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CHAPTER I 
 

INTRODUCTION 

Bermudagrass [Cynodon dactylon (L.) Pers.] is used in many parts of the world as a 

forage crop and as turfgrass on sports fields, golf courses and lawns. Bermudagrass is a 

warm season perennial grass species best adapted to tropical and subtropical climates 

with high temperatures, mild winters and high rainfall (Taliaferro et al., 2004b). It was 

introduced to the United States from Africa by 1751 A. D. (Hanson, 1972). 

Bermudagrass is native to Africa and Southeast Asia and is currently found all over the 

world (Harlan and de Wet, 1969; de Wet and Harlan, 1970; de Wet and Harlan, 1971; 

Taliaferro et al., 2004b). Bermudagrasses are drought tolerant and are adapted to many 

soil conditions (McCarty and Miller, 2002) but little is known concerning bermudagrass 

cultivar differences in drought performance. Selection and identification of drought 

resistant bermudagrass cultivars under acute or chronic drought stress is important for 

sustainable turfgrass management and water conservation.  

Warm-season grasses are often referred to as C-4 grasses, due to their photosynthetic 

pathway termed the photosynthetic dicarboxylic acid cycle which results in production of 

a four carbon (C) anion called oxaloacetate (Hull, 1992). In general, C-4 grasses are 

efficient users of water, especially compared to cool-season or C-3 grasses (Hull, 1992).  

Bermudagrass is a C-4 grass and is a proficient water user (Feldhake et al., 1983). 

Evaporation refers to the process where liquid water is converted to water vapor and is  
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thus lost from the evaporative surface, such as soil or vegetation.  Transpiration refers to 

the process where water in plant tissue is converted to water vapor and is thus lost from a 

plant to the atmosphere primarily through leaf stomata.  Evapotranspiration (ET) refers to 

the sum of water losses through evaporation from the soil and vegetation and plant water 

loss through transpiration (Allen et al., 1998).  The ET rate is plant and site specific and 

depends on the specific micro-climate of a given area or region. Nitrogen (N) rate, 

mowing height and solar energy affects the site specific ET rates of turf. The ET rate also 

varies by season and by year. Irrigation to replace the calculated ET loss of water is 

dependent upon the quantity of natural precipitation that normally occurs during a 

growing season. The irrigation requirements of turfgrasses vary by species, region, and 

season.  For instance, in a study of the irrigation requirements of bentgrasses (Agrostis 

spp.) in New Jersey, it was reported that irrigation applied at 60-80% of actual ET was 

sufficient to maintain acceptable turf quality during the summer while application at 40% 

of actual ET was sufficient in the fall of the same year (DaCosta and Huang, 2006a).  

Potential evapotranspiration (ETp) refers to the rate of water loss from a short, 

uniform green crop that is completely shading the soil and with adequate soil moisture for 

plant growth (Allen et al., 1998). Reference evapotranspiration (ETo) refers to the rate of 

water loss from a short reference crop, such as grass, with a height of 0.12 m, a fixed 

surface resistance of 70 sec m-1, and an albedo of 0.23 (Allen et al., 1998).  Reference 

evapotranspiration is synonymous with reference crop evapotranspiration.  A crop 

coefficient (Kc) can be used to more closely estimate the ET rate of a given crop under 

normal conditions as it takes into account specific crop characteristics such as plant 

height and leaf area (Allen et al., 1998). Crop coefficient values vary by growth stage, 
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season and management level (Devitt et al., 1992). Irrigation scheduling using local ETo 

data and proper crop coefficients for a specific turfgrass is ideal for irrigating turfgrass 

areas (Carrow et al., 1995). 

Fu et al. (2004) at Manhattan, KS found that minimal annual irrigation as low as 224 

mm is enough to maintain acceptable turf quality in bermudagrass.  September ratings 

had unacceptable turf quality when irrigated at 40% of ET (163 mm) in the first year of 

their two year study. Bermudagrasses were able to tolerate low leaf relative water content 

(RWC) and resistance to leaf electrolyte leakage (EL) in comparison to other grasses 

allowing them to maintain leaf turgor and membrane stability under acute drought stress 

(Fu et al, 2004). Similarly, the irrigation requirement calculated as a percentage of total 

pan evaporation to maintain acceptable turf quality for different turf species in Texas 

was: ‘Meyer’ zoysiagrass (Zoysia japonica Steud) (68 %), ‘Rebel II’ tall fescue 

[Schedonorus phoenix (Scop.) Holub; synonym Festuca arundinacea Schreb] (67%), 

‘Nortam’ St. Augustinegrass [Stenotaphrum secundatum (Walt.) Kuntze] (44 %), 

‘Tifway’ hybrid bermudagrass [Cynodon dactylon (L.) Pers. × Cynodon transvalensis 

Burtt. Davy ] bermudagrass (35 %), and ‘Prairie’ buffalograss [Bouteloua dactyloides 

(Nutt.) J.T. Columbus; synonym Buchloe dactyloides (Nutt.) Englem] (26 %) (Qian and 

Engelke, 1999).  

Golf courses in the United States occupy approximately 1,198,381 acres of irrigated 

turfgrass areas and use 2,312,701 acre-feet of water per year of which only 12 % is 

recycled water (Throssell et al., 2009). Current research in many parts of the United 

States has focuses on turfgrass water use and conservation. Jurisdiction in some regions 

of the United States has mandated improvements in water use, water quality and/or 
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replacement of traditional turfgrass areas with other plant materials. Inclusion of drought 

resistant entries would be a proper approach to conserve water in the landscape while 

maintaining beneficial turfgrass areas. Also, the potential ban on use of potable water for 

irrigation of turfgrass has stimulated interest in using alternative non-potable water 

sources. Proper application can provide acceptable turf quality (Hayes et al., 1990a) but 

management problems due to total soluble salts or boron toxicity is a concern (Hayes et 

al., 1990b).  The use of municipal effluent for irrigation can add nutrients to the soil, 

which in some cases may be excessive and result in unwanted environmental effects 

(Thomas et al., 2006). Recycled effluent water can be used for irrigation but N 

fertilization practices need to be adjusted to account for N in the water (Devitt et al., 

2008). Grasses may tolerate poor quality irrigation water as long as evaporative demand 

does not become excessively high (Dean et al., 1996). In using alternative water sources 

for turf irrigation, a system of soil, plant, and atmospheric monitoring should be 

incorporated (Lockett et al., 2008).      

Inclusion of drought resistant turfgrass cultivars in urban landscapes is essential to 

save money and conserve water resources in the United States. These potential drought 

resistant turfgrass cultivars can help reduce the quantity of municipally treated water used 

for turfgrass irrigation purposes. It could save thousands of dollars and gallons of water 

for other daily uses. Development of more drought resistant bermudagrasses for 

Oklahoma holds promise for conserving Oklahoma water resources. 
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Literature Review 

 

Drought 

 

Drought is a major limiting factor for crop production. Research evaluating crop 

cultivars for drought performance characteristics is a priority. Development and selection 

of potential drought resistant turfgrass cultivars is needed. Future turfgrass research must 

focus on cultivar improvements for drought resistance along with specific management 

factors affecting drought performance such as nutritional requirements and nutrient 

uptake. 

Management of environmental stress such as drought in turfgrass is challenging. 

