
STUDY OF AN INITIALIZATION METHOD AND

STOPPING CRITERIA FOR NONLINEAR

OPTIMIZATION

 By

 PRITHWIJIT GHOSHAL

 Bachelor of Engineering in Chemical Engineering

 Visveswaraya Technological University

Belgaum, Karnataka, India

 2006

 Submitted to the Faculty of the

 Graduate College of the

 Oklahoma State University

 in partial fulfillment of

 the requirements for

 the Degree of

 MASTER OF SCIENCE

 July, 2008

 ii

 STUDY OF AN INITIALIZATION METHOD AND

STOPPING CRITERIA FOR NONLINEAR

OPTIMIZATION

 Thesis Approved:

Dr R. Russell Rhinehart

Thesis Adviser

Dr Karen A. High

Dr Satish T.S. Bukkapatnam

Dr A. Gordon Emslie

 Dean of the Graduate College

 iii

ACKNOWLEDGMENTS

I would like to place on record my sincere gratitude and thanks to Dr. R. Russell

Rhinehart, my Advisor, for his guidance, suggestions, enthusiasm and encouragement he

provided in my research work. I am also indebted to him for the financial support he

extended during my stay at Oklahoma State University. I will cherish the knowledge he

imparted to me and hope that I will be able to make good use of it in my future

endeavors.

I would like to thank Dr. Karen High and Dr. Satish Bukkapatnam for being in my thesis

advisory committee and for the help I received from them in completing my thesis. I

would also like to thank Dr Eric L. Maase, Dr Arland H. Johannes, for their unhesitating

help and encouragement. I also acknowledge the help rendered by the faculty, staff, and

the graduate students of the department of Chemical Engineering at Oklahoma State

University.

I acknowledge and thank my family for their support, and finally, I would like to thank

Soumitra Ghosh, Kasturi Ghatak, Stacey Bridges, and Sayandeep Basak for their undying

faith in me.

 iv

TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION..1

 1.1 Optimization Methods ...3

 1.2 Empirical Modeling ...3

 1.3 Global optimization ...4

 1.4 Stopping Criteria..8

II. DESCRIPTION OF METHODS USED...13

 2.1 Best-of-N or Weakest-Link-in-the-Chain Analysis ...14

 2.2 Online identification of Steady State ...22

III. METHODOLOGY ..28

 3.1. Optimization routines..28

 3.1.1. Direct methods ...28

 3.1.2. Gradient Based methods ..31

 3.2. Simulation...32

 3.2.1. Contrived Data ...33

 3.2.2 Experimental Data ..34

 v

Chapter Page

 3.3. Application of the Optimizer ..37

 3.4. Testing Best-of-N Equation ..38

 3.5. Testing Steady State Stopping Criterion...40

IV. FINDINGS...41

 4.1. Results from Simulated Data ..41

 4.1.1. Model Used: Third degree polynomial equation (Set A).....................43

 4.1.2. Model Used: Neural Network (Set A) ...52

 4.1.3. Model Used: Third degree polynomial equation (Set B).....................60

 4.1.4. Model Used: Neural Network (Set B) ...67

 4.2. Results from Experimental Data...74

 4.3. Results of the Best-of-N analysis..87

 4.4. Discussions ...97

V. CONCLUSION..100

 vi

Chapter Page

REFERENCES ..102

APPENDICES ...103

 Appendix A: Contrived Data ...103

 Appendix B: Pressure Drop data and Example calculations for pressure drop in

 two-phase flow...108

 Appendix C: Computer Programs..118

 Appendix D: Case index for Steady state vs Excessive iterations analysis.........156

 vii

LIST OF TABLES

Table Page

 4.1. Final Optimization results for Case (4.1.1.1)...43

 4.2. Parameter values for Case (4.1.1.1) ...45

 4.3. Final Optimization results for Case (4.1.1.2)...45

 4.4. Parameter values for Case (4.1.1.2) ...47

 4.5. Final Optimization results for Case (4.1.1.3)...48

 4.6. Parameter values for Case (4.1.1.3) ...50

 4.7. Final Optimization results for Case (4.1.2.1)...51

 4.8. Parameter values for Case (4.1.2.1) ...53

 4.9. Final Optimization results for Case (4.1.2.2)...54

 4.10. Parameter values for Case (4.1.2.2) ...55

 4.11. Final Optimization results for Case (4.1.2.3)...56

 4.12. Parameter values for Case (4.1.2.3) ...57

 4.13. Final Optimization results for Case (4.1.3.1)...59

 4.14. Parameter values for Case (4.1.3.1) ...61

 4.15. Final Optimization results for Case (4.1.3.2)...61

 4.16. Parameter values for Case (4.1.3.2) ...63

 4.17. Final Optimization results for Case (4.1.3.3)...63

 viii

Table Page

 4.18. Parameter values for Case (4.1.3.3) ..65

 4.19. Final Optimization results for Case (4.1.4.1)...66

 4.20. Parameter values for Case (4.1.4.1) ...68

 4.21. Final Optimization results for Case (4.1.4.2)...69

 4.22. Parameter values for Case (4.1.4.2) ...70

 4.23. Final Optimization results for Case (4.1.4.3)...71

 4.24. Parameter values for Case (4.1.4.3) ...72

 4.25. Flow patterns of fluid based on Reynolds’ Number ..74

 4.26. Lockhart-Martinelli Correlation constants for different flow patterns74

 4.27. Final optimization results for Laminar-laminar flow.......................................75

 4.28. Parameter values for Laminar-Laminar flow...75

 4.29. Final optimization results for Turbulent-Laminar flow78

 4.30. Parameter values for Turbulent-Laminar flow ..80

 4.31. Final optimization results for Laminar-Turbulent flow...................................81

 4.32. Parameter values for Laminar-Turbulent flow ..83

 4.33. Final optimization results for Turbulent-Turbulent flow.................................83

 4.34. Parameter values for Turbulent-Turbulent flow ..83

 4.35a. Results of Best-of-N analysis, Percentage occurrence of best 10%...............95

 4.35b. Results of Best-of-N analysis, Percentage occurrence of best 5%96

 ix

LIST OF FIGURES

Figure Page

 1.1.A Neural Network being trained for a set of Process Data...................................5

 1.2 Optimization with threshold on objective function ..12

 2.1. Distribution of SSD for 1000 NN trainings ...15

 2.2. Normalized distribution for 1000 NN trainings...16

 2.3. Cumulative distribution for 1000 NN trainings ...16

 2.4. Best of 100 training histogram...17

 2.5. Best of 100 cumulative distribution...18

 2.6. Best of 5 training histogram...19

 2.7. Best of 5 cumulative distribution...19

 2.8. Cumulative distribution with changing N..20

 4.1a RMS error vs. Filtered Error (Case A1)..45

 4.1b RMS error vs. Filtered Error (Case A2)..45

 4.2a RMS error vs. Filtered Error (Case B1) ..47

 4.2b RMS error vs. Filtered Error (Case B2)..47

 4.3a RMS error vs. Filtered Error (Case C1) ...50

 4.3b RMS error vs. Filtered Error (Case C2)..50

 4.4a RMS error vs. Filtered Error (Case D1)..53

 4.4b RMS error vs. Filtered Error (Case D2)..53

 4.5a RMS error vs. Filtered Error (Case E1) ..56

 4.5b RMS error vs. Filtered Error (Case E2) ..56

 x

Figure Page

 4.6a RMS error vs. Filtered Error (Case F1) ..57

 4.6b RMS error vs. Filtered Error (Case F2) ..58

 4.7a RMS error vs. Filtered Error (Case G1)..61

 4.7b RMS error vs. Filtered Error (Case G2)..61

 4.8a RMS error vs. Filtered Error (Case H1)..63

 4.8b RMS error vs. Filtered Error (Case H2)..63

 4.9a RMS error vs. Filtered Error (Case I1) ..65

 4.9b RMS error vs. Filtered Error (Case I2) ...66

 4.10 a RMS error vs. Filtered Error (Case J1) ..68

 4.10b RMS error vs. Filtered Error (Case J2)...68

 4.11a RMS error vs. Filtered Error (Case K1)..70

 4.11b RMS error vs. Filtered Error (Case K2)..71

 4.12a RMS error vs. Filtered Error (Case L1) ..72

 4.12b RMS error vs. Filtered Error (Case L2) ..73

 4.13 Experimental Pressure Drop vs. Model Pressure Drop for

 Laminar-Laminar flow..77

 4.14a RMS error vs. Filtered Error for Laminar-Laminar flow with

 steady state stopping criterion..77

 4.14b RMS error vs. Filtered Error for Laminar-Laminar flow with

 excessive iterations ..78

 xi

Figure Page

 4.15 Experimental Pressure Drop vs. Model Pressure Drop for

 Turbulent-Laminar flow..80

 4.16a RMS error vs. Filtered Error for Turbulent-Laminar flow with

 steady state stopping criterion..80

 4.16b RMS error vs. Filtered Error for Turbulent-Laminar flow with

 excessive iterations ..81

 4.17 Experimental Pressure Drop vs. Model Pressure Drop for

 Laminar-Turbulent flow..82

 4.18a RMS error vs. Filtered Error for Laminar-turbulent flow with

 steady state stopping criterion..83

 4.18b RMS error vs. Filtered Error for Laminar-Turbulent flow with

 excessive iterations ..83

 4.19 Experimental Pressure Drop vs. Model Pressure Drop for

 Turbulent-Turbulent flow ...85

 4.20a RMS error vs. Filtered Error for Turbulent-Turbulent flow with

 steady state stopping criterion..85

 4.20b RMS error vs. Filtered Error for Turbulent-Turbulent flow with

 excessive iterations ..86

 xii

Figure Page

 4.21 Cumulative Spread for Case (4.3.1)..89

 4.22 Cumulative Spread for Case (4.3.2)..90

 4.23 Cumulative Spread for Case (4.3.3)..91

 4.24 Cumulative Spread for Case (4.3.4)..92

 4.25 Cumulative Spread for Case (4.3.5)..93

 4.26 Cumulative Spread for Case (4.3.6)..94

 4.27 Cumulative Spread for Case (4.3.7)..95

 4.28 Cumulative Spread for Case (4.3.8)..96

 4.29 Cumulative Spread for Case (4.3.9)..97

 1

CHAPTER I

INTRODUCTION

Optimization is the use of specific methods to determine the most cost effective and

efficient solution to a problem or design for a process, making it one of the major

quantitative tools used on industrial decision making. Optimization pervades the fields of

science, engineering and business. In physics, for example, many different optimal

principles are enunciated, which describe natural phenomena in the fields of optics and

classical mechanics. Optimization is reflected in Statistical terms like “maximum

likelihood,” minimum loss,” and “least squares”; and in business terms like “maximum

profit,” “minimum use of resources,” “minimum cost,” and ”minimum effort”.

Optimization is also important in engineering where a process can be described by a

series of equations, or by experimental data. When a single performance criterion is

considered, such as minimum cost, engineering optimization is used to find the values of

the process variables which yield the best value of the performance criterion [1].

Optimization can be easily explained by an example:

Example 1.1: Minimize the function

 () () 13
2 +−= xxf (1.1)

 2

The function ‘f’ is called the Objective Function (OF), the variable ‘x’ is the Decision

Variable (DV). The function can be plotted for various values of x which will reveal that

the optimum for the function is at x=3, where the objective function attains a value of 1.

1.1. Optimization methods

There are two main categories of optimization. One is constrained optimization and the

other is unconstrained optimization. Constrained optimization seeks the optima in a

restricted region, which is defined using equality and inequality constraints, which are

usually based on the probability of finding an optimum existing in the range.

Unconstrained optimization seeks to determine an optimum in a range from -∞ to +∞ .

These two classes are manly used in practice to attain economic benefits and empirical

modeling [2]. For example, the optimization of a set of process setpoints seeking to

minimize process costs falls under the former, and optimization of model parameters to

fit experimental data falls under the latter and it is generally called empirical modeling.

This work mainly deals with empirical model optimization.

1.2. Empirical Modeling

In many fields, it is incumbent to describe a series of data points in terms of an empirical

relation, which is easy to understand and implement. If there is only one independent

variable in the data representation, they can be plotted in Cartesian coordinates and a line

drawn through the points can be the graphical representation of the data points [7]. In real

life, however, the data points can be dependent on more than one independent variable,

which makes it more difficult to graphically represent the data. In these situations, it

becomes necessary to find a functional form to represent the data. The functional form is

 3

of particular interest since it can be easily implemented in calculations on computers, and

because of the ease in interpolation between data points.

Typical relations for empirical models might be [1]:

L+++= 22110 xaxaay linear in the variables and coefficients, i.e they

don’t have any exponents or indices associated with

them.

L+++= 2112

2

1110 xxaxaay linear in the coefficients, nonlinear in the

variables (x1,x2)

()
2

210

1

sasaa
sG

++
= nonlinear in all the coefficients

()b
aNu Re= nonlinear in the coefficient b (Nu: Nusselt Number;

Re: Reynolds number)

It has to be noted that the last two examples can me mathematically manipulated to give

us linearized expressions, but they are nonlinear when considered as they are presented

above.

The determination of the coefficients of a model from empirical data can be done using

the principles of least squares. To compensate for the errors involved in experimental

data, the number of data points should be greater than (about 3 times) the number of

coefficients in the model. Least squares is just the application of optimization to obtain

the “best” solution of the equations formed by implementing the data points to the model.

In simpler terms, the sum of the squares of the errors between the predicted and the

 4

experimental values of the dependent variables for each data point is minimized. The

resulting model will be the closest functional representation of noisy experimental data

[1].

1.3. Global Optimization

In many optimization problems, there are one or more solutions, all termed as local

minima, and the best solution, i.e. the solution that returns the lowest objective function

value, is termed as the global minima. This is the most sought after solution of them all.

A few examples of common multivariable optimizers used in the industry and in

academia include, Marquardt-Levenberg, Gauss-Newton, Nelder-Mead Simplex, Hooke-

Jeeves, Broydon-Fletcher-Goldfarb-Shanno, and successive quadratic. The common

element to all of these optimizers is in the fact that it generates only one optimum for a

given starting point, and there is no guarantee that it is the best solution. These optimizers

are consequently termed as local optimizers.

The following example shows a series of data points being modeled by a neural network.

The training of the said network yields a series of curves which have distinct differences

between them. In each case, the data points are the same, i.e. the same process is being

modeled using different initial values to start the optimization, but the neural network

produces different curves to fit the same data.

 5

Fig 1.1 (Clockwise from top left: a to d)

A Neural Network being trained for a set of process data.

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

0 20 40 60 80 100

X-Value

Y
-V

a
lu

e

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

0 20 40 60 80 100

X-Value

Y
-V

a
lu

e

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

0 20 40 60 80 100

X-Value

Y
-V

a
lu

e

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

0 20 40 60 80 100

X-Value

Y
-V

a
lu

e

The model prediction in Fig 1.1a is significantly different from the rest of the figures,

with sharp bends in the model. Fig 1.1b displays a smooth curve, but I notable bump is

observed between x values of 40 and 65. figures 1.1c and 1.1d may look identical, but a

close inspection reveals that the tail of the curve in the former is flat, but in the latter, it is

observed to curve upwards. This example clearly indicates the fact that a single model

can give us more than one result.

 6

This brings us to the realm of global optimization, where there is a need to seek out not

just “a” solution, but the “best” solution to an objective. There are several developing

algorithms being used and studied, and even though they are effective, it has to be noted

that none of these techniques actually guarantee identification of the global optima. A

few are enumerated below [1].

Simulated Annealing: This refers to a class of metaheuristics based on an analogy to the

annealing of metals. The method depends on randomization to diversify the search, both

in selecting a move to evaluate (all moves to neighboring points is equally likely) and in

deciding whether or not accept the move. The basic SA algorithm can use the metropolis

algorithm (Johnston et al., 1989) to determine move acceptance, where downhill moves

(where the difference in function values of the previous and present point is less than

zero) are always accepted, and uphill moves (the above mentioned difference is greater

than zero) are accepted with a probability.

Tabu Search: The basic idea involves allowing the algorithm to make moves that would

not be allowed in a conventional local optimization program, thus the term “Tabu”. An

example of this would be to change search directions or to make large steps when the

optimizer approaches an optimum, the intention being to skip the present valley in hopes

that a better optimum might then be found. The tabu moves are usually specified as

moves to solutions with particular attributes. The moves are also specified to keep

previously performed moves from being reversed, or to prevent previously visited

solution from being revisited. It is widely accepted in the field of Operations research.

 7

Unfortunately, there is no general purpose tabu search software available, though it has

been implemented in numerous problems.

Genetic Algorithms: They are another idea which removes a major drawback of

simulated annealing and tabu searches. Both of the latter operate by transforming single

solution at a single step. The genetic algorithms, on the other hand, work with a

population of solutions, i.e. a set of possible solutions, and this population is modified

during each iteration by replacing one or more individuals (a single solution in the set)

with new solutions, which are created by combining two individuals (crossover), or by

changing an individual (mutation). The procedure is inspired by the evolution of

populations of living organisms, whose chromosomes undergo crossover and mutation

due to reproduction.

Multistart Methods: they use standard, widely available nonlinear programming methods,

i.e. local optimization techniques, in the search logic. The difference here lies in the fact

that instead of using only one starting point, a series of points are used, and the optimizer

is run for all the starting points, and then the best solution is selected as the global

optimum. This method is simpler to use compared to the other methods discussed earlier

since they do not involve added or new heuristics to the solution scheme, and they use

optimization methods that have been effectively used and understood. The drawback lies

in the fact that most of the solutions deal with local optima and this leads to a large

amount of computing time going to waste. The starting points can be chosen randomly, or

can be chosen based on a specific range of values. When we consider randomly chosen

 8

points, there are various logics as described by Rinnoy, Kan and Timmer (1987, 1989)

and more recently by Locatelli and Shoen (1999) which can be used [1].

The present study explores the application of a global optimization search logic

developed by Rhinehart and Iyer [4] for neural network training. The basis for the idea is

in the mathematics involved in engineering reliability and in the training of neural

networks which is effectively the nonlinear empirical modeling of the parameters of a

neural network.

1.4. Stopping Criteria

A numerical optimization routine will always need a stopping criterion. It becomes

necessary since it is the only means of stopping the algorithm once the optimum has been

reached. The criterion should desirably stop the search when subsequent changed in the

decision variable do not cause any improvements in the objective function value.

Some of the commonly implemented stopping criteria include

1. A threshold in the objective function value, which terminates the optimization

process when the OF value is less than the set value.

2. A threshold change in the objective function value, which terminates the

optimization process when it observes no change in the OF value.

3. A threshold change in the decision variable is another widely used criterion,

which terminates the process when it observes no change in the DV values.

 9

4. A threshold change in the number if iterations, which terminates the optimization

after carrying out a certain number of iterations irrespective of whether the

desired values for the parameters are achieved.

5. A threshold value on the square of the error between previous and present

objective function values or decision variable values.

6. A threshold value on the first derivative of the objective function approaches zero,

indicating that the objective function is at the bottom of a valley, i.e. the optimum.

7. A rise in the Standard Square deviation or Root mean Square of a validation set

[2].

Factors 1 to 5 require an approximate knowledge of the optimum (before the optimization

is carried out) to set up the thresholds. This is important since a loose threshold (set way

away from the optimum) can lead to the procedure stopping before the optimum is

attained. On the other hand, if the threshold is set far below the optimum, the optimizer

may never find the optimum or it might take an unnecessarily large amount of time and

computing power to find it, both of which are undesirable [2]. Factor 6 has the obvious

disadvantage that it requires the objective function to be relatively simple to ensure that

the derivative is known. More complex functions can use derivative knowledge using

numerical methods, but the approximation can reduce the sensitivity of the criteria in

general. Factor 7 doesn’t use the validation set in the optimization itself, and this can be a

detriment to its proper application.

