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CHAPTER 1

INTRODUCTION

1.1 Rationale for the Project

The concern to protect our planet’s natural resources is steadily growing. Soil is

one of the vital substances for human existence, and its conservation is important. Soil

erosion not only depletes the productivity of soil but also produces sediment, a major

pollutant. The sediment moving in streams and waterways not only increases the cost of

water treatment, but it also reduces reservoir storage capacity through deposition. In

addition, it modifies the stream systems and destroys the habitat of many of our desirable

aquatic species (EPA 2001; Smith et al. 1992). In fact, in terms of quantity of pollutant,

sediment is the largest polluter.

Agricultural, forestry, and construction industries contribute to accelerated

erosion. The focus of this study is on erosion and sediment control in construction sites, a

critical issue today. For example, construction activities account for about five percent of

the nonpoint source (NPS) impacts to United States surface water (Morrow et al. 2003).

Studies have shown that by removing the surface cover and disturbing the parent soil

material, construction operations increase sediment yield by as much as 10,000 times as

compared to undisturbed sites (Haan et al. 1994). Also, (Barrett et al. 1995) reported that

soil losses from unprotected construction sites can be 150-200 tons per acre per year,

while the average natural rate of erosion is approximately 0.2 tons per acre per year.
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Erosion control strategies and practice vary by industry. The cost and feasibility

dictate the soil conservation measures to be used. Environmental Protection Agency’s

(EPA’s) stormwater regulatory program requires the use of Best Management Practice

(BMPs) during and after construction to minimize erosion and sedimentation and to

properly manage runoff for both stormwater quantity and quality. BMPs are a

combination of management, cultural (e.g., strip cropping, contouring), new-structural

(e.g., erosion control blankets, mulch), and conventional (ponds, silt fence) practices that

the agricultural scientists, the government, or some other planning agencies decides upon

to be the most effective and economical way of controlling such problems without

disturbing the quality of the environment (Field 1997). Currently, silt fence is the most

frequently used best management practice (BMP) technology, since it does not disturb

large amounts of additional landscapes.

A silt fence is a temporary sediment barrier consisting of filter stretched across

the down slope end of a drainage area. It is attached to supporting posts, anchored at the

toe and, depending on the strength of the fabric used, reinforced with plastic wire or mesh

backing. Silt fences trap sediment by intercepting and detaining small amounts of

sediment-laden runoff from disturbed areas in order to promote sedimentation behind the

fence (CASQA 2003).

In general, silt fence and sediment basins can trap only particles larger than 20

microns (DCR 2002). Thus, the suspended fine particles remain in the water column,

requiring potentially complex and expensive methods to prevent violations and to

remediate resulting downstream property and environmental damage. Trapping efficiency

of the silt fence can be improved by flocculation of fine clay particles into larger
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aggregated particles with higher settling velocities. Clay flocculation can be induced by

anionic polyacrylamides (PAM) in conjunction with divalent cations. (Flanagan et al.

2002) found that treatment with PAM plus gypsum (a source of divalent cation) reduced

runoff sediment yield more than treatments with PAM alone.

1.2 Objectives

The specific objectives of this study are to:

• Evaluate the flocculation characteristics of three polyacrylamides (PAM) on silty

clay loam soil and identify the best PAM for the soil, based on flocculation

parameters measured.

• Study the process of flocculation on soil when PAM and the exchangeable cation

(Ca++) are used in combination.

• Determine the best concentration range of PAM and calcium ion in combination

that yields high flocculation efficiency.
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CHAPTER 2

LITERATURE REVIEW

2.1 Economic Cost of Soil Erosion and Conservation Benefits

Soil erosion is a major environmental and agricultural problem world wide.

Productive agriculture and associated economic activities occur with good soil used

intelligently and protected from erosion (Bennett 1957). On a worldwide basis, soil

erosion rates are highest in Asia, Africa, and South America, averaging 30 to 40 tons ha-1 

year-1, and lowest in United States and Europe, averaging about 17 tons ha-1 year-1. This

loss of soil due to erosion and its consequences can cause tremendous problems to the

economy, so much so that these costs may well outweigh the benefits of many

development projects that create the problem. A recent pioneering study sponsored by

United Nations agencies estimated the severity and cost of land degradation in South

Asia with the shocking conclusion that India, Pakistan, Bangladesh, Iran, Afghanistan,

Nepal, Srilanka, and Bhutan are losing at least US $10 billion annually as the result of

losses resulting from soil degradation. This is equivalent to 2% of the regions gross

domestic product (GDP), or 7% of its agricultural output (Khor 2005).

(Pimentel et al. 1995) have evaluated the erosion cost in the United States under

three categories: energy costs, on-site costs, and off-site costs. For an average erosion rate

of 7 tons ha-1 year-1, they estimate that the on-site and off-site impacts of soil erosion and

associated rapid water runoff require an additional expenditure of 1.6×106 kcal of fossil
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energy per hectare per year. This suggest about 10% of all the energy used in U.S

agriculture today is spent just to offset the losses of nutrients, water, and crop

productivity caused by erosion. The major on-site costs of erosion are those expended to

replace the lost nutrients and water. In the United States, an estimated 4×109 tons of soil

and 130×109 tons of water are lost from 160×106 ha of cropland each year. This translates

into an on-site economic loss of more than $27 billion each year, of which $20 billon is

for replacement of nutrients and $7 billon for lost water and soil depth (Troeh et al.

1991). The most significant component of this cost is the loss of soil nutrients.

Erosion not only damages the immediate agricultural area where it occurs, but

also negatively affects the surrounding environment. “Off site problems include

roadways, sewer, and basement siltation, drainage disruption, undermining of

foundations and pavements, gullying of roads, earth dam failures, eutrofication of

waterways, siltation of harbors and channels, loss of reservoir storage, loss of wildlife

habitat and disruption of stream ecology, flooding, damage to public health, plus

increased water treatment cost” (Gray and Leiser 1989). The cost of all off-site

environmental impacts of U.S soil erosion is estimated to be about $17 billon per year. If

off-site and on-site costs are combined, the total cost of erosion from agriculture in the

United States is about $44 billion per year. (Pimentel et al. 1995) have also estimated that

the total investment for U.S erosion control would be about $8.4 billion per year. Given

that erosion causes about $44 billion in damages each year, a $8.4 billion investment is a

small price to pay: For every $1 invested, $5.24 would be saved. This small investment

would reduce U.S. agricultural soil loss by about 4×109 tons and help to protect the

current and future food supply.
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2.2 Polyacrylamide in the Field of Sediment and Erosion Control

The use of polyacrylamide (PAM) dates back to World War II, where it was used

primarily as a soil conditioner to stabilize the soil structure (Sojka and Lentz 1996b).

Scores of airfields and temporary roads have been constructed overnight with the aid of

soil conditioners. Chemical soil conditioners stabilize the soil structure and prevent the

hastily constructed landing fields from returning to mud wallows. This technology was

then transferred to the agricultural arena in the early 1950s (Sojka and Lentz 1994),

where its use has been primarily for soil structure stabilization in horticultural, agronomic

and constructional applications. Soil amendment using PAM is one of the options to

prevent soil erosion. PAM has also been used to stabilize soil structure, which leads to

increased infiltration and reduced erosion (Green and Stott 1999). Hundreds of specific

PAM formulations are available depending on the polymer chain length and the number

and kinds of functional group substitutions along the chain.

In erosion-control polyacylamides, the PAM homopolymer is copolymerized.

Spliced chain segments replace PAM amide functional groups with ones containing

sodium ions or protons that freely dissociate in water to provide negative charge sites. As

shown in Figure 1, the chain segment X is the acrylamide formulation and Y indicates a

dissociated altered segment leaving a negative charge site. The PAM formulations now

used in agriculture are water soluble non-crosslinked anionic polymer with typical

molecular weights of 12 to 15 Mg mole-1. PAM charge density expressed as the percent

of sodium acrylate copolymerized generally ranges from 2 to 40% (Sojka et al.

2000).
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CH2 CH

C O

NH2

CH2 CH

C O

NH2
X

Acrylamide

CH2 CH

C O

O- Na+

Sodium acrylate

CHCH2

C O

O- Na+
Y

Anionic polyacrylamide

Figure 1: Copolymerization with Sodium Acrylate (Barvenik 1994)

When used as an erosion control product, anionic PAM reduces erosion and

sedimentation by targeting the smallest soil particles such as fine silts, clays and colloidal

materials (5-10 microns in size), which are difficult or impossible to control using

conventional settling techniques. Anionic PAM uses two mechanisms to affect these

difficult to address particles. It preferentially increases aggregation of these small

particles to improve soil stability and prevent soil detachment in the first place, and

decreases the settling time of particles to aid in their deposition within the site, thus

improving runoff water quality. Additionally, anionic PAM can increase soil pore volume

and permeability; thus, increasing infiltration and reducing erosion.

In a recent three-year efficacy study on construction sites (DCR 2002), anionic

PAM provided up to 70% reduction in runoff-sediment, and was further improved when

combined with conventional mulching and seeding measures. (David Bjorneberg et al.

1997) found that addition of PAM to soil in their experimental setup decreased runoff and

soil loss by approximately 75%. (Lentz et al. 1992) reported that PAM provided a 94%
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reduction in runoff-sediment in three years of testing. According to (Rao-Espinosa et al.

2000), the average reduction in sediment yield varies between 77%-93% in different

modes of application of PAM.

Texture, clay type, organic matter content, and type of ions in the soil solution are

the dominant soil properties affecting PAM adsorption, while molecular weight and

charge density are the main properties of PAM. Charge density of 30% provides greater

protection for clayey soil, while molecular weight of 12 Mg mol-1 are effective for sandy

soils (Green et al. 2000). Polyacrylamide of 2% charge density has very little charge and

would tend to form a tight coil, rather than a chain because the repulsive forces between

negatively charged sites are not enough to hold the coil straight. A 40% charge density

PAM would also tend to coil, especially in the presence of cations because the high

negative charge has greater affinity toward the positively charged cations. Studies have

suggested that a 30% charge density PAM is the maximum to avoid coiling and maintain

the chain to produce larger flocs. The extended chain of 21% charge has more adsorption

because more molecules extended from the surface when compared to higher charge

density PAMs (Malik and Letey 1991). The behaviors of PAM at different charge

densities are illustrated in Figure 2.

-

-
-

-

-

-

-
-

-
- --- -

+

-

-
-

-
-

-

-
-

-+

+

+

+ + + +

2% PAM 40% PAM 21% PAM

Figure 2: Orientation of PAM Structure at Different Charge Densities
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2.2.1 Applicability

Anionic PAM is intended for use on areas that contain high amounts of fine silt,

clay, or colloidal soils. Anionic PAM is generally applicable where the timely

establishment of vegetation may not be feasible, is absent or inadequate, or where

topographic conditions, construction activities, or other forces limit the utility of

conventional temporary sediment control practices alone. Anionic PAM may be

beneficial to the following activities/areas: staging areas, rough grading operations,

balanced cut and fill earthwork, man-made or natural stormwater conveyances, haul

roads, roadside ditches, soil stockpiles and borrow areas, phased projects, sites having a

winter shut down, and other exposed areas that have not been adequately stabilized with

vegetation (DCR 2002).

Some of the general considerations to be followed with the application of PAM

are (DCR 2002):

1. PAM should not be over applied; excessive application of anionic PAM can lower

infiltration rates or increase suspended solids in water. Application rates of

anionic PAM above those suggested by the manufacturer will not provide

additional effectiveness. More is not better!

2. Application of anionic PAM in pure form (75%-90% active polymer) is not to

exceed 10 lbs acre-1 per single application event.

3. For anionic PAM to work effectively there must be a source of “divalent cations”,

gypsum (CaSO4.2H2O) is a common source. The divalent cation source may be in

the anionic PAM mix, in the soil, or applied directly to the soil.
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4. Care must be taken to prevent spills onto paved surfaces, as anionic PAM may be

slippery. Gloves should be worn whenever handling anionic PAM and surfaces

that contacted them.

2.2.2 Advantages and Limitations

Anionic PAM has several advantages. Specifically, it:

1. Improves the stability of soils to prevent soil detachment and provides quick

stabilization where vegetation has yet to be established.

2. Promotes flocculation (reduces settling time) of smallest particles, and increases

soil pore volume and permeability.

3. Does not interfere with construction machinery and activities.

4. Is convenient and easy to apply and can be stored along with other soil

amendments (fertilizer, mulch, etc.).

5. Reduces windborne dust conditions, may prevent water quality damages (TSS,

turbidity), eutrophication, habitat destruction, stream channel erosion,

sedimentation, and related remediation costs.

6. Is economically beneficial in the long-term by requiring less mulch, and seeds.

Some of the limitations of anionic PAM are:

1. It is “soil-specific,” so it requires site-specific testing that may take several days

to complete.

2. Solubility is limited by its viscosity and requires an energy intensive process

(mechanical mixing) for proper dissolution.
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3. It enhances precipitation of fine sediments in downstream structures, and

therefore, requires increased maintenance to remove sediments and PAM complex

from basins.

4. Over use of PAM clogs soils and decreases infiltration.

5. It is not effective when applied to pure sand or gravel with no fines, and when

applied over snow cover.

6. Application requires engineers to consider its impact on existing seeding,

fertilizer, pond sizing, and other specifications.

7. Introduction to the natural environment draws public concern.

2.2.3 Toxicology and Regulations

Environmental and safety considerations of anionic PAMs have been thoroughly

reviewed (Barvenik 1994; Sojka et al. 2000). Cationic and neutral PAMs have toxicities

warranting caution or preclusion from sensitive environmental uses, whereas anionic

PAMs are safe when used at prescribed rates. These anionic PAMs exhibit a low order of

toxicity to mammalian systems as they contain less than 0.05% of acrylamide monomer

(AMD), a known genetic, reproductive and neural toxicant. Typically, monomer of this

concentration does not cause toxic effects (Novaes and Berg 2003). In soil, anionic PAM

degrades at the rates of at least 10% per year as a result of physical, chemical, biological

and photochemical processes. Also AMD is metabolized by microorganisms in soil, in

biologically active waters and is not absorbed by plant tissues (Sojka 2001). Dry anionic

PAMs which are used in soil systems have a LC50 values greater than 100 mg L-1 for

aquatic species and a LD50 value greater than 5 mg Kg-1 for mammalian systems.

