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CHAPTER |

INTRODUCTION

Filtering is the process of removing the noise associated with processreme@sts in

order to observe the noiseless “or true” value. Filters seek to identifyuthprocess

signal in the presence of noise [6].

It is desired to have a filter that gives an accurate process sigaavdoiety of patterns

in process. This is because filters are used to “filter out” the noise in apeowkthe

more accurate the resulting signal, the better the filter. In this work,ifeus fire

evaluated and compared for performance; and based on the comparison, conclusions are
made. The comparison aspects include speed of tracking a change in the process
(measured by ISE (Integral Sum of errors)), closeness of the filtenggl tealhe true

signal when there is no change in the process (also measured by ISE), comglutati

burden, complexity for human understanding, and cost issues.

A series of simulations was done to generate data for the comparison wsiayBasic
for Applications Programming. Noise was added to the simulation in order to corrupt the
produced signal. The noisy signal was then filtered to obtain the true value which is

known. Based on the filtered value, measures of goodness were calculated fotexach fil



in each simulated run. The simulation involved a steady base value and the introduction
of a change to the base value. This steady base value is used to obtain the acthegacy of
filter in finding the true signal value for a steady value, while the ahanigtroduced in

order to obtain the speed of tracking a change and the accuracy of the friiéeking

the change. The performance of the filters was then evaluated using thatedItSE

values. Step change, ramp change and oscillatory changes were intradihesbase

value and the effect on the four filter outputs was then evaluated for results.

The experiments also included range of tuning factors to determine the beso\guee t

a non-dominated individual on a multi-objective (ISE1 vs. ISE2) plane. Where ISE1
involved no change in a steady base value and ISEZ2 involved the introduction of a change
to the steady state base value. The experiments included three chapgeangh and

oscillatory.

The filters considered were the first-order filter (FOF) [6], thetseling filter (STF) [1],

the CUSUM filter [6] and the Kalman filter [4].

The first-order filter was chosen because it is used in the industry asveooandustrial
filtering practice [1]. The self-tuning filter was chosen becausanitachieve a high ratio
of noise reduction without giving up its fast tracking of a process [1]. The Kalttean f
was chosen because it is a well-known and often-used tool for mathematicakstoc
estimation from noisy sensor measurements [3]. The CUSUM filter was cl®aan a
innovative filter to compare its performance to other industrially used filtdr as the

first-order and the Kalman filter.



The first-order filter averages data to reduce the effects of noise, lnd taalses
undesirable lag in the filtered variable. The greater the noise amplitudegliee thie

required filtering. It is an Infinite Impulse Response (IIRkgfilt

The objective of the self-tuning filter is to determine the filteringdia@t) such that there
is a 95% probability that the true value lies within the user chosen confidengalinter

about the average [1].

The CUSUM filter is a novel filter based on a cumulative sum of deviatiorssddrived
from Statistical Process Control Concepts (SPC) [6]. The CUSUM didtison holds the
filtered value constant until there is sufficient statistical levebofidence that a change

has occurred.

The Kalman filter is aecursive data processing algorithm [5]. A Kalman filter combines
all available measurement data, plus prior knowledge about the system andngeas
devices, to produce an estimate of the desired variables. It estimatesssfpcsing a
form of feedback control by utilizing timgdate equations and measurement update

equations.
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CHAPTER I

REVIEW OF LITERATURE

2.1 Noise

In this work, noise is defined as a fluctuating influence on process measutbkatent
cannot be controlled because it is either: 1) a fluctuating misrepreseotat@ntrue
Process Variable (PV) (for example, some random electrical noiddes @ the signal

through the sensor and the electrical circuits) or 2) a transient influence ow.the P

Noise is often described as a zero-mean, independent, Gaussian distributed edditi
the true PV (process variable) value [6]. This time varying ratio of “psiggial to the

electrical noise affects the qualiythe information. [7].

2.2Why filter
Filtering is done in order to remove noise and obtain the true process value. In process
control, process noise and instrument noise are undesirable. This is becausedhercont

will respond to the noise rather than the true process change. The noise masks the tr

11



process variable. A result of this would be an increase in the process varadallity

increased wear and tear in final control element.

2.3 Use of filters and Statistical Process Control (SPC)

Usually the process variable (PV) is filtered and the filtered \altex to the controller.
Statistical Process Control (SPC) is a philosophy that overrides the tesnplement a
change until there is sufficient statistical evidence to implement timgeljé]. Statistical
Process Control involves a broad scope of activities including the design ofregamdi
inspection schemes, experimental design and analysis to detect shifts gathemm

variability of a process [3].

2.4 Filters

There are two models for a digital filter. These are the Infinifgulse Response filter
(IIR) and the Finite Impulse Response filter (FIR) [8]. FIR has a fmgenory. It is non
recursive because it does not require a feedback loop in its implement&ibasl
infinite memory. It is called a recursive filter because the output is féditacthe

input.

One of the most important criterions for filters is the squared errommziaiion [1]. This
is because a filter with a low value of the squared error gives an outputvbat dose
to the true value of the signal it is filtering, while one with a high value ofgghared

error gives an output that is far away from the true value of the filtereal sign

12



2.4.1 First-Order filter:

The first-order filter averages data to reduce the effects of noisa leaursive filter. It
has an undesirable characteristic of introducing a lag in the control loop. This&g
loop affects stability, and undesirably limits the aggressiveness of thell@miWhen
there is a change in process variable (PV) value, the first-ordemofifteut lags behind.
During a noisy steady state period, the first-order filter output keepgiolgeat every
sample. The FOF equation is given as [1]:

Xpp = A% (Xpi21) + (1= 2) * x; (1)
Wherex; is the filtered value

A is the filtering factor

i is the sample counter

And x; is the input signal

2.4.2 Self-Tuning Filter

The self-tuning filter automatically adjustsn the FOF. It is based on the 95%
confidence interval for engineering economic decisions. Its objective isaiordeei
such that there is a 95% probability that the true steady state process vathen the
user chosen confidence interval about the average. The three equations forttmerggelf

filter are [1]:

6fi =0.1+ (x - xold)z + 0.9 % 6fi—1 (2)
1 11668+6%\ 1

A:min{(z+ — f) ,1} 3)

xfi = (1 - /‘l)xfi—l + /1xl- (4)

13



Where X is the current measured value of the signal.

Wherex,,, is the old signal measured value.

Wherex;; is the resulting filtered value.

Where E is the error between the true (unknown) value and the 2.5% extreme value of the
filtered value. It is chosen by the user.

0f; is a measure of data variance.

2.4.3 CUSUM Filter

In statistics, 3-sigma is the two specific points on a normal distribution edrabout the
mean. Out of a population, 99.73% of the population will fall between these values. It
represents the entire population and +3sigma and -3sigma represents the paoigable r
of variation [2]. It is used in the industry as an organized and systematic method for
strategic process improvement, new product and service development relying on
statistical methods and the scientific method to make dramatic reductiarstomer
defined defect rates [9]. The CUSUM filter is based on this principle. Theditempts

to find the mean within noisy data. The concept holds the mean is unchanged, until there
is sufficient statistical confidence that a real change has occifrtiee .Process Variable
(PV) “really” changes, then the average will shift. The CUSUM giliesctiteria for

making a change as [6]:

CUSUM = 3 &Fo) (5)

If CUSUM| > TRIGGER*VN (6)
M-2 1

jSznew = (m) jSzold + (m) (xnew - xold)z (7)

o-zneW
Ox = / fT (8)

14



WhereN is the number of samples for which CUSUM had been calculated.

x is the measured value of the variable.

%o1q IS the old value of the calucated mean of the measured variable.

o,Iis defined by equations 7 and 8

M = 11 (This gives the “best” balance of removing variability from the estimate)

Trigger value represents the SPC confidence level in a decision. The triggeofvalue
represents 68.3% confidence level. A value of 2 represents traditional econasiandec
trigger values oft2¢ representing a 95% confidence in a decision. A value of 3 is the 3-
sigma 99.73% confidence level. Values from 2 to 4 are generally chosen teebalanc

responsiveness and false alarms for particular SPC applications [6].

2.4.4 Kalman filter

The Kalman filter is the application of the combination of the method of combining a
model of the process with adjusted process measurements to produce an esthmeate of t
state [4]. It named after Rudolph E. Kalman, who published a paper describing a
recursive solution to the discrete-data linear filtering problem in 1960 [8]eqinations
are given below [3].

The process model is given as

Xp = Axp_1 + Bug_1 +wg_q 9
Measurement model is given as

Z, = Hxy + vy (10)
w;, andv,, represent the measurement and process noise. They are assumed to be

independent, white, and with normal probability distributions.