 10

Numerically, when these ideas are implemented, the stopping criteria usually involve

observing two or more successive values of the decision variable or the objective

function. As the optimizer approached on optimum, the step sizes decreases and

consequently, the difference between the successive function values decreases. When no

significant difference is observed in the function values, which is determined by

comparing the actual difference against a pre set threshold, the program terminates. This

procedure, however, has one serious disadvantage. Small step lengths do not occur only

when the optimum is nearby, but also when the search is moving through a narrow valley,

where the ∆DV values are small, but the ∆OF values could be large. In this case the

aforementioned difference (in this case the ∆DV) can go below the threshold before the

sought optimum is actually reached [2]. A similar situation occurs when the optimizer is

moving over a vary wide valley, where the opposite is true, i.e. we have small ∆DV

values but small ∆ OF values, and the threshold in the ∆ OF values can lead to a

premature termination of the trial.

The probability of the optimizer attaining the global optimum depends on the initial guess

that starts the trial. If the initial guess is too far from the global solution, the optimizer

either 1) takes a long time to get to the appropriate values, or 2) becomes stuck in a local

optimum. In these cases, it is convenient and prudent to restart the trial with a new

starting guess. Hence, it is required to fix a maximum number of iterations within which

the optimizer should find the optima. In case the search is not complete by the time the

maximum limit is reached, the search is terminated, a new set of initial values are chosen

and the trial is started again.

 11

The various stopping criteria discussed above are scale dependent, starting point

dependent, and optimization algorithm dependent, and the right choices require human

supervision. Most of them also require a priori knowledge of the objective function under

consideration [7]. This should be avoided when we evaluate optimization algorithms,

since they can lead to misleading results. For example, in a practical situation, there

might be a need to optimize a process model to obtain the values associated with it. Since

no information about the threshold value of the process model (objective function) is

available, it is quite difficult to set up the right threshold value.

Consider the following example:

Example 1.2: Minimize

 () 2 2 20f x x x= − − (1.2)

As illustrated in Figure 1.2, the optima for this function is at x=1, where the objective

function has a value of -21. If the user were not to know this and use a threshold value for

the objective function to be close to zero, the trial would stop at x=-3.5825 or at

x=5.5825, which would be the roots of the polynomial equation, but not the minima.

 12

Fig 1.2 Optimization with threshold on objective function

-40

-20

0

20

40

60

80

100

120

-15 -10 -5 0 5 10 15
x

y

We thus realize that the choice of most stopping criteria requires a priori information,

and they can be scale dependent, application dependent, starting point dependent, and

optimization algorithm dependent. Selection of the right stopping criterion feature or

value would thus be a question of human supervision in the end [7].

The present work attempts to use the stopping criteria proposed by Cao and Rhinehart [3],

for least squares optimization. This criterion is scale free, requires no prior knowledge of

the optima, and stops the iteration when there is no statistical improvement in the data.

The stopping criteria is combined with an initialization method proposed for neural

network training [4] in order to provide a simple multistart global optimizer.

Threshold of y

X=-3.5825 X=5.5825

 13

CHAPTER II

DESCRIPTION OF METHODS USED

Considering nonlinear optimization problems, the biggest issue is the tendency of the

optimizer to get stuck in local minima. One of the ways to alleviate this problem is to run

the optimizer repeatedly, starting with values based on a grid on the surface of the

function or randomly generated values. Good examples of such applications are in neural

network training, which always involves an optimization procedure to determine the

weights of the network. Sha et al. have reported the use of 25 random starts in the use of

neural networks for ship design. Park et al. have reported the results on prediction of

sunspots based on 10 random starts.

Rhinehart and Iyer [4], established a theoretical basis for the choice of the number of

random starts in neural network training. The obvious implications of the study were that

it can be extended to any other nonlinear optimization procedure. The concept used for

this development was the “Best-of-N” or the “Weakest-Link-in-the-Chain” analysis. The

present study applies this concept in regression modeling.

 14

2.1. The Best-of-N or Weakest-link-in the-Chain Analysis

A chain is only as strong as its weakest link. In other words, the strength of a chain on N

links, each of whose strengths is a distributed variable, is the strength of the weakest link.

When we consider an optimization problem where the optimizer is used repeatedly,

starting with randomly selected values, each individual optimization can be analogous to

a link in a chain. The performance of the optimizer on our case is determined by the Sum-

of-Squares Deviation (SSD) compared to a data set. This value is analogous to the

strength of a link. The lowest error of several random starts is the strength of the weakest

link. Consequently, the weakest link would mean the best solution among the repeated

optimizations.

To further develop the idea, consider the following case study [5]. In it, a neural network

was trained 1000 times, from 1000 independent random initial values for weights.

 15

Fig 2.1 Distribution of SSD for 1000 NN trainings

0

50

100

150

200

250

300

350

0.
2

0.
22

0.
24

0.
26

0.
28 0.

3
0.
32

0.
34

0.
36

0.
38 0.

4
0.

42
0.

44
0.
46

0.
48 0.

5

X [Units]2

(SSD after optimization)

#
 t
im

e
s
 t
ri
a
in

in
g
 s

to
p
p
e
d
 w

ith
 c

o
rr

e
s
p
o
n
d
in

g
 S

S
D

v
a
lu

e

From Figure 2.1. it is observed that sometimes the training ended with a SSD value of

about 0.24 [unit
2
]. This is Group 1, and represents the global optimum. Group 2 contains

most of the training results; a broad local optimum centered around 3.75 as evidenced by

the broad stopping range on the SSD.

If connected by a smooth curve, and normalized so that the area under the curve equals 1,

Figure 2.1 becomes Figure 2.2.

 16

Fig 2.2 Normalized distribution fore 1000 NN trainings

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.2 0.22 0.24 0.26 0.28 0.3 0.32 0.34 0.36 0.38 0.4 0.42 0.44 0.46 0.48 0.5 0.52

X [Units]2

(SSD after optimization)

f x

(n
o
rm

a
lis

e
d
 d

is
tr

ib
u
tio

n
)

The cumulative distribution can be obtained by integrating fx over all x values. Figure 2.2

would thus yield Figure 2.3.

Fig 2.3 Cumulative Distribution for 1000 NN trainings

0

0.2

0.4

0.6

0.8

1

1.2

0.2 0.22 0.24 0.26 0.28 0.3 0.32 0.34 0.36 0.38 0.4 0.42 0.44 0.46 0.48 0.5 0.52

X [Units]2

(SSD after optimization)

F
x

(C
u
m

u
la

tiv
e
 D

is
tr

ib
u
tio

n
)

Fx in fig 2.3 reads as the fraction of events which had a corresponding or lower Fx value

for a given x value. For example, 50% of the events stopped with an x value of

 17

0.37[unit
2
] or lower, or at a specific value of x = 0.23, only 10% or fewer events resulted

in a better x value.

Figure 2.3 also reveals that about 20% of the trainings fell in Group 1, and the remaining

80% fell in Group 2. We also note that the figure is based on the initial Figure 2.1 which

was a representation of the results of 1000 separate trainings.

Now, if the neural network in consideration were to be trained about 100 times, 20% of

the results would be expected to be in group 1, and 80% in group 2. The “best of 100”

training histogram is shown in Figure 2.4. It has to be noted that in this case study, there

was at least one point from Group 1 in each of the 10 cases, which in turn leads to only

one bar in Figure 2.4.

Fig 2.4 Best of 100 training histogram

0

2

4

6

8

10

12

0.
2

0.
22

0.
24

0.
26

0.
28 0.

3
0.

32
0.

34
0.

36
0.

38 0.
4

0.
42

0.
44

0.
46

0.
48 0.

5

X [Units]2

(SSD after optimization)

#
 t
im

e
s
 t
ri
a
in

in
g
 s

to
p
p
e
d
 w

ith
 c

o
rr

e
s
p
o
n
d
in

g
 S

S
D

v
a
lu

e

And the CDF would be,

 18

Fig 2.5 Best of 100 cumulative distribution

0

0.2

0.4

0.6

0.8

1

1.2

0.2 0.22 0.24 0.26 0.28 0.3 0.32 0.34 0.36 0.38 0.4 0.42 0.44 0.46 0.48 0.5 0.52

X [Units]2

(SSD after optimization)

F
x

(C
u
m

u
la

tiv
e
 D

is
tr

ib
u
tio

n
)

So, using N = 100 just about guarantees that the best of 100 will find the global optimum

x-value of about 0.23[unit
2
].

If a best-of-5 strategy is employed, with 20% expected in Group 1, it would be expected

that 1 out of 5 would be in Group 1. In reality, some sets of 5 will have no values in

Group 1, and some sets of 5 will have 2, 3, 4, or even 5 values falling in Group 1. Thus,

in a best-of-5 strategy, the chance that one of five ends up in Group 1 is better than 20%,

but there is still a possibility that none will.

After 248 trials, the histogram for a best-of-5 is shown in Figure 2.6.

 19

Fig 2.6 Best of 5 Training Histogram

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.
2

0.
22

0.
24

0.
26

0.
28 0.

3
0.

32
0.
34

0.
36

0.
38 0.

4
0.
42

0.
44

0.
46

0.
48 0.

5

X [Units]2

(SSD after optimization)

#
 t
im

e
s
 t
ri
a
in

in
g
 s

to
p
p
e
d
 w

ith
 c

o
rr

e
s
p
o
n
d
in

g
 S

S
D

 v
a
lu

e

From which the CDF is

Fig 2.7 Best of 5 Cumulative Distribution

0

0.2

0.4

0.6

0.8

1

1.2

0.2 0.22 0.24 0.26 0.28 0.3 0.32 0.34 0.36 0.38 0.4 0.42 0.44 0.46 0.48 0.5 0.52

X [Units]2

(SSD after optimization)

F
x

(C
u
m

u
la

tiv
e
 D

is
tr

ib
u
tio

n
)

From this illustration, 50% of the best-of-5 would end up on an x value of 0.23 [unit
2
] or

less.

From Figure 2.7, we can infer that at x = 0.23 [unit
2
] would give us one of the best 15%

of all possible stopping places.

 20

In the process of developing a logic to define the desired number of independent starts,

define FW as the confidence that at least one of the values generated is lower than or

equal to a value in Group 1, i.e. an acceptable representation of the global optima. It can

also be described as a representation of the CDF for the weakest link, from N links.

First, observe how Fw changes with N:

If it is desired that 99% of the trainings should find one of the best 10% the possible

stopping outcomes, from Figure 2.8, 0.99 on FW at N = 5 indicates that 99% of the stops

will end up with a value of x = 0.37[unit
2
] or less, which, Figure 2.3. then indicates is

only in the best 85% of the best possible outcomes. From Figure 2.5, with N = 100, FW =

0.99 reveals that 99% of the best-of-100 stops will have an x-value of 0.24 or less. Figure

2.3 indicates that this would be in the best 19% of all possible values. This brings us to an

observation that FW improves with an increasing N.

Fig 2.8 Cumulative distribution with changing N

0

0.2

0.4

0.6

0.8

1

1.2

0 0.1 0.2 0.3 0.4 0.5 0.6

X

F
w

N=1

N=5

N=100

 21

The idea can also be mathematically developed using probability [4]. Consider N

independent training runs. The probability that any single optimization has a SSD value,

x, less then or equal to “a” is FX(a) where ()
0

a

X XF f x dx= ∫ is the value of the CDF at a.

Then the probability of x > a is ()1 XF a− , and the probability that all points of the

sample (in our case, this can be defined as the OF values upon stopping), of size N, have

a value greater than a specific value, a, is ()1
N

XF a−   . Hence the probability that at

least one of the elements has a lower value than, or equal to, a, is ()1 1
N

XF a− −   . Since

we have used FW to represent this earlier, we get the following expression:

() ()()1 1
N

W XF a F a= − − (2.1.1)

Equation (2.1.1) explicitly defines the value of one of the three variables, in terms of the

values of the other two. To reiterate them,

N The number of random, independent optimization starts from which the

best will be chosen.

X The sum-of-squared deviations on any individual optimization.

FX(a) The fraction of random starts which would result in a value of X less than

or equal to “a,” and 0 ≤ FX(a) ≤ 1.

For Example, if FX(a) has a value of 0.2 this means that the X-value for the SSD is one of

the best (lowest) 20% possible values. W is the best (lowest) value for x out of N starts.

FW(a) is the fraction of the Best-of-N X-values that result in a value of W less then or

 22

equal to “a,” ≤ FW(a) ≤ 1. If FW(a) has a value of 0.99, this means that there is only a 1%

chance that the Best-of-N X-values will be worse.

However, the present study requires the determination of the required number of random

starts, based on user-defined values of FW(a), the level of confidence, and FX(a), the

percentage vicinity of the lower tail of the distribution, which the Best-of-N is expected

to provide. This can be done by rearranging Equation (2.1.1) to give,

()()
()()

ln 1

ln 1

W

X

F a
N

F a

−
=

−
 (2.1.2)

2.2. Online identification of Steady State.

In this exploration, the end point of an optimization procedure is identified using the

concepts of steady state identification instead of the conventional methods of setting up

thresholds [3]. The optimization parameter in nonlinear optimization of empirical data is

the Sum of Square Deviations (SSD) between the data and the model. It has been

observed that the Root Mean Square of the deviations (RMS) drops to an asymptotic

minimum with progressive iterations.

The novelty of the method lies in the evaluation of the RMS of a Random Subset (RMS

RS) of the data (a different random subset for each iteration). This RMS RS appears as a

noisy signal relaxing to its noisy steady state value as the iterations progress. By using a

random subset of data, the noise is independently distributed, and, at steady state, when

convergence has been achieved, the noise reflects the variance in the data. The noise is

chi-square distributed, with an average equal to the standard error of the residual (model-

 23

to-data mismatch). When the noisy signal reaches a statistical steady state, the

optimization has reached a point where there is no statistically significant improvement in

the OF with respect to model standard error, and consequently the optimization should be

stopped. Since the test looks at signal-to-noise ratio; it is scale independent.

Paraphrasing the development by Rhinehart and Iyer [3], the design of this method is

styled after the F-test type of statistic. It is the ratio of variances, R, as measures on the

same set of data by two different methods.

The primitive way of estimating variance would be:

()2
2

1

1
ˆ

1

N

i N

i

X X
N

σ
=

= −
− ∑ (2.2.1)

The modification (or simplification) begins with a conventional exponentially weighted

moving average or conventional first-order filter of a decision variable Xi. this requires

little storage and s computationally fast. In algebraic notation:

()
11 11

i if i fX X Xλ λ
−

= + − (2.2.2)

where 0 < λ1 < 1.

If the previous filtered value
1if

X
−

is used to replace the sample mean, NX , a mean square

deviation can be defined as:

()()1

2
2

ii fv E X X
−

= − (2.2.3)

and can be estimated by:

 24

()
1

2
2

1

1
ˆ

1 i

N

i f

i

v X X
N −

=

= −
− ∑ (2.2.4)

Assuming that {Xi} is uncorrelated, using the previous value of Xf, Xi-1, prevents

autocorrelation between Xi and
1if

X
−

, and allows one to easily estimate 2σ and 2
v .

Define:

1ii i fd X X
−

= − (2.2.5)

if the process is at steady state conditions and there is no autocorrelation in the sequential

measurement, then Xi and
1if

X
−

are independent, then the variance on d is related to the

variance on X and Xf [8]:

2 2 2

fd X Xσ σ σ= + (2.2.6)

Further, for the exponentially weighted moving average, when {Xi} are independent and

stationary, the variance on Xf from Equation (2.2.2) becomes [9]:

2 21

11fX X

λ
σ σ

λ
=

−
 (2.2.7)

Equations (2.2.6) and (2.2.7) yield:

2 2 21 12 2

2 2
X d v

λ λ
σ σ

− −
= = (2.2.8)

from which the noise variance can be estimated if 2
v is known.

2 212
ˆ ˆ

2
X v

λ
σ

−
= (2.2.9)

However, Equation (2.2.4) is computationally expensive; so, use a filtered value instead

of a traditional average:

() ()
1

2 2

, 2 2 , 11
if i i f f iv X X vλ λ
− −= − + − (2.2.10)

 25

If the process is stationary:

() ()()1

2
2 2

, if i i fE v E X X v
−

= − = (2.2.11)

So, Equation (2.2.10) is an unbiased estimate of 2
v , and the variance of 2

,f iv is:

() ()()1

2
2 2

,

2

var var
2 if i i fv X X
λ
λ −

= −
−

 (2.2.12)

which means that Equation (2.2.10) provides a computationally efficient, unbiased

estimate of ()
1

2

ii fX X
−

− .

Then the estimate of the noise variance from this first approach will be:

2 21
1, ,

2

2
i f is v

λ−
= (2.2.13)

Actually since Equation (2.2.10) requires
1if

X
−

 one would compute Equation (2.2.10)

before Equation (2.2.2) to eliminate the need to store the previous ‘average’.

Using this method, 2

1,is will be increased from it’s steady-state value by a recent shift in

the mean. Such a measure could be used to trigger the not-at-steady-state condition.

However the threshold is dependent on both the measurements and the unknown process

noise variance.

The second method to estimate variance will use the mean squared differences of

successive data. Define:

 26

()()22

1i iE X Xδ −= − (2.2.14)

and 2δ could be estimated by:

() ()2

2, 1

1

2
i i iE s E X X −= − (2.2.15)

However, Equation (2.2.15) is computationally expensive; so, use a filtered approach:

() ()22 2

, 3 1 3 , 11f i i i f iX Xδ λ λ δ− −= − + − (2.2.16)

Again, Equation (2.2.16) gives an unbiased estimate of 2δ .

When there is no autocorrelation in {x} the second estimate of the noise variance would

be:

2

,2

2,
2

f i

is
δ

= (2.2.17)

Taking the ratio of the two estimates of variance as determined by Equation (2.2.10) to

Equation (2.2.14):

() 22

1 ,1,

2 2

2, ,

2
f ii

i

i f i

vs
R

s

λ

δ

−
= = (2.2.18)

To summarize, use Equation (2.2.10) to calculate 2

,f iv , then use Equation (2.2.2) to

calculate ,f iX , then use Equation (2.2.16) to calculate 2

,f iδ , and then use Equation (2.2.18)

to calculate Ri. Each are direct, no logic, low storage, low operation calculations. In

practice, it would be preferable to compare 2

,f i critRδ (Rcrit is the threshold value of R) to

() 2

1 ,2 f ivλ− to prevent the possibility of a divide by zero in Equation (2.2.18). For each

 27

observed variable, the method requires the direct and simple calculation of three filtered

values. In total, there are three variables to be stored, 10 multiplications, eight additions,

and one comparison per observed variable.

There are three possible process behaviors which affect the value of R:

1. If the process data is at steady-state (process mean is constant, additive noise is

independent and identically distributed), the value of R will be near 1.

2. If the process data mean shifts, or if the noise is autocorrelated, then R will be

greater than 1. When there is a shift on mean, both the calculations of the mean

will be influenced temporarily. The first calculation will increase more and persist

longer, so R will be greater than 1 for a period of time, and that is the way that the

not-at-steady-state condition can be identified.

3. If the sequentially sampled variable values alternate between high and low

extremes, then R will be less then 1. This doesn’t apply to optimization

applications and is not considered in our study.