Moreover, human epidemiology studies demonstrated no association between
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unintentional exposure to PAMs and tumors; in addition, PAM’s molecular dimension is

too large to allow absorption via gastrointestinal tract (Barvenik 1994).

Anionic PAMs have gained a variety of Food and Drug Administration (FDA)

approvals for specific direct and indirect food additive applications. They are used for

scale control in sugar juice and liquor, washing, and assisting of lye peeling of fruits and

vegetables. However, cationic polyacylamides have the danger of creating potential

damage to aquatic life and have a LC50 value of 0.3-10 mg L-1(Barvenik 1994). Thus,

usage of PAM as a commercial product is governed by specific regulations (Barvenik et

al. 1996; DCR 2002; Sojka and Lentz 1996a):

1. Cationic PAM shall not be used at any level because its toxicity to aquatic test

species occurs at very low concentrations.

2. Anionic PAM mixtures shall have less than or equal to 0.05% free acrylamide

monomer by weight as established by the Food and Drug Administration (FDA)

and the Environmental Protection Agency (EPA).

3. Anionic PAM mixtures shall be non-combustible.

4. Users of anionic PAM mixtures shall obtain and follow all Material Safety Data

Sheet (MSDS) requirements and manufacturer recommendations.

2.3 Properties of Clay

Clays are hydrous silicates or aluminosilicates and may broadly be defined as

those minerals which dominantly make up the colloidal fraction of soils, sediments, and

rocks (Theng 1979). The most prevalent clay minerals are the layered aluminosilicates.

Their crystals are composed of two basic structural units, namely, a tetrahedron of

oxygen atoms surrounding a central cation, usually Si4+, and an octahedron of oxygen
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atoms or hydroxyl groups surrounding a larger cation usually Al3+ or Mg2+. The

tetrahedral are joined at their basal corners and the octahedral are joined along their edges

by means of shared oxygen atoms. Thus tetrahedral and octahedral layers are formed as

shown in the Figure 3.

6 O

4 Si

4 O + 2 OH

6 OH

4 Al

Kaolinite (Non colloidal clay)

6 O

4 Si

4 O + 2 OH

4 Al

4 O +2 OH

4 Si

6 O

Montmorillonite (Colloidal clay)

Figure 3: Schematic Representation of the Structure of Aluminosilicate Kaolinite

and Montmorillonite (Hillel 1982)

Colloidal clay such as montmorillonites decisively influences the physical

behavior of the soil. Particularly, clay particles adsorb water on the edge as well as
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between the aluminosilicate layers and thus cause the soil to swell and shrink upon

wetting and drying. Most of the clay-water systems are negatively charged and form an

electrostatic double layer with exchangeable cations (Hillel 1982). According to

(vanOiphen 1963), clay particles carry a net negative charge on their surface and a net

positive charge on their edges, further they claim that clay particles are predominantly

negatively charged because in a electrophoresis experiment the clay sols move toward the

positive electrode.

2.4 The Process of Floc Formation

According to (Poirier 2001), the formation of flocs takes place in two steps. The

first step is to destabilize the dispersion and coagulate the fine particles, which is

generally done by the addition of positively charged species in appropriate quantities to

neutralize the polarity on the suspended fine particles. The second step is the flocculation

step, which takes place via polymer bridging. In polymer bridging, the polyelectrolytes

are long chain molecules, which attaches to the small flocs formed by coagulation, thus

building up into larger agglomerates.

(Laird 1997) described the phenomenon by a process called cationic bridging.

Anionic PAM being negatively charged like the clay surface would expect to experience

repulsion from the negatively charged clay sites. Counter institutively, it binds to some of

the negative sites, primarily through a process called cationic bridging. Divalent cations

are able to bridge the two negatively charged species together. Each positive charge of

the divalent cation bonds to one of the negative sites, either the clay surface or the

polymer to form larger agglomerates as shown in the Figure 4. Thus, the presence of

cation such as Ca++ in solution is assumed to be important for flocculation.
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Figure 4: Cationic Bridging (Laird 1997)

2.5 Conventional Erosion Control Methods

The selection of erosion control methods should be based upon the nature of the

construction activity and the conditions which exist at the construction site. According to

EPA, the soil erosion and sediment control portion of the stormwater pollution prevention

plan should:

1. Minimize the amount of disturbed soil.

2. Prevent runoff from offsite areas from flowing across disturbed areas, and slow

down the runoff flowing across the site.

3. Remove sediment from onsite runoff before it leaves the site.

Some of the common methods of reducing erosion at critical sites include: temporary

seeding, mulching, geotextiles, chemical stabilization and buffer zones (EPA 1992).

Temporary Seeding

Temporary seeding is the growing of short-term vegetative cover on disturbed site

areas that may be in danger of erosion. The purpose of temporary seeding is to reduce
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erosion and sedimentation by stabilizing disturbed areas that will not be stabilized for

long periods of time or where plant growth is not necessary or appropriate. Some of the

advantages of temporary seeding are:

1. It is generally inexpensive and easy to do.

2. It establishes a plant cover fast when conditions are good and stabilizes soils

better.

3. It is aesthetic and can provide sedimentation control.

Some of the limitations are:

1. It depends heavily on the season and rainfall rate for germination and growth of

vegetation.

2. It may require extensive fertilizing which could cause problems with local water

quality.

3. Seeded areas require protection from heavy use.

Mulching

Mulching is a temporary soil stabilization or erosion-control practice in which

materials such as grass, hay, woodchips, wood fibers, straw, or gravel are placed on the

soil surface. Besides stabilizing soils, mulching can reduce the velocity of storm water

run off over an area. When used together with seeding or planting, mulching can aid in

plant growth by holding the seeds, fertilizers, and topsoil in place, by helping to retain

moisture. Some of the advantages of mulching are:

1. They provide immediate protection to soils that are exposed and that are subject

to heavy erosion.
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2. They require no removal because of natural deterioration of mulching and

matting.

Some of the limitations of mulching are:

1. Mulch can be easily blown or washed away by runoff if not secured.

2. Some mulch materials such as wood chips may absorb nutrients necessary for

plant growth.

Geotextiles

Geotextiles are porous fabrics known in the construction industry as filter fabrics,

road rugs, synthetic fabrics, construction fabrics, or simply fabrics. Geotextiles are

manufactured by weaving or bonding fibers made from synthetic materials such as

polypropylene, polyester, polyethylene, polyvinyl chloride, glass and various mixtures of

these. Some of the geotextiles are biodegradable materials such as mulch matting and

netting. Netting is typically made from jute, other wood fiber, or cotton and can be used

to hold the mulching and matting to the ground. Geotextiles, when used alone, can be

used as matting. Matting is used to stabilize the flow on channels and swales. Geotextiles

are also used as separators. For example, it is used as a separator between riprap and soil.

This sandwiching prevents the soil from being eroded from beneath the riprap. Some

advantages of geotextiles are:

1. They are relatively inexpensive for certain applications.

2. They are easy to install.

3. Design methodologies for the use of geotextiles are available.

4. A wide variety of geotextile to match specific needs are available.
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5. They are capable of trapping 80-90% of larger particles like sand (Stevens et al.

2004).

Some of the limitations of geotextiles are:

1. If the fabric is not properly selected, designed, or installed, the effectiveness may

be reduced drastically.

2. Many synthetic geotextiles are sensitive to light and must be protected prior to

installation.

3. They may fail to trap fines (silt and clay) due to inadequate detention time and

settling velocities. The trapping efficiency of silty clay loam soil was found to be

0-20 percent (Stevens et al. 2004).

Chemical Stabilization

Chemical stabilization practices, often referred to as chemical mulch, soil binder,

or soil palliative, are temporary erosion control practices. Materials made of vinyl,

asphalt, or rubber are sprayed onto the surface of the soil to hold the soil in place and

protect against erosion from storm water. Some of the advantages of chemical

stabilization are:

1. They can be easily applied to the surface of the soil.

2. They can be effective in stabilizing areas where plants will not grow.

3. They provide immediate protection to soils.

Some of the limitations of chemical stabilization are:

1. They can create impervious surface, which may in turn increase the amount and

speed of storm water runoff.

2. They may cause harmful effects on runoff water if not used correctly.
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3. They can be more expensive than vegetative cover.

Buffer Zones

Buffer zones are vegetated strips of land used for temporary or permanent water

quality benefits. These zones are used to decrease the velocity of storm water runoff,

which in turn helps to prevent soil erosion, decrease sediment transport, and allows

deposition of suspended sediment. Some of the advantages of buffer zones are:

1. They provide aesthetic as well as water quality benefits.

2. They provide areas for infiltration, which reduces the amount, and speed of storm

water runoff.

3. They provide areas for recreation.

Some limitations of buffer zones are:

1. They may not be cost effective to use if the cost of land is high.

2. They are not feasible if land is not available.

3. They require plant growth before they are effective.

2.6 Summary of Literature Review

Profound studies on the properties of polyacrlamides, properties of clay, process

of flocculation and conventional erosion control methods have been made. Silt fence (geo

textile fabric) is the most commonly used sediment control device in construction sites.

Silt fence has showed poor performance in trapping fine particles, particularly silt and

clay (Stevens et al. 2004). Trapping efficiency of silt fence can be improved by

aggregating the fine particles with flocculants. PAM applied in conjunction with silt

fence was has not been studied. The primary focus of this research is to evaluate the



20

process of flocculation of fine particles with PAM and divalent cations when applied with

the silt fence.
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CHAPTER 3

MATERIALS AND METHODS

PAM can be applied in conjunction with silt fence to increase its performance.

The newly designed apparatus and experimental procedures for flocculation studies as

applicable to silt fence technology are briefly discussed in this chapter.

3.1 Soil Properties

Soil collected in the vicinity of Stillwater, Oklahoma was used to conduct

flocculation experiments. As discussed in the literature review, silt fence showed poor

performance in trapping fine particles, particularly silt and clay. Therefore loam soil,

containing a high percentage of silt and clay, was used to conduct the experiments.

Selected properties of the soil are listed in the Table 1. Soil analysis was done by the Soil

Testing Laboratory at Oklahoma State University.

Table 1: Selected Soil Properties

Texture Loam
% Sand 47.5
% Silt 30
% Clay 22.5

% Organic Matter 0.64
pH 6.2

Electrical Conductivity
(µmhos/cm) 342
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3.2 Soil Preparation for Flocculation Test

The particle size distribution of an undisturbed soil matrix is different from the

particle size distribution of eroded sediment. The percentage of clay is found to be higher

in eroded sediment (Haan et al. 1994). The following procedure suggested by (Jhon Sory

Tapp 1981) was followed to get the sediment sample.

1. Large quantities of soil from the field were collected and air dried for several

days.

2. The air-dried soil was then shredded with a soil shredder and oven dried to

eliminate moisture.

3. The air dried soil was then passed though a hammer mill to break the soil lumps

to approximately 1 mm size.

4. The ground soil was then sieved with a number 270 sieve with a mesh size of 53

microns. Particles passing through the sieve were collected and were dried again

in the oven at 95oC before sampling it for the tests.

5. After drying, a riffle splitter, as shown in Figure 5, was used to obtain a

representative sample.

6. Soil sample obtained from the riffle splitter was mixed with lake water to prepare

the sediment solution. Here, sediment solution prepared with lake water (lake Carl

Blackwell, Stillwater, Oklahoma) is assumed to closely represent runoff from

actual construction sites.

Size distribution of loam soil prepared by following the above procedure is listed

in Table 2.



23

Table 2: Sieved Soil Properties

Texture Silty Clay Loam
% Sand 12.5
% Silt 55
% Clay 32.5

% Organic Matter 0.64
pH 6.2

Electrical Conductivity
(µmhos/cm) 1569

Figure 5: Riffle Soil Splitter

3.3 PAM Properties

Three types of PAM were considered in this study. They are Superfloc A110

(PAM10), Superfloc A120 (PAM 20), and Superfloc A130 (PAM30) from Cytec

industries Inc., Carmel, IN 46032. The physical properties of PAM are listed in Table 3.
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Due to toxicology regulations, flocculation experiment were conducted with anionic

PAM only and three PAM’s were chosen specifically for the silty clay loam soil based on

a literature survey and for the reasons mentioned in Section 2.2.

Table 3: PAM Properties

PAM Molecular Weight Charge
Type Mgm mol-1 (%)

PAM10 15 10
PAM20 15 20
PAM30 15 30

3.4 PAM Solution Preparation

Since PAM is not readily soluble in water, the following procedure was followed

to prepare PAM solutions of the desired concentrations. Initially a one liter 2000 ppm

stock solution was prepared and it was diluted to one liter of 10 ppm, 50 ppm and 100

ppm. The serial dilution process was followed because it is difficult to handle PAM at

weights less than 2 grams and solution volumes greater than 1000 ml.

1. Two grams of PAM were weighed accurately on a high precision balance, and

then transferred to a one liter volumetric flask.

2. A quarter of the volumetric flask was filled with de-ionized (DI) water and placed

on a platform shaker (New Brunswick Scientific).

3. The shaker speed was set to 40 (mark in the instrument, has no units) and

operated for 6 hours. At this point of time, PAM was found to be completely

dissolved.

4. The volumetric flask was filled to 1000 ml to get a PAM stock solution of 2000

ppm.
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5. The volumetric flask with diluted PAM solution was closed with a stopper and

mixed thoroughly by inverted shaking.

6. The stock solution pH was monitored for subsequent runs to ensure that there was

no major change in solution properties, as specified by (Lu et al. 2002; Wang and

Chen 1997).

The 2000 ppm stock solution was diluted to 100 ppm, 50 ppm and 10 ppm. The

procedure to prepare 50 ppm PAM solution is discussed below:

1. Accurately, 25 ml of the 2000 ppm stock solution was pipetted into a one liter

volumetric flask containing 250 ml of DI water.

2. The pipette was washed thoroughly and the rinsed solution was poured back into

the volumetric flask.

3. The volumetric flask was stirred gently and made to 1000 ml to get a PAM

solution of 50 ppm.

4. Finally, the volumetric flask was closed with a stopper and mixed thoroughly by

inverted shaking.

