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CHAPTER I

INTRODUCTION

1.1 Issues in the process industry

1.1.1 What is process industry?

Process industries convert raw materials into products. These products are either

consumed directly or reprocessed by a different process industry into other useful

products. The process industries include chemical, food and beverage, pulp and paper,

oil and gas, metal, water and wastewater treatment, forest products, etc.

1.1.2 Current challenges in the process industry and their consequences

In the author’s knowledge, most of these industries are facing an increasingly

challenging environment due to the highly competitive markets, dwindling resources,

increasing demand for better quality products, stringent environmental regulations, etc.

To stay competitive in this challenging environment, two trends are becoming quite

visible in these industries: 1) more sophisticated and complex plants are being built, and

2) major revamps are being performed on the existing plants. The rapid rate of these

changes in the process industry can easily be seen by the large number of the Front-End

Engineering and Design (FEED) and Front-End Loading (FEL) projects gained by the
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engineering, procurement and construction (EPC) companies such as Fluor, Bechtel,

Burns & McDonnell, CDI, The Shaw Group, KBR, etc. in the recent years. In addition,

this growth of the EPC industry is occurring world wide, as indicated by the heavy

recruitment of people in these companies. Globally, the EPC industry is looking at a 60%

increase of employees from 2005 to 2009 [1]. 

 

1.1.3 Need for a better process management

With the major changes occurring in the process industry, process management

becomes very important to ensure a safe, economic, and environmental-friendly process

which must also produce uniform products.

In addition, the statistics reveal that the management of the existing processes is

not occurring at its optimum level. For example: consider the energy consumption and

wastage of the chemical industries in 2001. According to one estimate [2], 37 percent of

the total fuel and electricity delivered to chemical engineering facilities was lost in

combustion, distribution, and energy conversion activities. At fuel prices of $7 per

MMBtu, this meant a loss of around $26 billion. It was further mentioned in this study

that 10 to 20 percent of this energy could be practically saved (the rest has to be lost due

to the fundamental laws of physics and thermodynamics) through better process

management. Thus, there is a lot of scope of improvement in this field and the current

trends in the industry make it imperative to improve the process management.

1.1.4 Current process management methods and their shortcomings
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The management of processes (unit operations, reactors and control strategies) is

obtained through the use of cause-and-effect rules. These rules are usually derived from

the phenomenological models or subjective experience of the experts and operators

gained during years of trial-and-error. However, the rapid rate at which new processes

are being built, existing processes are being revamped and personnel are switching

companies makes it extremely difficult to manage them. This is because quite often the

expert’s knowledge will not be complete. In addition, the transfer of knowledge from the

expert to the programmer (to create expert system (ES)) might create oversimplified

rules which will be ineffective.

For these reasons, efforts have been made in recent years to gain mechanistic

understanding of the process by using data-mining techniques (neural network, time-

series analysis, fuzzy-neuro-stochastic techniques for fault detection). Software (such as

Gensym G2) has been developed based on these techniques to gain knowledge from the

data. However, current software is not utilizing the full potential of today’s computers in

extracting the knowledge from the data.

Several goals which are to be achieved by the data-mining techniques are to: 1)

autonomously generate linguistic cause-and-effect rules from data, 2) incorporate the

dynamic and temporal features of the process in these rules, 3) develop metrics and find

their threshold values for determining the validity of these rules. These issues are being

considered and resolved in the research at Oklahoma State University (OSU), and

linguistic modeling of the processes, using fuzzy logic, is being performed to meet the

listed goals. The advantages of modeling a process with the linguistic rules are:
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• Linguistic rules can be used to model complex processes, for which the traditional

models are hard to develop.

• Linguistic statements are easier to understand and interpret than the mathematical

equations.

• Human Logic understanding can form the starting rule base.

• Independent mechanisms can be modeled together by using an “OR” operator.

• Linguistic statements can be easily validated against the logical understanding of

the process.

• Defuzzification of the fuzzy output from the linguistic rules can predict the future

value of the variables.

On the other hand, the disadvantages of fuzzy modeling are:

• Substantial experience with traditional modeling has developed user acceptance.

• Algebraic and calculus-based models are more precise as well as computationally

efficient.

• First-principles models provide precise tests of claims about process knowledge.

It should be noted that the fuzzy modeling is not intended to replace the

traditional modeling approaches, but, to complement them. The fuzzy modeling would

prove to be very useful for complex processes for which little or no prior process

knowledge is available. The autonomously generated cause-and-effect rules can be then

used in various areas including:

• Operator assistance
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• Process automation and control

• Process safety and maintenance

• Incremental process improvement

• Model improvement

• Training and education

1.2 The current research – The big picture

The current research at OSU seeks to develop software for the autonomous

generation of linguistic cause-and-effect rules that will be able to incorporate the

dynamics (Delay, persistence, etc.) of the process. For complex systems, a large number

of relevant process variables are possible; and thus, the current research would use

genetic algorithms to generate an initial population of the rules. This rule base would be

constantly updated and managed until it discovers all the relevant variables and all the

valid rules. The autonomously generated example rule might be:

IF reactor temperature is High AND pressure is Medium THEN final conversion is High.

In this rule, the sentence following the “If” is the antecedent and the sentence

following the “then” is the consequent. The “reactor temperature” and “pressure” are

input variables and “final conversion” is the output variable. The words “High” and

“Medium” are fuzzy variables and are also referred to as linguistic values of the

variables. The word “AND” is the conjunction.

The general structure of these rules is:

If (antecedent) Then (consequent)
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To assess the validity of the generated rules, the truth-space diagram (TSD) was

developed by Sharma [3]. The TSD is the plot between the truth of antecedent and the

truth of the consequent, for a given rule. The Truth of a statement was defined as the

degree of membership of a data set to the linguistic terms in that statement. The degree of

membership is defined as the degree of belongingness of the data set to the linguistic

category. Thus, for the example rule given above, the truth of the consequent would be

equal to the degree of membership of the given data to the “High” category for the output

variable, “final conversion”.

The general appearance of the TSD plot is shown in Figure 1. The data points

lying on the upper-right Quadrant of the TSD implied that both the antecedent and the

consequent had high degree of truth. Thus, the data suggested that the rule was a “valid

rule” since what the rule stated, did happen. The data points lying on the lower-right

Quadrant of the TSD implied that the antecedent had a high degree of truth but the

consequent had a low degree of truth. Thus, the data suggested that the rule was an

“invalid” rule since what the rule stated, did not happen. Similarly, the data points in the

lower-left Quadrant of the TSD implied that the both the antecedent and the consequent

had a low degree of truth. Hence, the data was “indeterminate” in evaluating this rule.

Finally, the data points lying on the upper-left Quadrant of the TSD implied a low degree

of truth of antecedent but a high degree of truth of consequent. Thus, the data suggested

that a “hidden mechanism” was present (in addition to the mechanism suggested by the

rule statement) which was leading to the consequent. The TSD and work done by Sharma

has been discussed in detail in Section 2.2.
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The Truth-Space Diagram
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Figure 1: The general appearance of the Truth-Space Diagram

Kumar [4] proposed the concept of “trips” and developed metrics to be used as

the selection criteria for the linguistic rules. A trip, within a Quadrant, was defined as the

locus of path traced by points into and out of that Quadrant. The metrics developed were

based on the number of trips in the upper-right-hand Quadrant and the lower-right-hand

Quadrant of the TSD. The concept of trips and work done by Kumar has been discussed

in detail in Section 2.3.

Thus, the OSU research is being performed in two different areas: 1) developing

genetic algorithms, and 2) development of the TSD. These areas have been further

divided into four parallel parts:



8

1. Development of rule-extraction mechanism (using genetic algorithms and

clustering) which accommodates the dynamic features of the process.

2. Continuous management and updating of the rule set thus obtained.

Dr. Gary Yen, professor in the department of Electrical and Computer

Engineering, Oklahoma State University, and his students are working on these two

parts of the project.

3. Quantification of the dynamic and temporal features of the process.

4. Development and exploration of the TSD to assess the quality of the rules

extracted in Steps 1 and 2 and to indicate the relevant input variables which affect

the output.

Dr. R. Russell Rhinehart, Head of department of Chemical Engineering,

Oklahoma State University, and his students, Ming Su and Gaurav Arora, are

currently working on these two parts of the project.

Ming Su [5] is currently concentrating his research on the quantification of

persistence by developing a mask, and on analyzing the effect of the missing rules on

the efficiency of the rule base in predicting the output.

1.2.1 The present work

Sharma [3] and Kumar [4] devised the TSD and the metrics to assess the validity

of a linguistic rule. The TSD, coupled with the concept of trips, was capable of handling

dynamics in the process. However, there were several issues which needed to be

resolved, to facilitate the application of this technique to a new process and to make

accurate predictions of the consequent variables, using the selected rules. These issues
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included: 1) analyzing the affect of over specification (the variables which were not

relevant are added to the rule set) and under specification (the variables which were

relevant are not added to the rule set) on the TSD, 2) quantifying the process delay, 3)

improving the prediction technique of Kumar, to give one output for each input, and

comparing it with the conventional prediction techniques. Thus, the goal of this research

was to resolve these issues and involved:

• Developing a better understanding of the TSD and its attributes.

• Incorporating the delay of the process in the fuzzy rules.

• Accurately predicting the future values of the output variables.

The main contributions of this research are to:

1. Study the affect of the over specification and under specification in the

antecedent and consequent of the rules, on the TSD.

2. Find the best mathematical operator to calculate the truth of antecedent (Ta) and

consequent (Tc). 

3. Quantify the delay.

4. Obtain a criterion based on which the rules can be compared.

5. Find the minimum number of rules required to describe the system completely.

6. Find the best value for the Quadrant size of the TSD.

7. Find the best metric and to obtain its universal value.

8. Make this technique applicable to a process with any number of process

variables.

9. Find the belief in a rule.
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10. Minimize the curse of dimensionality.

11. Decouple the consequent terms to make the predictions. 

12. Choose the best mapping function from Ta to Tc in making the predictions.

13. Blend the delay values in making the predictions.
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CHAPTER II

REVIEW OF LITERATURE

2.1 Existing Gaps in Literature

Findings of the on-going research at OSU, in autonomous generation of linguistic

cause-and-affect rules reveals challenges of: 1) autonomous rule extraction and

optimization, 2) rule attribute quantification, 3) rule base management and, 4) prediction

from the rules.

The autonomous rule extraction involves the usage of the data-driven techniques

to extract the valid rules from the process data. These techniques require several rule

attributes to be defined and quantified, based on which selection criteria are proposed to

assess the validity of the linguistic rules. Once the rule base is generated, it is important

to continuously update and manage the rule base for further improvement and to

incorporate any change in the process. Finally, the rules should be able to predict the

future values of the output variables accurately to prove their validity.

However, several issues exist in the current state-of-the-art techniques which need

to be resolved to autonomously generate these rules in the dynamic processes. These

issues are related to the 1) extraction of rules in noisy data, 2) quantification of dynamic

attributes of the system such as delay and persistence, 3) development of new selection



12

criteria, for the dynamic processes, to assess the validity of the rules, 4) universal

applicability of these techniques, and 5) development of new prediction technique which

uses the historical information of the process to predict the future.

Various vendors today provide software for automating decision-making. While

there are many case studies citing benefits and utility, the techniques for modeling and

decision support are mainly conventional, often primitive, and insufficient for complex

processes. Most of the software are incapable of autonomously generating the rules and

rely on the knowledge of the experts to generate the rule base. For example, Johnson [6]

provided a case study in which the Proactive Controller Assistant (ProCA) based on

Gensym G2 software was created to ensure pipeline efficiency and safety. However, the

rule set was created based on the heuristic knowledge of “Gas Control” controllers. The

G2 programmers had to constantly add/modify information to reflect current conditions.

In addition, the future flow patterns were predicted by using linear regression techniques.

Similarly, Mario, et al. [7] provides another Gensym case study describing the integration

of an expert system with a fuzzy controller for start-up of a petroleum offshore platform.

Again, the rules were generated based on operator’s and engineer’s knowledge. The

fuzzy controller was used for opening the choke valve of the wells. The dynamic

elements were not considered and the controlled variable included just level in tanks and

pressure in separator and pipelines.

An attempt for generating fuzzy rules from numerical data was made by Wang

[8]. The rules were obtained for each pair of desired input-output data. Due to the

presence of a large number of data pairs, and each pair generated one rule, it was highly

probable that some interacting rules, the rules with the same IF part but a different THEN
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part, will be selected as “valid” rules. Out of all interacting rules, only the rule with the

maximum degree, given by the product of the antecedent and consequent membership

functions for the given rule, was allowed to be a part of the final rule base to resolve the

conflict and to reduce the number of selected rules. Wang further mentioned that an

expert should check given data pairs and assign a degree of importance to each data

point. Then, the degree of a rule would be calculated by the product of the antecedent and

consequent membership function for the given rule and the degree of importance of the

data point. However, this technique would fail in dynamic and noisy systems as several

invalid rules might be selected because of the noise in the process. In addition, it would

take a great amount of time for the expert to look at each data point and assign a degree

of importance to it. Again, the assigned degree of importance to the data point (and hence

the rule) would depend on the subjective experience of the expert. Furthermore, in

processes requiring continuous rule updating, this technique would not be practical since

it would require the expert to continuously observe data and assign importance to it. To

predict the output value from the given inputs, Wang assumed that truth of the

consequent is equal to the truth of the antecedent. Though, it is a widely used assumption

in fuzzy logic, but, there is no fundamental reasoning behind this assumption.

Hong [9] proposed a genetic, fuzzy, rule-mining algorithm to effectively construct

a fuzzy rule base. The proposed approach consisted of three phases: fuzzy-rule

generating, fuzzy-rule encoding and fuzzy-rule evolution. In the fuzzy-rule generating

phase, N fuzzy rules were randomly generated with equal probability. A symbol * was

introduced in rule base to represent the “don’t care” value representing the absence of this

attribute in the rule. In the encoding phase, the rules were encoded as a bit-string
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chromosome and handled as an individual. In the evolution phase, the rules were

evaluated on the basis of fitness functions. This technique used multiple fitness

evaluation criteria involving accuracy, utility, and coverage for the fitness evaluation of

the rule. Accuracy was defined as the ratio of fuzzy correctness cardinality to that of the

sum of the fuzzy correctness cardinality and fuzzy incorrectness cardinality. Higher the

value of the accuracy, the better is the rule. The utility of a rule represented its necessity

in the process. If an event is correctly predicted by only one rule, then the utility value

equaled 1 as this rule was necessary to describe the process. Thus, larger the utility of a

rule is, the more inevitable the rule was. The coverage of a rule was based on the number

of events which the rule could express. The rule which had the maximum value of the

product of accuracy and utility, for a given data set, was selected and all the data points

covered by this rule were removed. This process was continued until either all the data

points were over or all the rules were evaluated. This process was proven to be useful in

the classification of the objects. However, in this technique the total number of fuzzy

rules was defined beforehand and its ability to learn from a noisy data was not discussed.

Wang [10] proposed another method of self-generating fuzzy rule base via genetic

algorithm. Firstly, an initial population of P chromosomes was generated randomly.

Then, the fitness function, to evaluate the fitness of each chromosome, was defined based

on the output error of each rule and the rules number of the i-th chromosome. Based on

the value of the fitness functions, the rules were ranked. Finally, the new generation of

the rules was generated by using reproduction, crossover and mutation operators. The

advantage of this method was that there was no need to initialize the rules number, the

positions of the antecedent and consequent fuzzy sets in the beginning of the GA.
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However, this method required a specific length and structure of the chromosome. The

fixed structure of chromosome is required in almost all the current techniques using

genetic algorithms for the autonomous generation of rules. However, the need is for a

technique which would continuously establish relationships between relevant variables

and put them together in a rule set. Wang represented each rule R (j1, j2,,.. jm) in the

complete fuzzy rule base with m inputs and n outputs as:

If x1 is A(1,j1) and x2 is A(1,j2) … and xm is A(1,jm) 

Then y1 is B1 (j1, j2, …, jm) and y2 is B2 (j1, j2, …, jm) … yn is Bn (j1, j2, …, jm)

Though, this rule structure would work, but, the computation effort required to extract

rules in this rule set would be higher, than that of several rule sets consisting of m inputs

and one output each. The advantage of breaking a multiple-input, multiple-output rule

base into several multiple-input, single-output rule bases has been discussed in Section

3.2.4. In addition, the applicability of this technique to dynamic systems was not

discussed in this work.

Umano [11] proposed a method to extract quantified fuzzy rules from numerical

data. An example of the fuzzy rules developed was “Most data whose attribute A is large

are small in the attribute B”. Here, “large” and “small” were fuzzy sets of attribute A and

B, respectively, and “most” was a fuzzy quantifier. To extract the fuzzy rules, an

algorithm was used which generated a fuzzy decision tree, using fuzzy sets defined by a

user. The fuzzy decision tree consisted of nodes for testing attributes, edges for branching

by test values of fuzzy sets and leaves for deciding classes with certainties. The fuzzy

rules were extracted from fuzzy decision tree by evaluating its understandability and in

formativeness. Of the rules extracted, the best rules were selected by evaluating them.
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The candidate rules were evaluated using certainty of the rule, value of the fuzzy

quantifier, the number of attributes for restriction and the coverage of the rule. The

certainty was calculated as the membership value of fuzzy quantifier for the given

proportion of the data set of a given class. The values of the fuzzy quantifiers were

evaluated based on the membership values chosen for “More than”, “Most” and “Almost

all” fuzzy quantifiers. The greater the number of attributes for restriction is, the more

detailed the rule could classify the data, but the more complex the rule is and the more

difficult it is to understand. Thus, membership values were assigned to the number of

attributes and these membership values decreased with the increase in number of

attributes. The coverage of the extracted rules needed to greater than a predefined

threshold value. The issue with this work was that it consisted of a large number of

parameters whose values were based on the human discretion. In addition, the structure

of the rules used in this work made the technique useful for classification problems but is

hard to be understood by a plant operator.

Juuso [12, 13] designed linguistic equations for process analysis, process control,

fault diagnosis, and forecasting for nonlinear multivariable systems. The insight to the

process dynamic operation was described as the most important contribution of this work.

The novelty of the approach was that the nonlinearity was handled through the

membership definitions and not in the rule base. These membership definitions were

generated directly from process data on the basis of operating area of the model and

variation for each process case. However, the delays in the process were assumed to be

fixed and crisp, which does not match real processes. Juuso acknowledged that this works
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only for small systems and mentioned that an appropriate handling of the delays would

extend the operating area of the model considerably.

Kermani [14] developed a fuzzy logic system with evolutionary variable rules. All

the variables (output, cases, features, qualifiers, and operators) were continually evolved.

The rules were created in real-time and were updated with time. It was claimed to be

valuable in applications requiring constantly-updated fuzzy rules and in applications

where fuzzy rules are difficult to pre-define, such as, stock market forecasting. The

dynamics of stock market were introduced in the rules through variables D1, D2,

D3…Dn. Here, Dn represented the normalized stock price change of (today – n). Here, n

represented the number of days in the past and the values used were 1, 2, 3, 4, 5, 7 and

30. Although, this work provided an algorithm for updating the fuzzy rules with time, the

handling of dynamics of the system was inconvenient because introducing a variable for

every possible delay value increases the size of rule base exponentially and, thus, would

make the technique impractical for process with variant delays.

In the Sections 2.2 and 2.3, the work done at OSU by Sharma [3] and Kumar [4]

is discussed. The work discussed in this report is in continuation of the work done by

these two researchers.

2.2 Prior work at OSU by Sharma

Sharma [3] proposed the concept of the “Truth Space Diagram” for evaluating the

goodness of each rule. A truth space diagram was defined by Sharma as a “two-
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dimensional space bounded by the truth of the antecedent and the truth of the consequent

of a linguistic rule”. The three steps used in the autonomous extraction of rules were:

1. Data generation and processing

2. Exhaustive search for initial rule base generation

3. Calculation of numerical metrics and rule base optimization

2.2.1 Data generation

Sharma used a Hot and Cold water simulator to explore the validity of his

technique. The simulator incorporated real world dynamics such as transport and

measurement delays and is shown in Figure 2.

Figure 2: The hot and cold water-mixing simulator

For the purpose of generating data, three input variable were manipulated and the

affect on one output variable was monitored. The input variables chosen were:

1. Temperature of the hot water stream (0 ≤ T1 ≤ 100 oC).

2. Flow rate of the hot water stream (0 ≤ F1 ≤ 30 Kg/min).

3. Flow rate of the cold water stream (0 ≤ F2 ≤ 30 Kg/min).

The output variable chosen was:
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1. Temperature of the mixed stream (0 ≤ T3 ≤ 100 oC).

The temperature of the cold stream, T2 was not chosen as an input to keep the

exhaustive search convenient. The algorithm simulated the mixing of two streams – one

carrying the hot water and the other carrying cold water. It calculated the resultant

temperature and delayed its measurement based on the mixing length L and the input

flow rates. The simulator was run and the transient response to the inputs was obtained.

Figure 3 showed the raw input data generated by Sharma. To find all possible process

situations T1 was changed from a high temperature to a medium temperature and then

again to a high temperature. Similarly, the two flow rates were also changed in a similar

way, from high, to medium to low. The data was sampled at an interval of one second.

The simulator code is in Appendix A.

Figure 3: Transient Input-Output Data (reproduced from [3])
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2.2.2 Data processing

The data from the simulator was processed in two steps: First the delayed output-

data was un-delayed by shifting data backwards into three categories short, medium and

long delay. The shifting was done by deleting a number of data-points from the top of the

output data column and shifting the rest of the column. The number of time units by

which the column was shifted equaled the delay. Figure 4 depicts this procedure

schematically.

Time T1 F1 F2 T3_Original Values T3_Short Delay T3_Medium Delay T3_Long Delay
1 86.466 20.58 13.13 64.98472 64.9641 64.25688 63.09222
2 87.754 20.44 13.16 64.97263 64.95359 63.94546 63.08392
3 88.92 20.24 13.26 64.9641 64.85162 63.6954 62.92605
4 89.974 20.08 13.36 64.95359 64.58994 63.50988 62.51725
5 90.928 19.96 13.46 64.85162 64.25688 63.37791 62.00672
6 91.791 19.87 13.53 64.58994 63.94546 63.28615 61.54251
7 92.573 19.81 13.58 64.25688 63.6954 63.22311 61.18189
8 93.279 19.77 13.61 63.94546 63.50988 63.1801 60.92411
9 93.919 19.74 13.63 63.6954 63.37791 63.15086 60.74795

10 94.498 19.72 13.65 63.50988 63.28615 63.13103 60.63054
11 95.021 19.71 13.66 63.37791 63.22311 63.11759 60.55336
12 95.495 19.7 13.67 63.28615 63.1801 63.10849 60.50298
13 95.924 19.7 13.67 63.22311 63.15086 63.10234 60.47028
14 96.312 19.69 13.68 63.1801 63.13103 63.09817 60.4491
15 96.663 19.69 13.68 63.15086 63.11759 63.09536 60.43541
16 96.98 19.69 13.68 63.13103 63.10849 63.09348 60.42656
17 97.268 19.69 13.68 63.11759 63.10234 63.09222 60.42086
18 97.528 19.69 13.68 63.10849 63.09817 63.08392 60.41718
19 97.763 19.68 13.68 63.10234 63.09536 62.92605 60.41481
20 97.976 19.68 13.68 63.09817 63.09348 62.51725 60.41332
21 98.168 19.68 13.68 63.09536 63.09222 62.00672 60.41237
22 98.343 19.46 13.74 63.09348 63.08392 61.54251 60.40481
23 98.5 19.17 13.88 63.09222 62.92605 61.18189 60.18476
24 98.643 18.92 14.04 63.08392 62.51725 60.92411 59.56002
25 98.772 18.75 14.17 62.92605 62.00672 60.74795 58.7724
26 98.889 18.63 14.27 62.51725 61.54251 60.63054 58.07296
27 98.995 18.55 14.33 62.00672 61.18189 60.55336 57.55146
28 99.09 18.5 14.38 61.54251 60.92411 60.50298 57.19742
29 99.177 18.47 14.4 61.18189 60.74795 60.47028
30 99.255 18.45 14.42 60.92411 60.63054 60.4491
31 99.326 18.44 14.44 60.74795 60.55336 60.43541
32 99.39 18.43 14.44 60.63054 60.50298 60.42656
33 99.448 18.42 14.45 60.55336 60.47028 60.42086
34 99.501 18.42 14.45 60.50298 60.4491 60.41718
35 99.548 18.41 14.45 60.47028 60.43541 60.41481
36 99.591 18.41 14.46 60.4491 60.42656 60.41332
37 99.63 18.41 14.46 60.43541 60.42086 60.41237
38 99.665 18.41 14.46 60.42656 60.41718 60.40481
39 99.697 18.41 14.46 60.42086 60.41481 60.18476
40 99.726 18.41 14.46 60.41718 60.41332 59.56002
41 99.752 18.41 14.46 60.41481 60.41237 58.7724
42 99.776 18.07 14.54 60.41332 60.40481 58.07296
43 99.797 17.61 14.76 60.41237 60.18476 57.55146
44 99.816 17.26 14.98 60.40481 59.56002 57.19742
45 99.834 17.03 15.16 60.18476 58.7724
46 99.85 16.88 15.29 59.56002 58.07296
47 99.864 16.79 15.37 58.7724 57.55146
48 99.877 16.73 15.42 58.07296 57.19742
49 99.889 16.69 15.45 57.55146
50 99.899 16.67 15.47 57.19742

Figure 4: Example of Backward Shifting of Output variable T3 with Short Delay = 2 sec;
Medium Delay =6 sec; Long Delay = 22 sec. Reproduced from [3].
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Secondly, the crisp input-output data was fuzzified using triangular membership

functions:

jj

ijji

ba

xa

−

−
=,µ

(1)

Where j=1 to 3 and i = 1 to n tot, data

n tot, data = total number of data-sets in the input-output data

xi = crisp numerical value of the ith input or output variable

ji,µ
= fuzzy membership value of xi in the jth fuzzy category

a j and b j = fuzzy set break points for category j

Figure 5 shows an example of the fuzzy classification of output temperature T3,

into three fuzzy categories of high, medium and low. In this example, for the category

“low”, j = 1, aj = 10 °C and bj = 50 °C and
1,iµ = 1 if xi ≤ 10 °C. Similarly, for the

category “medium” j = 2, aj = 10 °C and bj = 50 °C only if 10 < xi < 50 °C while aj = 50

°C and bj = 95 °C if 50 °C < xi < 95 °C; at xi = 50 °C, 2,iµ
2,iµ

= 1. Similarly for the category

“high” j = 3, aj = 50 °C and bj = 90 °C and 3,iµ
3,iµ

= 1 if xi ≥ 95 °C. Triangular membership

functions and only three fuzzy categories were used to keep the example simple since the

number of rules in the initial rule base, which defines the size of the search space,

increases exponentially with addition of each fuzzy category. However, it should be

noted that the technique developed by Sharma would be applicable with other

membership functions (trapezoidal, Gaussian, etc.), too.
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2.2.3 Initial Rule Base and Calculations

The dynamic information was included in the linguistic rules using Persistence

and Delay. Persistence was included in the antecedent and the Delay was included in the

consequent side of the rule. The general structure of for a given rule, R, in the initial rule

base was:

IF (T1 is L/M/H AND F1 is L/M/H AND F2 is L/M/H AND Persistence is L/M/H)

THEN (after L/M/H delay T3 is L/M/H); Where L/M/H refers to either Low, Medium or

High.

The total number of possible rules was 36= 729. An exhaustive search was done to

generate all these rules. Depending on the rule statement Rl (where 1≤ l ≤ 729) the

Figure 5: Fuzzy Classification of Output T3 (Reproduced from [3]).
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persistence of the antecedent was calculated for all data points in the input-output data

set. The persistence of each linguistic label was measured by the number of time units the

membership value of variable had persisted in the fuzzy category. The combined

persistence was defined as the minimum persistence of any of the three input parts (T1,

F1, F2) of the rule antecedent. Once the combined persistence was known then it was

fuzzified to find the fuzzy membership value of the persistence variable to be used in the

truth space calculations described below.

