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CHAPTER I 
 

 

INTRODUCTION 

 

Water is essential to plant life. Most plants contain about 90% water (Hartmann et 

al., 1988).  Plant growth and survival depends on water availability. Throughout the 

world, irrigation (water for agriculture, or growing crops) is probably the most important 

use of water (except for drinking). Almost 60 percent of the world's freshwater 

withdrawals are used for irrigation (Solley et al., 1998). Likewise, irrigation is the largest 

water use in the United States. In 2005, an estimated 1,552,018,838 m3/day (410 billion 

gallons per day) were used in the US. Thirty seven percent of total freshwater 

withdrawals were used for irrigation. When thermo-electric power is excluded from the 

estimates, 62 percent of total freshwater withdrawals were used for irrigation. Surface 

water accounted for 58 percent of the total irrigation withdrawals and groundwater was 

42 percent (Kenny et al., 2009). Irrigation accounts for approximately 42% of water 

withdrawals in Oklahoma (Smith, 2007).  

Like other agricultural crops, irrigation is essential for production of ornamental 

plants. The nursery/greenhouse industry ranks 5th (>$14.6 billion) in US agriculture 

commodities and is in the top 5 commodities for 26 states (USDA, 2004). Irrigation has 

large consequences on the productivity and profitability of this important sector of 
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agriculture. Ornamental plants, whether grown in the ground, outdoors in containers, or 

in greenhouses, need water for optimum growth and development. Most ornamental 

plants grown in the United States are produced in container-nursery and greenhouse 

operations. Container plants are grown in substrates that must be well drained and 

container volume limits the amount of water that can be stored. This results in frequent 

irrigation applications and use of large volumes of water. In a recent survey, over 75% of 

nursery crops in 17 states (AL, CA, CT, FL, GA, IL, MI, NJ, NY, NC, OH, OR, PA, TN, 

TX, VA, WA) were grown in containers and required irrigation, often daily (USDA, 

2007). In Florida, container nurseries annually apply 142 to 305 cm (56 to 120 inches) of 

water as irrigation per year in addition to the 102 to 127 cm (40 to 50 inches) of average 

annual rainfall. Container nurseries in Alabama were estimated to have used 3,700,445 to 

49339274 m3 (30,000 to 40,000 acre-feet) of water in 1985 (Fare et al., 1992). 

Water is a finite resource. Although there has been plenty of fresh water on earth, 

that water has not always been available when and where it was needed, nor was it 

always of suitable quality for all uses. Water shortages are an increasing problem due to 

intensified competition for limited water supplies by agricultural, industrial and domestic 

users. Global population is expected to increase by three billion or more people over the 

next 50 to 75 years (Jury and Vaux, 2005). Oklahoma population increased by 36% 

between 1970 and 2000 and the population is projected to increase by 38% between 2000 

and 2060 (Smith, 2007). Population growth and increased urbanization have increased 

competition for water. Over the past century, increased water demand from all economic 

sectors in the United States, including agriculture, were satisfied by increasing 

withdrawals from rivers, lakes and aquifers. Dam construction, ground water pumping, 
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and interbasin transfers were the primary tools for meeting increased water needs. The 

ability to continue to expand the use of the nation’s fixed water resources, however, is 

becoming less favorable because of the absolute scarcity, reduced federal subsidies for 

construction projects, an improved understanding of the environmental effects of large-

scale river modifications and water use, and new political and social constraints (Gleick, 

2006). Drought and water conservation are not new issues in western states where 

availability has long been a limitation, but demographic changes are increasing 

competition among users. The record 2006-2008 drought in the eastern US had a severe 

impact on the nursery industry in that region. The Great Lakes region has implemented 

water use policies to comply with the ratified Great Lakes-St.Lawrence River Basin 

Water Resource Compact (Fernandez et al., 2009). Land-use change is the most 

significant local, regional, and global human impact on the hydrologic system (Bhaduri et 

al., 2000). Water shortages have resulted in water use restrictions in many areas of the 

United States (Urbano, 1986).  

Irrigation efficiency must be improved to meet the long-term needs of the world’s 

population (Howell, 2001). There is increasing pressure on ornamental plant producers to 

use water more efficiently and thus make the nursery/greenhouse industry more 

sustainable (Beeson et al., 2004). For many years, it has been common practice to irrigate 

until water runs out of the bottom of the pots, but up to 50% of the water applied may be 

lost this way. In addition to inefficient water use, over-application of water results in 

fertilizer runoff and pollution of ground- and/or surface water. Nutrient leaching (nitrate 

and phosphate in particular) depends greatly on the amount of water that is applied. 

Legislation regarding water use and/or quality has been implemented in California, 
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Delaware, Florida, Maryland, Michigan, North Carolina, Oregon, and Texas. Some 

legislation requires greenhouses and nurseries to develop nutrient management plans that 

describe their efforts to reduce nonpoint source pollution (Lea-Cox and Ross, 2001). To 

comply with new regulations and to meet increasing water demand, more efficient 

methods of irrigation need to be implemented. Good irrigation management is an 

important best management practice in ornamental crop production, reducing runoff of 

nutrient and pesticide-rich water from production sites (Briggs et al., 1998; Lea-Cox and 

Ross, 2001; Tyler et al., 1996). Better control of irrigation can have other benefits as 

well: better plant quality, more compact plants (Burnett and Van Iersel, 2008). In 

addition, more efficient irrigation can have direct economic benefits, because less 

electricity or fuel is needed to pump the irrigation water. 

Different nursery production practices can influence irrigation efficiency. 

Incorporation of peat, clay, or composted municipal compost in container substrate 

increased available water and nutrient holding capacity (Catanzaro and Bhatti, 2005; 

Dunwell and McNiel, 2011; Owen et al., 2008). Narciso Pastor et al. (1999) reported that 

Viburnum tinus L. and Spiraea japonica L. grown with coarse pine bark in large 

containers grew better than those grown with fine pine bark in smaller containers when 

transplanted to a landscape with limited water. Evaluation of physiological conditions 

showed greater water stress hardening of plants grown with coarse pine bark, which led 

to a better adaptation to transplanting with low water application. Irrigation efficiencies 

vary with the type of irrigation system (Haman et al., 1998). With overhead irrigation, 

some water is lost by interception of plant parts, soil, mulch, and other surfaces during 

irrigation. Application efficiencies are reduced if water falls between widely spaced 
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plants or outside the plant root zone, as in container nurseries. Application efficiencies of 

microirrigation systems are typically high, water losses due to wind drift and evaporation 

are typically small, as water is discharged near or within the root zone of the plants being 

irrigated. 

Numerous other best management practices can be implemented by growers to 

improve irrigation efficiency. Shade (reduced solar radiation) is one management practice 

that can be used to reduce water needs in ornamental plant production. Plants lose water 

extracted from the soil through leaf stomata in the process of transpiration. Water also 

readily evaporates from the soil surface or the container substrate. The combination of 

evaporation and transpiration is known as evapotranspiration (ET). Because the amount 

of water assimilated by a plant is very small compared to water lost to ET, ET is 

considered to be the water requirement or water use of plants. Solar radiation intensity is 

one of the main climatic factors that determines the ET rate of plants and thus their water 

use. Shading reduces plant and soil temperatures (Franco and Nobel, 1989; Turner et al., 

1966), decreases evaporation rates (Breshears et al., 1998; Valiente-Banuet and Ezcurra, 

1991), and effects photosynthesis and plant morphology (Holmgren, 2000). At any given 

time, the overall balance of positive and negative effects of shade will determine plant 

performance (Holmgren et al., 1997). During hot and dry months, the positive shade 

effects of reduced soil temperatures and evaporation rates may be more important than 

any negative effects of reduced light levels. 

Coffea arabica L. 'Costa Rica 95' transpired more per unit leaf area in full sun 

than under shade, an indication of higher environmental stress in non-shaded conditions 

(van Kanten and Vaast, 2006). Dancette and Poulain (1969) found that soil moisture was 



6 

 

higher under Acacia albida Delile than in non-shaded areas in the top 120 cm (47 in) of 

the soil. Rhoades (1995) recorded increased soil water in the top 15 cm (6 in) of soil 

beneath A. albida canopies in Malawi. Greater soil moisture in tree sites is generally 

assumed to be due to reduced soil evaporation and plant transpiration caused by shading 

and resulting lower temperatures (Belsky et al., 1989). In Kenyan savannas, artificial 

shade increased herbaceous productivity (Belsky, 1994). This was attributed to the 

plant’s capacity to reduce stomatal apertures and conserve moisture at low light levels 

(Amundson et al., 1995). Plants regulate water loss either by opening and closing their 

stomata or by varying their stomatal densities (Swarthout and Hogan, 2010). High light 

intensity correlates with higher stomatal density (Tichà, 1982). Shade leaves also usually 

have a lower stomatal index, lower stomatal and epidermal cell densities due to larger 

epidermal cells (Royer, 2001), and have larger interveinal areas, and a lower ratio of 

internal to external surface (Pallardy, 2008). Viburnum opulus L. had a mean stomatal 

density of 127 mm−2 (81,935 in-2) on the lower surface in sun leaves and 65 mm−2 

(41,935 in-2) for shade leaves. In V. lantana L. there were 145 mm−2 (93,548 in-2) stomata 

in sun leaves and 65 mm−2 (41,935 in-2) in shade leaves (Kollmann and Grubb, 2002).  

Research has shown that shading can reduce the water use of plants. Daily water 

use of 75 woody and herbaceous nursery crops, that represent common species and 

growth habits in the nursery trade, grown in full sun did not exceed 250 ml/day (0.06 

gal/day) on any day, and usually was less than 200 ml/day (0.05 gal/day) while water use 

of plants grown under shade cloth never exceeded 200 ml/day (0.05 gal/day), and usually 

was less than 0.15 L/day (0.04 gal/day) (Evans and Dodge, 2007). Water use also varied 

among different plants. Cumulative water use ranged from 1.6 L (0.4 gal) for Impatiens 
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hawkeri W. Bull ‘Bonfire Orange’ to 3.8 L (1 gal) for I. walleriana Hook.f. ‘Double ole 

Rose’ (Evans and Dodge, 2007).  Water use efficiency of Quercus alba L., Q. imbricaria 

Michx. and Q. palustris Münchh. seedlings grown under three shade treatments (30, 55 

and 73%) and two irrigation regimes (container capacity and mild drought) decreased 

significantly as shade intensity increased from 30 to 73% (McCarthy and Dawson, 1991). 

Water use of five foliage plants, Araucaria heterophylla (Salisb.) Franco., Dieffenbachia 

maculata (Lodd.) G. Don ‘Camille’, Epipremnum aureum (Linden and André) Bunt. 

‘Golden Pothos’, Polyscias fruticisa (L.) Harms., and Radermachera sinica (Hance) 

Hemsl., decreased in lower light intensity. Amount of water used depended on light 

intensity and was specific to plant type (Poole and Conover, 1992). In a study by Medina 

et al. (2002), Citrus sinensis Osbeck and C. limonia Osbeck had a higher stomatal 

conductance and higher CO2 assimilation rate in 50% shade than in the full sun. Despite 

increased stomatal conductance in shaded plants, transpiration rates were only 10% to 

20% higher. This slight increase in transpiration rates under shade was attributed to lower 

leaf and air temperatures that resulted in a lower leaf-to-air vapor pressure gradient, and 

hence lower evaporative demand. Higher temperatures in full sun led to a high vapor 

pressure gradient, causing water loss from plants. The observed stomatal closure of plants 

in full sun did not largely restrain transpiration rates.  

While shade is very useful for conserving moisture, not all plants can tolerate 

shade. Plant performance often shows spatial heterogeneity: the performance of plants 

growing under shade often differs from that of conspecifics growing in adjacent open 

spaces. Plants typically respond to shade in several ways. Shade-acclimation responses 

maximize light harvesting in shade conditions through increases in specific leaf area and 
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reduced chlorophyll a:b ratio, whereas shade-avoidance responses maximize light capture 

by positioning the leaves out of the shade (Vandenbussche et al., 2005), increasing 

branching intensity and increasing side shoot:main shoot length ratios on the leader and 

selected side branches (Henry and Aarssen, 2001). Considerable differences in structure 

exist between leaves grown in the sun and in the shade. In general, shade-grown leaves 

are larger, thinner (Boardman, 1977; Pallardy, 2008; Valladares and Niinemets, 2008), 

and contain less palisade tissue and less conducting tissue than sun leaves (Pallardy, 

2008). The chloroplasts of shade plants are larger in size, have a lower thylakoid volume 

but higher number of thylakoid membranes per chloroplast, and contain many more 

thylakoids per grana than chloroplasts of sun plants. Shade-grown plants have higher 

chlorophyll content per chloroplast, lower chlorophyll a: b ratio and a low ratio of soluble 

protein to chlorophyll (Brett and Singer, 1973; McWilliam and Naylor, 1967; Pallardy, 

2008). Plants do not synthesize chlorophyll as rapidly as degradation occurs in high light 

intensity. Leaf-area ratio (LAR, leaf area / total plant dry weight) increases and specific 

leaf weight (SLW, leaf dry weight/leaf area), plant dry weight, and root-shoot ratio 

frequently decrease in shade compared to plants in higher light intensities (Boardman, 

1977; McCarthy and Dawson, 1991; Royer, 2001; Valladares and Niinemets, 2008). 

Poorter and Nagel (2000) reported that high light intensity caused a decreased fraction of 

biomass allocated to leaves and an increased allocation to roots. However in many 

instances, biomass allocation to leaves is not particularly sensitive to growth irradiance 

and is an unimportant factor with respect to the change in plant growth rate. 