The above procedure was repeated with 50 ml and 5 ml of 2000 ppm stock

solution to obtain 100 ppm and 10 ppm solutions. The 100 ppm, 50 ppm and 10 ppm

PAM solutions were used to conduct jar test experiments. For example, to obtain a PAM

concentration of 0.05 ppm in one liter of sediment, 5 ml of 10 ppm PAM solution was

added to the jar containing one liter sediment solution.

3.5 CaCl2 Solution Preparation

CaCl2 solution was prepared on a molar basis. The molecular weight of CaCl2 is

110.98 g/mole, so a 100 mmole solution was prepared by adding 11.1 g of CaCl2 to 1000
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ml of DI water. This 100 mmole solution was used to conduct experiments. For example,

to obtain a CaCl2 concentration of 5 mmole in one liter of sediment, 50 ml of 100 mmole

CaCl2 solution is added to the jar containing one liter sediment solution.

3.6 Jar Test

Jar testing is an important tool for determining the most effective PAM and the

best dosing regime of PAM and divalent cations. A six-station compact laboratory mixer

(Nova-Tech International Inc.) was used in this study. Paddle speed was controlled with a

five switch-selectable and adjustable preset speed controller. The required paddle speeds

at each of the switch positions were set before starting the test by adjusting the presets

manually. The jar test apparatus is shown in Figure 6.

Figure 6: Jar Test Apparatus

A test procedure in compliance with (ASTM-D2035-80 1999)), with some

modification, was followed. Mixing speed, flocculant mixing time and settling time

called for in ASTM protocol were modified to conduct flocculation experiments for silt

fence application. Initially the sediment solution was prepared by mixing the soil and

water sample in the jar at 300 rpm for three minutes. This process was identified as the

sediment preparation stage, and at the end of this stage, the sediment particles were



27

thoroughly mixed and completely suspended in the jar. This could be observed visually

by switching on the built in illuminator of the jar test apparatus. Next, the flocculants 

were dosed by reducing the mixer speed to 100 rpm, which is termed as the dosing

intensity or flocculent mixing speed. The dosing intensity was selected based on visual

observation of the sediment flow characteristics in the field. Selection of flocculent

mixing time and settling time are discussed in Chapter 4 and Chapter 5. The flocculation

test procedure was divided into three steps as A) pre-test, B) test and C) post-test

procedures.

A) Pre-test Procedure

1. The jars and the respective soil sample dishes, dosing syringes and sampling

bottles were labeled in sequence from 1 to 6.

2. The pH meter was calibrated before the test with standard solutions and the pH of

lake water and the de-ionized water (DI) were measured and recorded.

3. The turbidities of the lake and DI water were measured with an NEP 160 turbidity

meter.

4. The split soil sample obtained by riffle splitting apparatus was transferred initially

to a pre-weighed metal dish, and the net weight of the sample in the dish was

recorded to calculate the initial sediment concentration. The soil sample from the

metal dish was carefully transferred to its corresponding numbered jar.

5. The metal dish was rinsed with lake water to make sure that all the particles in the

dish were transferred to the jar.

6. The jar was then filled with lake water up to the 1 liter mark.

7. The procedure was repeated for other jars.
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8. Paddle stirrers were lowered into the jars and the mixer was started.

9. The sediment mixing speed of 300 rpm, to prepare sediment solution, and the

flocculant dosing intensity of 100 rpm, to aid flocculation, were pre-set to position

5 and 4, respectively, on the 5-position preset switch.

10. As soon as the entire soil sample was suspended in the water, the temperature of

the sediment mixture was measured and recorded.

11. PAM dosing syringes were calibrated to deliver the required volume and labeled

in the same sequence as the jars.

12. Syringes were filled with the required volume and type of flocculant and care was

taken to eliminate any air bubbles in the syringe by tapping with a glass rod.

13. While the paddle stirrers were running, pH and turbidity of the sediment solution

mixture was measured in each of the jars, and the readings were recorded.

14. Turbidity of the sediment solution mixture was measured three times in each jar

and the average turbidity was calculated.

15. The dosing module was installed over the jars and the syringes were arranged to

match the label numbers on respective jars. Figure 7 shows the picture of the

dosing module installed on the jars.

16. Two timers with audible beeps were employed to indicate the end of dosing time

and beginning of sampling time.

17. Paddle mixing speed for position 4 and 5 were double checked.

18. Sampling bottles for supernatant turbidity (500ml) and supernatant concentration

(125ml), to be measured after the flocculation tests, were cleaned, dried, weighed,

labeled and arranged in the sampling module as shown in Figure 7.
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19. The sampling module was arranged in front of the jar test apparatus and care was

taken to make sure that the label on the sampling bottle matched the label on the

jars.  

Figure 7: Sampling Device for Jar Test Experiment

20. The 500 ml and 125 ml sampling bottles for the respective jars were connected

with plastic tubing and the tubing network was connected to a common vacuum

line.

21. Copper tubes (connected to the plastic tubing from the 125 ml bottles) were

inserted into the respective dosing module, after the flocculation test. To decant

the supernatant, vacuum was applied to create suction in the both sets of bottles

and draw supernatant from the respective jars into the bottles.

22. The depth of copper tubes used for sampling in the jars was checked for

uniformity.
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B) Test Procedure

1. Before starting the test procedure, all labels, vacuum lines, preset paddle speeds

and timers were checked again.

2. The sediment and the lake water in the jar were mixed for three minutes at 300

rpm to prepare the sediment solution.

3. With two persons conducting the test, as soon as the soil particles were suspended

in the sediment solution in the jar, one person changed the paddle speed to 100

rpm, by switching to position 4 on the pre-set switch, and immediately started

dosing flocculant into the jars and the other person simultaneously started the two

timers and helped the first person in dosing the flocculant.

4. The floc formation was observed and recorded.

5. When the first timer (30 seconds) started to beep, indicating the end of dosing

time, the mixer was stopped and the sampling copper tubes were inserted into the

respective dosing module.

6. The flocs at this point of time started to settle within the jar.

7. When the second timer (60 seconds) started to beep, vacuum was applied to the

sampling device and the supernatant sample was decanted into the sampling bottle

for further analysis.

8. The vacuum was applied until the supernatant level in the jar was below the

copper tubing.

C) Post-test Procedure

Post-test procedure involved the measurement of the following response

variables:
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a) Supernatant Temperature

1. After collecting sufficient supernatant samples into the sampling bottles, the

vacuum was turned off and the copper tubing from each of the jars was pulled out

of the dosing module.

2. The temperature of the remaining supernatant in the jar was immediately

measured and recorded.

b) Supernatant Turbidity

1. The turbidity of the supernatant sample collected in 500 ml sampling bottle was

measured with the turbidity meter, continuously stirring with a magnetic stirrer.

2. Three readings were measured and recorded from each sample bottle.

3. Flocculation efficiency, E was calculated using Equation (1) (Vreysen et al.

2003).

1001 ×







−=

oT

T
E (1)

where T is the turbidity of the supernatant, and To is the initial turbidity of the sediment

solution measured during the pre-test procedure.

c) Supernatant pH

The pH of the supernatant sample, collected in the 125ml bottles, was measured

with the pre-calibrated pH meter and recorded.

d) Supernatant Suspended Solid Concentration

1. The samples collected in 125 ml bottles were also used for the supernatant

suspended sediment concentration measurement.

2. Using a syringe, 10 ml of the sample from the 125 ml bottle was drawn and

passed through a 0.45 micron filter.
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3. The sample passing through the filter was collected in pre-weighed metal dish.

4. The sample in the metal dish was evaporated and the dissolved solids correction

factor was calculated.

5. The remaining sample in the 125 ml bottle was weighed and the level of sample

was marked. The sample in the bottle was then dried and the suspended sediment

concentration was calculated.

6. The initial sediment concentration before the test was calculated based on the

measured weight of soil sample, during the pre-test procedure.

7. The ratio of suspended solid concentration of supernatant to the initial suspended

solid concentration of the sediment solution was calculated, to get the percentage

reduction in suspended solid concentration by flocculation process. The %SSC

reduction is given by Equation 2.

% Re 1 100
o

S
SSC duction

S

 
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 (2)

where S is the suspended solid concentration of the supernatant, and So is the

initial suspended solid concentration of the sediment solution.
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CHAPTER 4

EXPERIMENTAL DESIGN

The experimental strategy followed to determine the best flocculant and its

optimum concentration range are discussed in this chapter. In this study, a sequential

experimental approach was followed. Sequential experiments are applicable when a

process consists of many steps with numerous factors at each stage. The incorporation of

all factors of interest into one experiment would result in a study too large to conduct

practically. However, by segmenting the analysis of the factors involved, a study of the

first factor can be performed followed by a second study on a reduced number of factors

(Peace 1993). In this study, the experimental problem was described by identifying the

control factors and response variables, and then a sequential experimental schematic was

developed to achieve the objective.

4.1 Experimental Problem Description

In examining any experimental process, what is being sought is a detailed

understanding of the relationship between factors that can be changed in the process and

their effects on the output of the process. Any condition or setting that can vary during a

process is called an independent variable and any output or result of the process is termed

a dependent variable. Independent variables are commonly referred to as control factors

and dependent variables are known as responses (DelVecchio 1997). The problem under

study can be described as follows:
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Response Variables

The response variables to be analyzed in this study are:

• Flocculation efficiency (E)

• Percentage reduction in suspended solid concentration (%SSC)

According to (Tobiason et al. 2001), sediment particles responsible for turbidity

are rich in clay and silt. Hence flocculation efficiency, based on turbidity and percentage

suspended solid concentration reduction (%SSC), as an additional response variable, was

measured to evaluate the flocculation process.

Control Factors

The control factors identified in this study are:

• Sediment concentration

• PAM type based on charge density

• PAM concentration

• Exchangeable cation concentration (CaCl2 in this case)

• Mixing time

• Mixing speed (Dosing intensity)

• Sampling time

Change in sediment concentration would produce a change in response because

the amount of PAM available for a specific sediment concentration will not be the same

for different sediment concentration; hence, sediment concentration is one of the control

variables in this study. As discussed in Section 2.2, flocculation with PAM is soil specific

and the response would vary with different PAM type. Hence, PAM type based on

different charge density was selected as a control variable in this study. Negatively
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charged anionic polyacrylamide binds with predominantly negatively charged clay

particles due to the presence of net positive charge on its edges; however, the existence of

divalent cations enhances flocculation due to the bridging phenomenon explained by

(Laird 1997). Consequently, flocculation experiments were conducted with both anionic

PAM and divalent cations. Change in PAM and exchangeable cation concentration would

produce a change in response; thus, PAM and exchangeable cation concentration were

also considered as control variables.

Solubility of CaCl2 was found to be 74.5 grams per 100 grams of water. Gypsum

and agricultural lime are slightly soluble in water and their solubility data are 0.209

grams per 100 grams of water and 0.1 gram/100 gram saturated solution (Perry and

Green 1997). Since CaCl2 is highly soluble in water, it can be easily prepared and

quantified in the laboratory, and therefore, CaCl2 was used as a source of divalent cations

to conduct experiments.

Mixing time and mixing speed (dosing intensity) are anticipated to affect the

response because a decrease in mixing time and/or mixing speed may not allow the

sediment and flocculant to mix thoroughly. On the other hand, an increase in mixing time

and mixing speed may break the flocs formed during flocculation process; thus, both

were considered as control variables in this study. Finally, sampling time is also a control

variable because an increase in sampling time enables more particles to settle and hence

affect the response.
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4.2 Experimental Sequence

The experimental procedure is divided into four steps and a sequential

experimental approach was followed to conduct experiments. The schematic of

sequential experimental approach is shown in Figure 8.

• Screening Test-I 

• Screening Test-II

• Level-Selection test

• Factorial experiment

Screening Test - II

Outcome

Outcome

Level-Selection Test

Three levels of PAM
concentration for factorial
experiment,

Screening Test- I

Number of control factors
reduced from seven to three

Factorial Experiment

Best PAM, Best
concentration range for
PAM and CaCl2

Three levels of CaCl2
concentration for
factorial experiment

Parameters required for
Screening Test-I

Figure 8: Schematic of Sequential Experiment Approach
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As discussed in Section 4.1, the problem has seven control factors; this makes the

experimental process very complex. For example, if all the factors were to be considered

simultaneously, with three levels for each of the factor, a full factorial experiment would

require: 37 = 2187 experiments (Number of experiments = Level(Factor) ), which is time

consuming and not feasible.

To simplify the process, Screening Test-I and Screening Test-II were performed

to eliminate factors that have little or no effect on the output of interest, thus reducing the

list of control factors to a more manageable number to perform further experiments. Once

the experiment was simplified, the level-selection experiments were performed to

identify the number of levels and their quantitative values required at each level of the

refined control factor. In the final step, a factorial experiment was conducted with the

refined factors and their levels selected from previous steps. The detailed experimental

procedure followed in each experimental step is discussed in further sections of this

chapter

4.3 Screening Test-I 

In Screening Test-I, jar test was conducted to determine the behavior of control

factors namely: PAM type and PAM concentration. In this study, experiments were

conducted with only one sediment concentration for silty clay loam soil. The choice of

sediment concentration was based on rainfall simulation experiments conducted at

varying slopes with sitly clay loam soil. From the simulation experiments, the average

sediment concentration in the run off was found to be 25,000 ppm; hence, a sediment

concentration of 25,000 ppm was selected to conduct further jar tests. It should be noted,

however, that due to varying sediment flow characteristics, the sediment concentration
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and shear stress distribution will not be uniform over the entire construction site

subjected to sediment control.

The test procedure followed here is in compliance with ASTM-D2035 (1999).

The mixing speed and mixing time were modified from the ASTM protocol to conduct

experiments with sediment. Here, the sediment mixing speed and mixing time were 300

rpm and 60 seconds, respectively. Since 300 rpm is the maximum speed the paddle could

be operated, this speed was selected to mix the sediment completely. Also when the

paddle is rotated at 300 rpm speed for 60 seconds the sediment is thoroughly mixed and

suspended; this can be observed visually by switching on the built in illuminator. Once

the sediment is mixed at 300 rpm for 60 seconds, PAM was dosed and the paddle was

continuously operated at 300 rpm for 60 seconds for better mixing of PAM and sediment.

