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CHAPTER I 

 

 

INTRODUCTION 

 

Filtering is the process of removing the noise associated with process measurements in 

order to observe the noiseless “or true” value. Filters seek to identify the true process 

signal in the presence of noise [6].  

It is desired to have a filter that gives an accurate process signal for a variety of patterns 

in process. This is because filters are used to “filter out” the noise in a process and the 

more accurate the resulting signal, the better the filter. In this work, four filters are 

evaluated and compared for performance; and based on the comparison, conclusions are 

made. The comparison aspects include speed of tracking a change in the process 

(measured by ISE (Integral Sum of errors)), closeness of the filtered value to the true 

signal when there is no change in the process (also measured by ISE), computational 

burden, complexity for human understanding, and cost issues. 

  

A series of simulations was done to generate data for the comparison using Visual Basic 

for Applications Programming. Noise was added to the simulation in order to corrupt the 

produced signal. The noisy signal was then filtered to obtain the true value which is 

known. Based on the filtered value, measures of goodness were calculated for each filter 
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in each simulated run.  The simulation involved a steady base value and the introduction 

of a change to the base value. This steady base value is used to obtain the accuracy of the 

filter in finding the true signal value for a steady value, while the change is introduced in 

order to obtain the speed of tracking a change and the accuracy of the filter in tracking 

the change. The performance of the filters was then evaluated using the calculated ISE 

values. Step change, ramp change and oscillatory changes were introduced to the base 

value and the effect on the four filter outputs was then evaluated for results. 

The experiments also included range of tuning factors to determine the best value to give 

a non-dominated individual on a multi-objective (ISE1 vs. ISE2) plane. Where ISE1 

involved no change in a steady base value and ISE2 involved the introduction of a change 

to the steady state base value. The experiments included three changes; step, ramp and 

oscillatory. 

The filters considered were the first-order filter (FOF) [6], the self-tuning filter (STF) [1], 

the CUSUM filter [6] and the Kalman filter [4].  

 

The first-order filter was chosen because it is used in the industry as a common industrial 

filtering practice [1]. The self-tuning filter was chosen because it can achieve a high ratio 

of noise reduction without giving up its fast tracking of a process [1]. The Kalman filter 

was chosen because it is a well-known and often-used tool for mathematical stochastic 

estimation from noisy sensor measurements [3]. The CUSUM filter was chosen as an 

innovative filter to compare its performance to other industrially used filter such as the 

first-order and the Kalman filter. 
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The first-order filter averages data to reduce the effects of noise, but it also causes 

undesirable lag in the filtered variable. The greater the noise amplitude, the higher the 

required filtering. It is an Infinite Impulse Response (IIR) filter. 

 

The objective of the self-tuning filter is to determine the filtering factor (λ) such that there 

is a 95% probability that the true value lies within the user chosen confidence interval 

about the average [1]. 

 

The CUSUM filter is a novel filter based on a cumulative sum of deviations. It is derived 

from Statistical Process Control Concepts (SPC) [6]. The CUSUM filter action holds the 

filtered value constant until there is sufficient statistical level of confidence that a change 

has occurred. 

 

The Kalman filter is a recursive data processing algorithm [5]. A Kalman filter combines 

all available measurement data, plus prior knowledge about the system and measuring 

devices, to produce an estimate of the desired variables. It estimates a process by using a 

form of feedback control by utilizing time update equations and measurement update 

equations. 
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CHAPTER II 
 

 

REVIEW OF LITERATURE 

 

 

2.1 Noise 

In this work, noise is defined as a fluctuating influence on process measurement that 

cannot be controlled because it is either: 1) a fluctuating misrepresentation of the true 

Process Variable (PV) (for example, some random electrical noise is added to the signal 

through the sensor and the electrical circuits) or 2) a transient influence on the PV. 

 

 Noise is often described as a zero-mean, independent, Gaussian distributed addition to 

the true PV (process variable) value [6]. This time varying ratio of “pure” signal to the 

electrical noise affects the quality of the information. [7].  

 

2.2Why filter 

Filtering is done in order to remove noise and obtain the true process value. In process 

control, process noise and instrument noise are undesirable. This is because the controller 

will respond to the noise rather than the true process change. The noise masks the true 
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process variable. A result of this would be an increase in the process variability and 

increased wear and tear in final control element. 

2.3 Use of filters and Statistical Process Control (SPC) 

Usually the process variable (PV) is filtered and the filtered value is fed to the controller. 

Statistical Process Control (SPC) is a philosophy that overrides the desire to implement a 

change until there is sufficient statistical evidence to implement the change [6]. Statistical 

Process Control involves a broad scope of activities including the design of sampling and 

inspection schemes, experimental design and analysis to detect shifts in the mean or 

variability of a process [3]. 

2.4 Filters 

There are two models for a digital filter. These are the Infinite Impulse Response filter 

(IIR) and the Finite Impulse Response filter (FIR) [8]. FIR has a finite memory. It is non 

recursive because it does not require a feedback loop in its implementation. IIR has 

infinite memory. It is called a recursive filter because the output is fed back into the 

input.  

 

One of the most important criterions for filters is the squared error minimization [1]. This 

is because a filter with a low value of the squared error gives an output that is very close 

to the true value of the signal it is filtering, while one with a high value of the squared 

error gives an output that is far away from the true value of the filtered signal. 
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2.4.1 First-Order filter: 

The first-order filter averages data to reduce the effects of noise. It is a recursive filter. It 

has an undesirable characteristic of introducing a lag in the control loop. This lag in the 

loop affects stability, and undesirably limits the aggressiveness of the controller. When 

there is a change in process variable (PV) value, the first-order filter output lags behind. 

During a noisy steady state period, the first-order filter output keeps changing at every 

sample. The FOF equation is given as [1]: 

��� � � � �����	
 � �1 � �� � ��                                                                                                  �1�  

Where �� is the filtered value 

� is the filtering factor 

i is the sample counter 

And �� is the input signal 

 
 

2.4.2 Self-Tuning Filter 

The self-tuning filter automatically adjusts λ in the FOF. It is based on the 95% 

confidence interval for engineering economic decisions. Its objective is to determine λ 

such that there is a 95% probability that the true steady state process value is within the 

user chosen confidence interval about the average. The three equations for the self-tuning 

filter are [1]: 

��� � 0.1 � �� � ������ � 0.9 � ����	                                                                                                       �2�  

� � ��� ��	
� � 	.	�� �!"#

$# %�	  ,1'                                                                                                               �3�  

��� � �1 � ������	 � ���                                                                                                                             �4�  
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Where x is the current measured value of the signal. 

Where ���� is the old signal measured value. 

Where ��� is the resulting filtered value. 