Fini et al. (2010b) studied response of three ornamental shrubs to shading. In this 

study, Camellia × williamsii W.W.Sm. ‘Debbie’ showed great adaptability to light 
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conditions. Photinia × fraseri Dress ‘Red Robin’ reduced root biomass under shade but 

leaf gas exchange was not altered. Viburnum tinus L. ‘Eve Price’ had increased leaf and 

stem biomass resulting in greater net photosynthesis and water use efficiency under 

shaded conditions. In V. tinus, plant height and internode length were significantly 

reduced in full sun compared to those in 30% and 60% shade. Viburnum dry weight, leaf 

number, leaf area ratio and net assimilation rate were not affected by shading.  Leaf area 

index and relative growth rate were higher in plants in 60% and 30% shade than for 

plants in full sun (Fini et al., 2010b). Reduced light intensities can produce enlarged 

stems as a result of the partitioning of photosynthates by the plant. Research has shown 

that most Stenotaphrum secundatum (Walt.) Kuntz cultivars will grow better under 30% 

shade than under full sun (Trenholm, 2009). In another study, shade treatment (0% shade, 

60% and 30% shade) influenced shoot development, foliar physiology and morphological 

characteristics of Abies amabilis (Dougl.) Forbes and Tsuga heterophylla (Raf.) Sarg. 

seedlings but in general, the effects were small (Mitchell and Arnott, 1995). A shade 

intensity of 60% was required to induce significant acclimation, and T. heterophylla 

appeared to respond more positively than A. amabilis. In a turfgrass study with Cynodon 

dactylon L. Pers., phenotypically diverse clones responded to reduced light intensity with 

shorter leaves, shorter internodes, reduced green color, lower chlorophyll concentration, 

and reduced dry weights (Gaussoin et al., 1988). Increased shade commonly reduces root 

and rhizome growth proportionately more than shoot growth (Dudeck and Peacock, 

1992). Shade may also decrease the number of leaves, tillers and rhizomes (Patterson, 

1980).  
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In another study by Robinson and Hamilton (1980), heavy shade (37% of 

available sun) and full sun significantly decreased foliar nitrogen content of V. opulus 

‘Nanum’. Viburnum opulus receiving 70% and 53% of available sunlight grew larger 

than plants in full sun or heavy shade. The maximum rate of photosynthesis and dry 

matter production related closely to leaf nitrogen status (Pallardy, 2008). Relatively more 

nitrogen was partitioned to light-harvesting machineries in shade leaves (Laisk et al., 

2005). However Kull (2002) suggested that the strong relationship between leaf nitrogen 

and photosynthetic performance may be because a certain amount of energy must be 

captured through photosynthesis to maintain nitrogen within the leaf and not because 

nitrogen is primarily in the photosynthetic apparatus. According to Evans and Poorter 

(2001), daily photosynthesis per unit leaf dry mass under low-light conditions was much 

more responsive to changes in specific leaf area than to nitrogen partitioning. Plants 

grown in high light generally have thick leaves with a low SLA, due in part to extra 

layers of palisade or longer palisade cells. This increases the number of chloroplasts and 

the amount of photosynthetic enzymes and thereby enhances the photosynthetic capacity 

per unit leaf area. However, by having more biomass in a given area, the increase in 

photosynthetic capacity of the high-light leaves comes at a cost of having less light 

capture per unit biomass at lower irradiances. Consequently, growth is stimulated by high 

light only half as much as photosynthesis per unit area (Poorter and Nagel, 2000).  

Photosynthetic response curves over a range of light intensities have been widely used to 

show differences in shade and sun grown plants to light intensities. Shade tolerant species 

generally have lower dark respiration rates and hence lower light compensation points 

and lower light saturation points for photosynthesis than do shade intolerant species. The 
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leaves of shade-tolerant species also usually contain lower levels of Rubisco, ATP 

synthase, and electron carrier per unit of leaf surface (Pallardy, 2008).   

At light intensities above the saturation point, carbon metabolism may limit 

consumption of photosynthetic energy resulting in excess photon absorption, 

consequently promoting reductions in photosynthetic efficiency, termed as 

photoinhibition (Demmig-Adams, 1990). High solar radiation during the summer results 

in excessive light and heat load on leaves. Naresh and Bai (2009) reported that in Cocos 

nucifera L., excess light energy harvested by chlorophyll antenna produced biologically 

toxic superoxide, hydrogen peroxide and hydroxyl radicals, that damaged the chloroplast 

and cell membrane integrity and caused leaf scorching resulting in reduced 

photochemically active leaf area and under prolonged conditions in seedling death.  Leaf 

necrosis is a physiological disorder of frequent occurrence in many kinds of plants grown 

in warm or semi-arid climates. Huxley (1967) found that in full daylight the leaf margins 

of both Coffee arabica and C. canephora Pierre ex Froehner seedlings became yellow 

and on C. canephora leaves some interveinal chlorosis developed. Shade also increased 

leaf chlorophyll concentrations to improve quantum use efficiency for incident irradiance 

(Niinemets et al, 1998; Valladares and Niinemets, 2008). Grass growing in shade has less 

heat and drought stress and maintains a darker green color than that growing in full 

sunlight (Trenholm, 2009). Tong and Ng (2008) studied the effect of 4, 7, 25, 50 and 

100% relative light intensities (RLI) on growth, leaf production, leaf lifespan and leaf 

nutrient budgets of Acacia mangium Willd. , Cinnamomum iners Reinw. ex Blume, Dyera 

costulata (Miq.) Hook., Eusideroxylon zwageri Teysm. and Binnend. and Shorea 

roxburghii G. Don. Acacia mangium and S. roxburghii grew fastest at 100% RLI. The 
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other three species grew fastest at 25% RLI. Leaf lifespan was maximum at 4% RLI and 

was shortened by a constant amount by each doubling of light intensity. Senescence and 

leaf abscission occurred much earlier in shade leaves of V. lantana and V. opulus. Shade 

leaves showed a greater tendency to wilt during senescence (Kollmann and Grubb, 2002). 

Light gradients are ubiquitous in nature, so all plants are exposed to some degree 

of shade during their lifetime. According to Belsky et al. (1989), solar irradiance is 

reduced by 45% to 65% under Acacia tortilis Hayne and Adansonia digitata L. Kessler 

(1992) found that sunlight intensity is reduced to 45% under 10 to 13 m high Vitellaria 

paradoxa C. F. Gaertn. and 20%  under 14 m high Parkia biglobosa (Jacq.) R. Br. ex G. 

Don. V. paradoxa of 7 m height and 4.7 m crown diameter also decreased 

photosynthetically active radiation (PAR) directly under and outside crowns by 40% and 

20% respectively (Boffa et al., 1999).  Light intensity may decrease as much as 90%  to 

95% with extensive cloud or tree cover (Barrios et al., 1986).   

An experiment was conducted to examine the light environment and effect on 

pasture yield components of two artificial shading materials. Medicago sativa L. pasture 

was submitted to three light regimes: full sunlight (100% transmissivity); black shade 

cloth (40%) and wooden slats (45%). The pattern of light exposure for plants differed 

under slats and shade cloth, but light intensity and quality were similar. Medicago sativa 

dry matter (DM) yield and leaf area index under shaded treatments were about 60% of 

the open pasture. Numbers of stems per m2, number of nodes and plant height were also 

similar in both shaded treatments, but lower than in full sunlight. Plants under shade cloth 

and slats had a greater leaf to stem ratio, but leaf temperature was cooler under both 

shaded treatments than in full sunlight. The results indicated that both slats and shade 
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cloth can simulate the light environment under agroforestry (Varella et al., 2001). Water 

use can be determined by several methods. Determining water loss from each pot 

gravimetrically on a regular basis (for example, daily) and replacing part of the transpired 

water to control the rate of soil dry-down is well synchronized between experimental 

units (Earl, 2003).  

Based on these studies, producing ornamental plants that have lower water use 

and perform better or retain their visual qualities in shaded environments would benefit 

the ornamental industry. Viburnums have long been one of the most popular flowering 

shrubs. The genus Viburnum belongs to the Adoxaceae family. This large group of plants 

consists of more than 150 species and numerous named cultivars. Viburnums include 

deciduous and evergreen shrubs and small trees, mostly native to North America or to 

Asia (Kluepfel and Polomski, 2007). Some species of Viburnums are very fragrant while 

others have an undesirable odor. Flower color ranges from white to pink (rose), and fruit 

color may be yellow, orange, red, pink, blue or black (Dirr, 2007). Viburnums fit in 

anywhere and look good in every season and in any style of garden. Viburnums are 

relatively low maintenance ornamental plants and can prosper quite well with restricted 

fertilization (Dirr, 2007). They are grown in full sun or shade (Dirr, 2007). Viburnum 

species vary in their soil moisture requirements. Many species thrive in moist soil but 

some species are drought tolerant (García-Navarro et al., 2004; Myers, 2004).  

Characteristics of agricultural plants, such as number and distribution of stomata, 

leaf coatings, etc. can affect evapotranspiration for a given crop or species. The volume 

of soil occupied by plant roots and the number of roots within this volume can 

significantly influence effective soil resistance to water movement. These can affect 
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water use of different plant types or different species within a plant type (Jensen, 1968). 

The degree of response to shade can vary considerably within a family, within a genus, 

and even within a species. The plasticity of leaf structure in response to shading may vary 

considerably among closely related species or cultivars. According to Kollmann and 

Grubb (2002), V. opulus yielded more in 11% light intensity than in 66%; its mature 

lamina size was also largest in the 11% light intensity, whereas V. lantana had its largest 

leaves in 66% light intensity. In the same study, shading reduced the root mass fraction 

and increased the leaf mass fraction of V. opulus but not V. lantana. Shading caused a 

greater increase in the SLA of V. opulus than in that of V. lantana. Quercus velutina 

Lam., the most drought-tolerant and light-demanding species, showed the greatest leaf 

anatomical plasticity in different light environments. The most drought-intolerant species, 

Q. rubra L., showed least anatomical plasticity, and Q. coccinea Muenchh. showed 

plasticity that were intermediate between that of Q. velutina and Q. rubra (Pallardy, 

2008). Anatomical response to light also differed between two Phaseolus cultivars 

(Chabot and Chabot, 1977).  

To date, little information is available on water use and growth response of 

different viburnum species under different shade intensities. The ornamental industry 

needs research-based information to manage water resources and improve plant quality 

and profitability. The species tested in this research were Burkwood viburnum (Viburnum 

× burkwoodii Burkw. & Skipw. Ex Anon.), Korean spice Viburnum/ Mayflower 

viburnum (Viburnum carlesii Hemsl.) and leatherleaf viburnum (Viburnum 

rhytidophyllum Hemsl.). Burkwood viburnums are grown by 52% of the US nurseries 

growing Viburnums (Chapter 2). The parentage, V. utile × V. carlesii, and subsequent 
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backcrosses and other genetic combinations have produced Burkwood viburnum. 

Burkwood viburnums reach 2.5 to 3 m (8 to 10 ft) tall and wide. They have lustrous 

black-green leaves that are grayish and tomentose below, ranging from 4 to 10 cm (1.5 to 

4 in) long, 2 to 4.5 cm (0.75 to 1.75 in) wide and are serrated. Leaves may be fully 

deciduous to evergreen. Burkwood viburnums are adaptable to full sun or prominent 

shade (Dirr, 2007).  Koreanspice viburnums are grown by 58% of the US nurseries 

growing Viburnums (Chapter 2). They are typically rounded in outline, dense in foliage, 

deciduous shrubs (Kluepfel and Polomski, 2007), 1.2 to 2.5 m (4 to 8 ft) tall and wide. 

Leaves are dull dark green, 2.5 to 10 cm (1 to 4 in) long and 2 to 6 cm (0.75 to 2.5 in) 

wide. This species is well adapted to soil extremes (except wet), sun and significant shade 

(Dirr, 2007). Leatherleaf viburnums are grown in 41% of the US nurseries growing 

Viburnums (Chapter 2). They are boldly textured, evergreen shrubs with large, leathery, 

10 to 20 cm (4 to 8 in) long, 2.5 to 6 cm (1 to 2.5 in) wide leaves that are lustrous above 

and covered with gray pubescence below. They are gigantic in proportions and are easily 

3 to 4.5 m (10 to 15 ft) tall and wide. Any well-drained soil, sun or shade provides best 

success (Dirr, 2007).  

These viburnums are grown in the ground as well as in containers but most 

nurseries in the United States grow viburnums in containers more than in the field. 

Leatherleaf viburnums are considered high water users; Burkwood viburnums medium 

water users and Korean spice viburnums are regarded low water users (Mark Andrews, 

Greenleaf Nursery, Personal Communication). These classifications are based on field 

observations of the nursery personnal. However, no data on water use of these viburnums 

has been found.  
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The objectives of this research were to identify the cultural practices used by 

commercial nursery growers for the production of viburnums, to determine water use of 

leatherleaf viburnum and Burkwood viburnum under three shade intensities, and to 

determine growth and degree of leaf necrosis of the leatherleaf viburnum, Burkwood 

viburnum and Koreanspice viburnum species under three shade intensities 
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SURVEY OF CULTURAL PRACTICES USED IN PRODUCTION OF 

VIBURNUMS  

Arjina Shrestha and Janet C. Cole 

Department of Horticulture and Landscape Architecture, Oklahoma State University, 
Stillwater, OK 74078-6027, USA 

Abstract 

A survey of commercial nursery growers was conducted to identify cultural 

practices used in viburnum production. Viburnums composed less than 25% of the 

production inventory for most nurseries surveyed. Nurseries reported that viburnums are 

mostly spring planted and produced in containers in bark-based container substrates. 

They are mostly irrigated once a day during dry months with sprinklers using water from 

wells and ponds. Altering some production practices may increase plant growth and 

quality and improve irrigation efficiency. 

Index words: viburnum, nursery production, irrigation. 

Species used in this study: Korean spice viburnum (Viburnum carlesii Hemsl.); 

arrowwood viburnum (V. dentatum L.); Mohican viburnum (V. lantana L. 'Mohican'); 

winterthur smooth viburnum (Viburnum nudum L. 'Winterthur'); fragrant viburnum 

(Viburnum × juddii Rehd.); leatherleaf viburnum (Viburnum rhytidophyllum Hemsl.); 

Burkwood viburnum (Viburnum × burkwoodii Burkw. and Skipw. Ex Anon.); spring
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bouquet viburnum (Viburnum tinus L. 'Compactum'); eastern snowball (Viburnum opulus 

L.); pink dawn viburnum (Viburnum × bodnantense Stearn.); cardinal candy viburnum 

(Viburnum dilatatum Thunb.); summer snowflake doublefile viburnum (Viburnum 

plicatum f. tomentosum (Thunb.) Rehd.); C. A. Hildebrant’s viburnum (Viburnum 

wrightii Miq.); southern blackhaw viburnum (Viburnum rufidulum Raf.). 
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Significance to the Nursery industry 

Viburnums are popular garden or landscape plants that are considered relatively 

adaptable and low-maintenance plants compared to most woody plants. The nursery 

industry has many production options available including use of various container sizes, 

substrates, or irrigation methods. The cultural practices used for viburnum production 

may influence nursery production efficiency and plant growth and quality of viburnums.  

Survey results about growers' cultural practices provide useful information about the 

most and least frequently used practices. Nursery producers should consider fall potting 

in addition to the traditional spring potting. Viburnum producers should incorporate 

inorganic components like clay, sand and biological amendments like sphagnum peat, 

coir or municipal compost in the container substrate. They should consider alternative 

irrigation sources like recycled or reclaimed water and other efficient irrigation methods 

like capillary mats or multi-pot box system and use of cyclic irrigation that could improve 

water and nutrient management of viburnums and other ornamental crops. These changes 

in crop management practices may help increase production and quality from existing 

plantings while minimizing input cost and reducing environmental impact. 

 

Introduction 

Viburnum is a genus of more than 150 species of shrubs or (in a few species) 

small trees. The genus belongs to the Adoxaceae family. Its current classification is based 

on molecular phylogeny. It was previously included in the family Caprifoliaceae. 