Then paddle was operated at a reduced speed of 100 rpm for 60 seconds to enable smaller

flocs formed to increase in size. If the paddle was continuously operated at 300 rpm, the

flocs may break. So the speed was reduced from 300 rpm to 100 rpm. At this point of

time, larger flocs are formed. To prevent these larger flocs from breaking, the paddle

speed was reduced from 100 rpm to 20 rpm and operated for 30 seconds. After three

stages of mixing, the treated sediment was allowed to settle for 5 minutes. Then the

supernatant turbidity and sediment concentration were measured.

Based on the flocculation behavior of PAM type and PAM concentration

interpreted from Screening Test-I, one PAM type and PAM concentration was selected

for conducting Screening Test-II. Results obtained from Screening Test-I experiments are

discussed in Section 5.1.
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4.4 Screening Test-II

In Screening Test-II, jar test was performed to determine the significance of

control factors, mixing time and sampling time. The significance of a specific control

factor was analyzed based on response analysis, in which the response was measured by

varying the factor under study with all the other factors kept constant. This study

involved a total of seven control factors as mentioned in Section 4.1, five of which were

kept constant in this experiment. They were:

• Sediment concentration

• PAM type

• PAM concentration

• CaCl2 concentration

• Mixing speed (dosing intensity)

For this experiment, constant values of control factors PAM type and PAM

concentration were selected based on the results of Screening Test-I. Experiments were

conducted with only one mixing speed (dosing intensity) in this study. A speed of 100

rpm was selected as a representative mixing speed based on field observations. Regarding

the CaCl2 concentration, van Olphen (1963) found that divalent cations in the

concentration range of 0.5 mmole to 2.0 mmole have higher flocculation power for the

solution considered in his study. Since, the study involves a higher sediment

concentration of 25000 ppm, CaCl2 concentration of 3 mmole was selected for Screening

Test-II.



40

Screening Test-II was conducted in two stages. In the first stage, the significance

of mixing time was studied by varying mixing time with the other five control factors

fixed. At this point, only six out of the seven control factors were considered. The

seventh control factor, sampling time (whose significance to be determined in the second

stage of Screening Test-II), was arbitrarily set to 30 seconds. Similarly, the significance

of sampling time was studied by varying sampling time with the other five control factors

fixed. Here, the seventh control factor, the mixing time, was selected from the first stage

of Screening Test-II. The results of Screening Test-II are discussed in Section 5.2.

Results of Screening Test-II showed that mixing time and sampling time do not

make significant difference in the flocculation characteristics; therefore, constant mixing

time and sampling time were selected based on the results and kept constant while

conducting further experiments. With the aid of Screening Test-I and Screening Test-II,

the problem was simplified by reducing the number of control factors from seven to

three; hence, the control factors in this problem were reduced to: PAM type, PAM

concentration, and CaCl2 concentration.

4.5 Level-Selection Test

Level-Selection tests were conducted to determine the number of levels and the

quantitative values required at each level for the refined factors. Jar tests were conducted

in two steps. In the first step, experiments were conducted with PAM, which is called

PAM only-experiments. In the second step, experiments were conducted with CaCl2,

which is called CaCl2-only experiments. Each of the three factors: PAM type, PAM

concentration and CaCl2 concentration requires at least three levels to study the effect of

non-linearity of response variables; consequently, from the experimental data, three
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levels are inferred for each of the control factor. The experimental procedure followed in

PAM-only and CaCl2-only experiments are discussed as follows.

PAM-Only Experiment

In this experiment, jar tests were performed in compliance with the protocol

discussed in Section 3.5. Experiments were conducted using each type of PAM by

varying PAM concentration at suitable increments within the concentration range of 0-60

ppm. Based on the results, a response curve was generated. Figure 9 shows a hypothetical

response curve that might be obtained from this experiment. Three levels of

concentration representing high, medium, low concentration within the nonlinear region

were selected from the response curve.
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Figure 9: Typical Response Curve for Flocculation Process
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CaCl2-Only Experiment

In this experiment, jar test were performed in compliance with the protocol

discussed in Section 3.5. Experiments were conducted by varying CaCl2 concentration at

suitable increments within a CaCl2 concentration range of 0-25 mmole. Based on the

results, a response curve was generated. Figure 9 shows a typical response curve that

might be obtained from this experiment. Three levels of concentration representing high,

medium, low concentration within the nonlinear region were selected from the response

curve.

The three factors and their corresponding levels to be obtained from level-

selection test are listed in Table 4. The three levels for the factor PAM type were selected

as PAM10, PAM20, and PAM30 for the reasons mentioned in Section 2.2. Results

obtained from Level-Selection tests are discussed in Section 5.3

Table 4: Level Chosen for Factorial Experiment

Level 1 2 3
PAM Type PAM10 PAM20 PAM30
PAM Conc. (ppm) Low Medium High
CaCl2 Conc. (mmole) Low Medium High

4.6 Factorial Experiment

The results obtained from the previous sets of experiments assisted in simplifying

the problem to a three factor, three level experiment. Thus, a full factorial experiment

requires only 27 experiments to study the flocculation characteristics for silty clay loam

soil. The 27 experiments represent 27 different combinations of PAM type, PAM
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concentration and CaCl2 concentration. The experimental protocol developed in Section

3.6 was followed to conduct a full factorial experiment. In the dosing part mentioned in

Section 3.5, both the flocculants PAM and CaCl2 were dosed simultaneously. Results

obtained from these experiments are discussed in Sections 5.4 and 5.5

4.7 Factorial Experiment Analysis

As an experimental rule of thumb, nesting is required when qualitative factor

level changes with its quantitative factor level (Kolarik 1995). In this study, PAM type is

a qualitative factor nested with the factor PAM concentration.

Replication allows an easy estimate of the error associated within the factors.

Since the experiments involve a significant amount of time and resources, only few of the

experiments were repeated. If multiple replications are not made for each treatment

combination, the error term cannot be estimated directly. In such cases, the higher order

interactions may be pooled and used to estimate the experimental error term (Kolarik

1995). The three factor FAT-CRD (factorial arrangement of treatments-completely

randomized design) model that represents the problem is given as:

Yijkl = µ + Ai + Bj(i) + Ck +Bj(i)*Ck + Ai*Ck + εl(ijk)

where i = 1, 2, …, a

j = 1, 2, …, b

k = 1, 2, …, c

l = 1, 2, …, n
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µ is the overall mean, Yijkl represents an observation. The Ai, Ck terms are main effect

terms. εl(ijk) is the pooled experimental error. Specifically, A measures the failure of the

average response of the A levels to be the same when averaged over all levels of factor B

and C. Bj(i) is read as “B nested within A”. Bj(i)*Ck, Ai*Ck are two-factor interaction

terms. For example, the AC interaction term measures the failure of A or C to respond

identically over all levels of A or C, averaged over factor B.

In this analysis, A is the PAM type, B is the PAM concentration, and C is the

calcium chloride concentration. Statistical Analysis Software (SAS) was used to develop

an analysis of variance (ANOVA) for estimating facor significance.

4.8 Settling Velocities

The study discussed in this section is based on visual observation, and these

observations are casual and not quality controlled.

The size of flocs produced in Screening Test-I, Screening Test-II and factorial

experiments were observed visually. For an experiment involving PAM and CaCl2, the

settling velocities of flocs were analyzed by conducting a batch-settling test. The

procedure described in Section 4.3 was followed to conduct jar test experiment with

PAM20 concentration of 2.5 ppm and CaCl2 concentration of 3 mmole. The flocs along

with the supernatant produced are poured into a sedimentation column of height 14

inches placed near horizontal position in order to prevent floc destruction. The

suspension is allowed to settle after inverting the cylinder (slowly) five times. A clear

liquid slurry interface was seen descending. The height of interface between clear liquid

and suspended solids was observed at regular interval of time. Finally, the batch-settling
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test curve was generated by plotting the height of interface as a function of time. The

results obtained form batch-settling test are discussed in Section 5.8
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CHAPTER 5

RESULTS AND DISCUSSION

Experiments were conducted following the methods and design described in

Chapters 3 and 4. The results obtained are presented and discussed in this chapter.

5.1 Screening Test-I 
 

As a first task, jar tests were conducted to determine the behavior of PAM type

and PAM concentration. Test procedures for Screening Test-I were discussed in Section

4.3.

As indicated by Figures 10 and 11, the flocculation efficiency and %SSC

reduction increased with the PAM concentration up to about 2.5 ppm, and then both

observables decreased with PAM concentration. There was no significant difference

among the performance of the three PAMs; however, PAM20 concentration between 2.5

ppm and 3.5 ppm neither reduces the flocculation efficiency nor increases the supernatant

suspended solid concentration (SSC) drastically. The other counterparts did show a major

difference. For example, with reference to Tables A1, A2 and A3 in Appendix A, the

flocculation efficiency of PAM 20 at 3.5 ppm is 89%, but for PAM10 and PAM30, the

flocculation efficiencies are 74% and 84%, respectively. This indicates that PAM20 is

stable at higher concentrations when compared to PAM10 and PAM30.
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The flocculation behavior observed during the trial experiments revealed the

following: The PAM concentration of 2.5 ppm is the threshold limit, after which the

flocculation efficiency decreases and remains approximately constant. Also, PAM 20 is

more stable at higher PAM concentration. Thus, PAM20 of concentration 2.5 ppm was

selected for conducting Screening Test-II in the next step.
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Figure 10: Flocculation Efficiency Response for Screening Test-I 
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5.2 Screening Test-II

The significance of the control factors, mixing time and sampling time were

determined in Screening Test-II. Test procedure discussed in Section 4.4 was followed to

conduct the experiments.

The experiments were conducted in two stages. In the first stage, the mixing time

was varied and the response curve was generated using constant control factors and their

values listed in Table 5. A constant sampling time of 30 seconds was used at this point, as

discussed in Section 4.4. The change in response with increasing mixing time is

represented graphically in Figure 12, and the same is listed in Table 5.

Table 5: Test Parameters for Screening Test - II

Control factor Value
Sediment concentration 25000 ppm

PAM type PAM 20
PAM concentration 2.5 ppm
CaCl2 concentration 3 mmole

Mixing speed 100 rpm
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Figure 12: Effect of Mixing Time on Flocculation Efficiency
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Table 6: Effect of Mixing Time on Flocculation Efficiency

Mixing Sediment Supernatant Flocculation
Time Turbidity Turbidity Efficiency
(Sec) (NTU) (NTU) (%)

Run #1
5 5720 421 93
10 5740 310 95
20 5700 190 97
30 5740 187 97
45 5690 184 97
60 5700 147 97

Run #2
5 5700 273 95
10 5740 257 96
20 5720 150 97
30 5720 150 97
45 5730 150 97
60 5730 130 98

The results indicate that the change in flocculation efficiency is not significant in

the mixing time range of 5-60 seconds. Therefore, a mixing time in the range of 5-60

would be appropriate in conducting our experiments. Moreover, field observations at a

silt fence setup suggested that the runoff sediment would flow for approximately 30

seconds from the upstream to the downstream edge of the fence before it starts

impounding behind the fence. Therefore, assuming that PAM would be applied at the

upstream edge of the silt fence a mixing time of 30 seconds was chosen to conduct

further experiments. The experiments were repeated two times. The results obtained from

two runs are listed in Table 6.

In the second stage, sampling time was varied and the response curve was

generated using constant control factors with values as listed in Table 5. As discussed in
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Section 4.4, a constant mixing time selected from the first stage of Screening Test-II was

used at this point. The change in response with increasing sampling time is listed in Table

7, and the same is represented graphically in Figure 13

Table 7: Effect of Sampling Time on Flocculation Efficiency

Sampling Sediment Supernatant Flocculation
Time Turbidity Turbidity Efficiency
(sec) (NTU) (NTU) (%)

Run #1
10 5818 185 97
30 5867 146 98
60 5910 139 98
120 5837 136 98
300 5916 143 98

Run #2
10 5861 167 97
30 5930 134 98
60 5916 138 98
120 5910 145 98
300 5939 130 98

Figure 13: Effect of Sampling Time on Flocculation Efficiency
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The results indicated that within the range of 10-300 seconds there was no

significant change in flocculation efficiency. Consequently, a settling time within the

rage of 10-300 seconds would be appropriate. The experiments were also repeated two

times. The results obtained from two runs are tabulated in Table 7.

This choice of sampling time was based on the dimensions of the jar used to

conduct experiment (Figure 14) and Stoke’s law mentioned in Equation 3.

10 cm

Sampling point

Sampling tube

1 Litre mark

Figure 14: Dimension of Jar in Jar Test Apparatus
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where Vs is the settling velocity (cm/se), ν is the kinematic viscosity at 68oF (0.01003

cm2/sec), g is the gravitational constant (980 cm/sec2), and SG is the specific gravity

(2.65).

Experiments were conducted with sediment solution having particles smaller than

53 microns. In the jar test apparatus, the sampling tube from the sampling module is

located such that the sampling point is at 10 cm deep from the one liter mark of the jar

(Figure 14). According to Stoke’s law, a 53-micron particle takes approximately 40

seconds to reach the sampling point. Assuming particles greater that 53 microns were

flocculated and if the settling time is 30 seconds, the sampling point at 10 cm deep would

be free of flocculated particles. So a settling time of 30 seconds was selected for further

experiment.

5.3 Level-Selection Test

Level-Selection tests were conducted to determine the number of levels and the

quantitative values required at each level for the refined factors obtained from Screening

Test-I and Screening Test-II. Test procedure discussed in Section 4.5 was followed to

conduct experiments.

PAM-Only Experiments

Experiments were conducted with each PAM type as a flocculant; the flocculation

efficiency and the percentage SSC reduction were measured. Tables A4, A5, and A6 in

Appendix A present the results obtained for PAM10, PAM20 and PAM30, respectively.

Figures 15 and 16 show the response, flocculation efficiency and percentage SSC

reduction, respectively, for each PAM type at different increments of PAM
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concentrations. The results indicate that the flocculation efficiency and %SSC reduction

increased with increase in PAM concentration at lower concentration range (0-10 ppm).