Where E is the error between the true (unknown) value and the 2.5% extreme value of the 

filtered value. It is chosen by the user.                                                                                             

��� is a measure of data variance. 

2.4.3 CUSUM Filter 

In statistics, 3-sigma is the two specific points on a normal distribution centered about the 

mean. Out of a population, 99.73% of the population will fall between these values. It 

represents the entire population and +3sigma and -3sigma represents the probable range 

of variation [2]. It is used in the industry as an organized and systematic method for 

strategic process improvement, new product and service development relying on 

statistical methods and the scientific method to make dramatic reductions in customer 

defined defect rates [9]. The CUSUM filter is based on this principle. The filter attempts 

to find the mean within noisy data. The concept holds the mean is unchanged, until there 

is sufficient statistical confidence that a real change has occurred. If the Process Variable 

(PV) “really” changes, then the average will shift. The CUSUM gives the criteria for 

making a change as [6]: 

*+,+- � ∑ �/�/0123�
45                                                                                                                                     �5�   

If |*+,+-| > TRIGGER*√9                                                                                                                         �6� 

;�<=>� � ?@��
@�	A ;����� � ? 	

@�	A ��<=> � ������                                                                         �7�  

;/ � C4"DEF#
�                                                                                                                                      �8�  
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Where 9 is the number of samples for which CUSUM had been calculated. 

� is the measured value of the variable. 

�0��� is the old value of the calucated mean of the measured variable. 

;/is defined by equations 7 and 8 

M ≅ 11 (This gives the “best” balance of removing variability from the estimate) 

Trigger value represents the SPC confidence level in a decision. The trigger value of 1 

represents 68.3% confidence level. A value of 2 represents traditional economic decision 

trigger values of I2; representing a 95% confidence in a decision.  A value of 3 is the 3-

sigma 99.73% confidence level. Values from 2 to 4 are generally chosen to balance 

responsiveness and false alarms for particular SPC applications [6]. 

2.4.4 Kalman filter 

The Kalman filter is the application of the combination of the method of combining a 

model of the process with adjusted process measurements to produce an estimate of the 

state [4]. It named after Rudolph E. Kalman, who published a paper describing a 

recursive solution to the discrete-data linear filtering problem in 1960 [8]. The equations 

are given below [3].  

The process model is given as 

JK � L�M�	 � NOM�	 � PK�Q                                                                                                                   �9�  

 

Measurement model is given as 
 RK � SJK � TK                                                                                                                                           �10�  

 PK and TK represent the measurement and process noise. They are assumed to be 

independent, white, and with normal probability distributions. 

P(w)~ N(0,Q)                                                                                                                  (11) 
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P(v)~ N(0,R)                                                                                                                   (12) 

Q is the process noise covariance and R is the measurement noise covariance matrix. 

They usually change with each time step, but are assumed to be constant for simplicity in 

this work. Matrix A relates the state at previous time step k-1 to the current time step k. 

Matrix B relates the optional control input O to the state J. Matrix H in the measurement 

equation relates the state to the measurement RK . 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



17 

 

 
 
 

CHAPTER III 
 

 

METHODOLOGY 

 

3.1 Criteria for comparing filters 

In this work, the following were the criteria used for the filter comparisons: 

1. Integral Sum of errors (ISE) 

2. Cost 

3. Ease of understanding 

3.2 Integral sum of errors 

The integral sum of the errors is used as a basis for the filters comparison. This shows 

how close to the true value that the filtered value of the noisy signal goes. The higher the 

value of the ISE the less desirable the filter. 

The ISE is calculated using the equation:  

V,W � ∑��� � �X��                                                                                                                       �13�  

Where �� is the filtered value while �X is the true value of the signal. Each simulation run 

gives the value of the ISE for each of the four filters. 

All simulation was performed with the following variables 

;<=2 

 dt=0.1 
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 T=100s 

 τn=2 

;< is the standard deviation of the noise 

Y< is noise periodic time 

dt is the time step 

T is the total duration of the simulation 

Gaussian distributed noise was added to the signal to corrupt it. This is to enable the 

evaluation of the filter ability to filter out the noise. Noise is generated using equation 

(14)  

xnoise = sigmaw * Sqr(-2 * Log(Rnd)) * Sin(2 * 3.14159 * Rnd)                                 (14) 

Where sigmaw is the noise standard deviation.                                                                                                

Rnd is the random number generator to generate a random number for generating the 

value of the noise.                                                                                                         

xnoise is the generated noise. 

An optimal filtering value was required for each of the four filters. The optimal filtering 

value is required in order to use this value to tune the filter for the purpose of comparison 

of filter performance relative to the other filters evaluated in this study.  An optimal 

filtering value is the value of the filtering factor that produces the lowest minimization of 

squared error values (i.e. lowest ISE values). To obtain the optimal filtering value, series 

of simulation was run for various tuning values. 
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3.2.1 Base value with a step change introduced 

 

Figure 3.1 Sample of step change 

 

In order to obtain the ISE values during the process with the introduction of a step 

change, the ISE values calculated using the formula above during the steady state is 

subtracted from that obtained during the step change. This gives the true ISE value for the 

introduction of the change.  
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The process is allowed to run for 50 seconds with a time step of 0.1seconds with a steady 

state base value. After the initial 50 seconds, a step change was introduced to by 

changing the steady state base value to a value greater than the steady state base plus the 

standard deviation of the noise (0.1).  The process is made to run for another 50 seconds. 

The time duration of the steady state and the step window is the same in order to be able 

to obtain the ISE due to the introduction of the change to the base value i.e. all variables 

are kept constant except the change. The ISE due to the introduction of the change in the 

signal base value is obtained by subtracting the ISE obtained during the steady state 

window from the step window. This obtained value after the subtraction represents the 

ISE due to the change, since the signal was maintained at constant values before and after 

the change respectively. 
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3.2.2 Base value with a ramp change introduced. 

Figure 3.2 Sample of Ramp Change 

 

In order to obtain the ISE values during the process with the introduction of a ramp 

change, the ISE values were calculated using the formula above during the steady state 

and then with the ramp change introduced. 

The simulation was performed with the steady state base value was held constant for 50 

seconds with a time step of “0.1seconds”. After, the initial 50 seconds, a ramp change 

was introduced using the formula “x =3+ (t-50)” for a subsequent 50 seconds. This gives 
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a ramp signal with a slope of “1”. The signal has an intercept of 3 at time t=50 in order to 

begin the ramp at the previous steady state value. 

“x” is the true value of the signal and “t” is the time. 

3.2.3 Base value with an oscillatory change introduced. 

Figure 3.3 Sample of oscillatory change 

 

        

-10

-5

0

5

10

15

20

0 50 100 150

Signal value

time

Signal vs time for oscillatory change

noisy signal

true signal value



23 

 

In order to obtain the ISE values for a process with the introduction of an oscillatory 

change, the ISE values were calculated using the ISE formula above during the steady 

state and then also with the oscillatory change introduced. 