Viburnum is found primarily in the northern hemisphere and extends into the southern 

hemisphere in the mountains of Southeast Asia and South America. The region of 

greatest diversity is in eastern Asia but eastern North America and the mountains of 



30 

 

Mexico and Central and South America are also areas of high species diversity. Only five 

species are native to Europe and adjacent regions. In Africa, viburnum is confined to the 

Atlas Mountains (Dirr, 2007; Pooler, 2010; Winkworth and Donoghue, 2005). The leaves 

of viburnum species are opposite or rarely whorled and the fruit is a drupe. Viburnum 

species show conspicuous diversity in numerous other characters, including growth 

pattern and leaf and fruit morphology (Dirr 2007; Donoghue, 1983; Winkworth and 

Donoghue, 2005). Viburnums are usually shrubs, but their growth habits vary. Some 

dwarf varieties are less than 1 m (3.3 ft) tall while others may grow up to 6 m (19.7 ft) 

tall. Some species are densely hairy on the shoots and leaves while other species are 

glabrous. Some viburnum species are very fragrant while others have an undesirable 

odor. Flower color ranges from white to pink (rose), and fruit color may be yellow, 

orange, red, pink, blue or black (Dirr, 2007). Viburnums consist of evergreen, semi-

evergreen, and deciduous species. 

Viburnums are versatile shrubs that are popular in landscapes for their showy and 

often fragrant spring blooms, richly colored sometimes evergreen foliage, and persistent 

winter fruit. Viburnums are grown as specimen plants or as anchors in mixed borders. 

Some species are grown for hedges or for massing in groups. Viburnum trilobum 

Marshall provides lacey clusters of white flowers in spring, persistent bright red fruits, 

and orange, red and burgundy fall color. Some species have blooms similar to the 

flattened heads of Hydrangea macrophylla (Thunb.) Ser. Viburnum rhytidophyllum 

Hemsl. is popular for its foliage effect of large, dark green, leathery leaves with a 

strongly wrinkled surface. Some viburnums like V. carlesii Hemsl. and V. × burkwoodii 

Burkw. and Skipw. Ex Anon. have extremely fragrant flowers. Viburnums have attractive 
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fruits and among the best fruiting viburnums is V. dilatatum Thunb. A few viburnums 

such as V. plicatum f. tomentosum (Thunb.) Rehd. and V. carlesii Hemsl. can be grown 

as standards (which can create height in the back of a border or in pots on each side of a 

terrace entrance, when under planted with annuals). In the U.S., viburnum species are 

commercially cultivated for their inflorescences, which are mainly used as bouquet fillers 

(Armitage and Laushman, 2003). Darras et al. (2010) evaluated the post-harvest 

performance of cut V. tinus L. inflorescences. Viburnum tinus has white, lightly scented 

flowers produced in dense cymes 5 to 10 cm (2 to 4 inches) in diameter. Some viburnum 

species have medicinal values also. A compound, 9'-O-methylvibsanol and its related 

compounds extracted from stem bark of V. sargentii Koehne has potential therapeutic 

application to cancer therapy (Bae et al., 2010). Kim et al. (2005) reported that the fruit of 

V. dilatatum has phenolic compounds, especially cyanidin 3-sambubioside and 

chlorogenic acids that may contribute to the antiradical activity of its fruits. Fruits of 

different genotypes of V. opulus L. contained large amounts of total phenolics, ascorbic 

acid, and reducing sugars. The presence of these large amounts of biologically active 

compounds enables their use as potent antioxidants (Cesoniene et al., 2010).   

Viburnums are remarkably adaptable plants compared to most woody shrubs and 

are valued as tough and trouble-free flowering shrubs. They have few debilitating pests 

and diseases. They are grown in full sun or shade (Dirr, 2007). Viburnum species vary in 

soil moisture requirements. Many species thrive in moist soil while some are drought 

tolerant (García-Navarro et al., 2004; Myers, 2004).  

Viburnums are produced in many nurseries throughout the United States. Over 

three million viburnums are sold annually in the United States with a wholesale value of 
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over $22 million (Pooler, 2010). Nursery crop production requires a large amount of 

manual labor and careful management. An individual nursery may grow just a few to a 

few hundred types of plants. Each type of plant must be managed based on its cultural 

requirements (Adkins, C., 2010). 

The nursery industry has many more production options available today than 

several years ago. Different production practices adopted by nurseries may influence 

nursery productivity and input efficiency. Irrigation is one of the most critical cultural 

practices in production of nursery crops. Existing irrigation water is rapidly diminishing 

due to population growth, rapid industrialization and urban development. Water stress is 

one the most influential factors affecting plant production. Plants have evolved to tolerate 

extremes in water availability to account for nature's inconsistent schedule of irrigation. 

However, the goal of the nursery producer is to produce quality plants and get maximum 

profit by efficient and effective use of resources while reducing impacts on the 

environment. Photinia × fraseri Dress ‘Red Robin’ and V. tinus 'Lucidum' were assessed 

for their adaptability to drought stress conditions. Net photosynthesis, transpiration, 

stomatal conductance, water use efficiency, chlorophyll a fluorescence and biometric 

parameters were periodically monitored during the experiment. Photinia adapted better to 

drought, especially when irrigation frequency was reduced. In contrast, viburnum was 

less adaptable and less stressed treatments resulted in more developed plants compared to 

plants exposed to greater stress (Cacini et al., 2010). Beikircher and Mayr (2009) reported 

that Ligustrum vulgare L. and V. lantana were less resistant to drought-induced 

embolism. Viburnum lantana was less drought tolerant than L. vulgare, but at the same 

time it was able to acclimate to altered soil moisture conditions within a broader range.  
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Various studies have reported the effect of different container substrates on plant 

growth and water savings. According to Guérin et al. (2001) a strong relationship existed 

between height growth of viburnum and physical parameters of the substrate. The tallest 

plants occured in substrates with the greatest water content and availability. A study by 

Arnold and McDonald (2006) showed that shoot growth of Rosa × ‘Radrazz’ L.  was 

better in bark based substrate (4 parts pine bark : 1 peat moss : 1 sand) than in peat-based 

substrate (Sungro SB 400). Research conducted on Acer rubrum L. using substrate 

containing combinations of pine bark : peat and pine bark : coir or 100% pine bark 

resulted in a 17% and 12% increase in height in the pine bark : peat compared to the pine 

bark : coir and 100% pine bark, respectively. The peat or coir increased available water 

and possibly increased nutrient holding capacity to generate more growth in the species 

tested (Dunwell and McNiel, 2011). Many studies have investigated the use of numerous 

industrial and agricultural wastes such as animal wastes (Tyler et al., 1993), wood by-

products (Chong and Lumis, 2000), rice hulls (Dueitt et al., 1993), and residential refuse 

(Kahtz and Gawel, 2004) as substitutes for bark and peat moss. Photosynthetic rate 

increased (Phaseolus vulgaris L.), decreased (Nicotiana tabacum L.), or did not differ 

(Glycine max (L.) Merr.) with decreasing pot size (Ray and Sinclair, 1998). Root and 

shoot dry weights and percentage of applied nitrogen used by shoots and roots of 

Ligustrum japonicum Thunb. were greatest for plants grown in 2.2 liter containers and 

smallest for plants grown in 0.75 liter containers (Yeager, 1995). 

In a study by Bilderback and Lorscheider (1997), at low irrigation volumes or 

under conditions of irrigation conservation, use of a wetting agent in the substrate 

enhanced plant growth. Cyclic irrigation (changing the volume of water applied and the 
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frequency of application) can also increase available water and reduce runoff and 

resulting fertilizer loss from the nursery with equal or increased growth (Dunwell and 

McNiel, 2011). Longer stems and greater plant fresh weight with more flowers and 

longer life span occurred in Chrysanthemum indicum L. irrigated four times per week 

compared to those irrigated twice per week (Budiarto et al., 2007). Drip ring treatments 

produced larger growth indices in Lagerstroemia indica (L.) Pers. (Witcher and Bush, 

2005). Water quality can vary from source to source (Whipker, 2008). Water quality not 

only affects plant growth, but also influences fertilizer, pesticide, and growth regulator 

effectiveness (Adkins, 2010).  

The average seed germination period of V. lantana was prolonged by the 

application of gibberellic acid; GA3 (Rypak and Kamenicka, 1982). Seeds of V. lantana 

and V. opulus have the same morphological and anatomical structure and biochemical 

composition but seedlings of V. lantana emerged during the following season from either 

autumn or spring sowing, whereas seedlings of V. opulus emerged only a year later 

(Zaborovskij and Varasova, 1961).  

It is important to optimize nursery cultural practices for increased production 

efficiency of the nursery. Therefore, the objective of this research was to identify cultural 

practices used in commercial production of viburnum species. 

 

Materials and Methods 

A list of production nurseries was obtained from the American Nursery and 

Landscape Association. Based on the name and information from websites, nurseries that 

obviously did not grow viburnums were eliminated from the list, leaving a mailing list of 
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459 nurseries. On January 14, 2009 the survey was mailed to each nursery along with a 

letter describing the project and a postage-paid envelope in which to return the completed 

survey. About 6 weeks after the first mailing, follow-up letters and surveys were mailed 

to nurseries that had not responded. The data were analyzed using SAS (PC SAS version 

9; SAS Institute, Cary, NC). Relationships among the responses to various questions 

were assessed by constructing two-way contingency tables using PROC FREQ in SAS. 

 

Results 

Of 459 surveys mailed, 205 (44.7%) were completed and returned. Of those 205 

surveys returned, 169 (82.4%) respondents indicated that they grow viburnums. Only 

surveys from nurseries that grow viburnums were included in data analyses. Viburnums 

were grown in nurseries in most regions of the United States with the smallest proportion 

of nurseries located in the southern United States (Fig 2.1). Most of the nurseries growing 

viburnums were located in USDA cold hardiness zones 4 to 8 (94.17%), with zones 5 and 

6 having the greatest percentage of growers at 27.6% and 25.7%, respectively (Table 

2.1). Viburnums composed less than 25% of the production inventory for about 99% of 

nurseries surveyed. Among the viburnum species listed in the survey, more than half of 

nurseries grew Korean spice viburnum, arrowwood viburnum, Mohican viburnum, 

fragrant viburnum, or Burkwood viburnum (Table 2.2).  Spring was the most common 

planting time for all viburnum species included in the survey (Table 2.3), followed by 

fall. Summer and winter were the least common times to plant, likely due to hot and cold 

temperatures, respectively, that lead to slower rooting and growth. Nurseries were asked 

about the production system in which they grew viburnums. More nurseries grew most 
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viburnum species in above-ground containers than in-ground with or without containers 

or any other system (Table 2.4). More nurseries grew their field-grown viburnums in 

sandy loam soil than in any other soil type (Table 2.5). Container-grown viburnums were 

mostly grown in bark-based substrate with 40% of nurseries using 100% bark (composted 

or milled pine bark, hardwood bark, or fir bark), among which 60% of nurseries used 

100% composted pine bark. Most nurseries (57.3%) use composted pine bark as one of 

the container substrate components (Table 2.6). Other components that growers listed as 

being included in container substrates were Douglas fir bark, leaf compost, sawdust, rice 

hulls, soil, clay, pumice, and perlite. More nurseries used #3 or #5 (ANLA, 2004) pots 

than smaller or larger pots for growing viburnums (Table 2.7). Growers also reported 

using #SP4, #2, #3.5, #4, and #7 containers. Most viburnums were propagated 

vegetatively rather than by seed (Table 2.8). 

More nurseries irrigated using water from a well (58.8%) or pond (44.9%) than 

from other water sources (Table 2.9). Most nurseries (85.1%) used sprinkler irrigation for 

irrigating viburnums (Table 2.10). About 72% of nurseries said that the irrigation 

frequency differs for different viburnum species; however, once a day was the most 

common irrigation frequency for viburnums during the dry months of the year (Table 

2.11). During wet months, most viburnums were irrigated as needed, with no regular 

schedule (Table 2.12). About 96% of the nurseries did not use wetting agents or 

hydrogels in the potting substrate for viburnums. About 50% of the nurseries reported 

that they had observed water stress problems during viburnum production (Table 2.13). 

More nurseries experienced slow growth of plants due to water stress than stem dieback, 

susceptibility to diseases, lower yield, or loss of sale. 
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Viburnums had medium market demand according to about 66% of nurseries and 

low market demand according to 25% of nurseries. About 33% of nurseries reported that 

the market demand of viburnums differed among species. More nurseries responded that 

Korean spice viburnum and fragrant viburnum had higher market demand than the other 

viburnum species (Table 2.14). More than half of nurseries reported that arrowwood, 

Mohican, winterthur smooth, Burkwood, spring bouquet, cardinal candy, and summer 

snowflake doublefile viburnum had a medium market demand.  

About 78% of the nurseries reported annual production costs of more than 

$100,000 (Table 2.15). About 96% of the nurseries reported that their irrigation cost was 

less than 25% of their production cost. About 90% of the nurseries had more than 

$100,000 in annual gross sales from their nursery in 2008, or the most recently completed 

fiscal year (Table 2.16). About 99% of the nurseries reported that viburnums contributed 

less than 25% percent of their gross sales. 

 

Discussion 

Based on the survey results, it appears that nurseries can improve some cultural 

practices used in viburnum production to increase plant growth and quality and improve 

irrigation efficiency. Spring was reported as the most common planting time for all 

viburnum species included in the survey. A study by Ivy et al. (2002) showed that 

growers can incorporate more fall potting in place of traditional spring potting. Soil 

temperature and moisture are favorable for rapid root growth which will help plants 

survive during the first year of transplanting in the landscape (Bevington and Castle, 

1985). With fall planting and subsequent root establishment, plants are bigger in the 
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spring and often can withstand dryer conditions during the summer. As size of the 

landscape industry increases, adoption of fall planting helps nursery growers to produce a 

quality plant and meet industry demand throughout the year. Ivy et al. (2002) reported 

that rooted stem cuttings of V. awabuki K. Koch., potted in September or October, were 

larger and had significantly greater N and P content than those potted in March. 

Viburnum potted in September produced the largest total dry weight compared to those 

potted in July, October, March or May when fertilized with Wilbro/Polyon 15N–1.8P–

7.5K (15N–4P2O5–9K2O), whereas plants potted in March were the smallest. Viburnum 

potted in July, September, and October and grown with Scotts 23N–1.8P–6.6K (23N–

4P2O5–8K2O) outperformed those potted in March or May. No plants were injured by 

winter temperatures regardless of potting date throughout the study period.  

Viburnums are mostly container-grown which requires larger volumes of water 

than in-ground production without root restriction. Most nurseries irrigate viburnums 

using water from wells and ponds. In various parts of the U.S., ground water storage and 

surface water levels are declining and water shortages are becoming an increasing 

problem due to intensified competition by agriculture, industrial or domestic users (Jury 

and Vaux, 2005; McGuire, 2007; Smith, 2007). Groundwater is also being contaminated 

by saltwater intrusion as a result of removing groundwater faster than it is being 

recharged (Barlow, 2005) or infiltration of contaminants from nearby industrial, urban, 

and agricultural operations. In addition, environmental agencies are claiming more 

surface water to protect endangered flora and fauna along waterways. Excessive 

irrigation also has a direct impact on production costs. Growers using well water incur 
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energy costs associated with pumping water and growers using surface water sources 

have to pay for the water.  