Flocculation efficiency rises rapidly at 0.1 ppm and then increased slowly in magnitude

up to 10 ppm. PAM concentration above 10 ppm caused the flocculation efficiency to

remain approximately constant, up to 40 ppm. Further increase in PAM concentration

from 40 ppm to 60 ppm decreased the flocculation efficiency. From the response curve,

the choice of low level was fixed as 0.05 ppm based on the assumption that it may give

better response when used in combination with CaCl2. Accordingly, 5 ppm was selected

as the medium level, which is in the region where the response was maximum, and 10

ppm was selected as the high level because it was the threshold point after which the

response remains approximately constant.
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Figure 15: Effect of PAM Concentration on Flocculation Efficiency
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Figure 16: Effect of PAM Concentration on %SSC Reduction

Experiments were repeated two times for a few data points. The results obtained

from two runs are listed in Table 8. From the results, it is obvious that the variability of

flocculation efficiency and %SSC reduction are higher at low PAM concentration. This is

due to the higher action based error introduced while preparing 0.05 ppm PAM solution.

As listed in Table B2 of Appendix B, the amount of experimental uncertainty in

preparing a 0.05 ppm PAM solution was 25% compared to only 5% for a 0.5 ppm

solution.

Table 8: Repetition for PAM-Only Experiments

PAM PAM Flocculation Flocculation %SSC %SSC
Type Conc. Efficiency Efficiency Reduction Reduction

(ppm) Run #1 (%) Run #2 (%) Run #1 Run #2
PAM10 0.05 10 5 30 43
PAM10 0.5 91 95 95 97
PAM20 0.05 10 2 30 30
PAM20 0.5 93 89 97 96
PAM30 0.05 1 5 21 44
PAM30 0.5 95 90 98 97
Control 0 10 8 55 50
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CaCl2-Only Experiments

Table A7 of Appendix A presents the responses obtained for experiments

conducted with CaCl2 as a flocculant. The same results are illustrated graphically in

Figures 17 and 18. The results showed that the change in responses was erratic in the

CaCl2 concentration range of 0.05-25 mmole considered in the experiment. From the

results, it can also be inferred that beyond certain concentration, the response decreases

with increase in CaCl2 concentration.

Visual observation of CaCl2-Only experiments showed that the flocs formed by

CaCl2 were very tiny compared to the size of flocs formed by PAM-Only experiment.

Since the response curve was erratic, the concentration levels required to conduct

factorial experiments were selected based on literature findings. van Olphen (1963) found

divalent cations in the concentration range of 0.5 mmole to 2.0 mmole have higher

flocculation power for the sol considered in his study. In this case, the low level was

fixed as 0.5 mmole, the medium level was fixed to a value of 2.5 mmole (close to the one

suggested by van Olphen (1963)), and the high level was fixed as 5 mmole. This is

because at concentrations greater than 5 mmole the response decreases and remains

approximately constant, as evident from Figures 17 and 18.

Experiments were repeated two times for a few data points. The results obtained

from the two runs are listed in Table 9. The experimental uncertainties associated with

the preparation of the CaCl2 solution are discussed in Appendix B; moreover, Table B3 in

Appendix B lists the expected percentage error for each of the CaCl2 concentration data

considered.
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Figure 17: Effect of CaCl2 Concentration on Flocculation Efficiency
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Figure 18: Effect of CaCl2 Concentration on %SSC Reduction
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Table 9: Repetition for CaCl2-Only Experiment

CaCl2 Flocculation Flocculation % SSC % SSC
Concentration Efficiency Efficiency Reduction Reduction

(mmole) Run #1(%) Run #2 (%) Run #1 Run #2
0.5 11 12 44 42
2.5 12 13 46 45
5 18 8 44 30

From the Level-Selection test, three concentration values were selected for both

PAM and CaCl2 to conduct factorial experiment. Quantitative values inferred for three

levels selected for each of the control factor from level selection test are listed in Table

10.

Table 10: Factor Levels Chosen for Factorial Experimentation

5.4 Factorial Experiment Results and Data Analysis

The three factors considered in this study were assigned as follows:

• Factor A is PAM type

• Factor B is PAM concentration

• Factor C is CaCl2 concentration

Experiments were conducted for all possible combinations (33=27) of three

factors and three levels of each factor mentioned in Table 10. In the factorial experiment,

jar test experiments were conducted with both the flocculants PAM and CaCl2 dosed

Level 1 2 3
PAM Type PAM10 PAM20 PAM30

PAM Conc. (ppm) 0.05 5 10
CaCl2 Conc. (mmole) 0.5 2.5 5
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simultaneously as mentioned in Section 4.6. The results based on flocculation efficiency

and percentage SSC reduction responses are tabulated in Table A8 and A9. The results

indicated that flocculation efficiency and %SSC reduction obtained in full factorial

experiments are almost similar to PAM-Only experiments; however, visual observation

showed that the flocs formed in factorial experiments are larger than flocs formed in

PAM-Only experiments.

Experiments were repeated two times for nine data points. The results obtained

from the two runs are listed in Table 11, which indicates that the variability of

flocculation efficiency and %SSC reduction are higher at low PAM and CaCl2

concentration. This is due to the higher error introduced while preparing 0.05 ppm PAM

and 0.5 mmole CaCl2 solutions. As mentioned in Table B2 and Table B3 of Appendix B,

the percentage expected error for a factorial experiment in preparing 0.05 ppm PAM

solution and 0.5 mmole CaCl2 solutions are 5% and 5%, respectively; however, the

percentage error in preparing 5 ppm, 10 ppm PAM solution and 2.5 mmole, 5 mmole

CaCl2 solutions are less, as evident from Table B2 and Table B3.

Table 11: Repetition for Factorial Experiment

Combination Flocculation Flocculation % SSC % SSC
PAM PAM CaCl2 Efficiency Efficiency Reduction Reduction
Type (ppm) (mmole) Run #1 (%) Run #2 (%) Run #1 Run #2

10 0.05 2.5 7 14 48 47
20 0.05 5 5 13 28 41
30 0.05 2.5 13 11 48 50
10 0.05 0.5 11 2 40 42
10 5 2.5 97 95 98 99
20 10 2.5 97 96 98 100
20 5 5 99 98 98 99
30 10 0.5 96 95 98 96
30 10 0.5 96 96 98 97
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5.5 Data Analysis Based on Flocculation Efficiency

Inference Based on ANOVA Table and Main Effect Plots

An analysis of variance was conducted for the following hypothesis:

Ho: All responses are same

HA: One of the responses is different

The ANOVA table was developed using the SAS software. Following are the results

inferred from the ANOVA table (Table 12): 

 
Table 12: ANOVA Table for Three-Factor Crossed and Nested CRD (Flocculation
efficiency)

Source Df SS MS F-calc P-value

TC 26 44885
abcn-1     

 
Ai 2 6.783 3.391 1.5 0.247

a-1     
 

Bj(i) 6 44284 7380.7 3263.4 0.0
a(b-1)

Ck 2 17.682 8.841 3.909 0.037
c-1     

 
Pooled 16 36.187 2.262
Exp.
Error

Bj(i)Ck 12 26.151 2.179
a(b-1)(c-1)

AiCk 4 10.036 2.509
(a-1)(c-1)
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• PAM type (factor A) is not significant (P=0.247); hence, PAM type does not

affect flocculation efficiency. The same can be inferred from the main effect plot

of A (Figure 19), where the response is same for all PAM types.

• PAM concentration (factor B) is significant (P=8.061×10-29); hence, PAM

concentration affects flocculation efficiency. This is also evident from the main

effect plot of PAM concentration (Figure 20), where the response increases with

increase in PAM concentration;

• CaCl2 concentration (factor C) is significant (P=0.0368); hence, CaCl2

concentration affects flocculation efficiency. This is also evident from the main

effect plot of CaCl2 concentration (Figure 21). Close examination of Figure 21

show a little increase in response toward the medium level and reaches saturation

toward the high level.
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Figure 19: Main Effect for PAM type (Flocculation Efficiency)
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Factor B Main Effect Plot
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Figure 20: Main Effect for PAM Concentration (Flocculation Efficiency)
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Figure 21: Main Effect for CaCl2 Concentration (Flocculation Efficiency)
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Inference Based on LSD Test

The test hypothesis for least significant difference (LSD) is as follows:

Ho: All the treatment effects are same

HA: At least one treatment effect is different

LSD helps to determine the significant level of each factor considered in this experiment.

Bold numbers in the table represents a 5% significance level. Since we assumed there is

no interaction effect, LSD is not required for the interaction effects. Detailed explanation

for the LSD data analysis based on flocculation efficiency is given in Appendix C. 

Following are the summary of results:

• Table 13 illustrates that the treatment effect of all PAM types are same.

• Table 14 indicates that there is a treatment difference between 0.05 ppm and 5

ppm; however, there is no difference between 5 ppm and 10 ppm. Hence, the

PAM concentration operating range can be limited between 0.05 ppm and 5 ppm.

• Table 15 implies that there is a treatment difference between 0.5 mmole and 5

mmole, and there is no difference between 0.5 mmole and 2.5 mmole. In addition,

there is no difference between 2.5 mmole and 5 mmole. Thus, the operating range

of CaCl2 concentration can be between 1.5 mmole to 3.5 mmole.
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Table 13: LSD for Main Effect, PAM Type (Flocculation Efficiency)

Main Effect A
LSD 1.557

decreasing
order
(→ )

A PAM20 PAM10 PAM30
Average 69.4 68.8 68.2

increasing PAM30 68.2 1.226 0.676
Order PAM10 68.8 0.55
( ↓ ) PAM20 69.4

Table 14: LSD for Main Effect, PAM Concentration (Flocculation Efficiency)

Main Effect B
LSD 1.557

decreasing
order
(→ )

B 5 10 0.05
Average 97.8 97.4 11.2

increasing 0.05 11.2 86.649 86.189
Order 10 97.4 0.46
( ↓ ) 5 97.8

Table 15: LSD for Main Effect, CaCl2 Concentration (Flocculation Efficiency)

Main Effect C
LSD 1.557

decreasing
order
(→ )

C 5 2.5 0.5
Average 69.8 68.8 67.8

increasing 0.5 67.8 1.982 0.979
Order 2.5 68.8 1.003
( ↓ ) 5 69.8
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5.6 Data Analysis Based on %SSC Reduction

Inference Based on ANOVA Table, and Main Effect Plots

An analysis of variance was performed for the following hypothesis:

Ho: All responses are same

HA: One of the responses is different

The ANOVA table was developed using the SAS software. Following are the results

inferred from the ANOVA table (Table 16): 

Table 16: ANOVA Table for Three-Factor Crossed and Nested CRD (%SSC Reduction)

Source Df SS MS F-calc P-value

TC 26 20234.93
abcn-1     

 
Ai 2 50.130 25.065 2.608 0.115

a-1     
 

Bj(i) 6 19752.51 3292.086 342.574 1.06E-12
A(b-1)

Ck 2 94.903 47.451 4.938 0.027
c-1     

 
Pooled* 12* 115.318* 9.7*

Exp.
Error

Bj(i)Ck 12 295.973 24.664
A(b-1)(c-1)

AiCk 4 41.409 10.352
(a-1)(c-1)

* Pooled experimental error is calculated based on the interaction terms: A*C and

A*B*C obtained from three crossed factor ANOVA table.
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• PAM type (factor A) is not significant (P=0.115); hence, PAM type does not

affect %SSC reduction. The same can be inferred for the main effect plot of A

(Figure 22), where the response is same for all PAM types.

• PAM concentration (factor B), is significant (P=1.06×10-12); hence, PAM

concentration affects %SSC reduction. This is also evident for the main effect plot

of PAM concentration (Figure 23).

• CaCl2 concentration (factor C) is significant (P=0.0272); hence, CaCl2

concentration affects %SSC reduction. This is also evident from the main effect

plot for CaCl2 concentration (Figure 24). Close examination of Figure 24 show a

little increase in response toward the medium level and reaches saturation towards

the high level.
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Figure 22: Main Effect for PAM Type (%SSC Reduction)



66

Factor B Main Effect
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Figure 23: Main Effect for PAM Concentration (%SSC Reduction)
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Inference Based on LSD Test

Least significant difference (LSD) test was conducted with the following

hypothesis:

Ho: All the treatment effects are same

HA: At least one treatment effect is different.

LSD helps to determine the significant level of each factor considered in this experiment.

Bold numbers in the table represents a 5% significance level. Since there is no interaction

effect, LSD is not required for the interaction effects.

• Table 17 illustrates that the treatment effect of all PAM types are same.

• Table 18 implies that there is a treatment difference between 0.05 ppm and 5

ppm; however, there is no difference between 5 ppm and 10 ppm. Hence, the

PAM concentration operating range can be limited between 0.05 ppm and 5 ppm.

• Table 19 implies that there is a treatment difference between 0.5 mmole and 5

mmole, and there is no difference between 0.5 mmole and 2.5 mmole. In addition,

there is no difference between 2.5 mmole and 5 mmole. Thus, the operating range

of CaCl2 concentration can be between 1.5 mmole to 3.5 mmole.

Table 17: LSD for Main Effect, PAM Type (%SSC Reduction)

Main Effect A
LSD 3.184

Decreasing
order
(→ )

A PAM20 PAM10 PAM30
Average 81.3 78.6 78.2

increasing PAM30 78.2 3.077 0.418
Order PAM10 78.6 2.659
( ↓ ) PAM20 81.3
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Table 18: LSD for Main Effect, PAM Concentration (%SSC Reduction).

Main Effect B
LSD 3.184

Decreasing
order
(→ )

B 5 10 0.05
Average 98.5 98.4 41.2

Increasing 0.05 41.2 57.271 57.177
Order 10 98.4 0.094
( ↓ ) 5 98.5

Table 19: LSD for Main Effect, CaCl2 Concentration (%SSC Reduction)

Main Effect C
LSD 3.184

Decreasing
order
(→ )

C 5 2.5 0.5
Average 81.7 79.4 77.1

Increasing 0.5 77.1 4.592 2.269
Order 2.5 79.4 2.323
( ↓ ) 5 81.7

5.7 Summary of the Data Analysis

From the statistical analysis made for the two responses namely: flocculation

efficiency and %SSC reduction, the following can be inferred:

1. Flocculation characteristics measured based on flocculation efficiency and %SSC

reduction lead to similar interpretations.