The Truth of any statement was defined as the degree of membership of any data

set or example to the linguistic terms in that statement. The truth of the antecedent liTa ,

and the Truth of the consequent liTc , were calculated for each rule statement for each

point xi in the input-output data using a geometric operator as:

( )4
1

,,
2

,
1

,
1,

ji
ePersistenc

ji
F

ji
F

ji
TliTa µµµµ ×××= (2)

ji
TliTc ,

3, µ= (3)

These values were then used for the construction of the Truth-Space Diagram (TSD). The

TSD was bounded by the region {T: 0 ≤ T ≤ 1, where T = truth of

antecedent/consequent}, where a truth equal to 0 means absolutely false, and truth equal

to 1 means absolutely truth. The TSD diagram was divided into four Quadrants and each

Quadrant provided different information about each rule as discussed in Section 1.2. This

information was assessed by looking at the number of data points lying in a given

Quadrant. In addition, metrics were proposed by Sharma, based on the number of points

in the four Quadrants, to assess the validity of the rule. Kumar [4] pointed out that these

metrics would give problems in the rule selection when the data is noisy because the data
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points might get placed in the Quadrants due to noise. In addition, Kumar mentioned that

the long persistence of a certain event would have caused many points to be placed in the

TSD of the rule depicting the event. To overcome this issue, Kumar proposed new set of

metrics and only the metrics developed by her will be discussed in this report (metrics

developed by Sharma will not be discussed here).

2.3 Prior work done by Kumar

Kumar [4] introduced the concept of trips to eliminate the inherent disadvantages

in Sharma’s work. She defined a trip within a Quadrant as the locus of a path traced by

points into and out of the Quadrant. Thus, it is a combination of monotonous increasing

and decreasing behavior of Ta and Tc value of points. A path is obtained by connecting

the data points which appear consecutively with time in the TSD. When a threshold

number of these points appear consecutively in a single Quadrant, then a trip is said to be

made in that Quadrant. The implication of the Quadrants in the TSD based on the concept

of trips is illustrated in Figure 6.

All the Quadrants were intuitively chosen to be of size 0.5 x 0.5 each. The

Quadrants on the upper-left, upper-right, lower-left, and lower-right were named as QI,

QII, QIII, and QIV respectively. Kumar suggested that each data point should not be

considered as a separate event. Instead, all the loci should be counted as independent trips

that corroborate the statement of the rule as demonstrated in Figure 6. The implications of

the presence of trips in these four Quadrants have been discussed in Section 2.3.2.
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2.3.1 Threshold Condition

In order to exclude spurious events from being called as trip, an arbitrary value

was chosen for the Minimum Time that a path into a Quadrant needed to stay in the

Quadrant. It was a user defined value and was given by:

TimeSampling

TimeMinimum
Threshold = (4)

The sampling time was defined as the time interval between two consecutive data

samples, assumed to remain constant throughout the process. Thus, Threshold was

defined as the least number of successive points within a Quadrant that can be termed as

a trip in the Quadrant. A larger value of the threshold would imply more stringent

requirements to qualify a path as a trip and vice-versa. Kumar choose an intuitive value

of 5 points for the Threshold.

Figure 6: TS Diagram (Reproduced from [4]).
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For a better understanding, consider Figure 7, It shows three paths traced into

Quadrant II but only two were called as trips. The third path did not qualified as a trip

since it had only three points in Quadrant II, which is less than the threshold value of five

points.

0

0.5

1

0 0.5 1

Figure 7: A Truth Space Diagram depicting 3 paths traced into Quadrant II, of which only 2 are
‘Trips’ (Reproduced from [4]).

2.3.2 Corroboration

The minimum number of trips which a rule had to make into a Quadrant for it to

provide sufficient evidence of ‘corroboration’ was called as corroboration. Kumar choose

an intuitive value of 2 for corroboration.

2.3.2.1 Trips in Quadrant II

Trips in the second Quadrant (0.5 ≤ Tc ≤ 1.0 and 0.5 ≤ Ta ≤ 1.0) implied that the

consequent of the rule was actually caused by the antecedent expressed in the rule. Thus,

more trips in Quadrant II suggested that the rule was good.

Tc

Ta

2 valid ‘Trips’
into Quadrant
II

A ‘path’ into Quadrant
IV which does not
satisfy the Threshold
condition of 5 – not a
‘trip’
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2.3.2.2 Trips in Quadrant IV

Trips in the fourth Quadrant (0.5 ≤ Ta ≤ 1.0 and 0≤ Tc ≤ 0.5) implied that the

consequent of the rule didn’t comply with the effect expected by the antecedent

expressed in the rule. Thus, trips in Quadrant IV suggested that the rule was bad.

2.3.2.3 Trips in both Quadrants (II, IV)

If the trips were made in both the Quadrant II and Quadrant IV, and the threshold

condition is satisfied in both the Quadrants, then a trip was said to be made in both. If the

threshold condition was satisfied in only one Quadrant then the trip was said to be made

in the Quadrant in which the threshold condition was satisfied. For example: consider the

Figure 8:

0

0.5

1

0 0.5 1

Figure 8: A Truth Space Diagram depicting the difference between a valid ‘trip’ and an invalid
‘trip’ (Reproduced from [4]).

A valid “trip” into
Quadrant II

Not a ‘trip’ into
Quadrant IV as it does
not satisfy the Minimum
Threshold Condition.

Tc

Ta



28

2.3.3 The Selection Metric: Merit

Merit was defined as the difference between the number of good trips and the

number of bad trips. Thus,

TripsBadOfNoTripsGoodofNoMerit .. −= (5)

Higher value of Merit provided higher evidence of the rule being observed often.

The advantage of this metric was that it was independent of the number of data points in

the Quadrant. It was used in combination with the minimum corroboration condition to

select valid rules.

2.3.4 The Prediction Mode

In the prediction mode, the Ta of the new data was analyzed to determine the rules

being activated, and to predict the Tc of the output. To predict the future outcomes an

expectation metric was proposed. The expectation was calculated based on the

information gathered from the historical data. For its calculation, the Quadrants II and IV

were divided into grids as shown in Figure 9. Thus, there were five Ta zones and 10 Tc

zones.

From the historical data, the data distribution in each of the ten consequent zones

for the five antecedent zones for each rule in the initial data-base was analyzed using the

histogram and was normalized as shown in Figure 9.
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Figure 9: A TSD showing the division of Quadrants II, IV into a total of 50 zones of size 0.1 x 0.1.
The Ta axis is divided into five zones of size 0.1 each (0.5-1), and the Tc axis is divided into ten
zones of size 0.1 each (0-1). (Reproduced from [3]).

Figure 10: Example of distribution of points in the II, IV Quadrants based on ‘Historical Data’.
The adjoining histogram represents cumulative historical hits in each of the ten consequent
zones. Data in individual Ta zones is to be normalized and used in conjunction with the
antecedent hits in the ‘New Data’ to calculate the ‘Expectations’ as shown in Figure 11. Note:
Only points that contribute to making trips(good or bad) are considered for all calculation
purposes. (Reproduced from [4]).
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For the new data, every time the Ta appeared in any of the five Ta zones it was

recorded and called as a hit in that zone. For example: If Ta was 0.65 then a hit was said

to be made in the second Ta zone. This information about the hits was used in conjunction

with the historical normalized data to give the normalized expected occurrences of the

truth of the consequent. An example has been shown in Figure 11 where antecedent hits

were made in two zones. Based on the antecedent hits in the two zones, expectations

were calculated for each of the two zones to give the cumulative absolute ‘Expectation’

of occurrences of the Tc in the ten zones. These values were then normalized to give the

cumulative normalized ‘Expectations’ for each of the ten consequent zones.
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Figure 11: Based on the antecedent hits in the two Ta zones, expectations are calculated for each
of the two Ta zones to yield the cumulative absolute ‘Expectation’ of Occurrences of Truth of
Consequent in the ten zones, based on the Antecedent Hits of ‘New Data’. The values of these
‘Expectations’ are then normalized in the range (0-1) to yield the cumulative normalized
‘Expectations’ for each of the ten consequent zones. (Reproduced from [4]).
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2.3.5 Calculations for the prediction mode

The calculations were performed in two stages by Kumar. In the first stage, the

historical data was analyzed and the results were stored to be used in the prediction mode.

In the second stage, the future outcomes were predicted for the consequent variables

using the information stored in the first stage. The calculations performed in these two

stages by Kumar have been discussed next.

2.3.5.1 From Historical Data

The historical data was processed in the following steps:

1. A column vector Hits was used to record the number of points or hits made in

each of the five zones of the antecedent.

2. Then, a 10 x 5 matrix Numpoints was used to store the number of hits in each of

the ten Tc zones for each of the five Ta zones. Thus, each element in the matrix

the number of hits in each of the 50 zones.

3. Then, each column of the matrix Numpoints was separated into five column

vectors represented by iV
r

and then normalized in the range 0-1 as shown below:















⋅
=

i
V

i
V

normi
V T rr

r
r

1
(6)

Here, i = 1 to 5 and 1
r

was defined as [ ]1,1,1,1,1,1,1,1,1,11 =
r

The five columns vectors were then concatenated back to give the normalized matrix

NormNumPts (10 x 5) as shown in Equation (7):

( ) ( ) ( ) ( ) ( )[ ]
51054321510 ,,,,
×× = normnormnormnormnorm VVVVVNormNumPts

rrrrr
(7)
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2.3.5.2 From New Data

1. Similar to the first step in the processing of the historical data, a column vector

PredHits was used to record the number of points or hits made in each of the five

zones of the antecedent for the new data. This vector was converted into a 5 x 5

matrix, PredDiagHits for the purpose of performing the mathematical operation

of product of two matrixes as discussed in the next step.

2.3.5.3 Calculation of the expectation matrix

1. The matrixes NormNumPts and PredDiagHits were multiplied to give a 10 x 5

matrix named product as shown in Equation (8):

55510510 xxx tsPredDiagHiNormNumPtsproduct ⋅= (8)

2. The elements of the product matrix were then added along the row to yield the

Expectation matrix (10 x 1) as shown in Equation (9):

∑
−

=
wiserow

xx productnExpectatio 510110 (9)

3. The expectation matrix was then normalized to give the NormExpectation matrix

as shown in Equation (10):

∑
−

=

wisecolumn
x

x
x

nExpectatio

nExpectatio
ationNormExpect

110

110
110 (10)

2.3.5.4 Weighted mean average

The weighted mean average of the expectations was finally calculated to give the

final output and was calculated by Equation (11): 
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)(

))1,10(95.0....)1,2(15.0)1,1(05.0(
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onxExpectationxExpectationxExpectati
PredMean

+++
=

(11)

Where,

∑
−

=
wiseColumn

xnExpectatioTotsum 110 (12)

2.4 Issues with Sharma’s and Kumar’s Work

Kumar and Sharma each provided strong tools in the form of the TSD and trips

respectively to autonomously generate cause-and-effect rules in dynamic processes.

However, there were several issues which needed to be resolved before this technique

could be applied to complex real-world problems. Some of these issues were:

1. Interpretation of the TSD: Sharma assigned the meaning to the four Quadrants of

the TSD. Kumar redefined these Quadrants based on the concept of the trips as

discussed in the Section 2.3.3. This novel approach assisted in the selection of

valid rules in dynamic systems. However, the meaning of these Quadrants was not

compatible with the genetic algorithm approach for the selection of rules because

the assigned meaning of the Quadrants assumed that all the relevant variables

describing the process were known beforehand i.e. it assumed that there was no

over specification and under specification in the antecedent and the consequent.

However, when genetic algorithms will be used to select rules, all the antecedents

and the consequents will not be known beforehand. Instead, with time, the
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relationships will be established between the antecedents and the consequents. In

other words, the rules will be evolved. Hence, the interpretation of the Quadrants

should include the effect of over specification and the under specification. This

issue has been considered in this work and discussed in the Chapter 3.

2. Delay Quantification: Sharma and Kumar each used an over simplistic technique

to incorporate the delay in the process. As discussed in the Section 2.2.2, the data

was shifted backwards into three categories short, medium and long delay. This

analysis allows the delay to take only three values (one corresponding to each

category). In addition, because of predefined shifting of the data, there is a good

possibility that the shifted values of the Tc would give a trip when it should not

and vice-versa. Thus, it is necessary to quantify Delay based on the relationship

between Ta and Tc. This quantified delay should then be used to shift the data

backwards in time.

3. Calculation of the Ta and Tc: Sharma and Kumar each used a geometric mean

operator to calculate the truth of the antecedent as given by Equation (2). This

geometric mean operator has never been used in the literature. The rationale for

using this operator was that it would make it easier to select the rules using lesser

number of data points. However, the minimum operator and the product operator

have been widely used in the literature for the truth calculations with considerable

success. Thus, it is necessary to compare the geometric operator with the

minimum and product operator. The best operator should then be used for the

calculations of Ta. In addition, the calculation for the truth of the consequent did

not involve the membership value of Delay. Since, the Delay was allowed to have
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just three values thus its membership function value was a Boolean variable and

not a fuzzy variable. The membership value for delay in the each category was

used as unity for the calculations of Tc. However, delay is one of the variables in

the rules and like other variables its membership value should be used in the

calculation of the truth of the consequent. This gives another rationale to quantify

the delay.

4. Quadrant Size in the TSD: Kumar and Sharma each used an arbitrarily chosen

value of Ta = 0.5 and Tc = 0.5 for the TSD. However, this value was completely

intuitive and no justification was provided as to why this Quadrant size should be

chosen. Kumar acknowledged this issue in her work. The larger values of Ta and

Tc for the Quadrant size would make the rule selection process strict and vice-

versa. This gives rise to question that should this value be based on the process

and expert discretion or can a universal value for the Quadrant size be obtained?

In this work, this issue has been addressed, and justification for using the chosen

Quadrant size has been given.

5. Selection of the Metrics and their universal values: Sharma’s metrics were based

on the number of the data points in each of the four Quadrants of the TSD.

However, these metrics were not suitable for the noisy data. Hence, Kumar

developed the concept of the threshold, trips and provided to new metrics:

Corroboration and Merit. A threshold value of 5 was chosen by Kumar to qualify

a path in a Quadrant as a trip. This is a common practice in the process control to

choose this value of 5 to qualify an event as change in the process. In addition,

intuitive values for the metrics were chosen. A value of 2 was chosen for the
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corroboration and a value of 1 was chosen for Merit. However, these values were

intuitive, not based on any fundamental phenomena or analysis. Moreover, the

justification of using two metrics, instead of one, was not provided. Kumar

acknowledged the need to find the universal value of the metrics in her work.

Hence, this work would discuss the issues related to the selection of the metrics

and their universal values.

6. Predicting the value of the consequent in the future: Kumar developed the

technique for predicting the future values of the consequent based on the

historical data as discussed in the Section 2.3.4. Her work provided a novel

approach to predict the future outcomes by dividing the Quadrants II and IV into

grids. However, each value of the Ta did not predict a value of Tc. The entire new

data was used to register hits and then those hits were used to predict the

consequent values by using it in conjunction with the historical data. Thus, several

hits were made in the rules but each rules predicted just one output. In addition,

delay was not accounted for while making predictions. Thus, this technique

needed refinement to predict one consequent value for every antecedent and the

delay value was required to be incorporated to predict the time in the future at

which the predicted value will be realized. In this work, this work has been done.

In addition, this work compares the prediction technique of Kumar with the

conventional prediction method used in the literature of fuzzy logic.
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CHAPTER III

METHODOLOGY

3.1 Terms used in the research

In this work, some of the terms and conventions used by Sharma [3] and Kumar

[4] have been replaced by new terms and conventions. These are discussed below:

• Change in the Quadrant names: The convention used in the naming the Quadrant

has been changed to better coincide with convention. The new names of the

Quadrants are shown in Figure 12:

New names for the quadrants in the TSD

0

0.5

1

0 0.5 1

Ta

T
c

QII quadrant QI quadrant

QIV quadrantQIII quadrant

Figure 12: TSD diagram showing the new names for the Quadrants.
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These new Quadrant names will be used in the rest of this report.

• Change in the trip names: In the previous research, the trips in the Quadrants QI

and QIV were known as good and bad trips respectively. However, these names

seem too simple and incomplete and will not be used in this report. The trips in

QI, QII, QIII and QIV will be simply referred to as trips in QI, trips in QII, trips in

QIII and trips in QIV respectively.

• Number of antecedent variables: In the previous work, four antecedent variables,

T1, F1, F2, persistence, and two consequent variables, Delay and T3, were used.

Thus, a total of 36 = 729 possible rules were obtained. In this work, five

antecedent variables have been used which are T1, F1, T2, F2 and Persistence.

The output variables are delay and T3. Thus, there will a total of 37=2187 possible

rules.

• Truth of antecedent and consequent: In the previous work the geometric operator

was used to calculate the truth of the antecedent as given by Equation (2): 
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ji
TliTa µµµµ ×××= (2)

In this work, the minimum operator will be used for the reasons discussed in

Section 3. The truth of antecedent will be calculated using Equation (13): 
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The superscript j in the Equation has been replaced by j1, j2, j3, j4, j5 in Equation

(13) to acknowledge that the variables can have different linguistic categories.

The truth of the consequent was earlier calculated using Equation (3): 

ji
TliTc ,

3, µ= (3)
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In this work, the truth of the consequent will be calculated as:

( )7,6,
3, ,min ji

Delay
ji

TliTc µµ= (14)

The value of µdelay requires the delay to be quantified. A statistical technique is

proposed to quantify delay and will be discussed in Section 3.4.

• Dominating variable: A variable in the antecedent of a rule, which has the lowest

membership value as compared to the membership values of the other variables in

the antecedent of the given rule, for a given data point, will be called a dominant

variable in the antecedent. For example: consider the antecedent A1 as:

T1 is Low AND F1 is Med AND F2 is Low AND T2 is Low AND Persistence is Med

Consider that µT1 = 0.55, µF1 = 0.59, µF2 = 0.83, µT2 = 0.57 and µpersistence = 0.65 for

this rule. Then, T1 will be the dominating antecedent variable since it has the

lowest membership value for this antecedent. Similarly, a variable in the

consequent of a rule, which has the lowest membership value as compared to the

membership values of the other variables in the consequent of the given rule, for a

given data point, will be called a dominant variable in the consequent. It should

be noted that the dominating variable controls the calculation of the truth of the

antecedent and consequent.

• Interacting rules: The rules with the same antecedent but different consequents

(Here, same and different imply same and different linguistic values of variables),

in a given rule set, will be called interacting rules. An example of two interacting

rules is:

If F1 is High AND F2 is High then after Short delay F3 is High

If F1 is High AND F2 is High then after Med delay F3 is Low
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• Non-interacting rules: The rules with different antecedents will be called non-

interacting rules. They may or may not have the same consequent. An example of

two non-interacting rules is:

If F1 is Low AND F2 is High then after Short delay F3 is High

If F1 is High AND F2 is High then after Med delay F3 is Low

• Non-interacting group: A set of rules consisting of all possible interacting rules

describing a particular phenomenon in the process (these do not interact with any

rule outside their group) would be called a non-interacting group. This will be

discussed in further detail in Section 3.5.

• Over specification: If a variable is not a relevant variable for the given process,

but is included in the rule base then this condition will be called over

specification. If this irrelevant variable is included in the antecedent of the rules

then this condition will be called as over specification in the antecedent and if this

irrelevant variable is included in the consequent of the rules then this condition

will be called as over specification in the consequent.

• Under specification: If a variable is a relevant variable for the given process, but

is not included in the rule base then this condition will be called under

specification. If this relevant variable is missing from the antecedent of the rules

then this condition will be called as under specification in the antecedent and if

this relevant variable is missing from the consequent of the rules then this

condition will be called as over specification in the consequent.

• Complete rule: A rule in which the antecedent part includes all the possible

mechanisms which can lead to the consequent will be called a complete rule. It
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should be noted that this definition of a complete rule is not based on the under

specification of variable in the antecedent, but it is based on the presence of an

“OR” operator in the rule (to reflect different phenomena leading to the

consequent). Thus, a rule will be complete, even if there is an under specification

in the antecedent, as long as it covers all the possible mechanisms for the process.

• Incomplete rule: A rule in which the antecedent part does not involve all the

possible mechanisms which can lead to the consequent will be called as an

incomplete rule. This means that an “OR” operator is missing in the rule.

• Defined system: A system for which all the possible mechanisms, relevant

antecedent and consequent variables form a part of the rule base will be called a

defined system. A system for which all the possible mechanisms, relevant

antecedent and consequent variables are not known beforehand is not a defined

system.

• Change in the rule names: Previously, a rule was defined as a good or a bad rule

based on the number of trips in QI and QIV. However, these names are over

simplistic since a good rule might not be completely good and vice versa. In this

research, the terms “valid rule” and “invalid rule” will substitute the terms “good

rule” and “bad rule” respectively. In addition, a rule was allowed to be called a

“valid rule” or an “invalid rule” even if the system was not a defined system.

However, in this work, the terms “valid rule” or an “invalid rule” will be used

only if the system is a defined system.

• Shifting of trips: The situation in which the Quadrant/Quadrants in which the trips

should have been made do not register a trip. These trips shift to some other
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Quadrants. This situation would occur when the system is not a defined system or

when the delay calculations are inaccurate or the membership functions are not

properly chosen.

3.2 Reinvestigating the TSD

The significance of the trips in the four Quadrants of the TSD, as provided by

Kumar [4], has been discussed in the Section 2.3.2. This assigned meaning to the

Quadrants of the TSD is based on the assumption that all the possible relevant antecedent

and consequent variables were known beforehand. However, the broad goal of this

research is to use the genetic algorithms to establish relationships between the variables

and then to extract the valid rules. The genetic algorithms may not be able to find all the

relevant variables or may include a variable which is not relevant in the initial rule base.

Thus, the role of the TSD should be to indicate an over specification or under

specification of the variables in the rules. The current understanding of the TSD doesn’t

acknowledges this possible over specification or/and under specification of the variables.

However, these factors would influence the TSD as discussed in Sections 3.2.1, 3.2.2,

and 3.2.3:

3.2.1 Over specification in antecedent

Consider the hot-cold water simulator of Figure 2. The five relevant input

variables are T1, F1, F2, T2 and Persistence and the two output variables are T3 and

delay. Assume that another variable, pressure in the atmosphere, has been accidentally
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included in the antecedent of the rules by the genetic algorithm. This may change the

calculation for the truth of the antecedent as µPressure will be used in its calculation. When

µPressure is the dominating antecedent variable then the value of Ta will be affected by this

irrelevant variable. The truth of the antecedent and consequent will be calculated as:
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This can affect the trips in QI and QIV in three possible ways:

• No effect: If the pressure is not a dominating variable, then it will not affect the

trip. This is because the position of the trip in the TSD is based on the value of the

Ta and the value of the Ta is decided by the dominating variable.

• Same quadrant effect: If the pressure is a dominating variable with µpressure > 0.5

then it will not change the Quadrant of the trips in either QI or QIV but would

change the Ta. For example: Assume that µT1 = 0.72, µF1 = 0.81, µF2 = 0.83, µT2 =

0.68 and µpersistence = 0.74, µpressure = 0.55, µdelay = 0.34 and µT3 = 0.59. In this case,

the pressure is dominating variable. If the pressure would not have been

mistakenly included in the rule base then the Ta would have been equal to 0.68, as

given by Equation (13), and a data point would have been seen in the fourth

Quadrant ( because Tc = 0.34) of the TSD for the given rule. However, since the

pressure is the dominating variable and forms the part of the rule base the Ta

would be equal to 0.55, as given by Equation (15), and the data point would

continue to appear in QIV. Thus, the inclusion of the pressure doesn’t change the
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Quadrant of the point but does changes the Ta value. This is the reason that this

situation is called the same quadrant effect. Similarly, if the pressure is a

dominating variable with µpressure < 0.5 and the membership values of all the other

variables are less than 0.5, then it will not change the Quadrant of the trips in QII

and QIII, but would change the Ta. For example: Assume that µT1 = 0.43, µF1 =

0.41, µF2 = 0.33, µT2 = 0.28 and µpersistence = 0.34, µpressure = 0.16, µdelay = 0.54 and

µT3 = 0.59. In this example, the Ta = 0.16 and Tc = 0.54. Thus, a point would have

appeared in the QII. If the pressure would not have been mistakenly included in

the rule base then Ta would be 0.28 and Tc would have remained equal to 0.54.

This point would again lie in the QII, but the truth of the antecedent has changed.

Thus, due to the same quadrant effect the trips in QI, QII, QIII, and QIV do not

change their Quadrants but shift towards the left. The same quadrant effect is not

highly undesirable since it will not cause any shifting of trips from one Quadrant

to the other and wouldn’t create problems in the selection of the valid rules.

• Different quadrant effect: If the pressure is a dominating variable with µpressure <

0.5 and other variables have a membership value greater than 0.5 then it will

change the Quadrant of the trips. As an example: Assume that µT1 = 0.53, µF1 =

0.61, µF2 = 0.63, µT2 = 0.78 and µpersistence = 0.74, µpressure = 0.36, µdelay = 0.54 and

µT3 = 0.59. This point would appear in QII since Ta = 0.36 and Tc = 0.54.

However, if the pressure would not have been mistakenly included in the rule

base then this point would have appeared in QI (Ta = 0.53, Tc = 0.54). Thus, due

to the different quadrant effect, the trips which should have been in Quadrants QI

and QIV would show up in QII and QIII respectively. The different quadrant
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effect is undesirable because it leads to shifting of the trips from the Quadrants on

the right (QI and QIV) to the Quadrants on the left (QII and QIII) and thus affects

the rule-selection process. Figure 13 shows the different quadrant effect due to the

over specification in the antecedent. A trip which should have been QI was made

in QII, and a trip which should have been in QIV was made in QIII due to this

affect. The tails of the arrows start from the data points which should have

appeared, if there was no over specification in antecedent, and the head of the

arrows point towards the data points which actually appeared in the TSD due to

the over specification in the antecedent.

Different Quadrant Effect due to over specification in the antecedent

0

0.5

1

0 0.5 1

Ta

T
c

Trips in QI
shifting to QII

Trips in QIV
shifting to QIII

Figure 13: TSD showing the different quadrant effect, of over specification in the
antecedent, on the trips. The trips in QI move to QII.
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Figure 14 shows the all the three affects (No effect, Same quadrant effect,

Different quadrant effect) of the over specification in the antecedent. The tails of

the arrows start from the data points which should have appeared, if there was no

over specification in antecedent, and the head of the arrows point towards the data

points which actually appeared in the TSD, due to the over specification in the

antecedent.

No, Same and Different Quadrant effects due to over specification in
the antecedent

0

0.5
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0 0.5 1Ta
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c

No Effect

Same Quadrant Effect

Different Quadrant Effect

Different Quadrant Effect

Same Quadrant Effect

Same Quadrant Effect

Same Quadrant Effect

No Effect No Effect

No Effect

3.2.2 Under specification in the antecedent

Figure 14: TSD showing the three different effects of the over specification in the
antecedent on the positioning of the points in the four Quadrants.



48

Assume that the genetic algorithm was not able to discover one of the antecedent

variables, T2 and thus this variable will not be included in the initial rule base. This leads

to an under specification in the antecedent, and the truth of the antecedent will be

calculated as:
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The missing variable, T2, may affect the trips in following three ways:

• No effect: If the variable, T2, is not a dominating variable then its absence will not

affect the trip.

• Same quadrant effect: If T2 is a dominating variable with µT2 < 0.5 and other

variables (in the antecedent) have a membership value less than 0.5, then the

absence of T2 will not change the Quadrant of the trip, but would change the Ta.

Similarly, if T2 is a dominating variable with µT2 > 0.5 and other variables have a

membership greater than 0.5, then it will not change the Quadrant of the trip, but

would change the Ta. Thus, this same quadrant effect will shift the trips from left

to right, but will not cause any shifting of trips from one Quadrant to the other.