Our survey results showed that about 40% of nurseries used 100% bark for 

container grown viburnums. Total porosity and air space are highest in the 100% bark 

substrate. However, previous research has shown that plant available water and shoot 

growth can be increased by adding sand or peat compared to 100% pine bark (Dunwell 

and McNiel, 2011; Kraus and Warren, 2005). In a study by Caron et al. (2004), amount 

of irrigation water needed to achieve marketable size in V. odoratissimum Ker Gawl was 

reduced by changing peat type from sedge to sphagnum and increasing the percentage of 

sphagnum peat to 60% on a volume basis, due to reduction in production time. Haydu et 

al. (2004) revealed that changing peat type from sedge to sphagnum can be profitable in 

the long run. Evans and Iles (1997) reported that V. dentatum L. grown in coir-based 

substrates were taller, wider and had greater root fresh mass than plants grown in peat-

based substrates.  

In this survey, only one nursery reported using clay as a component of the 

container substrate. Several studies have shown that clay can be an alternative to sand in 

container substrate to increase container capacity, available water, and substrate nutrient 

retention (Catanzaro and Bhatti, 2005; Owen et al., 2003; Owen et al., 2004; Owen et al., 

2008). In addition, pine bark amended with calcined clay has been shown to decrease 

phosphorus leaching (Ruter, 2003). Currently, the U.S. Environmental Protection Agency 

has set goals for P not to exceed 0.10 mg P L-1 (0.1 ppm) in streams that do not drain into 

lakes or reservoirs (Sparks, 1993). Excess of these limits may result in a decline in water 

quality (Brady and Weil, 1999). Clay-amended pine bark can maintain plant growth with 



40 

 

half the currently recommended leaching fraction and phosphorus application rate 

compared to sand-amended pine bark (Owen et al., 2005).  

Few nurseries used municipal waste in container substrate. Composted municipal 

waste can reduce water useage in open irrigation systems (Catanzaro and Bhatti, 2005). 

Plants grown with 25% municipal solid waste compost had similar or better growth than 

plants in 100% pine bark for a wide range of container nursery crops (Lu et al., 2005). 

Kiermeier (1977) found that V. lantana grew more quickly with higher application rates 

of composted municipal waste. Viburnum produced in substrates with yard compost or 

raw coir or forest compost/cattle manure were similar in size to those produced in 1:1 

peat:pine bark compost and were taller than those produced in mixtures of expanded 

perlite/composted manure or forest compost and composted bark (Guérin et al., 2001). 

Composted pine bark was the primary component of growth substrates in most 

(57.3%) nurseries. However, the future availability of bark for horticultural usage might 

be limited due to alternative demands (e.g. industrial fuel) and reduced timber production 

(Cole et al., 2002; Haynes, 2003) and increased importation of logs already debarked (Lu 

et al., 2006). Whole chipped pine logs (“clean chips”) could be used as a suitable and 

economical alternative to conventional substrates (Wright and Browder, 2005). 

Viburnums are reported to be mostly grown in #3 or #5 containers. Growing 

plants under different conditions could induce a series of differential characteristics that 

affect their adaptation to water shortage when transplanted into the landscape. Narciso 

Pastor et al. (1999) reported that V. tinus L. grown in #2 (8.83 L) containers with coarse 

pine bark had better development than that grown in 2.17 L containers and fine grade 

pine bark when they were transplanted in the landscape with limited water.  
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Irrigation efficiency also depends on irrigation method. Viburnums are mostly 

irrigated by sprinklers. Haydu et al. (2004) reported that overhead irrigation required the 

most water, followed by micro-irrigation, capillary mat and then trays for production of 

container-grown V. odoratissimum. Installation costs were lowest for overhead and 

greatest for the tray system followed by micro-irrigation, then capillary mat. Cumulative 

year profits were greatest with capillary mats, then trays, and overhead. Due to the 

substantial initial investment, profits were lowest for micro-irrigation. With overhead 

sprinklers, as little as 25% of the water applied enters containers. When plant spacing is 

considered a high proportion of water applied by sprinklers falls between containers 

(Beeson and Yeager, 2003; Haman et al., 1998), and thus is unavailable to the plants. 

Irmak et al. (2003) reported that the multi-pot box system (a modification of subirrigation 

that combines overhead and subirrigation concepts to capture the water falling between 

containers, making it available when needed by the plants) saved at least 92% and 76% of 

irrigation water relative to the conventional system (consisting of black containers spaced 

on 30 cm centers) in V. odoratissimum in the summer and fall, respectively. Growth 

indices and shoot and root dry weights were usually higher regardless of season for plants 

grown in the multi-pot box system. 

Runoff water is an important avenue for the movement of agrichemicals from 

production sites into nearby receiving water bodies (Bjorneberg et al., 2002; Latimer et 

al., 1996; Meisinger and Delgado, 2002). However, if properly managed surface runoff 

can be reused in nursery production (Skimina, 1986). This process can save money and 

also provides an alternative irrigation source. Very few nurseries (13.2%) used recycled 

water. Viburnum tinus ‘French White’ irrigated with reclaimed wastewater (treated 



42 

 

sewage effluent from the wastewater treatment facility) had better plant growth than 

those irrigated with well water. Reclaimed water increased leaf area, chlorophyll content, 

and leaf concentration of N, P and K (Gori et al., 2000). Reuse of treated municipal 

wastewater, especially when it is low in heavy metals, is beneficial since more water is 

available for irrigation in areas where scarce summer rainfall and high evapotranspiration 

can be problematic. Only 4.4% nurseries reported irrigating viburnums using municipal 

water. 

About 72% of nurseries said that irrigation frequency differs for different 

viburnum species. However, most viburnum species were reported to be irrigated mostly 

once a day during dry months. Irrigating plants based on their actual water use is 

important to improve irrigation efficiency.  According to Kollmann and Grubb (2002), in 

the natural habitat, there was extensive die-back of shoots of V. opulus which wilted early 

and severely in the dry summer of 1989, whereas shoots of V. lantana showed little 

damage. Viburnum lantana is most abundant on freely draining soils while V. opulus 

occurs typically on soils that are usually wet for at least part of the year, and its 

distribution extends to soils that are waterlogged through most of the profile all year. 

Viburnum species likely differ in their water requirement and drought tolerance. 

Appropriate selection of viburnum species that require less irrigation water and are more 

drought tolerant is important in dry arid regions due to limited water availability. Cyclic 

irrigation has been shown to increase nutrient and water use efficiency without sacrificing 

plant growth (Witcher and Bush, 2005). 

In conclusion, using more sustainable production techniques that improve 

irrigation efficiency will reduce production costs, conserve water, and produce higher 
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quality crops. Nursery producers should consider planting time; selection of components 

of container substrates, use of inorganic and biological amendments in the substrate; 

alternative irrigation sources; cost and water efficient irrigation methods; irrigation 

frequency and use of cyclic irrigation that could improve water and nutrient management 

of viburnums and other ornamental crops. 
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Table 2.1. Distribution of U.S. nurseries growing viburnums based on USDA cold 
hardiness zone.  

Hardiness Zone Percentage of nurseries 
2 0.7 
3 1.3 
4 10.5 
5 27.6 
6 25.7 
7 18.4 
8 11.8 
9 3.3 
10 0.7 
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Table 2.2. Percentage of U.S. nurseries growing different viburnum species. 
  Percentage of nurseries  
Viburnum species Growing  Not growing  

Korean spice viburnum 58.0 42.0 
Arrowwood viburnum 61.5 38.5 
Mohican viburnum 52.7 47.3 
Winterthur smooth viburnum 33.1 66.9 
Fragrant viburnum  54.4 45.6 
Leatherleaf viburnum 40.8 59.2 
Burkwood viburnum  52.1 47.9 
Spring bouquet viburnum  18.9 81.1 
Eastern Snowball 49.7 50.3 
Pink dawn viburnum 10.7 89.3 
Cardinal candy viburnum  23.1 76.9 
Summer snowflake doublefile viburnum 47.3 52.7 
C. A. Hildebrant’s viburnum 3.6 96.4 
Southern blackhaw viburnum 8.3 91.7 
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Table 2.3. Percentage of nurseries that plant various viburnum species in summer, fall, 
spring, or winter. 

Viburnum species 
 Percentage of nurseries 

Planting season Growing Not growing 
Korean spice 
viburnum 

Summer 20.6 79.4 
Fall 22.7 77.3 
Spring 85.6 14.4 
Winter 2.1 97.9 

    
Arrowwood 
viburnum 

Summer 16.5 83.5 
Fall 25.2 74.8 
Spring 80.6 19.4 
Winter 3.9 96.1 

      
Mohican viburnum Summer 14.9 85.1 

Fall 21.8 78.2 
Spring 89.7 10.3 
Winter 2.3 97.7 

      
Winterthur smooth 
viburnum 

Summer 8.9 91.1 
Fall 16.1 83.9 
Spring 80.4 19.6 
Winter 5.4 94.6 

      
Fragrant viburnum  Summer 18.5 81.5 

Fall 21.7 78.3 
Spring 87.0 13.0 
Winter 2.2 97.8 

      
Leatherleaf viburnum Summer 13.2 86.8 

Fall 25.0 75.0 
Spring 82.4 17.7 
Winter 4.4 95.6 

      
Burkwood viburnum  Summer 15.1 84.9 

Fall 16.3 83.7 
Spring 88.4 11.6 
Winter 1.2 98.8 

 
Eastern Snowball 

 
Summer 

 
16.9 

 
83.1 

Fall 30.1 69.9 
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Spring 77.1 22.9 
Winter 7.2 92.8 

      
Cardinal candy 
viburnum 

Summer 7.7 92.3 
Fall 15.4 84.6 
Spring 84.6 15.4 
Winter 7.7 92.3 

      
Summer snowflake 
doublefile viburnum 

Summer 15.0 85.0 

Fall 15.0 85.0 

Spring 85.0 15.0 

Winter 10.0 90.0 
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Table 2.4. Percentage of nurseries reporting growing various viburnum species in the 
field with no root restriction, above ground in containers, in-ground in 
containers, or in other production systems. 

Viburnum species Root conditions 

Percentage of nurseries 
Growing  Not growing 

Korean spice viburnum field  45.4 54.6 
above ground 74.2 25.8 
in-ground 6.2 93.8 
other 1.0 99.0 

    
Arrowwood viburnum field  49.0 51.0 

above ground 74.5 25.5 
in-ground 7.8 92.2 
other 2.0 98.0 

    
Mohican viburnum field  43.7 56.3 

above ground 72.4 27.6 
in-ground 9.2 90.8 
other _ 100.0 

    
Winterthur smooth 
viburnum 

field  30.4 69.6 
above ground 69.6 30.4 
in-ground 7.1 92.9 
other _ 100.0 

    
Fragrant viburnum  field  43.8 56.2 

above ground 69.7 30.3 
in-ground 10.1 89.9 
other 1.1 98.9 

    
Leatherleaf viburnum field  44.1 55.9 

above ground 69.1 30.9 
in-ground 8.8 91.2 
other  100.0 

    
Burkwood viburnum  field  34.5 65.5 

above ground 73.6 26.4 
in-ground 8.1 92.0 
other 1.2 98.9 
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Eastern Snowball field  30.5 69.5 
above ground 75.6 24.4 
in-ground 7.3 92.7 
other _ 100.0 

    
Cardinal candy viburnum field  33.3 66.7 

above ground 64.1 35.9 
in-ground 5.1 94.9 
other _ 100.0 

    
Summer snowflake 
doublefile viburnum 

field  30.8 69.2 
above ground 75.6 24.4 
in-ground 10.3 89.7 
other _ 100.0 
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Table 2.5. Types of soil used in field production of viburnums. 

Types of Soil Percentage of nurseries 

Sand _ 
Loam 4.5 
Sandy loam 42.4 
Clay loam 25.8 
Silt _  
Clay  16.7 
Silt loam 9.1 
Others  1.5 
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Table 2.6. Container substrate components used for the production of viburnums. 
 Percentage of nurseries  

 Container substrate component Using Not using  

Peat moss 35.5 64.5 
Composted hardwood bark  15.3 84.7 
Milled hardwood bark  4.0 96.0 
Sand 25.8 74.2 
Composted pine bark 57.3 42.7 
Milled pine bark 20.2 79.8 
Municipal compost 6.5 93.6 
Other  29.8 70.2 
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Table 2.7. Container sizes used for nursery production of viburnums. 

Container size 

Percentage of nurseries 

Using Not using  

#1 37.3 62.7 
#3  62.7 37.3 
#5 59.3 40.7 
Larger than #5 33.9 66.1 
Other  6.8 93.2 
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Table 2.8. Propagation methods used by nurseries for different viburnum species. 

Viburnum species 

Percentage of nurseries 
Seed propagation Vegetative propagation 

Korean spice viburnum 5.6 94.4 
Arrowwood viburnum 4.5 95.5 
Mohican viburnum _ 100.0 
Winterthur smooth viburnum 2.6 97.4 
Fragrant viburnum  _ 100.0 
Leatherleaf viburnum _ 100.0 
Burkwood viburnum  3.4 96.6 
Eastern Snowball _ 100.0 
Cardinal candy viburnum  _ 100.0 
Summer snowflake doublefile viburnum 1.8 98.2 
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Table 2.9. Source of irrigation water used by nurseries to irrigate viburnums. 

 Percentage of nurseries 

 Sources of irrigation water Using Not using  

River/lake 10.3 89.7 
Pond 44.9 55.2 
Well  58.8 41.2 
Municipal water 4.4 95.6 
Rural water 2.9 97.1 
Recycled water 13.2 86.8 
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Table 2.10. Irrigation methods used for viburnum production. 

Irrigation method 

Percentage of nurseries 

Using Not using 

Drip Irrigation 25.4 74.6 
Capillary Irrigation 1.5 98.5 
Sprinkler Irrigation 85.1 14.9 
Other  3.0 97.0 
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Table 2.11. Irrigation frequency for different species of viburnum during nursery 
production in dry periods. 

Viburnum species 

Percentage of nurseries  
More than 
once a day 

Once a 
day 

Every 
other day 

Twice 
a week 

Once a 
week 

Other 

Korean spice viburnum 12.4 35.8 13.6 16.1 13.6 8.6 
Arrowwood viburnum 19.3 47.7 9.1 4.6 11.4 8.0 
Mohican viburnum 14.5 47.4 6.6 6.6 15.8 9.2 
Winterthur smooth viburnum 16.0 48.0 8.0 10.0 8.0 10.0 
Fragrant viburnum  13.0 36.4 14.3 14.3 15.6 6.5 
Leatherleaf viburnum 6.8 44.1 17.0 8.5 15.3 8.5 
Burkwood viburnum  11.1 41.7 9.7 15.3 13.9 8.3 
Eastern Snowball 12.0 50.7 13.3 8.0 9.3 6.7 
Cardinal candy viburnum  8.6 40.0 17.1 11.4 14.3 8.6 
Summer snowflake 
doublefile viburnum 17.8 43.8 13.7 9.6 11.0 4.1 
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Table 2.12. Irrigation frequency for different species of viburnum during nursery 
production in wet periods. 