The base value was fixed for 50 seconds with a time step of “0.1seconds”. After, the 

initial 50 seconds an oscillatory change was introduced using equation (15)  

� � 3 � ��0.729535369032546 � ,V9�Z[\�[�] �?^�_
� A �` � 50�%�)                        (15) 

Where:  

x is the true value of the signal 

 t is the time/duration of the signal 

radians converts the angle ?^�_
� A �` � 50� from radian angles into degrees. (The   

      simulation program was written in VBA which defaults to radians). 

       -0.729535369032546 is the amplitude of the oscillatory function. 

      3 is the base value about which the signal oscillates. 

These values (i.e. angle " ?^�_
� A �` � 50�", amplitude " � 0.729535369032546" were 

chosen by using the “goal seek” trial and error function of Excel in order to obtain an 

oscillatory signal that initiates at the steady state  base value and oscillates about this 

value. 

 The base value is maintained at the same value as the earlier simulation runs of the 

signals with the introduction of a step change and the ramp change. 

A total of 1000 time steps were simulated with 500 time steps for steady base value and 

500 time steps for the base value with an oscillatory change introduced. 
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3.3  Cost 

The cost of the filter was analyzed by 

a. The number of the required arithmetic operations  

b. The number of the required variables. 

The higher the number of the required arithmetic operations the higher the cost since a 

faster processor would be required for the process. While a filter that requires a higher 

number of variables would have a greater cost since more memory space would be 

required to carry out the process. 

3.4 Ease of understanding 

This is a relative comparison based on the education required to understand how the filter 

works. Based on opinion numbers are assigned to each of the filters. The filter with the 

lower numbers require a relatively lower level of education for understanding while those 

with the higher numbers require higher level of education for the understanding. 

3.5 Filter Equations and code: 

3.5.1 CUSUM filter - 

The code for the used for the CUSUM filter is given below [6]. 

IF (first call) THEN  
N = 0  
XOLD = 0.0  
XSPC = 0.0  
V = 0.0  
CUSUM = 0.0  
M=11  
FF1 = REAL((M-2)/(M-1))  
FF2 = (1.0 – FF1)/2.0  

END IF  
Obtain X  
N = N + 1  
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V = FF1* V + FF2*(X – XOLD)**2  
XOLD = X  
CUSUM = CUSUM + X - XSPC  
IF (ABS (CUSUM).GT.TRIGGER*SQR(V*N)) THEN  

XSPC = XSPC + CUSUM/N  
N = 0  
CUSUM = 0.0  

END IF 

 If the absolute value of CUSUM is greater than the critical value of “Trigger*(σ)*N”, the 

filter assumes that a true change in process has occurred, and it updates the filtered value 

as XSPC= XSPC + CUSUM/N. And then the variables “N” and “CUSUM” are reset. If 

the CUSUM is less than the critical value, then the filter assumes that the change in input 

is due to normal variability of the process, not a true change in level. Hence, it does not 

change the filtered output. 

3.5.2 First-order filter 

The code for the first-order filter is given below [1]. 

XF = FF * X + (1 - FF) * XF 

Where XF is the filtered value 

FF is the filtering factor 

And X is the input signal to be filtered for noise 

This filter has the disadvantage that it lags behind the true value. 

3.5.3 Self-tuning filter  

The code equations used for the self-tuning filter are given below[1]. 

DELTAF = 0.9 * DELTAF + 0.1 * (X-XOLD) ^ 2                                                                          
XOLD=X                                                                                                             
LAMBDA=1/(0.5+1.1668*DELTAF/EF^2)                                                                      
IF LAMBDA>1 THEN LAMBDA=1                                                       
XF=LAMBDA*X+(1-LAMBDA)*XF 
where: 
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XF is the filtered value 

LAMBDA is defined above as 1/ (0.5 + 1.1668 * DELTAF / EF ^ 2) 

EF is the filtering value 

X is the measured value of the signal 

DELTAF is a measure of data variance 

3.5.4 Kalman Filter 

The Kalman filter has two sets of equations. They are the time update equations and the 

measurement update equations. The equations are given below [7]. 

Time update: 

XHATMINUS(i) = XHAT(i-1) 

 PMINUS(i) =P(i - 1) + Q 

Measurement update: 

K(i) = PMINUS(i) / (PMINUS(i) + R)                                                                    

XHAT(i) = XHATMINUS(i) + K(i) * (XMEAS - XHATMINUS(i))                                              

P(i) = (1 - K(i)) * PMINUS(i))                                                                                           

XF =XHAT(i)                                                                                                       

where 

XHATMINUS is the projected state 

XHAT is actual state measurement vector 

PMINUS is projected error covariance  

XMEAS is the measured value of the signal to be filtered 

P is the updated error covariance 

Q is the noise covariance  
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R is the variance associated with the measurement 

K is the Kalman gain 

XF is the Kalman filtered value 
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  CHAPTER IV 

 

 

RESULTS AND DISCUSSION OF RESULTS 

 

The following results were obtained from the simulated experiment to compare the 

performance of four filters (CUSUM, FOF, STF and Kalman) using the ISE (integral sum 

of errors).In order to carry out the comparison, the experiment was divided into three 

parts. Part one evaluated the filters performance for a simulated process involving an 

initial fixed base steady state value with the introduction of a subsequent step change to 

the base value. The second part had a fixed base value with the introduction of a 

subsequent ramp change. The final part had a fixed base value with the introduction of a 

subsequent oscillatory change. 

4.1 Part 1 

The details of the obtained results are given below: 

Column 1 of Table 1shows the number of the simulation run, the other columns show the 

name of the filter, the filter tuning value and whether a change was introduced or not. The 

first of each of the pairs of columns shows the ISE values for a steady state signal with no 

change introduced. The second columns show the ISE values with the introduction of a 

step change. 
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4.2 CUSUM Filter Results 

Using the filtering values of 1.5, 2, 2.5, 3, 3.5 and 4, a series of simulations was run in 

order to obtain the filtering value which is non-dominated by the other values. A non-

dominated value is a value which has no other ISE value lower than itself.  The obtained 

results are as shown in Table 1. 
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Table 1. CUSUM ISE values to determine optimal trigger value 
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Table 1 continued. 

 

 

 

 

 

Column 1 shows the number of the simulation run, the other columns show the name of 

the filter, the filter tuning value and whether a change was introduced or not. The first of 

each pair of columns shows the ISE values for a steady state signal with no change 

introduced. Each of the second columns shows the ISE values with the introduction of a 

step change. 
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Figure 4.1 Plot of CUSUM ISE values with the introduction of a step change to the 

base value vs CUSUM ISE values with no change in the base steady state value.  