P(w)~N(0.Q) (11)

15



P(v)~ N(O,R) (12)
Q is the process noise covariance and R is the measurement noise covariance ma

They usually change with each time step, but are assumed to be constant foitgimpli

this work. MatrixA relates the state at previous time step k-1 to the current time step k.
Matrix B relates the optional control inputto the statec. Matrix H in the measurement

equatiorrelates the state to the measurenzgnt

16



CHAPTER 1lI

METHODOLOGY

3.1 Criteria for comparing filters

In this work, the following were the criteria used for the filter comparisons:
1. Integral Sum of errors (ISE)

2. Cost

3. Ease of understanding

3.2 Integral sum of errors

The integral sum of the errors is used as a basis for the filters comparisoshdws

how close to the true value that the filtered value of the noisy signal goes ghke thie
value of the ISE the less desirable the filter.

The ISE is calculated using the equation:

ISE = ¥ (x — x;)? (13)
Wherex; is the filtered value while, is the true value of the signal. Each simulation run
gives the value of the ISE for each of the four filters.

All simulation was performed with the following variables

17



T=100s

=2

o, I1s the standard deviation of the noise

T, IS Noise periodic time

dt is the time step

T is the total duration of the simulation

Gaussian distributed noise was added to the signal to corrupt it. This is to enable the
evaluation of the filter ability to filter out the noise. Noise is generatied) @sjuation

(14)

xnoise = sigmaw * Sqr(-2 * Log(Rnd)) * Sin(2 * 3.14159 * Rnd) (14)
Where sigmaw is the noise standard deviation

Rnd is the random number generator to generate a random number for generating the
value of the noise.

xnoise is the generated noise.

An optimal filtering value was required for each of the four filters. Theritiiltering

value is required in order to use this value to tune the filter for the purpose of camparis
of filter performance relative to the other filters evaluated in this stédayoptimal

filtering value is the value of the filtering factor that produces the lbmesmization of
squared error values (i.e. lowest ISE values). To obtain the optimahfilteaiue, series

of simulation was run for various tuning values.

18



3.2.1 Base value with a step change introduced

Figure 3.1 Sample of step change

Signal vs time for step change

14

12

10

Signal value
= 0izy signal

—d—true signal value

a 20 40 a0 B0 100 120

time

In order to obtain the ISE values during the process with the introduction of a step
change, the ISE values calculated using the formula above during thestdady
subtracted from that obtained during the step change. This gives the true ISEwvtiee f

introduction of the change.
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The process is allowed to run for 50 seconds with a time step of 0.1seconds with a steady
state base value. After the initial 50 seconds, a step change was introduced to by
changing the steady state base value to a value greater than theststabase plus the
standard deviation of the noise (0.1). The process is made to run for another 50 seconds.
The time duration of the steady state and the step window is the same in order & be abl
to obtain the ISE due to the introduction of the change to the base value i.e. all variables
are kept constant except the change. The ISE due to the introduction of the change in the
signal base value is obtained by subtracting the ISE obtained during the siéady s

window from the step window. This obtained value after the subtraction represents the
ISE due to the change, since the signal was maintained at constant valuearizbédter

the change respectively.

20



3.2.2 Base value with a ramp change introduced.

Figure 3.2 Sample of Ramp Change

Signal vs time for ramp change

&0

Signal value
= 05y signal

—i—true signal value

0 20 40 &0 B0 100 120

time

In order to obtain the ISE values during the process with the introduction of a ramp
change, the ISE values were calculated using the formula above duringgilhe sthte

and then with the ramp change introduced.

The simulation was performed with the steady state base value was m&tlh¢dor 50
seconds with a time step of “0.1seconds”. After, the initial 50 seconds, a ramp change

was introduced using the formula “x =3+ (t-50)” for a subsequent 50 seconds. This gives

21



a ramp signal with a slope of “1”. The signal has an intercept of 3 at time t=5femtor
begin the ramp at the previous steady state value.

“x" is the true value of the signal and “t” is the time.

3.2.3 Base value with an oscillatory change introduced.

Figure 3.3 Sample of oscillatory change

Signal vs time for oscillatory change
20

15

10

Signalvalue 5 +— ] S ! == noisy signal

=f=true signal value

150

-10
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In order to obtain the ISE values for a process with the introduction of an oscillatory
change, the ISE values were calculated using the ISE formula above duriteathe s
state and then also with the oscillatory change introduced.

The base value was fixed for 50 seconds with a time step of “0.1seconds”. After, the

initial 50 seconds an oscillatory change was introduced using equation (15)
x = 3 + (=0.729535369032546 * SIN (radians ((57") (t — 50)))) (15)

Where:
X is the true value of the signal

t is the time/duration of the signal
radians converts the angﬂ%?) (t — 50) from radian angles into degrees. (The

simulation program was written in VBA which defaults to radians).
-0.729535369032546 is the amplitude of the oscillatory function.

3 is the base value about which the signal oscillates.
These values (i.e. anglegs*Tn) (t —50)", amplitude" — 0.729535369032546" were

chosen by using the “goal seek” trial and error function of Excel in order to@tai
oscillatory signal that initiates at the steady state base value Gltates about this
value.

The base value is maintained at the same value as the earlier simulasionh the
signals with the introduction of a step change and the ramp change.

A total of 1000 time steps were simulated with 500 time steps for steady basandlue

500 time steps for the base value with an oscillatory change introduced.

23



3.3 Cost

The cost of the filter was analyzed by

a. The number of the required arithmetic operations

b. The number of the required variables.

The higher the number of the required arithmetic operations the higher thences si
faster processor would be required for the process. While a filter that seguirgher
number of variables would have a greater cost since more memory space would be

required to carry out the process.

3.4 Ease of understanding

This is a relative comparison based on the education required to understand how the filte
works. Based on opinion numbers are assigned to each of the filters. Theitfiltdren

lower numbers require a relatively lower level of education for understandiiie thvose

with the higher numbers require higher level of education for the understanding.

3.5 Filter Equations and code:

3.5.1 CUSUM filter -
The code for the used for the CUSUM filter is given below [6].

IF (first call) THEN

N=0

XOLD =0.0
XSPC =0.0
V=0.0
CUSUM =0.0
M=11

FF1 = REAL((M-2)/(M-1))
FF2 = (1.0 — FF1)/2.0
END IF
Obtain X
N=N+1

24



V = FF1*V + FF2*(X — XOLD)**2
XOLD =X
CUSUM = CUSUM + X - XSPC
IF (ABS (CUSUM).GT.TRIGGER*SQR(V*N)) THEN

XSPC = XSPC + CUSUM/N

N=0

CUSUM =0.0
END IF
If the absolute value of CUSUM is greater than the critical value riggé@r*(c)*N”, the
filter assumes that a true change in process has occurred, and it upelteesed value
as XSPC= XSPC + CUSUM/N. And then the variables “N” and “CUSUM” esetr If
the CUSUM is less than the critical value, then the filter assumes thdiathgecin input
is due to normal variability of the process, not a true change in level. Hence, it does not

change the filtered output.

3.5.2 First-order filter

The code for the first-order filter is given below [1].
XF=FF*X + (1 - FF)* XF

Where XF is the filtered value

FF is the filtering factor

And X is the input signal to be filtered for noise

This filter has the disadvantage that it lags behind the true value.

3.5.3 Self-tuning filter
The code equations used for the self-tuning filter are given below[1].

DELTAF =0.9 * DELTAF + 0.1 * (X-XOLD) ~ 2
XOLD=X
LAMBDA=1/(0.5+1.1668*DELTAF/EF"2)

IF LAMBDA>1 THEN LAMBDA=1
XF=LAMBDA*X+(1-LAMBDA)*XF

where:

25



XF is the filtered value

LAMBDA is defined above as 1/ (0.5 + 1.1668 * DELTAF / EF " 2)
EF is the filtering value

X is the measured value of the signal

DELTAF is a measure of data variance

3.5.4 Kalman Filter

The Kalman filter has two sets of equations. They are the time update equatidms and t
measurement update equations. The equations are given below [7].
Time update:

XHATMINUS(i) = XHAT(i-1)

PMINUS() =P(i - 1) + Q

Measurement update:

K(i) = PMINUS(i) / (PMINUS(i) + R)

XHAT(i) = XHATMINUS()) + K(i) * (XMEAS - XHATMINUS(i))

P(i) = (1 - K(i)) * PMINUS(i))

XF =XHAT (i)

where

XHATMINUS is the projected state

XHAT is actual state measurement vector

PMINUS is projected error covariance

XMEAS is the measured value of the signal to be filtered

P is the updated error covariance

Q is the noise covariance

26



R is the variance associated with the measurement
K'is the Kalman gain

XF is the Kalman filtered value

27



CHAPTER IV

RESULTS AND DISCUSSION OF RESULTS

The following results were obtained from the simulated experiment to compare the
performance of four filters (CUSUM, FOF, STF and Kalman) using the I&&gfial sum

of errors).In order to carry out the comparison, the experiment was divided gdo thr

parts. Part one evaluated the filters performance for a simulated pirocassig an

initial fixed base steady state value with the introduction of a subsequent stgp tha

the base value. The second part had a fixed base value with the introduction of a
subsequent ramp change. The final part had a fixed base value with the introduction of a

subsequent oscillatory change.