This affect will not create any problem in the rule-selection process.

• Different quadrant effect: If T2 is a dominating variable with µT2 < 0.5 and other

variables have a membership value greater than 0.5, then the absence of T2 will

change the Quadrant of the trip. For example: Assume that µT1 = 0.53, µF1 = 0.61,

µF2 = 0.63, µT2 = 0.30 and µpersistence = 0.74, µdelay = 0.54 and µT3 = 0.59. Thus, the

actual Ta should be equal to 0.3, and this point should appear in QII. However, if

the variable T2 was not included in the rule base, the Ta from the Equation (16)
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will be 0.53 and the trip would be made in the QI. Thus, trips which should have

been in QII and QIII would shift to QI and QIV respectively. This affect is

undesirable because it will create problems in the rule-selection process.

Thus, an under specification in the antecedent can shift the trips from left to right.

Figure 15 shows the all the three affects (No effect, Same quadrant effect, Different

quadrant effect) of the under specification in the antecedent. The tails of the arrows start

from the data points which should have appeared, if there was no under specification in

antecedent, and the head of the arrows point towards the data points which actually

appeared in the TSD, due to the under specification in the antecedent.

No, Same and Different Quadrant effects
due to under specification in the antecedent
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Same Quadrant Effect

Different Quadrant Effect

Different Quadrant Effect

Same Quadrant Effect
No Effect

No Effect

Same Quadrant Effect

Same Quadrant Effect

No Effect

Figure 15: TSD showing the three different effects of the under specification in the
antecedent on the positioning of the points in the four Quadrants.
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3.2.3 Over specification in the consequent

In addition to the delay and the temperature T3, if an extraneous variable is added

to the consequent which is not relevant to the process, then it can lead to misleading

values of the truth of the consequent. Assume that another variable, pressure in the

atmosphere, has been accidentally included in the consequent of the rules by the genetic

algorithm. In that case, the Tc will be calculated as:

( )8,
Pr
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3, ,,min ji
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ji

Delay
ji

TliTc µµµ= (17)

The extraneous variable, Pressure, may affect the trips in following three ways:

• No effect: If the variable, Pressure, is not a dominating variable then its presence

will not affect the trip.

• Same quadrant effect: If Pressure is a dominating variable with µpressure > 0.5 and

other variables (in the consequent) have a membership value greater than 0.5, then

the presence of the variable, Pressure, will not change the Quadrant of the trip, but

would change the Tc. Similarly, if Pressure is a dominating variable with µPressure <

0.5 and other variables have a membership value less than 0.5, then it will not

change the Quadrant of the trip, but would change the Tc. Thus, this same

quadrant effect will shift the trips from top to bottom, but will not cause any

shifting of trips from one Quadrant to the other. This affect will not create any

problem in the rule-selection process.

• Different quadrant effect: If Pressure is a dominating variable with µPressure < 0.5

and other variables have a membership value greater than 0.5, then the presence

of the variable, Pressure, will change the Quadrant of the trip. Thus, trips which
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should have been in QI and QII would shift to QIV and QIII respectively. This

affect is undesirable because it will create problems in the rule-selection process.

Thus, an over specification in the consequent can shift the trips from top to

bottom. Figure 16 shows the all the three affects (No effect, Same quadrant effect,

Different quadrant effect) of the over specification in the consequent. The tails of the

arrows start from the data points which should have appeared, if there was no under

specification in antecedent, and the head of the arrows point towards the data points

which actually appeared in the TSD, due to the over specification in the consequent.

No, Same and Different Quadrant effects
due to under specification in consequent
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Same Quadrant Effect
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Different Quadrant Effect

Different Quadrant Effect

Figure 16: TSD showing the three different effects of the over specification in the
consequent on the positioning of the points in the four Quadrants.
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3.2.4 Combination of any of the above cases

Genetic algorithms may obtain rules which are affected from over specification as

well as under specification of the antecedent and/or consequent. In that case, the analysis

of the shifting of the trips becomes quite complex and several possible cases can be

obtained by combining the cases discussed above.

Other factors which may lead to the shifting of the trips are the membership

functions of the variables and inaccurate calculation of the delay. These issues are not

considered in this work.

The two main goals of the TSD are:

• To assess the validity of a rule.

• To indicate the over specification and under specification of the antecedent and

the consequent.

To increase the efficiency of the TSD in terms of indicating over specification and

under specification of the variables and in assessing the validity of a rule, it is essential to

develop a methodology for indicating over specification and under specification. The

issues related to the over specification in the consequent can be solved by considering the

rule bases with different consequents as different rule sets. Only one output variable, in

addition to the delay, should be allowed to be a part of the rule set. For example: In the

hot-cold water simulator, the input variables are: T1, F1, F2, T2 and persistence and the

output variables are T3, F3, Delay1 (for T3) and Delay2 (for F3). To solve the problem of

over specification in the consequent, two separate rule sets should be used. In one system,

rules will consist of the five given inputs and, T3 and Delay1 as the consequent. In the

second system, the rules will consist of the five given inputs and, F3 and Delay2 as the
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consequent. This will help in eradicating the problem of over specification of the

consequent. In addition, it will require lesser data to obtain rules because the membership

values of both the variables, F3 and T3, do not have to be greater than 0.5 to get Tc to be

greater than 0.5.

Another major advantage of using two different rule sets instead of one

comprehensive rule set is that the computational effort required for the management of

two rule sets is lesser than that for a single comprehensive rule set. For example: Assume

that two rule sets, Fuzzy1 and Fuzzy2, were employed in the hot-cold water simulator.

Fuzzy1 consists of rules with 7 variables (T1, T1, F1, F2, persistence, Delay1, T3) and

Fuzzy2 also consists of 7 variables (T1, T1, F1, F2, persistence, Delay2, F3). Then, the

total number of rules in both the rule sets will be 37 + 37 = 4374. Now, let’s compare it

with a single rule set, Fuzzy3, which consists of rules with 9 variables (T1, T1, F1, F2,

persistence, Delay1, Delay2, T3, and F3). The total number of possible rules in Fuzzy3

will be 39 = 19683. Hence, it would require less computational effort if different

consequents are considered as different rule sets rather than using all the consequent

variables together in a single rule set.

This can be generalized for a process with N inputs and M outputs. The

antecedent of the rules will have (N + 1) terms because persistence is also included in the

antecedent of the rules. Similarly, the consequent of the rules will have (2M) terms

because one delay is associated with each consequent variable. Assume that all the

antecedent variables and all the consequent variables (in the rules) have n and m

linguistic values respectively. Thus, the total number of possible antecedents is nN+1 and

the total number of possible consequents is m2M. Now, if a single rule base is used, then it
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will consist of (nN+1. m2M) rules. However, if M rule bases are used (each rule base will

consist of two consequents, Delay and one output variable), then it will consist of

(nN+1.M.m2) rules. The ratio, R1M, of the number of rules from the single rule base to that

of the total number of rules from M rule bases is given by Equation 18:
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The saving in the computational effort which will be achieved by using M rule

bases instead of a single rule base can be seen in Figure 17. As the number of output

variables increase, R1M increase exponentially.

Plot between R1M and M for different values of m
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Figure 17: Plot between R1M and M, showing the advantage of using M rule sets with
two consequent variables each (delay and one output variable), instead of using one
comprehensive rule set, consisting of 2M consequent variables.
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Once the problem of over specification in the consequent has been solved, the

TSD will be used in indicating the over specification and under specification of the

antecedent in all the rule sets. The trips appearing in QI would indicate that either the rule

is “valid” or that the trips are made in this Quadrant because of the under specification

or/and over specification in the antecedent. The trips in QII would indicate that either the

rule is “incomplete” i.e. there is an additional “hidden mechanism” governing the process

or/and it may imply an over specification or/and under specification in the antecedent.

The trips in QII will also show up because of the rules with similar consequents but

different antecedents. A trip in QI, for a rule, will lead to a trip in QII for the rules which

have the same consequent but different antecedents from the given rule. The trips in QIII

suggest that the data is “indeterminate” i.e. neither the validity nor the invalidity of this

rule can be determined from the given data in evaluating this rule. The trips in QIII may

also may be present because of either the over specification or/and the under specification

in the antecedent of the rules. Thus, the trips in QIII indicate that either the data is

“indeterminate” for this rule or that all the relevant variables are not properly specified.

Similarly, the trips appearing in QIV indicate that either the rule is “invalid” or that the

trips are made in this Quadrant because of the under specification or/and over

specification in the antecedent. The significance of the four Quadrants in the TSD can be

seen in Table 1.  

It should be noted that the trips in QI or QIV can not appear because of the

different quadrant effect of the over specification in the antecedent. Similarly, the trips in

QII and QIII can not appear because of the different quadrant effect of the under

specification in the antecedent.
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Table 1: Possibilities which can lead to trips in a given Quadrant.

Trips in Could be because:

QI

1. Rule is a “valid” rule
2. Under specification in antecedent. This may be because of:

• No effect
• Same quadrant effect
• Different quadrant effect

3. Over specification in the antecedent. This may be because of:
• No effect
• Same quadrant effect

4. Combination of over specification and under specification in
the antecedent.

QII

1. Rule is “incomplete” i.e. hidden mechanism is present
2. Under specification in antecedent. This may be because of:

• No effect
• Same quadrant effect

3. Over specification in the antecedent. This may be because of:
• No effect
• Same quadrant effect
• Different quadrant effect

4. Combination of “hidden mechanism” and/or over
specification and/or under specification in the antecedent.

5. Rules with same antecedents but different consequents. 

QIII

1. Data is “indeterminate” in evaluating the rule.
2. Under specification in antecedent. This may be because of:

• No effect
• Same quadrant effect

3. Over Specification in antecedent. This may be because of:
• No effect
• Same quadrant effect
• Different quadrant effect

4. Combination of “indeterminate data” and/or over
specification and/or under specification in the antecedent.

QIV

1. Rule is an “invalid” rule.
2. Under specification in antecedent. This may be because of:

• No effect
• Same quadrant effect
• Different quadrant effect

3. Over specification in the antecedent. This can be:
• No effect
• Same quadrant effect

4. Combination of over specification and under specification in
the antecedent.
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Due to the several possible cases, discussed in Table 1, which may place a trip in

a given Quadrant in the TSD, it seems difficult to indicate the presence of “hidden

mechanisms”, under specification or/and over specification of antecedent using the TSD.

However, a closer analysis of the trips in QI and QIV can help resolve this issue. A valid

rule should have trips in QI (if data expresses it), but should not have trips in QIV

(assuming the delay calculations are accurate and optimum membership functions are

used). Even if a rule is over specified in antecedent, then also trips should not appear in

QI as well as QIV because the over specification can not lead to trips in QIV due to

different quadrant effect (as shown in Table 1) or because of No effect and the same

quadrant effect, as these affects would require data points to originate in QIV. Similarly,

the No effect and the same quadrant effect, due to under specification in the antecedent,

should not lead to trips in QIV as they require data points to originate in QIV. Thus, if

trips are made in QI as well as QIV, then it should be because of the different quadrant

effect of under specification in the antecedent. Hence, a rule having trips in both QI and

QIV will indicate under specification in the antecedent. The human operator or genetic

algorithms can then be used to find the under specified variable in the antecedent. This

process will continue to find missing antecedents till the rules having trips in QI will

almost stop registering trips in QIV. At this point, the under specification problem will be

solved. After this stage, the meaning of the TSD will simplify and is shown in Figure 18: 
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TSD after solving the problem of
underspecification in antecedent
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Data in QII indicates the event
occured due to some other cause,

i.e. the rule is "incomplete" or/and it
may indicate an overspecification in
the antecedent. Data in QII may be
because of the rules with different

antecedents and same consequents.

Data in QI indicates that the
event occured when the rule

said it will occur, i.e. the rule is
"valid" or it may indicate an

over specification in the
antecedent.

Data in QIV indicates that the
event didn't occur when the
rule said it will occur, i.e. the

rule is "invalid" or it may
indicate an over specification

in the antecedent. .

Data in QIII indicates that
whatever the rule says never

happens in the data set, i.e. the
data is "indeterminate" in

evaluating this rule or/and it may
indicate an overspecification in

the antecedent.

Having solved the issue of under specification in the antecedent, the next step will

be to identify the over specification in the antecedent or/and any possible hidden

mechanisms. This can be done by observing trips in QI and QII. A rule having no over

specification in antecedent or/and hidden mechanism should not give trips in QII. Thus, a

rule having trips in QI as well as QII would indicate the possibility of over specification

in the antecedent or the presence of a hidden mechanism which is affecting the output. At

this stage, the human operator or genetic algorithms can be employed to discover any

possible hidden mechanisms or to discard any irrelevant variables in the antecedent. This

process will end when the rules will almost stop registering trips in QII. However, it

Figure 18: Interpretation of the TSD after solving the problem of under specification in

the antecedent.
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should be noted that few data points would still appear in QII as a result of the errors in

delay calculation and because of the membership function of the variables. The meaning

of the TSD at the end of this process is shown in the Figure 19: 

 

TSD after solving the problem of the
overspecification and underspecification in

antecedent

0

0.5

1

0 0.5 1

Ta

T
c

Data in QI indicates that the
event occured when the rule

said it will occur, i.e. the rule is
"valid".

Data in QIV indicates that the
event didn't occur when the
rule said it will occur, i.e. the

rule is "invalid".

Data in QIII indicates that
whatever the rule says never

happens in the data set, i.e. the
data is "indeterminate" in

evaluating this rule.

Data in QII would be because of
the rules with different
antecedents and same

consequents.

The rest of this work will assume the TSD shown in Figure 19 as the basis.

Figure 19: TSD for a defined system. The trips do not appear in QII because the
problem of over specification and under specification in the antecedent, and the hidden
mechanisms has been solved.
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3.3 Choice of the mathematical operator to calculate Ta and Tc

The two main operators which are used in the literature of fuzzy logic to calculate

Ta and Tc are minimum operator and product operator. In this research, a geometric mean

operator was also explored. These three operators are used as:

Minimum Operator

( )5,4,
2

3,
2

2,
1

1,
1, ,,,,min ji

ePersistenc
ji

T
ji

F
ji

F
ji

TliTa µµµµµ= (13) 

( )7,6,
3, ,min ji

Delay
ji

TliTc µµ= (14)

Product Operator

( )5,4,
2

3,
2
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1,
1,
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ji
F

ji
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( )7,6,
3,

ji
Delay

ji
TliTc µµ ×= (19)

Geometric mean operator
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2,
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1,
1,

ji
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ji
T

ji
F

ji
F

ji
TliTa µµµµµ ××××= (20)

( )2
1

7,6,
3,

ji
Delay

ji
TliTc µµ ×= (21)

In the literature, a product operator has been recommended when the requirement

is for the most robust in the average fuzzy logic and minimum operator has been

recommended when the need is for the most robust in the worst case fuzzy logic.

However, in the TSD the minimum operator would be more suitable than the product

operator because when the number of variables would become large, then it would

become difficult to extract rules using product operator. For example: Consider a process
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with 15 input variables. Assume that for a given rule each of these 15 antecedents had a

membership value of 0.95. Then, using product operator the Ta would be (0.95)15=0.46.

Thus, even with such high truth in individual antecedents, the rule would not give a trip

in QI or QIV (assuming the Quadrant size is set at Ta = 0.5 and Tc = 0.5). On the other

hand, minimum operator would give a value of 0.95 for the same example. Thus, it is

computationally efficient to obtain trips using the minimum operator. However, it should

be noted that the minimum operator is discontinuous and hard to differentiate during the

optimization process.

Due to the increase in inefficiency of the product operator, in obtaining trips, with

increasing variables, the geometric operator was suggested. However, the problem with

the geometric operator was that it could accept semi-valid rules. For example: let’s

assume a rule with Ta > 0.5 which has two consequents with membership values .35 and

.8. Then, the geometric operator would give Tc= (0.35*0.8)0.5=0.53. It would be

considered as a trip in the QI Quadrant. Thus, the final rule base could consist of many

rules which are not the best in describing the process.

In addition, the minimum operator assists in performing a clearer analysis of the

system. For example: the minimum operator supports the analysis of the over

specification and under specification discussed in the Section 3.2. On the other hand, the

geometric mean operator does not possess the ability to clear distinguish the over

specification and under specification, because the concept of the dominating variable will

no longer exist. Thus, the meanings assigned to the Quadrants in Figures 18 and 19 will

no longer hold true. Furthermore, the minimum operator would also prove useful in
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giving a universal applicability to the technique (as explained in the next few sections)

by:

• Providing the fundamental tool based on which the comparison of rules will be

performed.

• Assisting in identifying the Quadrant size in the TSD

• Obtaining the metric to be used and in calculating its universal value.

• Reducing the curse of dimensionality.

Hence, the minimum operator would be used to calculate Ta and Tc in this work.

3.4 Delay Quantification

The process delay is used in the linguistic rules to capture the dynamics of the

process. However, the delay is not a measurable quantity like T1, T2, F1, F2 and T3. In

addition, the scope of this research is not limited to a given process, but it should be

applicable to any process which is governed by the cause-and-affect rules. This requires

that delay calculation should not be based on a mechanistic model of the process. As

explained in the Section 2.2.2, Sharma [3] assumed constant and intuitive values for

short, medium and long delays. These crisp values of the delays could not be fuzzified

since the ranges of delay values were not available. Only three possible values for the

delay were used. Due to this, the membership value of delay could not be used in the

calculation of the Tc. Thus, a technique is required to quantify delay values which will

acknowledge the possibility of variant delays in the process.
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The delay establishes a relationship between the inputs and outputs of the process.

The delay quantification can be performed if we can capture this relationship between the

inputs and outputs. In fuzzy logic, the relation between Ta and the membership of the

desire output variable can be used to quantify delay. In this work, a technique has been

developed for establishing this relationship and is explained in the following steps:

1) Ask the user to provide the value of the maximum possible delay (M) in the

process.

2) For a given rule r, compute the truth of antecedent (Ta) and the membership value

of the output (µT3), for each data point.

3) Scan all the Ta values for the regions which have five or more consecutive points

with Ta > 0.5. These regions will either give a trip in QI or QIV depending on the

value of the calculated delay and µT3. Let the number of points in a given region

be g (By convention, integers are represented by the letters i, j, k, l, m, or n but

these symbols have been already used for other purposes in this work. Thus, the

symbol g is used).

4) For each region, find the value of the Pearson’s correlation coefficient

( 11 ≤≤− r ) between the g points of Ta, and the g points of µT3 delayed backwards

by a value equal to the sampling time. Continue finding the value of the Pearson’s

correlation coefficient with µT3 delayed by 2, 3, 4………….M times the sampling

time. The steps involved in the calculation of the Pearson’s correlation coefficient

are:

• Calculate )( aTS , the sum of the g points of Ta and )( 3TS µ , the sum of the g

points of µT3 as shown in the Equations (22) and (23). In addition,



64

calculate )( 2
aTS , the sum of the squares of the g points of Ta; )( 2

3TS µ , the

sum of the squares of the g points of µT3; and )( 3TaTS µ , the sum of the

product of Ta and µT3 for the g points of the region as shown in Equations

(24), (25), and (26) respectively.
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• Calculate the variance of Ta, )( aTVar ; the variance of µT3, )( 3TVar µ ; and

the covariance of Ta and µT3, )var( 3TaTCo µ as shown in Equations (27), 

(28), and (29) respectively.
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• Calculate the square of the Pearson’s correlation coefficient ( 2r ) as given

by Equation (30). The square of Pearson’s correlation coefficient ( 2r ) is

used instead of Pearson’s correlation coefficient ( r ) because in delay

calculations only the strength of the relationship between Ta and µT3 is of

interest, not whether it has an either a positive or negative nature of the

correlation.

)(

))var((

3

2
32

Ta

Ta

TVar

TCo
r

µ
µ

= (30)

5) Compare the value of these correlation coefficients to each other and find the

value of the sampling time, d, at which the correlation coefficient is the

maximum.

6) This value d will be referred to as the delay associated with that given trip.

7) Repeat the steps 1-6 for all the regions in rule r with Ta > 0.5.

8) Repeat the steps 1-7 for all the rules in the process.

A good estimate for the value of the maximum possible delay associated with the

process, M, would provide robustness to this technique. A value of M which is either too

low or too high would give inaccurate estimates for the delay value. If the value of M is

much lower than the actual value of the maximum possible delay in the process then this

technique will not be able to give a good estimate (as the correlation coefficient are

compared only for time intervals from 1,2…….M) of Delay. Thus, if the actual delay for

a trip is greater than M then this technique would not be able to obtain it.

If the value of M is much higher than the actual value then this might also lead to

inaccurate estimates of the value of delay. This is because the process variables (and thus,
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Ta and Tc) do not generally vary monotonically i.e. these process variables keep varying

in a cyclic manner. Thus, if the value of M is very high then it is possible that for a given

region of Ta the Tc would finish its one cycle (increase, decrease and again increase or

vice versa) and then it might lead to a higher value of the correlation coefficient at the

other cycle (even though no such correlation exists). An example of such a scenario is

shown in Figure 20. Assume that a value of 10 was chosen for M. Again, assume that the

input variable affect the output variable but after a delay value of 1 second. Thus, this

delay quantification should find the maximum value of the correlation coefficient

between the input and output variables at a delay value of 1 second. However, the output

variable is varying in a cyclic manner. Thus, it is possible that a large value of the

correlation coefficient would be obtained at a delay of 8 seconds, too. If this value of the

correlation coefficient is greater than the value of the correlation coefficient at the delay

of 1 second then this technique would assign a delay value of 8 second for this case

(which is incorrect). However, if we have a good estimate of M for this process (Let’s

say M= 5 sec) then the correlation at 8 seconds would not be found. Hence, a good

estimate for the M value would provide robustness to this delay quantification technique.

Thus, in this technique of delay quantification the entire system is divided into

several smaller regions (trips) and a single value of delay is associated with each trip. In

the Table 2, the results for delay quantification for a trip in a given rule are shown. N.R.

represents that the value was not required in the calculations.

Firstly, the entire Ta column in the Table 2 was scanned in search for prospective

trips in QI or QIV (Ta > 0.5). Then, a value for M = 50 second was chosen based on the

knowledge of the process. One such prospective trip was found and it consisted of 8
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points (g=8). Then, the correlation coefficients were calculated between the g points of Ta

and the g points of µT3 delayed by 1, 2, 3……50 seconds. The maximum value of the

correlation coefficient was obtained at a delay value of 26 seconds. This value of the

delay was then assigned to the given trip. Based on a triangular membership function, the

delay value was then fuzzified and the value of µdelay was found to be 0.3. The µT3 values

were undelayed by shifting the µT3 values backward in time by 26 seconds. The truth of

the consequent was then calculated by using the minimum operator and a value of 0.3

was calculated for it. Thus, this trip resulted in a trip in QIV.

Possible source of error during delay quantification
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Figure 20: Affect of choosing a large value for M on delay quantification.
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Rule 1789: IF Temp1 is MED & F1 is LOW & F2 is LOW & Temp2 is HIGH & Persistence is
LOW THEN after LONG delay Temp3 will be MED

Time Ta µT3 Delay µDelay µT3
delayed Tc

1 0.0590 0.8390 N.R. N.R. N.R. N.R.
2 0.3925 0.8388 N.R. N.R. N.R. N.R.
3 0.6493 0.8386 26 0.3 0.8398 0.30
4 0.8193 0.8385 26 0.3 0.8399 0.30
5 0.7895 0.8384 26 0.3 0.8399 0.30
6 0.7368 0.8383 26 0.3 0.8399 0.30
7 0.6842 0.8382 26 0.3 0.8398 0.30
8 0.6316 0.8381 26 0.3 0.8398 0.30
9 0.5789 0.8381 26 0.3 0.8397 0.30

10 0.5263 0.8380 26 0.3 0.8396 0.30
11 0.4737 0.8380 N.R. N.R. N.R. N.R.
12 0.4211 0.8380 N.R. N.R. N.R. N.R.
13 0.3684 0.8380 N.R. N.R. N.R. N.R.
14 0.3158 0.8380 N.R. N.R. N.R. N.R.
15 0.2632 0.8380 N.R. N.R. N.R. N.R.
16 0.2105 0.8381 N.R. N.R. N.R. N.R.
17 0.1579 0.8382 N.R. N.R. N.R. N.R.
18 0.1053 0.8383 N.R. N.R. N.R. N.R.
19 0.0526 0.8384 N.R. N.R. N.R. N.R.
20 0.0000 0.8385 N.R. N.R. N.R. N.R.
21 0.0000 0.8387 N.R. N.R. N.R. N.R.
22 0.0000 0.8388 N.R. N.R. N.R. N.R.
23 0.0000 0.8390 N.R. N.R. N.R. N.R.
24 0.0000 0.8392 N.R. N.R. N.R. N.R.
25 0.0000 0.8394 N.R. N.R. N.R. N.R.
26 0.0000 0.8395 N.R. N.R. N.R. N.R.
27 0.0000 0.8396 N.R. N.R. N.R. N.R.
28 0.0000 0.8397 N.R. N.R. N.R. N.R.
29 0.0000 0.8398 N.R. N.R. N.R. N.R.
30 0.0000 0.8399 N.R. N.R. N.R. N.R.
31 0.0000 0.8399 N.R. N.R. N.R. N.R.
32 0.0000 0.8399 N.R. N.R. N.R. N.R.
33 0.0000 0.8398 N.R. N.R. N.R. N.R.
34 0.0000 0.8398 N.R. N.R. N.R. N.R.
35 0.0000 0.8397 N.R. N.R. N.R. N.R.
36 0.0000 0.8396 N.R. N.R. N.R. N.R.
37 0.0000 0.8395 N.R. N.R. N.R. N.R.
38 0.0000 0.8394 N.R. N.R. N.R. N.R.
39 0.0000 0.8393 N.R. N.R. N.R. N.R.
40 0.0000 0.8392 N.R. N.R. N.R. N.R.
41 0.0000 0.8391 N.R. N.R. N.R. N.R.
42 0.0000 0.8390 N.R. N.R. N.R. N.R.
43 0.0000 0.8389 N.R. N.R. N.R. N.R.
44 0.0000 0.8388 N.R. N.R. N.R. N.R.
45 0.0000 0.8387 N.R. N.R. N.R. N.R.
46 0.0000 0.8386 N.R. N.R. N.R. N.R.
47 0.0000 0.8386 N.R. N.R. N.R. N.R.
48 0.0000 0.8385 N.R. N.R. N.R. N.R.
49 0.0000 0.8384 N.R. N.R. N.R. N.R.
50 0.0000 0.8385 N.R. N.R. N.R. N.R.
51 0.0000 0.8416 N.R. N.R. N.R. N.R.

Table 2: Delay quantification for a trip in a given rule in the hot-cold water simulator.
N.R. represents that the value was not required in the calculations.
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3.5 Minimum number of rules required to describe the system completely

Consider the antecedent A1 as:

T1 is Low AND F1 is Med AND F2 is Low AND T2 is Low AND Persistence is Med

The nine possible rules (assuming that three linguistic values are assigned to each

variable) with this antecedent are:

IF A1 THEN after short delay T3 is Low

IF A1 THEN after short delay T3 is Med

IF A1 THEN after short delay T3 is High

IF A1 THEN after Med delay T3 is Low

IF A1 THEN after Med delay T3 is Med

IF A1 THEN after Med delay T3 is High

IF A1 THEN after Large delay T3 is Low

IF A1 THEN after Large delay T3 is Med

IF A1 THEN after Large delay T3 is High

If the system under consideration is a defined system i.e. a system for which all

the possible mechanisms, relevant antecedent and consequent variables are known, then

at least one, out of these nine rules, will be a valid rule for the system because a cause in

a process must lead to an effect. The total number of possible rules for the entire system

is 37=2187. Thus, the minimum number of valid rules required to completely describe

this process is 2187/9=243. However, if the data would not capture every possible
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phenomenon occurring in the process, then the number of extracted valid rules will be

less than 243.