 

 

 

 

In Figure 4.1, the x-axis represents the ISE value during the steady state window, while 

the y-axis represents the ISE values during the window involving the introduction of a 

step change to the initial steady state value. 

The diamonds represent a trigger value of 1.5 

The squares represent a trigger value of 2 
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The “X” represents a trigger value of 3 

The “ ” represents a trigger value of 3.5 

The circles represent a trigger value of 4 

Figure 4.1.1 selection of optimum CUSUM filter tuning value 

 

The non-dominated values are 

1.The diamonds representing a filter tuning value of 1.5 (There are 2 non dominated 

diamonds as shown by the markers in Figure 4.1.1)  

2. The triangles representing a filter tuning value of 2.5 (There are 2 non-dominated 

triangles as shown by the markers in Figure 4.1.1) 
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3 The “X” representing a filter tuning value of 3 (There is 1 non-dominated “X” as shown 

by the marker in Figure 4.1.1). 

The chosen optimum trigger tuning value is 3. This is because there are two non 

dominated triangles. And the triangles dominate the “X” on the x-axis.  

 

4.3 First-order filter (FOF) 

A series of simulation was run for FOF with filtering values of 0.1, 0.2, 0.3, 0.4, 0.5 and 

0.6. From Figure 4.2, the filtering factor of 0.2 is non-dominated; hence this is selected as 

the optimum filtering value for the FOF. The results are shown in Table 2. 
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Table 2.First-order ISE values to determine optimal Filtering factor (λ) 
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Table 2 Continued 
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Figure 4.2 Plot Of First-order ISE values with the introduction of a step change to the 

base value vs First-order ISE values with no change in the base steady state value.  

 

In Figure 4.2  

The diamonds represent a filtering factor value of 0.1 

The squares represent a filtering factor value of 0.2 

The triangles represent a filtering factor value of 0.3 

The “X” represent a a filtering factor value of 0.35 

The “ ” represent a filtering factor value of 0.4 
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The circles represent a filtering factor value of 0.45 

Figure 4.2.1 Selection of optimum first-order filter tuning value 

 

The non-dominated values are: 

1. The diamond representing tuning value of 0.1 (Enclosed by circle 1 in Figure 4.2.1) 

2. The squares representing tuning value of 0.2 (Enclosed by circle 2 in Figure 4.2.1) 

3. The triangles representing tuning value 0.3 (Enclosed by circle 3 in Figure 4.2.1) 
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The chosen optimum filter tuning value is 0.2. This is the choice because the values of 

the triangle enclosed by circle 2 dominate the other tuning values enclosed by circle 3 

and circle 4 on the x-axis and dominate circle 1 on the y-axis.  

 

Self-Tuning Filter (STF) 

The self-tuning filter simulation results are given in Table 3. 
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Table 3.STF ISE values to determine optimal filter tuning value (Ef) 
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Table 3 Continued 
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Figure 4.3. Plot of self-tuning ISE values with the introduction of a step change to the 

base value vs self-tuning ISE values with no change in the base steady state value.  

 

 

 

 

 

In Figure 4.3 

The diamonds represent a filtering factor value of 0.1 

The squares represent a filtering factor value of 0.2 

The triangles represent a filtering factor value of 0.3 

The “X” represent a a filtering factor value of 0.35 

The “ ” represent a filtering factor value of 0.4 
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The circles represent a filtering factor value of 0.45 

Figure 4.3.1 Selection of optimum self-tuning filter tuning value 

 

The chosen optimum filter tuning value for the self-tuning filter is 0.35 represented by 

the “X” . This is because the “X” enclosed by rounded rectangle 1 dominate the tuning 

value 0.3 (enclosed by rounded rectangle 2), 0.2 (enclosed by rounded rectangle 3) and 

0.1 (enclosed by rounded rectangle 4) on the y-axis. Tuning value 0.35 (in rounded 

rectangle 1) also dominates the other tuning values 0.4 and 0.45 (enclosed by rounded 

rectangle 5 on the x-axis. Thus its choice as optimum tuning value. 

 

4.4. The Kalman Filter 

The Kalman filter results are as given in table 4.  
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Column 1 with numbers 1 to 20 shows the number of the simulation run. There was a 

total of 20 simulation runs done to generate each of the 20 results in Table 4 below. 

 

Table 4. Kalman ISE values to determine optimal filter tuning value (Q) 
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Table 4 continued 
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Figure 4.4 Plot of Kalman ISE values with the introduction of a step change to the 

base value vs Kalman ISE values with no change in the steady state base value.  

 

 

In Figure 4.4 

The diamonds represent a filtering factor value of 6E-2 

The squares represent a filtering factor value of 6E-3 

The triangles represent a filtering factor value of 6.5E-3 

The “X” represent a a filtering factor value of 7E-3 

The “ ” represent a filtering factor value of 7.1E-3 
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The circles represent a filtering factor value of 7.2E-3 

 

Figure 4.4.1 Selection of optimum Kalman filter tuning value 

 

The non-dominated values are 

1. The square representing a filtering factor value of 6E-3 (The is 1 non dominated value 

as shown in Figure 4.4.1) 

2. The triangle representing a filtering factor value of 6.5E-3 (There is 1 non dominated 

value as shown in Figure 4.4.1) 

3. The “X” representing a filtering value of 7E-3 (There are 3 non-dominated value) 
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The chosen optimum tuning value is 7E-3. This is because there are 3 non dominated “X” 

which is more than the other non dominated shapes. The diamonds enclosed by circle 4 

are non chosen because they are all dominated on the x-axis by the other tuning values 

 

4.5 Comparison of Results between the four filters 

Part 1 

Step Change 

Having obtained the optimum filter tuning values discussed above, these values were 

then used for the comparison to obtain the filter with the lowest ISE. 

 

The result is shown below: 

Column 1 with numbers 1 to 20 shows the number of the simulation run. Twenty 

simulation runs was done to generate each of the 20 results below: 
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Table 5. Comparison of ISE results of CUSUM, First-order, Self-tuning and Kalman 

filter for introduction of a step change to steady state base value. 

 

 

 

 

 

 



50 

 

Figure 4.5 Plot of ISE values with the introduction of a step change to the steady state 

base value vs ISE values with no change introduction for the CUSUM, First-order , 

STF, and Kalman filter.  