The actual value of R, when implemented, is in effect a ratio of two noisy variables,and

thus inherently has a good degree of noise associated with it. This can lead to the value of

R being a normal distribution, and thus a threshold of R = 1 might not necessarily mean

that the actual value of R is 1. to account for his sort of discrepancy, it is advisable to use

a threshold value of 0.85, to ensure that the actual value of R is as close to 1.

 28

CHAPTER III

METHODOLOGY

3.1. Optimization routines:

3.1.1. Direct methods:

Direct Methods are those which require only objective values, not derivative knowledge,

to proceed. It is assumed that f(x) is continuous and ▼f(x) may or may not exist but

certainly is not available. These methods can be broadly classified into heuristic

techniques and theoretical techniques. The former refer to search methods constructed

from geometric intuition for which no performance guarantees other than empirical

results can be stated. The following two heuristic methods are used in the present study:

1. R. Russell Rhinehart’s heuristic optimizer

2. Hooke-Jeeves Pattern Search Method

R. Russell Rhinehart’s Heuristic Method

The method resembles a Cyclic Search but incorporates a set of factors which cause the

subsequent steps in a particular direction to expand or contract depending on the success

of the step.

 29

The algorithm is described below:

Step 1. Define:

 The starting point x
(0)

 The increments ∆
(k)

 for k = 1,2,3,…, N

 The Expansion factor (Expand_factor) and

The Contraction factor (Contract_factor)

Step 2: x
(k+1)

 = x
(k)

 + ∆
(k)

Step 3: Was a lower point found?

 Yes: x
(k)

 = x
(k+1)

.

 ∆
(k+1)

= ∆
(k)

 * Expand_factor

 No: x
(k+1)

 = x
(k)

.

 ∆
(k+1)

= ∆
(k)

 * Contract_factor

Step 4: Check for termination

 Is the termination criteria satisfied?

 Yes: Stop; current point approximates x
*
.

No: Go to 2.

Hooke Jeeves Pattern Search

This algorithm was one of the first to incorporate the previous history of a sequence of

iterations into the generation of a new search direction. It is basically a combination of a

“exploratory moves” of the one-variable-at-a-time kind with “pattern” or acceleration

moves regulated by a set of heuristics.

 30

The algorithm is described below:

Step 1. Define:

 The starting point x
(0)

 The increments ∆k for k = 1,2,3,…, N

 The step reduction factor α > 1

Step 2. Perform Exploratory Search

Step 3. Was exploratory search successful (i.e. was a lower point found)?

 Yes: Go to 5.

 No: Continue.

Step 4. Check for termination

 Is the termination criteria satisfied?

 Yes: Stop; the current point approximates x
*
.

 No: Reduce the increments:

 k=1,2,3,…, N

 Goto 2.

Step 5. Perform the pattern move:

 xp
(k+1)

 = x
(k)

 + (x
(k)

 – x
(k-1)

)

Step 6. Perform exploratory search using xp
(k+1)

 as the base point; let the result be x
(k+1)

Step 7. if f(x
(k+1)

) < f(x
(k)

)

 Yes: set x
(k-1)=

 x
(k)

 ; x
(k)

=x
(k+1)

.

 Go to 5.

 No: Go to 4.

 31

3.1.2. Gradient based methods:

The inherent problem in the direct methods is the excessive number of function

evaluation required to locate the solution. This combined with the inherent desire to find

stationary points motivates us to consider methods that employ gradient information to

determine the search direction. The present study uses a Quasi-Newton search algorithm,

namely, the Broyden-Fletcher-Goldfarb-Shanno (BFGS) Method, which exclusively uses

first derivative information.

The algorithm is described below:

Step 1. Define:

 The starting point x
(0)

 The increments ∆k for k = 1,2,3,…, N

 The step reduction factor α > 1

 Set search direction, s
(0)

 = -▼f(x
(0)

)

 Hessian approximation, A
(0)

= I

Step 2: Perform a Line Search in the search direction (s
k
) to determine x

k+1

Step 3: Compute f(x
(k+1)

) and ▼f(x
(k+1)

)

Step 4: Check for termination

 True: Report results and Stop.

 False: Continue to step 5.

Step 5: Compute ∆x
k
 = x

k+1
 - x

k

 ∆g

k
 = ▼f(x

(k+1)
) - ▼f(x

(k)
)

 32

Step 6: Compute A
k+1

 based on the following update formula:

() ()

() ()
()

() ()

() ()

() ()

() ()kTk

Tkk
T

kTk

Tkk
k

kTk

Tkk
k

gx

xx

gx

gx

gx

gx

∆∆
∆∆

+








∆∆
∆∆

−








∆∆
∆∆

−=+
IAIA

1

Step 7: compute the search direction using s
(k+1)

 = - A
(k+1)

▼f(x
(k+1)

)

 Repeat from step 2 onwards.

3.2. Simulation:

Since the objective of the study is to model nonlinear systems we need data sets to test

our algorithm. The initial testing during the construction and debugging of the algorithm,

was done on sets of contrived data, and the subsequent testing to observe the practical use

of the algorithm was done on actual experimental data.

3.2.1. Contrived Data:

 The contrived data used in the study were representations of nonlinear systems

with a sufficient degree of noise incorporated in them. Considering a nonlinear system

involving only two variables, the initial set of contrived data used in the study, only

incorporated noise in the dependent variable. The further testing of the algorithm was

done on a different set of data with noise incorporated in both the dependent and the

independent variables, which would give us a better approximation of a real world

process with measurement uncertainties. In both cases the data is scaled between 0 and 1

before it is implemented in the modeling procedure.

 33

The following models were used in the modeling of the above described data:

1. Third degree Polynomial: It is the simplest way to represent a nonlinear system. Here,

we have “y” as a nonlinear function of “x,” but the power on each coefficient is unity, i.e.

the model is linear in the parameters of optimization, and consequently, the regression

modeling is trivial.

It can be represented as:

 y = A + B x + C x
2
 + D x

3
 (3.1)

2. Neural Network. With the progression of order in the polynomial equation, we would

find that the results are more accurate. The next step is to use a Neural Network. In this

study, a two layered, bipolar sigmoidal neural network is used with two neurons in each

layer. Larger neural networks are not used because it increases the computation time

required by the computer for the evaluation of the weights.

3.2.2. Experimental Data:

Two-phase flow is the simultaneous flow of both gas and liquid phase fluids through a

pipe or tube. There are five mail flow regimes associated with two-phase flow through

pipes: bubble, slug, churn, annular, and mist. These flow regimes are characterized by the

composition and flow characteristics of the fluid mixture. The present system under

consideration is defined by the presence of air in a column of water.

 34

The apparatus used consists of a vertical pipe for the air/water mixture, a control

computer, pressure transducers, orifice meters, paired with control valves, piping,

pressure gauges and rotameters for air flow and water flow respectively. The user can

monitor and control the flow rates using the CAMILE control system. The flow rates of

air and water are set using the control valves. Real time flow rates are monitored through

the orifice meters.

The modeling objective in this experiment is to model the pressure drop of the system

based on a set of predetermined modeling equations. The optimizer routine is used to

determine the coefficients in the model.

It has to be noted that both models work only when the data provided is in one single

regime, because the parameters being optimized have different values based on the

different flow regimes.

Lockhart-Martinelli Correlation

The Bernoulli equation states that the mechanical energy of a fluid is constant between

two points along a streamline. The pressure drop per unit length for a two-phase system

between two points takes the form:

g
L

P

L

P
TP

TP

f ⋅+






 ∆
=







 ∆− ρ (3.2)

TP

f

L

P








 ∆
=frictional pressure drop for two-phase flow

 35

gTP ⋅ρ =hydrostatic pressure drop

The frictional pressure drop term can be evaluated by using either of the following

equations:

()

()
l

f

l

TP

f

g

f

g

TP

f

L

P

L

P

L

P

L

P








 ∆
⋅=







 ∆








 ∆
⋅=







 ∆

2

2

φ

φ

 (3.3)

Where,

g

f

L

P








 ∆
 and

l

f

L

P








 ∆
are the single phase frictional pressure drops for the gas and

liquid phased calculated at their individual fluxes. They are calculated from the following

equations

D

xmf

L

P

D

xmf

L

P

l

ll

l

f

g

gg

g

f

⋅

⋅⋅⋅
=







 ∆

⋅

⋅⋅⋅
=







 ∆

ρ

ρ

22

22

2

2

 (3.4)

The ()φ terms are frictional multipliers that can be obtained from the Lockhart-Martinelli

correlation, using the Martinelli multiplier which is defined as:

g

lX








 ∆








 ∆

=

L

P

L

P

f

f

2 (3.5)

Which is then used in the following equations to yield gφ and lφ

 36

()

()
2

2

22

1
1

1

XX

C

XXC

g

g

++=

+⋅+=

φ

φ
 (3.6)

“C” is a constant that can be found in the literature, and it can be optimized.

3.3. Application of the optimizer:

The previous pages describes the various algorithms and the models used in the study.

The application of this information is done using the following basic algorithm, which is

modified depending on the optimizer and the model used.

Step 1. Determine the number of data points to be used.

Step 2. Inputs:

 Dependent variables: coefficients of the model selected:

 Percentage of Confidence (fraction between 0 and1)

 Best Fraction of the data set required (fraction between 0 and 1)

 Percentage of the dataset to be used in the Steady State Stopping Criterion.

Step 3. Use the percentage of confidence and the best fraction, calculate the number of

 trials required (Num_Trials).

Step 4. Use the selected optimization routine to calculate the minima based on a random

 starting point. The stopping criteria used in the routines are:

1. Maximum number of iterations.

2. Steady State Stopping Criterion

Step 5. Repeat Step 4 for Num_Trials (the calculated number of trials) and store the

 37

results of each trial, i.e. the Sum of Square Deviation and the values of the

coefficients.

Step 6. Find the lowest Sum of Square Deviation (SSD) from Step 5.

Step 7. The coefficients corresponding to the lowest SSD will yield the global minima of

 the given objective, and thus the closest model fitting the data.

The function evaluations used in the optimization routine in Step 4, are a series of

calculations which are used to determine the Sum of Square Deviation between the actual

data and the points generated by the model based on the coefficients of that particular

step. In the case of the Indirect method, the derivatives for the same are calculated based

on a numerical forward difference approach, with an error order of one. Higher error

orders and central difference approaches are avoided because of the increased number of

calculations they require, and, thus increasing the time required for the computation.

 38

3.4. Testing Best-of-N equation for best number of trials:

The Best-of-N formula is based on a pre-defined confidence level, and the best fraction

of all the possible answers. The best way to test the validity of the formula is by letting

the optimizer run for a very large number (perhaps 100,000) of runs. The following

algorithm is then employed to determine the validity of the formula used:

Step 1. Use the Best-of-N formula to calculate the number of required runs.

Step 2. Use the data set of (say) 10,000 runs, calculate the value of the sum of square

 deviations that will correspond to the best fraction used in step 1.

Step 3. Select the calculated number of runs randomly from the data set.

Step 4. If at least one run yields answers less than or equal to the value calculated in step

 2, the step is a success. If not, the step is a failure.

Step 5. Repeat steps 3 and 4, 1,000 times and count the number of successes in step 4.

Step 6. If the percentage of successes (calculated from step 5) is similar to the percentage

of confidence used in the neural network formula (Step 1) then the validity of the

formula cannot be rejected.

It has to be noted that the result obtained in Step 6 will not be exactly equal to the

percentage of confidence used in the original formula. This can be attributed to the

 39

amount of data acquired and the consequent changes in the standard deviation which is

calculated based on the number of sets being considered.

3.5. Testing the Steady State Stopping Criterion:

The Steady State Stopping Criterion can be evaluated by plotting the sum of the square

deviations with the filtered values against the number of trials. To test the criteria, the

optimizer is run without the stopping criteria, and the parameters mentioned above, are

plotted. The plots have to be observed to determine the accuracy of the predicted result

and the optimum generated if the optimizer were to run based on a maximum number of

iterations. If the results generated in both cases are the same, the Steady State Stopping

Criterion can be validated.

 40

CHAPTER IV

RESULTS AND DISCUSSION

The results obtained from both contrived data and experimental data are discussed below.

Both contrived data sets were based on nonlinear models, and a series of nonlinear

models were used to model them. The experimental data was based on Venkatram

Padmanabhan’s thesis results [2], as well as independently generated data for pressure

drop in a two-phase flow apparatus.

4.1. Results from simulated data

Two sets of contrived data were used in this study. Both sets were based on nonlinear

models of varying complexity. In order to make the data representative of actual

experimental data, noise was added to it using normally distributed random numbers with

a set variance. In the first set of data (designated in future as Set A), the noise was

incorporated only on the dependent variable. This can be mathematically described by:

()ˆ
noiseY Y X Y= + (4.1)

In real experimental data, the inaccuracies caused by measuring devices create

uncertainty in the value of the independent variables too. To represent this, a second set

 41

of data (designated as Set B), has noise incorporated in both the dependent variable and

in the independent variable. This can be mathematically represented by:

()ˆ
noise noiseY Y X X Y= + + (4.2)

The data is fed to the optimizer and the resulting set of terminal values are used to check

if the predicted curve fits the data or not. The goodness of the fit is checked based on the

Sum of the Squared Deviations (SSD) and the average of the squared deviations between

the model values and the actual values. The Steady State Stopping Criterion is checked

for each situation against an optimization trial with an excessive number of iterations (in

this case, 200 iterations). To simplify the presentation of the plots, a subsystem of case

designations is used which is described in detail in Appendix D.

The Weakest-Link-in-the-Chain analysis is validated against each optimization routine

for a polynomial function (nonlinear in the dependent variable, but linear in the

coefficients) and against a neural network (nonlinear in both response and coefficients).

The results of this analysis are reported later on in this chapter.

Optimization of models based on Set A:

In Set A we are considering the data for the dependent variable ‘y’ to be noisy. This is

generated by the Rand() function in MS EXCEL. The random numbers are Gaussian

distributed and ranges from -0.5 to 0.5.

 42

4.1.1 Model used: Third degree polynomial equation

 2 3y a bx cx dx= + + + (4.3)

In terms of the optimization, the parameters ‘a’ to‘d’ are the decision variables that need

to be determined by the optimizer. The optimization algorithms are written in Visual

Basic for Applications (VBA), and the data is displayed on MS EXCEL.

For the purposes of our study, we also run the optimizer for one trial using the Steady

State Stopping Criterion, and then run the optimizer for the same initial guess without the

Steady State Criteria. The limit of 200 iterations in each of the algorithms is used to

terminate the search. The number 200 is used because it is about 4 to5 times the average

number of iterations executed before the trial is terminated by the stopping criteria. The

purpose of this endeavor is to determine the effectiveness of the stopping criterion in

getting to the required minima for the trial.

In each case, the Weakest-Link-in-the-Chain analysis is used to determine the best

number of trials that would give us the best 10% of the solutions with a confidence of

90%. On substituting the numbers in Equation 2.1.2, gives a result of 21.85434 runs. This

number is rounded to 22 runs. It is also noted that the slightly higher number of runs

would give us slightly better performance. The optimizer is run based on this number of

required trials, and then the best answer from the set of 22 is selected and reported as the

 43

global optimum for the given data. The threshold on Rstatistic in the Steady State Stopping

Criterion is kept at 0.85 as per the discussion presented in Chapter II.

In order to test the accuracy of the above mentioned formula, a separate series of

excessive trial runs are executed. Then the formula is used to pick a certain number of

trials, which are then used to determine if the required best fraction of the results is

reported with the required confidence. This series of tests is reported later on in the

chapter.

Case 4.1.1.1 Optimization algorithm used: RRR’s optimizer

The initial values of the four parameters in Equation (4.3) are randomly selected with

each trial using the “rnd” function in Visual Basic for Applications, and the optimization

was run for the required number of trials. The solution reported by the optimizer is given

in Table 4.1 along with the SSD to give the reader an idea of the goodness of the fit.

Table 4.1: Final Optimization results for Case 4.1.1.1

Parameter a b c d SSD

Value 0.414552 0.695335 -0.77846 0.282316 3.354435

The procedure is repeated for a single trial with the Steady State Stopping Criterion, and

the same initial guess of 2 for each parameter is used to run the trial again without the

 44

stopping criteria. The value of 2 has no special significance. The only thing that matters

is that both the runs described start from the same point. The plot of the RMS error versus

the filtered value of the error for both cases are displayed below.

Fig 4.1a RMS Error vs Filtered Error (Case A1)

0

0.5

1

1.5

2

2.5

3

0 5 10 15 20 25 30 35

Iteration

R
M

S
 E

rr
o

r
a
n

d
 F

il
te

re
d

 E
rr

o
r

F
il

te
re

d
n

a
d

Filtered SSD

RMS of SSD

 45

Fig 4.1b RMS Error vs Filtered Error (Case A2)

0

0.5

1

1.5

2

2.5

3

0 50 100 150 200

Iteration

R
M

S
 E

rr
o

r
a
n

d
 F

il
te

re
d

 E
rr

o
r

F
il

te
re

d
n

a
d

Filtered SSD

RMS of SSD

the final results of the two runs are shown below.

Table 4.2: Parameter values for Case (4.1.1)

Parameters
with Excessive

iterations
Steady State

Stopping Criterion

a 0.4144652 0.416332531

b 0.70228147 0.671817207

c -0.778293 -0.776080926

d 0.26847124 0.335439205

SSD 3.35395357 3.364525408

From this we observe that there is a 0.314% improvement in the SSD when the Steady

State Stopping Criterion is not used. It is also observed that the Stopping criteria

terminated the trial at 32 iterations.

 46

Case 4.1.1.2 Optimizer used: Hooke-Jeeves algorithm

The “rnd” function is used again to generate random starting guesses for the optimizer.

The optimizer is run for the calculated number of trials and the best answer is reported.

Table 4.3: Final Optimization results for Case (4.1.1.2)

Parameter a b c d SSD

Value 0.415 0.702 -0.778 0.268 3.353952

Again, a single trial is executed using an initial guess of 1 for each parameter and the

results are compared with a similar trial with the same initial guess, but without the

Steady State Stopping Criterion.

Fig 4.2a RMS Error vs Filtered Error (Case B1)

0

1

2

3

4

5

6

0 5 10 15 20 25 30 35 40

Iteration

R
M

S
 E

rr
o

r
a
n

d
 F

il
te

re
d

 E
rr

o
r

F
il

te
re

d
n

a
d

Filtered SSD

RMS of SSD

 47

Fig 4.2b RMS Error vs Filtered Error (Case B2)

0

1

2

3

4

5

6

0 50 100 150 200

Iteration

R
M

S
 E

rr
o

r
a
n

d
 F

il
te

re
d

 E
rr

o
r

F
il

te
re

d
n

a
d

Filtered SSD

RMS of SSD

The final results are shown below.

From the results, it is observed that there is a 0.0005% difference between the SSD

values, and the Steady State Stopping Criterion terminated the search in the thirty sixth

iteration.

Table 4.4: Parameter values for Case 4.1.1.2

Parameters
with Excessive

iterations
Steady State

Stopping Criterion

A 0.41456223 0.41484375

B 0.70234375 0.703125

C -0.7784996 -0.77890625

D 0.26844101 0.26640625

SSD 3.35395247 3.353969601

Another point is noted in the case of the Hooke Jeeves algorithm. There were cases where

the steady state criteria was observed to have taken more time to terminate a trial

compared to conventional criteria based on threshold values of the error. The stopping

 48

criterion was also observed to terminate the trials before other threshold based stopping

criteria. On an observation of 22 trials, the other conventional stopping criteria terminated

five trails, and the rest were terminated by the steady state stopping criterion.