2. Visual observation showed that, flocs formed in factorial experiments are larger

compared to PAM-Only and CaCl2-Only experiments.

3. The statistical analysis supports the inferences made by visual inspection.
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5.8 Settling Velocities

The results discussed in this section are based on visual observation, and these

observations are casual and not quality controlled.

When observed visually, no flocs were formed after dosing the flocculant (CaCl2)

in CaCl2-Only experiments. Floc formation was observed in PAM-Only experiments

after dosing the flocculant. Similar to PAM-Only experiment, floc formation was also

observed in factorial experiments (Experiments conducted with PAM and CaCl2). When

the size of flocs formed in PAM-Only and CaCl2-Only experiments are compared

visually, the factorial experiments produced larger flocs compared to PAM-Only

experiments. In addition, visual observations also suggested that the larger flocs settled

within 10 seconds, and smaller flocs settled within 15-20 seconds in the 10 cm tall jar

shown in Figure 14 of Section 5.2.

Batch-Settling Test

Batch-settling test was conducted following the procedure described in Section

4.8. The heights of interface at different time intervals were noted. Results obtained from

batch-settling test are presented in Table 20. The batch-settling curve obtained by plotting

the height of interface as a function of time is as shown in Figure 25.
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Table 20: Results of Batch Settling Test

Height of Interface Settling Time
×10-2 (m) (sec)

35.56 0
33.02 2
30.48 4
27.94 7
25.40 10
22.86 13
20.32 16
17.78 19
15.24 23
12.70 27
10.16 32
7.62 36
5.08 41
2.22 47
1.91 60
1.59 92
1.27 148
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Figure 25: Height of Interface as a Function of Time
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The results indicate that the interface settles with a higher settling velocity. As

shown in Table 20 the interface descends approximately 33 cm (33×10-2 m) in 47

seconds.

5.8 First Order Economic Analysis for the Cost of PAM

Cost analysis performed for the application of polyacrylamide to silt fence

technology is discussed in this section. A drainage area of 50×10 ft in Stillwater, with an

annual average rainfall of 33 inches (Stillwater Fire Department 2006) was considered in

this study. The plot area with a silt fence length of 10 ft is as shown in Figure 25.

Drainage Area

Silt Fence

10 ft

50 ft

2.75 ft

Figure 25: Typical Drainage Area Installed with Silt Fence

Cost Calculations

The following assumptions were made to estimate the cost of PAM required for

one foot of silt fence:



72

• The plot area was assumed to have a silty clay loam soil with a uniform sediment

concentration of 25000 ppm.

• A PAM concentration of 5 ppm was considered in this calculation. This was done

to determine a maximum cost estimate based on the results given in Section 5.5,

which showed that the operating range of PAM concentration for a 25000 ppm

sediment solution is between 0.05 and 5 ppm per liter of sediment.

• PAM and the sediment solution in the drainage area were ideally mixed

• The cost involved for the mode of applying PAM to silt fence was ignored.

Based on the above assumptions, the cost for applying PAM was estimated to be

$0.11 per foot of silt fence. The detailed cost estimation procedure is explained in

Appendix D.
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CHAPTER 6

CONCLUSIONS AND RECOMMENDATIONS

Flocculation experiments were conducted with three flocculants and exchangeable

cations (CaCl2 in this study) on silty clay loam soil. The effectiveness of flocculants and

their combination with exchangeable cations were studied with the help of jar test

experiments. The response variables of the experiment, i.e., flocculation efficiency and

%SSC reduction, were analyzed statistically. Following are the conclusions drawn and

recommendations based on this study.

6.1 Conclusions

• The three PAMs (flocculants): PAM10, PAM20, PAM30 considered for this

study showed the same flocculation characteristics for the silty clay loam soil.

• PAM played a more vital role in increasing flocculation efficiency and %SSC

reduction than CaCl2 (exchangeable cations).

• The best operating range for PAM and CaCl2 concentrations for desired

flocculation efficiency and %SSC reduction were found to be 0.05-5 ppm and 1.5-

3.5 mmole, respectively.

• After a threshold limit, the flocculation efficiency and %SSC reduction decreases

with increase in PAM concentration. This supported the statement: “Application

rates of anionic PAM above those suggested by the manufacturer will not provide

additional effectiveness.”
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6.2 Recommendations

The following are the recommendations of this study:

• In addition to flocculation efficiency and %SSC reduction, the size of the flocs

should be determined to study the influence of CaCl2 and to have a good

understanding of the flocculation process.

• Jar test experiments should be performed for at least two more sediment

concentrations to predict the flocculant requirement for different sediment

concentration.

• Jar test experiments should be performed at different mixing speeds (dosing

intensities) to determine the effect of mixing on flocculation process.

• Field experiments should be performed with anionic PAM and CaCl2 to determine

their effective application in real construction sites.



75

CHAPTER 7

REFERENCES

ASTM-D2035-80. (1999). "Standard Practice for Coagulation-Flocculation Jar Test of
Water." D 2035-80, ASTM international, West Conshohocken, Pennsylvania.

Barrett, M. E., Kearney, J. E., McCoy, T. G., Malina, J. F., Charbeneau, R. J., and Ward,
G. H. (1995). "An evaluation of the use and effectiveness of temporary sediment
controls." Technical Report CRWR 261, Center for Research in Water Resources,
The University of Texas at Austin, Austin, Texas 78712.

Barvenik, F. W. (1994). "Polyacrylamide characteristics related to soil applications." Soil
science, 158(4), 235-243.

Barvenik, F. W., Sojka, R. E., Lentz, R. D., Andrawes, F. F., and Messner, L. S. (1996).
"Fate of acrylamide monomer following application of polacrylamide to
cropland." Proceedings from conference held at College of Southern Idaho, Twin
falls, Idaho, 103-109.

Bennett, H. H. (1957). Elements of Soil Conservation, McGraw-Hill Book Company Inc.,
New York.

CASQA. (2003). "Stormwater Best Management Practice (BMP) Handbooks."
Construction Handbook, California Stormwater Quality Association, Menlo Park,
California 94026.

David Bjorneberg, J., Aase, K., and Sojka, R. E. (1997). "Preliminary results using
polyacrylamide with sprinkler irrigation." University of Idaho winter commodity
schools, Idaho.

DCR (2002). "Application of Polyacrylamide for Soil stabilization and Stromwater
Management." Virginia Department of Conservation and Recreation, Richmond,
Virginia.

DelVecchio, R. J. (1997). Understanding Design of Experiments: A Primer for
Technologists (Hanser Understanding Books), Hanser Gardner Publications,
Cincinnati, Ohio.



76

EPA. (1992). "Sediment and erosion control." EPA 832-R-92-005, Environmental
Protection Agency, Washington, D.C.

EPA. (2001). "The National Water Quality Inventory." EPA-841-R-02-001, Washington,
DC.

Field, L. Y. (1997). "Best Management Practices for Soil Erosion." Purdue Research
Foundation, West Lafayette, Idiana 47907-1146.

Flanagan, D. C., Chaudhari, K., and Norton, L. D. (2002). "Polyacrylamide soil
amendment effects on runoff and sediment yield on steep slopes: Part I. simulated
rainfall conditions." Transactions of the ASAE, 45(5), 1327-1337.

Gasem, K.A. M. (2006) Research methods CHE-6703, Class notes. Oklahoma State
University, Stillwater, OK-74075

Gray, D. M., and Leiser, A. T. (1989). Biotechnical Slope Protection and Erosion
Control, Kreiger, Malabar,Florida.

Green, V. S., and Stott, D. E. "Polyacrylamide: A review of use, effectiveness, and cost
of a soil control amendment." (1999) 10 th international Soil Conservation
Organization Meeting, Purdue University and the USDA-ARS National Soil
Erosion Research Laboratory.

Green, V. S., Stott, D. E., Norton, L. D., and Graveel, J. G. (2000). "Polyacrylamide
molecular weight and charge effects on infiltration under simulated rainfall." Soil
Science Society of America Journal, 64(5), 1786-1791.

Haan, C. T., Barfield, B. J., and Hayes, J. C. (1994). Design hydrology and
sedimentology for small catchments, Academic Press., San Diego, California.

Hillel, D. (1982). Introduction to soil physics, Academic press, Inc, San Diego,
California.

Khor. (2005). "Land degradation causes $10 billion loss to South Asia annually." TWN
Third World Network, Penang, Malaysia.

Kolarik, W. J. (1995). Creating Quality: Cocepts, Systems, Strategies, and Tools,
McGraw-Hill, New York.

Laird, D. A. (1997). "Bonding between polyacrylamide and clay mineral surfaces." Soil
Science, 162, 826-832.

Lentz, R. D., Shainberg, I., and Sojka, R. E. (1992). "Preventing irrigation furrow erosion
with small applications of polymers." Soil Science Society of American Journal
(56), 1926-1932.



77

Lu, J. H., Wu, L., and Letey, J. (2002). "Effects of soil and water properties on anionic
polyacrylamide sorption." Soil Science Society of America Journal, 66(2), 578-
584.

Malik, M., and Letey, J. (1991). "Adsorption of polyacrylamide and polysaccharide
polymers on soil materials." Soil Science Society of America Journal, 55(2), 380-
383.

Morrow, S., Smolen, M., Stiegler, J., and Cole, J. (2003). "Using Vegetation for Erosion
Control on Construction Sites." Fact sheets F-1514, Oklahoma Cooperative
Extension, Oklahoma State University, Stillwater, Oklahoma.

Novaes, W. d. C., and Berg, A. (2003). "Experience with a New Non-Biodegradable
Hydrogel (Aquamid®): A Pilot Study." Aesthetic Plastic Surgery, 27(5), 276-300.

Peace, G. S. (1993). Taguchi Methods: A Hands-On Approach, Addison-Wesley,
Reading, Massachusetts.

Perry, R. H., and Green, D. W. (1997). "Perry's Chemical Engineers' Handbook."
Physcical and chemival data, P. E. Liley, G. H. Thomson, D. G. Friend, T. E.
Daubert, and E. Buck, eds., McGraw-Hill.

Pimentel, D., Harvey, C., Resosudarmo, P., Sinclair, K., Kurz, D., McNair, M., Crist, S.,
Shpritz, L., Fitton, L., Saffouri, R., and Blair, R. (1995). "Environmental and
economic costs of soil erosion and conservation benefits." Science, 267(5201),
1117-1123.

Poirier, M. R. (2001). "Evaluation of flocculation and filtration procedures applied to
WSRC sludge." WSRC-TR-2001-00213, U.S Department of energy, Oak ridge,
TN.

Rao-Espinosa, A., Bubenzer, G. D., and Miyashita, E. S. "Sediment and Runoff Control
on Construction Sites Using Four Application Methods of Polyacrylamide Mix."
National Conference on Tools for Urban Water Resource Management and
Protection Proceedings, Chicago, IL.

Smith, R., Alexander, R., and Lanfear, K. (1992). "Stream water quality in the
conterminous US - Status and trends of selected indicators during the 198s."
USGS P-2400, Washington, DC.

Sojka, R. E. "The use of PAM -- a linear polyacrylamide for use in irrigation water."
NAICC Annual Meeting, Orlando, FL.

Sojka, R. E., and Lentz, R. D. (1994). "Time for yet another look at soil conditioners."
Soil Science, 158(4), 233-243.



78

Sojka, R. E., and Lentz, R. D. "A PAM Primer: A Brief History of PAM and PAM-
related Issues." Proceedings from conference held at the College of Southern
Idaho, University of Idaho, Moscow, ID, 11-20.

Sojka, R. E., and Lentz, R. D. "A PAM Primer: A Brief History of PAM and PAM-
related Issues." Proceedings from conference held at the College of Southern
Idaho, University of Idaho, Moscow, ID, 11-20.

Sojka, R. E., Lentz, R. D., Shainberg, I., Trout, T. J., Ross, C. W., Robbins, C. W., Entry,
J. A., Aase, J. K., Bjorneberg, D. L., Orts, W. J., Westermann, D. T., Morishita,
D. W., Watwood, M. E., spofford, T. L., and Barvenik, F. W. "Irrigation with
polyacrylamide (PAM)- nine years and a million acres of experience." National
irrigation symposium, Proceeding of the fourth decennial symposium, Arizona,
Phoenix, 161-169.

Stevens, E., Barfield, B. J., Gasem, K. A. M., Yeri, S., and Arjunan, J. "The Faliure
Avoidance and Effective Silt Fence Technology (FAESF): Modeling and
Laboratory Evaluation." 11th Annual International Petroleum Environmental
Conference, Albuquwrque, New Mexico.

Theng, B. K. G. (1979). Developments in Soil Science, Vol. 9: Formation and Properties
of Clay-Polymer Complexes, Elsevier scientific publishing company, New York.

Tobiason, S., Jenkins, D., Molash, E., and Rush, S. (2001). "Polymer use and testing for
erosion and sediment control and construction sites." Erosion contron, Feature
article.

Troeh, F. R., Hobbs, J. A., and Danahue, R. L. (1991). Soil and Water Conservation,
Prentice Hall, Englewood Cliffs, New Jersy.

vanOiphen, H. (1963). Clay colloid chemistry for clay technologists, geologists and soil
scientists, John Willey & Sons, New York.

Vreysen, S., Maes, A., and Rulyov, N. N. (2003). "Effect of various parameters on the
ultraflocculation of fine sorbent particles, used in the wastewater purification
from organic contaminants." Water Research, 37(9), 2090-2096.

Wang, C. C., and Chen, K. Y. (1997). "Laoratory study of chemical coagulation as a
means of treatment for dredged material." D-77-39, U.S. Army Engineers
Waterways Experiment Station, Vicksburg, Mississippi.