Drought has long been recognized as a primary constraint for turf management (Beard, 

1973). Although warm-season turfgrasses are considered relatively drought resistant, the 

ability to withstand severe moisture stress if grown under non-irrigated conditions is 

desirable (McCarty and Miller, 2002). In order to sustain growth, to maintain proper 

shoot density and to get better turf quality, sufficient soil moisture is required (Taliaferro, 

2003; Taliaferro, 1995). Moisture stress in turf is generally due to uneven and/or 

inadequate precipitation, rapid drainage on coarse soils and rolling topography. In plants, 

moisture stress inside plant tissue is the major cause for poor plant growth. Plants 

subjected to drought stress show leaf firing or injury to upper leaves, reduced leaf area, 

slow leaf development, slowed internode elongation and overall stunted growth 

(Taliaferro et al., 2004a).  



 

6 
 

Drought stress in plants decreases their rate of transpiration, which is co-related to 

reduced nutrient uptake. Drought stress also increases weed competition because some 

weeds exceed turfgrass plants in their ability to maintain suitable plant water potential in 

their tissues during drought stress. Some weeds can maintain growth and production 

during drought periods. Thus, selection and identification of prominent drought resistant 

turfgrass cultivars is a priority (Kim and Beard, 1988).  

 

 

Drought and Turfgrass Research 

 

 

Turfgrass and its application in American life is an age old trend. Turfgrass covers 

millions of hectares of home lawns, commercial landscapes, roadside vegetation, parks, 

athletic fields and golf courses in the United States.  Rapid urbanization resulted in 

development of an extensive turfgrass industry.  In 2002, the green industry generated 

revenue in the amount of $147 billion in the United States (Hall et al., 2005) with golf 

courses accounting for $33.2 billion in gross economic output impacts (Haydu et al., 

2008). 

A 2002 USDA census of agriculture showed the turfgrass sod industry generated 

revenue of over $1 billion dollars annually. This demonstrates the turfgrass industry 

generates significant economic impact as an industry, and it is generally overlooked in 

American agriculture. Limited knowledge about plant-water relationships and the effects 

of multiple environmental factors on plant growth mandates the undertaking of research 



 

7 
 

in this arena. To establish an efficient and sustainable drought management system, 

suggested strategic research initiatives include evaluation of potential drought tolerant 

turfgrass entries for parameters such as tolerance to soil salinity, root tissue hydraulic 

conductivity, minimal irrigation requirements and improved stand survival in areas 

ranging from low to high ET rate. 

In several parts of the United States, severe drought prevails and climatologists fear 

worsening condition in the future. The situation is severe in the South and Southwestern 

United States regions during the month of July through August each year. These regions 

experience drought, at times exposing large lake beds and/or shrinking reservoirs with 

extremely low water levels. In the future, similar drought conditions are projected to 

extend due to dry seasons and may be exacerbated by poorly managed water sources and 

increasing demand due to a growing human population. This condition will likely create 

severe limitations in recreational water use. Already, recycled water or grey water is 

being used on many golf courses and some lawns to minimize the fresh water 

consumption in urban areas (Sammon, 2007). The proposed research would help to 

alleviate these problems associated with water use for turfgrass management.  

 

Drought and Bermudagrass Response 

 

Drought resistance refers to the ability of a plant to avoid dehydration or tolerate 

dehydration in plant tissue (Levitt, 1980). Plants survive water stress with mechanisms of 

drought avoidance and/or drought tolerance. Typical mechanisms of drought avoidance 
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include deep, extensive root growth. Typical mechanisms of drought tolerance include 

cell membrane stability and increased or decreased hormone production under drought 

stress. Turfgrass cultivars with shoot characteristics for efficient transpiration and 

extensive root systems for proper moisture absorption are considered drought resistant 

(Youngner, 1985). 

Qian and Fry (1997) found that ‘Midlawn’ bermudagrass and ‘Prairie’ buffalograss 

drought symptoms were similar and performed better than ‘Meyer’ zoysiagrass. 

Bleaching of lower leaves and rolling of leaf blade tips were distinct indicators of 

decreased soil water (SWC) content. It was distinct when SWC dropped near 16%. 

Drought symptoms were visible in warm season grasses after 25 days of drought stress 

and they appeared dormant after 40-45 days, suggesting that dormancy is a drought 

avoidance strategy (Turner and Jones, 1980). After a two-week re-watering period 

following severe drought, Midlawn bermudagrass showed 14% green coverage. Overall, 

Midlawn bermudagrass showed rooting characteristics and an ET rate similar to ‘Prairie’ 

buffalograss. Midlawn bermudagrass also showed increased osmotic adjustment and 

survival rate after a severe drought period and performed inferior to ‘Prairie’ buffalograss 

but better than Meyer zoysiagrass (Qian and Fry, 1997).  

 

Drought Avoidance and Root Systems 

 

Extensive root systems allow turfgrasses to avoid drought, enabling them to extract 

water from deeper in the soil profile during severe moisture stress (Hurd, 1975). To 

prevent moisture stress and to get better turfgrass establishment within the upper soil 
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profiles, periodic precipitation or irrigation is required. Under-developed root systems 

may limit plant growth (Madison, 1971). Boeker (1974) felt that development of 

bermudagrasses capable of avoiding drought through extracting water from deeper soil 

layers by extensive root systems would be important in the future. 

In comparison to cool season grasses, warm season grasses possess better turf quality 

during periods of drought. Cultivar performance and their selection for factors like 

vertical root distribution, soil water depletion, leaf firing and turf quality is essential. In a 

drought study of various bermudagrass genotypes, total root mass at the depths of 30-60 

cm, 60-90 cm, 90-120 cm and 120-150 cm was correlated with turf quality with 

coefficients of r = 0.72, 0.86, 0.80, and 0.81, respectively (Hays et al., 1991). Qian et al. 

(1997) reported that there was no significant difference in total root length (TRL) among 

bermudagrass, buffalograss and zoysiagrass. At 30-60 cm and 60-90 cm depth 

bermudagrass was equal to buffalograss but greater than zoysiagrass for root length 

density.  

In areas of irregular rainfall, greater root size (diameter) and length are desirable traits 

for drought resistant bermudagrasses. It is important to screen genotypes for their rooting 

characteristics including high root/shoot ratios within controlled environment (Bonos et 

al., 2004). Sometimes, deficient irrigation can enhance root growth through pre-stress 

conditioning (Fu et al., 2007). Bermudagrasses which have a great potential for 

establishing a deep root systems should respond well to deficit irrigation without 

declining to unacceptable turf quality (Fu et al., 2007).  For example, Karcher et al. 

(2008) selected tall fescue cultivars found to have high root/shoot ratios by Bonos et al 

(2004) and planted them in field trials for drought performance analysis.  These 
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selections performed well under field drought conditions and exhibited improved drought 

performance compared to their parental lines (Karcher et al., 2008).   

 

Drought Stress and Recovery 

 

Karcher et al. (2008) reported that tall fescue entries selected for high root/shoot 

ratios in green house condition showed improved field drought performance. Entries that 

had high root/shoot ratio were the first to green-up or recover upon re-watering. Nobel 

and Huang (1992) reported that drought stress was a prime factor for root death but the 

ability of entries to develop extensive, deep root systems or sustainable root plasticity 

helped them to survive or persist through chronic drought events and to eventually 

recover after sufficient moisture was present.  