Case 4.1.1.3 Optimizer used: Broydon-Fletcher-Goldfarb-Shanno (BFGS) algorithm

The same procedure as before is repeated, where the parameters are randomly selected

before each trial and the best result is reported as the global minima.

Table 4.5: Final Optimization results for Case (4.1.1.3)

Parameter a b c d SSD

Value 0.414514 0.702425 -0.77839 0.268191 3.353952533

The Steady State Stopping Criterion is evaluated by running a trail with starting values of

2 for each parameter and then running the same trial without the criteria. The results are

displayed below:

 49

Fig 4.3a RMS Error vs Filtered Error (Case C1)

0

0.5

1

1.5

2

2.5

0 5 10 15 20 25

Iteration

R
M

S
 E

rr
o

r
a
n

d
 F

il
te

re
d

 E
rr

o
r

F
il

te
re

d
n

a
d

Filtered SSD

RMS of SSD

Fig 4.3b RMS Error vs Filtered Error (Case C2)

0

0.5

1

1.5

2

2.5

0 50 100 150 200

Iteration

R
M

S
 E

rr
o

r
a
n

d
 F

il
te

re
d

 E
rr

o
r

F
il

te
re

d
n

a
d

Filtered SSD

RMS of SSD

 50

Table 4.6: Parameter values for Case (4.1.1.3)

Parameters
with Excessive

iterations
Steady State

Stopping Criterion

A 0.41446524 0.41443425

B 0.70228159 0.702190102

C -0.7782931 -0.778233507

D 0.26847101 0.268648939

SSD 3.35395357 3.353954236

It is observed that there is almost no difference between the SSD value reported in the

two cases, and the stopping criteria terminated the trial at 28 iterations, which for the case

of the BFGS optimizer is very advantageous if we consider the computation time

required.

4.1.2 Model used: neural network

A bipolar sigmoidal neural network is used to model the process. The neural network is

nonlinear in terms of the parameters and in terms of the variables.

Case 4.1.2.1 Optimizer used: RRR’s Optimizer

The seven parameters of the neural network are randomly selected using the “rnd”

function in VBA at the start of each new trial. The optimizer is run for the calculated

number of trials and the best solution is reported. The SSD is also reported since it gives

an idea of how close the neural network is to modeling the actual process.

 51

Table 4.7: Final Optimization results for Case (4.1.2.1)

Bias b-hidden x-hidden hidden-out SSD

-1.669559 2.894438 -9.75150 -0.2449644 2.684418

 -0.3494423 2.06260 0.51463575

The Steady State Stopping Criterion is then tested by running one trial of the optimizer

and comparing the results using the same initial guess and making the optimizer run for a

large number of iterations (in this case 200).

Fig 4.4a RMS Error vs Filtered Error (Case D1)

0

0.5

1

1.5

2

2.5

3

3.5

4

0 10 20 30 40 50 60 70 80 90

Iterations

R
M

S
 E

rr
o

r
&

 F
il

te
rd

 E
rr

o
r

RMS Error

Filtered Error

 52

Fig 4.4b RMS Error vs Filtered Error (Case D2)

0

0.5

1

1.5

2

2.5

3

3.5

4

0 50 100 150 200

Iterations

R
M

S
 E

rr
o

r
&

 F
il

te
rd

 E
rr

o
r

RMS Error

Filtered Error

It is observed that the excessive iterations leads to an improvement of 0.02% from the

solution presented by the Steady State Stopping Criterion, and the latter terminated the

trial at 30 iterations which indicates that a lot of computation time is saved by the

stopping criteria.

 53

Table 4.8: Parameter values for Case (4.1.2.1)

Parameters
with Excessve

iterations
Steady State

Stopping Criterion

Bias 0.936509028 0.939408105

2.513650257 2.513650257
b-hidden

0.058786107 0.058786107

4.762602597 4.765501674
x-hidden

1.388032997 1.388032997

0.486840389 0.486983553
hidden-out

0.354746384 0.354889548

SSD 2.575424037 2.574843348

Case 4.1.2.2 Optimizer used: Hooke Jeeves algorithm

As before, the initial values of the seven parameters are randomly selected before each

trial and the optimizer is run for the requisite number of trials before the best answer is

selected to be reported as the global minima.

Table 4.9: Final Optimization results for Case (4.1.2.2)

Bias b-hidden x-hidden hidden-out SSD

1.225656 1.551861 3.634135 0.654645 2.59205

 -0.24638 0.837713 0.411149

The Steady State Stopping Criterion is then tested by executing one trial of the optimizer

with the stopping criteria and repeating the trial with the same initial values, but tiheout

the stopping criteria and letting the optimizer run for the whole 200 iteration limit.

 54

Fig 4.5a RMS Error vs Filtered Error (Case E1)

0

1

2

3

4

5

6

0 5 10 15 20 25 30 35

Iterations

R
M

S
 E

rr
o

r
&

 F
il

te
rd

 E
rr

o
r

RMS Error

Filtered Error

Fig 4.5b RMS Error vs Filtered Error (Case E2)

0

1

2

3

4

5

6

0 50 100 150 200

Iterations

R
M

S
 E

rr
o

r
&

 F
il

te
rd

 E
rr

o
r

RMS Error

Filtered Error

 55

Table 4.10: Parameter values for Case (4.1.2.2)

Parameters
with Excessive

iterations
Steady State

Stopping Criterion

Bias 0.772053957 1.033696079

-6.109157372 -0.481925535
b-hidden

2.412784433 -0.2510396

-4.607173777 -2.191750145
x-hidden

1.679784012 -4.218929434

3.590732861 -1.392207956
hidden-out

4.326978636 0.542894363

SSD 2.70101234 3.04521071

It is observed that there is a 12% improvement in the solution in this case. It can be

attributed to the occurrence of Type-II errors.

Case 4.1.2.3 Optimizer used: BFGS algorithm

As has been done before, the initial values are selected at the start of each new trial using

the “rnd” function in VBA. The number of trials is determined based on the best fraction

and confidence desired by the user and the best result among the trials is reported as the

final answer to the requirement.

Table 4.11: Final Optimization results for Case (4.1.2.3)

Bias b-hidden x-hidden hidden-out SSD

-1.181747 39.73161 70.82894 0.1546973 2.463505

 -1.237346 3.087534 0.7797951

 56

The stopping criteria is then tested by making one trial without using the Steady State

Stopping Criterion and another trial using the same initial guess values and using the

stopping criteria to terminate the run when steady state is attained.

Fig 4.6a RMS Error vs Filtered Error (Case F1)

0

0.5

1

1.5

2

2.5

3

0 5 10 15 20 25 30 35

Iterations

R
M

S
 E

rr
o

r
&

 F
il

te
rd

 E
rr

o
r

RMS Error

Filtered Error

 57

Fig 4.6b RMS Error vs Filtered Error (Case F2)

0

0.5

1

1.5

2

2.5

3

0 50 100 150 200

Iterations

R
M

S
 E

rr
o

r
&

 F
il

te
rd

 E
rr

o
r

RMS Error

Filtered Error

Table 4.12: Parameter values for Case (4.1.2.3)

Parameters
with Excessve

iterations
Steady State

Stopping Criterion

Bias -1.976906984 0.32308939

-1.53899143 -4.161999479
b-hidden

0.071812319 -6.689022244

6.132983145 -2.037950908
x-hidden

-1.353032068 1.647607143

0.430599932 -1.216941135
hidden-out

-0.422728368 0.566541194

SSD 2.544638865 2.744895701

It is observed that there is a 7% improvement in the SSD and this can be attributed to

Type-II errors.

 58

Another factor that was observed in the BFGS algorithm was that there was a large

amount of computation time involved in most trials. This is because each iteration

involves derivative calculations, which in the case of empirical modeling means the

calculation of the SSD between the experimental data and the model values based on

each change in a parameter. This also indicated that it might be inconvenient to use

indirect optimization methods. Also, since numerical differentiation techniques are being

used, it wouldn’t be prudent to use a higher degree differentiation technique since it

would significantly increase the computation time involved.

Optimization of Different models based on Set B:

In Set B, we have errors associated with both the dependent and independent variables. It

is a more realistic representation of a process since we have measurement disturbances to

take into account too. As in the case of Set A, we set the same parameters for the

Weakest-Link-in-the-Chain formula, i.e. a 90% confidence that one of the best 10% of

the answers will be reported each time. In this series, the threshold value of the Rstatistic in

the Steady State Stopping Criterion is kept at 1. The intention is to see if there are any

problems that might arise which might not have been noticed in Set A.

 59

4.1.3 Model used: Third degree polynomial equation

Case 4.1.3.1 Optimization algorithm used: RRR’s optimizer

The initial values of the four parameters in Equation (4.3) are randomly selected with

each trial using the “rnd” function in Visual Basic for Applications, and the optimization

was run for the required number of trials. The solution reported by the optimizer is given

in Table 4.13 along with the SSD to give the reader an idea of the goodness of the fit.

Table 4.13: Final Optimization results for Case (4.1.3.1)

Parameter a b C D SSD

Value 0.264408 0.3377009 -2.206826 -0.3796403 1.8214876

The procedure is repeated for a single trial with the Steady State Stopping Criterion, and

the same initial guess of 2 for each parameter is used to run the trial again without the

stopping criteria. Again the value of 2 has no special significance.

 60

Fig 4.7a RMS Error vs Filtered Error (Case G1)

0

0.5

1

1.5

2

2.5

3

3.5

4

0 10 20 30 40 50 60

Iterations

R
M

S
 E

rr
o

r
v
s
 F

il
te

re
d

 E
rr

o
r

RMS Error

Filtered Error

Fig 4.7b RMS Error vs Filtered Error (Case G2)

0

0.5

1

1.5

2

2.5

3

3.5

4

0 50 100 150 200

Iterations

R
M

S
 E

rr
o

r
v
s
 F

il
te

re
d

 E
rr

o
r

RMS Error

Filtered Error

The final results of the two runs are shown below.

 61

Table 4.14: Parameter values for Case (4.1.3.1)

Parameters
with Excessive

iterations
Steady State

Stopping Criterion

a 0.26405963 0.2649534

b 0.34507112 0.319404045

c -2.205113 -2.211893244

d -0.3938873 -0.332135875

SSD 1.82145175 1.821900973

From this we observe that there is a 0.0001% improvement in the SSD when we don’t

use the Steady State Stopping Criterion. It is also observed that the Stopping criteria

terminated the trial at 57 iterations.

Case 4.1.3.2 Optimizer used: Hooke-Jeeves’ algorithm

The “rnd” function is used again to generate random starting guesses for the optimizer.

The optimizer is run for the calculated number of trials and the best answer is reported.

Table 4.15: Final Optimization results for Case (4.1.3.2)

Parameter a b c d SSD

Value 0.26407 0.3452001 -2.20517 -0.394158 1.8214517

Again, a single trial is executed using an initial guess of 1 for each parameter and the

results are compared with a similar trial with the same initial guess, but without the

Steady State Stopping Criterion.

 62

Fig 4.8a RMS Error vs Filtered Error (Case H1)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 10 20 30 40 50 60

Iterations

R
M

S
 E

rr
o

r
v
s
 F

il
te

re
d

 E
rr

o
r

RMSError

Filtered Error

Fig 4.8b RMS Error vs Filtered Error (Case H2)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 50 100 150 200

Iterations

R
M

S
 E

rr
o

r
v
s
 F

il
te

re
d

 E
rr

o
r

RMSError

Filtered Error

The final results are shown below.

 63

Table 4.16: parameter values for Case (4.1.3.2)

Parameters
with Excessive

iterations
Steady State

Stopping Criterion

A 0.26406336 0.264088535

B 0.34533124 0.345412111

C -2.2051062 -2.205220604

D -0.3945288 -0.394643259

SSD 1.82145177 1.821451806

From the results, it is observed that there is a 0.00005% difference between the SSD

values, and the Steady State Stopping Criterion terminated the search in the fifty second

iteration.

The point noted in the case of the Hooke Jeeves’ algorithm execution in Set A is noted

again in this case. There were cases where the initial guess was inappropriate, and the

final SSD reported at the end of the 100 iteration limit was worse than the genera minima

reported.

case 4.1.3.3 Optimizer used: Broydon-Fletcher-Goldfarb-Shanno (BFGS) algorithm

The same procedure as before is repeated, where the parameters are randomly selected

before each trial and the best result is reported as the global minima.

Table 4.17: Final Optimization results for Case (4.1.3.3)

Parameter a b c d SSD

Value -3.203664 0.4466594 10.568484 -4.1892569 1.8214517

 64

The Steady State Stopping Criterion is evaluated by running a trail with starting values of

2 for each parameter and then running the same trial without the criteria. The results are

displayed below:

Fig 4.9a RMS Error vs Filtered Error (Case I1)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 5 10 15 20 25 30

Iterations

R
M

S
 E

rr
o

r
v
s
 F

il
te

re
d

 E
rr

o
r

RMSError

Filtered Error

 65

Fig 4.9b RMS Error vs Filtered Error (Case I2)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 50 100 150 200

Iterations

R
M

S
 E

rr
o

r
v
s
 F

il
te

re
d

 E
rr

o
r

RMSError

Filtered Error

Table 4.18: parameter values for Case (4.1.3.3)

Parameters
with Excessive

iterations
Steady State

Stopping Criterion

A 0.26396833 0.263968352

B 0.34498261 0.344982613

C -2.2049263 -2.204926401

D -0.3937965 -0.393796516

SSD 1.82145183 1.821451823

It is observed that there is almost no difference between the SSD value reported in the

two cases, and the stopping criteria terminated the trial at 25 iterations, which for the case

of the BFGS optimizer is very advantageous if we consider the computation time

required.

 66

4.1.4 Model used: neural network

Case 4.1.4.1 Optimizer used: RRR’s Optimizer

The seven parameters of the neural network are randomly selected using the “rnd”

function in VBA at the start of each new trial. The optimizer is run for the calculated

number of trials and the best solution is reported. The SSD is also reported since it gives

us an idea of how close the neural network is to modeling the actual process.

Table 4.19: Final Optimization results for Case (4.1.4.1)

Bias b-hidden x-hidden hidden-out SSD

0.66989 -2.33702 -5.70278 -1.6659 0.835982

 -0.55894 -1.15353 2.7867

The Steady State Stopping Criterion is then tested by running one trial of the optimizer

and comparing the results using the same initial guess and making the optimizer run for a

large number of iterations (in this case 200).

 67

Fig 4.10a RMS Error vs Filtered Error (Case J1)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 10 20 30 40 50 60 70

Iterations

R
M

S
 E

rr
o

r
&

 F
il

te
re

d
 E

rr
o

r

Filtered Error

RMS Error

Fig 4.10b RMS Error vs Filtered Error (Case J2)

0

0.5

1

1.5

2

2.5

0 50 100 150 200

Iterations

R
M

S
 E

rr
o

r
&

 F
il

te
re

d
 E

rr
o

r

Filtered Error

RMS Error

 68

Table 4.20: Parameter values for Case (4.1.4.1)

Parameters
with Excessve

iterations
Steady State

Stopping Criterion

Bias 0.42395801 0.579606397

3.54516021 2.881790712
b-hidden

-0.6572138 0.702295161

5.54636768 6.077587936
x-hidden

-0.8814934 1.239091187

1.80828615 1.710634785
hidden-out

3.61551556 -2.678422714

SSD 0.59914322 0.869499883

It is observed that the excessive iterations leads to an significant improvement from the

solution presented by the Steady State Stopping Criterion. From Figures 4.10a and 4.10b,

we note that the steady state identifier doesn’t really track the gradual decrease in the

errors. This is a typical example of the Type II error, where the null hypethesis is

accepted even if it’s not true, i.e. the data window being observed by the identifier leads

the latter to infer the attainment of steady state even if it has not been attained. One way

to reduce Type-II error would be to sample more data for the purposes of steady state

identification. Another factor coming into play is the threshold on the value of Rstatictic

which identifies steady state. The value of 1 might be replaced by a lower value (say

0.85).

 69

Case 4.1.4.2 Optimizer used: Hooke Jeeves algorithm

As before, the initial values of the 7 parameters are randomly selected before each trial

and the optimizer is run for the requisite number of trials before the best answer is

selected to be reported as the global minima.

Table 4.21: Final Optimization for Case (4.1.4.2)

Bias b-hidden x-hidden hidden-out SSD

0.61757 2.08481 -3.734539 3.38889 0.4359

 -0.69004 1.172703 5.41916

The Steady State Stopping Criterion is then tested by executing one trial of the optimizer

with the stopping criteria and repeating the trial with the same initial values, but tiheout

the stopping criteria and letting the optimizer run for the whole 200 iteration limit.

Fig 4.11a RMS Error vs Filtered Error (Case K1)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 10 20 30 40 50 60

Iterations

R
M

S
 E

rr
o

r
v
s
 F

il
te

re
d

 E
rr

o
r

RMS Error

Filtered Error

 70

Fig 4.11b RMS Error vs Filtered Error (Case K2)

0

0.2

0.4

0.6

0.8

1

1.2

0 50 100 150 200

Iterations

R
M

S
 E

rr
o

r
v
s
 F

il
te

re
d

 E
rr

o
r

Filtered Error

RMS Error

Table 4.22: Parameter values for Case (4.1.4.2)

Parameters
with Excessve

iterations
Steady State

Stopping Criterion

Bias 0.53955545 -0.425464964

0.57256665 -2.420506859
b-hidden

2.32747602 1.066876841

-0.8233908 3.634687185
x-hidden

-3.5987146 -1.47389946

-6.0723837 3.808899975
hidden-out

2.95178108 5.161466551

SSD 0.34193133 0.435365259

 71

It is observed that there is a 20% improvement in the solution in this case. Figure 4.11a

does indicate another case of Type-II error, even though the difference in the solutions is

not as significant as in the previous case.

Case 4.1.4.3 Optimizer used: BFGS algorithm

As it has been done before, the initial values are selected at the start of each new trial

using the “rnd” function in VBA. The number of trials is determined based on the best

fraction and confidence desired by the user and the best result among the trials is reported

as the final answer to the requirement.

Table 4.23: Final Optimization results using for Case (4.1.4.3)

Bias b-hidden x-hidden hidden-out SSD

-0.29778 -1.82963 -1.499854 -7.07405 0.315093

 3.553234 3.019008 -5.38718

The stopping criteria is then tested by making one trial without using the Steady State

Stopping Criterion and another trial using the same initial guess values and using the

stopping criteria to terminate the run when steady state is attained.

 72

Fig 4.12a RMS Error vs Filtered Error (Case L1)

0

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15 20 25 30 35 40

Iterations

R
M

S
 E

rr
o

r
v
s
 F

il
te

re
d

 E
rr

o
r

Filtered Error

RMS Error

Fig 4.12b RMS Error vs Filtered Error (Case L2)

0

0.2

0.4

0.6

0.8

1

1.2

0 50 100 150 200

Iterations

R
M

S
 E

rr
o

r
v
s
 F

il
te

re
d

 E
rr

o
r

Filtered Error

RMS Error

 73

Table 4.24: Parameter values for Case (4.1.4.3)

Parameters
with Excessve

iterations
Steady State

Stopping Criterion

Bias 0.26327861 0.308302404

2.18081727 1.617539959
b-hidden

3.79800038 3.595572715

-1.5764121 -1.366225855
x-hidden

-2.8347884 -3.175522809

-8.2699408 -6.409117966
hidden-out

6.57475695 4.566487341

SSD 0.3102657 0.316846743

It is observed that there is a 7% improvement in the SSD, though it is not significant

considering the actual numbers generated.