79

APPENDIX A

TABLES OF EXPERIMENTAL DATA
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Table A1: Results of Screening Test-I (PAM10)

PAM 10
PAM Sediment Supernatant Flocculation Sediment Supernatant % SSC
Conc. Turbidity Turbidity Efficiency Conc. Conc. Reduction
(ppm) (NTU) (NTU) (%) (ppm) (ppm)

0 6530 4858 26 25000 9910 60
0.15 6777 910 87 25000 660 97
0.3 6777 891 87 25000 500 98
0.6 6777 563 92 25000 200 99
0.9 6777 510 92 25000 200 99
1.2 6777 452 93 25000 140 99 
1.5 6777 431 94 25000 140 99
2 6777 295 96 25000 60 100

2.5 6777 563 92 25000 500 98
3 6777 909 87 25000 1340 95

3.5 6777 1751 74 25000 3700 85
4 6777 2523 63 25000 6200 75
5 6777 2932 57 25000 7080 72
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Table A2: Results of Screening Test-I (PAM20)

PAM 20
PAM Sediment Supernatant Flocculation Sediment Supernatant % SSC
Conc. Turbidity Turbidity Efficiency Conc. Conc. Reduction
(ppm) (NTU) (NTU) (%) (ppm) (ppm)

0 6530 4858 26 25000 9910 60
0.15 6777 1020 85 25000 720 97
0.3 6777 823 88 25000 420 98
0.6 6777 627 91 25000 240 99
0.9 6777 584 91 25000 240 99
1.2 6777 489 93 25000 200 99
1.5 6777 481 93 25000 140 99
2 6777 389 94 25000 100 100

2.5 6777 429 94 25000 160 99
3 6777 504 93 25000 420 98

3.5 6777 753 89 25000 920 96
4 6777 1659 76 25000 3460 86
5 6777 2226 67 25000 5060 80
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Table A3: Results of Screening Test-I (PAM30)

PAM30
PAM Sediment Supernatant Flocculation Sediment Supernatant % SSC
Conc. Turbidity Turbidity Efficiency Conc. Conc. Reduction
(ppm) (NTU) (NTU) (%) (ppm) (ppm)

0 6530 4858 26 25000 9910 60
0.15 6777 1017 85 25000 640 97
0.3 6777 808 88 25000 440 98
0.6 6777 621 91 25000 260 99
0.9 6777 559 92 25000 200 99
1.2 6777 471 93 25000 160 99
1.5 6777 460 93 25000 160 99
2 6777 364 95 25000 60 100

2.5 6777 491 93 25000 360 99
3 6777 707 90 25000 840 97

3.5 6777 1112 84 25000 1880 92
4 6777 2022 70 25000 4520 82
5 6777 2470 64 25000 5780 77
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Table A4: Results of PAM-Only Experiment (PAM10)

PAM 10
PAM Sediment Supernatant Flocculation Sediment Supernatant %SSC
Conc. Turbidity Turbidity Efficiency Conc. Conc. Reduction
(ppm) (NTU) (NTU) (%) (ppm) (ppm)

0 5901 5340 9 25042 11350 52
0.05 5847 5279 7 25352 17726 36
0.1 5837 1291 78 25040 1917 92
0.25 5963 853 86 25043 994 96
0.5 6051 320 93 25040 749 96
1 6015 250 96 25039 577 98

1.5 5894 373 94 25043 676 97
2 5956 226 96 25036 1056 96

2.5 5912 215 96 25039 609 98
3 5895 191 97 25038 632 97

3.5 5952 186 97 25037 529 98
4 5913 176 97 25039 585 98

4.5 5874 150 97 25041 519 98
5 5959 172 97 25037 566 98
7 5953 201 97 25043 471 98
10 5889 192 97 25037 368 99
15 6015 363 94 25040 641 97
25 5971 291 95 25045 296 99
40 5907 597 90 25036 1099 96
60 5939 717 88 25038 1267 95
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Table A5: Results of PAM-Only Experiment (PAM20)

PAM 20
PAM Sediment Supernatant Flocculation Sediment Supernatant %SSC
Conc. Turbidity Turbidity Efficiency Conc. Conc. Reduction
(ppm) (NTU) (NTU) (%) (ppm) (ppm)

0 5901 5340 9 25042 11350 52
0.05 5908 5303 6 25361 17855 30
0.1 5896 1954 67 25045 2814 89
0.25 5914 1377 77 25040 1657 93
0.5 6002 655 91 25035 975 97
1 6004 500 92 25042 836 97

1.5 5932 317 95 25038 634 97
2 5918 275 95 25036 685 97

2.5 5882 273 95 25039 570 98
3 5851 287 95 25037 623 98

3.5 5873 188 97 25039 273 99
4 5897 204 97 25039 578 98

4.5 5860 178 97 25037 561 98
5 5918 193 97 25043 402 98
7 5885 212 96 25042 529 98
10 5924 198 97 25040 501 98
15 5957 274 95 25040 565 98
25 5976 293 95 25043 527 98
40 5934 609 90 25047 886 96
60 5894 826 86 25044 1256 95
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Table A6: Results of PAM-Only Experiment (PAM30)

PAM 30
PAM Sediment Supernatant Flocculation Sediment Supernatant %SSC
Conc. Turbidity Turbidity Efficiency Conc. Conc. Reduction
(ppm) (NTU) (NTU) (%) (ppm) (ppm)

0 5901 5340 9 25042 11350 52
0.05 6006 5718 3 25389 14158 33
0.1 5888 1807 69 25040 2909 88
0.25 5975 1308 78 25043 1937 92
0.5 6028 590 93 25040 809 97
1 5990 403 93 25034 634 97

1.5 5928 273 95 25036 441 98
2 5903 250 96 25035 699 97

2.5 5884 210 96 25042 694 97
3 5856 233 96 25046 649 97

3.5 5937 175 97 25040 363 99
4 5877 206 96 25044 513 98

4.5 5926 169 97 25039 699 97
5 5892 197 97 25039 555 98
7 5869 191 97 25034 290 99
10 5916 199 97 25038 497 98
15 5934 383 94 25036 730 97
25 5924 372 94 25037 716 97
40 5886 680 88 25044 1046 96
60 5909 736 88 25045 1422 94
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Table A7: Results of CaCl2-Only Experiment

CaCl2
CaCl2 Sediment Supernatant Flocculation Sediment Supernatant % SSC
Conc. Turbidity Turbidity Efficiency Conc. Conc. Reduction

(mmole) (NTU) (NTU) (%) (ppm) (ppm)
0 6050 5703 6 25038 14411 42

0.5 5972 5288 11 25039 14116 44
1 6003 5436 9 25040 16972 32

1.5 6017 5504 9 25037 12334 51
2 5993 5196 13 25037 16608 34

2.5 5962 5241 12 25039 13447 46
3 6012 5154 14 25040 17082 32

3.5 5973 4953 17 25038 15707 37
4 5958 4949 17 25038 16616 34

4.5 6005 5064 16 25038 17577 30
5 5967 4916 18 25037 13967 44

5.5 5964 4874 18 25039 14612 42
6 5982 5467 9 25039 15632 38

6.5 5958 5394 9 25038 13941 44
7 5910 5490 7 25039 18331 27

7.5 5931 5550 6 25039 13703 45
8 5923 5487 7 25037 14609 42

8.5 5946 5509 7 25039 14978 40
9 6050 5220 14 25039 18382 27

9.5 5972 5189 13 25039 13650 45
10 5973 5398 10 25037 18113 28

10.5 5994 5440 9 25037 18041 28
11 6016 5269 12 25039 14897 48

11.5 5997 5187 14 25037 14108 44
12 5974 5590 6 25038 17180 31
14 5980 5475 8 25040 14587 42
16 5855 5509 6 25040 19017 24
18 5917 5382 9 25039 13862 45
20 5905 5470 7 25038 16016 36
25 5914 5407 9 25039 15746 37
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Table A8: Full Factorial Experiment Results Based on Flocculation Efficiency

Combination Sediment Supernatant Flocculation
PAM PAM Conc. CaCl2 Conc. Turbidity Turbidity Efficiency
Type (ppm) (mmole) (NTU) (NTU) (%)

10 0.05 0.50 5916 5275 11
10 0.05 2.50 5899 5498 7
10 0.05 5.00 5861 5072 13
10 5 0.50 5905 151 97
10 5 2.50 5858 102 98
10 5 5.00 5946 61 99
10 10 0.5 5842 192 97
10 10 2.5 5870 97 98
10 10 5 5809 76 99
20 0.05 0.50 5854 5184 11
20 0.05 2.50 5825 5053 13
20 0.05 5.00 5874 5001 15
20 5 0.50 5876 168 97
20 5 2.50 5856 123 98
20 5 5.00 5827 84 99
20 10 0.5 5880 242 96
20 10 2.5 5865 175 97
20 10 5 5816 95 98
30 0.05 0.5 5836 5339 9
30 0.05 2.5 5827 5073 13
30 0.05 5 5841 5345 8
30 5 0.5 5817 211 96
30 5 2.5 5845 154 97
30 5 5 5828 91 98
30 10 0.5 5851 241 96
30 10 25 5845 165 97
30 10 5 5847 103 98
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Table A9: Full Factorial Experiment Results Based on %SSC Reduction

Combination Sediment Supernatant % SSC

PAM
PAM
Conc. CaCl2 Conc. Conc. Conc. Reduction

Type (ppm) (mmole) (ppm) (ppm)
10 0.05 0.50 25379 15176 40
10 0.05 2.50 25386 13155 48
10 0.05 5.00 25365 18494 27
10 5 0.50 25359 532 98
10 5 2.50 25374 209 99
10 5 5.00 25316 400 98
10 10 0.5 25344 380 99
10 10 2.5 25352 162 99
10 10 5 25344 298 99
20 0.05 0.50 25374 15386 39
20 0.05 2.50 25379 13368 47
20 0.05 5.00 25352 18339 28
20 5 0.50 25356 442 98
20 5 2.50 25362 407 98
20 5 5.00 25349 415 98
20 10 0.5 25371 749 97
20 10 2.5 25325 581 98
20 10 5 25359 55 100
30 0.05 0.5 25341 13492 47
30 0.05 2.5 25387 13090 48
30 0.05 5 25362 13694 46
30 5 0.5 25373 542 98
30 5 2.5 25388 336 99
30 5 5 25368 145 99
30 10 0.5 25342 423 98
30 10 25 25379 542 98
30 10 5 25381 453 98
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APPENDIX B

ERROR ANALYSIS
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B1. Action Based Error Propagation for Experiments Involving PAM

The desired PAM concentration in sediment solution was obtained by a serial

dilution procedure as discussed in Section 3.4. The following calculation provides

estimates of the expected uncertainties in the desired PAM concentration in one liter of

sediment.

Multivariate error propagation was employed in this analysis (Gasem 2006). The

expected uncertainties in the instruments used to prepare PAM solutions are listed in

Table B1, as supplied by the manufacturers.

Table B1: List of Instrument Precision

Let C1, C2, and C3 be the concentration of stock PAM solution, concentration of

second diluted PAM solution, and concentration of PAM in sediment, respectively. Then

by definition:

1
1

M
C

V
= B1

1
2

2
2 1

M
V VVC C

V V

×  = =  
 

B2

Description σ

Kimax, class A 25 ml volumetric pipet ±0.03 ml
Kimax, class A 50 ml volumetric pipet ±0.05 ml
Kimax, class A 100 ml volumetric pipet ±0.08 ml
Pyrex, with life time red graduation line ±0.60 ml
1000 ml volumetric flask
Kimax, class A 50 ml measuring jar ±0.25 ml
Kimax, class A 250 ml measuring jar ±0.80 ml
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1
2

3

3 2 1 3
3 23

M
V

VV
V

V V M V
C C

V V V

 × 
×  
 

× ×   = = =  
 

B3

where M1 is the mass of PAM (mg), V is the volume of water (liter),V2 is the volume

withdrawn from C1 solution (liter), and V3 is the volume withdrawn from C1 solution

(liter)

Propagating the error in C3 (Gasem 2006), we get:

3 3 2 1

2 2 2 2
2 2 2 2 23 3 3 3

3 2 1
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V V M V
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Equation B13 was used to calculate the uncertainty of PAM concentration in sediment

solution.

If the second dilution process is avoided, and a definite volume of stock solution

is used to obtain the desired PAM concentration in the sediment solution, Equation B3

becomes:

3 1
3 2

V M
C

V

×
= B14

Consequently, the equation to calculate the uncertainty of PAM concentration in

sediment solution is:

3 3 1

2 2 2 2

2 2 2 2
3 3 1

4C V M V

C V M V

σ σ σ σ
= + +  B15

The uncertainties estimated for each of the concentration data in PAM-Only

experiment and factorial experiment are listed in Table B2.
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Table B2: Uncertainty of PAM Concentration Values

C1 C2 C3 σC2
3 σC3 %

ppm ppm ppm ppm ppm Error
PAM-Only experiment

2000 50 0.05 0.000156 0.0125 25.00
2000 100 0.1 0.000625 0.025 25.00
2000 50 0.25 0.000157 0.01251 5.00
2000 100 0.5 0.000626 0.02502 5.00
2000 100 1 0.000629 0.02508 2.51
2000 100 1.5 0.000635 0.02519 1.68
2000 100 2 0.000642 0.02534 1.27
2000 100 2.5 0.000652 0.02552 1.02
2000 100 3 0.000663 0.02575 0.86
2000 100 3.5 0.000677 0.02602 0.74
2000 100 4 0.000693 0.02632 0.66
2000 100 4.5 0.000711 0.02666 0.59
2000 100 5 0.000731 0.02704 0.54
2000 200 7 0.005795 0.07612 1.09
2000 200 10 0.009224 0.09604 0.96
2000 500 15 0.018658 0.13659 0.91
2000 500 25 0.02405 0.15508 0.62
2000 2000 40 0.064804 0.25457 0.64
2000 2000 60 0.067684 0.26016 0.43

Factorial experiment
2000 10 0.05 6.27E-06 0.0025 5.01
2000 500 5 0.015962 0.12634 2.53
2000 500 10 0.016973 0.13028 1.30
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B2. Action-Based Error Propagation for Experiments Involving CaCl2

The desired CaCl2 concentration in sediment solution was obtained by adding a

definite volume of a stock CaCl2 solution of known concentration as discussed in Section

3.5. The following calculation provides an estimate of the expected uncertainties for the

desired CaCl2 concentration in one liter of sediment. By a solution stochiometric balance:

m1V1 = m2V2 B16

1 1
2

2

mV
m

V
= B17

where m1 is the molarity of stock CaCl2 solution (mmole), V1 is the volume of stock

solution added to sediment (liter), m2 is the molarity of CaCl2 in sediment solution

(mmole), and V2 is the volume of sediment solution.