By convention, only one out of these nine rules is allowed to become a part of the

final rule base. This makes sure that the size of the rule base does not become too large;

and thus, it saves the computational effort required in the management of these rules.

Hence, in this work only one out these possible nine rules was allowed to form the part of

the final rule base. Thus, the total number of rules which are required to describe the

process completely is 243 in the case of the hot-cold water simulator.

3.6 Comparison of rules

In Kumar’s work [3], the rules were not compared to each other and the rule

which passed the criteria of the acceptance of the rules was termed as a valid rule.

However, Kumar acknowledged that there was need to rank the rules which required

comparing them to each other to select the better rules. Furthermore, Kumar proposed

that the rules of distinctly different antecedents and consequents should not be compared.

In fact, it is more logical to compare the rules with the same antecedents to each other as

they conflict with each other. These rules with the same antecedent but different

consequents, in a given rule set, will be called as interacting rules. Consider the following

two rules:

If F1 is High AND F2 is High AND Persistence is High then after large delay F3 is High

If F1 is High AND F2 is High AND Persistence is High then after short delay F3 is low
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These two rules have the same antecedent but different consequents. Both these

rules are describing the same phenomenon (same antecedent) but are conflicting each

other. Hence, the statements of these two rules are contradictory to each other. Thus, such

rules should be compared to each other and as discussed in the Section 3.5 only one out

of all the interacting rules should be allowed to form a part of the final rule base. It

should be noted that the nine rules discussed in the Section 3.5 were also interacting rules

as all of them had the same antecedents but different consequents. A rule will not

compete with any other rule beside its interacting rules since all the other possible rules

will have different antecedents. A group consisting of all possible interacting rules which

do not interact with any rule outside their group would be called as a non-interacting

group. In the hot-cold water simulator, we have 243 non-interacting groups and each such

group will have 9 interacting rules in it.

On the other hand, the rules with different antecedents describe different

conditions (events) in the process and do not conflict with each other. Hence, such rules

should not be compared with each other. For example: consider the two rules:

If F1 is High AND F2 is High AND Persistence is High then after large delay F3 is High

If F1 is Low AND F2 is Low AND Persistence is Low then after short delay F3 is Med

These two rules should not be compared to each other as they are describing

completely non-interacting events, they are representing completely different

phenomenon. These rules will be called as non-interacting rules.
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Thus, in this work only interacting rules are compared to each other, and only one

out of all the possible interacting rules is selected to be a part of the final rule base. The

metric ‘corroboration’ (number of trips in QI) proposed by Kumar will be used in this

work to compare the interacting rules and this has been discussed in further detail in the

Section 3.8. The basis of using corroboration for comparing the interacting rules is that a

trip in QI in one interacting rule becomes a trip in QIV in the rest of the interacting rules.

Similarly, since the non-interacting rules are not to be compared to each other, a trip in

QI in one rule should not become a trip in QI or QIV in the rules which are not in the

non-interacting group of this rule. These constraints will provide a constraint in choosing

the value for the Quadrant size in TSD as explained in the Section 3.7.

3.7 Choice of the Quadrant size in the TSD

Sharma and Kumar used a fixed Quadrant size during the search for the valid

rules. Specifically, the TSD was split into four Quadrants of size 0.5 x 0.5 each. Kumar

acknowledged the need for finding an optimum value for this Quadrant size. It was also

recommended that the value for the size of the TSD should be such that it will assist in

the rule selection process. From the discussion in the previous section, two constraints

affect the selection for the Quadrant size in the TSD:

1. A trip in QI for a rule should give a trip in QIV in its remaining interacting rules.

2. A trip in QI for a rule should not give a trip either in QI or in QIV in its non-

interacting rules. 
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In addition, the minimum operator is a very strict operator i.e. it requires a high

value of truth to extract “valid rules” rules. Thus, it is proposed that the Quadrant size of

the TSD should be as lenient as possible. Thus, we need the minimum value of Ta and Tc,

for the Quadrant size, which will satisfy the above two constraints. It was found that a

value of Ta = 0.5 and Tc = 0.5 for the Quadrant size would fulfill these two constraints, as

discussed below.

Consider again the 9 interacting rules discussed in the Section 3.5. For a given

data point the sum of the used triangular membership values for the three categories low,

medium and high is unity. Applying this knowledge to all the variables (F1, F2, T1, T2,

Delay, Persistence, and T3) in the process, we get the following equations:
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Consider the first constraint which states that a trip in QI for a rule must give a

trip in QIV in the remaining interacting rules. The Ta value for all these interacting rules

will be equal as they have the same antecedents. Thus, to obtain a trip in QI or QIV in
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these interacting rules the Ta must be greater than 0.5. When the value of Tc > 0.5 for a

given rule (out of these nine) then it implies (from Equation (14)) that both
6,

3
ji

Tµ and

7, ji
Delayµ

are greater than 0.5 for that rule since the minimum operator is used for performing

the truth calculations. It further implies, from Equations (36) and (37), that any other

interacting rule with a different consequent in the remaining 8 rules must have a value

less than 0.5. Thus, all the other interacting rules will have a Ta > 0.5 and a Tc < 0.5.

Hence, when Tc > 0.5 and the number of number of points are equal to threshold for a

given rule then it would give a trip in QIV in all the other interacting rules.

Consider the second constraint which states that trip QI for a rule should not give

a trip either in QI or in QIV in a non-interacting rule. Again, to obtain a trip in QI or QIV

in a rule the Ta must be greater than 0.5. It implies, from Equation (13), 

that
1,

1
ji

Tµ ,
2,

1
ji

Fµ ,
3,

2
ji

Fµ ,
3,

2
ji

Fµ
4,

2
ji

Tµ and
5, ji

ePersistencµ must all be greater than 0.5 for that rule. It

means, from Equations (31), (32), (33), (34), and (35), that for any other non-interacting

rule, the value of Ta would be less than 0.5 (since any other possible antecedent will have

Ta less than 0.5). Hence, when Ta > 0.5 and the number of number of points is equal to

the threshold, to count as a trip for a given rule, then it would not give a trip in QI or QIV

in any non-interacting rule.

The only possible way to satisfy these two constraints is to set the value for the

Quadrant size as Ta = 0.5 and Tc = 0.5. It should be noted that if the sum of membership

values do not equal to unity for a variable then the membership values must be

normalized before using this value for the Quadrant size.
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3.8 Choice of Metric and its universal value

Two metrics, corroboration and merit, were invented and recommended in the

previous research by Kumar [4] to check the validity of a rule. Corroboration was

defined as the minimum number of trips in QI required to provide sufficient evidence of

the ‘corroboration’. Merit for a rule was defined as the difference between the number

of trips in QI and the number of trips in QIV. The acceptance criteria for a rule to be

classified as valid were:

1. A value of two was chosen as a reasonable number for the corroboration.

2. Merit of a rule was required to be greater than or equal to 1.

However, these threshold values for these metrics were intuitive. Thus, to

provide universal applicability to that technique, an objective of this study is to find the

threshold values to be used for these metrics.

Recall, a rule competes only with its interacting rules. A trip in QI in a rule

means a trip in QIV in its interacting rules. Thus, a single trip in QI in one rule would

establish its validity over the other interacting rules if the other interacting rules have

not registered any trip in QI. Hence, the value which should be used for the minimum

number of trips in QI to confirm the validity of a rule is unity. However, it is quite

possible (due to shifting of trips from one Quadrant to another because of membership

value of variables or due to error is delay quantification) that a trip in QI would be made

in more than one interacting rule in a given non-interacting group. In that situation, only

the rule with the maximum number of trips in QI would be selected from the non-

interacting group. In addition, if the number of trips in QI is equal (and maximum in the
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non-interacting group) for more than one interacting rule then any one out of those rules

would be selected randomly to maintain the size of the rule base.

In the previous work, merit was chosen as a metric to compare rules based on

both the number of trips in QI and the number of trips in QIV. However, the current

research has revealed that the number of trips in QI and the number of trips in QIV in

the rules in a non-interacting group are not independent of each other. This is because a

trip in QI in one rule implies a trip in QIV in other interacting rules in the group. This

was not the understanding about the metrics in the earlier stages of this work because

the geometric operator didn’t support this relationship between the trips in QI and QIV

of the rules. With minimum operator, the rule with the maximum value for the

corroboration in its non-interacting group will also have the maximum value for the

merit in the same group. Hence, it would be redundant to use both merit and number of

good rules as metric to compare the validity of a rule. Thus, the merit is not required for

the selection of rules.

It should be noted that now it is possible for a rule to get selected as a valid rule

even after having a negative value for merit. This was prohibited in the previous

research. An example of a scenario in which a rule would be selected even after having

a negative value for the merit is shown in Figure 21. The TSD for three interacting rules

is shown. The TSD1 registered 3 trips in the QI Quadrant. This resulted in three trips in

the QIV for the TSD2 and TSD3 (as they are interacting rules). Similarly, the TSD2

registered 2 trips in QI which resulted in 2 trips in QIV for the TSD1 and TSD3. Finally,

the TSD3 also registered 2 trips in the QI Quadrant which resulted in 2 trips in QIV for
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TSD1: 3 trips in QI and 4 trips in QIV
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TSD2: 2 trips in QI and 5 trips in QIV
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TSD3: 2 trips in QI and 5 trips in QIV
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Figure 21: TSD diagrams of three interacting rules. Rule with TSD1 has negative value
for merit but still gets selected because it has the maximum number of trips in QI.
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the TSD1 and TSD2. The calculations for the merit for these three rules are shown in

the Table 3.

QI Trips QIV Trips Merit
TSD1 3 4 -1 
TSD2 2 5 -3 
TSD3 2 5 -3 

The rule represented by TSD1 will be selected as the single valid rule from this

rule interacting set (because it has the maximum value for corroboration) even though

its merit value is negative. This is because the interacting rules are being compared to

each other to find the best possible rule. In the work by Kumar, none of these rules

would have been selected as valid rules as all of them have negative value for merit.

3.9 Universal applicability of the technique

As discussed above, the best combination of the parameters involved in the

selection of a valid rule would be:

Mathematical Operator to calculate truth: Minimum operator

Quadrant size in the TSD: Ta = 0.5 and Tc = 0.5

Corroboration (Minimum number of trips in QI): 1

Merit: Not required

Table 3: The merit values the three interacting rules indicate that a rule can be selected
as a valid rule even if the value for merit is negative. In this case, TSD1 has a -1 value
for the merit but even then it will be selected as a valid rule as it performs better than
the other interacting rules.
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These values are universal as they are based on the combination of the

fundamentals of fuzzy logic and TSD. No assumptions have been made during the

selection of these values. Thus, these values are universal and do not depend on the

process or the number of variables in the process. Thus, if this technique needs to be

applied to a new process then the parameters listed above should be used. The accuracy

of prediction, obtained from the rules, can then be improved by optimizing the

membership functions of the variables.

3.10 Belief in a rule

In general, belief is the mental acceptance and conviction in the truth or validity

of something. In this work, the belief in a rule R will be defined as the ratio of the

number of trips in QI to that of sum of the trips in QI and QIV in the given rule R. It

should be noted that the number of trips in QIV for a given rule R will be equal to the

sum of trips in QI in the remaining interacting rules of the given rule R. Hence, the

belief in a rule gives the relative validness of the given rule in comparison to its

interacting rules. For a given rule r, if NQI and NQIV represent the number of trips in QI

and QIV for the rule then the belief in a rule will be defined as:

QIQIV

QI

NN

N
Belief

+
= (38)

Thus, belief in a rule indicates our level of confidence in the validity of that rule based on

its past and in comparison to the other rules. This value can provide useful information to the

user while making decisions based on that rule. A higher value of belief would increase the

confidence of the user in the given rule and vice versa.
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3.11 Curse of Dimensionality

It would be extremely complicated to perform an exhaustive search over all the

possible rules in processes consisting of a large number of relevant variables. Thus, a

genetic algorithm based technique is being developed by Dr. Gary Yen in which valid

rules would evolve from the data with time. The TSD would be used inside this

technique for the selection of the valid rules.

A major limitation of the data-driven techniques is the “curse of dimensionality”.

It refers to the problem caused by the rapid increase in the computational power with the

addition of extra dimensions (variables) to the search space. In genetic algorithms, an

initial population of rules is generated and then it is continuously optimized to generate a

new improved populations consisting of valid rules. However, it would have to find the

optimal solution (valid rules) in a very large search space. For example: For a process

with 15 inputs, 3 outputs and 3 linguistic categories for each variable, the search space

would consist of 318 rules. Thus, the search space increases exponentially as the process

variables involved increase. The fundamentals of the TSD, developed in this work would

help the genetic algorithm in overcoming the “curse of dimensionality”. Flowcharts for

the conventional GA and the GA using TSD are shown in Figures 22 and 23

respectively.

It should be observed that the initial population was generated in the entire space

in both algorithms. However, the computational power required for the GA combined

with TSD would be lesser. This is because when an antecedent with Ta > 0.5 will be

found, then a valid rule could be found just by searching in the consequent space (as a
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cause has to produce an affect). Once the antecedent with Ta > 0.5 is found the

exhaustive search can be performed over the consequents (33) to find the valid rules.

Thus, the total search space would reduce from 318 rules to 315 antecedents + 33

consequents. In contrast, the search space in the conventional GA would have remained

the same.

Figure 22: Flowchart of conventional genetic algorithm approach to extract rules.

Reproduced from [15].
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population
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3.12 Predicting the consequent

In this Section, two methods for predicting the value of the consequent will be

discussed. The first method is a refinement of Kumar’s [3] prediction technique and the

second method is based on the conventional approach used to predict the output in the

fuzzy logic. These methods have been discussed below:

3.12.1 Refinement of Kumar’s technique

As discussed in Section 2.3.4, Kumar developed a novel technique for predicting

Tc of the output, based on the historical information obtained by dividing the TSD into

five Ta and 10 Tc zones. However, this predicted output was not too useful since Tc

consists of the combined information of the delay and the T3. The desired result is to

obtain separate values for these two outputs. Hence, it was important to decouple the

consequents into two separate terms. The following section discusses a modification of

Kumar’s technique applied separately to the variables, Delay and T3. Again, the first step

will use the historical data which will be processed and used in the next step for making

predictions in the new data.

3.12.1.1 From Historical Data

The information from the historical data will be separated into the information

about T3 and the Delay as discussed below:

3.12.1.1.1 Processing historical data for T3
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Instead of dividing the TSD of the rule, the plot of µT3 and Ta was divided

into grids as shown in the Figure 24.

uT3 and Ta plot for historical data

0

0.5

1

0 0.5 1Ta

u
T

3

Thus, the plot is divided into 5 Ta zones and 10 µT3 Zones of size 0.1 x 0.1 each.

Now, the data is processes in the following steps:

1. A column vector, Hits, is used to record the number of points or hits made

in each of the five zones of the antecedent.

2. Then, a 10 x 5 matrix, Numpoints, was used to store the number of hits in

each of the ten µT3 zones for each of the five Ta zones.

Figure 24: The plot of µT3 and Ta showing the partitioning of the QI and QIV into a total

of 50 zones of size 0.1 x 0.1 each. The Ta is divided into 5 Ta zones and the µT3 is

divided into 10 zones each.
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3. Then, each column of the matrix Numpoints was separated into five

column vectors represented by iV
r

and then normalized in the range 0-1 as

shown below:

















⋅
=

i
V

i
V

normi
V

T rr

r
r

1
(39)

Here, i = 1 to 5 and
normi

V
r

is a 10 x 1 matrix.1
r

is defined as [ ]1,1,1,1,1,1,1,1,1,11 =
r

.

3.12.1.1.2 Processing historical data for Delay

Similarly, the plot of µdelay and Ta is shown in the Figure 25.

udelay and Ta plot for historical data
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Figure 25: The plot of µdelay and Ta showing the partitioning of the QI and QIV into a

total of 50 zones of size 0.1 x 0.1 each. The Ta is divided into 5 Ta zones and the µDelay

is divided into 10 zones each.
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Thus, the plot is divided into 5 Ta zones and 10 µDelay Zones of size 0.1 x 0.1

each. Now, the data is processes in the following steps:

1. A column vector, Hits, is used to record the number of points or hits made

in each of the five zones of the antecedent. This would be the same as the

one defined during the processing of historical information for T3.

2. Then, a 10 x 5 matrix, DelayNumpoints, was used to store the number of

hits in each of the ten µDelay zones for each of the five Ta zones.

3. Then, each column of the matrix DelayNumpoints was separated into five

column vectors represented by D iV
r

and then normalized in the range 0-1

as shown below:
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⋅
=

i
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i
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normi
VD T rr

r
r

1
(40)

Here, i = 1 to 5 and
normi

VD
r

is a 10 x 1 matrix.

3.12.1.2 From New Data

In Kumar’s technique, the entire new data was used to register hits first and then

those hits were used to predict the consequent values by using it in conjunction with the

historical data. However, this will not necessarily give one output value for every input

value. This is because several inputs in the new data will be combined together to form

hits for a rule and then the effects of all those hits was combined together to give a single

(per rule) predicted value of the output. However, in real processes, it would make more

sense to have a one-to-one correspondence between the inputs and the outputs. Thus, in

this work each input value was required to give one value for each output (delay and T3).
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3.12.1.2.1 Calculating the membership value for T3 for the new data

1. For a given rule r (which is a valid rule), the Ta value for the first

data point is calculated. If Ta > 0.5 then this will give a hit in one

of the five antecedent zones. Let that zone be represented by j.

Here, j can vary from 1 to 5.

2. The membership value of T3, for the given rule r, was calculated

as:

)(

)),10(95.0....),2(15.0),1(05.0(
3 TotSum
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normi
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normi
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3. If Ta < 0.5 in Step 1 then repeat the process with the next valid

rule. Continue this process till Ta > 0.5 for a valid rule is found.

4. Continue this process for all the data points in the new data.

3.12.1.2.2 Calculating the membership value of delay for the new data

1. For a given rule r, the Ta value for the first data point is calculated.

This will give a hit in one of the five antecedent zones. Let that

zone be represented by j. Here, j can vary from 1 to 5.

2. The value of µdelay, for the given rule r, was calculated as:

)(

)),10(95.0....),2(15.0),1(05.0(
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j
normi
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normi
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normi
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Delay
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Where,
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3. If Ta < 0.5 in Step 1 then repeat the process with the next valid

rule. Continue this process till Ta > 0.5 for a valid rule is found.

4. Continue this process for all the data points in the new data.

3.12.2 Prediction based on conventional fuzzy logic approach

In the literature, it is a common practice to predict the output, based on the

assumption that the truth of the antecedent is equal to the membership values of the

consequents. Thus, it is assumed that µT3 = µDelay = Ta.

3.12.3 Defuzzification of the membership values

Once the membership functions, µT3 and µdelay, are calculated (using any of the

techniques discussed above) then defuzzification is performed to obtain the crisp value of

the outputs. In this work, the defuzzification was performed to calculate the values of T3

and Delay as given by Equations (45) and (46). Here, assume that R is the total number

of valid rules selected using the historical data.
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rTC ,3 represents the crisp T3 output for a given rule r and is equal to the center of

gravity of the linguistic category of T3 (as given by the rule r). Similarly, rDelayC ,

represents the crisp Delay output for a given rule r and is equal to the center of gravity of

the linguistic category of Delay (as given by the rule r).

3.12.4 Blending the delay values

The final step in making predictions is to blend the output value coming from

different delay values. Assume that at time t = 2 seconds the predicted value for T3 is 75o

C after a delay of 5 seconds. However, imagine that after 2 seconds the predicted value

for T3 is 85o C after a delay of 3 seconds. Now, the issue is that which information

should be used in making the prediction. In this work, the predictions would be governed

by the most recent information. In fact, it is a common practice in forecasting the weather

condition to base the forecast on the latest possible information of the process. Thus, in

the given example, the value for the T3 will be 85o C.
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CHAPTER IV

RESULTS AND DISCUSSION

4.1 Results

The results, for the hot-cold water simulator, were obtained for the selection phase

and the prediction phase. In the selection phase, the data generated from the simulator

was used to select the valid rules for the process. In the prediction phase, the rules

selected during the selection phase were used to predict the value for the outlet

temperature, T3.

In the selection phase, the valid rules were selected several times by changing the

mathematical operator (used in calculating the Ta and Tc), merit, and corroboration. This

was done to study the affect of these factors on the selection of valid rules. In the

prediction phase, the selected rules were used to predict the value of the output, T3. The

predictions were made based on the conventional technique as well as Kumar’s modified

prediction technique to compare these two techniques. The root mean square (RMS) error

was used to compare both these techniques and was calculated as:

predN

TT
RMSE

Calculated
i

predN

i

Actual
i

,

)33( 2
,

1
∑
=

−
= (47)
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Here, predN , refers the total number of data points for which prediction results

were obtained. It should be noted that predN , does not represent the total number of data

points, predtotalN , , used in the prediction phase. predN , just represents the number of

data points for which a value for the output, T3, could be obtained using the rules. The

prediction capability of the rules would be calculated as:

100
,

,
(%) ×=

predtotalN

predN
litypredcapabi (48)

The affect of the factors discussed above (mathematical operator, prediction

technique, merit and corroboration) is discussed in the Section 4.2. No restriction was

applied on the selection of interacting rules while extracting the results discussed in this

Section. Thus, it was possible for more than one interacting rules to be selected as valid

rules. Section 4.3 discusses the affect of allowing only one interacting rule in the rule

base, on the accuracy of the prediction.

4.2 No restriction on the selection of interacting rules

4.2.1 Affect of corroboration on the selection of valid rules

The affect of corroboration on the selection of valid rules and on the accuracy of

the prediction, was studied for both geometric and minimum operator. The results are

shown in the Figures 25 and 26 respectively. The metric merit was not used in the

selection of these rules. The error shown was calculated based on the conventional

prediction technique (Ta = µT3 = µdelay) used in fuzzy logic.

4.2.1.1 Geometric Operator: Affect of corroboration
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Consider the affect of corroboration on the selection of valid rules, when the

geometric operator was used to perform the calculations of the Ta and Tc. It is observed

from Figure 26, that the number of valid rules selected, decreased sharply with the

increase in value of corroboration. This trend was expected since as corroboration

increased, more trips in the Quadrant I of the rules were required, for the rule to be

selected as a valid rule. The total numbers of selected rules dropped from 1115 to 157 as

the value of corroboration increased from 1 to 10.

Geometric Operator: Error and Number of Rules
vs Corroboration
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Figure 26: For the geometric operator, the affect of corroboration on the selection of valid
rules and on the RMS prediction error has been shown. The number of valid rules falls
sharply as the corroboration increases but the RMS prediction error first decreases and
then increases as the corroboration increases.

The affect of corroboration on the prediction error is complicated than that on

number of valid rules. The RMS prediction error first dropped with the increasing value

of corroboration, but, after a given value of corroboration, the error started to increase
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again. This behavior can be explained on the basis of the number of valid rules selected, 

and the characteristics of the geometric operator. As discussed in the Section 3.3, the

geometric operator allows several semi-valid rules to register trips in QI. As a result, a

large number of semi-valid rules form a part of the final rule base, and are used in making

predictions. A low value for the corroboration makes the rule selection process even more

lenient. For instance: 1115 out of the total 2187 rules were selected when a corroboration

value of 1 was chosen. Due to the selection of a large number of rules, with limited

validity, the ability to accurately predict the output is low and, thus, large errors are

associated with small values of corroboration for geometric operator. As corroboration

increased, the rule selection process became stricter. The error reduced gradually as the

value of corroboration went from 1 to 5 indicating that several semi-valid rules were still

present in the rule base. However, as the value of corroboration went from 5 to 6 the

number of valid rules selected decreased from 433 to 333. During this transition, the

RMS prediction error also dropped sharply from 11.22oC to 8.66oC which suggested that

only few semi-valid rules were left in the rule base. The corroboration value of 7 gave the

lowest prediction error of 8.22oC. However, as the corroboration value was further

increased, the RMS prediction error started to increase sharply. This trend can be

explained on the basis of the removal of rules of high validity from the rule base. Thus,

for high values of corroboration (9 and 10) several rules with high validity were removed

along with the semi-valid rules due to the strictness of the rule selection process. This left

very few valid rules in the rule base to predict the output. Hence, the RMS prediction

error increased.
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4.2.1.2 Minimum Operator: Affect of corroboration

The affect of corroboration on the selection of valid rules, when the minimum

operator was used to perform the calculations of the Ta and Tc, is shown in Figure 27. The

number of valid rules selected, decreased sharply with the increase in value of the

corroboration. This trend is similar to the one observed for the geometric operator in

Section 4.2.1.1. However, the number of selected rules was much lesser when the

minimum operator was used (for the same value of corroboration). This is because the

minimum operative is a strict operator then the geometric operator as discussed in

Section 3.3. The number of selected valid rules decreased from 248 to 17, as the

corroboration increased from 1 to 6.

Min Operator: Error and Number of Rules vs
Corroboration
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Figure 27: For the minimum operator, the affect of corroboration on the selection of valid
rules, and on the RMS prediction error has been shown. The number of valid rules falls
sharply as the corroboration increases but the RMS prediction tends to increase as the
corroboration increases.
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The trend in the plot between RMS error and corroboration, for the minimum

operator, is similar (error first decreased and then increased) to the trend obtained for the

geometric operator. However, with the minimum operator, the first phase of the trend

(decrease in error with corroboration) was almost absent. This is because the plot

between RMS error and corroboration reached its optimum (lowest) error at a low value

of corroboration, for the minimum operator. Due to the lenient nature of the geometric

operator, the optimum error was achieved at a higher value of corroboration. Thus, it

seems that it is easier to locate the optimum point for the minimum operator, then for the

geometric operator.

4.2.2 Affect of threshold value of merit on the prediction error

The affect of threshold value of merit on the RMS prediction error was studied

for both geometric and minimum operator. The results are shown in the Figures 28 and

29 respectively. The value of corroboration was fixed at two while the threshold value of

merit was changed from 0 to 2. The scenario in which the merit was not used has also

been included in the Figures 28 and 29. The error shown was calculated based on the

conventional prediction technique (Ta = µT3 = µdelay) used in fuzzy logic.

4.2.2.1 Geometric Operator: Affect of threshold value of merit

The affect of merit on the RMS prediction error, when the geometric operator was

used to perform the calculations of the Ta and Tc is shown in Figure 28. The RMS error

decreased slightly when the threshold value of merit, equal to zero, was used in the

selection of valid rules. This is because the corroboration value of two consisted of a
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large number of semi-valid rules (as discussed in Section 4.2.1.1) and the introduction of

merit resulted in the removal of several semi-valid rules from the rule base. Hence, the

prediction error decreased slightly.

Geometric Operator: Error vs Merit
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Figure 28: For the geometric operator, the affect of merit on RMS prediction error has
been shown. The RMS prediction error tends to increase as the value of merit increases.

However, as the threshold value of merit increased, the RMS prediction error

increased. This can be explained on the basis of removal of several valid rules from the

rule base. Due to this, the RMS prediction error increased.

4.2.2.2 Minimum Operator: Affect of merit

The affect of merit on the RMS prediction error, when the minimum operator was

used to perform the calculations of the Ta and Tc, is shown in Figure 29.
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Min Operator: Error vs Merit

Merit=not used

Merit = 0

Merit = 1

Merit = 2

5

6

7

8

9

10

11

12

13

14

15

16

17

Threshold value of merit

R
M

S
p

re
d

ic
ti

o
n

er
ro

r
(o

C
)

error_Ta=Tc

Figure 29: For the minimum operator, the affect of merit on RMS prediction error has
been shown. The RMS prediction error tends to increase as the value of merit increases.