Viburnum species 

Percentage of nurseries  
More than 
once a day 

Once a 
day 

Every 
other day 

Twice a 
week 

Once a 
week 

Other 

Korean spice viburnum 2.4 2.4 11.8 18.8 15.3 49.4 
Arrowwood viburnum 3.4 6.8 21.6 13.6 11.4 43.2 
Mohican viburnum 2.5 6.4 19.3 18.0 9.0 44.9 
Winterthur smooth 
viburnum 1.9 3.9 15.4 15.4 9.6 53.9 
Fragrant viburnum  2.5 3.8 16.3 15.0 18.8 43.8 
Leatherleaf viburnum 3.2 1.6 14.3 15.9 14.3 50.8 
Burkwood viburnum  1.4 1.4 17.6 12.2 21.6 46.0 
Eastern Snowball 3.9 3.9 16.7 19.2 15.4 41.0 
Cardinal candy viburnum  _ 5.6 16.7 11.1 11.1 55.6 
Summer snowflake 
doublefile viburnum 4.2 1.4 18.1 16.7 13.9 45.8 
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Table 2.13. Water stress symptoms noted by growers during viburnum production. 

Water stress problems 

Percentage of nurseries 

Yes No  
Slow growth 34.6 46.0 
Stem dieback  24.1 32.0 
More susceptible to disease  17.2 23.0 
Insect damage _ _ 
Reduced quality _ _ 
Lower yield 14.2 25.0 
Loss of sale 18.4 25.0 
Other (specify) 5.8 8.0 
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Table 2.14. Market demand of different viburnum species as perceived by nursery 
producers. 

  Percentage of nurseries  
Species High  Medium Low 
Korean spice viburnum 63.5 25.7 10.8 
Arrowwood viburnum 15.8 56.6 27.6 
Mohican viburnum 1.6 60.9 37.5 
Winterthur smooth viburnum 7.3 51.2 41.5 
Fragrant viburnum  55.9 36.8 7.4 
Leatherleaf viburnum 33.3 41.2 25.5 
Burkwood viburnum  15.2 57.6 27.3 
Spring bouquet viburnum  30.4 65.2 4.4 
Eastern Snowball 10.2 39.0 50.9 
Pink dawn viburnum 14.3 21.4 64.3 
Cardinal candy viburnum  24.2 54.6 21.2 
Summer snowflake doublefile viburnum 32.7 60.0 7.3 
C. A. Hildebrant’s viburnum 20.0 20.0 60.0 
Southern blackhaw viburnum 10.0 30.0 60.0 
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Table 2.15. Annual production cost of the total crops produced in nurseries that grow 
viburnums. 

Annual production cost Percentage of nurseries 
Less than $10,000 11.0 
$10,000 to $24,999 5.5 
$25,000 to $49,999 1.6 
$50,000 to $100,000 3.9 
More than $100,000 78.0 
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Table 2.16. Annual gross sales of the total crops produced in nurseries that grow 
viburnums 
Gross sales Percentage of nurseries 
Less than $10,000 2.3 
$10,000 to $24,999 1.6 
$25,000 to $49,999 0.8 
$50,000 to $100,000 5.5 
More than $100,000 89.9 
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Figure 2.1. Percentage of nurseries in each U.S. region growing viburnums. 
 NW=northwest, MW=Midwest, NE= northeast, SO= South, SE=Southeast 
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CHAPTER III 
 

 

WATER USE AND GROWTH OF THREE VIBURNUM SPECIES GROWN 

UNDER DIFFERENT SHADE INTENSITIES  

Arjina Shrestha and Janet C. Cole 

Department of Horticulture and Landscape Architecture, Oklahoma State University, 

Stillwater, OK 74078-6027, USA 

Abstract 

Water use, growth and degree of leaf necrosis of Burkwood viburnum (Viburnum 

× burkwoodii Burkw. & Skipw. Ex Anon.), Korean spice viburnum (Viburnum carlesii 

Hemsl.) and leatherleaf viburnum (Viburnum rhytidophyllum Hemsl.) were evaluated in 

0%, 30%, or 60% shade. Water use of Burkwood viburnum decreased with increasing 

shade intensity. Water use of leatherleaf viburnum was lowest in 0% shade and highest in 

30% shade. Leatherleaf plants had lower water use in 0% shade than in 30% or 60% in 

later months of the study due to greater leaf necrosis, leaf abscission, and less growth in 

height and width. Height, width, and leaf number of all three species increased with 

increasing shade intensity. All species had a larger leaf area, root dry weight, and shoot 

dry weight in 30% and 60% shade than in 0% shade. Shade intensity did not influence 

root to shoot ratio in Burkwood viburnum. Root to shoot ratio of Korean spice and
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leatherleaf viburnum decreased with increasing shade. Degree of leaf necrosis was lower 

in shaded plants of all three species. The results suggest that the three species of 

viburnums can be better grown in shade than without shade for maximum water use 

efficiency and maximum plant growth and quality. 

Index words: Viburnum × burkwoodii , Viburnum carlesii, Viburnum rhytidophyllum. 

Species used in this study: Burkwood viburnum (Viburnum × burkwoodii Burkw. & 

Skipw. Ex Anon.); Korean spice viburnum (Viburnum carlesii Hemsl.); leatherleaf 

viburnum (Viburnum rhytidophyllum Hemsl.). 
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Significance to the Nursery industry 

Artificial shading can reduce plant water needs. However plant response to 

shading is species-specific and improper light levels can negatively affect plant growth 

and aesthetic quality. Excessive light intensity can cause necrosis, photoinhibition and 

damage of photosynthetic machinery while excessive shading can reduce photosynthesis 

and plant growth. Our study evaluated the response of Burkwood viburnum, Korean spice 

viburnum and leatherleaf viburnum to 0%, 30%, or 60% shade. Shade increased plant 

height, width, leaf number, leaf area and dry weights in all species. Degree of leaf 

necrosis was lower in shaded plants for all three species. Water use of Burkwood 

viburnum was reduced by 60% shade. Leatherleaf viburnum in 0% shade used less water 

than those in 30% or 60% shade; however, the plants in 0% shade had less growth, lower 

dry weights, greater leaf necrosis and leaf loss which is not desirable in commercial 

viburnum production. Reduced growth, less leaves and increased necrotic leaves will 

increase nursery production time and decrease the aesthetic quality of plants. Lower root 

weights in 0% shade may limit plant growth and survival during nursery production or 

after transplanting in the landscape. Therefore shading of Burkwood viburnum, Korean 

spice viburnum and leatherleaf viburnum during production may increase plant growth 

and quality resulting in increased profitability of viburnum crops. 

 

Introduction 

Water availability is one of the most limiting environmental factors affecting crop 

productivity. Water stress reduces plant growth and can reduce protein synthesis, 

photosynthesis, respiration, and nucleic acid synthesis in plants (Pessarakli, 1994). Water 
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shortages are increasing due to limited water supplies, increasing water prices, and 

urbanization (Smith and St. Hilaire, 1999; Urbano, 1986). Like other agricultural crops, 

irrigation is essential for production of ornamental plants. Irrigation efficiency must be 

improved to make ornamental plant production more sustainable and profitable (Beeson 

et al., 2004). Optimum growth and development of ornamental plants, whether grown 

without root restriction in the ground, in containers outdoors in the ground or above 

ground, or in greenhouses, depends on evapotranspiration (ET) of the plants. Plants lose 

water extracted from the soil through leaf stomata in the process of transpiration. Water 

also readily evaporates from the soil surface of the container substrate. The combination 

of evaporation and transpiration is evapotranspiration. Because the amount of water 

assimilated by a plant is very small compared to water lost to ET, ET is considered to be 

the water requirement or water use of plants. Applying more water than needed by a 

particular plant species will not improve growth and productivity because the plant will 

only transpire more water. Research has shown that shading can reduce water use of 

plants. Plant growth and water use is regulated by internal conditions such as plant 

hormones and genetic factors and external conditions such as intensity and duration of 

light and temperature. Shading reduces light intensity, plant and soil temperatures 

(Franco and Nobel, 1989; Turner et al., 1966), and reduces leaf-to-air vapor pressure 

deficit. Shading also decreases evaporation rates (Breshears et al., 1998; Valiente-Banuet 

and Ezcurra, 1991), and has complex effects on plants through photosynthesis and 

morphological plasticity (Holmgren, 2000; Ryser and Eek, 2000). Shade leaves usually 

have a lower stomatal index, lower stomatal and epidermal cell densities due to larger 
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epidermal cells (Royer, 2001), have larger interveinal areas, and a lower ratio of internal 

to external surface (Pallardy, 2008). 

Light is essential for normal growth of plants. Plants grown in shade respond 

differently than plants grown in darkness. Plants can acclimate to changes in light 

intensity. At the whole plant level, the biomass partitioning among leaves, stems, and 

roots can change. Leaves are the most exposed plant organ to aerial conditions and the 

variation in light intensity can induce morphological, physiological and ultrastructural 

modifications in leaf tissues. Moderate shading tends to reduce transpiration more than 

photosynthesis. Shaded plants may be taller and have larger leaves because of a larger 

water supply in the growing tissues. Heavy shade, however, can reduce photosynthesis, 

reduce plant growth, and result in reduced capacity to survive drought (Kramer and 

Decker, 1994). Exposure of plants to excessive radiation and high temperature may lead 

to photoinhibition, damage the photosynthetic components, and cell death (Medina et al., 

2002; Mishra and Singhai, 1992). Different light intensities greatly influence plant 

growth, leaf gas exchange and water use efficiency (Fini et al., 2010a, 2010b; Robinson 

and Hamilton, 1980). Successful growth of plants at low light intensity requires capacity 

to efficiently trap available light and convert it into chemical energy, maintenance of a 

low respiration rate, and partitioning of a large fraction of the carbohydrate pool into leaf 

growth.  

Viburnums have long been one of the most popular flowering shrubs. The genus 

Viburnum belongs to the Adoxaceae family. This large group of plants consists of more 

than 150 species and numerous named cultivars. Viburnums include deciduous and 

evergreen shrubs and small trees, mostly native to North America or to Asia (Kluepfel 
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and Polomski, 2007). Some species of Viburnums are very fragrant while others have an 

undesirable odor. Flower color ranges from white to pink (rose), and fruit color may be 

yellow, orange, red, pink, blue or black (Dirr, 2007). Viburnums are grown in full sun or 

shade (Dirr, 2007). Viburnum species vary in their soil moisture requirements. Many 

species thrive in moist soil but some species are drought tolerant (García-Navarro, et al., 

2004; Myers, 2004).  

Little research has been done on the growth response of viburnum species to 

shade (Kollmann and Grubb, 2002; Robinson and Hamilton, 1980). Plant acclimation to 

different light intensities depends on environmental conditions and plant genotype, and 

thus is species-specific. Therefore, different viburnum species may respond differently to 

different shade intensities. The three viburnum species tested in this research were 

Burkwood viburnum, Korean spice viburnum/ Mayflower viburnum and leatherleaf 

viburnum. These viburnum species can be grown in sun or shade (Dirr, 2007). However, 

no information is available regarding the optimal light intensity for reduced water use and 

improved growth and quality. Usually, shading practices are based on experience with 

various plants. Determining the optimal shade levels for these viburnum species would be 

useful to commercial growers to reduce water consumption, hasten growth, decrease time 

needed for preparing plants for sale, and increase plant quality thus improving 

sustainability and efficiency of viburnum production. The objectives of this study were to 

determine water use, growth and degree of leaf necrosis of three viburnum species under 

three shade intensities. 
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Materials and Methods 

Research was conducted at the Oklahoma State University Botanical Garden, 

Stillwater, OK. Commercially produced (Greenleaf Nursery Co., Park Hill, OK) rooted 

cuttings of three viburnum species, Burkwood viburnum, Korean spice viburnum and, 

leatherleaf viburnum, were planted on May 12, 2009. The plants were potted in #1 black 

plastic containers with a pine bark:peat:sand substrate (3:1:1 by vol) amended with 3.7 

kg•m-3 (6.2 lb/yd3)18N-13.7P-14.4K (Osmocote 18N-16 P2O5-12K 2O, The Scotts Co., 

Marysville, OH), 3 kg•m-3 (5 lb/yd3) dolomitic limestone and 74.2 g•m-3 (0.1 lb/yd3) 

Micromax (The Scotts Co.). On April 6, 2010, the plants were transplanted into #2 pots 

with the same substrate. All containers received an equal amount of substrate (3300 g) by 

weight. The plants were grown outdoors under 0% (full sun), 30% or 60% reduced 

photosynthetic photon flux (PPF). The shade was created with woven shade cloth. 

Maximum PPF measured at plant height for the 0%, 30% and, 60% shade treatments 

were 1985, 1452, 742 µmol·m-2·s-1 respectively. The experiment was conducted from 

May 20, 2010 to September 7, 2010. The plants were hand watered as needed until the 

beginning of the experiment. The plants were hand weeded throughout the study. Daily 

temperatures were recorded using data loggers (Watchdog 425 or Watchdog 2000, 

Spectrum Technology, Inc., Plainfield, IL) at the height of the plant canopy in each shade 

treatment.  

Three plants from each species were used to determine plant available water 

(PAW) before the start of the experiment. Plant available water is the water content 

difference between container capacity (CC) and permanent wilting point (PWP). The 

three plants from each species were watered until water drained from the bottom of the 
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containers and then allowed to drain for two hours. The plants were weighed on an 

electronic precision balance (Scout Pro SP6001, Ohaus Corporation, Pine Brook, NJ) 

when no more leaching was apparent. Average weight of the three plants was used as 

container capacity (CC) of the respective species.  The plants were then allowed to dry 

until the apical leaves wilted overnight and did not recover in the early morning of the 

following day. The plants were weighed at that point and the weights of the three plants 

were averaged to determine the permanent wilting point of each species. Fifty percent of 

plant available water was calculated as PAW = 0.5 (CC – PWP).  

From May 20, 2010, daily plant water use of leatherleaf viburnum and Burkwood 

viburnum was determined gravimetrically by weighing each pot on an electronic 

precision balance (Scout Pro SP6001, Ohaus Corporation, Pine Brook, NJ). Plants were 

watered to container capacity plus a 10% leaching fraction when weights indicated that 

50% of available water had been used. Each day the pots were weighed at 1000 HR and 

the plants were watered between 1100 and 1230 HR with a graduated cylinder. Saucers 

were placed under each pot to collect the leachate which was measured after 2 hours. The 

leachate was subtracted from the amount of water applied to get the actual water use of 

the plants. Rainfall was measured with a rain gauge in each shade treatment. 