Achieving drought resistance in grasses through genetic manipulation requires the 

assessment of intra-specific variation in their ability to develop and maintain an extensive 

root system at deeper soil depths (Duncan, 1994). Huang et al. (1997b) reported that 

recovery in root dry weight upon re-watering after drought treatment was equal to well-

watered control plants in ‘Tif-Blair’ centipedegrass [Eremochloa ophiuroides (Munro) 

Hack.] and Adalayd (Austrila), PI 299042 (Zimbabwe), PI 509018-1 (Argentina), and AP 

14 (Florida) seashore paspalum (Paspalum vaginatum Sw.), but not for common 

bermudagrass or ‘Emerald’ (Zoysia japonica x Z. tenuifolia) zoysiagrass. The researchers 

attributed the superior drought tolerance of ‘Tif-Blair’ centipedegrass with characteristics 

such as extensive root growth, root water uptake from deeper soil layers, proper root 
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viability at dry soil surfaces, and effective root regeneration on re-watering.  Therefore, 

selection of bermudagrass with these characteristics could improve bermudagrass drought 

performance under chronic drought stress conditions. 

 

Drought Stress and Shoot Response 

 

Turfgrass resistance to leaf firing is different than drought resistance based on ET rate 

(Carrow, 1995). Leaf fire measures the ability of the turfgrass to remain green as dry 

conditions worsen but drought resistance is a measure of survival. Identifiable shoot 

growth responses to drought include reduced clipping production, wilting, leaf firing and 

increases in canopy temperature. Turfgrass wilting and leaf firing were direct indicators 

of drought severity (Carrow, 1996).  Leaf canopy temperature and normalized difference 

vegetative index (NDVI) may also be useful tools for identifying turfgrass shoot 

responses to drought and potentially for prescribing irrigation need in turfgrasses 

(Carrow, 1993; Jiang et al., 2009).  

Huang et al., (1997a) reported that the greatest variation in shoot growth was due to 

turfgrass genotype. At 20 cm soil surface drying, there were significant differences in 

soil-moisture interaction and reduced shoot dry matter production in common 

bermudagrass. There was a strong correlation between species performance and soil 

moisture for shoot growth. At 40 cm soil drying, the differences in drought resistant 

between bermudagrass and ‘Emerald’ zoysiagrass were indicated by reduced chlorophyll 

content and increased canopy temperature (Huang et al., 1997a). The water use rate of a 
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species or cultivar may not be a major factor for consideration of drought tolerance 

potential.  Cultivar or species selection for leaf firing and wilting is an important factor.  

In that case, days to unacceptable leaf firing or wilting for a given turfgrass selection 

should be considered (Ebdon and Kopp, 2004).  

 

Turfgrass Species Performance Rankings Under Drought Stress 

 

Baldwin et al. (2006) conducted a greenhouse study that included six bermudagrass 

entries ‘SWI-1012’, ‘Arizona Common’, ‘Tift No.3’, ‘Tifsport’, ‘Aussie Green’ and 

‘Celebration’ with four irrigation treatments. They found that ‘Aussie Green’ and 

‘Celebration’ produced the highest turf quality ratings in the well-watered control 

treatment. ‘Aussie Green’ and ‘Celebration’ produced higher turf quality ratings 

compared to ‘Arizona Common’ and ‘Tift No. 3’ after four weeks of successive water 

stress with a five day irrigation interval. ‘Celebration’ also produced 114% and 97% 

greater root weight than ‘Tifsport’ and ‘Aussie Green’. Among all treatments, drought 

tolerance was highest in ‘Celebration followed by ‘SWI-1012’, ‘Aussie Green’, ‘Tifsport’ 

and ‘Tift No. 3’.  

Garrot and Mancino (1994) suggested that bermudagrass as a fairway in an arid 

environment can be maintained at an annual rainfall of 834-930 mm while maintaining 

acceptable turf quality, stand density and color. Carrow (1996) reported drought 

resistance performance rankings of turfgrass for wilting and leaf firing in the order of 

common bermudagrass = ‘Tifway’ bermudagrass > ‘Raleigh’ St. Augustinegrass = 
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common centipedegrass > ‘Rebel II’ tall fescue > ‘Kentucky 31’ tall fescue > ‘Meyer’ 

zoysiagrass, indicating the ability of some common and hybrid bermudagrass to resist 

wilt and maintain color under dry conditions. 

Huang et al. (1997a) studied the drought resistance of turf entries on soil drying at 

depths of 0-20 cm and 0-40 cm for parameters including canopy temperature, leaf 

chlorophyll content, relative water content, and shoot dry matter production. The entries 

ranked in order: Seashore paspalum (PI 509018) = ‘Tif-Blair’ centipedegrass > common 

bermudagrass = ‘Emerald’ zoysiagrass. During severe drought conditions, 30 days 

without water, turf canopy temperatures were more than 40° F higher than air 

temperatures (Steinke et al., 2009). Bermudagrass showed less leaf firing than St. 

Augustinegrass or zoysiagrass under drought stress (Steinke et al., 2009). Up to 60 % ETo 

deficit irrigation may be practiced at certain locations without detrimental effects on turf 

quality (DaCosta and Huang, 2006a; DaCosta and Huang, 2006b). Common and hybrid 

bermudagrass demonstrated more drought tolerance than zoysiagrass (Beard and Sifers, 

1997). Differences between bermudagrass and zoysiagrass drought response were 

attributed to differences in root system and ET rate (Beard and Sifers, 1997).  
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Goals and Objectives 

 

The goals of this research were to test and select more drought resistant cultivars of 

bermudagrass for turfgrass use in Oklahoma.  The objectives of this research were to: 

1. Evaluate and explain differences in overall field drought performance of selected 

industry standard and OSU experimental bermudagrass entries. 

2. Evaluate and explain differences in root growth characteristics of selected 

industry standard and OSU experimental bermudagrass entries. 

Research hypotheses:  

Hypothesis I: There is no significant difference in vegetative bermudagrass entries for 

their field drought performance. 

Hypothesis II: There is no significant difference in vegetative bermudagrass entries for 

root growth characteristics.  
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Drought Performance of Clonal Bermudagrass Cultivars and Experimental Selections in 

the Transition Zone 

Additional index words. Cynodon dactylon, drought, leaf firing, turf quality, normalized 

difference vegetative index (NDVI), recovery  

Abstract. Bermudagrass is used in many parts of the world as a forage crop and a 

turfgrass in sports fields, golf courses and lawns. Selection and identification of drought 

resistant bermudagrass cultivars under acute or chronic drought stress is important for 

sustainable turfgrass management and water conservation. The objective of this research 

was to identify differences in overall field drought performance of selected industry 

standard and OSU experimental bermudagrass entries. This research was conducted at the 

Oklahoma State University (OSU) Turfgrass Research Center in Stillwater, OK. Twenty-

three clonal standard cultivars and experimental genotypes were used for this study 

including: Celebration, Premier, Tifway, Tifsport, SIU U-3 (Southern Illinois University 

source), TGS U-3 (Tulsa Grass and Sod farm source), NC U-3 (Northcutt sod farm 

source), Patriot and OSU experimental OKC 70-18, OKC 1119, OKC 1134, #2, #4, #12, 

#16, #17, #18, #20, #22, #24, #25, #26, and #27.  The experimental design was a strip-

plot with four replications, 23 bermudagrass entries and four irrigation treatments. The 

irrigation treatments were applied to the vertical strips in a reverse linear gradient design 

while the bermudagrass entries were randomly applied to the horizontal strips. Four 

levels of irrigation were used according to reference evapotranspiration (ETo) where: 0% 

ETo, 33% ETo, 66% ETo, 100% ETo, control treatment. A consecutive 28 days of drought 

stress was applied, and 60 days of recovery period was observed upon re-watering. Leaf 

firing is a prominent visual rating for bermudagrass drought response and was measured 
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using 1-9 scale where: 1 = total or complete leaf firing and 9 = no leaf firing. In addition, 

turf quality was assessed using a 1-9 scale where: 1 = completely brown, dormant, or 

dead grass, 6 = acceptable visual turf quality, and 9 = excellent turf quality.  Leaf firing 

and turf quality ratings were collected once per week throughout the study period. 