The error increased sharply as the merit was introduced, as a constraint, in the

selection of valid rules. This is because the corroboration value of two provided the

optimum set of valid rules (as discussed in Section 4.2.1.2) for this data set. The usage of

merit resulted in the removal of several valid rules, from this optimum rule base. Hence,

the sharp increase in the error was seen. The number of valid rules selected decreased

from 248 (when merit was not used) to 43 (threshold value of merit = 0). As the merit

value was increased from 0 to 2, the number of valid rules became very less. The

prediction capabilities of the rules were 54.8% and 36.9% for the values of merit equal to

1 and 2 respectively. Hence, the decrease in error was of little importance because the

prediction capability of the rule base was very low.
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4.2.3 Comparison between Kumar’s (modified) and conventional prediction technique

The comparison between the Kumar’s modified prediction technique and the

conventional technique was studied for both the geometric and minimum operator. The

rules were generated by choosing different values of corroboration. Then, Kumar’s

modified technique was used to predict the output, T3. Similarly, prediction for T3 were

made using the conventional technique (Ta = Tc). The results are shown in the Figures 30

and 31 respectively.

4.2.3.1 Geometric operator: Choice of prediction technique

The trends, in the plot between RMS error and number of rules, obtained using

Kumar’s prediction technique and conventional technique, using the geometric operator,

were quite similar as shown in Figure 30. The RMS error first decreased and, then

increased, as the number of rules increased (due to decrease in the value of

corroboration). Finally, as the corroboration value decreased further, very little change

was noticed in the error.

The initial decrease in the error can be attributed to the relaxation in the strictness

criteria of the corroboration. This allowed several valid rules to be included in the rule

base. However, as the number of rules increased (due to decrease in corroboration value)

several semi-valid rules were included in the rule base. This explains the increase in error

as the number of rules increased from 220 to 550. Finally, the error became almost

constant with increasing values of corroboration. This could have been because of the

presence of large number of rules in the rule base (consisting of both valid and semi-valid

rule base). This large number of rules resulted in an averaging of the error. Furthermore,
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it seems that, after a large number of rules have been selected, this averaging does not

change too much with further increase in the number of selected rules.

Geometric Operator:Error vs rules curve
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Figure 30: For geometric operator, comparison between the Kumar’s modified prediction
technique and the conventional technique has been shown. The error first decreases, then
increases and, then becomes almost constant as the number of selected rules increase.
Kumar’s technique was more accurate for large values of corroboration (small number of
rules) and conventional prediction technique was more accurate for smaller values of
corroboration (large number of rules).

Figure 30 shows that Kumar’s technique was more accurate for large values of

corroboration (small number of rules) and conventional prediction technique was more

accurate for smaller values of corroboration (large number of rules). Kumar’s technique

relies on using the historical information to predict the output. In the prediction phase,

only the rules with the value of Ta, greater than 0.5 were allowed to predict the output. On

the other hand, all the selected rules were allowed to make predictions for the
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conventional prediction technique; and the different predicted values were blended

(averaged) to give the final output. For high values of corroboration, the rule base

consisted, primarily, of valid rules. Thus, the accuracy of the Kumar’s modified

technique was better than conventional techniques because the valid rules predicted the

output based on the historical information and the conventional techniques predicted the

output based on the assumption of Ta = Tc. For low values of corroboration, several semi-

valid rules were included in the rule base along with the valid rule. Hence, Kumar’s

modified technique predicted the output based on historical information of both the valid

and semi-valid rules. This explains the better accuracy of conventional prediction

technique, over Kumar’s modified prediction technique for large number of selected

rules.

4.2.3.2 Minimum operator: Choice of prediction technique

The trends, in the plot between RMS error and number of rules, obtained using

Kumar’s prediction technique and conventional technique are shown in Figure 31. The

RMS error first decreased and, then increased, as the number of rules increased (due to

decrease in the value of corroboration). The increased much rapidly for Kumar’s

prediction technique, then the conventional prediction technique.

Figure 31 shows that Kumar’s technique was more accurate for large values of

corroboration (small number of rules) and conventional prediction technique was more

accurate for smaller values of corroboration (large number of rules). This trend is similar

to the trend obtained using the geometric operator. Again, the decrease in error, with

decrease in corroboration, can be attributed to the inclusion of valid rules in the rule base
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and, the increase in error, with further decrease in corroboration, was because of

inclusion of several semi-valid rules in the rule base.

Min Operator: Error vs Rule Curve
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Figure 31: For minimum operator, comparison between the Kumar’s modified prediction
technique and conventional technique has been shown. The error first decreased, then
increased and, then became almost constant as the number of selected rules increased.
Kumar’s technique was more accurate for large values of corroboration (small number of
rules) and conventional prediction technique was more accurate for smaller values of
corroboration (large number of rules).

A rapid increase in error, with increase in number of rules, was observed with

Kumar’s prediction technique as compared to the conventional prediction technique. This

is because Kumar’s prediction technique relies on much lesser rules (with Ta > 0.5) to

make predictions as compared to conventional technique (which utilizes all the selected

rules to predict). Thus, Kumar’s prediction technique is more sensitive to the inclusion of

semi-valid rules than the conventional technique.
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It should be noted that the prediction capability of Kumar’s prediction technique

becomes very low as the number of selected rules decrease. The prediction capability (%)

became less than 20% when the number of rules became less than 50 (corroboration

value greater than 3). However, the prediction capability was much higher with the

conventional prediction technique. Hence, Kumar’s prediction technique does not appear

to be too useful, when used with the minimum operator. It resulted in high errors, for low

values of corroboration and its prediction capability became very low, for higher values

of corroboration.

4.2.4 Comparison between geometric and minimum operator

The plot between the RMS prediction error and the number of valid rules,

obtained for the geometric and minimum operator, is shown in Figure 32. The number of

valid rules was obtained by choosing different values of corroboration. The maximum

possible rules selected (using corroboration =1) for geometric and minimum operator

were 1115 and 248 respectively. The RMS prediction errors, for the given number of

rules, were 12.4 and 7.1 respectively. Thus, the minimum operator was 1.75 times more

accurate than the geometric operator; and the size of rule base, for the minimum operator,

was only 22.2% of the size of rule base for geometric operator (using corroboration =1).

The minimum operator gave high errors as the number of rules decreased

(corroboration value increased). The number of rules decreased rapidly with

corroboration. Even with a moderate value of corroboration equal to three, only 50 rules

were selected, for the minimum operator. On the other hand, geometric operator selected

a large number of rules, even for high values of corroboration. For the given prediction
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data set, the geometric operator gave the least error with 276 rules (corroboration = 7).

However, it is difficult to predict beforehand, which value of corroboration would give

the minimum error, for the geometric operator. On the other hand, it seems that a low

value of corroboration (1 or 2) would give the optimum (least error) result, for the

minimum operator.

Geometric vs Minimum Operator
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Figure 32: Comparison of geometric and minimum operator has been shown. The
minimum error was obtained with minimum operator, using a corroboration value of two.

Furthermore, it is observed that for both the operators, the least error was

observed when the number of rules was close to the least number of rules required to

describe the system completely (243). This may or may not be the universal behavior.

This technique should be applied to other processes to confirm or reject the results of this

observation.
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4.3 Allowing only one interacting rule in the rule base

The affect of allowing only one interacting rule, from a given non-interacting

group, to form a part of the valid rule base, has been discussed in this Section. Out of all

the selected rules with the same antecedent, only one rule (with maximum number of

trips in QI) was allowed to remain in the valid rule base. The other interacting rules were

removed from the rule base. One rule was chosen randomly, in situations, where more

than one interacting rules had the same number of trips in QI. This new valid rule base

(obtained using restriction of allowing only one interacting rule to be selected as a valid

rule) was then used to make predictions. These prediction results were compared to those

obtained from the old valid rule base, which had no restriction, during the selection of

interacting rules. These results are shown in Figure 33. The RMS errors were calculated

using the conventional prediction technique.

The number of valid rules and RMS prediction error change gradually, with the

increase in corroboration, for the rule base obtained by allowing only one interacting rule

to be selected as a valid rule. On the other hand, the number of valid rules and RMS error

change much rapidly, with the increase in corroboration, for the rule base obtained with

no restriction on the selection of interacting rules. The errors obtained from the rule base,

with restriction on the selection of interacting rules, were higher, than those obtained

from the rule base obtained with no restriction on the selection of interacting rules.

However, for a given value of corroboration, the number of valid rules was much lesser

for the rule base, with restriction on the selection of interacting rules, then that for the

rule base obtained with no restriction on the selection of valid rules.
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High value of errors, for the rule base with restriction on the selection of

interacting rules, was because a small number of rules were left in the rule base to make

predictions. This explains the gradual increase in error, from the rule base obtained with

restriction on the selection of interacting rules, with increase in corroboration. The error

curve obtained from the rule base, with no restriction on the selection of interacting rules,

has already been discussed in Section 4.2.1.1.

Figure 33: Comparison of the rule base obtained by restricting the selection of only one
interacting rule to the rule base obtained with no restriction on the selection of interacting
rules.
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The rule base, with no restriction on the selection of valid rules, can be generated

from the rule base, with restriction on the selection of interacting rules, by allowing

interacting rules to be selected. Thus, the inclusion of interacting rules resulted in a

decrease in error but lead to rapid changes in the plots of number of rules vs.

corroboration and error vs. corroboration.

The plot for the minimum operator has not been discussed because after the

removal of interacting rules, very few rules very left in the rule base which would have

been of little value to study. However, one particular value of interest for minimum

operator, obtained by allowing only one interacting rule to be selected as a valid rule and

using a corroboration value of 1, has been discussed in Section 4.4.

4.4 Comparison of results from this work with Kumar’s work

Kumar proposed the following values, for the selection of valid rules:

• Mathematical operator to calculate Ta and Tc: Geometric operator

• Corroboration = 2

• Threshold value for Merit = 1

• Threshold = 5

• No restriction on the selection of interacting rules

Using these values, 182 rules were selected. These rules gave a RMS error of

17.6oC for the given prediction data set. However, when only one interacting rule was
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allowed to be form a part of the valid rule base, then the total number of rule selected

dropped down to 147. These rules gave a RMS prediction error of 17.03oC.

The following values have been proposed in this work for the selection of valid

rules:

• Mathematical operator to calculate Ta and Tc: Minimum operator

• Corroboration = 1

• Threshold value for Merit = Not used

• Threshold = 5

• Allow only one out of all the possible interacting rules

Using these values, 109 rules were selected. These rules gave a RMS error of 15oC

for the given prediction data set. However, when no restriction was imposed on the

selection of interacting rules, then the total number of rule selected were 248. These rules

gave a RMS prediction error of 8.6oC.

These results show that the restriction on the selection of interacting rules decrease

the size of the rule base but increases the RMS prediction error too. In addition, the rule

base gave the minimum error for the value of corroboration, at which the total number of

valid rules selected was close to the minimum number of rules required to describe the

system completely. Thus, it is proposed that interacting rules should not be allowed to

form a part of the rule base when the total number of valid rules selected (without

including the interacting rules) is close to the minimum number of rules required to

describe the system completely. However, if the number of valid rules selected is much
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less then the minimum number of rules required to describe the system completely, then

the interacting rules should be allowed to form a part of the rule base to compensate for

the missing rules in the rule base.
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CHAPTER V

CONCLUSIONS AND SCOPE FOR FUTURE WORK

In this work, the TSD was reinvestigated to analyze the affect of over

specification and under specification of the variables, delay quantification was

performed, efforts were made to impart universal applicability to this technique and new

methods were developed to predict the values of the consequent. The conclusions

obtained from this work and the scope of future work in this field has been described

below:

5.1 Conclusions

1) TSD can assist in indicating the over specification and under specification in the

variables. Firstly, the problem of under specification of the antecedent should be

solved. Once this problem is solved then the problem of over specification in the

antecedent or “hidden” mechanisms should be solved.

2) Only two consequents (delay and the output variable) should be allowed to form a

part of the rule base. For more consequents, separate rule sets should be used

simultaneously.
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3) The minimum operator should be used to perform the calculations for the truth of

the antecedent (Ta) and the truth of the consequent (Tc). 

4) The TSD should consist of four Quadrants of size 0.5 x 0.5 each.

5) Only the interacting rules should be compared to each other and perhaps, only one

out of all the possible interacting rules should be selected as a valid rule.

6) The metric, corroboration, should be used in the selection of the valid rules. The

threshold value to be used for this metric is unity. Merit is not required as a metric

for the selection of valid rules.

7) In general, the conventional technique for predicting the output performed slightly

well than the modified Kumar’s technique for making predictions. However, in

few instances, the modified Kumar’s technique proved to be more accurate that

the conventional techniques.

5.2 Scope for future work

1. Qualitatively, the TSD can indicate the over specification or the under

specification in the antecedent or the presence of a hidden mechanism. However,

there is a need to develop a quantitative measure to establish the presence of over

specification and under specification in the rule base. This quantification should

be based on the number of trips in the Quadrants which would ascertain the

presence of over specification, under specification or the hidden mechanism.

2. The delay quantification has been performed on the basis of the value of the

Pearson’s correlation coefficient. This coefficient provides only the strength of
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the linear relationship between the Ta and Tc. However, the Ta and Tc might

possess a non-linear relationship. In such case, the non-parametric coefficients

(such as Spearman R, Kendall Tau and Gamma coefficents) should be calculated

and compared to find the best delay value. However, the robustness and

sensitivity of these methods is a concern and needs to be taken into consideration.

In addition, a single value of the delay was assigned to each trip in QI and QIV.

However, in a trip, as the flow rates and the persistence varies, the delay would

change. Thus, would be useful to find a value of delay for each data point in a trip

rather then finding a single value a delay for the entire trip.

3. The absolute relative average error in prediction has been calculated by using the

valid rules selected using the metrics. However, no optimization has been

performed to improve the predicted values. This optimization can be done by

tuning the membership values of the variables. This tuning of membership value

should also ensure minimum shifting of trips from one Quadrant to another. In

addition, the minimum operator is a discontinuous function and hard to

differentiate. Thus, it is imperative to analyze its affect on the optimization

process.

4. Kumar’s modified prediction technique is fundamentally sounder than the

conventional prediction techniques since it utilizes the historical information to

predict the future. However, the computational effort required for Kumar’s

modified prediction technique is much higher than that for conventional

techniques. In addition, the results obtained in this study, for the hot-cold water

simulator, have been inconclusive in deciding the best technique based on the
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accuracy of the predictions. Thus, a deeper analysis of Kumar’s modified

prediction technique needs to be done and tested on other systems to judge its

ability to predict as compared to the conventional techniques.

5. As suggested in this work, only one out of all the possible interacting rules should

be allowed to form a part of the valid rule base to reduce the computational effort

required for maintaining the rule set. However, it has also been found that the

prediction capability of the minimum operator reduces sharply as the number of

valid rules decreases. Hence, the computational effort and prediction capability

are two opposing factors involved in the selection of interacting rules. Thus, the

possibility of including more than one interacting rules, when very small number

of valid rules are discovered by the data, needs to considered.

6. If two interacting rules had the same number of trips in QI then one out of these

two rules was selected randomly. However, to improve the prediction capability,

it would be better to have a criterion for this selection. For this purpose, a

quantitative measure for the confidence in a rule should be obtained. The

confidence in a rule should increase as the number of trips in QI increases with

time.
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APPENDIX A CODE LISTING

The following Q- Basic code listing is from the Hot and Cold water mixing simulator for
the case of With Noise.

DECLARE SUB CLEAN ()
DECLARE SUB ATV (a$, time!, mode1!, mode2!, mdot3sp!, mdot3filt!, t3sp!, t3meas!,
o1!, o2!)
DECLARE SUB FILTINI ()
DECLARE SUB FILTER (mdot1meas!, mdot2meas!, mdot3meas!, mdot1filt!,
mdot2filt!, mdot3filt!)
DECLARE SUB DISPLAY (mode1, mode2, o1, o2, mdot1filt, mdot2filt, mdot3filt,
t1meas, t2meas, t3meas, mdot3sp, t3sp, theta)
DECLARE SUB OPERATOR (a$, mode1, mode2, o1, o2, mdot3sp, t3sp)
DECLARE SUB EVAL (mdot3sp, mdot3filt, t3sp, t3meas, o1, o2)
DECLARE SUB CTLINI ()
DECLARE SUB process (o1, o2, s1, s2, mdot1meas, mdot2meas, mdot3meas, t1meas,
t2meas, t3meas)
DECLARE SUB PLOTINI ()
DECLARE SUB CTL (mode1, mode2, mdot3sp, mdot3filt, t3sp, t3meas, o1, o2)
DECLARE SUB PLOT (o1, o2, mdot1filt, mdot2filt, mdot3filt, t1meas, t2meas, t3meas,
mdot3sp, t3sp)
DECLARE SUB PROCINI ()

'
' CONTROL.BAS
' Spring 1998 CHENG-5xxx
' Dr. R. Russell Rhinehart, School of Chem. Engr. Oklahoma State U.
' 25 Dec 97
'
' This program is a basis for CHENG-5xxx students to test their controllers.
'
' The program models control valves, fluid flow, mixing of a hot and cold
' water in a pipe system, and flow and temperature measurement. It also
' contains a control subrouting for primitive PID T and F controllers.
' The students will write the code for various control strategys,
' filters, and goodness of control evaluations; tune their controllers;
' and explore the solutions for a variety of process events that cause
' control difficulty.
'
' The program is structured so that each stage in the controller-process-
' evaluation system are written as subroutines. This MAIN program links and
' orders the execution of each subroutine.
'
' The MAIN program calls subroutine PROCESS to dynamically simulate the
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' fluid mixing process for a time interval, t, of 0.1 seconds. PROCESS
' simulates the final element dynamics, as well as the ChEs view of the
' process behavior (fluid dynamics and mixing). It also adds measurement
' bias and process beavior drifts that have an ARMA stochastic behavior.
' It also adds measurement noise and valve "stick-tion".
'
' MAIN then calls subroutine FILT to filter noise from the measurements.
'
' MAIN then calls subroutine CTL, where, eventually students will write
' the code for the various controllers and control strategies. Presently
' CTL contains two independent PID controllers, one for T control (manipulating
' O1) and one for F control (manipulating O2).
'
' MAIN then calls subroutine EVAL, where, eventually students will write
' the code for the various goodness of control measures. Presently EVAL
' calculates T and F NISE.
'
' MAIN then calls subroutine PLOT to generate a strip chart display
' of the controlled and manipulated variables.
'
' Finally MAIN calls DISPLAY to refresh data on the screen.
'
' On operator demand (by keyboard touches) MAIN will call subroutine
' OPERATOR to execute the operator-initiated (student-initiated) changes.
' See subroutine OPERATOR to see what INKEY touches start which commands.
' One of these commands is to initiate ATV tuning, an automatic tuning for
' PID controllers.
'
' This sequence is then repeated. However, first MAIN initializes the
' devices, sets up common variables, and calls PLOTINI, PROCINI, and
' CTLINI to initialize the PLOT, PROCESS, and CTL subroutine variables.
'

Dim plotvmax(10), plotvmin(10), plotvrng(10), plotvar(10), plotyo(10), tf(2000)
COMMON SHARED plotvmax(), plotvmin(), plotvrng(), plotvar(), plotyo(), tf()
COMMON SHARED numvar, plottime, reference, horizon, plotx, plotxo, ploty, time
COMMON SHARED ap1, bp1, cp11b, cp12b, dp1, tauvp1
COMMON SHARED ap2, bp2, cp21b, cp22b, dp2, tauvp2
COMMON SHARED m1biasb, m2biasb, m3biasb, t1biasb, t2biasb, t3biasb
COMMON SHARED taut1, taut2, taut3, t1inpb, t2inpb, tf1, tf2, tf3
COMMON SHARED t, dt, timedelta
COMMON SHARED dpp1b, hp1, power1
COMMON SHARED dpp2b, hp2, power2
COMMON SHARED enviro
COMMON SHARED lambda1, lambda2, lambda3
COMMON SHARED kc1, taui1, taud1, kc2, taui2, taud2, detune



117

COMMON SHARED which$, tune, dataout
COMMON SHARED iset3, isdo1, isemdot3, isdo2, isenumber
COMMON SHARED o1, o2

Open "C:\data4.csv" For Output As #1
'PRINT #1, "time", "theta", "t3meas", "t1meas", "t2meas", "mdot3meas", "mdot1meas",
"mdot2meas"
Print #1, "time, t1meas, t2meas, mdot1meas, mdot2meas, t3meas"
Screen 12 'set-up screen for graphics, 640 X 350 x-y pixils, 82 X 25 x-y positions
Randomize ((Timer - 12300) / 3) 'randomize the seed for the random number generator
Cls
enviro = 1
tune = -1 'do not start with ATV tuning
dataout = 1 '**now start without data logging

Call FILTINI
Call CTLINI
Call PROCINI
Call PLOTINI

For Interval = 1 To 60000
time = Interval * t
If time = 20 Then
dataout = 1
End If

'Adding noise
If 20 * Int(time / 20) = time Then

o1 = Rnd * 100
o2 = Rnd * 100
t1inpb = Rnd * 100
t2inpb = Rnd * 100

End If

Call process(o1, o2, s1, s2, mdot1meas, mdot2meas, mdot3meas, t1meas, t2meas,
t3meas)

a$ = INKEY$
If a$ <> "" Then

Call OPERATOR(a$, mode1, mode2, o1, o2, mdot3sp, t3sp)
End If
Call FILTER(mdot1meas, mdot2meas, mdot3meas, mdot1filt, mdot2filt,

mdot3filt)
If tune = 1 Then

Call ATV(a$, time, mode1, mode2, mdot3sp, mdot3filt, t3sp, t3meas, o1, o2)
Else

Call CLEAN
End If
Call CTL(mode1, mode2, mdot3sp, mdot3filt, t3sp, t3meas, o1, o2)
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Call PLOT(o1, o2, mdot1filt, mdot2filt, mdot3filt, t1meas, t2meas, t3meas,
mdot3sp, t3sp)

Call EVAL(mdot3sp, mdot3filt, t3sp, t3meas, o1, o2)
Call DISPLAY(mode1, mode2, o1, o2, mdot1filt, mdot2filt, mdot3filt, t1meas,

t2meas, t3meas, mdot3sp, t3sp, theta)
If dataout = 1 Then

If timedelta * Int(time / timedelta) = time Then '****log on every (timedelta)
second

Print #1, time; ","; t1meas; ","; t2meas; ","; mdot1meas; ","; mdot2meas; ",";
t3meas; ","; theta

End If
End If

Next Interval
Close #1

' Variable definitions
' plotvmax(10) maximum values of the plotted variables
' plotvmin(10) minimum values of the plotted variables
' plotvrng(10) calculated maximum minus minimum values, range of plotted variables
' plotvar(10) values of the plotted variables
' plotyo(10) pixel positions for the previous strip chart ordinate
' tf(200) array that holds the values for the fictitious temperature
' numvar number of variables plotted
' plottime time argument for the plotting routine, same as time
' reference time at the beginning of each strip chart sweep
' horizon time window of the strip chart
' plotx pixel position for the strip chart abscissa
' plotxo value of the previous plotx pixel position
' ploty pixel position for the strip chart ordinate
' time simulated time, seconds
' ap1 "a" coefficient value for process #1, kg/s^2/kPa
' bp1 "b" coefficient value for process #1, kg/s^2/m
' cp11b "c11" coefficient base value for process #1, kg/s^2/kg^2/min^2
' cp12b "c12" coefficient base value for process #1, kg/s^2/kg^2/min^2
' dp1 "d" coefficient value for process #1, kg/s^2/kg^2/min^2
' tauvp1 time constant for process valve #1, seconds
' ap2 "a" coefficient value for process #2, kg/s^2/kPa
' bp2 "d" coefficient value for process #2, kg/s^2/m
' cp21b "c21" coefficient base value for process #2, kg/s^2/kg^2/min^2
' cp22b "c22" coefficient base value for process #2, kg/s^2/kg^2/min^2
' dp2 "d" coefficient value for process #2, kg/s^2/kg^2/min^2
' tauvp2 time constant for process valve #2, seconds
' taut1 time constant for first temperature lag, seconds
' taut2 time constant for second temperature lag, seconds
' taut3 time constant for third temperature lag, seconds
' t1inpb process stream #1 inlet temperature base value, centigrade
' t2inpb process stream #2 inlet temperature base value, centigrade
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' tf1 first lagged temperature at the fictitious sensor, centigrade
' tf2 second lagged temperature at the fictitious sensor, centigrade
' tf3 third lagged temperature at the fictitious sensor, centigrade
' t process sampling time and control period, seconds
' dt process integration time step, seconds
' dpp1b driving pressure drop base case for stream #1, kPa
' hp1 elevation head for stream #1, m
' power1 power coefficient for valve #1 characteristic
' dpp2b driving pressure drop base case for stream #2, kPa
' hp2 elevation head for stream #2, m
' power2 power coefficient for valve #2 characteristic
' enviro coefficient to toggle environmental effects on/off, 1 if on, 0 if off
' time simulated time, seconds
' interval controller sampling period and process integration time step, seconds
' o1 output of controller #1, % of full scale
' o2 output of controller #2, % of full scale
' s1 valve #1 stem position, fraction open
' s2 valve #2 stem position, fraction open
' mdot1meas measured value of flow rate of stream #1, kg/min
' mdot2meas measured value of flow rate of stream #2, kg/min
' mdot3meas measured value of combined flow rate, kg/min
' t3meas measured value of mixed temperature, centigrade
' a$ variable to store the value of INKEY$, alpha-numeric string
' INKEY$ BASIC function that inputs a keyboard hit, alpha-numeric string
' mode1 mode of controller #1, 1 if AUTO, 0 if MAN
' mode2 mode of controller #2, 1 if AUTO, 0 if MAN
' mdot3sp set point for total flow rate, kg/min
' t3sp set point for mixed temperature, centigrade
' lambda1 filter factor for the first-order noise filter on mdot1meas
' lambda2 filter factor for the first-order noise filter on mdot2meas
' lambda3 filter factor for the first-order noise filter on mdot3meas
' kc1 controller 1 gain, %output / kg/min
' taui1 controller 1 integral time, seconds
' taud1 controller 1 derivative time, seconds
' kc2 controller 2 gain, %output / centigrade
' taui2 controller 2 integral time, seconds
' taud2 controller 2 derivative time, seconds
' which$ variable that defines which controller is being ATV tested
' tune variable to indicate whether ATV tuning is desired
' dataout variable to indicate whether data is to be recorded in the output file
' iset3 integral of the squared error for t3meas
' isdo1 integral of the squared change in output of controller 1
' isemdot3 integral of the squared error for mdot3filt
' isdo2 integral of the squared change in output of controller 2
' isenumber count to normalize the ise and isdo
' m*bias bias on flow rate * measurement
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' m*biasb base level for the bias on flow rate * measurement
' t*bias bias on temperature * measurement
' t*biasb base level for the bias on temperature * measurement

Static Sub ATV(a$, time, mode1, mode2, mdot3sp, mdot3filt, t3sp, t3meas, o1, o2)
'
' ATV tuning
' NOTE 1 - I think that I used the ZN Ultimate rules for interacting for non-

interacting PID control
' NOTE 2 - need a better way to detect zero crossing in the presence of noise
'
If a$ = "a" Or a$ = "A" Then 'you just got here, initialize the factors

start = 0 'start time for the ATV test
e = 0 'deviation from atvtarg
eold = 0 'old deviation
emax = 0 'maximum CV deviation from atvtarg in a cycle
emin = 0 'minimum CV deviation from atvtarg in a cycle
LOCATE 15, 1
INPUT "Do you wish to implement ATV tuning on the O1-T3 loop (1) or O2-F3

(2)"; which$
LOCATE 15, 1
Print " "
'
' initialize the atvtarg and set the controller to manual
'
If which$ = "1" Then 'O1-T3 loop was chosen

atvtarg = t3meas 'initialize the atvtarg with the first CV value
mode1 = 0 'set the controller to MAN

LOCATE 14, 1
Print USING; "atvtarg = ###.# C"; atvtarg
Else 'O2-F3 loop was chosen

atvtarg = mdot3filt
mode2 = 0

LOCATE 14, 1
Print USING; "atvtarg = ###.# kg/min"; atvtarg
End If

End If
'
' ATV test controller #1
'
If which$ = "1" Then

If start = 0 Then 'if this is the first time initialize
start = time 'start time for test
Switch = time 'time when output was switched
relay = 20 'output step size (high - low)
o1 = o1 + relay / 2 'make the first output step, up, by 1/2 of the relay
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LOCATE 15, 1
Print "ATV initiated on O1-T3 loop, T3 controller is overridden"

