSIVE ITERATIONS ANALYSIS 

 

Case Model Used Optimizer 
Steady State 

(Y/N) 
Data Set 

(A/B) 

A1 Polynomial RRR Y A 

A2 Polynomial RRR N A 

B1 Polynomial HJ Y A 

B2 Polynomial HJ N A 

C1 Polynomial BFGS Y A 

C2 Polynomial BFGS N A 

D1 Neural Network RRR Y A 

D2 Neural Network RRR N A 

E1 Neural Network HJ Y A 

E2 Neural Network HJ N A 

F1 Neural Network BFGS Y A 

F2 Neural Network BFGS N A 

G1 Polynomial RRR Y B 

G2 Polynomial RRR N B 

H1 Polynomial HJ Y B 

H2 Polynomial HJ N B 

I1 Polynomial BFGS Y B 

I2 Polynomial BFGS N B 

J1 Neural Network RRR Y B 

J2 Neural Network RRR N B 

K1 Neural Network HJ Y B 

K2 Neural Network HJ N B 

L1 Neural Network BFGS Y B 

L2 Neural Network BFGS N B 
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