Turfgrass color was measured using FieldScout CM1000 NDVI (normalized difference 

vegetative index) meter (Spectrum Technologies, Plainfield, IL). All statistical analysis 

was completed at a P=0.05 significance level. Based on the overall results from this 

study, the hypothesis that there were no differences in vegetative bermudagrass entries 

for their field drought performance was rejected. At the 0% ETo irrigation level, the OSU 

experimental bermudagrasses that performed lower than Celebration but better than all 

other entries for leaf firing, turf quality, % living cover, turf quality recovery, and NDVI 

were #2, #12, #16, #24, and #27. At the 33% ETo irrigation level, Celebration, #2, #12, 

and #27 performed better for leaf firing, turf quality, % living cover, turf quality 

recovery, and NDVI than all other bermudagrass entries.  Future work should assess the 

drought tolerance and/or drought avoidance mechanisms of these entries.   
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Bermudagrass is used in many parts of the world as a forage crop and as turfgrass 

in sports fields, golf courses and lawns. Bermudagrass is a warm-season perennial grass 

species best adapted to tropical and subtropical climates with high temperatures, mild 

winters and high rainfall (Taliaferro et al., 2004b). Bermudagrass is native to Africa and 

Southeast Asia and is currently found all over the world (Harlan and de Wet, 1969; de 

Wet and Harlan, 1970; de Wet and Harlan, 1971; Taliaferro et al., 2004b). Selection and 

identification of drought resistant bermudagrass cultivars under acute or chronic drought 

stress is important for sustainable turfgrass management and water conservation. 

Evaporation refers to the process where liquid water is converted to water vapor 

and is thus removed from the evaporative surface, such as soil or vegetation. 

Transpiration refers to the process where water in plant tissue is converted to water vapor 

and is thus removed from a plant to the atmosphere primarily through leaf stomata. 

Evapotranspiration (ET) refers to the sum of water losses through evaporation in soil and 

vegetation and plant water loss through transpiration (Allen et al., 1998).  The ET rate is 

site specific and depends on the specific micro-climate of a given area or region. 

Nitrogen (N) rate, mowing height and solar energy affects site specific ET rates. The ET 

rate varies by season and by year. Irrigation replacement of the ET loss of water may be 

adjusted depending on the quantity of natural precipitation during the growing season. 

The irrigation requirements of turfgrasses vary by species, region, and season.  For 

instance, in a study of the irrigation requirements of bentgrasses (Agrostis spp.) in New 

Jersey, it was reported that 60-80% of actual ET was sufficient to maintain acceptable 

turf quality during the summer while 40% of actual ET was sufficient in the fall of the 

same year (DaCosta and Huang, 2006a).  
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Potential evapotranspiration (ETp) refers to the rate of water loss from a short, 

uniform green crop that is completely shading the soil and with adequate soil moisture for 

plant growth (Allen et al., 1998). Reference evapotranspiration (ETo) refers to the rate of 

water loss from a short reference crop, such as grass, with a height of 0.12 m, a fixed 

surface resistance of 70 sec m-1, and an albedo of 0.23 (Allen et al., 1998).  Reference 

evapotranspiration is synonymous with reference crop evapotranspiration.  A crop 

coefficient (Kc) can be used to more closely estimate the ET rate of a given crop under 

normal conditions as it takes into account specific crop characteristics such as plant 

height and leaf area (Allen et al., 1998). Crop coefficient values vary by growth stage, 

season and management level (Devitt et al., 1992). Irrigation scheduling using local ETo 

data for turfgrass is ideal for irrigating turfgrass areas (Carrow et al., 1995). 

Fu et al. (2004) at Manhattan, KS found that minimal annual irrigation as low as 

224 mm is enough to maintain acceptable turf quality in bermudagrass.  September 

ratings had unacceptable turf quality when irrigated at 40% of ET (163 mm) in the first 

year of their two year study. Bermudagrasses were able to tolerate low leaf relative water 

content (RWC) and resistance to leaf electrolyte leakage (EL) in comparison to other 

grasses allowing them to maintain leaf turgor and membrane stability under acute drought 

stress (Fu et al, 2004). Similarly, the irrigation requirement calculated as a percentage of 

total pan evaporation to maintain acceptable turf quality for different turf species in 

Texas was: ‘Meyer’ zoysiagrass (Zoysia japonica Steud) (68 %), ‘Rebel II’ tall fescue 

[Schedonorus phoenix (Scop.) Holub; synonym Festuca arundinacea Schreb] (67%), 

‘Nortam’ St. Augustinegrass [Stenotaphrum secundatum (Walt.) Kuntze] (44 %), 

‘Tifway’ hybrid bermudagrass [Cynodon dactylon (L.) Pers. × Cynodon transvalensis 
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Burtt. Davy ] bermudagrass (35 %), and ‘Prairie’ buffalograss [Bouteloua dactyloides 

(Nutt.) J.T. Columbus; synonym Buchloe dactyloides (Nutt.) Englem] (26 %) (Qian and 

Engelke, 1999). 

Baldwin et al. (2006) conducted a greenhouse study for six bermudagrass entries 

‘SWI-1012’, ‘Arizona Common’, ‘Tift No.3’, ‘Tifsport’, ‘Aussie Green’ and 

‘Celebration’ with four irrigation treatments including well-watered control, and 

treatments irrigated every 5, 10, or 15 days. They found that ‘Aussie Green’ and 

‘Celebration’ produced the highest turf quality ratings in the well-watered control 

treatment. ‘Aussie Green’ and ‘Celebration’ produced the highest turf quality ratings 

compared to ‘Arizona Common’ and ‘Tift No. 3’ after four weeks of successive water 

stress with a five day irrigation interval. ‘Celebration’ also produced 114% and 97% 

greater root weight than ‘Tifsport’ and ‘Aussie Green’. Among all treatments, drought 

tolerance was higher in ‘Celebration’ followed by ‘SWI-1012’, ‘Aussie Green’, ‘Tifsport’ 

and ‘Tift No. 3’.  