4.2. Results from Experimental Data

Two-phase flow is the simultaneous flow of a gas and a liquid in a pipe or tube. This is a

very commonly observed phenomenon in chemical engineering unit operations, such as

distillation columns, evaporators, reactors, condensers etc. in this study, we consider the

two-phase flow of water and air in a vertical pipe. The fluid flow rates are measured

using rotameters in coordination with orifice meters. And a control system is used to

control the flow in the system. The CAMILE software is used to monitor and operate the

control system. Pressure transducers measure the pressure at the top and bottom of the

vertical column. All the data is assimilated by CAMILE, and reported in text files. The

experimental data used are shown in Appendix D.

 74

There are various methods used to model the pressure drop in two-phase flow. In this

study, the Lockhart-Martinelli correlation is used to determine the same. A sample

calculation is shown in Appendix B

The Lockhart-Martinelli Correlation constant, C is readily available from the literature.

The values change depending on the flow characteristics. And are shown in table

Table 4.25: Flow Patterns of Fluid based on Reynolds number

Flow Pattern Reynolds number

Laminar Re<2000

Turbulent 3000<Re<50000

Table 4.26: Lockhart-Martinelli correlation constants for different vapor-liquid

flow patterns.

Liquid Vapor C

Laminar Laminar 5

Turbulent Laminar 10

Laminar Turbulent 12

Turbulent Turbulent 20

The value of C is evidently dependent on the flow patterns of both the liquid and the

vapor. To effectively correlate this in the calculation of the correlation constant by the

optimizer, the following model is used:

Re Reb c
C a= (4.2)

 75

The flow data obtained (presented in Appendix B) is classified into four groups based on

the flow patterns of the liquid and the vapor. The objective of the present set of cases is to

make the Lockhart-Martinelli model best predict the experimentally measured pressure

drop for each of the four laminar-turbulent cases. The three coefficients, a, b, and c, are

the DVs in each optimization. The effectiveness of the stopping criteria is tested by

running the optimizer once and repeating the trial with the same initial guess, but without

the stopping criteria. The maximum limit of 200 iterations is assumed to be adequate to

ensure steady state. The goodness of the model itself is checked by plotting the

experimental pressure drop values against the pressure drop values predicted by the

model. The RRR’s Optimizer is used in the presentation of the cases. The classification

and the results obtained in each case are discussed below.

Case 4.2.1 Liquid Flow – Laminar

 Vapor Flow – Laminar

The values of a, b, c and the SSD for Laminar-Laminar flow is given in table 4.?

Table 4.27: Final Optimization results for Laminar-Laminar Flow

Parameter a b C SSD

Value -1.59013 -1.67572 1.685488 0.28827

 76

Fig 13: Experimental Pressure Drop vs Model Pressure Drop for Laminar-Laminar

Flow

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

Model Pressure Drop

E
x
p

e
ri

m
e
n

ta
l

P
re

s
s
u

re
 D

ro
p

Fig 4.14a: RMS Error vs Filtered Error for Laminar-Laminar Flow with Steady

State Stopping Criterion

0

0.1

0.2

0.3

0.4

0.5

0.6

0 5 10 15 20 25 30

Iterations

R
M

S
 E

rr
o

r
&

 F
il

te
re

d
E

rr
o

r

 77

Fig 4.14b: RMS Error vs Filtered Error for Laminar-Laminar Flow with Excessive

Iterations

0

0.1

0.2

0.3

0.4

0.5

0.6

0 50 100 150 200 250

Iterations

R
M

S
 E

rr
o

r
&

 F
il

te
re

d
 E

rr
o

r

Table 4.28: Parameter values for Laminar-Laminar Flow

Parameter
With Excessive

Iterations
With SS

a -0.61653 -1.45648

b 0.447043 0.557754

c -0.33146 -0.57551

SSD 0.292015 0.292455

 78

Case 4.2.2 Liquid Flow – Turbulent

 Vapor Flow – Laminar

Table 4.29: Final Optimization results for Turbulent-Laminar Flow

Parameter a b c SSD

Value 0.033814 1.501337 -0.97511 2.351466

Fig 4.15: Experimental Pressure Drop vs Model Pressure Drop for Turbulent-

Laminar Flow

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7

Model Pressure Drop

E
x
p

e
ri

m
e
n

ta
l

P
re

s
s
u

re
D

ro
p

 79

Fig 4.16a: RMS Error vs Filtered Error for Turbulent-Laminar flow with Steady

State Stopping Criterion

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 5 10 15 20 25 30 35 40

Iterations

R
M

S
 E

rr
o

r
&

 F
il

te
re

d
 E

rr
o

r

Fig 4.16b: RMS Error vs Filtered Error for Turbulent-Laminar Flow with

Excessive Iterations

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 50 100 150 200

Iterations

R
M

S
 E

rr
o

r
&

 F
il

te
re

d
 E

rr
o

r

 80

Table 4.30: Parameter values for Turbulent-Laminar Flow

Parameter
With Excessive

Iterations
With SS

a 4.543739 0.935582

b 0.282529 0.794484

c -0.21111 -0.59364

SSD 2.355028 2.355656

Case 4.2.3 Liquid Flow – Laminar

 Vapor Flow – Turbulent

Table 4.31: Final Optimization results for Laminar-Turbulent Flow

Parameter a b c SSD

Value 0.901514 -1.42825 1.169466 0.008928544

 81

Fig 4.17 Experimental Pressure Drop vs Model Pressure Drop for Laminar-

Turbulent Flow

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Model Pressure Drop

E
x
p

e
ri

m
e
n

ta
l

P
re

s
s
u

re
 D

ro
p

Fig 4.18a: RMS Error vs Filtered Error for Laminar-Turbulent flow with Steady

State Stopping Criterion

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0 5 10 15 20 25 30 35

Iterations

R
M

S
 E

rr
o

r
&

 F
il

te
re

d
 E

rr
o

r

 82

Fig 4.18b: RMS Error vs Filtered Error for Laminar-Turbulent Flow with

Excessive Iterations

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0 50 100 150 200

Iterations

R
M

S
 E

rr
o

r
&

 F
il

te
re

d
 E

rr
o

r

Table 4.32: Parameter values for Laminar-Turbulent Flow

Parameter
With Excessive

Iterations
With SS

a 0.74480862985 0.649

b 0.807835642 0.828768

c -0.677895135 -0.67923

 83

SSD 0.008940903 0.008941

Case 4.2.4 Liquid Flow – Turbulent

 Vapor Flow – Turbulent

Table 4.33: Final Optimization results for Laminar-Laminar Flow

Parameter a b c SSD

Value 0.076989 1.160383 -0.51798 2.805532

Fig 4.19: Experimental Pressure Drop vs Model Pressure Drop for Turbulent-

Turbulent Flow

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

Model Pressure Drop

E
x
p

e
ri

m
e
n

ta
l

P
re

s
s
u

re
 D

ro
p

 84

Fig 4.20a: RMS Error vs Filtered Error for Turbulent-Turbulent flow with Steady

State Stopping Criterion

0

0.5

1

1.5

2

2.5

3

3.5

0 10 20 30 40 50 60 70

Iterations

R
M

S
 E

rr
o

r
&

 F
il

te
re

d
 E

rr
o

r

Fig 4.20b: RMS Error vs Filtered Error for Turbulent-Turbulent Flow with

Excessive Iterations

 85

0

0.5

1

1.5

2

2.5

3

3.5

0 50 100 150 200

Iterations

R
M

S
 E

rr
o

r
&

 F
il

te
re

d
 E

rr
o

r

Table 4.34: Parameter values for Laminar-Laminar Flow

Parameter
With Excessive

Iterations
With SS

a 0.62626503185 0.51116580305

b 0.793496239 0.79279523

c -0.394532864 -0.371494198

SSD 2.800624 2.811018

 86

4.3. Results of the Best-of-N Analysis

The Best-of-N analysis had been described in the previous chapter, and Equation (2.1.2)

is used in the present study to calculate the number of trials the optimizer runs in order to

determine the global optimum, i.e. the best possible model. It is also evident that the

analysis is dependent on the stopping criteria terminating a trial at the local optimum. The

previous sections can lead to a conclusion that the Steady State Stopping criterion does in

fact do so, and one can progress with the analysis of the Best-of-N formula.

The present analysis of the Best-of-N formula is done based on running the optimizers on

different models, and datasets, for a large number of trials (in this case 10,000) each

starting with a random initial set of values. The analysis algorithm described in Section

3.4 is implemented on each set of points thus obtained. The algorithm is programmed in

VBA and is reproduced in Appendix (C). The final result of the algorithm gives us the

confidence with which the Best-of-N formula can predict the optimum within the

predetermined best fraction of the results generated by a specific optimization algorithm.

The testing algorithm also generates a cumulative distribution for the data, which is used

in determining the higher limit for the required best fraction of the results. For the present

set of discussed cases, it is required to be 90% confident that one of the best 10% of the

results will be reported each time.

It has to be noted that the number of trials (10,000) though notably large, is not the same

as an infinite number of runs, and consequently, the probabilities involved in Equation

 87

(2.3) would not be absolutely accurate, and consequently, a fair degree of accuracy is

assumed to be associated with them. In mathematical terms, we can say that the

confidence in the results (as predicted by the above mentioned algorithm) is normally

distributed, with

.n pµ = (4.3.1)

2 . .n p qσ = (4.3.2)

where µ is the mean, n is the number of sets involved, and p is the required probability,

and q =(1-p).

Considering the present situation, Equation (2.3) gives us 22 trials, and we have 10,000

points. This gives us (10000/22) ≈ 454 sets, i.e. n; p is 0.9 based on the required

confidence, and q is 0.1.

From Equations (4.3.1) and (4.3.2), we get µ = 409.1, and σ = 6.3957. If we were to

consider 3µ σ± ⋅ , a result between 94.336 % and 85.88% cannot be rejected.

Case 4.3.1 Model Used: Neural Network

 Optimizer: RRR’s Algorithm

 Dataset: Set A

The cumulative distribution of the 10000 datapoints is given in Figure 4.21. the testing

algorithm reveals that the best 10% of the answers are reported 89.8% of the times when

22 sets of points are considered as predicted by the Best-of-N formula.

Fig 4.21: Cumulative Distribution for Case (4.3.1)

 88

0

0.2

0.4

0.6

0.8

1

1.2

2.5 2.7 2.9 3.1 3.3 3.5

SSD [Unit2]

F
x

Case 4.3.2 Model Used: Third degree Polynomial Equation

 Optimizer: RRR’s Algorithm

 Dataset: Set A

The cumulative distribution of the 10000 datapoints is given in Figure 4.22. the testing

algorithm reveals that the best 10% of the answers are reported 89.4% of the times when

we consider 22 sets of points as predicted by the Best-of-N formula.

Fig 4.22: Cumulative Distribution for Case (4.3.2)

 89

0

2000

4000

6000

8000

10000

12000

1.821450 1.821455 1.821460 1.821465 1.821470 1.821475

SSD [Unit2]

F
x

Case 4.3.3 Model Used: Neural Network

 Optimizer: RRR’s Algorithm

 Dataset: Set B

The cumulative distribution of the 10000 datapoints is given in fig 4.23. the testing

algorithm reveals that the best 10% of the answers are reported 87.6% of the times when

we consider 22 sets of points as predicted by the Best-of-N formula. From the discussion

presented in the beginning of this section, this would be in the range where the formula

can not be rejected.

Fig 4.23: Cumulative Distribution for Case (4.3.3)

 90

0

2000

4000

6000

8000

10000

12000

0 2 4 6 8 10 12 14 16 18

SSD [Unit2]

F
x

Case 4.3.4 Model Used: Third Degree Polynomial

 Optimizer: RRR’s Algorithm

 Dataset: Set B

The cumulative distribution of the 10000 datapoints is given in fig 4.??. the testing

algorithm reveals that the best 10% of the answers are reported 92.9% of the times when

we consider 22 sets of points as predicted by the Best-of-N formula. This is under the

range that was calculated for a normal distribution.

Fig 4.24: Cumulative Distribution for Case (4.3.4)

 91

0

2000

4000

6000

8000

10000

12000

1.8 1.85 1.9 1.95 2 2.05

SSD [Unit2]

F
x

Case 4.3.5 Model Used: Neural Network

 Optimizer: Hooke Jeeves Algorithm

 Dataset: Set A

The cumulative distribution of the 10000 datapoints is given in fig 4.??. the testing

algorithm reveals that the best 10% of the answers are reported 91.4% of the times when

we consider 22 sets of points as predicted by the Best-of-N formula. This falls within the

range of the normal distribution for the given data, and the formula can not be rejected.

Fig 4.25: Cumulative Distribution for Case (4.3.5)

0

2000

4000

6000

8000

10000

12000

2 3 4 5 6 7 8
SSD [Unit2]

F
x

 92

Case 4.3.6 Model Used: Neural Network

 Optimizer: Hooke Jeeves Algorithm

 Dataset: Set B

The cumulative distribution of the 10000 datapoints is given in fig 4.??. the testing

algorithm reveals that the best 10% of the answers are reported 90.6% of the times when

we consider 22 sets of points as predicted by the Best-of-N formula.

Fig 4.26: Cumulative Distribution for Case (4.3.6)

0

2000

4000

6000

8000

10000

12000

1.821400 1.821450 1.821500 1.821550 1.821600 1.821650 1.821700

SSD [Unit2]

Case 4.3.7 Model Used: Neural Network

 Optimizer: BFGS Algorithm

 Dataset: Set A

The cumulative distribution of the 10000 datapoints is given in fig 4.??. the testing

algorithm reveals that the best 10% of the answers are reported 92.4% of the times when

we consider 22 sets of points as predicted by the Best-of-N formula.

 93

Fig 4.27: Cumulative Distribution for Case (4.3.7)

0

2000

4000

6000

8000

10000

12000

2.5 3.5 4.5 5.5 6.5 7.5 8.5

SSD [Unit2]

F
x

Case 4.3.8 Model Used: Neural Network

 Optimizer: BFGS Algorithm

 Dataset: Set B

The cumulative distribution of the 10000 datapoints is given in fig 4.??. the testing

algorithm reveals that the best 10% of the answers are reported 91.0% of the times when

we consider 22 sets of points as predicted by the Best-of-N formula.

Fig 4.28: Cumulative Distribution for Case (4.3.8)

 94

0

2000

4000

6000

8000

10000

12000

0 1 2 3 4 5 6 7

SSD [Unit2]

F
x

Case 4.3.9 Model Used: Lockahrt-Martinelli

 Optimizer: RRR Algorithm

 Dataset: Pressure Drop data for Laminar-Laminar Flow

The cumulative distribution of the 10000 datapoints is given in fig 4.??. the testing

algorithm reveals that the best 10% of the answers are reported 94.2% of the times when

we consider 22 sets of points as predicted by the Best-of-N formula.

Fig 4.29: Cumulative Distribution for Case (4.3.8)

 95

0

2000

4000

6000

8000

10000

12000

0.28 0.29 0.3 0.31 0.32 0.33 0.34

SSD [Unit2]

F
x

to summarize the results of this section, the following tables are presented. Table 3?a is

based on a 90% confidence that the best 10% of the solutions will be reported and Table

3?b is based on a 95% confidence that the best 5% of the solutions will be reported.

Table 4.35a Results of Best-of-N analysis: Percentage of occurrence of the best 10%

of the solutions.

Data Set Model RRR HJ BFGS

NN 89.8 91.4 92.4
A

Poly 89.4 - -

NN 87.6 90.6 91
B

Poly 92.9 - -

2-Phase
PD L-M 94.2 - -

 96

Table 4.35a Results of Best-of-N analysis: Percentage of occurrence of the best 10%

of the solutions.

Data Set Model RRR HJ BFGS

NN 95.6 94.5 97.5
A

Poly 98.1 - -

NN 93.7 95.5 96.1
B

Poly 95.3 - -

2-Phase
PD L-M 99 - -

4.4 Discussions

The Steady State Stopping Criterion has been applied in earlier work [3,2] in neural

network training, and in other examples of nonlinear optimization. At the same time, the

Best-of-N analysis has been used exclusively in neural network training [4].

The algorithm combining the two ideas is observed to be successful in modeling noisy

data, and in modeling pressure drop data for a two-phase flow system. the algorithm is

shown to be capable of reporting the desired globally optimum model for given process

data.

The stopping criterion is seen to provide successful results in most cases. The stopping

criterion is observed to terminate the trial fairly quickly, and in most cases the excessive

iterations do not generate significantly better answers. This also reinforces the results

obtained in the testing of the Best-of-N starting method. Considering the former, it has

been observed that keeping the threshold on Rstatistic to be 0.85 has its advantages over the

 97

previously used value of 1. The studies on Set B also indicate that the stopping criteria

can sometimes fail at detecting steady state because of the occurrence of Type-II errors.

In the specific case of Figures 4.12a and 4.12b, it can be visually confirmed that a lower

Rstatictic threshold can improve the performance of the stopping criteria. At the same time,

one has to appreciate that the use of the Best-of-N formula helps these situations because

the results are still generated with the same confidence irrespective of the set threshold in

the stopping criteria. The issues of the type-II errors arising in the steady state

identification require more scrutiny, and the use of a lower threshold for Rstatistic also

warrants more detailed study.

Previous studies have claimed that no a priori information is required in selecting Fw(a)

and Fx(a)to determine N. However we do not guarantee that the method will give us the

desired results every time. A counter example to this effect can be a surface with shallow

optima all over, and one global minimum located at a very narrow valley, i.e. there is

only a 1% chance of ever hitting the global minimum. In this case, choosing the best 10%

of the results will not yield a good optimum, and a choice of the best 0.5% might give an

N large enough that the global minimum could be found.

The Best-of-N method has one distinct disadvantage akin to most multisart optimizers, i.e.

they consume a considerable amount of computation time. Snyman and Fatti, have

developed an approach to determine N based on Baysean statistics. In this, the optimizer

is started ‘n’ times initially. The CDF of the RMS results (the OF) provides information

about the distribution of the OF values, and this, along with a user specified confidence,

 98

helps determine the value of N needed. In effect, instead of doing unnecessarily excessive

runs, the algorithm looks at each new solution as it is generated to determine (or to

update) how many runs will it be necessary to generate the global optima. Further work

can be carried out in this regard, where the logic could replace the Best-of-N criteria or

the two ideas could be combined.

Another point to be noted in the exercise as a whole is the calculation of the SSD

between the model and the experimental data. The present work uses a simple definition

of the error in the calculation, but there are more accurate methods being studied. The

VBA code used in the present study is effective, but it takes up a lot of computational

burden in the process. The code can be streamlined by reevaluation of the necessary

calculations. This can also help in the application of the logic in more indirect methods

involving the evaluation of the derivatives of the objective function, which, in the case of

empirical modeling, can be extremely time consuming.

 99

CHAPTER V

CONCLUSION

The Best-of-N analysis originally developed to determine the number of random starts

required in neural network training has been extended to more generic empirical

modeling applications. It has been combined with the previously studied Steady State

Stopping Criterion to develop a global optimization logic for nonlinear empirical

modeling.

The combined logic has been tested on a variety of modeling objectives, and applications.

The steady state stopping criterion successfully determines the point of termination in

each individual trial, and the Best-of-N analysis is analyzed to prove that the user defined

confidence in finding the global minimum is met. It can thus be concluded that the

combined logic, as a whole, gives successful and efficient results.

Further research is warranted in the removal of Type-II errors that may occur in the

identification of steady state, and in determining the optimum threshold for the Rstatistic in

the steady state identifier. The Best-of-N starting methods can also be studied further in

attempts to reduce the number of trials involved in obtaining a specific objective. The

present algorithm is effective in its execution, but the code can be streamlined with

respect to the calculations involving the computation of the SSD.