End If
If time - start > 15 Then 'hold the first bump for 15 seconds

e = atvtarg - t3meas 'then calculate the deviation
If e > emax Then emax = e 'set emax
If e < emin Then emin = e 'set emin
LOCATE 14, 1
Print USING; "atvtarg = ###.# C emax = ###.### C emin = ###.### C ";

atvtarg; emax; emin
If e * eold <= 0 Then 'if the error changed sign, the atvtarg was crossed

If e < 0 Then 'if the error is negative
o1 = o1 - relay 'then step the output down by 1/1 relay

End If
If e > 0 Then 'if the error is positive, then a cycle had finished

o1 = o1 + relay 'then step the output up by 1/1 relay
pu = time - Switch 'calculate the ultimate period
ku = 4 * relay / (emax - emin) / 3.14159 'and the ultimate gain
LOCATE 15, 1
Print USING; "ATV O1-T3 in cycling mode. Ult. P. = ###.## sec Ult. Kc =

###.## %/C"; time - Switch; 4 * relay / (emax - emin) / 3.14159
LOCATE 16, 1
Print USING; "(Kc=###.#) (Kc=###.# taui=###.#) (Kc=###.# taui=###.#

taud=###.#)"; 0.5 * ku; 0.45 * ku; 0.83 * pu; 0.59 * ku; 0.5 * pu; 0.125 * pu
o1 = o1 + 0.25 * relay * (emax + emin) / (emax - emin) 'shift o1 for symmetry
emax = 0 'reset emax for the next cycle
emin = 0 'reset emin for the next cycle
Switch = time 'reset switch for the next cycle

End If
End If
eold = e

End If
Else 'which = 2, ATV the flow loop

If start = 0 Then
start = time
Switch = time
relay = 30
o2 = o2 + relay / 2
LOCATE 15, 1
Print "ATV initiated on O2-F3 loop, F3 controller is overridden"

End If
If time - start > 5 Then

e = atvtarg - mdot3filt
If e > emax Then emax = e
If e < emin Then emin = e
LOCATE 14, 1
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Print USING; "atvtarg = ###.# kg/min emax = ###.### kg/min emin = ###.###
kg/min"; atvtarg; emax; emin

If e * eold <= 0 Then
If e < 0 Then

o2 = o2 - relay
End If
If e > 0 Then

o2 = o2 + relay
pu = time - Switch
ku = 4 * relay / (emax - emin) / 3.14159
LOCATE 15, 1
Print USING; "ATV O2-F3 in cycling mode. Ult. P. = ###.## sec Ult. Kc =

###.## %/kg/min"; pu; ku
LOCATE 16, 1
Print USING; "(Kc=###.#) (Kc=###.# taui=###.#) (Kc=###.# taui=###.#

taud=###.#)"; 0.5 * ku; 0.45 * ku; 0.83 * pu; 0.59 * ku; 0.5 * pu; 0.125 * pu
o2 = o2 + 0.25 * relay * (emax + emin) / (emax - emin) 'shift o2 for symmetry
emax = 0
emin = 0
Switch = time

End If
End If
eold = e

End If
End If

End Sub

Sub CLEAN()
'
' clean the ATV messages from the screen
'
LOCATE 14, 1
Print " "
LOCATE 15, 1
Print " "
LOCATE 16, 1
Print " "

End Sub

Static Sub CTL(mode1, mode2, mdot3sp, mdot3filt, t3sp, t3meas, o1, o2)
'
' Presently there are two independent, standard PID controllers here.
' One controls T3 by manipulating O1, the output to valve 1, the hot water
' valve. The other controls F3 by manipulating O2, the output to valve 2,
' the cold water valve. Because the process is interactive (O1 affects both
' T3 and F3), the controllers use the "BLT" method of detuning them jointly,
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' after they were independently tuned by "ATV" for "QAD" process behavior.
'
'
' Temperature controller

If mode1 = 1 Then 'temperature controller in AUTO
e1 = t3sp - t3meas 'reverse acting
bias1 = bias1 + t * kc1 * e1 / taui1 / detune ^ 2 'adjustable bias, rectangle rule
eant1 = e1 - taud1 * (t3meas - t3old) / t 'anticipated error, D-on-X 

 t3old = t3meas
o1 = kc1 * eant1 / detune + bias1 'proportional plus bias
If o1 > 110 Then 'anti-windup provision

o1 = 110
bias1 = o1 - kc1 * eant1 / detune

End If
If o1 < -10 Then 'anti-windup provision

o1 = -10
bias1 = o1 - kc1 * eant1 / detune

End If
Else 'temperature controller in MAN

t3sp = t3meas 'setpoint tracking, bumpless transfer
t3old = t3meas 'no D spike, bumpless transfer
bias1 = o1 'bias tracking, bumpless transfer

End If
'
' Flow controller
'

If mode2 = 1 Then 'flow controller in AUTO
e2 = mdot3sp - mdot3filt 'reverse acting
bias2 = bias2 + t * kc2 * e2 / taui2 / detune ^ 2 'adjustable bias, rectangle rule
eant2 = e2 - taud2 * (mdot3filt - mdot3old) / t 'anticipated error, D-on-X 

 mdot3old = mdotfilt
o2 = kc2 * eant2 / detune + bias2 'proportional plus bias
If o2 > 110 Then 'anti-windup provision

o2 = 110
bias2 = o2 - kc2 * eant2 / detune

End If
If o2 < -10 Then 'anti-windup provision

o2 = -10
bias2 = o2 - kc2 * eant2 / detune

End If
Else 'flow controller in MAN

mdot3sp = mdot3filt 'setpoint tracking, bumpless transfer
mdot3old = mdot3filt
bias2 = o2 'bias tracking, bumpless transfer

End If
End Sub
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Static Sub CTLINI()
'
' Initial controller settings go here static makes them constant
'
t = 0.1
timedelta = 1 'log every timedelta seconds
mode1 = 0 'controller 1 is in manual
mode2 = 0 'controller 2 is in manual
kc1 = 2 '% / centigrade
taui1 = 12 'seconds
taud1 = 3 'seconds
kc2 = 8 '% / kg/min
taui2 = 2.5 'seconds
taud2 = 0 'seconds
detune = 1 'dimensionless

End Sub

Sub DISPLAY(mdot1, mdot2, o1, o2, mdot1filt, mdot2filt, mdot3filt, t1meas, t2meas,
t3meas, mdot3sp, t3sp, theta)

'
' subroutine to display variables and status on the screen
'
LOCATE 17, 1
Print USING; " theta = ###.##### time = ####"; theta; time
Print USING; " o1 = ###.# o2 = ###.#"; o1; o2
Print USING; "F1filt = ###.# F2filt = ###.#"; mdot1filt; mdot2filt
Print USING; "T1meas = ###.### T2meas = ###.#"; t1meas; t2meas
Print USING; "T3meas = ###.# F3filt = ###.#"; t3meas; mdot3filt
Print USING; "T3sp = ###.# F3sp = ###.#"; t3sp; mdot3sp
Print USING; "kc1=##.# taui1=##.# taud1=##.# kc2=##.# taui2=##.# taud2=##.#

detune=#.#"; kc1; taui1; taud1; kc2; taui2; taud2; detune
End Sub

Static Sub EVAL(mdot3sp, mdot3filt, t3sp, t3meas, o1, o2)
'
' measures of control goodness are calculated here
'
isenumber = isenumber + 1
iset3 = iset3 + t * (t3sp - t3meas) ^ 2
isdo1 = isdo1 + t * (o1 - o1old) ^ 2
o1old = o1
niset3 = iset3 / (isenumber * t)
nisdo1 = isdo1 / (isenumber * t)
isemdot3 = isemdot3 + t * (mdot3sp - mdot3filt) ^ 2
isdo2 = isdo2 + t * (o2 - o2old) ^ 2
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o2old = o2
nisemdot3 = isemdot3 / (isenumber * t)
nisdo2 = isdo2 / (isenumber * t)
'
' LOCATE Y,X locates the beginning of the subsequent print statement
' at Y text rows down from the top of the screen and X text columns to
' the right from the left of the screen. The screen is 22 rows by 75
' columns.
' PRINT USING " "; is a formatted print statement. # marks locations
' for numerical values.
'
LOCATE 21, 35
Print USING; " rmset = #.####^^^^ rmsef = #.####^^^^"; Sqr(niset3);

Sqr(nisemdot3)
LOCATE 22, 35
Print USING; "rmsdo1 = #.####^^^^ rmsdo2 = #.####^^^^"; Sqr(nisdo1);

Sqr(nisdo2)
End Sub

Static Sub FILTER(mdot1meas, mdot2meas, mdot3meas, mdot1filt, mdot2filt, mdot3filt)
'
' subroutine to first-order filter the noisy process measurements
' lambda = 1-exp(T/taufilt)
'
mdot1filt = lambda1 * mdot1meas + (1 - lambda1) * mdot1filt
mdot2filt = lambda2 * mdot2meas + (1 - lambda2) * mdot2filt
mdot3filt = lambda3 * mdot3meas + (1 - lambda3) * mdot3filt

End Sub

Static Sub FILTINI()
'
' subroutine to initialize the filter coefficients
'
lambda1 = 0.2
lambda2 = 0.2
lambda3 = 0.2

End Sub

Sub OPERATOR(a$, mode1, mode2, o1, o2, mdot3sp, t3sp)
'
' operator initiated action is made here
'
iset3 = 0 'Reset the goodness of control measures
isdo1 = 0 ' "
isemdot3 = 0 ' "
isdo2 = 0 ' "
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isenumber = 0 ' "
If a$ = "q" Or a$ = "Q" Then

Close #1
Stop 'key in "q" to stop the program

End If
If a$ = "a" Or a$ = "A" Then tune = -tune
If a$ = "-" Then t1inpb = t1inpb - 5 '***add or subtract input temperature
If a$ = "+" Then t1inpb = t1inpb + 5
If a$ = "9" Or a$ = "L" Then dataout = -dataout
If a$ = "n" Or a$ = "N" Then 'key in "n" to toggle enviro and disturbances

If enviro = 1 Then
enviro = 0

Else
enviro = 1

End If
End If
If a$ = "1" Then 'key in "1" to toggle controller 1 MAN-AUTO

If mode1 = 1 Then
mode1 = 0

Else
mode1 = 1

End If
End If
If a$ = "2" Then 'key in "2" to toggle controller 2 MAN-AUTO

If mode2 = 1 Then
mode2 = 0

Else
mode2 = 1

End If
End If
'
' change output if in manual
'
If a$ = "3" And mode1 = 0 Then o1 = o1 - 5 'key in "3" lower o1 in MAN
If a$ = "#" And mode1 = 0 Then o1 = o1 + 5 'key in "#" raise o1 in MAN
If a$ = "4" And mode2 = 0 Then o2 = o2 - 5 'key in "4" lower o2 in MAN
If a$ = "$" And mode2 = 0 Then o2 = o2 + 5 'key in "$" raise o2 in MAN
'
' limit output to between -10 and 110 %
'
If o1 > 110 Then o1 = 110
If o1 < -10 Then o1 = -10
If o2 > 110 Then o2 = 110
If o2 < -10 Then o2 = -10
'
' change setpoint if in automatic - method 1:
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'
If a$ = "5" And mode1 = 1 Then t3sp = t3sp - 2 'key in "5" lower tsp in AUTO
If a$ = "%" And mode1 = 1 Then t3sp = t3sp + 2 'key in "%" raise tsp in AUTO
If a$ = "6" And mode2 = 1 Then mdot3sp = mdot3sp - 2 'key in "6" lower mdotsp in

AUTO
If a$ = "^" And mode2 = 1 Then mdot3sp = mdot3sp + 2 'key in "^" raise mdotsp in

AUTO
'
' change setpoint if in automatic - method 2:
'
If a$ = "s" Or a$ = "S" Then

LOCATE 16, 35
Print "Enter one of these setpoints:"
LOCATE 17, 35
Print "t3, f3"
LOCATE 18, 35
INPUT "Which value do you wish to change"; b$
If b$ = "t3" And mode1 = 1 Then

LOCATE 19, 35
INPUT "Enter t3sp value, C"; t3sp

End If
If b$ = "f3" And mode2 = 1 Then

LOCATE 19, 35
INPUT "Enter mdot3sp value, kg/min"; mdot3sp

End If
'
' erase on-screen trash
'

LOCATE 16, 35
Print " "
LOCATE 17, 35
Print " "
LOCATE 18, 35
Print " "
LOCATE 19, 35
Print " "

End If
'
' if tuning is desired
'
If a$ = "t" Or a$ = "T" Then

LOCATE 16, 35
Print "Enter one of these parameters:"
LOCATE 17, 35
Print "kc1, taui1, taud1, kc2, taui2, taud2, detune"
LOCATE 18, 35
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INPUT "Which value do you wish to change"; b$
If b$ = "kc1" Then

LOCATE 19, 35
INPUT "Enter kc1 value, %/C"; kc1

End If
If b$ = "taui1" Then

LOCATE 19, 35
INPUT "Enter taui1 value, s"; taui1

End If
If b$ = "taud1" Then

LOCATE 19, 35
INPUT "Enter taud1 value, s"; taud1

End If
If b$ = "kc2" Then

LOCATE 19, 35
INPUT "Enter kc2 value, %/kg/min"; kc2

End If
If b$ = "taui2" Then

LOCATE 19, 35
INPUT "Enter taui2 value, s"; taui2

End If
If b$ = "taud2" Then

LOCATE 19, 35
INPUT "Enter taud2 value, s"; taud2

End If
If b$ = "detune" Then

LOCATE 19, 35
INPUT "Enter detune value"; detune

End If
'
' erase on-screen trash
'

LOCATE 16, 35
Print " "
LOCATE 17, 35
Print " "
LOCATE 18, 35
Print " "
LOCATE 19, 35
Print " "

End If
End Sub

Static Sub PLOT(o1, o2, mdot1filt, mdot2filt, mdot3filt, t1meas, t2meas, t3meas,
mdot3sp, t3sp)
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'
' This routine plots the scaled variables on a strip chart display
'
' PLOT.BAS
' R. Russell Rhinehart Company
' 10 October 1994
'
' After calculating the variable values assign them to the plot variables
'
plottime = time 'simulated time, seconds
plotvar(1) = o1 'output of controller 1, %
plotvar(2) = o2 'output of controller 2, %
plotvar(3) = mdot1filt 'filtered flow rate 1, kg/min
plotvar(4) = mdot2filt 'filtered flow rate 2, kg/min
plotvar(5) = mdot3filt 'filtered total flow rate, kg/min
plotvar(6) = t1meas 'measured temperature, centigrade
plotvar(7) = t2meas 'measured temperature, centigrade
plotvar(8) = t3meas 'measured temperature, centigrade
plotvar(9) = mdot3sp 'flow 3 setpoint, kg/min
plotvar(10) = t3sp 'temperature 3 setpoint, centigrade
'
' Plot routine
'
If plottime - reference >= horizon Then ' locate the x position

reference = reference + horizon
plotxo = 50
Line (plotxo, 20)-(plotxo, 160), 15
Line (plotx, 20)-(plotx, 160), 15
Line (plotx, 161)-(plotx, 168), 14

End If
plotx = 50 + Int(0.5 + 580 * (plottime - reference) / horizon)
If 50 + 58 * Int((plotx - 50) / 58) = plotx Then Line (plotx, 20)-(plotx, 160), 15
Line (plotx + 1, 20)-(plotx + 1, 160), 14
Line (plotx, 161)-(plotx, 168), 0
Line (plotx - 1, 161)-(plotx - 1, 168), 14
For plotyy = 20 To 160 Step 14
Line (plotx, plotyy)-(plotx + 1, plotyy), 15
Next plotyy
For ploti = 1 To numvar
ploty = 160 - 140 * (plotvar(ploti) - plotvmin(ploti)) / plotvrng(ploti)
If ploty < 20 Then ploty = 20
If ploty > 160 Then ploty = 160
Line (plotxo, plotyo(ploti))-(plotx, ploty), ploti
plotyo(ploti) = ploty
Next ploti
plotxo = plotx
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End Sub

Static Sub PLOTINI()
' This routine initializes the strip chart display plot subroutine
'
' PLOT.BAS
' R. Russell Rhinehart Company
' 10 October 1994
'
' initialize the plotting variables
'
plotxo = 50 ' time = 0 position on the screen
numvar = 10 ' number of variables to plot, maximum = 10
horizon = 60 ' strip chart horizon, seconds
plotvmax(1) = 100 ' maximum value for controller #1 output, %
plotvmin(1) = 0 ' minimum value for controller #1 output, %
plotvmax(2) = 100 ' maximum value for controller #2 output, %
plotvmin(2) = 0 ' minimum value for controller #2 output, %
plotvmax(3) = 30 ' maximum value for flow rate #1, kg/min
plotvmin(3) = 0 ' minimum value for flow rate #1, kg/min
plotvmax(4) = 30 ' maximum value for flow rate #2, kg/min
plotvmin(4) = 0 ' minimum value for flow rate #2, kg/min
plotvmax(5) = 60 ' maximum value for total flow rate, kg/min
plotvmin(5) = 0 ' minimum value for total flow rate, kg/min
plotvmax(6) = 100 ' maximum value for mixed temperature, C
plotvmin(6) = 0 ' minimum value for mixed temperature, C
plotvmax(7) = 100 ' maximum value for temperature 1, C
plotvmin(7) = 0 ' minimum value for temperature 1, C
plotvmax(8) = 100 ' maximum value for temperature 2, C
plotvmin(8) = 0 ' minimum value for temperature 2, C
plotvmax(9) = 60 ' maximum value for flow3 setpoint, kg/min
plotvmin(9) = 0 ' minimum value for flow3 setpoint, kg/min
plotvmax(10) = 100 ' maximum value for temperature 3 setpoint, C
plotvmin(10) = 0 ' minimum value for temperature 3 setpoint, C

' repeat for all plotted variables
reference = 0 ' time of the beginning of each strip chart
'
' Initialize the graph
' (setup lables, background, grid lines, and initial points)
'

LOCATE 1, 1
Print USING; "PV's (fraction of full scale) VERSUS TIME (fraction of window =

####.# seconds)"; horizon
For plotj = 0 To 1 Step 0.5 ' lable the y axis
ploty = 2 + 10 * plotj
LOCATE ploty, 1
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Print USING; "#.##"; 1 - plotj
Next plotj
For ploti = 0 To 1.01 Step 0.1 ' lable the x axis
plotx = 6 + 71 * ploti
LOCATE 13, plotx
Print USING; "#.##"; ploti;
Next ploti
Line (40, 13)-(640, 168), 14, BF ' fill in the background
For plotyy = 20 To 160 Step 14 ' draw the horizontal grid
Line (50, plotyy)-(630, plotyy), 15
Next plotyy
For plotxx = 50 To 630 Step 58 ' draw the vertical grid
Line (plotxx, 20)-(plotxx, 160), 15
Next plotxx
For ploti = 1 To numvar ' calculate the plot variable

' ranges and initial locations
plotvrng(ploti) = plotvmax(ploti) - plotvmin(ploti)
ploty = 160 - 140 * (plotvar(ploti) - plotvmin(ploti)) / plotvrng(ploti)
If ploty < 20 Then ploty = 20
If ploty > 160 Then ploty = 160
plotyo(ploti) = ploty

Next ploti
End Sub

Static Sub process(o1, o2, s1, s2, mdot1meas, mdot2meas, mdot3meas, t1meas,
t2meas, t3meas)

'
' Subroutine to model the flow rates and temperatures. There are several
' sections to this routine. First, if enviro is active, stochastic models
' are used to change the flow rate driving pressures, flow pressure loss
' coefficients, and inlet stream temperatures. Also, if enviro is active,
' control valve action is subject to "sticktion." Next, the ODEs that
' dynamically model the valve stem positions, and the coupled ODEs that
' dynamically model the flow rates and mixture temperature are solved
' using the second order Runge-Kutta method. Since the ODE-modeled
' temperature is the mixing point temperature, the temperature values are
' placed in an array so that the transport-delayed value can be used for
' the fluid temperature at the sensor. Since the transport delay is
' variable, the how-far-back-in-the-array index, nt, is calculated from
' the transport delay, theta. The "clock" concept is used for efficient
' array management. The temperature sensor is modeled as a third order ODE.
' Finally, noise is added to the flow rate measurement to simulate orifice
' turbulence noise.
'
'
' if enviro is active then add drift and spikes to the pressure drops



132

'
ddpp1 = 0.999 * ddpp1 + 0.015 * dpp1b * (Rnd - 0.5) * enviro 'drift
If Rnd < 0.01 Then spike1 = 50 * (Rnd - 0.5) * enviro 'spike
spike1 = 0.9 * spike1 'fade the spike
dpp1 = dpp1b '+ ddpp1 + spike1 <<<<<<*****making sure no spikes
ddpp2 = 0.999 * ddpp2 + 0.015 * dpp2b * (Rnd - 0.5) * enviro 'drift
If Rnd < 0.01 Then spike2 = 50 * (Rnd - 0.5) * enviro 'spike
spike2 = 0.9 * spike2 'fade the spike
dpp2 = dpp2b '+ ddpp2 + spike2 <<<<<<<<******ditto
'
' if enviro is active then add drift to the flow pressure loss factors
'****here i made sure again that no drift is there
dcp11 = 0.999 * dcp11 + 0.015 * cp11b * (Rnd - 0.5) * enviro 'drift
cp11 = cp11b '+ dcp11
dcp12 = 0.999 * dcp12 + 0.015 * cp12b * (Rnd - 0.5) * enviro 'drift
cp12 = cp12b '+ dcp12
dcp21 = 0.999 * dcp21 + 0.015 * cp21b * (Rnd - 0.5) * enviro 'drift
cp21 = cp21b '+ dcp21
dcp22 = 0.999 * dcp22 + 0.015 * cp22b * (Rnd - 0.5) * enviro 'drift
cp22 = cp22b '+ dcp22
'
' if enviro is active then add drift to the inlet temperatures
' ***ditto
dt1in = 0.999 * dt1in + 0.015 * t1inpb * (Rnd - 0.5) * enviro 'drift
t1inp = t1inpb '+ dt1in
dt2in = 0.999 * dt2in + 0.015 * t2inpb * (Rnd - 0.5) * enviro 'drift
t2inp = t2inpb '+ dt2in
'
' If enviro is active then add "sticktion" hysteresis to the valves.
' Deadband is the amount of change in valve position the controller must
' call for before the valve stem will move. Here, deadband is either 0 %
' or 2.5 %. Dels1 and dels2 are the valve stem position changes that the
' controller wants. Note: If sticktion is present, and the valve position
' is 2 % open, and the controller wants it closed (o = 0 %), then the valve
' will stay at 2 % open! This is real. To fix it, controllers are designed
' so that their output goes from -10 % to 110 %, or so. Ideally the 0-100 %
' controller output is converted to a 4-20 mA d.c. current "signal" then to
' a 3-15 psig pneumatic "signal" which operates the valve. Ideally the stem
' position goes from 0 to 1 as the pressure goes from 3 to 15 psig. Allowing
' the controller output to range from -10 to 110 %, ideally causes the
' pneumatic signal to range from 1.8 to 16.2 psig which, hopefully, will
' overcome both sticktion and calibration errors in the D/A and i/p devices,
' and, thereby, allow the valve to fully close and to fully open.
'
deadband = 0.025 * enviro * 0 'deadband<<****making sure it is 0
current1 = 4 + o1 * 16 / 100 'i1 from A/D conversion of o1
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current2 = 4 + o2 * 16 / 100 'i2 from A/D conversion of o2
p1targ = 3 + (current1 - 4) * 12 / 16 'p1 target from i/p conversion of i1
p2targ = 3 + (current2 - 4) * 12 / 16 'p2 target from i/p conversion of i2
'
' In the following segment of code, the ODEs are solved using a
' second-order Rung-Kutta method with an integration time step that
' is one tenth of the control interval (dt = t/10).
'
' Calculate the R-K k1s for p1, p2, mdot1, mdot2, tf1, tf2, and tf3.
' The IF statements either allow for sticktion or prevent numerical
' overflow. If the valves are nearly closed, then f1 or f2 are extremely
' small, and their contributions to the Ks are large negative. The -20
' is a relatively large negative value.
'
For i = 1 To 10
'
' Calculate the transport delay from the mixing point to the temperature
' sensor 1.06 meters down stream. Then, nt, the nearest integer number of
' sample intervals backward in the clock array. Then, ifind, the array
' location of that transport-delayed temperature. Note, this deadtime
' delayed temperature is the influence for the third-order lagged sensor
' temperature.
'

SHARED theta
If (mdot1 + mdot2) > 0.1 Then 'if mdot total is greater than the minimum

theta = 80 / (mdot1 + mdot2) '****calculate transport delay doubled the value
of Lt from 20 to 80

Else
theta = 800 'limit delay to maximum allowed by tf(200)

End If
'OPEN "c:theta.dat" FOR OUTPUT AS #2
'PRINT #2, theta
'CLOSE #2
nt = Int(theta / t + 0.5) 'Number of Time intervals in delay
If nt > ntold + 1 Then nt = ntold + 1 'can't sample fluid past the sensor
If nt > 1999 Then nt = 1999 'can't sample around the tf(200) "clock"
ntold = nt
ifind = iput - nt 'calculate the find location
If ifind < 0 Then ifind = ifind + 2001 'increment it if it passes 12 O'clock
'
' calculate the R-K k1s
'
k1p1 = (p1targ - p1) / tauvp1 'rate of change of p1, now, due to p1targ
k1p2 = (p2targ - p2) / tauvp2 'rate of change of p2, now, due to p2targ
f1 = s1 ^ power1 'inherrent valve characteristic from stem
If f1 > 0.0001 Then
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k1mdot1 = ap1 * dpp1 + bp1 * hp1 - cp11 * mdot1 ^ 2 - cp12 * (mdot1 + mdot2) ^
2 - dp1 * mdot1 ^ 2 / f1 ^ 2

Else
k1mdot1 = -20

End If
If k1mdot1 < -20 Then k1mdot1 = -20
f2 = s2 ^ power2 'inherent valve characteristic from stem
If f2 > 0.0001 Then

k1mdot2 = ap2 * dpp2 + bp2 * hp2 - cp21 * mdot2 ^ 2 - cp22 * (mdot1 + mdot2) ^
2 - dp2 * mdot2 ^ 2 / f2 ^ 2

Else
k1mdot2 = -20

End If
If k1mdot2 < -20 Then k1mdot2 = -20
k1tf1 = (tf(ifind) - tf1) / taut1
k1tf2 = (tf1 - tf2) / taut2
k1tf3 = (tf2 - tf3) / taut3
k1tt1 = (t1inp - tt1) / 10
k1tt2 = (t2inp - tt2) / 10

'
' Use the k1s to estimate where the state variables might go.
' The h addended to the state variable indicates Hypothesized.
' The limits are for physical reality.
'

p1h = p1 + dt * k1p1
p2h = p2 + dt * k1p2
dels1h = (p1h - 3) / 12 - s1 'change in s1 that the p1h would make w/o sticktion
dels2h = (p2h - 3) / 12 - s2 'change in s2 that the p2h would make w/o sticktion
If Abs(dels1h) > deadband Then s1h = s1 + dels1h 's1 only changes if p1

overcomes sticktion
If Abs(dels2h) > deadband Then s2h = s2 + dels2h 's2 only changes if p2

overcomes sticktion
mdot1h = mdot1 + dt * k1mdot1
mdot2h = mdot2 + dt * k1mdot2
tf1h = tf1 + dt * k1tf1
tf2h = tf2 + dt * k1tf2
tf3h = tf3 + dt * k1tf3
tt1h = tt1 + dt * k1tt1
tt2h = tt2 + dt * k1tt2
If s1h < 0 Then s1h = 0
If s1h > 1 Then s1h = 1
If s2h < 0 Then s2h = 0
If s2h > 1 Then s2h = 1
If mdot1h < 0 Then mdot1h = 0
If mdot2h < 0 Then mdot2h = 0