4.1 Part1

The details of the obtained results are given below:

Column 1 of Table 1shows the number of the simulation run, the other columns show the
name of the filter, the filter tuning value and whether a change was intcbduoet. The

first of each of the pairs of columns shows the ISE values for a steady gtatiersth no
change introduced. The second columns show the ISE values with the introduction of a

step change.

28



4.2 CUSUM Filter Results

Using the filtering values of 1.5, 2, 2.5, 3, 3.5 and 4, a series of simulations was run in
order to obtain the filtering value which is non-dominated by the other values. A non-
dominated value is a value which has no other ISE value lower than itself. The obtained

results are as shown in Table 1.

29



Table 1. CUSUM ISE values to determine optimal trigger value

STEP CHANGE

Number CUSUM CUsum CUsSUM
of Trigger= 1.5|Trigger= 2|Trigger= 2.5
Simulation Mo change with step change|No change with step change|No change with step change
1 28.4 193.1 3.6 349.9 7.9 480.1
2 47.9 119.1 1.8 421.5 1.1 495.6|
3 15.2 212.8 15.7 127.1] 18.9 224.4
4 23.4 182.9 4.2 494.1 0.2 540.1
1 2.2 109.6 6.1 446.7| 1.9 £34.1
6 39.1 0.4 3.4 304.1] 4.5 246.8)
7 5.4 210.2 25.8 272.0 8.2 319.2
8 62.9 305.1 1.6 445.6) 0.9 438.6)
9 28.5 48.0 23.9 225.3] 10.9 424.9
10| 13.6 9.3 16.3 189.9 6.2 349.4
11| 45.9 8.2 2.1 396.4 1.5 338.4
12| 36.9 117.4 4.8 307.8 3.2 485.7|
13| 216 126.7 6.6 100.8 3.8 397.2
14 23.3 101.0 24.1 125.6| 5.2 434.1
15| 32.0 246.7 20.4 144.4 8.2 200.1
16| 45.8 113.4 121 278.5 2.6 351.6
17| a5.7 110.8 5.8 305.3| 0.2 438.5
18| 3.7 121.3 4.3 388.1 7.6 476.9)
19| 46.6 56.6) 19.6 241.8 15.0 233.8
20 21.2 80.5 6.3 207.9 10.5 338.9
Average= 31.2 124.1 10.4 207.6| 6.2 301.9|
Variance= 247.2 6546.5 71.2 14216.0 24.7 0621.5
Std dev= 15.7 80.9 8.4 119.2 5.0 08.1
2*g( 95%conf.) 7.0 36.2 3.8 53.3| 2.2 43.9
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Table 1 continued.

STEP CHANGE

Number cusum cusum cusum
of Trigger= 3| Trigger= 3.5|Trigger= 4
Simulation No change with step change |[No change with step change|No change with step change
1 1.5 682.6| 24.3 365.7 12.8 489.2
2 11.2 81.4 0.4 278.1 15.9 579.0
3| 22.1 112.5] 5.7 437.6 6.5 554.2
4 5.0 440.3| 2.6 729.6 3.0 488.3
5 5.7 486.9| 8.7 594.2 16.2 620.3
b| 1.4 151.7] 2.3 578.9 14.0 731.8
7 5.9 397.4 11.0 394.0 4.9 100.3
8| 9.1 452.5] 9.7 632.1 9.5 767.0
9 3.5 590.9| 2.1 583.1 10.8 630.0
10| 14.2 239.2 13.5 576.3 7.0 727.5
11 7.3 436.4 9.7 436.1 9.8 654.6
12| 8.5 342.0| 3.5 684.6) 28.4 373.3
13| 3.2 531.8 15.3 373.2 3.5 733.4
14 3.2 541.3, 8.5 132.7 15.9 523.0
15| 14.6 205.5 11.0 332.2 6.1 693.5
16| 3.7 489.1) 11.6 590.3 4.1 645.3
17| 23.2 109.5 18.1 286.3 20.9 572.4
18| 4.3 479.0| 9.6 512.8 12.6 495.9
19| 16.6 5606.6| 10.1 492.5 18.3 578.6
20| 7.4 581.3 5.0 659.9 9.5 438.7
Average= 8.6 395.9 10.2 483.5 11.5 569.8
Variance= 41.6 33614.5 24.5 24835.9 42.7 23608.9
Std dev= 6.5 183.3| 5.0 157.6) 6.5 153.7
2*g( 95%conf.) 2.9 82.0 2.2 70.5 2.9 68.7

Column 1 shows the number of the simulation run, the other columns show the name of
the filter, the filter tuning value and whether a change was introduced or notrsklué fi
each pair of columns shows the ISE values for a steady state signal withnge

introduced. Each of the second columns shows the ISE values with the introduction of a

step change.
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Figure 4.1 Plot of CUSUM ISE values with the introduction of a step change to the

base value vs CUSUM ISE values with no change in the base steady state value.
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In Figure 4.1, the x-axis represents the ISE value during the steadwisidbev, while
the y-axis represents the ISE values during the window involving the introducton of
step change to the initial steady state value.

The diamonds represent a trigger value of 1.5

The squares represent a trigger value of 2
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The “X” represents a trigger value of 3
The “ ~<_ ” represents a trigger value of 3.5

The circles represent a trigger value of 4

Figure 4.1.1 selection of optimum CUSUM filter tuning value
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The non-dominated values are

1.The diamonds representing a filter tuning value of 1.5 (There are 2 non dominated
diamonds as shown by the markers in Figure 4.1.1)

2. The triangles representing a filter tuning value of 2.5 (There are 2 non-deaninat

triangles as shown by the markers in Figure 4.1.1)

33



3 The “X” representing a filter tuning value of 3 (There is 1 non-dominated $>$hawn
by the marker in Figure 4.1.1).
The chosen optimum trigger tuning value is 3. This is because there are two non

dominated triangles. And the triangles dominate the “X” on the x-axis.

4.3 First-order filter (FOF)
A series of simulation was run for FOF with filtering values of 0.1, 0.2, 0.3, 0.4, 0.5 and
0.6. From Figure 4.2, the filtering factor of 0.2 is non-dominated; hence this is delecte

the optimum filtering value for the FOF. The results are shown in Table 2.
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Table 2.First-order ISE values to determine optimal Filtering fg&jor

STEP CHANGE

Number FOF FOF FOF
of FF= 0.1)FF= 0.2|FF= 0.3
simulation Mo change with step change|No change with step change|Mo change with step change
1 9.1 219.0) 24.1 81.0 29.6 69.1
2 9.6 192.6 26.9 91.1 32.7 46.7
3 8.4 216.6) 20.6 82.2 42.0 35.2
4 11.7 188.3 20.7 85.1 37.4 57.8
5 9.4 220.9 20.7 87.9 35.1 41.9
b| 12.4 214.0) 19.1 86.7 35.5 63.4
7 10.0 199.0) 20.8 67.2 36.8 52.2
8 14.7 225.0 22.9 83.9 36.3 64.4
9 10.6 218.6) 24.9 111.6 37.7 44.5
10 15.5 198.7 27.0 70.5 37.0 56.7
11 8.6 217.8 23.6 83.1 33.1 49.4
12 14.5 201.4 23.3 86.2 38.9 50.3
13 9.8 223.6) 20.7 90.9 32.9 47.1
14 9.0 214.3 28.6 80.7 40.1 47.9
15 11.0 193.9 27.0 75.4 34.6 51.5
16 9.4 226.9 19.7 84.5 40.4 40.1
17| 9.7 207.5 18.5 90.8 33.7 52.9
18| 11.5 221.6) 21.7 72.1 36.4 49.3
19| 14.5 198.6 24.3 92.8 40.0 38.4
20| 10.5 224.9 24.6 77.4 35.5 35.3
Average= 11.0 211.1 23.4 84.3 36.3 49.7
Variance= 4.9 154.0 10.6 93.7 9.5 87.4
Std Dev.= 2.2 12.4 3.2 9.7 3.1 9.3
2*g( 95%conf. 1.0 5.5 1.5 4.3 1.4 4.2
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Table 2 Continued