 100

The logic can be applied in commercial modeling applications subject to the

dissemination of the above findings and the streamlining of the computational burden

involved in the modeling process.

 101

REFERENCES

1. T. F. Edgar, D. M. Himmelbalu, L. S. Ladson, Optimization of Chemical

Processes, McGraw-Hill NY, 2001

2. V. Padmanabhan, “A Study of a Novel Stopping Criterion for Optimization,” A

thesis in Chemical Engineering, Oklahoma State University, 2005

3. S. Cao, R. R. Rhinehart, “An efficient method for on-line identification of steady

state,” Journal of Process Control, Vol. 5, No. 6, pp.363-374, 1995

4. M. S. Iyer, R. R. Rhinehart, “A method to determine the required number of

neural network training repetitions,” IEEE Transactions on Neural Networks, Vol.

10, No. 2, pp. 427-432, 1999

5. R.R. Rhinehart, “Best-of-N training paper explanation,” School of Chemical

Engineering, Oklahoma State University, private communication

6. V. Padmanabhan, “A novel termination criterion for optimization,” School of

Chemical Engineering, Oklahoma State University

7. A.V. Balakrishnan, M. Thomas, Lecture notes in Control and Information

sciences, Springer-Verlag, NY, 1982

8. R. M. Betha, R. R. Rhinehart, Applied Engineering Statistics, Marcel Dekker,

NY, 1991

9. G. E. P. Box, G. M. Jenkins, Time Series Analysis: Forecasting and Control,

Holden-Day, 1976

 102

APPENDIX A

CONTRIVED DATA

The first set of contrived data is based on the following model equation:

20
5expy

x

 =  
 

to make the data reflect an actual process, a normally distributed random error is

introduced with a variance of 1 unit. A set of 30 data points are selected for the study.

Table A.1: Contrived Data with errors incorporated in the dependent variable

(Set A)

Serial No. x y

1 1 0.361161

2 4 -0.38911

3 7 0.578485

4 10 0.67641

5 13 0.583247

6 16 0.944263

7 19 1.342423

8 22 2.017296

9 25 2.233575

10 28 2.318014

11 31 3.023673

12 34 2.981573

13 37 2.704862

 103

Serial No. x y

14 40 3.498605

15 43 2.965337

16 46 2.785793

17 49 3.486505

18 52 3.809234

19 55 3.587298

20 58 3.163685

21 61 3.996238

22 64 3.26411

23 67 3.782867

24 70 4.056131

25 73 3.730098

26 76 3.401893

27 79 3.678942

28 82 3.547743

29 85 3.626967

30 88 4.330047

 104

The second set of contrived data attempts to realize an actual process more accurately.

There are errors associated with both the dependent and independent variables. The

original data is based on the following model:

()()2
exp 30 0.5y x= − −

Both the dependent and independent variables have normally distributed random errors

incorporated in them. The base value of x used in the table below is the basis of the

calculation of both the x and y values, both of which have errors with a variance of 0.4

and 1 associated with them respectively. Here, the base x refers to the nominal value

believed to be true by the experiment, and x is the actual but unknowable value. Y is thus

measured from x (which is already noisy) and has it’s own noise incorporated too.

Table A.2: Contrived Data with errors associated with both dependent and

independent variables (Set B)

Serial No. Base x x y

1 0 0.050184 -0.05865

2 0.025 0.053933 0.027031

3 0.05 0.121355 0.043433

4 0.075 0.05717 0.014812

5 0.1 0.117694 0.040712

6 0.125 0.12364 0.038379

7 0.15 0.139239 0.024217

8 0.175 0.207925 0.070216

9 0.2 0.224697 0.054074

10 0.225 0.216106 0.143239

11 0.25 0.296369 0.113829

 105

Serial No. Base x x y

12 0.275 0.256715 0.210443

13 0.3 0.32142 0.285091

14 0.325 0.33107 0.383834

15 0.35 0.365156 0.522981

16 0.375 0.306388 0.587964

17 0.4 0.415347 0.754327

18 0.425 0.475975 0.829305

19 0.45 0.436924 0.878163

20 0.475 0.478253 0.940252

21 0.5 0.495903 0.965767

22 0.525 0.521928 1.025498

23 0.55 0.552716 0.932712

24 0.575 0.607042 0.868465

25 0.6 0.590964 0.747658

26 0.625 0.565694 0.596703

27 0.65 0.612117 0.515776

28 0.675 0.630977 0.422942

29 0.7 0.662263 0.342466

30 0.725 0.753676 0.275027

31 0.75 0.777691 0.165545

32 0.775 0.763522 0.079979

33 0.8 0.772853 0.032768

34 0.825 0.87461 -0.01089

35 0.85 0.788645 -0.00213

36 0.875 0.908301 0.007084

37 0.9 0.896038 -0.01642

38 0.925 0.859823 0.005293

39 0.95 0.943584 0.020634

 106

Serial No. Base x x y

40 0.975 1.035687 0.040919

41 1 0.996513 0.004479

 107

APPENDIX B

PRESSURE DROP DATA

AND

 EXAMPLE CALCUALTIONS FOR PRESSURE DROP

IN TWO-PHASE FLOW

large air

flow
small air

flow
liquid flow

rate Water Ht.
S.

no. Delta_Pr. dP_STF FI_1_Filt FI_2_Filt FI_3_Filt (m)

 (ft
3
/min) (ft

3
/min) (kg/hr) W_Ht_Filt

1 0.0507 0.0508 1.3498 0.0510 91.1077 0.0334

2 0.0688 0.0688 1.5193 0.0516 92.5997 0.0371

3 0.0479 0.0479 1.5942 0.0475 90.4832 0.0334

4 0.0515 0.0515 1.6495 0.0509 92.2022 0.0335

5 0.0381 0.0381 1.6680 0.0513 89.0564 0.0244

6 4.3754 4.3164 24.9847 0.0544 519.5394 3.0113

7 4.2531 4.2510 24.9838 0.0537 520.4920 3.0191

8 4.1076 4.2632 24.9760 0.0518 513.5342 3.0412

9 4.4256 4.4681 24.9957 0.0557 525.4731 3.0210

10 6.6422 4.9260 12.1766 0.0635 295.2589 3.8030

11 6.6132 6.6132 1.3310 0.0477 88.4521 4.6495

12 6.5460 6.5460 1.3907 0.0479 88.3032 4.6502

13 6.6422 6.6422 1.6260 0.0499 90.5244 4.6483

14 6.5842 6.5842 1.5733 0.0496 89.6316 4.6484

15 6.6224 6.6224 1.3945 0.0481 89.0713 4.6542

16 4.1848 3.9782 1.5374 1.0012 497.4645 2.8596

17 4.6788 4.1810 1.6143 1.0012 496.4514 2.8711

18 4.2142 4.0723 1.6453 1.0011 494.1385 2.8379

19 5.3232 4.1241 1.5262 1.0010 484.4626 2.8457

20 3.7591 4.0752 1.4381 0.7254 417.8737 2.7753

21 3.0983 2.9573 6.9099 0.0535 506.7354 2.0248

22 3.1356 3.1676 6.9465 0.0548 518.5857 2.0634

23 2.2391 2.9537 6.9189 0.0524 526.2402 2.0251

24 3.2055 2.8058 6.8981 0.0526 514.9471 2.1135

25 2.6775 2.9935 7.0390 0.0532 505.1873 2.0855

 108

large air

flow
small air

flow
liquid flow

rate Water Ht.
S.

no. Delta_Pr. dP_STF FI_1_Filt FI_2_Filt FI_3_Filt (m)

 (ft
3
/min) (ft

3
/min) (kg/hr) W_Ht_Filt

26 4.8066 5.0599 1.4871 0.5015 516.2134 3.6626

27 5.6527 5.2805 1.5952 0.5011 517.7882 3.6403

28 5.1833 5.1967 1.6012 0.5010 517.1487 3.6385

29 4.7757 5.3291 1.3940 0.5000 519.9964 3.6841

30 5.2051 5.2203 1.7096 0.5006 515.9110 3.6371

31 5.2872 5.2872 1.4949 0.0504 102.3022 3.7237

32 5.3022 5.3022 1.5885 0.0518 101.6442 3.7253

33 5.2826 5.2826 1.5451 0.0517 101.3847 3.7269

34 5.3060 5.3060 1.4748 0.0511 101.0812 3.7267

35 5.1835 5.1835 1.6051 0.0503 100.5808 3.7672

36 3.0200 3.0019 1.5660 0.5015 99.8789 2.1164

37 2.9130 2.9137 1.3943 0.5012 99.9950 2.0793

38 2.8286 2.8286 1.5553 0.5014 99.9650 2.0742

39 2.7656 2.8260 1.3057 0.5004 99.8528 2.0707

40 2.9677 2.9228 1.3522 0.1949 100.9842 2.0342

41 3.2543 3.2543 1.2259 0.0480 99.8881 2.3033

42 3.2596 3.2596 1.2069 0.0498 100.2032 2.3040

43 3.3017 3.3017 1.4645 0.0517 101.5342 2.3096

44 3.2772 3.2772 1.2805 0.0473 99.9780 2.3085

45 3.7305 3.7305 1.4216 0.0521 101.1915 2.3161

46 4.1507 3.4547 1.3397 1.0008 297.1745 2.3546

47 2.8382 3.3660 1.3290 1.0005 299.4958 2.3747

42 3.2596 3.2596 1.2069 0.0498 100.2032 2.3040

43 3.3017 3.3017 1.4645 0.0517 101.5342 2.3096

44 3.2772 3.2772 1.2805 0.0473 99.9780 2.3085

45 3.7305 3.7305 1.4216 0.0521 101.1915 2.3161

46 4.1507 3.4547 1.3397 1.0008 297.1745 2.3546

47 2.8382 3.3660 1.3290 1.0005 299.4958 2.3747

48 3.6234 3.5409 1.3920 1.0002 298.5453 2.3681

49 2.7378 3.3277 1.5377 1.0003 304.5260 2.3544

50 2.9877 3.2834 1.3748 0.6925 241.8319 2.2926

51 3.1209 2.7576 7.0204 0.0509 496.4620 1.9407

52 2.7202 2.7473 7.0880 0.0537 506.1500 2.1037

53 3.2052 2.7254 7.0773 0.0531 502.9768 2.1059

54 1.9616 2.5210 6.9554 0.0512 502.3859 1.9336

55 3.1072 2.7301 7.0119 0.0547 504.0659 2.0360

56 1.4118 1.4118 7.0717 0.0510 99.3628 0.9594

57 1.4246 1.4246 6.9956 0.0514 100.1572 0.9835

58 1.3984 1.3984 6.9280 0.0481 98.4197 0.9171

59 1.3768 1.3768 6.9778 0.0514 99.0677 0.9765

 109

large air

flow
small air

flow
liquid flow

rate Water Ht.
S.

no. Delta_Pr. dP_STF FI_1_Filt FI_2_Filt FI_3_Filt (m)

 (ft
3
/min) (ft

3
/min) (kg/hr) W_Ht_Filt

60 1.4579 1.4579 6.9697 0.0499 98.8602 0.9545

61 1.1030 1.1030 1.5693 0.0492 99.2359 0.7712

62 1.1041 1.1041 1.7420 0.0491 98.4339 0.7674

63 1.0864 1.0864 1.4532 0.0503 98.4255 0.7726

64 1.0923 1.0923 1.4741 0.0511 98.3083 0.7760

65 1.0722 1.0722 1.4127 0.0511 100.2193 0.7680

Example Calculation:

Density of Air

The density of air at ambient conditions can be found from the ideal gas law which

requires pressure (P), and molecular weight (MW), the gas constant (R), and temperature

(T):

avg

g

avg

MWP

RT
ρ = (i)

For example:

3 3 3

24.9 742.2

0.06313 1.0135
.

998.9 *293.15
.

m

m
g

lb
mmHg

lb kglbmol

mmhg ft ft m
K

lbmol K

ρ
∗

= = =

In this work, the pressure represents the average pressure in the two-phase flow column,

and the temperature represents the water temperature. The molecular weight of 24.9

lbm/lbmole represents that of saturated air at the water temperature.

 110

Density of Water

3 3
28.282 998.77

kg kg

ft m
ρ = =

Void Fraction and Two-Phase Density

The void fraction is calculated based on the height of the liquid in the column and the

height of the column.

g v
g

total

Vol h

Vol h
ε = = (ii)

2.6021
0.4783

5.44
g

m

m
ε = =

The two-phase density is then calculated using,

(). 1 .TP g g g lρ ε ρ ε ρ= + − (iii)

For example:

()3 3 3
0.4783*1.0135 1 0.4783 *998.77 521.5133TP

kg kg kg

m m m
ρ = + − =

Reynolds’ Number

The Reynolds’ number for the liquid is defined as:

Re l
l

l

Dm

Aµ
=

&
 (iv)

Where,

 111

 D = Diameter of pipe or tube

 lm& = mass flow rate of liquid

 A = Cross sectional area of pipe or tube

 lµ = viscosity of liquid

For example:

4 2

0.026 *0.1372

Re 5878.1117

5.57 10 *0.00109
l

kg
m

s
kg

m
ms

−
= =

×

Similarly for the gas:

Re
g

g

g

Dm

Aµ
=

&
 (v)

For example:

4 2

0.026 *0.00123

Re 1780.3518

5.57 10 *3.23 05
l

kg
m

s
kg

m E
ms

−
= =

× −

Observing the Reynolds numbers in our example, the Liquid is in turbulent flow, and the

gas is in laminar flow for this example. Hence, the Lockhart-Martinelli constant is given

by the following Equation [2]:

Re Rei ib c

i i l gC a= (vi)

0.7549 0.36640.26464*5878.1117 *1780.3518 11.9417C
−= =

 112

Mass Fraction, xg

The mass fraction of the gas can be calculated as shown below. The mass fraction of the

liquid can be easily determined by taking the difference of xg from 1. this is taken into

account in the subsequent equations.

0.00123
0.00889

0.00123 0.1372

g

g

l g

m
x

m m
= = =

+ +

Friction Factor, f

The friction factor for the fluid flow can be given by the following relation.

64 64
0.01088

Re 5878.1117
l

l

f = = =

64 64
0.03594

Re 1780.3518
g

g

f = = =

Note that the fluids are both in laminar flow. If the liquid is in turbulent flow, the

following relation can be used:

The Martinelli multiplier is calculated as follows.

()
()

2

2

2

1

f

l g gl

f
g g l

g

P

f xL
X

P f x

L

ρ

ρ

∆ 
  − = =
∆ 

 
 

 (vii)

()
()

2

2

2

0.01088* 1 0.00889 *1.0135
3.8130

0.03594* 0.00889 *998.77
X

−
= =

1.9526X =

 113

The frictional multiplier that results from the Lockhart-Martinelli correlation is then

given by

()2
21g CX Xφ = + + (viii)

()2

1 11.9417*1.9526 3.8130 28.3399gφ = + + =

The single phase frictional pressure drops for the gas phase is given by:

()
2 2

2
20.00123

2. . . 2*0.03594* *0.00889
5.57 04

13.3550
. 1.0135*0.026

g g
f

gg

m
f x

P PaA E

L D mρ

   
   ∆  −   − = = = 

 

The hydrostatic head is thus calculated by:

. 521.5133*9.8 5204.7034TP

Pa
P g

m
ρ∆ = = =

The two-phase frictional pressure drop is given by the following relation:

()2

. 13.3550*28.3399 375.699
f f

g

TP g

P P Pa

L L m
φ

∆ ∆   
− = − = =   
   

Thus the total pressure drop per unit length is obtained by combining the hydrostatic head

and the two-phase pressure drop.

5204.7034 375.699 5580.4029
f

P Pa

L m

∆ 
− = + = 
 

 114

Multiplying the above with the height of the column, we obtain the pressure prop for a

two-phase system.

() 5580.4029 *5.44 30357.3922 4.4018
Pa

P m Pa Psi
m

− ∆ = = =

 115

APPENDIX C

COMPUTER PROGRAMS

All the programming is done on Visual Basic for Applications based on MS EXCEL. The

three main programs involved are generic enough that minor modifications are required

when a different function is used.

This is the list of Public variables used in the entire set of programs.

'Prithwijit Ghoshal

'List of Public variables used between the optimization routines

Public zip As Integer

Public Xe() As Double 'acutal X

Public Ye() As Double 'acutal Y

Public Xs() As Double 'x scaled

Public Ys() As Double 'y scaled

'used in scaling the contrived data

'definitions are obvious from the var. names

Public Xmax As Double

Public Xmin As Double

Public Ymin As Double

Public Ymax As Double

Public Xmid As Double

Public Ymid As Double

Public NumTrials As Integer 'number of trials

Public nt As Integer 'counter for output

 116

Public Npoints As Integer 'number of data points

Public Nrand As Integer 'number of random picks.. % of Npoints

'variables defined for the SS stopping criteria

Public Nf, Df, Xf, Sumold

'used in the actual optimization routine

'to track changes in the x values

Public X(20) As Double

Public xo(20) As Double

Public dX(20) As Double

Subroutines: these routines are common to all the three optimization routines with minor

modifications for BFGS, which are shown later.

This routine takes the data and scales it between -0.8 and 0.8. These scaled values are

used in the actual calculations.

Sub Initial_Calculations()

'Prithwijit Ghoshal

'to be called by the main HRo routine once and stores the restuls in a globally

defined array set

 ActiveWorkbook.Sheets("Sheet1").Activate

Dim I As Integer

 For I = 1 To Npoints

 Xe(I) = Cells(12 + I, 3).Value

 Ye(I) = Cells(12 + I, 4).Value

 117

 Next I

 'finding the max and min values of x and y

 'will be used to scale them

 Xmax = Xe(1)

 Xmin = Xe(1)

 Ymax = Ye(1)

 Ymin = Ye(1)

 For I = 2 To Npoints

 If Xmax < Xe(I) Then: Xmax = Xe(I)

 If Xmin > Xe(I) Then: Xmin = Xe(I)

 If Ymax < Ye(I) Then: Ymax = Ye(I)

 If Ymin > Ye(I) Then: Ymin = Ye(I)

 Next I

 Xmid = (Xmin + Xmax) / 2

 Ymid = (Ymin + Ymax) / 2

 'scaling X and Y and performing the rest of the calculations

 For I = 1 To Npoints

 'scaling X and Y

 Xs(I) = 0.8 * (Xe(I) - Xmid) / (Xmax - Xmid)

 Ys(I) = 0.8 * (Ye(I) - Ymid) / (Ymax - Ymid)

 'output

 Cells(12 + I, 5).Value = Xs(I)

 Cells(12 + I, 6).Value = Ys(I)

 Next I

End Sub

 118

This routine is the one which is subject to change dependent on the function being used.

Here, the model and the actual data are compared and the SSD is evaluated.

Sub Calculations(xp() As Double, _

 sqdev() As Double, _

 SSD As Double)

'Prithwijit Ghoshal

'performs the calculations required to find the SSD between model and data

'variable declaration

 Dim I As Integer

 Dim Ys_Model() As Double

 Dim Y_Model() As Double

 ReDim Ys_Model(1 To Npoints)

 ReDim Y_Model(1 To Npoints)

 ActiveWorkbook.Sheets("Sheet1").Activate

'reinitializing the value of SSD

SSD = 0#

' 'scaling X and Y and performing the rest of the calculations

'

 For I = 1 To Npoints

 Ys_Model(I) = FF(xp(1), xp(2), xp(3), xp(4), Xs(I))

 'converting to unscaled

 Y_Model(I) = Ymid + Ys_Model(I) * (Ymax - Ymid) / 0.8

 sqdev(I) = (Y_Model(I) - Ye(I)) ^ 2

 119

 SSD = SSD + sqdev(I)

 Next I

 'output section

 For I = 1 To Npoints

 Cells(12 + I, 7).Value = Ys_Model(I)

 Cells(12 + I, 8).Value = Y_Model(I)

 Cells(12 + I, 9).Value = sqdev(I)

 Next I

 Cells(7, 9).Value = SSD

End Sub

This is the Steady State Stopping Criterion. It picks out a random set of the deviations

(without repetitions in the random selection) and uses the data to calculate an RMS value

that is compared to a filtered value of the error to determine steady state.