 

 

 

In Figure 4.5 

 The diamonds represent the CUSUM filter 

The squares represent the first-order filter 

The triangles represent the self-tuning filter 

The “X” represent the Kalman filter 
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Figure 4.5.1 Comparison of filter performance for step change 

 

Figure 4.5.1 shows that the self-tuning filter (rounded rectangle 8) is dominated by the 

first-order filter (in rectangle 7) the CUSUM filter (in rounded rectangle 6) and by the 

Kalman filter (thick rectangle 9) on the y-axis, While the CUSUM filter is dominated by 

the first-order filter and Kalman filter on the y-axis. The Kalman filter (enclosed by thick 

rectangle 7) does well on the y-axis but is dominated by the first order filter (in rectangle 

7) on the x-axis. Hence, from Figure 4.5.1 considering rectangles 6, 7 and 8, it can be 

concluded that the CUSUM filter performs best for a steady state process with no change 

in base value (i.e. is not dominated on the x-axis during the steady state window), while 

the Kalman filter performs better for a process that involves a step change to a steady 

state process.  
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Part 2 Ramp  

Based on the optimum filter filtering values from the ramp tests, a series of simulation 

runs was done involving the introduction of a ramp change to the steady state base value 

and the ISE values for the steady state portion as well as the portion with the change was 

calculated. The results are given in Table 6. 

Comparison of the four filter simulation results: 
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Table 6 Comparison of ISE results of CUSUM, First-order, Self-tuning and Kalman filter 

for introduction of a ramp change to steady state base value. 

 

Column 1 shows the number of the simulation run, the other columns show the name of 

the filter, the filter tuning value and whether a change was introduced or not. The first of 

each pair of the two columns shows the ISE values for a steady state signal with no 

change introduced. Each of the second columns shows the ISE values with the 

introduction of a ramp change. 
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Figure 4.6 Plot of ISE values with the introduction of a ramp change to the steady 

state base value vs ISE values with no change introduction for the CUSUM, First-

order, STF, and Kalman filter.  
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Figure 4.6 is a plot of the ISE values for simulation runs with a ramp change introduced 

to the base point on the vertical axis, while the horizontal axis shows values for the 

steady state base point with no change introduced.                                                          

The diamonds represent the CUSUM ISE values                                                             

The squares represent the FOF ISE values                                                                       

The triangles represent the STF ISE values                                                                      

The “X” represent the Kalman ISE values  

Figure 4.6.1 Comparison of filter performance for ramp change 
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It is observed in Figure 4.6.1 that the Kalman filter (in rounded rectangle 4) dominates 

the first-order filter (in rounded rectangle 3) and that the CUSUM filter (in rounded 

rectangle 1) dominates the self-tuning filter (in rounded rectangle 2) on the x-axis. From 

this observation, it can be concluded that he CUSUM filter performs best for a steady 

state process with no change in base value (i.e. is not dominated on the x-axis), while the 

Kalman filter performs best for a process that involves a ramp change to the steady state 

process (i.e. is not dominated during the ramp change window on the y-axis). 

 

Part 3 (Oscillatory signal) 

The result of simulations with the introduction of an oscillatory change is shown below. 

Column 1 shows the number of the simulation run, the other columns show the name of 

the filter, the filter tuning value and whether a change was introduced or not. The first of 

each pair of columns shows the ISE values for a steady state signal with no change 

introduced. Each of the second columns shows the ISE values with the introduction of an 

oscillatory change. 
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Table 7. Comparison of ISE results of CUSUM, First-order, Self-tuning and Kalman 

filter for introduction of a step change to steady state base value. 
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Figure 4.7 Plot of ISE values with the introduction of an oscillatory change to the 

steady state base value vs ISE values with no change introduction for the CUSUM, 

First-order , STF, and Kalman filter.  

 

 

Figure 4.7 is a plot of the ISE values for simulation runs with an oscillatory change 

introduced to the base value on the vertical axis, while the horizontal axis shows values 

for the steady state base value with no change introduced. 

The diamonds represent the CUSUM ISE values                                                             

The squares represent the FOF ISE values                                                                       
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The triangles represent the STF ISE values                                                                      

The “X” represent the Kalman ISE values  

Figure 4.7.1 Comparison of filter performance for oscillatory change 

 

 

From Figure 4.7.1, it is observed that the CUSUM filter enclosed in rounded rectangle 1 

performs well on the x-axis. However, the CUSUM filter is dominated on the y-axis by 

the self-tuning filter, the Kalman filter, and the first-order filter. The self-tuning filter 

enclosed in rounded rectangle 2 dominates first-order filter (in rounded rectangle 3) and 

the Kalman filter (in rounded rectangle 4) on the x-axis. Hence, it can be concluded that 

the CUSUM filter performs best for a steady state process with no change to the steady 

state base value, while the self-tuning filter performs best for a process that involves an 
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oscillatory change to the steady state process. This is because the self-tuning filter is not 

dominated on the y-axis by any of the other filters, but it dominates the first-order and 

Kalman on the x-axis. Thus the choice of the self-tuning filter. 

 

4.2 EASE OF UNDERSTANDING THE FILTERS 

Based on the human ease of understanding, the four filters are grouped into four levels. 

With level 1 having the relatively easiest understanding and level 100 being the relatively 

most complex. 
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Table 8. Ease of understanding the filters 

Filter                                Relative rank based on ease of 
understanding 

First order Filter (FOF)                   
 

   1. 

Self-tuning filter (STF)                                               4.  
 

CUSUM                                       
 

   5. 

Kalman filter                                
 

   100. 

 

 

FOF is assigned a rank of 1 for ease of understanding because it involved relatively 

simple mathematics of multiplication, addition and subtraction. 

STF is assigned a rank of 4 because it involves relatively higher computations of 

exponential, conditional statement and more variables with assigned values. 

CUSUM filter is assigned a rank of 5 because it involves relatively higher computations 

than the FOF and STF with even more variables, conditional statements and calculations. 

Kalman filter is assigned a rank of 100 because it involves the relatively most complex 

calculations of the four filters. It involves the use of matrices and matrix operations for 

the time update and measurement update operations. 

4.3 Cost 

The results for analysis based on arithmetic operations are as given below. The first 

column shows the number of arithmetic operations (such as “*”, “+”, “-”, “^” etc) 

involved in the filter equation. The second column shows the actual equation. The third 

column shows the number of “Get” operations required to read a certain input. And, the 
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final column shows the number of “put” operations required to assign a value to a certain 

variable. 

4.3.1 Ranking of filters based on cost analysis derived from the total operations 

required in the filter equation.  