STEP CHANGE

Number FOF FOF FOF
of FF= 0.4|FF= 0.5]FF= 0.6
simulation |No change with step change|No change with step changglNo change with step change
1 42.4 42.9 69.1 30.0 92.5 12.0
2 49.5 20.4 70.2 9.3 85.5 13.5
3 52.5 16.1 73.1 20.0 83.6 11.6
4 45.4 27.0 67.4 13.8 87.9 6.2
5 57.2 25.9 63.7 24.9 86.2 11.9
il 46.9 32.5 68.6 21.2 87.2 12.0
7 47.1 42.6 73.1 8.0, 86.9 9.0
8 45.6 20.8 64.9 18.8 78.6 6.4
9 53.8 28.7 76.0 1.4 101.3 2.0
10 45,2 42.7 67.7 8.9 86.2 13.6
11 47.9 33.8 7.1 17.5 80.7 17.6
12 56.5 10.8 64.4 12.5 87.9 1.8
13 40.4 26.8 70.5 11.7 86.1 2.2
14 54.9 32.9 64.7 14.2 73.4 22.6
15 49.8 40.9 72.0 14.9) 82.3 18.4
16 50.8 5.2 77.9 11.9 83.8 15.5
17 56.0 27.6 63.1 26.7 80.8 14.4
18 49.1 37.4 62.8 29.5 79.5 20.3
19 46.9 49.9 75.2 0.3 93.6 14.3
20 56.6 12.2 68.6 22.8 83.6 6.9
Average= 50.2 29.8 69.5 15.9) 85.6 11.6
Variance= 29.5 138.0 23.2 71.0 41.1 35.6
Std Dev.= 5.4 11.7 4.8 8.4 6.4 6.0
2*o( 95%conf. 2.4 5.3 2.2 3.8 2.9 2.7
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Figure 4.2 Plot Of First-order ISE values with the introduction of a step chauige

base value vs First-order ISE values with no change in the base steadglstate

FOF (ISE with step change vs ISE with No
change in steady state base value)
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In Figure 4.2

The diamonds represent a filtering factor value of 0.1
The squares represent a filtering factor value of 0.2
The triangles represent a filtering factor value of 0.3
The “X” represent a a filtering factor value of 0.35

The “ ~<_ ” represent a filtering factor value of 0.4
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The circles represent a filtering factor value of 0.45

Figure 4.2.1Selection of optimum first-order filter tuning value

FOF (ISE with step change vs ISE with No
change in steady state base value)
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The non-dominated values are:
1. The diamond representing tuning value of 0.1 (Enclosed by circle 1 in Figure 4.2.1)
2. The squares representing tuning value of 0.2 (Enclosed by circle 2 in Figure 4.2.1)

3. The triangles representing tuning value 0.3 (Enclosed by circle 3 in BiQui¢
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The chosen optimum filter tuning value is 0.2. This is the choice because the values of
the triangle enclosed by circle 2 dominate the other tuning values enclosedd$ cir

and circle 4 on the x-axis and dominate circle 1 on the y-axis.

Self-Tuning Filter (STF)

The self-tuning filter simulation results are given in Table 3.
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Table 3.STF ISE values to determine optimal filter tuning value (Ef)

STEP CHANGE
Number STF STF STF

of EF= 0.1|EF= 0.2|EF= 0.3

Simulation No Change with step change |No Change with step change |Mo Change with step change
1 2.2 3435.8 3.0 1139.2 34.4 630.6
2 13.6 2464.7 23.9 1226.3 10.3 619.7
3 0.7 2753.1 5.7 1106.8 14.4 735.2
4 37.2 2761.4 4.4 1131.2 19.0 670.7
5 48.3 2509.4 4.4 1178.5 25.6 603.2
il 5.3 2801.7 9.0 1412.2 13.3 702.7
7 459 2798.4 10.6 1205.1 31.4 606.2
8 9.2 2813.2 6.0 1295.4 19.7 821.0
9 17.7 3058.1 23.7 1384.5 10.6 686.0,
10 21.9 3232.7 15.4 1147.4 11.3 629.3|
11 0.9 2455.3 18.0 1116.2 15.9 693.2
12 1.5 2036.8 6.5 1087.9 17.1 752.1
13 13.0 3354.2 7.6 1183.4 14.2 625.6|
14 62.6 3061.4 8.8 1178.1 12.0 736.0,
15 1.7 3122.9 32.1 1425.0 12.7 728.8
16 54.2 2005.7 6.3 080.7 9.9 7858
17 7.5 2042.9 7.4 1200.2 17.9 721.4
18 57.7 2085.7 13.5 1134.0 9.9 869.9)
19 221 2674.8 7.0 1216.5 12.9 642.2
20 9.9 2531.3 11.7 1090.9 20.1 758.2
Average= 21.6 2884.5 11.3 1192.0 17.1 703.9]
Variance= 449.5 79709.7 60.1 12817.0 55.1 5728.1
Std. Dev.= 21.2 282.3 7.8 113.2 74 75.7
2*g( 95%conf.) 9.5 126.3 3.5 50.6 3.3 33.3
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Table 3 Continued

STEP CHANGE
Number STF STF STF

of EF= 0.35|EF= 0.4 EF= 0.45

Simulation No Change with step change|No Change with step change|No Change with step change
1 12.1 505.4 24.3 507.2 23.1 449.9
2 39.3 517.4 22.9 410.2 28.7 411.3
3 14.9 527.8 23.0 594.9 27.6 393.6
4 16.2 590.0 41.8 521.0 21.8 334.4
5| 20.6 545.6 25.6 406.7| 25.7 429.8
b| 14.3 470.0] 21.3 604.2 22.5 368.3
7] 18.6 663.2 21.4 483.9 30.9 567.0
8 12.6 563.5 3.5 509.0 21.2 409.1
9 21.2 533.1 24.6 476.8| 19.7 400.9
10 17.5 671.2 25.6 442.0 37.9 322.7
11 24.5 L78.6 19.2 205.2 21.8 433.2
12| 22.6 560.9 27.0 438.6| 34.8 353.4
13 17.4 645.6 17.3 591.3 281 383.1
14 12.4 491.0 171 580.5 374 427.0
15 15.9 455.3| 40.5 625.4 32.5 373.2
16 21.2 442.1 23.9 461.5 37.4 381.2
17 10.7 634.9 19.6 479.5 24.3 356.2
18 13.5 619.3 22.5 371.6 26.3 365.3
19 17.0 570.5 17.0 619.3 221 474.1
20 18.2 521.0 33.3 622.5 28.6 529.3
Average= 18.0 555.8 25.6 502.1 28.2 408.1
Variance= 39.3 4584.6 54.1 8692.2 29.9 3798.1
5td. Dev.= 6.3 67.7 7.4 93.2 5.5 61.6
2*g{ 95%conf. 2.3 30.3| 3.3 41.7] 2.4 21.6
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Figure 4.3. Plot of self-tuning ISE values with the introduction of a step chauige t

base value vs self-tuning ISE values with no change in the base steady state val

STF ISE (With a step change vs no change)
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In Figure 4.3

The diamonds represent a filtering factor value of 0.1
The squares represent a filtering factor value of 0.2
The triangles represent a filtering factor value of 0.3
The “X” represent a a filtering factor value of 0.35

The * = " represent a filtering factor value of 0.4
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The circles represent a filtering factor value of 0.45

Figure 4.3.1 Selection of optimum self-tuning filter tuning value

STF ISE (With a step change vs no change)
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The chosen optimum filter tuning value for the self-tuning filter is 0.35 repeséy

the “X” . This is because the “X” enclosed by rounded rectangle 1 dominatenthg t

value 0.3 (enclosed by rounded rectangle 2), 0.2 (enclosed by rounded rectangle 3) and
0.1 (enclosed by rounded rectangle 4) on the y-axis. Tuning value 0.35 (in rounded
rectangle 1) also dominates the other tuning values 0.4 and 0.45 (enclosed by rounded

rectangle 5 on the x-axis. Thus its choice as optimum tuning value.

4.4. The Kalman Filter

The Kalman filter results are as given in table 4.
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Column 1 with numbers 1 to 20 shows the number of the simulation run. There was a

total of 20 simulation runs done to generate each of the 20 results in Table 4 below.

Table 4. Kalman ISE values to determine optimal filter tuning value (Q)

STEP CHANGE

Number Kalman Kalman Kalman
of Q= 6.00E-02|Q= 6.00E-03|Q= 6.50E-03
Simulation Mo Change with step change |No Change with step change|No Change with step change
1 70.0 20.4 26.8 71.5 21.7 04.6
2 70.2 5.2 20.3 80.7] 22,5 74.9
3 64.8 26.2 22,5 73.7 31.9 59.2
4 65.3 14.4 22.7 75.3 26.8 84.0,
5| 69.8 10.7 22.7 78.7 25.3 66.9
6| 75.9 16.7 21.0 78.4 24.2 93.2
7 68.4 24.0 32.0 58.6 281 78.0
8 71.5 5.1 25.1 79.3 26.6 091.2
9 74.0 9.7 21.3 100.3 27.9 72.9
10 71.6 8.0 29.0 61.2 27.1 85.2
11 65.6 22.6 25.7 73.8 24.1 74.4
12 75.7 11.9 25.4 771.2 28.5 81.0
13 66.9 21.7 22.6 82.4 23.9 72.2
14 69.3 15.5 31.0 70.6 29.2 74.2
15 69.6 10.7 28.7 66.3 24.7 771.6
16 67.4 30.3 21.2 76.7 30.9 64.9
17 69.7 15.4 20.6 81.3 23.9 78.0
18 80.3 17.2 24.0 63.2 21.5 76.2
19 72.3 12.2 26.4 83.2 33.7 62.7
20 71.8 8.2 27.1 68.6 25.7 61.5
Average= 71.4 15.3 25.5 75.0 26.7 76.1
variance= 22,1 50.1 11.4 86.0 9.8 103.8
std. dev.= a4.7 7.1 3.4 9.3 3.1 10.2
2*o( 95%conf.) 2.1 3.2 1.5 4.1 1.4 4.6
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Table 4 continued