Plant heights and widths were measured at the beginning of the experiment on May 20, 

2010 and on August 20, 2010. Plant heights were measured from the substrate to the 

highest canopy point. Plant widths were determined at the widest portion and then 

perpendicular to the widest portion. Each month, every plant in each shade intensity was 

assigned a numerical value according to the percentage of total leaf area showing leaf 

necrosis, on a scale of 1 to12 (modified Horsfall and Barratt, 1945). The Horsfall and 
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Barratt scoring system was based on 50% as a midpoint, as the human eye sees the 

amount of diseased or affected tissues below 50% while it sees amount of healthy tissues 

above 50%; 1=0 percent leaves had necrosis, 2=1 to 3 percent, 3=4 to 6 percent, 4=7 to 

12 percent, 5=13 to 25 percent, 6=26 to 50 percent, 7=51 to 75 percent, 8=76 to 87 

percent, 9=88 to 93 percent, 10=94 to 96, 11=97 to 99, and 12=100 percent. Plants were 

visually rated for leaf necrosis by two independent raters at each rating time and the 

ratings were averaged. 

 At termination, plants were defoliated, number of leaves per plant was counted 

and leaf area was measured using a leaf area meter (LI-3100C, LiCor, Inc., Lincoln, NE). 

Plants were harvested and stems, leaves and washed roots were dried in a drying oven at 

65°C (149oF) for 7 days. The dried roots, stems and leaves were weighed. Root to shoot 

ratio (R/S) was calculated as R/S=root dry weight/shoot dry weight. Leaf area ratio 

(LAR) was calculated as LAR=leaf area/total plant dry weight and specific leaf area 

(SLA) was calculated as SLA=leaf area/leaf dry weight.  

Statistics. Species were completely randomized within each shade intensity.  Species 

were nested within shade level. The effects of species and the interaction of shade level x 

species were examined. SAS general linear models analysis of variance and trend 

analysis by species were performed on all data, except on degree of leaf necrosis, using 

SAS Statistical Software (SAS Institute, Cary, NC). The statistical analysis for degree of 

leaf necrosis was by SAS general linear models analysis of variance with mean 

separation by the PDIFF (t test). 
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Results 

The total volume of water used throughout the experiment (total water use) by Burkwood 

viburnum decreased linearly with increasing shade intensity (Table 3.1). Total water use 

of leatherleaf viburnum responded curvilinearly to shade intensity such that water use 

was lowest in 0% shade and highest in 30% shade (Table 3.1). Burkwood daily water use 

decreased linearly with increased shade intensity in May, but a curvilinear relationship 

existed between daily water use and shade intensity in September such that water use was 

lowest in 0% shade and highest in 30% shade (Table 3.2). Daily water use of leatherleaf 

viburnum decreased curvilinearly in May and linearly in June but increased curvilinearly 

in August and September as shade intensity increased (Table 3.2).  

Height and width of all species increased linearly with increasing shade intensity 

(Table 3.3). Leaf number of Burkwood and leatherleaf viburnum increased linearly with 

increasing shade intensities. A curvilinear relationship between leaf number and shade 

intensity occurred for Korean spice viburnum such that leaf number was highest in 30% 

shade and lowest in 0% shade. A quadratic relationship between leaf area and shade 

intensity existed for all three species. Burkwood viburnum, plants in 30% shade had the 

largest and those in 0% shade had the smallest leaf area. In contrast, leaf area was 

greatest in 60% and lowest in 0% shade for Korean spice and leatherleaf viburnum. A 

quadratic relationship occurred between leaf dry weight and shade intensity for 

Burkwood viburnum and Korean spice viburnum such that leaf dry weight was largest in 

30% shade and smallest in 0% shade. Leaf dry weight of leatherleaf viburnum increased 

curvilinearly as shade intensity increased. A curvilinear relationship between stem dry 

weight and shade intensity existed for Burkwood and Korean spice viburnum. Burkwood 
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stem dry weight was greatest in 30% shade and smallest in 0% shade, while Korean spice 

stem dry weight was greatest in 60% shade and smallest in 0% shade. Stem dry weight of 

leatherleaf viburnum increased linearly with increasing shade. A curvilinear relationship 

existed between root dry weight and shade intensity in all species. Burkwood and Korean 

spice plants had the largest root dry weight in 30% shade and the smallest in 0% shade. 

Root dry weight of leatherleaf viburnum was larger in 60% shade compared to 30% and 

0% shade. Shade intensity did not influence root to shoot (R/S) ratio of Burkwood 

viburnum. Koreanspice and leatherleaf R/S ratio decreased linearly with increasing shade 

intensity. Shade intensity did not affect leaf area ratio (LAR) regardless of species (Table 

3.4). Specific leaf area (SLA) of all three species increased linearly with increasing shade 

intensity.  

Degree of leaf necrosis was higher in 0% shade for all three species in July and 

August than in May and June (Table 3.5). In May, no difference in leaf necrosis occurred 

among shade treatments for Burkwood and Korean spice viburnum. Leatherleaf 

viburnum had lower leaf necrosis in 60% shade than in 0% or 30% shade and no 

difference existed between 0% and 30% shade. Leaf necrosis was not significantly 

different between Burkwood viburnum and Korean spice viburnum but was higher in 

leatherleaf viburnum. In June, no difference existed between shade treatments for 

Burkwood viburnum. Korean spice viburnum had the highest leaf necrosis in 0% shade 

and the lowest in 60% shade. No difference occurred between 0% and 30% and 30% and 

60% shade for leatherleaf viburnum, but 0% shade and 60% shade were different such 

that leatherleaf on 0% shade had higher leaf necrosis than that in 60% shade. Degree of 

necrosis of Burkwood viburnum in 0% shade was lower that that of Korean spice and 
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leatherleaf viburnum in 0% shade. No difference existed between Korean spice and 

leatherleaf viburnum in 0% shade. Burkwood viburnum in shade was not different than 

Korean spice in shade but leatherleaf viburnum had higher necrosis than Burkwood 

viburnum. No difference occurred between Korean spice in 30 % and leatherleaf in 30% 

or 60% shade but leatherleaf in 60% shade had more leaf necrosis than Korean spice in 

60% shade. In July, Burkwood viburnum had a higher degree of necrosis in 0% shade 

than in 30% or 60% shade. Burkwood in 30% and 60% shade did not differ in leaf 

necrosis. Korean spice and leatherleaf viburnum had more necrosis in 0% shade and less 

in 60% shade. In 0% shade, necrosis was lowest in Burkwood and highest in Korean 

spice viburnum. In 30% shade, necrosis was lowest in Burkwood and highest in 

leatherleaf viburnum. No difference occurred among species in 60% shade. In August, 

Burkwood and Leatherleaf viburnum had more necrosis in 0% shade than in 30% or 60% 

shade, while 30% and 60% did not differ for either species. Leaf necrosis was highest in 

0% shade and lowest in 60% shade for Korean spice viburnum. Species differed in 0% 

shade such that necrosis was greatest in leatherleaf and lowest in Burkwood viburnum. 

Burkwood in 30% shade did not differ from Korean spice in 30% or 60% or leatherleaf in 

60% shade but was less affected by necrosis than leatherleaf in 30% shade. Burkwood 

viburnum in 60% shade did not differ from Korean spice or Leatherleaf in 60% shade. 

Shade treatment did not affect air temperature in our study (Table 3.6).  

 

Discussion 

This research investigated responses of three viburnum species to various shade 

intensities. Previous researchers (Evans and Dodge, 2007; Poole and Conover, 1992) 
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found that shade or reduced light intensity reduced total water use of plants. These 

findings support our results in which the total water use was reduced by increasing shade 

in the early months of the experiment: in June for Burkwood and in May and June for 

leatherleaf viburnum. Light, both as a single factor and in combination with others 

(temperature, relative humidity), was the most decisive factor with the strongest effect on 

total water-consumption rate over time (Löfkvist et al., 2009). Reduced light intensity 

might have reduced stomatal conductance (Burrows and Milthorpe, 1976; Kaufmann, 

1976; Pieruschka et al., 2010) or decreased stomata density in shade (Kürschner, 1997; 

Swarthout and Hogan, 2010; Tichà, 1982). Pieruschka et al. (2010) found that under 

uniform conditions of vapor pressure deficit, stomatal conductance was proportional to 

light intensity.  In our study, air temperature differed little among the shade treatments 

(Table 3.6). Martin et al. (1999) reported that over a two-month period, the maximum 

difference between leaf and air temperatures exceeded 6 °C in his study. Leaf 

temperature can become substantially higher than air temperature when radiation is high 

and wind speed is low. In a study by Medina et al. (2002), shade decreased leaf and air 

temperatures resulting in lower evaporative demand. Leaf temperatures of plants in 0%, 

30% and 60% shade intensity will be determined in the second year of the experiment to 

see the effect of leaf temperatures on the water use of plants. In our study, water use of 

Burkwood and leatherleaf viburnum was reduced in 0% shade compared to 30% or 60% 

shade in the later months of the experiment. This is likely attributed to reduced plant 

growth, leaf number and leaf area due to greater leaf necrosis and abscission in 0% shade 

compared to 30% or 60% shade.  
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Greater shade intensity resulted in increased plant height of Burkwood virburnum, 

leatherleaf viburnum and Korean spice viburnum. Similar results were noted by Fini et al. 

(2010a) in V. × pragense Vik and Fini et al. (2010b) in V. tinus L. ‘Eve Price’ where 60% 

shade increased the plant height compared to 30% shade or full sun. Huxley (1967) found 

increased stem height in shade compared to no shade in Coffee arabica L. and C. 

canephora Pierre ex Froehner. In contrast, Cole and Cole (2000); Kephart et al. (1992); 

McCarthy and Dawson (1991) found no effect of shade on plant height, while 

Santelmann et al. (1963) reported that 60% shade suppressed height of Setaria lutescens 

Weigel. Hubb.). Robinson and Hamilton (1980) showed that plant height of V. opulus L. 

‘Nanum’ was greater in 30% and 47% shade than in 63% shade or in full sun. Increasing 

shade can produce enlarged stems as a result of the partitioning of photosynthates by the 

plant (Bello et al. 1995) until production of photosynthesis is limited (Patterson, 1979). 

Our result of increased height with increasing shade in the three species might be due to 

higher production of photosynthates in the 60% shade than in 0% or 30% shade.  

Increased shading increased plant width of the three viburnum species in our study. This 

result is consistent with the observations of Cole and Cole (2000) for Briza media L., 

Pennisetum alopecuroides L. Spreng., and Lirope muscari Decne. L.H. Bail. However, 

plant width of Pachira aquatica Aubl. was not affected by shade (Li et al., 2009), and 

Robinson and Hamilton (1980) showed that plant width of V. opulus L. ‘Nanum’ 

decreased in 63% shade. 

The three viburnum species in 0% shade had fewer leaves and smaller leaf area 

per plant than those in either shade treatment. Viburnum × pragense grown under 60% 

shade had more leaves and larger leaf area than those grown under 30% shade (Fini et al., 
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2010a). However, Fini et al. (2010b) found that total leaf number per plant of V. tinus and 

Camellia × williamsii W.W.Sm. ‘Debbie’ was not affected by shade while leaf number of 

Photinia × fraseri Dress ‘Red Robin’ decreased with shade. Leaf area per plant of Coffee 

arabica and C. canephora increased with increasing shade (Huxley, 1967). Lower leaf 

number and smaller leaf area in 0% shade in our study may be attributed to the combined 

effect of decreased growth and greater incidence of leaf necrosis followed by leaf 

abscission in plants in 0% shade compared to 30% or 60% shade.  

Our results showed that leaf, stem, root and total dry weight of the three viburnum 

species were higher in 30% or 60% shade compared to 0% shade. In contrast, Fini et al. 

(2010a) found that V. × pragense in full sun and in 60% shade had similar plant dry 

weights while those in 30% shade had lower dry weights. Fini et al. (2010b) found that 

leaf, stem, root and total dry weight of V. tinus and Camellia × williamsii were not 

affected by shade, but dry weights of Photinia × fraseri decreased with increasing shade. 

McCarthy and Dawson (1991) found a negative linear relationship between shade 

intensity (30, 55 and 73%) and dry weights of Quercus alba, Q. imbricaria and Q. 

palustris. Coffee arabica and C. canephora attained maximum dry weight at a moderate 

shade level (46% and 62% shade) compared to 0% shade, 73% and 88% shade (Huxley, 

1967). Our results also showed that the dry weights were mostly higher in 30% shade 

compared to 60% shade except stem dry weight of Korean spice viburnum and all dry 

weights of leatherleaf viburnum were higher in 60% shade than in 0% or 30% shade.  

Root to shoot ratio decreased in plants grown under shade in research findings of Allard 

et al. (1991) and Samarakoon et al. (1990).  These findings support our results of lower 

R/S ratio with increasing shade in Korean spice and leatherleaf viburnum. But no 
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significant effect of shade occurred on R/S ratio of Burkwood viburnum. The higher R/S 

ratio in 0% shade in Korean spice and leatherleaf viburnum might be due to greater leaf 

abscission reducing leaf biomass on top. Shade intensity did not affect leaf area ratio 

(LAR) of any viburnum spcecies tested in this study, as observed by Fini et al. (2010b) 

who found that LAR of V. tinus and Camellia × williamsii were not affected by shade. In 

the same study however, shade increased LAR of Photinia × fraseri. Leaf area ratio of V. 

× pragense increased with increasing shade (Fini et al., 2010a). Specific leaf area (SLA) 

increased with increasing shade for the three viburnum species in our study. Increased 

SLA suggests that a given amount of biomass is spread over larger areas which increase 

light capture per unit biomass in shade. Our result is supported by the findings of Evans 

and Poorter (2001) and Kollmann and Grubb (2002) where shading caused an increase in 

the SLA. 

Our result of greater leaf necrosis in 0% shade than in 30% or 60% shade is 

consistent with the observations of Mock and Grimm (1997). Exposure of leaves to 

higher light intensity in 0% shade might have led to chlorophyll damage, increased lipid 

peroxidation and, consequently, cell death and leaf abscission (Mishra and Singhal, 

1992). Higher degree of necrosis in leatherleaf than in Korean spice and Burkwood 

viburnum in 0% shade might be due to leaf size. Leatherleaf have larger leaves than 

Korean spice and Burkwood viburnum.  

In conclusion, 60% shade can result in water savings for Burkwood viburnum. 