'
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' Calculate the R-K k2s for s1, s2, mdot1, mdot2, tf1, tf2, and tf3.
' The IF statements either allow for sticktion or prevent numerical overflow.
'

k2p1 = (p1targ - p1h) / tauvp1
k2p2 = (p2targ - p2h) / tauvp2
f1h = s1h ^ power1
If f1h > 0.0001 Then
k2mdot1 = ap1 * dpp1 + bp1 * hp1 - cp11 * mdot1h ^ 2 - cp12 * (mdot1h +

mdot2h) ^ 2 - dp1 * mdot1h ^ 2 / f1h ^ 2
Else

k2mdot1 = -20
End If
If k2mdot1 < -20 Then k2mdot1 = -20
f2h = s2h ^ power2
If f2h > 0.0001 Then

k2mdot2 = ap2 * dpp2 + bp2 * hp2 - cp21 * mdot2h ^ 2 - cp22 * (mdot1h +
mdot2h) ^ 2 - dp2 * mdot2h ^ 2 / f2h ^ 2

Else
k2mdot2 = -20

End If
If k2mdot2 < -20 Then k2mdot2 = -20
k2tf1 = (tf(ifind) - tf1h) / taut1
k2tf2 = (tf1h - tf2h) / taut2
k2tf3 = (tf2h - tf3h) / taut3
k2tt1 = (t1inp - tt1h) / 10
k2tt2 = (t2inp - tt2h) / 10

'
' Use the k1s and k2s to estimate where the state variables will go.
' The limits are for physical reality.
'

p1 = p1 + dt * (k1p1 + k2p1) / 2
p2 = p2 + dt * (k1p2 + k2p2) / 2
dels1 = (p1 - 3) / 12 - s1
dels2 = (p2 - 3) / 12 - s2
If Abs(dels1) > deadband Then s1 = s1 + dels1
If Abs(dels2) > deadband Then s2 = s2 + dels2
mdot1 = mdot1 + dt * (k1mdot1 + k2mdot1) / 2
mdot2 = mdot2 + dt * (k1mdot2 + k2mdot2) / 2
tf1 = tf1 + dt * (k1tf1 + k2tf1) / 2
tf2 = tf2 + dt * (k1tf2 + k2tf2) / 2
tf3 = tf3 + dt * (k1tf3 + k2tf3) / 2
tt1 = tt1 + dt * (k1tt1 + k2tt1) / 2
tt2 = tt2 + dt * (k1tt2 + k2tt2) / 2
If s1 < 0 Then s1 = 0
If s1 > 1 Then s1 = 1
If s2 < 0 Then s2 = 0
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If s2 > 1 Then s2 = 1
If mdot1 < 0 Then mdot1 = 0
If mdot2 < 0 Then mdot2 = 0

Next i
'
' Place tf3 into the array for delayed retrieval. "iput," the put index,
' has to be updated for the next sampling interval.
'
If (mdot1 + mdot2) > 0.01 Then

tf(iput) = (mdot1 * t1inp + mdot2 * t2inp) / (mdot1 + mdot2)
End If
iput = iput + 1
If iput = 2001 Then iput = 0 're start iput values at 12 O'clock
'
' If enviro is active, then add noise and bias to the flow measurements
' and bias to the temperature measurement.
' here noise is removed completely with bias also neautralised
m1bias = 0.95 * m1bias + 0.05 * m1biasb * enviro
m2bias = 0.95 * m2bias + 0.05 * m2biasb * enviro
m3bias = 0.95 * m3bias + 0.05 * m3biasb * enviro
t1bias = 0.95 * t1bias + 0.05 * t1biasb * enviro
t2bias = 0.95 * t2bias + 0.05 * t2biasb * enviro
t3bias = 0.95 * t3bias + 0.05 * t3biasb * enviro
mdot1meas = mdot1 * (1 + m1bias + (Sqr(-0.002 * Log(Rnd)) * Sin(2 * 3.14159 *

Rnd)) * enviro)
mdot2meas = mdot2 * (1 + m2bias + (Sqr(-0.002 * Log(Rnd)) * Sin(2 * 3.14159 *

Rnd)) * enviro)
mdot3meas = (mdot1 + mdot2) '* (1 + m3bias + 0 * (SQR(-.002 * LOG(RND)) *

SIN(2 * 3.14159 * RND)) * enviro)
t1meas = tt1 '+ t1bias
t2meas = tt2 '+ t2bias
t3meas = tf3 '+ t3bias

End Sub

Sub PROCINI()
'
' Routine to initialize the process parameter values
'
enviro = 1 'environmental effects are on
dt = t / 10 'integration and control periods, sec
ap1 = 0.3016 'A for Process #1
bp1 = 2.9576 'B for Process #1
cp11b = 0.003979 'C #1 for Process #1, Base value
cp12b = 0.01082 'C #2 for Process #1, Base value
dp1 = 0.002327 'D for Process #1
dpp1b = 30 'Differential Pressure for Process #1
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hp1 = 2 'Height of hydrostatic head Process #1
tauvp1 = 1 'Valve TAU for Process #1
ddpp1 = 0 'Deviation of Differential Pressure for Process #1
dcp11 = 0 'Deviation of C #1 for Process #1
dcp12 = 0 'Deviation of C #2 for Process #1
power1 = 2 'value of power for valve #1 characteristic
t1inpb = 100 'INlet Temperature Base value for Process #1
ap2 = 0.3427
bp2 = 3.3609
cp21b = 0.008139
cp22b = 0.0123
dp2 = 0.01058
dpp2b = 60
hp2 = -1 

 tauvp2 = 1.5
ddpp2 = 0
dcp21 = 0
dcp22 = 0
power2 = 2
t2inpb = 20
taut1 = 0.6 'Temperature sensor TAU for 1st lag***values changed
taut2 = 0.4 'Temperature sensor TAU for 2nd lag
taut3 = 0.3 'Temperature sensor TAU for 3rd lag
tf1 = t2inpb 'Fictitious Temperature #1
tf2 = t2inpb 'Fictitious Temperature #2
tf3 = t2inpb 'Fictitious Temperature #3
For i = 0 To 2000

tf(i) = t2inpb 'array that holds the Fictitious Temperatures for delay
Next i
m1biasb = 0.1 - 0.2 * Rnd
m2biasb = 0.1 - 0.2 * Rnd
m3biasb = 0.1 - 0.2 * Rnd
t1biasb = 2 - 4 * Rnd
t2biasb = 2 - 4 * Rnd
t3biasb = 2 - 4 * Rnd
'mdot1 = 5 '<***here start the mdot's
'mdot2 = 5
o1 = 100
o2 = 100

End Sub
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The following Q- Basic code listing is from the Hot and Cold water mixing simulator for
the case of Without Noise.

DECLARE SUB CLEAN ()
DECLARE SUB ATV (a$, time!, mode1!, mode2!, mdot3sp!, mdot3filt!, t3sp!, t3meas!,
o1!, o2!)
DECLARE SUB FILTINI ()
DECLARE SUB FILTER (mdot1meas!, mdot2meas!, mdot3meas!, mdot1filt!,
mdot2filt!, mdot3filt!)
DECLARE SUB DISPLAY (mode1, mode2, o1, o2, mdot1filt, mdot2filt, mdot3filt,
t1meas, t2meas, t3meas, mdot3sp, t3sp, theta)
DECLARE SUB OPERATOR (a$, mode1, mode2, o1, o2, mdot3sp, t3sp)
DECLARE SUB EVAL (mdot3sp, mdot3filt, t3sp, t3meas, o1, o2)
DECLARE SUB CTLINI ()
DECLARE SUB PROCESS (o1, o2, s1, s2, mdot1meas, mdot2meas, mdot3meas,
t1meas, t2meas, t3meas)
DECLARE SUB PLOTINI ()
DECLARE SUB CTL (mode1, mode2, mdot3sp, mdot3filt, t3sp, t3meas, o1, o2)
DECLARE SUB PLOT (o1, o2, mdot1filt, mdot2filt, mdot3filt, t1meas, t2meas, t3meas,
mdot3sp, t3sp)
DECLARE SUB PROCINI ()

'
' CONTROL.BAS
' Spring 1998 CHENG-5xxx
' Dr.R.Russell Rhinehart, School of Chem. Engr. Oklahoma State U.
' 25 Dec 97
'
' This program is a basis for CHENG-5xxx students to test their controllers.
'
' The program models control valves, fluid flow, mixing of a hot and cold
' water in a pipe system, and flow and temperature measurement. It also
' contains a control subrouting for primitive PID T and F controllers.
' The students will write the code for various control strategys,
' filters, and goodness of control evaluations; tune their controllers;
' and explore the solutions for a variety of process events that cause
' control difficulty.
'
' The program is structured so that each stage in the controller-process-
' evaluation system are written as subroutines. This MAIN program links and
' orders the execution of each subroutine.
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'
' The MAIN program calls subroutine PROCESS to dynamically simulate the
' fluid mixing process for a time interval, t, of 0.1 seconds. PROCESS
' simulates the final element dynamics, as well as the ChEs view of the
' process behavior (fluid dynamics and mixing). It also adds measurement
' bias and process beavior drifts that have an ARMA stochastic behavior.
' It also adds measurement noise and valve "stick-tion".
'
' MAIN then calls subroutine FILT to filter noise from the measurements.
'
' MAIN then calls subroutine CTL, where, eventually students will write
' the code for the various controllers and control strategies. Presently
' CTL contains two independent PID controllers, one for T control (manipulating
' O1) and one for F control (manipulating O2).
'
' MAIN then calls subroutine EVAL, where, eventually students will write
' the code for the various goodness of control measures. Presently EVAL
' calculates T and F NISE.
'
' MAIN then calls subroutine PLOT to generate a strip chart display
' of the controlled and manipulated variables.
'
' Finally MAIN calls DISPLAY to refresh data on the screen.
'
' On operator demand (by keyboard touches) MAIN will call subroutine
' OPERATOR to execute the operator-initiated (student-initiated) changes.
' See subroutine OPERATOR to see what INKEY touches start which commands.
' One of these commands is to initiate ATV tuning, an automatic tuning for
' PID controllers.
'
' This sequence is then repeated. However, first MAIN initializes the
' devices, sets up common variables, and calls PLOTINI, PROCINI, and
' CTLINI to initialize the PLOT, PROCESS, and CTL subroutine variables.
'

DIM plotvmax(10), plotvmin(10), plotvrng(10), plotvar(10), plotyo(10), tf(2000)
COMMON SHARED plotvmax(), plotvmin(), plotvrng(), plotvar(), plotyo(), tf()
COMMON SHARED numvar, plottime, reference, horizon, plotx, plotxo, ploty, time
COMMON SHARED ap1, bp1, cp11b, cp12b, dp1, tauvp1
COMMON SHARED ap2, bp2, cp21b, cp22b, dp2, tauvp2
COMMON SHARED m1biasb, m2biasb, m3biasb, t1biasb, t2biasb, t3biasb
COMMON SHARED taut1, taut2, taut3, t1inpb, t2inpb, tf1, tf2, tf3
COMMON SHARED t, dt, timedelta
COMMON SHARED dpp1b, hp1, power1
COMMON SHARED dpp2b, hp2, power2
COMMON SHARED enviro
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COMMON SHARED lambda1, lambda2, lambda3
COMMON SHARED kc1, taui1, taud1, kc2, taui2, taud2, detune
COMMON SHARED which$, tune, dataout
COMMON SHARED iset3, isdo1, isemdot3, isdo2, isenumber
COMMON SHARED o1, o2

OPEN "F:\VBPROGS\rules2\Newruns\testdata.csv" FOR OUTPUT AS #1
'PRINT #1, "time", "theta", "t3meas", "t1meas", "t2meas", "mdot3meas", "mdot1meas",
"mdot2meas"
PRINT #1, "time, t1meas, mdot1meas, mdot2meas, t3meas"
SCREEN 12 'set-up screen for graphics, 640 X 350 x-y pixils, 82 X 25 x-y positions
RANDOMIZE ((TIMER - 12300) / 3) 'randomize the seed for the random number
generator
CLS
enviro = 1
tune = -1 'do not start with ATV tuning
dataout = -1 '**now start without data logging

CALL FILTINI
CALL CTLINI
CALL PROCINI
CALL PLOTINI

FOR interval = 1 TO 600000
time = interval * t
IF time = 20 THEN
dataout = 1
END IF

IF 20 * INT(time / 20) = time THEN

IF time > 0 AND time < 200 THEN o1 = o1 - 10
IF time > 200 AND time < 400 THEN o2 = o2 - 10
IF time > 400 AND time < 600 THEN o1 = o1 + 10
IF time > 600 AND time < 800 THEN o2 = o2 + 10

IF time > 800 AND time < 1000 THEN o1 = o1 - 10
IF time > 1000 AND time < 1200 THEN o2 = o2 - 10
IF time > 1200 AND time < 1400 THEN o1 = o1 + 10
IF time > 1400 AND time < 1600 THEN o2 = o2 + 10

IF time > 1600 AND time < 1800 THEN o1 = o1 - 10
IF time > 1800 AND time < 2000 THEN o2 = o2 - 10
IF time > 2000 AND time < 2200 THEN o1 = o1 + 10
IF time > 2200 AND time < 2400 THEN o2 = o2 + 10

IF time = 820 THEN t1inpb = t1inpb + 40
IF time = 1620 THEN t1inpb = t1inpb + 40
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END IF

CALL PROCESS(o1, o2, s1, s2, mdot1meas, mdot2meas, mdot3meas, t1meas,
t2meas, t3meas)

a$ = INKEY$
IF a$ <> "" THEN

CALL OPERATOR(a$, mode1, mode2, o1, o2, mdot3sp, t3sp)
END IF
CALL FILTER(mdot1meas, mdot2meas, mdot3meas, mdot1filt, mdot2filt,

mdot3filt)
IF tune = 1 THEN

CALL ATV(a$, time, mode1, mode2, mdot3sp, mdot3filt, t3sp, t3meas, o1,
o2)

ELSE
CALL CLEAN

END IF
CALL CTL(mode1, mode2, mdot3sp, mdot3filt, t3sp, t3meas, o1, o2)
CALL PLOT(o1, o2, mdot1filt, mdot2filt, mdot3filt, t1meas, t2meas, t3meas,

mdot3sp, t3sp)
CALL EVAL(mdot3sp, mdot3filt, t3sp, t3meas, o1, o2)
CALL DISPLAY(mode1, mode2, o1, o2, mdot1filt, mdot2filt, mdot3filt,

t1meas, t2meas, t3meas, mdot3sp, t3sp, theta)
IF dataout = 1 THEN

IF timedelta * INT(time / timedelta) = time THEN '****log on every
(timedelta) second

PRINT #1, time; ","; t1meas; ","; mdot1meas; ","; mdot2meas; ",";
t3meas; ","; theta

END IF
END IF

NEXT interval
CLOSE #1

'
' Variable definitions
'
' plotvmax(10) maximum values of the plotted variables
' plotvmin(10) minimum values of the plotted variables
' plotvrng(10) calculated maximum minus minimum values, range of plotted variables
' plotvar(10) values of the plotted variables
' plotyo(10) pixel positions for the previous strip chart ordinate
' tf(200) array that holds the values for the fictitious temperature
' numvar number of variables plotted
' plottime time argument for the plotting routine, same as time
' reference time at the beginning of each strip chart sweep
' horizon time window of the strip chart
' plotx pixel position for the strip chart abscissa
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' plotxo value of the previous plotx pixel position
' ploty pixel position for the strip chart ordinate
' time simulated time, seconds
' ap1 "a" coefficient value for process #1, kg/s^2/kPa
' bp1 "b" coefficient value for process #1, kg/s^2/m
' cp11b "c11" coefficient base value for process #1, kg/s^2/kg^2/min^2
' cp12b "c12" coefficient base value for process #1, kg/s^2/kg^2/min^2
' dp1 "d" coefficient value for process #1, kg/s^2/kg^2/min^2
' tauvp1 time constant for process valve #1, seconds
' ap2 "a" coefficient value for process #2, kg/s^2/kPa
' bp2 "d" coefficient value for process #2, kg/s^2/m
' cp21b "c21" coefficient base value for process #2, kg/s^2/kg^2/min^2
' cp22b "c22" coefficient base value for process #2, kg/s^2/kg^2/min^2
' dp2 "d" coefficient value for process #2, kg/s^2/kg^2/min^2
' tauvp2 time constant for process valve #2, seconds
' taut1 time constant for first temperature lag, seconds
' taut2 time constant for second temperature lag, seconds
' taut3 time constant for third temperature lag, seconds
' t1inpb process stream #1 inlet temperature base value, centigrade
' t2inpb process stream #2 inlet temperature base value, centigrade
' tf1 first lagged temperature at the fictitious sensor, centigrade
' tf2 second lagged temperature at the fictitious sensor, centigrade
' tf3 third lagged temperature at the fictitious sensor, centigrade
' t process sampling time and control period, seconds
' dt process integration time step, seconds
' dpp1b driving pressure drop base case for stream #1, kPa
' hp1 elevation head for stream #1, m
' power1 power coefficient for valve #1 characteristic
' dpp2b driving pressure drop base case for stream #2, kPa
' hp2 elevation head for stream #2, m
' power2 power coefficient for valve #2 characteristic
' enviro coefficient to toggle environmental effects on/off, 1 if on, 0 if off
' time simulated time, seconds
' interval controller sampling period and process integration time step, seconds
' o1 output of controller #1, % of full scale
' o2 output of controller #2, % of full scale
' s1 valve #1 stem position, fraction open
' s2 valve #2 stem position, fraction open
' mdot1meas measured value of flow rate of stream #1, kg/min
' mdot2meas measured value of flow rate of stream #2, kg/min
' mdot3meas measured value of combined flow rate, kg/min
' t3meas measured value of mixed temperature, centigrade
' a$ variable to store the value of INKEY$, alpha-numeric string
' INKEY$ BASIC function that inputs a keyboard hit, alpha-numeric string
' mode1 mode of controller #1, 1 if AUTO, 0 if MAN
' mode2 mode of controller #2, 1 if AUTO, 0 if MAN
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' mdot3sp set point for total flow rate, kg/min
' t3sp set point for mixed temperature, centigrade
' lambda1 filter factor for the first-order noise filter on mdot1meas
' lambda2 filter factor for the first-order noise filter on mdot2meas
' lambda3 filter factor for the first-order noise filter on mdot3meas
' kc1 controller 1 gain, %output / kg/min
' taui1 controller 1 integral time, seconds
' taud1 controller 1 derivative time, seconds
' kc2 controller 2 gain, %output / centigrade
' taui2 controller 2 integral time, seconds
' taud2 controller 2 derivative time, seconds
' which$ variable that defines which controller is being ATV tested
' tune variable to indicate whether ATV tuning is desired
' dataout variable to indicate whether data is to be recorded in the output file
' iset3 integral of the squared error for t3meas
' isdo1 integral of the squared change in output of controller 1
' isemdot3 integral of the squared error for mdot3filt
' isdo2 integral of the squared change in output of controller 2
' isenumber count to normalize the ise and isdo
' m*bias bias on flow rate * measurement
' m*biasb base level for the bias on flow rate * measurement
' t*bias bias on temperature * measurement
' t*biasb base level for the bias on temperature * measurement

SUB ATV (a$, time, mode1, mode2, mdot3sp, mdot3filt, t3sp, t3meas, o1, o2) STATIC
'
' ATV tuning
' NOTE 1 - I think that I used the ZN Ultimate rules for interacting for non-

interacting PID control
' NOTE 2 - need a better way to detect zero crossing in the presence of noise
'
IF a$ = "a" OR a$ = "A" THEN 'you just got here, initialize the factors

start = 0 'start time for the ATV test
e = 0 'deviation from atvtarg
eold = 0 'old deviation
emax = 0 'maximum CV deviation from atvtarg in a cycle
emin = 0 'minimum CV deviation from atvtarg in a cycle
LOCATE 15, 1
INPUT "Do you wish to implement ATV tuning on the O1-T3 loop (1) or O2-F3

(2)"; which$
LOCATE 15, 1
PRINT " "
'
' initialize the atvtarg and set the controller to manual
'
IF which$ = "1" THEN 'O1-T3 loop was chosen
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atvtarg = t3meas 'initialize the atvtarg with the first CV value
mode1 = 0 'set the controller to MAN

LOCATE 14, 1
PRINT USING "atvtarg = ###.# C"; atvtarg
ELSE 'O2-F3 loop was chosen

atvtarg = mdot3filt
mode2 = 0

LOCATE 14, 1
PRINT USING "atvtarg = ###.# kg/min"; atvtarg
END IF

END IF
'
' ATV test controller #1
'
IF which$ = "1" THEN

IF start = 0 THEN 'if this is the first time initialize
start = time 'start time for test
switch = time 'time when output was switched
relay = 20 'output step size (high - low)
o1 = o1 + relay / 2 'make the first output step, up, by 1/2 of the relay
LOCATE 15, 1
PRINT "ATV initiated on O1-T3 loop, T3 controller is overridden"

END IF
IF time - start > 15 THEN 'hold the first bump for 15 seconds

e = atvtarg - t3meas 'then calculate the deviation
IF e > emax THEN emax = e 'set emax
IF e < emin THEN emin = e 'set emin
LOCATE 14, 1
PRINT USING "atvtarg = ###.# C emax = ###.### C emin = ###.### C ";

atvtarg; emax; emin
IF e * eold <= 0 THEN 'if the error changed sign, the atvtarg was crossed

IF e < 0 THEN 'if the error is negative
o1 = o1 - relay 'then step the output down by 1/1 relay

END IF
IF e > 0 THEN 'if the error is positive, then a cycle had finished

o1 = o1 + relay 'then step the output up by 1/1 relay
pu = time - switch 'calculate the ultimate period
ku = 4 * relay / (emax - emin) / 3.14159 'and the ultimate gain
LOCATE 15, 1
PRINT USING "ATV O1-T3 in cycling mode. Ult. P. = ###.## sec Ult.

Kc = ###.## %/C"; time - switch; 4 * relay / (emax - emin) / 3.14159
LOCATE 16, 1
PRINT USING "(Kc=###.#) (Kc=###.# taui=###.#) (Kc=###.#

taui=###.# taud=###.#)"; .5 * ku; .45 * ku; .83 * pu; .59 * ku; .5 * pu; .125 * pu
o1 = o1 + .25 * relay * (emax + emin) / (emax - emin) 'shift o1 for

symmetry



145

emax = 0 'reset emax for the next cycle
emin = 0 'reset emin for the next cycle
switch = time 'reset switch for the next cycle

END IF
END IF
eold = e

END IF
ELSE 'which = 2, ATV the flow loop

IF start = 0 THEN
start = time
switch = time
relay = 30
o2 = o2 + relay / 2
LOCATE 15, 1
PRINT "ATV initiated on O2-F3 loop, F3 controller is overridden"

END IF
IF time - start > 5 THEN

e = atvtarg - mdot3filt
IF e > emax THEN emax = e
IF e < emin THEN emin = e
LOCATE 14, 1
PRINT USING "atvtarg = ###.# kg/min emax = ###.### kg/min emin =

###.### kg/min"; atvtarg; emax; emin
IF e * eold <= 0 THEN

IF e < 0 THEN
o2 = o2 - relay

END IF
IF e > 0 THEN

o2 = o2 + relay
pu = time - switch
ku = 4 * relay / (emax - emin) / 3.14159
LOCATE 15, 1
PRINT USING "ATV O2-F3 in cycling mode. Ult. P. = ###.## sec Ult.

Kc = ###.## %/kg/min"; pu; ku
LOCATE 16, 1
PRINT USING "(Kc=###.#) (Kc=###.# taui=###.#) (Kc=###.#

taui=###.# taud=###.#)"; .5 * ku; .45 * ku; .83 * pu; .59 * ku; .5 * pu; .125 * pu
o2 = o2 + .25 * relay * (emax + emin) / (emax - emin)'shift o2 for

symmetry
emax = 0
emin = 0
switch = time

END IF
END IF
eold = e

END IF



146

END IF
END SUB

SUB CLEAN
'
' clean the ATV messages from the screen
'
LOCATE 14, 1
PRINT " "
LOCATE 15, 1
PRINT " "
LOCATE 16, 1
PRINT " "

END SUB

SUB CTL (mode1, mode2, mdot3sp, mdot3filt, t3sp, t3meas, o1, o2) STATIC
'
' Presently there are two independent, standard PID controllers here.
' One controls T3 by manipulating O1, the output to valve 1, the hot water
' valve. The other controls F3 by manipulating O2, the output to valve 2,
' the cold water valve. Because the process is interactive (O1 affects both
' T3 and F3), the controllers use the "BLT" method of detuning them jointly,
' after they were independently tuned by "ATV" for "QAD" process behavior.
'
'
' Temperature controller
'

IF mode1 = 1 THEN 'temperature controller in AUTO
e1 = t3sp - t3meas 'reverse acting
bias1 = bias1 + t * kc1 * e1 / taui1 / detune ^ 2 'adjustable bias, rectangle rule
eant1 = e1 - taud1 * (t3meas - t3old) / t 'anticipated error, D-on-X 

 t3old = t3meas
o1 = kc1 * eant1 / detune + bias1 'proportional plus bias
IF o1 > 110 THEN 'anti-windup provision

o1 = 110
bias1 = o1 - kc1 * eant1 / detune

END IF
IF o1 < -10 THEN 'anti-windup provision

o1 = -10
bias1 = o1 - kc1 * eant1 / detune

END IF
ELSE 'temperature controller in MAN

t3sp = t3meas 'setpoint tracking, bumpless transfer
t3old = t3meas 'no D spike, bumpless transfer
bias1 = o1 'bias tracking, bumpless transfer

END IF
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'
' Flow controller
'

IF mode2 = 1 THEN 'flow controller in AUTO
e2 = mdot3sp - mdot3filt 'reverse acting
bias2 = bias2 + t * kc2 * e2 / taui2 / detune ^ 2 'adjustable bias, rectangle rule
eant2 = e2 - taud2 * (mdot3filt - mdot3old) / t 'anticipated error, D-on-X 

 mdot3old = mdotfilt
o2 = kc2 * eant2 / detune + bias2 'proportional plus bias
IF o2 > 110 THEN 'anti-windup provision

o2 = 110
bias2 = o2 - kc2 * eant2 / detune

END IF
IF o2 < -10 THEN 'anti-windup provision

o2 = -10
bias2 = o2 - kc2 * eant2 / detune

END IF
ELSE 'flow controller in MAN

mdot3sp = mdot3filt 'setpoint tracking, bumpless transfer
mdot3old = mdot3filt
bias2 = o2 'bias tracking, bumpless transfer

END IF
END SUB

SUB CTLINI STATIC
'
' Initial controller settings go here static makes them constant
'
t = .1
timedelta = 1 'log every timedelta seconds
mode1 = 0 'controller 1 is in manual
mode2 = 0 'controller 2 is in manual
kc1 = 2 '% / centigrade
taui1 = 12 'seconds
taud1 = 3 'seconds
kc2 = 8 '% / kg/min
taui2 = 2.5 'seconds
taud2 = 0 'seconds
detune = 1 'dimensionless

END SUB

SUB DISPLAY (mdot1, mdot2, o1, o2, mdot1filt, mdot2filt, mdot3filt, t1meas,
t2meas, t3meas, mdot3sp, t3sp, theta)