Table 9 Evaluation of operations required in CUSUM filter 

 

Equation 
Number 

Equation 
Evaluated 

1 2   3 

 Equation Arithmetic 
Operation 

Get(Read) Put 

1 n=n+1 1 1 1 
2 V=ff1*v+ff2*(xx-

xxold)^2 
5 5 1 

3 CUSUM=CUSUM+xx-
xxspc 

2 3 1 

4 xmeas=xxspc  1 1 
5 (xx=xmeas)  1 1 
6 (xxold=xx)  1 1 
 Sum 8 12 6 
 Total 26 

 

 

Table 10 Evaluation of operations required in first-order filter 

Equation 
Number 

Equation Evaluation 1 
(Arithmetic 
operation) 

Evaluation 2 
Get (Read) 

Evaluation3 
Put 

1 xmeasff=ff*(xmeas)+(1-
ff)*(xmeasff) 

4 4 1 

 Total 9  
 

xmeas is the signal measured value 

xmeasff is the filtered value 
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Table 11 Evaluation of operations required in self-tuning filter 

Equation 
Number 

Equation 
Evaluated 

1 2   3 

  (Arithmetic 
operation) 

Get (Read) Put 

1 Ef=2*sigmad 

 
1 1 1 

2 deltaf=0.9*deltaf+0.1*(xmeas-
xmeasold)^2 

5 3 1 

3 lambda= 
(0.5+1.1668*deltaf/Ef^2)^-1 

4 2 1 

4 (xmeasold=xmeas)  1 1 
5 (xmeasf=lambda*xmeas+(1-

lambda))*xmeasf 
4 4 1 

 Sum 14 11 5 
 Total 30  

 

 

sigmad is the standard deviation of the measurement 

xmeasf is the filtered value 
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Table 12 Evaluation of operations required in Kalman filter 

 

 

Equation 
Number 

Equation Evaluated 
 

Arithmetic 
operation 

Get(Read) 
 

Put 
 

1 xhatminus(i)=xhat(i-1) 
 

1 2 1 

2 Pminus(i)=P(i-1)+Q 
 

2 3 1 

3 xhat(i)=xhatminus(i)+k(i)*(xmeas-
xhatminus(i) 

 

3 4 1 

4* k(i)=Pminus(i)/(Pminus(i)+R) 
 

3 3 1 

5 P(i)=(1-k(i))*Pminus(i) 
 

2 3 1 

6 xmeaskf=xhat(i) 
 

 2 1 

7 R=(value) 
 

 1 1 

8 Q=(Value) 
 

 1 1 

 Sum 
 

11 15 8 

 Total 34 
 

In equation 4* the inversion operation would require several steps of arithmetic operation 

when it involves matrices. (This shows that the Kalman filter will involve much more 

operations than indicated above) 

xmeaskf is the kalman filtered value 

xmeas is the signal measurement value 

Given the results above the filters are ranked on a scale of one to four, with one being the 

cheapest to operate and four being the most expensive. 
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Table 13. Ranking of filter in increasing order of relative cost. 

 

Filter Relative Rank (based on 
total number of 
operations) 

Total number of 
operations 

FOF 1 9 
CUSUM 3 26 
STF 3 30 
Kalman 4 34 

 

 

From the above scale, the first-order filter is the cheapest to operate in terms of arithmetic 

operations, while the Kalman filter is the most expensive in terms of arithmetical 

operations. 

 

 

3.2. Ranking of filters based on cost analysis derived from the Number of Variables 

used in Filter Equation.  

  

Based on the number of variables required in the filter equation, the four filters are 

ranked as shown below, with a rank of 1 requiring the least number of variables and 4 

requiring the most number of variables: 
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Table 14 Ranking of filter based on the required number of memory location/required 

variables 

 

Filter Rank based on 
required number of 
variables 

Number of memory 
location (or variables 
required) 

FOF 1 3 
STF 2 7 
Kalman 3 10 
CUSUM 4 12 
 

From the result above, The First-order filter requires the least number of variables and 

thus is the least expensive in terms of the required number of variables while the 

CUSUM filter requires the most number of variables and is thus the most expensive in 

terms of the required number of variables. 
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CHAPTER V 
 

 

CONCLUSION AND RECOMMENDATION 

 

The CUSUM filter is the best filter to use in a steady state process involving no change. 

In a process that involves a step change, the Kalman filter is the best filter to use. A 

process that involves a ramp change is best filtered using the Kalman filter. And, an 

oscillatory process is best filtered using the self-tuning filter. 

 

First-order filter is the easiest to understand, while the Kalman filter is the most complex 

to understand. 

 

The first-order filter is the cheapest to operate in terms of arithmetic operations, while the 

Kalman filter is the most expensive in terms of arithmetical operations. 

 

The first-order filter is the least expensive considering required number of variables, 

while the CUSUM filter requires the most number of variables and is thus the most 

expensive in terms of the required number of variables. 

 

It is recommended that further analysis involving different signal to noise ratio should be 

carried out. Also, the filter speed of tracking the signal be analyzed in subsequent studies. 
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APPPENDIX  

       A 

VBA codes used in the simulation of steady state signal with the addition of a step 
change 

 
'VBA codes written with help from Dr. R.R. Rhinehart 
'Department of Chemical Engineering, Oklahoma State University 
'Daniel Fakunle 
'MSC Research Project 
'10-13-09 
'A sub program to generate noisy signal and filter the noise using a 
'cusum filter,first order filter and Kalman filter 
 
Dim t As Single 
Dim sigmad As Single 
Dim dt As Single 
Dim i As Single 
Dim sp As Single 
Dim xmeas As Single 
Dim ff As Single 
Dim kc As Single 
Dim taud As Single 
Dim n As Single 
Dim xx As Single 
Dim xxold As Single 
Dim xxspc As Single 
Dim v As Single 
Dim cusum As Single 
Dim m As Single 
Dim ff1 As Single 
Dim ff2 As Single 
Dim Trigger As Single 
Dim xhatminus(1000) 
Dim Ef As Single 
Dim xhat(1000) 
Dim Pminus(1000) 
Dim P(1000) 
Dim k(1000) 
 
Dim xkp As Single 
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Dim pkp As Single 
Dim xold As Single 
Dim pkold As Single 
Dim Q As Single 
Dim R As Single 
Dim kk As Single 
Dim xk As Single 
Dim pk As Single 
Dim xmeaskf As Variant  'Kalman filtered value 
Dim deltaf As Single 
Dim lambda As Single 
Dim xmeasold As Single 
Dim xmeassf As Single   'Self tuning filtered value 
Dim xmeasff As Single   'First order filtered value 
Dim xmeasc As Single    'cusum fltered value 
 
 
 
Sub signal() 
Application.ScreenUpdating = False 
 
'Inital values of constants 
ff = Sheet3.Cells(7, 24) 
 
dt = Sheet3.Cells(3, 24) 
Trigger = Sheet3.Cells(8, 24) 
kp = Sheet3.Cells(11, 24) 
Ef = Sheet3.Cells(10, 24) 
'kalman filter constants 
xhat(0) = 1 
Pminus(0) = 1 
Randomize 
 