STEP CHANGE

Number Kalman Kalman Kalman
of Q= 7.00E-03|Q= 7.10E-03|Q= 7.20E-03
Simulation No Change with step change|No Change with step change|No Change with step change
1 20.7 80.3 32.4 74.2 33.9 72.4
2 28.1 63.9 27.0 67.6 32.0 46.7]
3 27.1 58.8 28.8 75.9 22,2 71.6
4 24.4 70.4 28.7 75.8 24.7 80.0,
5 28.9 75.4 25.5 69.8 30.4 58.8
6 22.3 83.7 28.0 71.6 27.7 65.0
7 25.0 89.9 37.6 55.1 24.2 73.0
8 25.8 70.8 21.6 70.2 23.5 67.8
9 30.3 69.6 33.1 58.2 33.2 68.9
10 24.0 83.8 28.3 51.7 27.7 79.9
11 25.6 72.2 34.8 66.7 25.0 717
12 29.6 53.8 26.1 60.1 30.1 57.8
13 20.2 64.4 33.6 59.0 26.9 68.4
14 28.4 78.2 32.0 60.4 26.4 65.9
15 24.1 84.0 30.9 71.9 29.7 55.4
16 32.4 45.0 34.7 73.7 26.6 76.3
17 31.2 73.5 24.0 86.5 36.0 52.4
18 25.9 71.6 26.6 76.8 24.6 67.8
19 24.0 86.9 31.9 49,5 35.4 64.2
20 29.4 58.8 32.7 76.1 27.4 64.1
Average= 26.4 72.3 30.2 67.8 28.4 66.7
variance= 11.6 147.3 13.3 93.3 16.4 82.0
std. dev.= 3.4 121 3.6 9.9 4.1 9.1
2*g( 95%conf.) 1.5 5.4 1.6 4.4 1.8 4.0
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Figure 4.4 Plot of Kalman ISE values with the introduction of a step chanige to t

base value vs Kalman ISE values with no change in the steady state base value.
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In Figure 4.4

The diamonds represent a filtering factor value of 6E-2
The squares represent a filtering factor value of 6E-3
The triangles represent a filtering factor value of 6.5E-3
The “X” represent a a filtering factor value of 7E-3

The * =< ” represent a filtering factor value of 7.1E-3
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The circles represent a filtering factor value of 7.2E-3

Figure 4.4.1 Selection of optimum Kalman filter tuning value

Kalman ISE (with a step change vs no change in steady state base
value)
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The non-dominated values are

1. The square representing a filtering factor value of 6E-3 (The is 1 non dainrahate

as shown in Figure 4.4.1)

2. The triangle representing a filtering factor value of 6.5E-3 (There is 1 nanatemh

value as shown in Figure 4.4.1)

3. The “X” representing a filtering value of 7E-3 (There are 3 non-dondinatieie)
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The chosen optimum tuning value is 7E-3. This is because there are 3 non dominated “X”
which is more than the other non dominated shapes. The diamonds enclosed by circle 4

are non chosen because they are all dominated on the x-axis by the other tuning values

4.5 Comparison of Results between the four filters

Part 1

Step Change

Having obtained the optimum filter tuning values discussed above, these values were

then used for the comparison to obtain the filter with the lowest ISE.

The result is shown below:

Column 1 with numbers 1 to 20 shows the number of the simulation run. Twenty

simulation runs was done to generate each of the 20 results below:
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Table 5. Comparison of ISE results of CUSUM, First-order, Self-tuning andafalm

filter for introduction of a step change to steady state base value.

STEP CHANGE
Number CUsuUmM FOF STF KALMAN

of Trigger= 2.5 ff= 0.2 Ef=0.35 Q= 7.00E-03

simulation No with step No with step |No with step|No change with step
change change change change |change change |change change

1 6.9 484.4 18.1 93.7 16.0 616.2 25.5 88.3
2 8.8 401.0 20.9 114.3 15.6 554.7 28.0 83.6
3| 9.5 332.9 18.7 96.2 11.2 593.0 35.3 094.2
4 7.0 543.6 20.3 104.1 24.5 329.7 23.8 88.8
5 10.6 443.3| 21.4 85.7 21.8 556.9 20.2 85.0
B| a5 394.0, 19.7 106.4 10.0 £36.5 18.8 92.7|
7| 4.9 135.7 20.1 91.7 26.3 515.7 27.2 101.7
8 3.2 437.8 23.0 95.8 14.2 661.8 22.6 98.4
9 21.3 227.6 18.0 91.2 16.4 654.7 23.2 90.5
10| 10.5 481.3| 21.9 93.6 17.2 713.2 22.9 09.8
11 8.1 471.1 16.4 09.5 15.0 562.1 20.7 83.4
12 17.8 193.8 15.7 101.7 12,1 723.0 18.5 80.4
13 14.1 228.0 19.2 115.4 17.1 714.3 21.4 85.2
14 12.6 440.3 15.1 104.0 30.7 520.5 21.7 76.0)
15 9.1 407.0 14.6 103.5 11.2 527.1 18.9 80.3
16 5.1 340.9 13.3 107.8 25.0 L97.1 23.3 101.8,
17| 3.0 298.3 22.4 110.2 14.6 661.6 23.2 81.2
18 17.0 223.2 16.3 94.5 20.6 508.4 221 102.7
19| 7.6 243.9 14.6 102.4 20.9 488.1 19.3 80.2
20 7.5 482.1 15.4 105.2 15.4 621.9 21.2 90.4
Average= 9.6 361.0, 18.3 100.9 17.8 587.3 229 89.2
Variance= 23.3 14116.0| 8.6 63.6) 31.5 8574.8 15.3 68.8)
Std. Dev. 4.8 118.8 2.9 8.0 5.6 92.6 3.9 8.3
2*g( 95%conf.) 2.2 53.1 1.3 3.6 2.5 41.4 1.7 3.7
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Figure 4.5 Plot of ISE values with the introduction of a step change to the stately
base value vs ISE values with no change introduction for the CUSUM, First-order ,

STF, and Kalman filter.
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In Figure 4.5

The diamonds represent the CUSUM filter
The squares represent the first-order filter
The triangles represent the self-tuning filter

The “X” represent the Kalman filter
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Figure 4.5.1Comparison of filter performance for step change
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Figure 4.5.1 shows that the self-tuning filter (rounded rectangle 8) is dechibyathe
first-order filter (in rectangle 7) the CUSUM filter (in rounded ragla 6) and by the
Kalman filter (thick rectangle 9) on the y-axis, While the CUSUMfils dominated by
the first-order filter and Kalman filter on the y-axis. The Kalmaefi{enclosed by thick
rectangle 7) does well on the y-axis but is dominated by the first or@er(iiitrectangle

7) on the x-axis. Hence, from Figure 4.5.1 considering rectangles 6, 7 and 8, it can be
concluded that the CUSUM filter performs best for a steady state proitesswhange

in base value (i.e. is not dominated on the x-axis during the steady state wiwtide/)

the Kalman filter performs better for a process that involves a stepeiaa steady

State process.
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Part 2 Ramp

Based on the optimum filter filtering values from the ramp tests, a sésanulation

runs was done involving the introduction of a ramp change to the steady state base value
and the ISE values for the steady state portion as well as the portion withrige arees
calculated. The results are given in Table 6.

Comparison of the four filter simulation results:
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Table 6 Comparison of ISE results of CUSUM, First-order, Self-tuning and iKdlhea

for introduction of a ramp change to steady state base value.