Huang et al. (1997a) studied drought resistance performances of turf entries on 

soil drying at 0-20 cm and 0-40 cm depths for parameters including canopy temperature, 

leaf chlorophyll content, relative water content, and shoot dry matter production. The 

entries ranked in order: Seashore paspalum (PI 509018) = ‘Tif-Blair’ centipedegrass > 

common bermudagrass = ‘Emerald’ zoysiagrass. Carrow (1996) reported that a drought 

resistance performance ranking of turfgrass for wilting and leaf firing was in the order: 

common bermudagrass = ‘Tifway’ bermudagrass > ‘Raleigh’ St. Augustinegrass = 

common centipedegrass > ‘Rebel II’ tall fescue > ‘Kentucky 31’ tall fescue > ‘Meyer’ 
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zoysiagrass. Similarly, bermudagrass showed less leaf firing than St. Augustinegrass or 

zoysiagrass under drought stress (Steinke et al., 2009).  

Up to 60% ETo deficit irrigation may be practiced at certain locations without 

detrimental effects on turf quality (DaCosta and Huang, 2006a; DaCosta and Huang, 

2006b). Common and hybrid bermudagrass demonstrated more drought tolerance than 

zoysiagrass (Beard and Sifers, 1997). Differences between bermudagrass and zoysiagrass 

drought response were attributed to differences in root system and ET rate (Beard and 

Sifers, 1997). 

Bermudagrasses are drought tolerant and are adapted to many soil conditions 

(McCarty and Miller, 2002) but little is known concerning bermudagrass cultivar 

differences in drought performance.  There is a great extent of genetic diversity in 

bermudagrass germplasm (Taliaferro et al., 2004a).  The Oklahoma State University 

(OSU) holds numerous accessions from across the world including much germplasm 

from China which could contribute to the development and release of bermudagrass 

cultivars with improved drought tolerance (Wu et al., 2009). 

The objective of this research was to identify differences in overall field drought 

performance of selected industry standard and OSU experimental bermudagrass entries. 

It was hypothesized that there would be differences in vegetative bermudagrass entries 

for their field drought performance. 
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Materials and Methods 

 This research was conducted at the Oklahoma State University (OSU) Turfgrass 

Research Center in Stillwater, OK. The former crop at the site was ‘L-93’ creeping 

bentgrass.  The ‘L-93’ was removed with a sod cutter in Feb. 2009 and topsoil was 

uniformly added and mixed into the existing sand based root zone.  After mixing, 

composite soil samples were collected and analyzed for soil texture using the hydrometer 

method (Gee and Or, 2002). The final soil texture analysis was 80% sand, 18% clay, and 

2% silt and was classified as a sandy loam. An automatic irrigation system was used to 

irrigate bermudagrass entries during the establishment period. The site was constructed 

with a 1% slope for proper drainage of the plot area. Prior to planting, steel landscape 

edging (31 cm height) was installed as a plot border to deter irrigation water from 

entering into adjacent plot areas. The bottom 26 cm of the steel edging was buried below 

ground and the remaining 5 cm of the steel edging remained above ground. Twenty-three 

vegetative standard cultivars and experimental genotypes were selected for this study 

(Table 1). Uniform sod pieces of each entry were collected from the OSU Turfgrass 

Research Center field plots from prior research studies (Han, 2009).  

The sod was transferred and planted in pots in the greenhouse in Feb. 2009.  Sod 

plugs were clonally propagated in greenhouse trays from Feb. 2009 until June 2009.  

Following greenhouse propagation, the entries were planted at the field research site on 

16 June 2009. During establishment, 49 kg N ha-1 was applied to the plot area. 

Phosphorus tested adequate for turfgrass growth and K was applied at 24 kg K2O ha-1, 

both according to soil fertility test recommendations. The recommendation was according 

to buffer index for soil test N index (23), soil test P index (126), and soil test K index 
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(250). After establishment, 49 kg N ha-1 mo-1 was applied to the plot area for proper N 

fertility maintenance (Qian et al., 1997). Plots were mowed with a rotary mower at 5.1 

cm height of during establishment and were incrementally mowed lower to a 1.9 cm 

height of cut with a walk-behind reel mower as the bermudagrass plots matured. Weeds 

were removed from the plot area by hand and integrated pest management principles 

(Giles and Walker, 2009) were followed concerning insect and disease scouting and 

management.  No detrimental incidence of insect or disease damage was present in the 

plot area during the study period. No pesticide were applied.  

Reference evapotranspiration data was calculated according to the Penman-

Monteith method (Allen et al., 1998) and was retrieved from an Oklahoma Mesonet 

System (Oklahoma Mesonet) weather station located 0.4 km east of the research site. 

Plots were irrigated three times per day to 100% ETo during plot establishment.  As the 

bermudagrass plots matured, plot irrigation was incrementally reduced over time to every 

other day irrigation events according to the cumulative ETo two days prior to the day of 

irrigation.  Cumulative ETo measured two days prior to irrigation. 

A field-based raincover (Covermaster, Rexdale, ON, Canada) was used during the 

treatment period to keep natural precipitation off of the plot area thus replicating drought 

conditions. The raincover was 694 m2 and covered the entire research plot area. The 

raincover was a moveable tarp similar to what is used to cover sports fields during rainy 

periods. The raincover was stored at the south perimeter of the research plot area with the 

edges fixed to the ground with tent spikes.  The raincover could be deployed by hand and 

the plot area could be completely protected from precipitation in approximately 15 

minutes. The field raincover was only used to avoid precipitation from entering the plot 
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area and the plots were left uncovered during all other periods, resembling natural field 

conditions. No natural rainfall occurred on uncovered plots during the study. 

The experimental field design was a strip-plot with four replications, 23 

bermudagrass entries and four irrigation treatments. Four levels of irrigation were used 

according to ETo at: 0% ETo, 33% ETo, 66% ETo, and 100% ETo. Bermudagrass entries 

were randomly assigned to horizontal strips while irrigation treatments were assigned to 

vertical strips in a reverse linear gradient design (Hoshmand, 2006). A consecutive 28 

days of irrigation treatments was applied, and a 60 day recovery period was applied by 

re-watering plots with sprinkler irrigation according to the 100% ETo treatment. 

The irrigation treatments were applied by hand at replacement rate according to 

the respective irrigation treatment.  For the total of all plots under each irrigation 

treatment (29.9 m2), it was calculated that for every 1 cm of irrigation needed according 

to ETo, 298 L of irrigation needed to be evenly applied over the total of all replicates 

under that irrigation treatment. A water meter was attached to an irrigation hose to 

monitor the amount of water applied over time. The flow rate was 37.9 L of water per 

minute and each irrigation treatment was applied thoroughly with hand held hose to get a 

uniform and even distribution of water within the particular irrigation treatment strip. For 

example, if the ETo for two consecutive days prior to application of the irrigation 

treatment was 1 cm then: for the 100% of ETo 298 L of water was applied, for the 66% 

ETo 196.7 L of water was applied, for the 33% ETo treatment 98.3 L of irrigation was 

applied and for the 0% ETo treatment no irrigation was applied.   
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Both subjective and objective data was collected to evaluate the bermudagrass 

entries.  Leaf firing is a prominent visual rating for bermudagrass drought response and 

was measured using 1-9 scale where: 1 = total or complete leaf firing and 9 = no leaf 

firing. In addition, turf quality was assessed using a 1-9 scale where: 1 = completely 

brown, dormant, or dead grass, 6 = acceptable visual turf quality, and 9 = excellent turf 

quality.  Turfgrass color was measured using a FieldScout CM1000 NDVI (normalized 

difference vegetative index) meter (Spectrum Technologies, Plainfield, IL). The NDVI 

value determined by the meter provides an indication of turfgrass reflectance that 

measures the relative greenness of the turfgrass plot area. Leaf firing, turf quality, and 

NDVI were collected once per week throughout the study period.  Soil volumetric water 

content was measured in each plot using a Stevens POGO portable soil sensor (Stevens, 

Portland, OR). Soil volumetric water content readings were recorded for each individual 

plot once per week throughout the study period. Percent living cover on visual basis was 

rated at eight weeks after re-watering all plots according to the 100% ET treatment. 