Propagating the error in m2, we get:
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As mentioned earlier m1 is the molarity of stock CaCl2 solution. To obtain
1

2
mσ ,

initially, the stock solution concentration was expresses in terms of mass/volume.

Specifically, let C1 be the concentration of CaCl2 in terms of mass/volume, then:

1
1

M
C

V
= B26

where M1 is the mass of CaCl2 (grams) and V is the volume of water added (liter).

Propagating the error in C1, we get:
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1 1
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2 2 2
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C M V

C M V

σ σ σ
= +  B32

Therefore,

1

1

2
2

2( )
C

m Molar mass

σ
σ =

−
B33

The uncertainties estimated for each of the concentration data in PAM-Only

experiment and factorial experiment are listed in Table B3.
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Table B3: Uncertainty of CaCl2 Concentration Values

C1 m1 m2 σm2
2 σm2 %

g/l mmole mmole mmole mmole Error
CaCl2-only experiment

11.1 100 0.5 0.00063 0.025 5.01
11.1 100 1 0.00063 0.025 2.52
11.1 100 1.5 0.00065 0.025 1.69
11.1 100 2 0.00066 0.026 1.29
11.1 100 2.5 0.00068 0.026 1.04
11.1 100 3 0.00071 0.027 0.89
11.1 100 3.5 0.00074 0.027 0.77
11.1 100 4 0.00077 0.028 0.69
11.1 100 4.5 0.00081 0.028 0.63
11.1 100 5 0.00085 0.029 0.58
11.1 100 5.5 0.0009 0.03 0.54
27.8 250 6 0.00423 0.065 1.08
27.8 250 6.5 0.00429 0.065 1.01
27.8 250 7 0.00435 0.066 0.94
27.8 250 7.5 0.00441 0.066 0.89
27.8 250 8 0.00448 0.067 0.84
27.8 250 8.5 0.00456 0.068 0.79
27.8 250 9 0.00464 0.068 0.76
27.8 250 9.5 0.00472 0.069 0.72
27.8 250 10 0.00481 0.069 0.69
27.8 250 10.5 0.0049 0.07 0.67
27.8 250 11 0.005 0.071 0.64
27.8 250 11.5 0.0051 0.071 0.62
55.5 500 12 0.01692 0.13 1.08
55.5 500 14 0.01739 0.132 0.94
55.5 500 16 0.01793 0.134 0.84
55.5 500 18 0.01854 0.136 0.76
55.5 500 20 0.01923 0.139 0.69
55.5 500 25 0.02125 0.146 0.58

Factorial experiment
11.1 100 0.5 0.00063 0.025 5.01
11.1 100 2.5 0.00068 0.026 1.04
11.1 100 5 0.00085 0.029 0.58
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APPENDIX C

LSD ANALYSIS
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C1. LSD Analysis for Flocculation Efficiency

LSD analyses were based on the procedure described in Kolarik (1995). Table C1

represents the full factorial experiment results based on flocculation efficiency.

Table C1: Full Factorial Experiment Results Based on Flocculation Efficiency

Combination Sediment Supernatant Flocculation
PAM PAM Conc. CaCl2 Conc. Turbidity Turbidity Efficiency*
Type (ppm) (mmole) (NTU) (NTU) (%)

10 0.05 0.50 5916 5275 10.83
10 0.05 2.50 5899 5498 6.80
10 0.05 5.00 5861 5072 13.46
10 5 0.50 5905 151 97.44
10 5 2.50 5858 102 98.25
10 5 5.00 5946 61 98.97
10 10 0.5 5842 192 96.71
10 10 2.5 5870 97 98.34
10 10 5 5809 76 98.69
20 0.05 0.50 5854 5184 11.45
20 0.05 2.50 5825 5053 13.25
20 0.05 5.00 5874 5001 14.86
20 5 0.50 5876 168 97.15
20 5 2.50 5856 123 97.91
20 5 5.00 5827 84 98.55
20 10 0.5 5880 242 95.88
20 10 2.5 5865 175 97.02
20 10 5 5816 95 98.37
30 0.05 0.5 5836 5339 8.52
30 0.05 2.5 5827 5073 12.94
30 0.05 5 5841 5345 8.49
30 5 0.5 5817 211 96.37
30 5 2.5 5845 154 97.36
30 5 5 5828 91 98.44
30 10 0.5 5851 241 95.88
30 10 25 5845 165 97.17
30 10 5 5847 103 98.24

*For LSD analysis the flocculation efficiency data corrected to two decimal place was

used. In Table A8 of Appendix-A the flocculation efficiency data was rounded off to

whole numbers
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Tables C2, C3 and C4 are formed by grouping the flocculation efficiency values

from Table C1 under PAM10, PAM20, and PAM30 corresponding to PAM and CaCl2

concentration.

Table C2: Full Factorial Experiment (Flocculation Efficiency, PAM10)

PAM10
PAM(ppm) 0.05 5 10

0.5 10.83 97.44 96.71
2.5 6.8 98.25 98.34

C
aC

l 2
(m

m
ol

e)

5 13.46 98.97 98.69

Table C3: Full Factorial Experiment Results (Flocculation Efficiency, PAM20)

PAM20
PAM (ppm) 0.05 5 10

0.5 11.45 97.15 95.88
2.5 13.25 97.91 97.02

C
aC

l 2
(m

m
ol

e)

5 14.86 98.55 98.37

Table C4: Full Factorial Experiment (Flocculation Efficiency, PAM20)

PAM30
PAM (ppm) 0.05 5 10

0.5 8.52 96.37 95.88
2.5 12.94 97.36 97.17

C
aC

l 2
(m

m
ol

e)

5 8.49 98.44 98.24

C2. Calculation of mean

The LSD table in Chapter 5 is formed by calculating the mean for each factor

PAM type, PAM concentration, and CaCl2 concentration. The mean value for PAM10 is

obtained by calculating the mean of responses corresponding to PAM10. Similarly, the

mean values for the other factors were also calculated.
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Mean of flocculation efficiency for PAM10:

10.83 6.80 13.46 97.44 98.25 98.97 96.71 98.34 98.69
68.83

9

+ + + + + + + +
=

Mean of flocculation efficiency for PAM20:

11.45 13.25 14.86 97.15 97.91 98.55 95.88 97.02 98.37
69.38

9

+ + + + + + + +
=

Mean of flocculation efficiency for PAM30:

8.52 12.94 8.49 96.37 97.36 98.44 95.88 97.17 98.24
68.16

9

+ + + + + + + +
=

Mean of flocculation efficiency for 0.05 ppm PAM concentration:

10.83 6.8 13.46 11.45 13.25 14.86 8.52 12.94 8.49
11.18

9

+ + + + + + + +
=

Mean of flocculation efficiency for 5 ppm PAM concentration:

97.44 98.25 98.97 97.15 97.91 98.55 96.37 97.36 94.44
97.83

9

+ + + + + + + +
=

Mean of flocculation efficiency for 10 ppm PAM concentration:

96.71 98.34 98.69 95.88 97.02 98.37 95.88 97.17 98.24
97.37

9

+ + + + + + + +
=

Mean of flocculation efficiency for 0.5 mmole CaCl2 concentration:

10.83 97.44 96.71 11.45 97.15 95.88 8.52 96.37 95.88
67.80

9

+ + + + + + + +
=

Mean of flocculation efficiency for 2.5 mmole CaCl2 concentration:

6.8 98.25 98.34 13.25 97.91 97.02 12.94 97.36 97.17
68.78

9

+ + + + + + + +
=

Mean of flocculation efficiency for 5 mmole CaCl2 concentration:
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13.46 98.97 98.69 14.86 98.55 98.37 8.49 98.44 98.24
69.79

9

+ + + + + + + +
=

C3. LSD for PAM Type

The LSD table for the factor PAM type is formed by ordering the mean values

calculated for PAM 10, PAM20 and PAM30 in a decreasing order from left to right and

in an increasing order from top to bottom, as shown in Table C5. The LSD value 1.557,

for a 5% level significance shown in Table C5, was calculated as:

0.05 0.025,16

2 errMS
LSD t

n
= C1

where MSerr is the pooled experimental error value taken from Table 11 of Chapter 5, the

value 16 is the degree of freedom for the pooled experimental error obtained from Table

11, and n is the number of data points considered for each factor (in this case n=9).

The value 1.226 in Table C5 is the difference between 69.38 and 68.16, the value

0.676 is the difference between 68.832 and 68.16, and the value 0.55 is the difference

between 69.38 and 68.83 of Table C5, respectively.

Table C5: LSD for Main Effect, PAM Type (Flocculation Efficiency)

Main Effect A
LSD 1.557

decreasing
order
(→ )

A PAM20 PAM10 PAM30
Average 69.38 68.83 68.16

increasing PAM30 68.16 1.226 0.676
Order PAM10 68.83 0.55
( ↓ ) PAM20 69.38
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Based on Table C5, the values 1.226, 0.676 and 0.55 are less than the LSD value

determined; therefore, there is no significant difference among PAM10, PAM20 and

PAM30 on the response flocculation efficiency.

C4. LSD for PAM Concentration

Similar to the procedure discussed to obtain the LSD table for PAM type, a LSD

table for PAM concentration is developed as shown in Table C6.

Table C6: LSD for Main Effect, PAM Concentration (Flocculation Efficiency)

Main Effect B
LSD 1.557

decreasing
order
(→ )

B 5 10 0.05
Average 97.83 97.37 11.18

increasing 0.05 11.18 86.65 86.19
Order 10 97.37 0.46
( ↓ ) 5 97.83

As indicated by Table C6, the bold values 86.65 and 86.19 are greater than the

determined LSD value 1.557. This implies that there is a difference between PAM

concentration 0.05 ppm and 5 ppm, and 0.05 ppm and 10 ppm regarding flocculation

efficiency. Also the value 0.46 is less than 1.557. This suggests that there is no difference

between PAM concentration 5 ppm and 10 ppm regarding flocculation efficiency.

Therefore, the best PAM concentration range lies between 0.05 ppm and 5 ppm,

concentration above 5 ppm produced the same response as that of 5 ppm.
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C5. LSD for CaCl2 Concentration

Similar to the procedure discussed to obtain the LSD table for PAM type, a LSD

table for PAM concentration is developed, as shown in Table C7.

Table C7: LSD for Main Effect, CaCl2 Concentration (Flocculation Efficiency)

Main Effect C
LSD 1.557

decreasing
order
(→ )

C 5 2.5 0.5
Average 69.79 68.78 67.80

increasing 0.5 67.80 1.982 0.979
Order 2.5 68.78 1.003
( ↓ ) 5 69.79

.

Based on Table C6, the bold value 1.982 is greater than the determined LSD value

1.557, this implies that there is a difference between CaCl2 concentration 0.5 mmole and

5 mmole regarding flocculation efficiency. The values 0.979 and 1.003 are less than

1.557; hence, there is no difference between 2.5 mmole and 5 mmole, 0.5 mmole and 2.5

mmole CaCl2 concentrations. Therefore, the best CaCl2 concentration range lies between

1.5 ppm and 3.5 ppm. Similarly, LSD analyses were performed for %SSC data listed in

Table C8.
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Table C8: Full Factorial Experiment Results Based on %SSC Reduction

Combination Sediment Supernatant % SSC*
PAM PAM Conc. CaCl2 Conc. Conc. Conc. Reduction
Type (ppm) (mmole) (ppm) (ppm)

10 0.05 0.50 25379 15176 40.20
10 0.05 2.50 25386 13155 48.18
10 0.05 5.00 25365 18494 27.09
10 5 0.50 25359 532 97.90
10 5 2.50 25374 209 99.18
10 5 5.00 25316 400 98.42
10 10 0.5 25344 380 98.50
10 10 2.5 25352 162 99.36
10 10 5 25344 298 98.82
20 0.05 0.50 25374 15386 39.36
20 0.05 2.50 25379 13368 47.33
20 0.05 5.00 25352 18339 27.66
20 5 0.50 25356 442 98.25
20 5 2.50 25362 407 98.39
20 5 5.00 25349 415 98.36
20 10 0.5 25371 749 97.05
20 10 2.5 25325 581 97.71
20 10 5 25359 55 99.78
30 0.05 0.5 25341 13492 46.76
30 0.05 2.5 25387 13090 48.44
30 0.05 5 25362 13694 46.01
30 5 0.5 25373 542 97.86
30 5 2.5 25388 336 98.68
30 5 5 25368 145 99.43
30 10 0.5 25342 423 98.33
30 10 25 25379 542 97.86
30 10 5 25381 453 98.22

*For LSD analysis the %SSC reduction data corrected to two decimal place was used. In

Table A9 of Appendix A the %SSC reduction data was rounded off to whole numbers.
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APPENDIX D

FIRST ORDER ECONOMIC

ANALYSIS FOR THE COST OF PAM
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D1. First Order Economic Analysis for the Cost of PAM

If the average annual rainfall is 33 inches over a plot area of 50×10 ft, the volume

of water accumulated in one year would be:

31
33 50 10 1375

12
inches ft ft ft ft

 × × × = 
 

 

The plot area was assumed to have a silty clay loam soil with a uniform sediment

concentration of 25000 ppm. Results from Section 5.5 showed that the operating range of

PAM concentration for a 25000 ppm sediment solution is between 0.05 and 5 ppm per

liter of sediment. To have a maximum estimate of PAM concentration, 5 ppm was

considered in this calculation.

If PAM and the sediment solution in the drainage area was ideally mixed, the

amount of PAM required to treat 1375 ft3 of 25000 ppm sediment solution is given as:

3 3
3

1375 28.316 5 194.7 10
liter ppmPAM

ft ppmPAM
ft litre

   × × = ×   
  

 

Consequently, the required PAM concentration is approximately 195 grams/ liter.

The cost of PAM supplied by Cytec industries Inc., Carmel, IN 46032 on April

27, 2006 is $2.50/lb. Thus, the cost of PAM required to treat 1375 ft3 of 25000 ppm silty

clay loam sediment solution is:

$ 1
2.5 195 $1.07

453.59

lb
grams

lb grams

  × × =  
   

 

As indicated in Figure 25 the drainage was installed with a silt fence length of 10 ft.

Therefore, application of PAM costs $0.11 per foot of silt fence.
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