RAMP CHANGE
Number CUSUM  |FOF STF KALMAN

of Trigger= 2.5 ff=0.2 Ef= 0.2 Q= 6.50E-03
simulation|No with ramp|No with ramp|No with ramp|No with ramp
Change change|change change|change  change|change change
1 7.2 263.6| 18.0 100.5 16.0 318.0 20.3 84.7
2 17.5 185.4) 22.5 95.3 22.2 206.1 17.9 74.1
3 10.4 228.0 24.3 101.0 10.5 203.2 26.6 74.3
4 20.5 190.8 18.3 105.5 40.5 244.0 21.7 66.9
5 6.2 204.4 20.3 93.1 44.4 280.7 21.9 3.3
6 6.5 164.3|] 18.8 106.7 11.8 231.9 23.3 83.4
7 5.4 169.2| 28.2 110.0 46.8 322.6 20.6 65.7
8 28.5 208.1 223 106.3 18.3 186.5 21.5 78.2
9 7.9 184.1 27.1 101.6 24.0 271.5 19.1 70.2
10/ 9.3 195.3 18.6 108.1 28.8 203.8 30.6 7b.1
11 12.4 210.2) 239 106.7 13.6 233.1 38.9 77.0]
12 11.5 179.1) 20.9 90.2 11.0 229.3 32.9 64.3
13 8.2 192.6 25.1 105.8 21.9 230.4 21.2 75.2
14 15.7 200.2 19.3 90.7 62.9 262.0 20.3 60.4
15 11.1 220.7 19.5 97.5 10.8 274.1 21.4 80.4
16 4.9 264.1] 18.0 109.9  48.9 327.7 18.6 67.9
17 8.9 185.3] 21.0 100.7 16.0 327.9 17.7 73.4
18 11.4 252.9 21.2 116.6 46.8 2771.7 17.3 79.5
19 4.0 203.5 24.3 100.5 30.9 225.3 22.1 4.3
20 9.7 174.8] 26.4 101.9 17.7 233.4 19.4 69.3
Average= 11.3 2041 22.2 102.9 27.2 259.4 22.7 74.0]
Variance= 48.3 866.1 11.0 48.8| 248.3 1857.5 30.7 40.2
Std. Dev.= 7.0 20.4 3.3 7.0 15.8 43.1 5.5 6.3
2*g= 13.9 58.9 6.6 14.0 31.5 80.2 11.1 12.7

Column 1 shows the number of the simulation run, the other columns show the name of

the filter, the filter tuning value and whether a change was introduced or notrsklué fi

each pair of the two columns shows the ISE values for a steady statensilymeo

change introduced. Each of the second columns shows the ISE values with the

introduction of a ramp change.
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Figure 4.6 Plot of ISE values with the introduction of a ramp change to the steady
state base value vs ISE values with no change introduction for the CUSUM, Firs

order, STF, and Kalman filter.
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Figure 4.6 is a plot of the ISE values for simulation runs with a ramp change inttoduce
to the base point on the vertical axis, while the horizontal axis shows values for the
steady state base point with no change introduced.

The diamonds represent the CUSUM ISE values

The squares represent the FOF ISE values

The triangles represent the STF ISE values

The “X” represent the Kalman ISE values

Figure 4.6.1 Comparison of filter performance for ramp change
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It is observed in Figure 4.6.1 that the Kalman filter (in rounded rectangle 4ha@si
the first-order filter (in rounded rectangle 3) and that the CUSUM f{iltetounded
rectangle 1) dominates the self-tuning filter (in rounded rectangia #)e x-axis. From
this observation, it can be concluded that he CUSUM filter performs best fodg stea
state process with no change in base value (i.e. is not dominated on the x-abaghevhi
Kalman filter performs best for a process that involves a ramp charige steady state

process (i.e. is not dominated during the ramp change window on the y-axis).

Part 3 (Oscillatory signal)

The result of simulations with the introduction of an oscillatory change is shoom.bel
Column 1 shows the number of the simulation run, the other columns show the name of
the filter, the filter tuning value and whether a change was introduced or notrskloé fi

each pair of columns shows the ISE values for a steady state signal witange

introduced. Each of the second columns shows the ISE values with the introduction of an

oscillatory change.
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Table 7. Comparison of ISE results of CUSUM, First-order, Self-tuning and Kalma

filter for introduction of a step change to steady state base value.

OSCILLATORY CHANGE

Number CUsSUM FOF STF KALMAN
of Trigger= 2.5 ff= 0.2 Ef=0.35 Q= 7.00E-02
Simulation|No with No with No with No with
change Oscillatory [Change Oscillatory |Change Oscillatory|Change Oscillatory
Change Change Change Change
1 7.9 45.8 20.2 18.3 16.0 132.8 22.6 20.7]
2 15.0 L4 3 17.1 17.7 14.4 20.4 20.1 15.5
3 3.7 43.9 17.0 16.8 11.5 20.6 23.7 19.4
4 10.3 LE.0| 15.3 17.3 17.3 23.4 23.2 19.6
5 9.2 G401 18.2 23.9 13.9 16.0/ 23.5 21.1]
6 19.2 38.4 18.1 17.7 10.3 12.3 20.2 18.9
7 6.5 47.6 15.2 13.9 22.1 15.7] 22.6 20.7]
8 5.8 38.3 16.7 16.3 13.6 15.6 16.2 22,01
9 3.4 43.2 15.9 13.5 14.9 17.5 19.8 19.1]
10/ 15.5 63.0 18.3 14.6 15.3 16.1 24.3 16.0/
11 7.1 51.01 20.5 21.1) 16.0 15.6 24.8 20.4
12 9.2 42.7 21.3 11.9 12.9 27.6) 20.5 21.2
13 4.3 60.0/ 20.1 15.9 15.8 16.7 22.6 19.1]
14 22.3 41.3 17.4 18.5 22.9 16.4 25.6 18.8
15 0.2 54,2 22.8 15.4 11.8 17.2 18.7 18.5
16| 6.5 38.2 18.6 21.2 19.6 14.5 20.2 16.4
17 1.8 45.1 20.4 14.2 14.4 19.4 27.2 26.0]
18 3.5 53.0] 20.4 18.1 13.7 14.0 22.9 19.1]
19 14.7 46.3 15.6 16.2 18.8 17.8 231.3 19.9
20 15.6 54,6 15.2 17.1 15.8 21.9 19.9 23.5
Ave= 9.1 43.8 18.2 17.0 15.5 17.6 221 19.8
Variance= 37.1 52.6 51 8.2 10.8 13.5 6.7 6.3
Std. Dev.= 6.1 1.3 2.3 2.9 3.3 3.7 2.6 2.5
2 o= 12.2 14.5 4.5 5.7 6.6 7.3 5.2 5.0
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Figure 4.7 Plot of ISE values with the introduction of an oscillatory change to the
steady state base value vs ISE values with no change introduction for theMCUSU

First-order , STF, and Kalman filter.
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Figure 4.7 is a plot of the ISE values for simulation runs with an oscillatorgehan
introduced to the base value on the vertical axis, while the horizontal axis sHoes va
for the steady state base value with no change introduced.

The diamonds represent the CUSUM ISE values

The squares represent the FOF ISE values
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The triangles represent the STF ISE values
The “X” represent the Kalman ISE values

Figure 4.7.1 Comparison of filter performance for oscillatory change
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From Figure 4.7.1, it is observed that the CUSUM filter enclosed in rounded rectangle
performs well on the x-axis. However, the CUSUM filter is dominated on thésybgx

the self-tuning filter, the Kalman filter, and the first-order filteheTself-tuning filter
enclosed in rounded rectangle 2 dominates first-order filter (in rounded rec&ragid

the Kalman filter (in rounded rectangle 4) on the x-axis. Hence, it can be dedc¢hat

the CUSUM filter performs best for a steady state process with no ctatigesteady

state base value, while the self-tuning filter performs best for a gridtasinvolves an
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oscillatory change to the steady state process. This is because-thaiaglfilter is not
dominated on the y-axis by any of the other filters, but it dominates therist-and

Kalman on the x-axis. Thus the choice of the self-tuning filter.

4.2 EASE OF UNDERSTANDING THE FILTERS
Based on the human ease of understanding, the four filters are grouped into four levels
With level 1 having the relatively easiest understanding and level 100 bein¢athehe

most complex.
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Table 8. Ease of understanding the filters

Filter Relative rank based on ease of
understanding

First order Filter (FOF) 1.

Self-tuning filter (STF) 4.

CUSUM 5.

Kalman filter 100.

FOF is assigned a rank of 1 for ease of understanding because it involvedlyelati

simple mathematics of multiplication, addition and subtraction.

STF is assigned a rank of 4 because it involves relatively higher computations of
exponential, conditional statement and more variables with assigned values.

CUSUM filter is assigned a rank of 5 because it involves relatively higimeputations

than the FOF and STF with even more variables, conditional statements and calculations
Kalman filter is assigned a rank of 100 because it involves the relatiustyaomplex
calculations of the four filters. It involves the use of matrices and matrratopes for

the time update and measurement update operations.

4.3 Cost

The results for analysis based on arithmetic operations are as given Haofivst

column shows the number of arithmetic operations (such as “*”, “+”, “-”, “A” etc)
involved in the filter equation. The second column shows the actual equation. The third

column shows the number of “Get” operations required to read a certain input. And, the
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final column shows the number of “put” operations required to assign a value to @& certai

variable.

4.3.1 Ranking of filters based on cost analysis derived from the total operatisn

required in the filter equation.