All statistical analyses were completed at the P=0.05 significance level. Analysis 

of variance (ANOVA) statistical procedures were completed using SAS software (SAS 

Institute Inc., Cary, NC) to test the effects of rating date, irrigation treatment, 

bermudagrass entry, and any interactions (Table 2). For turf quality and NDVI there was 

significant rating date x bermudagrass entry x irrigation treatment interaction (Table 2). 

Therefore, turf quality and NDVI were analyzed and reported by weekly rating dates. For 

leaf firing there was no significant rating date x bermudagrass entry x irrigation treatment 

interaction, and data for leaf firing was averaged across all rating dates (Table 2). For turf 

quality and NDVI, mean separation test among bermudagrasses within an irrigation 
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treatment on a given sampling date were performed using Duncan’s multiple range test at 

P=0.05 significance level while mean separation for leaf firing was completed by pooling 

data across all weekly rating dates.  Simple linear regression was used to determine the 

relationship of leaf firing with turf quality, NDVI and soil volumetric water content 

(Hoshmand, 2006).      

 

Results 

Turf quality (TQ) 

One week following treatment initiation 

Before drought was imposed, all treatments had a visual TQ rating ≥ 6, which was 

considered the minimum acceptable TQ rating (Table 3). After irrigation treatments were 

imposed for one week at the 0% ETo level, Celebration had the same TQ as four entries 

(SIU U-3, OKC 1119, #18, and #20) with average TQ ratings ranging from 8.0 to 7.0 

(Table 4).  Celebration had a TQ rating of 8 which was higher than 18 bermudagrass 

entries (Table 4). For the 33% ETo irrigation treatment, Tifsport had a mean TQ rating of 

6.2 and was lower than 14 of 23 bermudagrass entries. In the 66% ETo irrigation 

treatment, Tifsport and NC U-3 had mean TQ ratings of 7.3 and 7.2, respectively which 

were lower than 16 of 23 bermudagrass entries. For the 100% ETo irrigation treatment, 

there was no turf quality difference among all bermudagrass entries with average TQ of 

7.9. Regardless of irrigation treatment, no bermudagrass entry had a TQ rating below 6 

after one week of drought (Table 4). 
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Two weeks following treatment initiation  

Results for TQ after two weeks of drought showed differences among 

bermudagrass entries (Table 5). For 0% ETo, the TQ rating was less than 6 for all 

bermudagrass entries. Celebration had the best TQ rating of 5.5 which was no different 

from OKC 1134, #2, #12, #16, #24, and #27 but was higher than the other 16 

bermudagrass entries. The bermudagrass entries Patriot, Premier, NC U-3, TGS U-3, SIU 

U-3, #17, #18, #20, and #25 were most affected by the 0% ETo irrigation treatment with 

mean TQ ratings ≤ 3. All were rated lower than Celebration, OKC 1134, #2 , #12, and 

#27. In the 33% ETo irrigation treatment, the impact of drought was not as prominent. All 

bermudagrass entries had an acceptable mean TQ rating with the exception of #17 which 

had a mean TQ rating of 5.7. Bermudagrass entry #17 TQ was not different than 18 of 23 

bermudagrass entries but was lower than Celebration, Tifway, #26, and #27. In the 66% 

ETo and 100% ETo irrigation treatments, all bermudagrass entries had acceptable TQ 

ratings, mean ≥ 6.6 and 7.0, respectively. 

Three weeks following treatment initiation  

After three weeks of irrigation deficit, the TQ ratings were below 6 for all 

bermudagrass entries at 0% ETo (Table 5). Celebration, OKC 1134, #2, #12, #16, #24, 

#27 TQ ratings were not different and were ranked higher than SIU U-3 and #18 (Table 

6). For the 33% ETo irrigation treatment, Celebration, Tifsport, #2, #12, and #27 had a 

mean TQ rating of ≥ 6  and were ranked better than #18 which had a TQ rating of 4.7 

(Table 6). For the 66% ETo irrigation treatment, Tifsport TQ was not different from 

Patriot and #17 and was ranked lower than 20 of 23 bermudagrass entries. However, all 
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bermudagrass entries were ranked ≥ 6.6. Results were similar for the 100% ETo irrigation 

treatment where Tifsport TQ was not different from Patriot, #17, and #4 but was ranked 

lower than 19 of 23 bermudagrass entries.  Similarly, all bermudagrass entries were 

ranked ≥ 7.0 in the 100% ETo treatment. 

Four weeks following treatment initiation 

During the fourth week of irrigation treatment protocol implementation, under the 

0% ETo irrigation treatment, no entries had an acceptable TQ (Table 7). Celebration, 

Tifway, OKC 1134, #2, #12, #16, #25, #26, and #27 TQ were not different from each 

other and mean TQ for each entry ranged from 4.0 to 2.5. TQ for #18 was 1.0 and was 

not different from Patriot, Premier, Tifsport, Tifway, NC U-3, TGS U-3, SIU U-3, OKC 

1119, OKC 70-18, #4, #17, #18, #20, #22, and #25. For the 33% ETo irrigation treatment, 

Celebration was the only cultivar to have acceptable mean TQ at 6.2 but was not different 

from Tifsport, Tifway, #2, #12, #16, #24, #26, and #27. TGS U-3, #17 and #18 had 

lowest TQ with a mean value of 4.0 but were not different from Patriot, Premier, NC U-3, 

TGS U-3, OKC 1119, OKC 1134, OKC 70-18, #4, #20, #22, and #25 (Table 7). Within 

the 66% ETo irrigation treatment, Celebration had a TQ of 8.0 and which was higher than 

Patriot, Premier, Tifsport, OKC 1134, #17, #18, and #25. All entries had an acceptable 

TQ of 6 or above for 66 % irrigation treatment. For the 100% ETo irrigation treatment, 

Tifsport had the lowest TQ rating of 7.0 and was not different from Patriot or #17.  All 

bermudagrass entries had acceptable TQ ratings at the 100% ETo irrigation level. 
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Recovery TQ 

Entries showed differences for recovery upon re-watering (Tables 8-11). TQ 

during recovery improved in the 0% and 33% ETo irrigation treatments while TQ in the 

66% and 100% ETo irrigation treatments remained acceptable. TQ in 66% and 100% had 

never fallen below the minimum acceptable rating of 6.0. On the first week of recovery 

for the 0% ETo irrigation treatment, Celebration showed the best TQ and was not 

different from #2 and #24 (Table 8). Experimental bermudagrass entry #22 had the 

lowest TQ rating of 1.7 and was not different from Patriot, Premier, Tifway, TGS U-3, 

SIU U-3, OKC 1119, OKC 1134, OKC 70-18, #4, #17, #20, #25, #26, and #27. However, 

no bermudagrass entry TQ was rated ≥ 6. For recovery TQ within the 33% ETo irrigation 

treatment, Celebration, NC U-3, #2, and #12 had TQ ratings ≥ 6 and were higher than  

Premier, OKC 70-18, #17, #18, #20, and #22. Premier, OKC 1119, OKC 70-18, #17, 

#18, #20, and #22 TQ ratings were not different and were ≤ 5.2.  