Sub Steady_State(sqdev() As Double, SS As String)

'R Russell Rhinehart

'Modified: Prithwijit Ghoshal

'Steady State Stopping Criterion

' selection with out replacement.

Dim Index() As Integer

ReDim Index(1 To Nrand)

Sum = 0

SS = "N"

Call RANDOM(Index())

 120

For L = 1 To Nrand

 Sum = Sum + sqdev(Index(L))

 Cells(L, 35) = Index(L)

Next L

Sum = Sqr(Sum)

''Cells(zip + 1, 39) = Sum

Nf = 0.2 * (Xf - Sum) ^ 2 + 0.8 * Nf

Df = 0.2 * (Sum - Sumold) ^ 2 + 0.8 * Df

Sumold = Sum

Xf = 0.2 * Sum + 0.8 * Xf

RStatistic = 1.8 * Nf / Df

''Cells(zip + 1, 40) = Xf

If RStatistic < 0.85 Then

 SS = "Y"

 Cells(nt + 1, 15) = Nf

 Cells(nt + 1, 16) = Df

 Cells(nt + 1, 17) = Xf

 Cells(nt + 1, 13) = RStatistic

 Cells(nt + 1, 14) = SS

End If

Cells(6, 12) = Nf

Cells(7, 12) = Df

Cells(8, 12) = Xf

Cells(4, 12) = RStatistic

Cells(5, 12) = SS

End Sub

 121

This is a small program that was created to select random numbers without repetitions

and assign them to an array of specified size.

Sub RANDOM(A() As Integer)

'Prithwijit Ghoshal

'finds a set of random numbers without repititions

'set stored and transferred in array A()

'variable declaration

 Dim I As Integer 'loop counter

 Dim K As Integer 'loop counter

For I = 1 To Nrand

 A(I) = Int(Rnd() * (Npoints) + 1)

 For K = 1 To I - 1

 If A(K) = A(I) Then

 A(I) = Int(Rnd() * (Npoints) + 1)

 K = 0

 End If

 Next K

Next I

End Sub

This is another program used to make the code more generic. This finds the number of

data points the program will be required to handle.

Sub Find_Points()

'Prithwijit Ghoshal

'finds the number of data points provided for the modeling procedure

 ActiveWorkbook.Sheets("Sheet1").Activate

 122

 Do While (Cells(13 + Npoints, 3).Value <> "")

 Npoints = Npoints + 1

 Loop

End Sub

The next program is used at the end of all the trials. It finds the smallest SSD value

among the ones found and reports the corresponding model parameters.

Sub FInal_Pick()

'Prithwijit Ghoshal

'picking the lowest of the set and reporting it..

Dim locate As Integer 'location of lowest SSD

Dim Min As Double 'lowest SSD

Dim I As Integer 'loop ocunter

Dim xp(1 To 4) As Double

Dim sqdev(1 To 100) As Double

Dim SSD As Double

Min = 100000#

locate = 0#

'find and locate the minimum..

For I = 1 To 22 'NumTrials

 If Min > Sheet1.Cells(1 + I, 32) Then

 Min = Sheet1.Cells(1 + I, 32)

 locate = I

 End If

Next I

'outputthe result

 123

Sheet1.Cells(2, 2) = Sheet1.Cells(1 + locate, 19)

Sheet1.Cells(2, 3) = Sheet1.Cells(1 + locate, 20)

Sheet1.Cells(2, 4) = Sheet1.Cells(1 + locate, 21)

Sheet1.Cells(2, 5) = Sheet1.Cells(1 + locate, 22)

For I = 1 To 4

 xp(I) = Sheet1.Cells(2, 1 + I)

Next I

Call Calculations(xp(), sqdev(), SSD)

End Sub

Main Program (RRR’s Heuristic Optimizer)

The program is based on the algorithm described in Chapter 3.

Sub HRO()

'R Russell Rhinehart, Prithwijit Ghoshal

'Heuristic random number based optimizer formulated by RRR

'incorporates the Weakest-Link-in-the-Chain strategy for global optimization

'incorporates Steady State Stopping Criterion

'Modified

'Oct 15, 2007

'Oct 16, 2007

'variable declaration

 Dim Yold As Double

 Dim Y As Double

 Dim SS As String

 124

 Dim SQRDev() As Double

 Dim Trial_timer As Double

 Dim Total_timer As Double

 Total_timer = Timer

 ActiveWorkbook.Sheets("Sheet1").Activate

N = 4 'decision variables

M = 200 'number of iterations

zip = 1

Call Find_Points

ReDim Xe(1 To Npoints)

ReDim Ye(1 To Npoints)

ReDim Xs(1 To Npoints)

ReDim Ys(1 To Npoints)

ReDim SQRDev(1 To Npoints)

Nrand = Round(Cells(3, 8).Value * Npoints / 100)

Call Initial_Calculations

Expand_Factor = 1.5

Contract_Factor = -0.5 / Expand_Factor

'to run one trial

conf = Cells(1, 9) / 100 '90

 125

bestfract = Cells(1, 11) / 100 '10

NumTrials = 1

 If conf < 1 And conf > 0 And bestfract < 1 And bestfract > 0 Then NumTrials =

Int(0.5 + Log(1 - conf) / Log(1 - bestfract))

 Cells(5, 2) = NumTrials

''check phase

'numtrials = 1

'input

 For nt = 1 To NumTrials

 Range(Cells(1, 38), Cells(201, 40)).Clear

 'random start using a range of +5 to -5

 'xo(1) = Rnd * 4 - 2

 For K = 1 To N

 xo(K) = Rnd * 8# - 4#

 Next K

 'data echo

 'Cells(2, 2).Value = xo(1)

 For K = 0 To N - 1

 Cells(2, 2 + K) = xo(K + 1)

 'Cells(3, 2 + K) = xo(4 + K)

 Next K

 For I = 1 To N

 X(I) = xo(I)

 dX(I) = 0.1

 Next I

 'Worksheets("Neural Network").Calculate

 Call Calculations(X(), SQRDev(), Yold)

 Cells(7, 9) = Yold

 126

 Y = Yold

 For J = 1 To M 'limit of 100 iterations

 For I = 1 To N 'N is the number of decision variables

 Cells(1, 1) = J

 Cells(2, 1) = I

 X(I) = xo(I) + dX(I) 'xo(i) is the base point, dx(i) is the proposed

change

 'output

 'Cells(2, 2).Value = X(1)

 For K = 0 To 3

 Cells(2, 2 + K) = X(1 + K)

 'Cells(3, 2 + K) = X(4 + K)

 Next K

 Call Calculations(X(), SQRDev(), Y)

 Cells(7, 9) = Y

 If Y < Yold Then

 xo(I) = X(I)

 dX(I) = dX(I) * Expand_Factor

 Yold = Y

 Else

 X(I) = xo(I)

 dX(I) = Contract_Factor * dX(I) '0.5 is the contraction factor. You

could use another number

 Call Calculations(X(), SQRDev(), Y)

 End If

 'output

 127

 'Cells(2, 2).Value = X(1)

 For K = 0 To 3

 Cells(2, 2 + K) = X(K)

 'Cells(3, 2 + K) = X(4 + K)

 Next K

 Cells(zip + 1, 38) = zip

 Next I

 Cells(J + 1, 38) = J

 zip = J

 'introducing the Steady State Stopping Criterion after each set of iterations

 completes

 Call Steady_State(SQRDev(), SS)

 If SS = "Y" Then

 Cells(1 + nt, 18).Value = nt

 For K = 0 To 3

 Cells(1 + nt, 19 + K).Value = xo(K + 1)

 Next K

 Cells(1 + nt, 32).Value = Yold

 Cells(1 + nt, 33).Value = Timer - Trial_timer

 'time required for each iteration

 'get out of the trial

 GoTo 101

 End If

 Next J

101

Call Calculations(xo(), SQRDev(), Y)

 'zip = 0

 128

Next nt

Cells(1 + nt, 33) = Timer - Total_timer

Call FInal_Pick

End Sub

Main Program: Hooke Jeeves Optimizer

The program is split into two sections. The first is the main program described below,

where we have the Best-of-N formula repeating the trials, and consequently reporting the

model with the smallest SSD.

Sub Hooke_Jeeves()

' Prithwijit Ghoshal

'Modified

'Oct 15, 2007

'Oct 16, 2007

'variable declaration

 Dim Yold As Double

 Dim Y As Double

 Dim Trial_timer As Double

 Dim Total_timer As Double

 129

 Total_timer = Timer

 ActiveWorkbook.Sheets("Sheet1").Activate

N = 7 'decision variables

M = 200 'number of iterations

zip = 1

Call Find_Points

ReDim Xe(1 To Npoints)

ReDim Ye(1 To Npoints)

ReDim Xs(1 To Npoints)

ReDim Ys(1 To Npoints)

ReDim SQRDev(1 To Npoints)

Nrand = Round(Cells(3, 8).Value * Npoints / 100)

Call Initial_Calculations

Expand_Factor = 1.5

Contract_Factor = -0.5 / Expand_Factor

'to run one trial

conf = Cells(1, 9) / 100 '90

bestfract = Cells(1, 11) / 100 '10

NumTrials = 1

 If conf < 1 And conf > 0 And bestfract < 1 And bestfract > 0 Then NumTrials =

Int(0.5 + Log(1 - conf) / Log(1 - bestfract))

 130

 Cells(5, 2) = NumTrials

For nt = 1 To NumTrials

 Range(Cells(1, 38), Cells(201, 40)).Clear

 'random start using a range of +5 to -5

 xo(1) = Rnd * 4 - 2

 For K = 1 To 7

 xo(K) = Rnd * 4 - 2#

 Next K

 'data echo

 Cells(2, 2).Value = xo(1)

 For K = 1 To 3

 Cells(2, 2 + K) = xo(1 + K)

 Cells(3, 2 + K) = xo(4 + K)

 Next K

 HookeJeevesD 0.0001, 200, 7, 0.1, True, False, 1, xo(), Y, 1

 Cells(1 + nt, 19).Value = xo(1)

 Cells(1 + nt, 20).Value = xo(2)

 Cells(1 + nt, 24).Value = xo(3)

 Cells(1 + nt, 28).Value = xo(4)

 Cells(1 + nt, 21).Value = xo(5)

 Cells(1 + nt, 25).Value = xo(6)

 Cells(1 + nt, 29).Value = xo(7)

 Cells(1 + nt, 32).Value = Y

 Cells(1 + nt, 33).Value = Timer - Trial_timer

Next nt

End Sub

 131

This is the second subroutine which is based on the Hooke Jeeves’ algorithm described in

Chapter 3.

Sub HookeJeevesD(dEpsilon As Double, lngMaxIter As Long, iDim As Integer, _

 dAlpha As Double, bUserPatt As Boolean, bDebug As Boolean, _

 lngFun As Long, aX() As Double, dFXFinal As Double, _

 lngTotFunCall As Long)

'T Judson Wooters,Prithwijit Ghoshal

Dim arrXSolve() As Double

Dim arrXCurr() As Double

Dim arrXPast() As Double

Dim arrXDel() As Double

Dim arrFXSolve(1 To 4) As Double

Dim dFXPast As Double

Dim dMin As Double

Dim iMin As Long

Dim iCount As Integer

Dim lngFunCall As Long

Dim lngPts As Long

Dim lngActPts As Long

Dim bPattern As Boolean

Dim bFoundMin As Boolean

Dim K As Long

Dim J As Long

Dim N As Long

Dim P As Long

bPattern = False

bFoundMin = False

lngTotFunCall = 0

 132

ReDim arrXCurr(1 To iDim + 7)

ReDim arrXPast(1 To iDim)

ReDim arrXDel(1 To iDim)

ReDim arrXSolve(1 To 4, 1 To iDim)

For K = 1 To iDim

 arrXSolve(2, K) = aX(K)

Next K

lngPts = lngPts + 1

lngActPts = lngActPts + 1

For K = 1 To iDim

 arrXCurr(K) = arrXSolve(2, K)

Next K

Call Calculations(arrXCurr(), SQRDev(), arrFXSolve(2))

For K = 0 To lngMaxIter

 zip = K + 1

 Cells(zip + 1, 38) = zip

 If Not bPattern Then

 For N = 1 To iDim

 arrXSolve(1, N) = arrXSolve(2, N)

 Next N

 arrFXSolve(1) = arrFXSolve(2)

 End If

 133

 iCount = 0

 For J = 1 To iDim

 DiscExplore arrXSolve(), arrFXSolve, dAlpha, iDim, J, lngFun, lngFunCall,

_

 arrXDel()

 dMin = arrFXSolve(2)

 iMin = 2

 For N = 2 To 4

 If dMin > arrFXSolve(N) Then

 dMin = arrFXSolve(N)

 iMin = N

 End If

 Next N

 If iMin <> 2 Then

 For N = 1 To iDim

 arrXSolve(2, N) = arrXSolve(iMin, N)

 Next N

 arrFXSolve(2) = arrFXSolve(iMin)

 End If

 If J < iDim Then

 lngFunCall = 0

 End If

 Next J

 'steady state check

 Call Steady_State(SQRDev(), SS)

 If SS = "Y" Then

 134

 bFoundMin = True

 Exit For

 End If

 If arrFXSolve(1) = arrFXSolve(2) Then

 If dAlpha < dEpsilon Then

 bFoundMin = True

 Exit For

 End If

 dAlpha = dAlpha / 2

 If bPattern Then

 bPattern = False

 End If

 ElseIf (arrFXSolve(1) - arrFXSolve(2)) < dEpsilon And _

 (arrFXSolve(1) - arrFXSolve(2)) > 0 Then

 If dAlpha < dEpsilon Then

 bFoundMin = True

 Exit For

 Else

 dAlpha = dAlpha / 2

 End If

 ElseIf arrFXSolve(1) - arrFXSolve(2) > 0 And bUserPatt Then

 For N = 1 To iDim

 arrXPast(N) = arrXSolve(1, N)

 Next N

 dFXPast = arrFXSolve(1)

 For N = 1 To iDim

 arrXSolve(1, N) = arrXSolve(2, N)

 Next N

 arrFXSolve(1) = arrFXSolve(2)

 135

 'pattern jump

 For N = 1 To iDim

 arrXSolve(2, N) = arrXSolve(2, N) + (arrXSolve(2, N) - arrXPast(N))

 Next N

 For N = 1 To iDim

 arrXCurr(N) = arrXSolve(2, N)

 Next N

 Call Calculations(arrXCurr(), SQRDev(), arrFXSolve(2))

 bPattern = True

 ElseIf bUserPatt Then

 For N = 1 To iDim

 arrXSolve(2, N) = arrXSolve(1, N)

 Next N

 arrFXSolve(2) = arrFXSolve(1)

 bPattern = False

 End If

 lngTotFunCall = lngTotFunCall + lngFunCall

 lngFunCall = 0

Next K

If Not bFoundMin And bDebug Then

 For N = 1 To iDim

 Sheet2.Cells(6, 9 + N).Value = arrXSolve(2, N)

 Next N

 Sheet2.Cells(7, 9).Value = "May not have found minimum"

End If

For K = 1 To iDim

 136

 aX(K) = arrXSolve(2, K)

Next K

dFXFinal = arrFXSolve(2)

End Sub

Sub DiscExplore(arrXSolve() As Double, arrFXSolve() As Double, dAlpha As

Double, _

 iDim As Integer, iIndex As Long, lngFun As Long, lngFunCall As

Long, _

 arrXDel() As Double)

'T Judson Wooters,Prithwiit Ghoshal

Dim arrXCurr() As Double

Dim K As Long

Dim J As Long

ReDim arrXCurr(1 To iDim + 7)

For K = 3 To 4

 For J = 1 To iDim

 arrXSolve(K, J) = arrXSolve(2, J)

 Next J

Next K

arrXSolve(3, iIndex) = arrXSolve(2, iIndex) + dAlpha

For K = 1 To iDim

 arrXCurr(K) = arrXSolve(3, K)

Next K

Call Calculations(arrXCurr(), SQRDev(), arrFXSolve(3))

arrXSolve(4, iIndex) = arrXSolve(2, iIndex) - dAlpha

For K = 1 To iDim

 arrXCurr(K) = arrXSolve(4, K)

 137

Next K

Call Calculations(arrXCurr(), SQRDev(), arrFXSolve(4))

End Sub

Main Program: Broydon-Fletcher-Goldfarb-Shanno (BFGS)

This is again split into a number of sections. The first is using the Best-of-N formula to

repeat trials, and consequently finds the lowest SSD for the solution.

Sub B_F_G_S()

'Prithwijit Ghoshal

'Modified

'Feb 24, 2008

'

'variable declaration

 Dim Yold As Double

 Dim Y As Double

 Dim Trial_timer As Double

 Dim Total_timer As Double

 Total_timer = Timer

 ActiveWorkbook.Sheets("Sheet1").Activate

N = 4 'decision variables

 138

M = 200 'number of iterations

zip = 1

Call Find_Points

ReDim Xe(1 To Npoints)

ReDim Ye(1 To Npoints)

ReDim Xs(1 To Npoints)

ReDim Ys(1 To Npoints)

ReDim SQRDev(1 To Npoints)

Nrand = Round(Cells(3, 8).Value * Npoints / 100)

Call Initial_Calculations

Expand_Factor = 1.5

Contract_Factor = -0.5 / Expand_Factor

'to run one trial

conf = Cells(1, 9) / 100 '90

bestfract = Cells(1, 11) / 100 '10

NumTrials = 1

 If conf < 1 And conf > 0 And bestfract < 1 And bestfract > 0 Then NumTrials =

Int(0.5 + Log(1 - conf) / Log(1 - bestfract))

 Cells(5, 2) = NumTrials

 NumTrials = 1

For nt = 1 To NumTrials

 Range(Cells(1, 38), Cells(201, 40)).Clear

 139

 'initializations

 Nf = 0#

 Df = 0#

 Xf = 0#

 'random start using a range of +5 to -5

 xo(1) = Rnd * 4 - 2

 For K = 1 To 7

 xo(K) = Rnd * 4 - 2#

 Next K

 'data echo

 Cells(2, 2).Value = xo(1)

 For K = 1 To 3

 Cells(2, 2 + K) = xo(1 + K)

 Cells(3, 2 + K) = xo(4 + K)

 Next K

 'HookeJeevesD 0.0001, 200, 4, 0.1, True, False, 1, xo(), Y, 1

 BFGS 0.0001, 200, 13, 1, 0.0001, False, True, 1, 100, 0.001, xo(), Y, 1

 Cells(1 + nt, 19).Value = xo(1)

 Cells(1 + nt, 20).Value = xo(2)

 Cells(1 + nt, 24).Value = xo(3)

 Cells(1 + nt, 28).Value = xo(4)

 Cells(1 + nt, 32).Value = Y

 Cells(1 + nt, 33).Value = Timer - Trial_timer

Next nt

Call Final_Pick

End Sub

 140

This is used to find the derivatives of the required objective function based on a forward

difference.