Table 9 Evaluation of operations required in CUSUM filter

Equation Equation 1 2 3
Number Evaluated
Equation Arithmetic Get(Read) Put
Operation
1 n=n+1 1 1 1
2 V=f1*v+{f2*(xx- 5 5 1
xxold)"2
3 CUSUM=CUSUM+xx-| 2 3 1
XXSpC
4 Xmeas=xXspc 1 1
5 (xx=xmeas) 1 1
6 (xxold=xx) 1 1
Sum 8 12 6
Total 26
Table 10 Evaluation of operations required in first-order filter
Equation | Equation Evaluation 1 | Evaluation 2 | Evaluation3
Number (Arithmetic Get (Read) Put
operation)
1 xmeasff=ff*(xmeas)+(1: 4 4 1
ff)*(xmeasff)
Total 9

xmeas is the signal measured value

xmeasff is the filtered value
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Table 11 Evaluation of operations required in self-tuning filter

Equation | Equation 1 2 3
Number | Evaluated
(Arithmetic | Get (Read) | Put
operation)
1 Ef=2*sigmad 1 1 1
2 deltaf=0.9*deltaf+0.1*(xmeas-5 3 1
xmeasold)"2
3 lambda= 4 2 1
(0.5+1.1668*deltaf/Ef*2)"-1
4 (xmeasold=xmeas) 1 1
5 (xmeasf=lambda*xmeas+(1-| 4 4 1
lambda))*xmeasf
Sum 14 11 5
Total 30

sigmad is the standard deviation of the measurement

xmeasf is the filtered value
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Table 12 Evaluation of operations required in Kalman filter

Equation | Equation Evaluated Arithmgtic Get(Read) | Put
Number operation
1 xhatminus(i)=xhat(i-1) 1 2 1
2 Pminus(i)=P(i-1)+Q 2 3 1
3 xhat(i)=xhatminus(i)+k(i)*(xmeas- 3 4 1
xhatminus(i)
4* k())=Pminus(i)/(Pminus(i)+R) 3 3 1
5 P(i)=(1-k(i))*Pminus(i) 2 3 1
6 xmeaskf=xhat(i) 2 1
7 R=(value) 1 1
8 Q=(Value) 1 1
Sum 11 15 8
Total 34

In equation 4* the inversion operation would require several steps of arithmetic aperati
when it involves matrices. (This shows that the Kalman filter will involve much more
operations than indicated above)

xmeaskf is the kalman filtered value

xmeas is the signal measurement value

Given the results above the filters are ranked on a scale of one to four, with @pthbein

cheapest to operate and four being the most expensive.
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Table 13. Ranking of filter in increasing order of relative cost.

Filter Relative Rank (based on | Total number of
total number of operations
operations)

FOF 1 9

CUSUM 3 26

STF 3 30

Kalman 4 34

From the above scale, the first-order filter is the cheapest to operate snofesnthmetic
operations, while the Kalman filter is the most expensive in terms of aritainet

operations.

3.2. Ranking of filters based on cost analysis derived from the Number of Varisds

used in Filter Equation.

Based on the number of variables required in the filter equation, the four fikers a
ranked as shown below, with a rank of 1 requiring the least number of variables and 4

requiring the most number of variables:
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Table 14 Ranking of filter based on the required number of memory location/required

variables

Filter Rank based on Number of memory
required number of location (or variables
variables required)

FOF 1 3

STF 2 7

Kalman 3 10

CUSUM 4 12

From the result above, The First-order filter requires the least numbeilaiflgarand
thus is the least expensive in terms of the required number of variableshehile t
CUSUM filter requires the most number of variables and is thus the most expensive in

terms of the required number of variables.
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CHAPTER V

CONCLUSION AND RECOMMENDATION

The CUSUM filter is the best filter to use in a steady state process ingaigichange.
In a process that involves a step change, the Kalman filter is the besofie. A
process that involves a ramp change is best filtered using the Kalman filternAnd, a

oscillatory process is best filtered using the self-tuning filter.

First-order filter is the easiest to understand, while the Kalman §ltéei most complex

to understand.

The first-order filter is the cheapest to operate in terms of arithimati@ations, while the

Kalman filter is the most expensive in terms of arithmetical operations.

The first-order filter is the least expensive considering required numbariables,
while the CUSUM filter requires the most number of variables and is thus the most

expensive in terms of the required number of variables.

It is recommended that further analysis involving different signal to ndisesteould be
carried out. Also, the filter speed of tracking the signal be analyzed in subsstykes.
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APPPENDIX
A

VBA codes used in the simulation of steady state signal with the addition @f a ste
change

'VBA codes written with help from Dr. R.R. Rhinehart

'‘Department of Chemical Engineering, Oklahoma State University
'Daniel Fakunle

'MSC Research Project

'10-13-09

'A sub program to generate noisy signal and filter the noise using a
‘cusum filter,first order filter and Kalman filter

Dim t As Single

Dim sigmad As Single
Dim dt As Single

Dim i As Single

Dim sp As Single
Dim xmeas As Single
Dim ff As Single

Dim kc As Single
Dim taud As Single
Dim n As Single

Dim xx As Single
Dim xxold As Single
Dim xxspc As Single
Dim v As Single

Dim cusum As Single
Dim m As Single

Dim ff1 As Single
Dim ff2 As Single
Dim Trigger As Single
Dim xhatminus(1000)
Dim Ef As Single
Dim xhat(1000)

Dim Pminus(1000)
Dim P(1000)

Dim k(1000)

Dim xkp As Single
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Dim pkp As Single

Dim xold As Single

Dim pkold As Single

Dim Q As Single

Dim R As Single

Dim kk As Single

Dim xk As Single

Dim pk As Single

Dim xmeaskf As Variant 'Kalman filtered value
Dim deltaf As Single

Dim lambda As Single

Dim xmeasold As Single

Dim xmeassf As Single 'Self tuning filtered value
Dim xmeasff As Single 'First order filtered value
Dim xmeasc As Single 'cusum fltered value

Sub signal()
Application.ScreenUpdating = False

'Inital values of constants
ff = Sheet3.Cells(7, 24)

dt = Sheet3.Cells(3, 24)
Trigger = Sheet3.Cells(8, 24)
kp = Sheet3.Cells(11, 24)

Ef = Sheet3.Cells(10, 24)
'kalman filter constants
xhat(0) =1

Pminus(0) =1

Randomize

'Main Program

Fori=1 To 1000 'For loop
t=dt*i

x=3

If i >500 Then x = 10

Call Process(x, xmeas)

‘Call filter

Call ffilter(xmeas, xmeasff)

Call cusumf(xmeas, xmeasc)

Call kalman(xmeas, xmeaskf)

Call selftuningfilter(xmeas, xmeassf)
'Print out observable results

70



'‘Application.ScreenUpdating = False
Sheet3.Cells(2 + i, 1).Value =t

Sheet3.Cells(2 + i, 3).Value = xmeas
Sheet3.Cells(i + 2, 4).Value = xmeassf 'STF
Sheet3.Cells(i + 2, 5).Value = xmeasc 'Cusum
Sheet3.Cells(i + 2, 16).Value = xmeaskf 'Kalmnan
Sheet3.Cells(i + 2, 17).Value = xhat(i)
Sheet3.Cells(i + 2, 18).Value = Pminus(i)
Sheet3.Cells(i + 2, 19) = k

Sheet3.Cells(i + 2, 20) = xhatminus(i)
Sheet3.Cells(i + 2, 21) = P(i)

Sheet3.Cells(i + 2, 22) = xmeasff 'FOF filter
'Sheet3.Cells(i + 2, 44) = Ef  'FOFilter

Next i

'Call signal2
Application.ScreenUpdating = True
End Sub

'FIRST ORDER FILTER
Sub ffilter(xmeas, xmeasff)

xmeasff = ff * (xmeas) + (1 - ff) * (xmeasff)
End Sub

'CUSUM FILTER
Sub cusumf(xmeas, xmeasc)
Ifi=1Then
n=0
xx=0
xxold =0
xxspc =0
v=0
cusum =0
m=11
ffl=((m-2)/(m-1))
ff2=(1-f1)/2
End If

XX = Xmeas

n=n+1

v =ffl*v + ff2 * (xx - xxold) " 2

xxold = xx

cusum = cusum + Xxx - XXspc

If (Abs(cusum) > Trigger * Sqgr(v * n)) Then
XXSPC = XXSpC + cusum / n
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cusum=0
n=0
End If
Xmeasc = XXSpcC
End Sub

Sub kalman(xmeas, xmeaskf)

'KALMAN FILTER

R = Sheet3.Cells(9, 24).Value
Q = Sheet3.Cells(4, 24).Value
‘Time Update

xhatminus(i) = xhat(i - 1)
Pminus(i)=P(i-1) + Q

'Measurement Update

k(i) = Pminus(i) / (Pminus(i) + R)

xhat(i) = xhatminus(i) + k(i) * (xmeas - xhatminus(i))
P() = (1 - k(i)) * Pminus(i)

xmeaskf = xhat(i)

'xold = xk

End Sub

Sub Process(x, xmeas)

taun = Sheet3.Cells(5, 24)
If taun = 0 Then taun = 0.0001
sigmad = Sheet3.Cells(6, 24)
alphal = Exp(-dt / taun)
betaO = 1 - alphal
sigmaw = sigmad * Sgr((1 + alphal) / beta0)
xnoise = sigmaw * Sqr(-2 * Log(Rnd)) * Sin(2 * 3.14159 * Rnd) 'Gaussian distributed
noise