On the third week of recovery for the 0% ETo irrigation treatment, Celebration 

was the only cultivar to recover with a TQ rating of ≥ 6 but was not different from #2, 

#12, #16, #24, and #26 (Table 9). Mean TQ of SIU U-3 was 3.0 and was not different 

from Patriot, Premier, Tifsport, Tifway, NC U-3, TGS U-3, OKC 70-18, #4, #17, #18, 

#20, #22, #25, and #27. For the 33% ETo irrigation treatment recovery TQ ratings, 

Celebration, Tifsport, Tifway, NC U-3, SIU U-3, OKC 1134, #2, #4, #12, #16, #24, #25, 

#26, and #27 were not different. Celebration, NC U-3, #2, and #12 TQ ratings were 

higher than OKC 70-18 at the 33% irrigation level. 
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During the fourth week of recovery for the 0% ETo irrigation treatment, 

Celebration was the only cultivar to recover with a TQ rating of ≥ 6 but was no different 

from NC U-3, OKC 1119, OKC 1134, #2, #12, #16, #24, #25, and #26 after four weeks. 

There was no difference among bermudagrass entries for the 33% ETo irrigation 

treatment recovery TQ ratings. Numerically, Celebration, Patriot, Tifway, NC U-3, SIU 

U-3, OKC 1134, #2, #4, #12, #16, #24, #26, and #27 had an acceptable TQ rating of  ≥ 6 

at the 33% irrigation level (Table 10). 

After two months of recovery for the 0% ETo irrigation treatment, Celebration, 

Patriot, TGS U-3, OKC 1119, OKC 1134, #2, #4, #12, #16, #17, #18, #20, #24, #25, #26, 

and #27 TQ ratings were not different (Table 11).  Celebration and #16 had higher TQ 

ratings than Premier, Tifsport, Tifway, NC U-3, SIU U-3, OKC 70-18, and #22 (Table 

10). For the 33% ETo irrigation treatment recovery TQ ratings, every bermudagrass entry 

had a mean TQ rating of ≥ 6.5, with the exception of Tifsport at 5.7. 

Leaf firing (LF) 

Data presented across all rating dates following the initiation of irrigation treatments 

For the 0% ET irrigation treatment, Celebration had least numeric mean leaf 

firing rating, performed better than 21 bermudagrass entries, but was not different from 

bermudagrass entry #2 (Table 12).  For the 0% ET irrigation treatment, bermudagrass 

#18 showed the most leaf firing, showed more leaf firing than 21 bermudagrass entries, 

but was not different from TGS U-3 (Table 12). For the 33% ET irrigation treatment, 

Celebration was more leaf firing resistant than 21 bermudagrass entries but was not 

different from #2 (Table 12). For the 33% ET irrigation treatment, Patriot and #17 
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showed more leaf firing than 18 bermudagrass entries but were not different from NC U-

3, TGS U-3, and #18 (Table 12). For the 66% ET irrigation treatment Celebration and #2 

showed the least leaf firing, showed less leaf firing than 15 bermudagrass entries and 

were not different from OKC 1119, OKC 70-18, #12, #20, #24, and #26 (Table 12). For 

the 66% ET irrigation treatment, Patriot and Tifsport showed more leaf firing than 21 

bermudagrass entries and were not different from each other (Table 12).   For the 100% 

ET irrigation treatment, 14 bermudagrass entries were in the top statistical group while 

Patriot and #17 exhibited more leaf firing than all other entries (Table 12). However, for 

both the 66% and 100% ET irrigation treatments, leaf firing did not cause unacceptable 

turf quality at any rating date during this study (Tables 3 – 11).   

NDVI 

One week following treatment initiation 

For the 0% ETo irrigation treatment, one week following treatment initiation 

Celebration had a higher NDVI value than 21 bermudagrass entries but was not different 

from #24.  Premier had a lower NDVI value than 13 bermudagrass entries and was not 

different from Patriot, Tifsport, NC U-3, TGS U-3, #4, #12, #17, #18, and #22 (Table 13) 

but no bermudagrass entry TQ was below the acceptable rating of 6.0 (Table 3).  For the 

33% ETo irrigation treatment, Celebration, Premier, Tifway, NC U-3, SIU U-3, OKC 

1119, OKC 1134 OKC 70-18, #2, #16, #20, #25, and #26 were not different from each 

other but were higher than Patriot, #12, and #27. All bermudagrass entries showed 

acceptable TQ at the 33% ETo irrigation level.  While there were some NDVI differences 



 

41 
 

among bermudagrass entries at both the 66% and 100% ETo levels, all bermudagrasses 

showed acceptable TQ. 

Two weeks following treatment initiation 

For the 0% ETo irrigation treatment, two weeks following treatment initiation 

Celebration, OKC 1134, #2, #24, and #27 had higher NDVI values than Premier, TGS U-

3, SIU U-3, OKC 70-18, #17, #18, and #22 (Table 14). For the 33% ETo irrigation 

treatment, #18 had a less NDVI value than 19 bermudagrass entries and was no different 

than NC U-3, TGS U-3, and OKC 70-18. However, all bermudagrasses showed 

acceptable TQ at the 33% ETo irrigation level (Table 4). While there were some NDVI 

differences among bermudagrass entries at both the 66% and 100% ETo levels, all 

bermudagrasses showed acceptable TQ at these irrigation levels. 

Three weeks following treatment initiation 

For the 0% ETo irrigation treatment, three weeks following treatment initiation 

Celebration, #2, #16, #24, #27 had higher NDVI values than TGS U-3 and #22 (Table 

15). However, all bermudagrass showed unacceptable TQ at the 0% ETo irrigation level 

(Table 6). For the 33% ETo irrigation treatment OKC 70-18 had a lower NDVI value than 

9 of the bermudagrass entries including Celebration, #2, #12, and #27. Celebration, #2, 

#12, and #27 also showed acceptable TQ at the 33% ETo irrigation level. While there 

were some NDVI differences among bermudagrass entries at both the 66% and 100% 

ETo levels, all bermudagrasses showed acceptable TQ at these irrigation levels. 
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Four weeks following treatment initiation  

For the 0% ETo irrigation treatment, four weeks following treatment initiation 

Celebration, #2, and #27 had higher NDVI values in comparison to 8 bermudagrass 

entries (Table 16). However, no bermudagrasses showed acceptable TQ at the 0% ETo 

irrigation level (Table 7). For the 33% ETo irrigation level, OKC 70-18 had a lower 

NDVI value than Celebration, SIU U-3, #2,, #12, #26, and #27. While there were some 

NDVI differences among bermudagrass entries at both the 66% and 100% ETo levels, all 

bermudagrasses showed acceptable TQ at these irrigation levels.  