Function fF_Der1FD(aX() As Double, lngIndex As Long, iDim As Integer, _

 dStep As Double, lngFun As Long, lngFunCall As Long, _

 aXDel() As Double) As Double

' T. Judson Wooters 29-MAR-2007

‘Modified: Prithwijit Ghoshal

' Function used to determine derivative using 4 data points and central difference

' Inputs: aX() array of current iteration x locations

' lngIndex determines which element to base derivative on

' iDim # of dimensions

' dStep stepsize for finite difference

' lngFun function number corresponding to function in Newton

Interface Module

' lngDerCall keeps track of derivative calls

' aXDel() dummy variable, used with other programs which access

fFX function

' Output: fF_Der1FD Derivative

Dim aFX(1 To 5) As Double ' function evaluation for all 5 points

Dim aXCurr() As Double ' temporary location for x locations

Dim K As Integer ' counter variable

ReDim aXCurr(1 To iDim)

For K = 1 To iDim

 aXCurr(K) = aX(K) ' Load temporary x's

Next K

Call Calculations(aX(), SQRDev(), aFX(3))

 141

' X(Curr+1)

aXCurr(lngIndex) = aX(lngIndex) + dStep

Call Calculations(aXCurr(), SQRDev(), aFX(4))

End Function

This is the main routine which is based on the BFGS algorithm described in Chapter 3.

Sub BFGS(dEpsilon As Double, lngMaxIter As Long, iDim As Integer, _

 dLambda As Double, dStep As Double, bDebug As Boolean, _

 bLineNR As Boolean, lngFun As Long, lngMaxIterNR As Long, _

 dEpsilonNR As Double, aX() As Double, dFXFinal As Double, _

 lngTotFunCall As Long)

' T. Judson Wooters, 29-MAR-2007

' Main BFGS (Quasi-Newton) program to find minimum, inputs explained in

RunBFGS sub

Dim aXNext() As Double ' new set of x values based on iteration

Dim aXPrev() As Double ' old set of x values used to reset algorithm

Dim aI() As Double ' identity matrix

Dim aSearch() As Double ' search direction vector

Dim aBDelInv() As Double ' inverse B difference matrix

Dim aBNegInv() As Double ' negative inverse B matrix

Dim aBInv() As Double ' inverse B matrix

Dim aF_Der1() As Double ' vector of 1st derivatives

Dim aF_Der1Prev() As Double ' previous vector of 1st derivatives

Dim aPosDef() As Double ' intermediate array in determining if B inverse is

pos def

Dim aXDel() As Double ' used in line searching by Newton module (stores

search dir)

Dim aXDiff() As Double ' difference in x between iterations

 142

Dim aGDiff() As Double ' difference in 1st derivatives between iterations

Dim aInt1() As Double ' intermediate array in BFGS

Dim aInt2() As Double ' intermediate array in BFGS

Dim aInt3() As Double ' intermediate array in BFGS

Dim aInt4() As Double ' intermediate array in BFGS

Dim aInt5() As Double ' intermediate array in BFGS

Dim dFX As Double ' function evaluation

Dim dFXNext As Double ' function evaluation based on next x values

Dim dLambdaIn As Double ' default step for multiplication with search

direction

Dim dPosDef As Double ' intermediate value in determining if B inverse is

pos def

Dim dSearch As Double ' intermediate value in determining if search

direction is improving

Dim dInt4 As Double ' intermediate value in BFGS

Dim dInt5_1 As Double ' intermediate value in BFGS

Dim dInt5_2 As Double ' intermediate value in BFGS

Dim dMagGrad As Double ' magnitude of 1st derivatives, used with

stopping criteria

Dim lngFunCall As Long ' number of function calls per iteration

Dim lngDerCall As Long ' number of derivative calls per iteration

Dim bCauchy As Boolean ' True = current iteration is steepest decent

Dim bPosDef As Boolean ' True = positive definate

Dim bMinFound As Boolean ' True = algorithm finished meeting the

stopping criteria

Dim K As Long ' counting variable

Dim J As Long ' counting variable

Dim N As Long ' counting variable

' ----- INITIALIZE VARIABLES -----

dLambdaIn = dLambda

 143

bCauchy = True

bMinFound = False

dFXFinal = 0

lngTotFunCall = 0

ReDim aXNext(1 To iDim)

ReDim aI(1 To iDim, 1 To iDim)

ReDim aBInv(1 To iDim, 1 To iDim)

ReDim aBNegInv(1 To iDim, 1 To iDim)

ReDim aBDelInv(1 To iDim, 1 To iDim)

ReDim aF_Der1(1 To iDim)

ReDim aPosDef(1 To iDim)

ReDim aSearch(1 To iDim)

ReDim aXDel(1 To iDim)

ReDim aXDiff(1 To iDim)

ReDim aGDiff(1 To iDim)

ReDim aF_Der1Prev(1 To iDim)

ReDim aXPrev(1 To iDim)

ReDim aInt1(1 To iDim)

ReDim aInt2(1 To iDim, 1 To iDim)

ReDim aInt3(1 To iDim, 1 To iDim)

ReDim aInt4(1 To iDim, 1 To iDim)

ReDim aInt5(1 To iDim, 1 To iDim)

For K = 1 To iDim

 For J = 1 To iDim

 If K = J Then

 aI(K, J) = 1

 Else

 aI(K, J) = 0

 End If

 144

 Next J

Next K

Call Calculations(aX(), SQRDev(), dFX)

' ----- BEGIN BFGS ALGORITHM -----

For K = 0 To lngMaxIter

 zip = K + 1

 Cells(zip + 1, 38) = zip

 ' Find array of first derivatives

 For J = 1 To iDim

 aF_Der1(J) = fF_Der1FD(aX(), J, iDim, dStep, lngFun, lngFunCall,

aXDel())

 Next J

 ' If steepest decent iteration, B inverse is the identity matrix

 If bCauchy Then

 For J = 1 To iDim

 For N = 1 To iDim

 aBInv(J, N) = aI(J, N)

 Next N

 Next J

 ' If BFGS step, find B inverse using update calculations

 Else

 For J = 1 To iDim

 aXDiff(J) = aX(J) - aXPrev(J)

 aGDiff(J) = aF_Der1(J) - aF_Der1Prev(J)

 Next J

 145

 MatVect aGDiff(), aBInv(), aInt1(), iDim

 For J = 1 To iDim

 aInt1(J) = aXDiff(J) - aInt1(J)

 Next J

 VectVectT aInt1(), aXDiff(), aInt2(), iDim

 VectVectT aXDiff(), aInt1(), aInt3(), iDim

 dInt4 = fVectTVect(aGDiff(), aXDiff(), iDim)

 If dInt4 = 0 Then Exit For

 For J = 1 To iDim

 For N = 1 To iDim

 aInt4(J, N) = (aInt2(J, N) + aInt3(J, N)) / dInt4

 Next N

 Next J

 dInt5_1 = fVectTVect(aInt1(), aGDiff(), iDim)

 dInt5_2 = (fVectTVect(aGDiff(), aXDiff(), iDim)) ^ 2

 VectVectT aXDiff(), aXDiff(), aInt5(), iDim

 For J = 1 To iDim

 For N = 1 To iDim

 aInt5(J, N) = (dInt5_1 / dInt5_2) * aInt5(J, N)

 aBDelInv(J, N) = aInt4(J, N) - aInt5(J, N)

 aBInv(J, N) = aBInv(J, N) + aBDelInv(J, N)

 Next N

 Next J

 End If

 ' Negative of B inverse matrix

 For J = 1 To iDim

 For N = 1 To iDim

 aBNegInv(J, N) = -aBInv(J, N)

 Next N

 Next J

 146

 ' Determine if search direction is improving

 MatVect aF_Der1(), aBNegInv(), aSearch(), iDim

 dSearch = fVectTVect(aF_Der1(), aSearch(), iDim)

 ' Determine if B inverse is positive definate

 VectTMat aX(), aBInv(), aPosDef(), iDim

 dPosDef = fVectTVect(aPosDef(), aX(), iDim)

 If dPosDef >= 0 And dSearch < 0 Then

 bPosDef = True

 Else

 bPosDef = False

 End If

 ' If matrix is positive definate, find new x values

 If bPosDef Then

 ' Find best 10% of dlambda to make f(x) decrease with 95% confidence

 ' interval using RRR paper on neural network training

 For N = 1 To 30

 If bLineNR Then

 ' newton raphson line search

 Newton dLambda, dEpsilonNR, lngMaxIterNR, "Min,” dStep, aX(), _

 aSearch(), False, -1, iDim, lngFun, lngFunCall

 End If

 For J = 1 To iDim

 aXNext(J) = aX(J) + dLambda * aSearch(J)

 Next J

 'dFXNext = fFX(0, aXNext(), aXDel(), 0, lngFun, iDim, lngFunCall)

 Call Calculations(aXNext(), SQRDev(), dFXNext)

 147

 If dFXNext < dFX Then Exit For

 If bLineNR Then

 dLambda = 10 ^ (RandomNum(-6, 1))

 End If

 Next N

 bCauchy = False

 ' If matrix not positive definate, repeat this iteration using steepest decent

 Else

 bCauchy = True

 End If

 ' If the current iteration is positive definate (calculated new x values),

 ' check for termination

 'steady state check

 If bPosDef Then

 Call Steady_State_1(SQRDev(), SS)

 If SS = "Y" Then

 bFoundMin = True

 Exit For

 End If

End If

 ' Replace current step with next step

 For J = 1 To iDim

 aF_Der1Prev(J) = aF_Der1(J)

 aXPrev(J) = aX(J)

 aX(J) = aXNext(J)

 Next J

 dFX = dFXNext

 148

 lngTotFunCall = lngTotFunCall + lngFunCall

 lngFunCall = 0

 lngDerCall = 0

 ' Reset BFGS variables

 For J = 1 To iDim

 aInt1(J) = 0

 For N = 1 To iDim

 aInt2(J, N) = 0

 aInt3(J, N) = 0

 aInt4(J, N) = 0

 aInt5(J, N) = 0

 aBDelInv(J, N) = 0

 Next N

 Next J

Next K

' If the minimum was not found by meeting stopping criteria, raise a flag

If Not bMinFound And bDebug Then

 MsgBox "Min may not have been found"

 For J = 1 To iDim

 'shtBFGS.Cells(6, 9 + J).Value = aX(J)

 Next J

 'shtBFGS.Cells(6, 16).Value = dFX

End If

dFXFinal = dFXNext

End Sub

 149

The following is a set of routines created for matrix manipulations.

Sub VectTMat(aVect() As Double, aMat() As Double, aVectOut() As Double,

iDim As Integer)

' T Judson Wooters, 29-MAR-2007

' Subprogram to multiply a transposed vector with a matrix

' Inputs: aVect() transposed vector

' aMat() matrix

' iDim number of dimensions

' Outputs: aVectOut() resulting vector

Dim dSum As Double

Dim J As Long

Dim N As Long

 For J = 1 To iDim

 dSum = 0

 For N = 1 To iDim

 dSum = dSum + aVect(N) * aMat(N, J)

 Next N

 aVectOut(J) = dSum

 Next J

End Sub

Sub MatVect(aVect() As Double, aMat() As Double, aVectOut() As Double,

iDim As Integer)

' T Judson Wooters, 29-MAR-2007

' Subprogram to multiply a matrix with a vector

' Inputs: aVect() vector

' aMat() matrix

 150

' iDim number of dimensions

' Outputs: aVectOut() resulting vector

Dim dSum As Double

Dim J As Long

Dim N As Long

 For J = 1 To iDim

 dSum = 0

 For N = 1 To iDim

 dSum = dSum + aVect(N) * aMat(J, N)

 Next N

 aVectOut(J) = dSum

 Next J

End Sub

Sub VectVectT(aVect1() As Double, aVect2() As Double, aMatOut() As Double,

iDim As Integer)

' T Judson Wooters, 29-MAR-2007

' Subprogram to multiply a vector with a transposed vector

' Inputs: aVect1() vector

' aVect2() transposed vector

' iDim number of dimensions

' Outputs: aMatOut() resulting matrix

Dim dSum As Double

Dim J As Long

Dim N As Long

 For J = 1 To iDim

 151

 For N = 1 To iDim

 aMatOut(J, N) = aVect1(J) * aVect2(N)

 Next N

 Next J

End Sub

Function fVectTVect(aVect1() As Double, aVect2() As Double, iDim As Integer)

As Double

' T Judson Wooters, 29-MAR-2007

' Function to multiply a transposed vector with a vector

' Inputs: aVect1() transposed vector

' aVect2() vector

' iDim number of dimensions

' Outputs: fVectTVect resulting scaler

Dim J As Long

 For J = 1 To iDim

 fVectTVect = fVectTVect + aVect1(J) * aVect2(J)

 Next J

End Function

This is a modified Subroutine that looks at a complete selection of the deviations and not

a random one.

Sub Steady_State_1(sqdev() As Double, SS As String)

‘Prithwijit Ghoshal

‘modified SS criteria to accommodate the BFGS routine. Without random picks

' selection with out replacement.

 152

Dim Index() As Integer

ReDim Index(1 To Nrand)

Sum = 0

SS = "N"

Call RANDOM(Index())

For L = 1 To Nrand

Sum = Sum + sqdev(Index(L))

Cells(L, 35) = Index(L)

Next L

Sum = Sqr(Sum)

Cells(zip + 1, 39) = Sum

Nf = 0.2 * (Xf - Sum) ^ 2 + 0.8 * Nf

Df = 0.2 * (Sum - Sumold) ^ 2 + 0.8 * Df

Sumold = Sum

Xf = 0.2 * Sum + 0.8 * Xf

RStatistic = 1.8 * Nf / Df

Cells(zip + 1, 40) = Xf

If RStatistic < 1 Then

 SS = "Y"

 Cells(nt + 1, 15) = Nf

 Cells(nt + 1, 16) = Df

 Cells(nt + 1, 17) = Xf

 Cells(nt + 1, 13) = RStatistic

 Cells(nt + 1, 14) = SS

End If

Cells(6, 12) = Nf

Cells(7, 12) = Df

Cells(8, 12) = Xf

Cells(4, 12) = RStatistic

Cells(5, 12) = SS

 153

End Sub

Functions:

This can be used by changing the Calculations subroutine to use the function “AA” and

by changing the number of decision variables involved in the required optimizer.

The first function is the Neural Network created by Dr R. Russell Rhinehart.

Function AA(X, B, w11, w12, w13, w14, w21, w22, w23, w24, w1, w2, w3, w4)

' R. Russell Rhinehart Neural Network Demo Program

' School of Chemical Engineering, Oklahoma State university

' rrr@okstate.edu

' Last revised November 2005

'

' Program computes the NN output for a 1-input-1-output NN with input bias,

' three hidden layer neurons, and one output neuron. NN transfer function

' is bi-polar sigmoidal. Training is by EXCEL Solver add in.

'

Dim WIH(2, 4) 'Weights on hidden layer

Dim WHO(4) 'weights on output layer

Dim N(4) 'Neuron Output

'

' Get values of weights from spreadsheet

'

WIH(1, 1) = w11

WIH(1, 2) = w12

 154

WIH(1, 3) = w13

WIH(1, 4) = w14

WIH(2, 1) = w21

WIH(2, 2) = w22

WIH(2, 3) = w23

WIH(2, 4) = w24

WHO(1) = w1

WHO(2) = w2

WHO(3) = w3

WHO(4) = w4

For J = 1 To 2 'for each of the hidden neurons

 z = B * WIH(1, J) + X * WIH(2, J) 'calculate weighted input

 N(J) = (Exp(z) - Exp(-z)) / (Exp(z) + Exp(-z)) 'calculate neuron output

Next J

 z = N(1) * WHO(1) + N(2) * WHO(2) + N(3) * WHO(3) + N(4) * WHO(4)

'calculate weighted input for output neuron

 AA = (Exp(z) - Exp(-z)) / (Exp(z) + Exp(-z)) 'calculate neuron output for

output neuron

End Function

 155

This is a simple third order polynomial function

Function FF(A As Double, B As Double, C As Double, D As Double, X As

Double) As Double

'Prithwijit Ghoshal

'November 07, 2007

'Polynomial function

FF = A + B * X + C * X ^ 2 + D * X ^ 3

End Function

 156

APPENDIX D

CASE INDEX FOR STEADY STATE VS EXCESSIVE ITERATIONS ANALYSIS

Case Model Used Optimizer
Steady State

(Y/N)
Data Set

(A/B)

A1 Polynomial RRR Y A

A2 Polynomial RRR N A

B1 Polynomial HJ Y A

B2 Polynomial HJ N A

C1 Polynomial BFGS Y A

C2 Polynomial BFGS N A

D1 Neural Network RRR Y A

D2 Neural Network RRR N A

E1 Neural Network HJ Y A

E2 Neural Network HJ N A

F1 Neural Network BFGS Y A

F2 Neural Network BFGS N A

G1 Polynomial RRR Y B

G2 Polynomial RRR N B

H1 Polynomial HJ Y B

H2 Polynomial HJ N B

I1 Polynomial BFGS Y B

I2 Polynomial BFGS N B

J1 Neural Network RRR Y B

J2 Neural Network RRR N B

K1 Neural Network HJ Y B

K2 Neural Network HJ N B

L1 Neural Network BFGS Y B

L2 Neural Network BFGS N B

VITA

Prithwijit Ghoshal

Candidate for the Degree of

Master of Science

Thesis: STUDY OF AN INITIALIZATION METHOD AND STOPPING CRITERIA

FOR NONLINEAR OPTIMIZATION

Major Field: Chemical Engineering

Biographical:

Personal Data: Born on January 04, 1985

to Timir Baran Ghoshal and Bharati Ghoshal

Education: Graduated High School from the Assembly of God Church School,

Kolkata in 2002. Completed Bachelor of Engineering in Chemical

Engineering from Siddaganga Institute of Technology, affiliated to

Visveswaraya Technological University, Karnataka India. Completed

the requirements for the Master of Science or Arts in Chemical

Engineering at Oklahoma State University, Stillwater, Oklahoma in July,

2008

Experience: Worked as Teaching Assistant for ENGR 1412 (Computer

Programming in Visual Basic for Applications) from August 2006 to

May 2008). Worked as teaching Assistant for CHE 5723 (Optimization

Applications) from August 2007 to December 2007. Working as

Research Assistant from August 2006 to present

Professional Memberships:

Golden Key Honor Society 2007 to present

American Chemical Society June 2008 to present

ADVISER’S APPROVAL: Dr R. Russell Rhinehart

Name: Prithwijit Ghoshal Date of Degree: July, 2008

Institution: Oklahoma State University Location: Stillwater, Oklahoma

Title of Study: STUDY OF AN INITIALIZATION METHOD AND STOPPING

CRITERIA FOR NONLINEAR OPTIMIZATION

Pages in Study: 169 Candidate for the Degree of Master of Science

Major Field: Chemical Engineering

Scope and Method of Study: An initialization method previously used in neural network

training is combined with a novel steady state stopping

criterion and used in the empirical modeling optimization

of various applications and modeling objectives. The

effectiveness of both the initialization method and the

stopping criterion are tested using direct and indirect

optimization algorithms, on contrived data, and on

experimental data from a two-phase flow system. The study

attempts to create global optimization logic for nonlinear

modeling.

Findings and Conclusions: The global optimization logic developed for empirical

modeling optimization is scale independent, requires no a

priori knowledge to stop a trial, and is found to be robust

while handling noisy data. The logic defines the number of

random starts that will find a user defined "best" percentage

of possible model solutions from process data with a

desired confidence. The logic can use a variety of nonlinear

local optimizers, and can be incorporated in future

optimization software as a modeling tool.