'Main Program 
For i = 1 To 1000 'For loop 
t = dt * i 
x = 3 
If i > 500 Then x = 10 
Call Process(x, xmeas) 
 
'Call filter 
Call ffilter(xmeas, xmeasff) 
Call cusumf(xmeas, xmeasc) 
Call kalman(xmeas, xmeaskf) 
Call selftuningfilter(xmeas, xmeassf) 
'Print out observable results 
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'Application.ScreenUpdating = False 
Sheet3.Cells(2 + i, 1).Value = t 
Sheet3.Cells(2 + i, 3).Value = xmeas 
Sheet3.Cells(i + 2, 4).Value = xmeassf  'STF 
Sheet3.Cells(i + 2, 5).Value = xmeasc   'Cusum 
Sheet3.Cells(i + 2, 16).Value = xmeaskf 'Kalmnan 
Sheet3.Cells(i + 2, 17).Value = xhat(i) 
Sheet3.Cells(i + 2, 18).Value = Pminus(i) 
Sheet3.Cells(i + 2, 19) = k 
Sheet3.Cells(i + 2, 20) = xhatminus(i) 
Sheet3.Cells(i + 2, 21) = P(i) 
Sheet3.Cells(i + 2, 22) = xmeasff       'FOF filter 
'Sheet3.Cells(i + 2, 44) = Ef      'FOFilter 
 
Next i 
'Call signal2 
Application.ScreenUpdating = True 
End Sub 
 
 
'FIRST ORDER FILTER 
Sub ffilter(xmeas, xmeasff) 
  xmeasff = ff * (xmeas) + (1 - ff) * (xmeasff) 
End Sub 
 
'CUSUM FILTER 
Sub cusumf(xmeas, xmeasc) 
    If i = 1 Then 
        n = 0 
        xx = 0 
        xxold = 0 
        xxspc = 0 
        v = 0 
        cusum = 0 
        m = 11 
        ff1 = ((m - 2) / (m - 1)) 
        ff2 = (1 - ff1) / 2 
    End If 
 
    xx = xmeas 
    n = n + 1 
    v = ff1 * v + ff2 * (xx - xxold) ^ 2 
    xxold = xx 
    cusum = cusum + xx - xxspc 
    If (Abs(cusum) > Trigger * Sqr(v * n)) Then 
        xxspc = xxspc + cusum / n 
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        cusum = 0 
        n = 0 
    End If 
    xmeasc = xxspc 
 End Sub 
  
Sub kalman(xmeas, xmeaskf) 
 
'KALMAN FILTER 
R = Sheet3.Cells(9, 24).Value 
Q = Sheet3.Cells(4, 24).Value 
'Time Update 
xhatminus(i) = xhat(i - 1) 
Pminus(i) = P(i - 1) + Q 
 
'Measurement Update 
k(i) = Pminus(i) / (Pminus(i) + R) 
xhat(i) = xhatminus(i) + k(i) * (xmeas - xhatminus(i)) 
P(i) = (1 - k(i)) * Pminus(i) 
xmeaskf = xhat(i) 
'xold = xk 
End Sub 
 
Sub Process(x, xmeas) 
     
taun = Sheet3.Cells(5, 24) 
    If taun = 0 Then taun = 0.0001 
sigmad = Sheet3.Cells(6, 24) 
alpha1 = Exp(-dt / taun) 
beta0 = 1 - alpha1 
sigmaw = sigmad * Sqr((1 + alpha1) / beta0) 

      xnoise = sigmaw * Sqr(-2 * Log(Rnd)) * Sin(2 * 3.14159 * Rnd)  'Gaussian distributed 
noise 
 
    sp = x 
    xmeas = x + xnoise 
     
End Sub 
 
Sub selftuningfilter(xmeas, xmeassf) 
deltaf = 0.9 * deltaf + 0.1 * (xmeas - xmeasold) ^ 2 
lambda = 1 / (0.5 + 1.1668 * deltaf / Ef ^ 2) 
If lambda > 1 Then lambda = 1 
xmeasold = xmeas 
xmeassf = lambda * xmeas + (1 - lambda) * xmeassf 
End Sub 
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APPPENDIX  
B 

VBA codes used in the simulation of steady state signal with the addition of a ramp 
change 

 
'VBA codes written with help from Dr. R.R. Rhinehart 
'Department of Chemical Engineering, Oklahoma state university 
'Daniel Fakunle 
'MSC Research Project 
'10-13-09 
'A sub program to generate noisy signal and filter the noise using a 
'cusum filter,first order filter and Kalman filter 
 
Sub signalramp() 
Application.ScreenUpdating = False 
 
'Inital values of constants 
ff = Sheet4.Cells(7, 24) 
 
dt = Sheet4.Cells(3, 24) 
Trigger = Sheet4.Cells(8, 24) 
Ef = Sheet4.Cells(10, 24) 
'kalman filter constants 
xhat(0) = xmeas 
Pminus(0) = 1 
Randomize 
dt = 0.1 
'Main Program 
For i = 1 To 1000 'For loop 
t = dt * i 
x = 3 + (t - 50) 
If i > 500 Then x  = 3 + (t - 50) 
Call Process(x, xmeas) 
 
'Call filter 
Call ffilter(xmeas, xmeasff) 
Call cusumf(xmeas, xmeasc) 
Call kalman(xmeas, xmeaskf) 
Call selftuningfilter(xmeas, xmeassf) 
'Print out observable results 
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Application.ScreenUpdating = False 
Sheet4.Cells(2 + i, 1).Value = t 
Sheet4.Cells(2 + i, 2).Value = x 
Sheet4.Cells(2 + i, 3).Value = xmeas 
Sheet4.Cells(i + 2, 4).Value = xmeassf  'STF 
Sheet4.Cells(i + 2, 5).Value = xmeasc   'Cusum 
Sheet4.Cells(i + 2, 16).Value = xmeaskf 'Kalmnan 
Sheet4.Cells(i + 2, 22) = xmeasff       'FOFilter 
 
Next i 
Application.ScreenUpdating = True 
End Sub 
 
 
'FIRST ORDER FILTER 
Sub ffilter(xmeas, xmeasff) 
  xmeasff = ff * (xmeas) + (1 - ff) * (xmeasff) 
End Sub 
 
'CUSUM FILTER 
Sub cusumf(xmeas, xmeasc) 
    If i = 1 Then 
        n = 0 
        xx = 0 
        xxold = 0 
        xxspc = 0 
        v = 0 
        cusum = 0 
        m = 11 
        ff1 = ((m - 2) / (m - 1)) 
        ff2 = (1 - ff1) / 2 
    End If 
 
    xx = xmeas 
    n = n + 1 
    v = ff1 * v + ff2 * (xx - xxold) ^ 2 
    xxold = xx 
    cusum = cusum + xx - xxspc 
    If (Abs(cusum) > Trigger * Sqr(v * n)) Then 
        xxspc = xxspc + cusum / n 
        cusum = 0 
        n = 0 
    End If 
    xmeasc = xxspc 
 End Sub 
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Sub kalman(xmeas, xmeaskf) 
 