Sp = X
Xxmeas = X + xnoise

End Sub

Sub selftuningfilter(xmeas, xmeassf)

deltaf = 0.9 * deltaf + 0.1 * (xmeas - xmeasold) " 2
lambda =1/ (0.5 + 1.1668 * deltaf / Ef ~ 2)

If lambda > 1 Then lambda =1

xmeasold = xmeas

xmeassf = lambda * xmeas + (1 - lambda) * xmeassf
End Sub
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APPPENDIX
B
VBA codes used in the simulation of steady state signal with the addition of a ramp
change

'VBA codes written with help from Dr. R.R. Rhinehart

'‘Department of Chemical Engineering, Oklahoma state university
'‘Daniel Fakunle

'MSC Research Project

'10-13-09

'A sub program to generate noisy signal and filter the noise using a
‘cusum filter,first order filter and Kalman filter

Sub signalramp()
Application.ScreenUpdating = False

'Inital values of constants
ff = Sheet4.Cells(7, 24)

dt = Sheet4.Cells(3, 24)
Trigger = Sheet4.Cells(8, 24)
Ef = Sheet4.Cells(10, 24)
'kalman filter constants
xhat(0) = xmeas

Pminus(0) =1

Randomize

dt=0.1

'Main Program

Fori=1 To 1000 'For loop
t=dt*i

x =3+ (t-50)

If i >500 Thenx =3+ (t-50)
Call Process(x, xmeas)

‘Call filter

Call ffilter(xmeas, xmeasff)

Call cusumf(xmeas, xmeasc)

Call kalman(xmeas, xmeaskf)

Call selftuningfilter(xmeas, xmeassf)
'Print out observable results
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Application.ScreenUpdating = False
Sheet4.Cells(2 + i, 1).Value =t

Sheet4.Cells(2 + i, 2).Value = x

Sheet4.Cells(2 + i, 3).Value = xmeas
Sheet4.Cells(i + 2, 4).Value = xmeassf 'STF
Sheet4.Cells(i + 2, 5).Value = xmeasc 'Cusum
Sheet4.Cells(i + 2, 16).Value = xmeaskf 'Kalmnan
Sheet4.Cells(i + 2, 22) = xmeasff 'FOFilter

Next i
Application.ScreenUpdating = True
End Sub

'FIRST ORDER FILTER
Sub ffilter(xmeas, xmeasff)

xmeasff = ff * (xmeas) + (1 - ff) * (xmeasff)
End Sub

'CUSUM FILTER
Sub cusumf(xmeas, xmeasc)
Ifi=1Then
n=0
xx=0
xxold =0
xxspc =0
v=0
cusum =0
m=11
ffl=((m-2)/(m-1))
ff2=(1-f1)/2
End If

XX = Xmeas

n=n+1

v =ffl*v+ ff2 * (xx - xxold) " 2

xxold = xx

cusum = cusum + xx - XXspc

If (Abs(cusum) > Trigger * Sqgr(v * n)) Then
XXSPC = XXSpC + cusum / n

cusum=0
n=0
End If
Xmeasc = XXSpcC
End Sub
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Sub kalman(xmeas, xmeaskf)

'KALMAN FILTER

R = Sheet4.Cells(9, 24).Value
Q = Sheet4.Cells(4, 24).Value
‘Time Update

xhatminus(i) = xhat(i - 1)
Pminus(i)=P(i-1) +Q

'Measurement Update

k(i) = Pminus(i) / (Pminus(i) + R)

xhat(i) = xhatminus(i) + k(i) * (xmeas - xhatminus(i))
P() = (1 - k(i)) * Pminus(i)

xmeaskf = xhat(i)

End Sub

Sub Process(x, xmeas)

taun = Sheet4.Cells(5, 24)
If taun = 0 Then taun = 0.0001

sigmad = Sheet4.Cells(6, 24)

alphal = Exp(-dt / taun)

betaO =1 - alphal

sigmaw = sigmad * Sgr((1 + alphal) / beta0)

xnoise = sigmaw * Sqr(-2 * Log(Rnd)) * Sin(2 * 3.14159 * Rnd) 'Gaussiatriduted
noise

Xxmeas = X + xnoise
End Sub

Sub selftuningfilter(xmeas, xmeassf)

deltaf = 0.9 * deltaf + 0.1 * (xmeas - xmeasold) " 2
lambda =1/ (0.5 + 1.1668 * deltaf / Ef ~ 2)

If lambda > 1 Then lambda =1

xmeasold = xmeas

xmeassf = lambda * xmeas + (1 - lambda) * xmeassf
End Sub
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APPPENDIX
C
VBA codes used in the simulation of steady state signal with the addition of an
oscillatory change

'VBA codes written with help from Dr. R.R. Rhinehart

'‘Department of Chemical Engineering, Oklahoma state university
'‘Daniel Fakunle

'MSC Research Project

'10-13-09

'A sub program to generate noisy signal and filter the noise using a
‘cusum filter,first order filter and Kalman filter

Sub signaloscillatory()
Application.ScreenUpdating = False

'Inital values of constants

ff = Sheet5.Cells(7, 24)

dt = Sheet5.Cells(3, 24)

Trigger = Sheet5.Cells(8, 24)

Ef = Sheet5.Cells(10, 24)

'kalman filter constants

xhat(0) = xmeas

Pminus(0) =1

Randomize

dt=0.1

'Main Program

Fori=1 To 1000 'For loop

t=dt*i

X=3

If i > 500 Then x = 3 +-0.729535369032456 *
Sin(Application.WorksheetFunction.Radians(50 *
Application.WorksheetFunction.Pi() * (t - 50) / 20))

Call Process4(x, xmeas)

‘Call filter

Call ffilter4(xmeas, xmeasff)
Call cusumf4(xmeas, xmeasc)
Call kalman4(xmeas, xmeaskf)
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Call selftuningfilter4(xmeas, xmeassf)

'Print out observable results
Application.ScreenUpdating = False
Sheet5.Cells(2 + i, 1).Value =t

Sheet5.Cells(2 + i, 2).Value = x

Sheet5.Cells(2 + i, 3).Value = xmeas
Sheet5.Cells(i + 2, 4).Value = xmeassf 'STF
Sheet5.Cells(i + 2, 5).Value = xmeasc 'Cusum
Sheet5.Cells(i + 2, 16).Value = xmeaskf 'Kalmnan
Sheet5.Cells(i + 2, 22) = xmeasff 'FOFilter

Next i
Application.ScreenUpdating = True
End Sub

'FIRST ORDER FILTER
Sub ffilter4(xmeas, xmeasff)

xmeasff = ff * (xmeas) + (1 - ff) * (xmeasff)
End Sub

'CUSUM FILTER
Sub cusumf4(xmeas, xmeasc)
Ifi=1Then
n=0
xx=0
xxold =0
xxspc =0
v=0
cusum =0
m=11
ffl=((m-2)/(m-1))
ff2=(1-f1)/2
End If

XX = Xmeas

n=n+1

v =ffl*v + ff2 * (xx - xxold) " 2

xxold = xx

cusum = cusum + xx - XXspc

If (Abs(cusum) > Trigger * Sqgr(v * n)) Then
XXSPC = XXSpC + cusum / n
cusum =0
n=0

End If

Xmeasc = XXSpc
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End Sub
Sub kalman4(xmeas, xmeaskf)

'KALMAN FILTER

R = Sheet5.Cells(9, 24).Value
Q = Sheet5.Cells(4, 24).Value
‘Time Update

xhatminus(i) = xhat(i - 1)
Pminus(i)=P(i-1) +Q

'Measurement Update

k(i) = Pminus(i) / (Pminus(i) + R)

xhat(i) = xhatminus(i) + k(i) * (xmeas - xhatminus(i))
P() = (1 - k(i)) * Pminus(i)

xmeaskf = xhat(i)

End Sub

Sub Process4(x, xmeas)

taun = Sheet5.Cells(5, 24)
If taun = 0 Then taun = 0.0001

sigmad = Sheet5.Cells(6, 24)

alphal = Exp(-dt / taun)

betaO =1 - alphal

sigmaw = sigmad * Sgr((1 + alphal) / beta0)

xnoise = sigmaw * Sqr(-2 * Log(Rnd)) * Sin(2 * 3.14159 * Rnd) 'Gaussian distributed
noise

Sp =X
xmeas = X + xnoise

End Sub

Sub selftuningfilter4(xmeas, xmeassf)

deltaf = 0.9 * deltaf + 0.1 * (xmeas - xmeasold) " 2
lambda =1/ (0.5 + 1.1668 * deltaf / Ef * 2)

If lambda > 1 Then lambda =1

xmeasold = xmeas

xmeassf = lambda * xmeas + (1 - lambda) * xmeassf
End Sub
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