'
' subroutine to display variables and status on the screen
'
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LOCATE 17, 1
PRINT USING " theta = ###.##### time = ####"; theta; time
PRINT USING " o1 = ###.# o2 = ###.#"; o1; o2
PRINT USING "F1filt = ###.# F2filt = ###.#"; mdot1filt; mdot2filt
PRINT USING "T1meas = ###.### T2meas = ###.#"; t1meas; t2meas
PRINT USING "T3meas = ###.# F3filt = ###.#"; t3meas; mdot3filt
PRINT USING "T3sp = ###.# F3sp = ###.#"; t3sp; mdot3sp
PRINT USING "kc1=##.# taui1=##.# taud1=##.# kc2=##.# taui2=##.# taud2=##.#

detune=#.#"; kc1; taui1; taud1; kc2; taui2; taud2; detune
END SUB

SUB EVAL (mdot3sp, mdot3filt, t3sp, t3meas, o1, o2) STATIC
'
' measures of control goodness are calculated here
'
isenumber = isenumber + 1
iset3 = iset3 + t * (t3sp - t3meas) ^ 2
isdo1 = isdo1 + t * (o1 - o1old) ^ 2
o1old = o1
niset3 = iset3 / (isenumber * t)
nisdo1 = isdo1 / (isenumber * t)
isemdot3 = isemdot3 + t * (mdot3sp - mdot3filt) ^ 2
isdo2 = isdo2 + t * (o2 - o2old) ^ 2
o2old = o2
nisemdot3 = isemdot3 / (isenumber * t)
nisdo2 = isdo2 / (isenumber * t)
'
' LOCATE Y,X locates the beginning of the subsequent print statement
' at Y text rows down from the top of the screen and X text columns to
' the right from the left of the screen. The screen is 22 rows by 75
' columns.
' PRINT USING " "; is a formatted print statement. # marks locations
' for numerical values.
'
LOCATE 21, 35
PRINT USING " rmset = #.####^^^^ rmsef = #.####^^^^"; SQR(niset3);

SQR(nisemdot3)
LOCATE 22, 35
PRINT USING "rmsdo1 = #.####^^^^ rmsdo2 = #.####^^^^"; SQR(nisdo1);

SQR(nisdo2)
END SUB

SUB FILTER (mdot1meas, mdot2meas, mdot3meas, mdot1filt, mdot2filt, mdot3filt)
STATIC

'
' subroutine to first-order filter the noisy process measurements
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' lambda = 1-exp(T/taufilt)
'
mdot1filt = lambda1 * mdot1meas + (1 - lambda1) * mdot1filt
mdot2filt = lambda2 * mdot2meas + (1 - lambda2) * mdot2filt
mdot3filt = lambda3 * mdot3meas + (1 - lambda3) * mdot3filt

END SUB

SUB FILTINI STATIC
'
' subroutine to initialize the filter coefficients
'
lambda1 = .2
lambda2 = .2
lambda3 = .2

END SUB

SUB OPERATOR (a$, mode1, mode2, o1, o2, mdot3sp, t3sp)
'
' operator initiated action is made here
'
iset3 = 0 'Reset the goodness of control measures
isdo1 = 0 ' "
isemdot3 = 0 ' "
isdo2 = 0 ' "
isenumber = 0 ' "
IF a$ = "q" OR a$ = "Q" THEN

CLOSE #1
STOP 'key in "q" to stop the program

END IF
IF a$ = "a" OR a$ = "A" THEN tune = -tune
IF a$ = "-" THEN t1inpb = t1inpb - 5 '***add or subtract input temperature
IF a$ = "+" THEN t1inpb = t1inpb + 5
IF a$ = "9" OR a$ = "L" THEN dataout = -dataout
IF a$ = "n" OR a$ = "N" THEN 'key in "n" to toggle enviro and disturbances

IF enviro = 1 THEN
enviro = 0

ELSE
enviro = 1

END IF
END IF
IF a$ = "1" THEN 'key in "1" to toggle controller 1 MAN-AUTO

IF mode1 = 1 THEN
mode1 = 0

ELSE
mode1 = 1

END IF
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END IF
IF a$ = "2" THEN 'key in "2" to toggle controller 2 MAN-AUTO

IF mode2 = 1 THEN
mode2 = 0

ELSE
mode2 = 1

END IF
END IF
'
' change output if in manual
'
IF a$ = "3" AND mode1 = 0 THEN o1 = o1 - 5 'key in "3" lower o1 in MAN
IF a$ = "#" AND mode1 = 0 THEN o1 = o1 + 5 'key in "#" raise o1 in MAN
IF a$ = "4" AND mode2 = 0 THEN o2 = o2 - 5 'key in "4" lower o2 in MAN
IF a$ = "$" AND mode2 = 0 THEN o2 = o2 + 5 'key in "$" raise o2 in MAN
'
' limit output to between -10 and 110 %
'
IF o1 > 110 THEN o1 = 110
IF o1 < -10 THEN o1 = -10
IF o2 > 110 THEN o2 = 110
IF o2 < -10 THEN o2 = -10
'
' change setpoint if in automatic - method 1:
'
IF a$ = "5" AND mode1 = 1 THEN t3sp = t3sp - 2 'key in "5" lower tsp in AUTO
IF a$ = "%" AND mode1 = 1 THEN t3sp = t3sp + 2 'key in "%" raise tsp in AUTO
IF a$ = "6" AND mode2 = 1 THEN mdot3sp = mdot3sp - 2 'key in "6" lower mdotsp

in AUTO
IF a$ = "^" AND mode2 = 1 THEN mdot3sp = mdot3sp + 2 'key in "^" raise mdotsp

in AUTO
' change setpoint if in automatic - method 2:
'
IF a$ = "s" OR a$ = "S" THEN

LOCATE 16, 35
PRINT "Enter one of these setpoints:"
LOCATE 17, 35
PRINT "t3, f3"
LOCATE 18, 35
INPUT "Which value do you wish to change"; b$
IF b$ = "t3" AND mode1 = 1 THEN

LOCATE 19, 35
INPUT "Enter t3sp value, C"; t3sp

END IF
IF b$ = "f3" AND mode2 = 1 THEN

LOCATE 19, 35
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INPUT "Enter mdot3sp value, kg/min"; mdot3sp
END IF

' erase on-screen trash
LOCATE 16, 35
PRINT " "
LOCATE 17, 35
PRINT " "
LOCATE 18, 35
PRINT " "
LOCATE 19, 35
PRINT " "

END IF
'
' if tuning is desired
'
IF a$ = "t" OR a$ = "T" THEN

LOCATE 16, 35
PRINT "Enter one of these parameters:"
LOCATE 17, 35
PRINT "kc1, taui1, taud1, kc2, taui2, taud2, detune"
LOCATE 18, 35
INPUT "Which value do you wish to change"; b$
IF b$ = "kc1" THEN

LOCATE 19, 35
INPUT "Enter kc1 value, %/C"; kc1

END IF
IF b$ = "taui1" THEN

LOCATE 19, 35
INPUT "Enter taui1 value, s"; taui1

END IF
IF b$ = "taud1" THEN

LOCATE 19, 35
INPUT "Enter taud1 value, s"; taud1

END IF
IF b$ = "kc2" THEN

LOCATE 19, 35
INPUT "Enter kc2 value, %/kg/min"; kc2

END IF
IF b$ = "taui2" THEN

LOCATE 19, 35
INPUT "Enter taui2 value, s"; taui2

END IF
IF b$ = "taud2" THEN

LOCATE 19, 35
INPUT "Enter taud2 value, s"; taud2

END IF
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IF b$ = "detune" THEN
LOCATE 19, 35
INPUT "Enter detune value"; detune

END IF
'
' erase on-screen trash
'

LOCATE 16, 35
PRINT " "
LOCATE 17, 35
PRINT " "
LOCATE 18, 35
PRINT " "
LOCATE 19, 35
PRINT " "

END IF
END SUB

SUB PLOT (o1, o2, mdot1filt, mdot2filt, mdot3filt, t1meas, t2meas, t3meas, mdot3sp,
t3sp) STATIC

'
' This routine plots the scaled variables on a strip chart display
'
' PLOT.BAS
' R. Russell Rhinehart Company
' 10 October 1994
'
' After calculating the variable values assign them to the plot variables
'
plottime = time 'simulated time, seconds
plotvar(1) = o1 'output of controller 1, %
plotvar(2) = o2 'output of controller 2, %
plotvar(3) = mdot1filt 'filtered flow rate 1, kg/min
plotvar(4) = mdot2filt 'filtered flow rate 2, kg/min
plotvar(5) = mdot3filt 'filtered total flow rate, kg/min
plotvar(6) = t1meas 'measured temperature, centigrade
plotvar(7) = t2meas 'measured temperature, centigrade
plotvar(8) = t3meas 'measured temperature, centigrade
plotvar(9) = mdot3sp 'flow 3 setpoint, kg/min
plotvar(10) = t3sp 'temperature 3 setpoint, centigrade
'
' Plot routine
'
IF plottime - reference >= horizon THEN ' locate the x position

reference = reference + horizon
plotxo = 50
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LINE (plotxo, 20)-(plotxo, 160), 15
LINE (plotx, 20)-(plotx, 160), 15
LINE (plotx, 161)-(plotx, 168), 14

END IF
plotx = 50 + INT(.5 + 580 * (plottime - reference) / horizon)
IF 50 + 58 * INT((plotx - 50) / 58) = plotx THEN LINE (plotx, 20)-(plotx, 160), 15
LINE (plotx + 1, 20)-(plotx + 1, 160), 14
LINE (plotx, 161)-(plotx, 168), 0
LINE (plotx - 1, 161)-(plotx - 1, 168), 14
FOR plotyy = 20 TO 160 STEP 14
LINE (plotx, plotyy)-(plotx + 1, plotyy), 15
NEXT plotyy
FOR ploti = 1 TO numvar
ploty = 160 - 140 * (plotvar(ploti) - plotvmin(ploti)) / plotvrng(ploti)
IF ploty < 20 THEN ploty = 20
IF ploty > 160 THEN ploty = 160
LINE (plotxo, plotyo(ploti))-(plotx, ploty), ploti
plotyo(ploti) = ploty
NEXT ploti
plotxo = plotx

END SUB

SUB PLOTINI STATIC
'
' This routine initializes the strip chart display plot subroutine
'
' PLOT.BAS
' R. Russell Rhinehart Company
' 10 October 1994
'
' initialize the plotting variables
'
plotxo = 50 ' time = 0 position on the screen
numvar = 10 ' number of variables to plot, maximum = 10
horizon = 60 ' strip chart horizon, seconds
plotvmax(1) = 100 ' maximum value for controller #1 output, %
plotvmin(1) = 0 ' minimum value for controller #1 output, %
plotvmax(2) = 100 ' maximum value for controller #2 output, %
plotvmin(2) = 0 ' minimum value for controller #2 output, %
plotvmax(3) = 30 ' maximum value for flow rate #1, kg/min
plotvmin(3) = 0 ' minimum value for flow rate #1, kg/min
plotvmax(4) = 30 ' maximum value for flow rate #2, kg/min
plotvmin(4) = 0 ' minimum value for flow rate #2, kg/min
plotvmax(5) = 60 ' maximum value for total flow rate, kg/min
plotvmin(5) = 0 ' minimum value for total flow rate, kg/min
plotvmax(6) = 100 ' maximum value for mixed temperature, C
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plotvmin(6) = 0 ' minimum value for mixed temperature, C
plotvmax(7) = 100 ' maximum value for temperature 1, C
plotvmin(7) = 0 ' minimum value for temperature 1, C
plotvmax(8) = 100 ' maximum value for temperature 2, C
plotvmin(8) = 0 ' minimum value for temperature 2, C
plotvmax(9) = 60 ' maximum value for flow3 setpoint, kg/min
plotvmin(9) = 0 ' minimum value for flow3 setpoint, kg/min
plotvmax(10) = 100 ' maximum value for temperature 3 setpoint, C
plotvmin(10) = 0 ' minimum value for temperature 3 setpoint, C

' repeat for all plotted variables
reference = 0 ' time of the beginning of each strip chart
'
' Initialize the graph
' (setup lables, background, grid lines, and initial points)

LOCATE 1, 1
PRINT USING "PV's (fraction of full scale) VERSUS TIME (fraction of

window = ####.# seconds)"; horizon
FOR plotj = 0 TO 1 STEP .5 ' lable the y axis
ploty = 2 + 10 * plotj
LOCATE ploty, 1
PRINT USING "#.##"; 1 - plotj
NEXT plotj
FOR ploti = 0 TO 1.01 STEP .1 ' lable the x axis
plotx = 6 + 71 * ploti
LOCATE 13, plotx
PRINT USING "#.##"; ploti;
NEXT ploti
LINE (40, 13)-(640, 168), 14, BF ' fill in the background
FOR plotyy = 20 TO 160 STEP 14 ' draw the horizontal grid
LINE (50, plotyy)-(630, plotyy), 15
NEXT plotyy
FOR plotxx = 50 TO 630 STEP 58 ' draw the vertical grid
LINE (plotxx, 20)-(plotxx, 160), 15
NEXT plotxx
FOR ploti = 1 TO numvar ' calculate the plot variable

' ranges and initial locations
plotvrng(ploti) = plotvmax(ploti) - plotvmin(ploti)
ploty = 160 - 140 * (plotvar(ploti) - plotvmin(ploti)) / plotvrng(ploti)
IF ploty < 20 THEN ploty = 20
IF ploty > 160 THEN ploty = 160
plotyo(ploti) = ploty

NEXT ploti
END SUB

SUB PROCESS (o1, o2, s1, s2, mdot1meas, mdot2meas, mdot3meas, t1meas, t2meas,
t3meas) STATIC
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' Subroutine to model the flow rates and temperatures. There are several
' sections to this routine. First, if enviro is active, stochastic models
' are used to change the flow rate driving pressures, flow pressure loss
' coefficients, and inlet stream temperatures. Also, if enviro is active,
' control valve action is subject to "sticktion." Next, the ODEs that
' dynamically model the valve stem positions, and the coupled ODEs that
' dynamically model the flow rates and mixture temperature are solved
' using the second order Runge-Kutta method. Since the ODE-modeled
' temperature is the mixing point temperature, the temperature values are
' placed in an array so that the transport-delayed value can be used for
' the fluid temperature at the sensor. Since the transport delay is
' variable, the how-far-back-in-the-array index, nt, is calculated from
' the transport delay, theta. The "clock" concept is used for efficient
' array management. The temperature sensor is modeled as a third order ODE.
' Finally, noise is added to the flow rate measurement to simulate orifice
' turbulence noise.
' if enviro is active then add drift and spikes to the pressure drops
ddpp1 = .999 * ddpp1 + .015 * dpp1b * (RND - .5) * enviro 'drift
IF RND < .01 THEN spike1 = 50 * (RND - .5) * enviro 'spike
spike1 = .9 * spike1 'fade the spike
dpp1 = dpp1b '+ ddpp1 + spike1 <<<<<<*****making sure no spikes
ddpp2 = .999 * ddpp2 + .015 * dpp2b * (RND - .5) * enviro 'drift
IF RND < .01 THEN spike2 = 50 * (RND - .5) * enviro 'spike
spike2 = .9 * spike2 'fade the spike
dpp2 = dpp2b '+ ddpp2 + spike2 <<<<<<<<******ditto
'
' if enviro is active then add drift to the flow pressure loss factors
'****here i made sure again that no drift is there
dcp11 = .999 * dcp11 + .015 * cp11b * (RND - .5) * enviro 'drift
cp11 = cp11b '+ dcp11
dcp12 = .999 * dcp12 + .015 * cp12b * (RND - .5) * enviro 'drift
cp12 = cp12b '+ dcp12
dcp21 = .999 * dcp21 + .015 * cp21b * (RND - .5) * enviro 'drift
cp21 = cp21b '+ dcp21
dcp22 = .999 * dcp22 + .015 * cp22b * (RND - .5) * enviro 'drift
cp22 = cp22b '+ dcp22
' if enviro is active then add drift to the inlet temperatures
' ***ditto
dt1in = .999 * dt1in + .015 * t1inpb * (RND - .5) * enviro 'drift
t1inp = t1inpb '+ dt1in
dt2in = .999 * dt2in + .015 * t2inpb * (RND - .5) * enviro 'drift
t2inp = t2inpb '+ dt2in
' If enviro is active then add "sticktion" hysteresis to the valves.
' Deadband is the amount of change in valve position the controller must
' call for before the valve stem will move. Here, deadband is either 0 %
' or 2.5 %. Dels1 and dels2 are the valve stem position changes that the
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' controller wants. Note: If sticktion is present, and the valve position
' is 2 % open, and the controller wants it closed (o = 0 %), then the valve
' will stay at 2 % open! This is real. To fix it, controllers are designed
' so that their output goes from -10 % to 110 %, or so. Ideally the 0-100 %
' controller output is converted to a 4-20 mA d.c. current "signal" then to
' a 3-15 psig pneumatic "signal" which operates the valve. Ideally the stem
' position goes from 0 to 1 as the pressure goes from 3 to 15 psig. Allowing
' the controller output to range from -10 to 110 %, ideally causes the
' pneumatic signal to range from 1.8 to 16.2 psig which, hopefully, will
' overcome both sticktion and calibration errors in the D/A and i/p devices,
' and, thereby, allow the valve to fully close and to fully open.
'
deadband = .025 * enviro * 0 'deadband<<****making sure it is 0
current1 = 4 + o1 * 16 / 100 'i1 from A/D conversion of o1
current2 = 4 + o2 * 16 / 100 'i2 from A/D conversion of o2
p1targ = 3 + (current1 - 4) * 12 / 16 'p1 target from i/p conversion of i1
p2targ = 3 + (current2 - 4) * 12 / 16 'p2 target from i/p conversion of i2
'
' In the following segment of code, the ODEs are solved using a
' second-order Rung-Kutta method with an integration time step that
' is one tenth of the control interval (dt = t/10).
'
' Calculate the R-K k1s for p1, p2, mdot1, mdot2, tf1, tf2, and tf3.
' The IF statements either allow for sticktion or prevent numerical
' overflow. If the valves are nearly closed, then f1 or f2 are extremely
' small, and their contributions to the Ks are large negative. The -20
' is a relatively large negative value.
'
FOR i = 1 TO 10
'
' Calculate the transport delay from the mixing point to the temperature
' sensor 1.06 meters down stream. Then, nt, the nearest integer number of
' sample intervals backward in the clock array. Then, ifind, the array
' location of that transport-delayed temperature. Note, this deadtime
' delayed temperature is the influence for the third-order lagged sensor
' temperature.
'

SHARED theta
IF (mdot1 + mdot2) > .1 THEN 'if mdot total is greater than the minimum

theta = 80 / (mdot1 + mdot2) '****calculate transport delay doubled the
value of Lt from 20 to 80

ELSE
theta = 800 'limit delay to maximum allowed by tf(200)

END IF
'OPEN "c:theta.dat" FOR OUTPUT AS #2
'PRINT #2, theta
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'CLOSE #2
nt = INT(theta / t + .5) 'Number of Time intervals in delay
IF nt > ntold + 1 THEN nt = ntold + 1 'can't sample fluid past the sensor
IF nt > 1999 THEN nt = 1999 'can't sample around the tf(200) "clock"
ntold = nt
ifind = iput - nt 'calculate the find location
IF ifind < 0 THEN ifind = ifind + 2001 'increment it if it passes 12 O'clock
'
' calculate the R-K k1s
'
k1p1 = (p1targ - p1) / tauvp1 'rate of change of p1, now, due to p1targ
k1p2 = (p2targ - p2) / tauvp2 'rate of change of p2, now, due to p2targ
f1 = s1 ^ power1 'inherrent valve characteristic from stem
IF f1 > .0001 THEN

k1mdot1 = ap1 * dpp1 + bp1 * hp1 - cp11 * mdot1 ^ 2 - cp12 * (mdot1 +
mdot2) ^ 2 - dp1 * mdot1 ^ 2 / f1 ^ 2

ELSE
k1mdot1 = -20

END IF
IF k1mdot1 < -20 THEN k1mdot1 = -20
f2 = s2 ^ power2 'inherent valve characteristic from stem
IF f2 > .0001 THEN

k1mdot2 = ap2 * dpp2 + bp2 * hp2 - cp21 * mdot2 ^ 2 - cp22 * (mdot1 +
mdot2) ^ 2 - dp2 * mdot2 ^ 2 / f2 ^ 2

ELSE
k1mdot2 = -20

END IF
IF k1mdot2 < -20 THEN k1mdot2 = -20
k1tf1 = (tf(ifind) - tf1) / taut1
k1tf2 = (tf1 - tf2) / taut2
k1tf3 = (tf2 - tf3) / taut3
k1tt1 = (t1inp - tt1) / 10
k1tt2 = (t2inp - tt2) / 10

' Use the k1s to estimate where the state variables might go.
' The h addended to the state variable indicates Hypothesized.
' The limits are for physical reality.

p1h = p1 + dt * k1p1
p2h = p2 + dt * k1p2
dels1h = (p1h - 3) / 12 - s1 'change in s1 that the p1h would make w/o sticktion
dels2h = (p2h - 3) / 12 - s2 'change in s2 that the p2h would make w/o sticktion
IF ABS(dels1h) > deadband THEN s1h = s1 + dels1h 's1 only changes if p1

overcomes sticktion
IF ABS(dels2h) > deadband THEN s2h = s2 + dels2h 's2 only changes if p2

overcomes sticktion
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mdot1h = mdot1 + dt * k1mdot1
mdot2h = mdot2 + dt * k1mdot2
tf1h = tf1 + dt * k1tf1
tf2h = tf2 + dt * k1tf2
tf3h = tf3 + dt * k1tf3
tt1h = tt1 + dt * k1tt1
tt2h = tt2 + dt * k1tt2
IF s1h < 0 THEN s1h = 0
IF s1h > 1 THEN s1h = 1
IF s2h < 0 THEN s2h = 0
IF s2h > 1 THEN s2h = 1
IF mdot1h < 0 THEN mdot1h = 0
IF mdot2h < 0 THEN mdot2h = 0

' Calculate the R-K k2s for s1, s2, mdot1, mdot2, tf1, tf2, and tf3.
' The IF statements either allow for sticktion or prevent numerical overflow.

k2p1 = (p1targ - p1h) / tauvp1
k2p2 = (p2targ - p2h) / tauvp2
f1h = s1h ^ power1
IF f1h > .0001 THEN

k2mdot1 = ap1 * dpp1 + bp1 * hp1 - cp11 * mdot1h ^ 2 - cp12 * (mdot1h +
mdot2h) ^ 2 - dp1 * mdot1h ^ 2 / f1h ^ 2

ELSE
k2mdot1 = -20

END IF
IF k2mdot1 < -20 THEN k2mdot1 = -20
f2h = s2h ^ power2
IF f2h > .0001 THEN

k2mdot2 = ap2 * dpp2 + bp2 * hp2 - cp21 * mdot2h ^ 2 - cp22 * (mdot1h +
mdot2h) ^ 2 - dp2 * mdot2h ^ 2 / f2h ^ 2

ELSE
k2mdot2 = -20

END IF
IF k2mdot2 < -20 THEN k2mdot2 = -20
k2tf1 = (tf(ifind) - tf1h) / taut1
k2tf2 = (tf1h - tf2h) / taut2
k2tf3 = (tf2h - tf3h) / taut3
k2tt1 = (t1inp - tt1h) / 10
k2tt2 = (t2inp - tt2h) / 10

'
' Use the k1s and k2s to estimate where the state variables will go.
' The limits are for physical reality.
'

p1 = p1 + dt * (k1p1 + k2p1) / 2
p2 = p2 + dt * (k1p2 + k2p2) / 2
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dels1 = (p1 - 3) / 12 - s1
dels2 = (p2 - 3) / 12 - s2
IF ABS(dels1) > deadband THEN s1 = s1 + dels1
IF ABS(dels2) > deadband THEN s2 = s2 + dels2
mdot1 = mdot1 + dt * (k1mdot1 + k2mdot1) / 2
mdot2 = mdot2 + dt * (k1mdot2 + k2mdot2) / 2
tf1 = tf1 + dt * (k1tf1 + k2tf1) / 2
tf2 = tf2 + dt * (k1tf2 + k2tf2) / 2
tf3 = tf3 + dt * (k1tf3 + k2tf3) / 2
tt1 = tt1 + dt * (k1tt1 + k2tt1) / 2
tt2 = tt2 + dt * (k1tt2 + k2tt2) / 2
IF s1 < 0 THEN s1 = 0
IF s1 > 1 THEN s1 = 1
IF s2 < 0 THEN s2 = 0
IF s2 > 1 THEN s2 = 1
IF mdot1 < 0 THEN mdot1 = 0
IF mdot2 < 0 THEN mdot2 = 0

NEXT i
'
' Place tf3 into the array for delayed retrieval. "iput," the put index,
' has to be updated for the next sampling interval.
'
IF (mdot1 + mdot2) > .01 THEN

tf(iput) = (mdot1 * t1inp + mdot2 * t2inp) / (mdot1 + mdot2)
END IF
iput = iput + 1
IF iput = 2001 THEN iput = 0 're start iput values at 12 O'clock
'
' If enviro is active, then add noise and bias to the flow measurements
' and bias to the temperature measurement.
' here noise is removed completely with bias also neautralised
m1bias = .95 * m1bias + .05 * m1biasb * enviro
m2bias = .95 * m2bias + .05 * m2biasb * enviro
m3bias = .95 * m3bias + .05 * m3biasb * enviro
t1bias = .95 * t1bias + .05 * t1biasb * enviro
t2bias = .95 * t2bias + .05 * t2biasb * enviro
t3bias = .95 * t3bias + .05 * t3biasb * enviro
mdot1meas = mdot1 * (1 + m1bias + (SQR(-.002 * LOG(RND)) * SIN(2 * 3.14159 *

RND)) * enviro)
mdot2meas = mdot2 * (1 + m2bias + (SQR(-.002 * LOG(RND)) * SIN(2 * 3.14159 *

RND)) * enviro)
mdot3meas = (mdot1 + mdot2) '* (1 + m3bias + 0 * (SQR(-.002 * LOG(RND)) *

SIN(2 * 3.14159 * RND)) * enviro)
t1meas = tt1 '+ t1bias
t2meas = tt2 '+ t2bias
t3meas = tf3 '+ t3bias
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END SUB

SUB PROCINI
' Routine to initialize the process parameter values
enviro = 1 'environmental effects are off
dt = t / 10 'integration and control periods, sec
ap1 = .3016 'A for Process #1
bp1 = 2.9576 'B for Process #1
cp11b = .003979 'C #1 for Process #1, Base value
cp12b = .01082 'C #2 for Process #1, Base value
dp1 = .002327 'D for Process #1
dpp1b = 30 'Differential Pressure for Process #1
hp1 = 2 'Height of hydrostatic head Process #1
tauvp1 = 1 'Valve TAU for Process #1
ddpp1 = 0 'Deviation of Differential Pressure for Process #1
dcp11 = 0 'Deviation of C #1 for Process #1
dcp12 = 0 'Deviation of C #2 for Process #1
power1 = 2 'value of power for valve #1 characteristic
t1inpb = 20 'INlet Temperature Base value for Process #1
ap2 = .3427
bp2 = 3.3609
cp21b = .008139
cp22b = .0123
dp2 = .01058
dpp2b = 60
hp2 = -1 

 tauvp2 = 1.5
ddpp2 = 0
dcp21 = 0
dcp22 = 0
power2 = 2
t2inpb = 10
taut1 = .6 'Temperature sensor TAU for 1st lag***values changed
taut2 = .4 'Temperature sensor TAU for 2nd lag
taut3 = .3 'Temperature sensor TAU for 3rd lag
tf1 = t2inpb 'Fictitious Temperature #1
tf2 = t2inpb 'Fictitious Temperature #2
tf3 = t2inpb 'Fictitious Temperature #3
FOR i = 0 TO 2000

tf(i) = t2inpb 'array that holds the Fictitious Temperatures for delay
NEXT i
m1biasb = .1 - .2 * RND
m2biasb = .1 - .2 * RND
m3biasb = .1 - .2 * RND
t1biasb = 2 - 4 * RND
t2biasb = 2 - 4 * RND
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t3biasb = 2 - 4 * RND
'mdot1 = 5 '<***here start the mdot's
'mdot2 = 5
o1 = 100
o2 = 100

END SUB
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