'KALMAN FILTER 
R = Sheet4.Cells(9, 24).Value 
Q = Sheet4.Cells(4, 24).Value 
'Time Update 
xhatminus(i) = xhat(i - 1) 
Pminus(i) = P(i - 1) + Q 
 
'Measurement Update 
k(i) = Pminus(i) / (Pminus(i) + R) 
xhat(i) = xhatminus(i) + k(i) * (xmeas - xhatminus(i)) 
P(i) = (1 - k(i)) * Pminus(i) 
xmeaskf = xhat(i) 
End Sub 
 
Sub Process(x, xmeas) 
     
taun = Sheet4.Cells(5, 24) 
    If taun = 0 Then taun = 0.0001 
sigmad = Sheet4.Cells(6, 24) 
alpha1 = Exp(-dt / taun) 
beta0 = 1 - alpha1 
sigmaw = sigmad * Sqr((1 + alpha1) / beta0) 
xnoise = sigmaw * Sqr(-2 * Log(Rnd)) * Sin(2 * 3.14159 * Rnd)  'Gaussian distributed 

noise 
 
    xmeas = x + xnoise 
     
End Sub 
 
Sub selftuningfilter(xmeas, xmeassf) 
deltaf = 0.9 * deltaf + 0.1 * (xmeas - xmeasold) ^ 2 
lambda = 1 / (0.5 + 1.1668 * deltaf / Ef ^ 2) 
If lambda > 1 Then lambda = 1 
xmeasold = xmeas 
xmeassf = lambda * xmeas + (1 - lambda) * xmeassf 
End Sub 
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APPPENDIX  
C 

VBA codes used in the simulation of steady state signal with the addition of an 
oscillatory change 

 
 
'VBA codes written with help from Dr. R.R. Rhinehart 
'Department of Chemical Engineering, Oklahoma state university 
'Daniel Fakunle 
'MSC Research Project 
'10-13-09 
'A sub program to generate noisy signal and filter the noise using a 
'cusum filter,first order filter and Kalman filter 
 
 
Sub signaloscillatory() 
Application.ScreenUpdating = False 
 
'Inital values of constants 
ff = Sheet5.Cells(7, 24) 
dt = Sheet5.Cells(3, 24) 
Trigger = Sheet5.Cells(8, 24) 
Ef = Sheet5.Cells(10, 24) 
'kalman filter constants 
xhat(0) = xmeas 
Pminus(0) = 1 
Randomize 
dt = 0.1 
'Main Program 
For i = 1 To 1000 'For loop 
t = dt * i 
x = 3 
If i > 500 Then x = 3 + -0.729535369032456 * 

Sin(Application.WorksheetFunction.Radians(50 * 
Application.WorksheetFunction.Pi() * (t - 50) / 20)) 

Call Process4(x, xmeas) 
 
'Call filter 
Call ffilter4(xmeas, xmeasff) 
Call cusumf4(xmeas, xmeasc) 
Call kalman4(xmeas, xmeaskf) 
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Call selftuningfilter4(xmeas, xmeassf) 
'Print out observable results 
Application.ScreenUpdating = False 
Sheet5.Cells(2 + i, 1).Value = t 
Sheet5.Cells(2 + i, 2).Value = x 
Sheet5.Cells(2 + i, 3).Value = xmeas 
Sheet5.Cells(i + 2, 4).Value = xmeassf  'STF 
Sheet5.Cells(i + 2, 5).Value = xmeasc   'Cusum 
Sheet5.Cells(i + 2, 16).Value = xmeaskf 'Kalmnan 
Sheet5.Cells(i + 2, 22) = xmeasff       'FOFilter 
 
Next i 
Application.ScreenUpdating = True 
End Sub 
 
 
'FIRST ORDER FILTER 
Sub ffilter4(xmeas, xmeasff) 
  xmeasff = ff * (xmeas) + (1 - ff) * (xmeasff) 
End Sub 
 
'CUSUM FILTER 
Sub cusumf4(xmeas, xmeasc) 
    If i = 1 Then 
        n = 0 
        xx = 0 
        xxold = 0 
        xxspc = 0 
        v = 0 
        cusum = 0 
        m = 11 
        ff1 = ((m - 2) / (m - 1)) 
        ff2 = (1 - ff1) / 2 
    End If 
 
    xx = xmeas 
    n = n + 1 
    v = ff1 * v + ff2 * (xx - xxold) ^ 2 
    xxold = xx 
    cusum = cusum + xx - xxspc 
    If (Abs(cusum) > Trigger * Sqr(v * n)) Then 
        xxspc = xxspc + cusum / n 
        cusum = 0 
        n = 0 
    End If 
    xmeasc = xxspc 
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 End Sub 
  
Sub kalman4(xmeas, xmeaskf) 
 
'KALMAN FILTER 
R = Sheet5.Cells(9, 24).Value 
Q = Sheet5.Cells(4, 24).Value 
'Time Update 
xhatminus(i) = xhat(i - 1) 
Pminus(i) = P(i - 1) + Q 
 
'Measurement Update 
k(i) = Pminus(i) / (Pminus(i) + R) 
xhat(i) = xhatminus(i) + k(i) * (xmeas - xhatminus(i)) 
P(i) = (1 - k(i)) * Pminus(i) 
xmeaskf = xhat(i) 
End Sub 
 
Sub Process4(x, xmeas) 
     
taun = Sheet5.Cells(5, 24) 
    If taun = 0 Then taun = 0.0001 
sigmad = Sheet5.Cells(6, 24) 
alpha1 = Exp(-dt / taun) 
beta0 = 1 - alpha1 
sigmaw = sigmad * Sqr((1 + alpha1) / beta0) 
xnoise = sigmaw * Sqr(-2 * Log(Rnd)) * Sin(2 * 3.14159 * Rnd)  'Gaussian distributed 

noise 
 
    sp = x 
    xmeas = x + xnoise 
     
End Sub 
 
Sub selftuningfilter4(xmeas, xmeassf) 
deltaf = 0.9 * deltaf + 0.1 * (xmeas - xmeasold) ^ 2 
lambda = 1 / (0.5 + 1.1668 * deltaf / Ef ^ 2) 
If lambda > 1 Then lambda = 1 
xmeasold = xmeas 
xmeassf = lambda * xmeas + (1 - lambda) * xmeassf 
End Sub 
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