Leatherleaf total water use was lowest in 0% shade, however, the greater degree of leaf 

necrosis and leaf abscission and reduced growth can make the plants less salable which is 

detrimental in commercial viburnum production. Water use of leatherleaf was lower in 
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60% than in 30% shade. Shade increased plant height and width, leaf number and leaf 

area, leaves, stems, roots and total dry weights, and specific leaf area in all species. Root 

to shoot ratio was reduced by shade in Korean spice and leatherleaf viburnum but was not 

affected in Burkwood viburnum. Degree of leaf necrosis decreased with increasing shade 

intensity in all three species. Reduced growth, fewer leaves and higher leaf necrosis may 

increase nursery production time and decrease the aesthetic quality of plants. Lower root 

weights in 0% shade may limit plant growth and survival during nursery production or 

after transplanting in the landscape applications. Therefore shading can be a useful 

means, at least during the hot summer months, for reducing water use and improving 

growth and quality in Burkwood, Korean spice and leatherleaf viburnum. 
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Table 3.1. Total volume of water used during the growing season (total water use) of two 
viburnum species grown under 0%, 30% or 60% shade. 

Species 
Shade 
intensity 

Total water use 
(L/plant) 

Burkwood viburnum 0% 23.82 
 30% 23.80 
 60% 20.83 

 Linear  *z 
 Quadratic ns 
   
Leatherleaf viburnum  0% 46.60 
 30% 54.04 
 60% 48.70 
 Linear  ns 
  Quadratic ** 
zns, *, ** nonsignificantat p≥0.05 or significant at p≥0.05 or 0.01, respectively. 
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Table 3.2. Daily water use of two viburnum species, for each month, grown under 0%, 
30% and 60% shade. 

Species 
Shade 
intensity 

Daily water use for each month (ml) 
May  June July  Aug  Sep  

Burkwood viburnum  0% 135 219 223 248 143 
 30% 96 167 217 291 269 
 60% 88 125 196 267 243 
 Linear nsz ** ns ns ** 
 Quadratic ns ns ns ns ** 
       
Leatherleaf viburnum 0% 409 497 439 381 194 
 30% 385 492 501 530 395 
 60% 249 409 458 527 431 
 Linear ** ** ns ** ** 
  Quadratic * ns ns ** ** 

zns, *, ** nonsignificantat p≥0.05 or significant at p≥0.05 or 0.01, respectively. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



96 

 

Table 3.3. Plant height and width difference, mean leaf number per plant, leaf area per plant (LA), leaf , root, stem and, total 
dry weight, Root to shoot ratio (R/S ratio) in the three viburnum species grown under 0%, 30% or 60% shade. 

Species 
Shade 

intensity 
Heightƶ 

(cm)       
Widthy 
(cm) 

Leaf 
number 
plant-1 

LA 
(cm2) 

Dry weight (g)   

Leaf Stem Root total 
R/S 
ratio 

Burkwood  0% 0 8.6 190.7 1425.5 27.5 22.1 15.7 65.4 0.3 
viburnum 30% 11 18 283 2613 47 43 30 120 0 
 60% 22 24 296 2366 36 41 27 105 0 
 Linear **x ** ** ** ns ** ** ** ns 
 Quadratic ns ns ns * ** ** * ** ns 
           
Koreanspice  0% 6.4 2.1 99.8 634.9 11.2 22.1 17.1 50.5 0.6 
viburnum 30% 20.1 14.7 195.4 3040.6 46.1 42.7 41.3 130.3 0.5 
 60% 35.1 28.8 180.2 3331.3 42.6 46.9 39.1 128.8 0.4 
 Linear ** ** ** ** ** ** ** ** ** 
 Quadratic ns ns ** ** ** ** ** ** ns 

           
Leatherleaf  0% 9.5 0.0 78.3 1020.3 29.7 44.2 47.6 121.5 0.7 
viburnum 30% 17.3 12.9 137.7 4064.8 70.9 59.9 83.7 214.6 0.6 
 60% 21.3 29.9 148.6 5750.9 75.3 73.3 84.9 233.7 0.6 

 Linear ** ** ** ** ** ** ** ** * 
  Quadratic ns ns ns * ** ns ** ** ns 

ƶHeight = (Height in September)-(Height in May) 
yWidth = (Width in September)-(Width in May) 
xns, *, ** nonsignificant at p≥0.05 or significant at p≥0.05 or 0.01, respectively. 
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Table 3.4. Leaf area ratio (LAR) and specific leaf area (SLA) of three viburnum species 
grown under 0%, 30% or 60% shade intensities. 

Species 
Shade 

intensity LAR (cm2 g-1) SLA (cm2 g-1) 
Burkwood viburnum  0% 3.9 51.0 

 30% 2.4 55.2 
 60% 2.9 66.6 

 Linear ns ** 
 Quadratic ns ns 
    

Koreanspice viburnum 0% 1. 9 60.8 
 30% 1.5 66.6 
 60% 1.4 77.8 
    

 Linear ns ** 
 Quadratic ns ns 

    

Leatherleaf viburnum 0% 0.6 26.0 
 30% 0.6 55.7 
 60% 0.6 76.8 
    

 Linear ns ** 
  Quadratic ns ns 

ns, *, ** nonsignificant or significant at p=0.05 or 0.01, respectively. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



98 

 

Table 3.5. Monthly leaf necrosis ratings in three viburnum species grown under             
0, 30 or 60% shade. 

Species Shade Leaf necrosis rating  
  intensity May    June         July August 
Burkwood 0%   1.0 az  1.5 ac  2.2 a  3.8 ag 
viburnum 30% 1.1 a  1.5 ac  1.5 b  1.5 bch 
 60%  1.1 a  1.3 a  1.3 b  1.3 bh 
Korean spice  0%  1.1 a  2.3 b  3.9 c  6.5 d 
viburnum 30%  1.0 a  1.6 cd  1.9 d  2.3 aci 
 60%  1.0 a  1.2 a  1.2 b  1.4 b 
Leatherleaf 0%  1.9 b  2.1 b  3.0 e  8.1 e 
viburnum 30%  1.8 b  1.9 bde  2.0 f  2.9 afg 
  60%  1.5 c  1.6 e  1.7 bd  1.7 fhi 

zMean separation within columns by paired t-test at p≤ 0.05. 
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Table 3.6. Daily mean high and low temperatures (oF and oC) by month from May 20, 2010 to September 8, 2010 recorded by 
data loggers in 0%, 30% and 60% shade.  

Month 

Average Temperature 
0% shade  30% shade  60% shade 

oF   oC  oF   oC  oF   oC 
High  Low   High  Low   High  Low   High  Low   High  Low   High  Low  

Mayƶ 93.5 64.6  34.1 18.1  91.1 65.0  32.8 18.3  90.3 64.1  32.36 17.82 
June 97.9 72.1  36.6 22.3  95.6 71.9  35.4 22.2  88.7 62.0  25.94 11.12 
July 95.2 72.0  38.2 22.9  91.8 71.8  36.5 22.7  85.6 61.3  34.28 20.45 
August 102.1 70.9  38.9 21.6  99.4 70.4  37.4 21.3  97.1 70.9  36.18 21.58 
Septembery 92.9 65.1   33.8 18.4   91.0 64.5   32.8 18.1   90.1 64.8   32.28 18.22 
ƶTemperature record is from May 20, 2010 to May 31, 2010 
yTemperature record is from September 1, 2010 to September 8, 2010 
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Figure 3.1. Burkwood viburnum leaf necrosis in August at 0%, 30% and 60% shade 
(from left to right). 

 

 

 

 

 

 

 

 

 

 

 



101 

 

 

Figure 3.2. Korean spice viburnum leaf necrosis in August at 0%, 30% and 60% shade 
(from left to right). 
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Figure 3.3. Leatherleaf viburnum leaf necrosis in August at 0%, 30% and 60% shade 
(from left to right).
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APPPENDIX 1 
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Table A-1. Daily average, maximum and minimum temperature from 20 May, 2010 to 8 September, 2010, recorded by data 
loggers in 0%, 30% and 60% shade. 

Shade Month Day 
Temperature (oF) Temperature (oC) 

Average Maximum Minimum  Average Maximum Minimum  
0 May 20 65.5 79.5 53.8 18.6 26.4 12.1 
0 May 21 71.1 90.3 51.0 21.7 32.4 10.6 
0 May 22 79.0 88.1 70.4 26.1 31.2 21.3 
0 May 23 82.0 94.8 73.9 27.8 34.9 23.3 
0 May 24 81.0 91.8 72.5 27.2 33.2 22.5 
0 May 25 77.8 93.3 67.0 25.4 34.1 19.4 
0 May 26 79.4 94.8 64.9 26.3 34.9 18.3 
0 May 27 78.8 97.9 64.9 26.0 36.6 18.3 
0 May 28 80 98.7 64.2 26.7 37.1 17.9 
0 May 29 79.9 98.7 62.8 26.6 37.1 17.1 
0 May 30 80.4 97.9 64.9 26.9 36.6 18.3 
0 May 31 77.2 95.6 64.9 25.1 35.3 18.3 
0 June 1 84.4 101.9 69.7 29.1 38.8 20.9 
0 June 2 85.0 100.3 72.5 29.4 37.9 22.5 
0 June 3 80.8 100.3 66.3 27.1 37.9 19.1 
0 June 4 82.7 99.5 67.7 28.2 37.5 19.8 
0 June 5 85.4 101.1 71.1 29.7 38.4 21.7 
0 June 6 83.1 94.8 74.6 28.4 34.9 23.7 
0 June 7 76.0 86.6 65.6 24.4 30.3 18.7 
0 June 8 85.8 99.5 75.3 29.9 37.5 24.1 
0 June 9 79.4 93.3 68.4 26.3 34.1 20.2 
0 June 10 80.5 93.3 72.5 26.9 34.1 22.5 
0 June 11 85.0 95.6 76.7 29.4 35.3 24.8 
0 June 12 84.1 94.8 78.1 28.9 34.9 25.6 
0 June 13 85.7 98.7 73.9 29.8 37.1 23.3 
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0 June 14 69.0 75.3 66.3 20.6 24.1 19.1 
0 June 15 78.3 95.6 64.9 25.7 35.3 18.3 
0 June 16 79.7 96.4 68.4 26.5 35.8 20.2 
0 June 17 85.3 100.3 73.9 29.6 37.9 23.3 
0 June 18 87.6 101.1 76.7 30.9 38.4 24.8 
0 June 19 88.3 101.1 76.0 31.3 38.4 24.4 
0 June 20 87.0 100.3 76.0 30.6 37.9 24.4 
0 June 21 87.1 101.1 76.0 30.6 38.4 24.4 
0 June 22 87.7 101.9 73.9 30.9 38.8 23.3 
0 June 23 88.9 103.5 72.5 31.6 39.7 22.5 
0 June 24 86.9 101.9 74.6 30.5 38.8 23.7 
0 June 25 87.0 101.9 73.9 30.6 38.8 23.3 
0 June 26 87.9 103.5 73.9 31.1 39.7 23.3 
0 June 27 85.4 101.1 76.7 29.7 38.4 24.8 
0 June 28 82.1 96.4 72.5 27.8 35.8 22.5 
0 June 29 81.8 98.7 67.7 27.7 37.1 19.8 
0 June 30 82.3 97.1 67.0 27.9 36.2 19.4 
0 July  1 82.4 96.4 69.0 28.0 35.8 20.6 
0 July  2 81.7 94.1 71.8 27.6 34.5 22.1 
0 July  3 75.7 79.5 73.2 24.3 26.4 22.9 
0 July  4 78.5 91.8 73.2 25.8 33.2 22.9 
0 July  5 80.7 92.5 72.5 27.1 33.6 22.5 
0 July  6 77.4 101.9 70.4 25.2 38.8 21.3 
0 July  7 79.1 94.1 69.0 26.2 34.5 20.6 
0 July  8 79.6 91.8 72.5 26.4 33.2 22.5 
0 July  9 80.4 95.6 72.5 26.9 35.3 22.5 
0 July  10 83.5 100.3 69.0 28.6 37.9 20.6 
0 July  11 86.5 103.5 76.0 30.3 39.7 24.4 
0 July  12 80.3 100.3 74.6 26.8 37.9 23.7 
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0 August 5 87.9 102.7 78.1 31.1 39.3 25.6 
0 August 6 85.3 101.9 71.8 29.6 38.8 22.1 
0 August 7 88.7 105.1 76.0 31.5 40.6 24.4 
0 August 8 91.7 109.4 77.4 33.2 43.0 25.2 
0 August 9 91.9 107.7 77.4 33.3 42.1 25.2 
0 August 10 90.8 107.7 75.3 32.7 42.1 24.1 
0 August 11 91.4 108.5 74.6 33.0 42.5 23.7 
0 August 12 92.6 112.0 76.7 33.7 44.4 24.8 
0 August 13 95.1 112.0 78.8 35.1 44.4 26.0 
0 August 14 92.6 112.0 76.7 33.7 44.4 24.8 
0 August 15 80.3 96.4 71.1 26.8 35.8 21.7 
0 August 16 82.0 100.3 69.7 27.8 37.9 20.9 
0 August 17 79.9 91.8 72.5 26.6 33.2 22.5 
0 August 18 80.0 95.6 69.0 26.7 35.3 20.6 
0 August 19 83.6 104.3 64.9 28.7 40.2 18.3 
0 August 20 91.1 106.8 78.8 32.8 41.6 26.0 
0 August 21 88.2 105.1 74.6 31.2 40.6 23.7 
0 August 22 85.7 104.3 70.4 29.8 40.2 21.3 
0 August 23 88.3 106 72.5 31.3 41.1 22.5 
0 August 24 76.6 85.9 69.0 24.8 29.9 20.6 
0 August 25 74.6 91 60.1 23.7 32.8 15.6 
0 August 26 71.6 93.3 52.4 22.0 34.1 11.3 
0 August 27 74.8 98.7 53.1 23.8 37.1 11.7 
0 August 28 77.1 97.9 58.7 25.1 36.6 14.8 
0 August 29 81.6 99.5 64.2 27.6 37.5 17.9 
0 August 30 84.5 97.1 73.2 29.2 36.2 22.9 
0 August 31 86.9 103.5 76.0 30.5 39.7 24.4 
0 September 1 83.8 95.6 76.7 28.8 35.3 24.8 
0 September 2 81.1 106 67.7 27.3 41.1 19.8 
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0 September 3 71.2 88.8 56.6 21.8 31.6 13.7 
0 September 4 69.9 92.5 50.3 21.1 33.6 10.2 
0 September 5 76.5 97.1 54.5 24.7 36.2 12.5 
0 September 6 84.2 97.9 73.9 29.0 36.6 23.3 
0 September 7 77.5 90.3 71.1 25.3 32.4 21.7 
0 September 8 72.0 74.6 69.7 22.2 23.7 20.9 
30 May 20 65.4 78.1 54.5 18.6 25.6 12.5 
30 May 21 70.5 86.6 51.7 21.4 30.3 10.9 
30 May 22 78.8 87.4 70.4 26.0 30.8 21.3 
30 May 23 81.6 94.1 73.9 27.6 34.5 23.3 
30 May 24 80.4 91.0 73.2 26.9 32.8 22.9 
30 May 25 76.8 89.6 67.7 24.9 32.0 19.8 
30 May 26 79.0 93.3 65.6 26.1 34.1 18.7 
30 May 27 78.5 95.6 65.6 25.8 35.3 18.7 
30 May 28 79.0 94.8 64.2 26.1 34.9 17.9 
30 May 29 79.2 95.6 62.8 26.2 35.3 17.1 
30 May 30 79.8 95.6 64.9 26.6 35.3 18.3 
30 May 31 76.5 91.0 64.9 24.7 32.8 18.3 
30 June 1 83.7 100.3 69.7 28.7 37.9 20.9 
30 June 2 84.0 97.1 72.5 28.9 36.2 22.5 
30 June 3 79.4 96.4 65.6 26.3 35.8 18.7 
30 June 4 82.1 96.4 67.7 27.8 35.8 19.8 
30 June 5 84.7 98.7 70.4 29.3 37.1 21.3 
30 June 6 82.0 92.5 74.6 27.8 33.6 23.7 
30 June 7 75.3 83.7 65.6 24.1 28.7 18.7 
30 June 8 85.2 97.1 74.6 29.6 36.2 23.7 
30 June 9 78.8 90.3 68.4 26.0 32.4 20.2 
30 June 10 80.1 92.5 72.5 26.7 33.6 22.5 
30 June 11 84.4 93.3 76.7 29.1 34.1 24.8 
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30 June 12 83.4 91.8 78.1 28.6 33.2 25.6 
30 June 13 85.0 97.9 73.9 29.4 36.6 23.3 
30 June 14 69.2 76.7 66.3 20.7 24.8 19.1 
30 June 15 77.7 91.8 65.6 25.4 33.2 18.7 
30 June 16 79.3 94.1 69.0 26.3 34.5 20.6 
30 June 17 84.9 97.9 73.9 29.4 36.6 23.3 
30 June 18 87.0 99.5 76.7 30.6 37.5 24.8 
30 June 19 87.5 98.7 76.0 30.8 37.1 24.4 
30 June 20 86.6 99.5 75.3 30.3 37.5 24.1 
30 June 21 86.2 99.5 74.6 30.1 37.5 23.7 
30 June 22 87.0 100.3 73.9 30.6 37.9 23.3 
30 June 23 88.0 101.9 71.8 31.1 38.8 22.1 
30 June 24 85.5 97.9 74.6 29.7 36.6 23.7 
30 June 25 86.1 99.5 73.9 30.1 37.5 23.3 
30 June 26 87.3 101.9 73.2 30.7 38.8 22.9 
30 June 27 84.5 99.5 76.0 29.2 37.5 24.4 
30 June 28 80.8 92.5 71.8 27.1 33.6 22.1 
30 June 29 81.0 95.6 67.7 27.2 35.3 19.8 
30 June 30 81.5 94.1 67.0 27.5 34.5 19.4 
30 July  1 81.1 93.3 68.4 27.3 34.1 20.2 
30 July  2 80.5 91.0 71.1 26.9 32.8 21.7 
30 July  3 75.6 79.5 73.2 24.2 26.4 22.9 
30 July  4 78.2 89.6 73.2 25.7 32.0 22.9 
30 July  5 80.3 90.3 72.5 26.8 32.4 22.5 
30 July  6 76.9 97.9 70.4 24.9 36.6 21.3 
30 July  7 78.4 91.8 69.0 25.8 33.2 20.6 
30 July  8 78.7 88.8 71.8 25.9 31.6 22.1 
30 July  9 79.2 91 72.5 26.2 32.8 22.5 
30 July  10 82.1 95.6 69.0 27.8 35.3 20.6 



128 

 

30 July  11 85.5 101.1 75.3 29.7 38.4 24.1 
30 July  12 79.3 91.8 74.6 26.3 33.2 23.7 
30 August 5 85.7 97.9 77.4 29.8 36.6 25.2 
30 August 6 84.0 97.9 71.1 28.9 36.6 21.7 
30 August 7 87.5 101.9 76.0 30.8 38.8 24.4 
30 August 8 90.4 105.1 76.7 32.4 40.6 24.8 
30 August 9 90.2 104.3 76.7 32.3 40.2 24.8 
30 August 10 89.5 104.3 74.6 31.9 40.2 23.7 
30 August 11 89.8 105.1 74.6 32.1 40.6 23.7 
30 August 12 91.4 109.4 76.0 33.0 43.0 24.4 
30 August 13 94 110.2 78.8 34.4 43.4 26.0 
30 August 14 91.3 109.4 76.0 32.9 43.0 24.4 
30 August 15 79.5 93.3 70.4 26.4 34.1 21.3 
30 August 16 80.9 97.1 69.0 27.2 36.2 20.6 
30 August 17 79.3 88.8 71.8 26.3 31.6 22.1 
30 August 18 78.6 92.5 68.4 25.9 33.6 20.2 
30 August 19 82.3 100.3 64.2 27.9 37.9 17.9 
30 August 20 89.9 105.1 78.8 32.2 40.6 26.0 
30 August 21 86.9 103.5 73.9 30.5 39.7 23.3 
30 August 22 84.1 101.1 69.7 28.9 38.4 20.9 
30 August 23 86.9 103.5 71.8 30.5 39.7 22.1 
30 August 24 75.8 83.7 68.4 24.3 28.7 20.2 
30 August 25 73.3 88.8 60.1 22.9 31.6 15.6 
30 August 26 70.5 91.0 52.4 21.4 32.8 11.3 
30 August 27 73.5 96.4 52.4 23.1 35.8 11.3 
30 August 28 76.1 97.1 58.7 24.5 36.2 14.8 
30 August 29 80.7 97.9 63.5 27.1 36.6 17.5 
30 August 30 83.8 95.6 72.5 28.8 35.3 22.5 
30 August 31 86 101.9 76.0 30.0 38.8 24.4 
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30 September 1 82.9 94.1 76.0 28.3 34.5 24.4 
30 September 2 80.4 102.7 67.7 26.9 39.3 19.8 
30 September 3 70.2 86.6 55.9 21.2 30.3 13.3 
30 September 4 68.5 89.6 49.6 20.3 32.0 9.8 
30 September 5 75.6 95.6 53.8 24.2 35.3 12.1 
30 September 6 83.3 96.4 72.5 28.5 35.8 22.5 
30 September 7 76.6 88.1 70.4 24.8 31.2 21.3 
30 September 8 72.0 74.6 70.4 22.2 23.7 21.3 
60 May 20 64.5 78.1 53.1 18.1 25.6 11.7 
60 May 21 69.4 85.2 51.0 20.8 29.6 10.6 
60 May 22 77.5 86.6 68.4 25.3 30.3 20.2 
60 May 23 80.5 92.5 72.5 26.9 33.6 22.5 
60 May 24 79.4 90.3 71.8 26.3 32.4 22.1 
60 May 25 76.0 88.8 67.0 24.4 31.6 19.4 
60 May 26 78.1 91.8 64.9 25.6 33.2 18.3 
60 May 27 78.0 95.6 64.9 25.6 35.3 18.3 
60 May 28 78.2 94.1 63.5 25.7 34.5 17.5 
60 May 29 78.3 95.6 62.2 25.7 35.3 16.8 
60 May 30 79.0 95.6 64.9 26.1 35.3 18.3 
60 May 31 75.5 88.8 64.9 24.2 31.6 18.3 
60 June 1 82.2 97.9 69.0 27.9 36.6 20.6 
60 June 2 82.8 96.4 71.1 28.2 35.8 21.7 
60 June 3 75.1 92.3 55.9 23.9 33.5 13.3 
60 June 4 69.6 87.4 54.5 20.9 30.8 12.5 
60 June 5 74.7 90.2 64.5 23.7 32.3 18.1 
60 June 6 70.0 84.5 69.4 21.1 29.2 20.8 
60 June 7 69.1 82.3 55.9 20.6 27.9 13.3 
60 June 8 71.7 81.1 64.5 22.1 27.3 18.1 
60 June 9 72.0 86.0 61.0 22.2 30.0 16.1 
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60 June 10 69.0 74.9 61.5 20.6 23.8 16.4 
60 June 11 74.9 80.4 63.0 23.9 26.9 17.2 
60 June 12 73.9 80.2 63.0 23.3 26.8 17.2 
60 June 13 74.8 86.6 64.9 23.8 30.3 18.3 
60 June 14 66.6 81.6 61.7 19.2 27.6 16.5 
60 June 15 70.3 81.1 61.7 21.3 27.3 16.5 
60 June 16 65.5 83.7 60.3 18.6 28.7 15.7 
60 June 17 75.0 83.0 65.9 23.9 28.3 18.8 
60 June 18 78.9 87.4 66.7 26.1 30.8 19.3 
60 June 19 75.0 85.2 62.4 23.9 29.6 16.9 
60 June 20 74.1 93.3 61.0 23.4 34.1 16.1 
60 June 21 75.4 84.6 64.5 24.1 29.2 18.1 
60 June 22 77.6 91.1 60.0 25.4 32.8 15.6 
60 June 23 77.9 92.8 62.4 25.5 33.8 16.9 
60 June 24 70.6 86.0 68.8 21.4 30.0 20.4 
60 June 25 76.1 83.7 65.2 24.5 28.7 18.4 
60 June 26 74.0 91.6 64.2 23.3 33.1 17.9 
60 June 27 77.5 84.2 60.3 25.3 29.0 15.7 
60 June 28 73.1 82.8 63.8 22.8 28.2 17.7 
60 June 29 73.3 80.4 57.3 22.9 26.9 14.1 
60 June 30 72.2 88.1 55.9 22.3 31.2 13.3 
60 July  1 63.6 77.4 52.4 17.6 25.2 11.3 
60 July  2 63.7 76.0 51.0 17.6 24.4 10.6 
60 July  3 61.8 72.5 55.2 16.6 22.5 12.9 
60 July  4 64.5 78.1 53.1 18.1 25.6 11.7 
60 July  5 69.9 85.2 51.0 21.1 29.6 10.6 
60 July  6 77.8 86.6 68.4 25.4 30.3 20.2 
60 July  7 80.5 92.5 72.5 26.9 33.6 22.5 
60 July  8 79.4 90.3 71.8 26.3 32.4 22.1 
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60 July  9 75.9 88.8 67.0 24.4 31.6 19.4 
60 July  10 78.2 91.8 64.9 25.7 33.2 18.3 
60 July  11 77.9 95.6 64.9 25.5 35.3 18.3 
60 July  12 74.2 91.8 63.5 23.4 33.2 17.5 
60 August 5 85.0 97.1 77.4 29.4 36.2 25.2 
60 August 6 83.3 95.6 71.8 28.5 35.3 22.1 
60 August 7 86.6 100.3 76.0 30.3 37.9 24.4 
60 August 8 89.4 103.5 76.7 31.9 39.7 24.8 
60 August 9 89.3 102.7 76.7 31.8 39.3 24.8 
60 August 10 88.6 103.5 75.3 31.4 39.7 24.1 
60 August 11 88.6 102.7 74.6 31.4 39.3 23.7 
60 August 12 90.0 105.1 76.7 32.2 40.6 24.8 
60 August 13 92.0 106.8 78.8 33.3 41.6 26.0 
60 August 14 90.2 106.8 76.7 32.3 41.6 24.8 
60 August 15 79.2 90.3 71.1 26.2 32.4 21.7 
60 August 16 79.9 94.8 69.7 26.6 34.9 20.9 
60 August 17 78.5 86.6 71.8 25.8 30.3 22.1 
60 August 18 77.9 91.0 68.4 25.5 32.8 20.2 
60 August 19 81.1 99.5 64.9 27.3 37.5 18.3 
60 August 20 88.1 101.1 77.4 31.2 38.4 25.2 
60 August 21 85.9 99.5 74.6 29.9 37.5 23.7 
60 August 22 83.4 97.9 70.4 28.6 36.6 21.3 
60 August 23 86.2 101.1 73.2 30.1 38.4 22.9 
60 August 24 75.4 81.6 68.4 24.1 27.6 20.2 
60 August 25 73.0 85.9 60.8 22.8 29.9 16.0 
60 August 26 70.5 89.6 53.8 21.4 32.0 12.1 
60 August 27 72.8 93.3 54.5 22.7 34.1 12.5 
60 August 28 75.5 94.1 60.1 24.2 34.5 15.6 
60 August 29 80.2 96.4 64.9 26.8 35.8 18.3 
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60 August 30 83.1 94.8 72.5 28.4 34.9 22.5 
60 August 31 85.3 101.1 76.0 29.6 38.4 24.4 
60 September 1 82.5 93.3 76.0 28.1 34.1 24.4 
60 September 2 79.9 101.1 67.0 26.6 38.4 19.4 
60 September 3 69.6 85.2 57.3 20.9 29.6 14.1 
60 September 4 68.3 88.8 51.0 20.2 31.6 10.6 
60 September 5 75.0 94.8 54.5 23.9 34.9 12.5 
60 September 6 82.1 95.6 72.5 27.8 35.3 22.5 
60 September 7 76.4 88.1 71.1 24.7 31.2 21.7 
60 September 8 71.5 73.9 69.0 21.9 23.3 20.6 
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APPENDIX 2 

RAINFALL MEASUREMENT (mm) 
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Table A-2 Rainwater (mm) collected in rain gauge from 20 May, 2010 to 8 September, 
2010 in 0%, 30% and 60% shade. 

Date 
Rainfall (mm) 

0% shade  30% shade  60% shade 
30 May, 2010 1.8 1.8 1.8 
3 June, 2010 0.5 0.4 0.4 
7 June, 2010 1.1 1.0 1.0 
14 June, 2010 1.8 1.8 1.8 
15 June, 2010 0.5 0.5 0.6 
27 June, 2010 0.5 0.5 0.5 
3 July, 2010 1.0 1.0 1.3 
5 July, 2010 0.5 0.4 0.4 
6 July, 2010 1.4 1.3 1.1 
5 August, 2010 0.2 0.2 0.2 
16 August, 2010 0.1 0.1 0.1 
17 August, 2010 1.7 1.6 1.2 
24 August, 2010 0.1 0.1 0.1 
2 September, 2010 0.5 0.5 0.5 
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APPENDIX 3 

PLANT HEIGHTS AND WIDTHS OF THREE VIBURNUM SPECIES GROWN 
UNDER THREE SHADE INTENSITIES 
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Table A-3. Height and width of three viburnum species in May and September in 0, 30 or 
60% shade. 

Species 
Shade 

intensity 
Height in 
May (cm) 

Height in 
Sep (cm) 

Width in 
May (cm) 

Width in 
Sep (cm) 

Burkwood  0 43.7 43.3 41.9 50.5 

viburnum 30 45.8 56.7 38.9 57.4 
 60 45.4 67.3 39.3 63.6 
      
Korean spice 0 41.3 47.8 44.0 46.1 
viburnum 30 41.8 61.9 46.1 60.7 
 60 43.2 78.3 40.2 69.0 
      
Leatherleaf 0 45.3 54.8 45.9 45.9 
viburnum 30 42.7 60.0 48.0 60.9 
  60 44.3 65.6 42.6 72.6 
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