Recovery NDVI 

After the first week upon re-watering for the 0% ETo irrigation treatment, 

Celebration, NC U-3, OKC 1134, #2, #24, and #26 NDVI values did not differ 

statistically (Table 17). SIU U-3, #18, and #22 had lower NDVI values than Celebration, 

#2, and #24 (Table 8). However, no bermudagrasses had recovered to acceptable TQ for 

the 0% ETo irrigation level.  For the 33% ETo irrigation treatment, #2 had a higher NDVI 

value than #17, but all other bermudagrasses were not different from each other.  

However, only Celebration, NC U-3, #2, and #12 showed a numeric mean TQ ≥ 6.0 at 

the 33% ETo irrigation level. While there were some NDVI differences among 

bermudagrass entries at both the 66% and 100% ETo levels, all bermudagrasses showed 

acceptable TQ at these irrigation levels.    

After the fourth week upon re-watering for the 0% ETo irrigation treatment, 

Patriot, Tifsport, SIU U-3, #18 and #22 had lower NDVI values than #2 (Table 18).  

Although, the NDVI value for #2 was not different than 17 bermudagrass entries 
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including Celebration.  Only Celebration had recovered to the numerically acceptable TQ 

rating of 6.0, but Celebration TQ was not different than NC U-3, OKC 1119, OKC 1134,  

#2, #12, #16, #24, #25, and #26 which had mean TQ ratings ranging from 4.7 to 5.7 

(Table 10). For the 33% ETo irrigation treatment, #18 had a lower NDVI value compared 

to OKC 1134, #2, #16, #24, and #26. However, no bermudagrass entries had 

unacceptable mean TQ ratings. While there were some NDVI differences among 

bermudagrass entries at both the 66% and 100% ETo levels, all bermudagrasses showed 

acceptable TQ at these irrigation levels.    

After the eighth week upon re-watering for the 0% ETo irrigation treatment, TGS 

U-3 had a lower mean NDVI value than Celebration, Tifway, OKC 1134, #16, #24, #25, 

#26, and #27 (Table 19).  However, TGS U-3 showed acceptable TQ while Premier, 

Tifsport, and SIU U-3 did not (Table 11). While there were some NDVI differences 

among bermudagrass entries at the 33%, 66% and 100% ETo levels, all bermudagrasses 

showed acceptable TQ at these irrigation levels. 

Recovery – Percent Living Cover 

 After the eighth week upon re-watering for the 0% ETo irrigation treatment, 

Celebration plots had recovered to 100% living cover (Table 20).  Celebration percent 

living cover was not different from Premier, NC U-3, TGS U-3, OKC 1119, OKC 1134, 

#2, #4, #12, #16, #18, #24, #25, #26, and #27 percent living cover (Table 20). For the 

33% ETo irrigation treatment, Celebration, Premier, SIU U-3, #2, #12, #16, and #26 had 

recovered to 100% living cover and were not different from Patriot, Tifway, NC U-3, 

OKC 1119, OKC 1134, OKC 70-18, #4, #17, #18, #20, #22, #24, #25, and #27. TGS U-3 



 

44 
 

had lower percent living cover than Celebration, Premier, Tifway, SIU U-3, OKC 1119, 

OKC 70-18, #2, #12, #16, #18, #20, #24, #25, and #26.  For the 66% and 100% ETo 

irrigation treatments, all bermudagrass entries were at 100% living cover (data not 

shown).   

 Soil volumetric water content (SVWC) 

Prior to imposing irrigation treatments, there was no difference in SVWC among 

plot areas (Fig. 1). Soil volumetric water content was approximately 18% when the plot 

area was at field capacity (Fig. 1).  As expected, the 0% ETo irrigation treatment plots 

had lower SVWC than all other irrigation treatments at one, two, and three weeks 

following treatment initiation. At the fourth week of irrigation treatments, there was no 

difference in the the 0% ETo and 33% ETo irrigation treatment areas (Fig. 1).  

Throughout the course of the irrigation treatment period, the 66% and 100% ETo 

irrigation treatments SVWC did not differ (Fig. 1). At the end of the four week irrigation 

treatment period, all plots were watered according to the 100% ETo irrigation treatment.  

After one week of re-watering, all plots had recovered to pretreatment levels and there 

was no difference in SVWC among irrigation treatment plot areas (Fig. 1). 
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Discussion 

Turfgrass leaf firing resistance refers to the ability of a turfgrass plant to resist or 

delay the occurrence of drought induced leaf chlorosis or browning.  Leaf firing is 

considered a major indicator for detecting drought tolerance among turfgrass cultivars 

(Ebdon and Kopp, 2004). In this study, 23 bermudagrass entries (Table 1) were evaluated 

for leaf firing under four irrigation regimes based on ETo  replacement after 1, 2, 3, and 4 

weeks after irrigation treatment. The LF results of this study correspond to prior research 

(Chalmers et al, 2008) on the drought performance of Celebration (good drought 

performance standard) and Premier (poor drought performance standard). Similarly, 

Steinke et al. (2009) reported that Premier had significantly higher leaf firing compared 

to Celebration during a 60 day drought study in Texas. 

Turfgrass quality ratings take into account several turfgrass parameters including 

color, uniformity, density, texture, and stress response due to pathogens, insects, or 

environmental factors, including drought response via leaf firing. In this study 

bermudagrass TQ and LF had a significant (P < 0.0001), positive relationship where: TQ 

= 0.8354 + 0.8187(LF), r2 = 0.95 (n = 2846). No TQ ratings for any bermudagrass were < 

6.0 for both the 66% and 100% ETo irrigation levels (Tables 3-6).  

Turfgrass greenness can be objectively evaluated using NDVI collected with 

active hand-held sensors which have also been used to assess turf quality and turf injury 

in previous research (Bell and Xiong, 2008). In this study, 23 bermudagrass entries 

(Table 1) were evaluated for NDVI under the four irrigation regimes. The relationship 

between leaf firing and NDVI was a significant (P < 0.0001), positive relationship where: 
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LF = -1.0014 + 10.977(NDVI), with r2 = 0.81 (n = 2833). There was strong relationship 

between LF and TQ because both data source were observed on a visual basis. The 

relationship between LF and SVWC and LF and NDVI was weaker because LF was 

collected on a subjective visual basis while SVWC and NDVI were measured objectively 

with research equipment. Since drought resistance through drought avoidance is 

primarily anatomical and morphological, these parameters were supportive to select 

entries for their phenotypic differences and field drought performance differences. 

 Soil volumetric water content depletion was observed with prolonged drought 

periods according to the irrigation treatments used in this study (Fig 1.). Soil volumetric 

water content depletion was noticeable after the first week of irrigation treatments for the 

0% and 33% ETo levels and continued to deplete until the fourth week of treatments (Fig 

1). The relationship between leaf firing and SVWC was a significant (P < 0.0001), 

positive relationship where: LF = 3.5715 + 23.56(SVWC), with r2 = 0.68 (n = 1418). As 

expected, lower SVWC resulted in higher LF (Qian and Fry, 1997).  

Based on the overall results from this study, the hypothesis that were differences 

in vegetative bermudagrass entries for their field drought performance was accepted. 

Similar to prior research and among the bermudagrasses in this study, Celebration was a 

good drought performer and Premier was a poor drought performer in terms of TQ, LF, 

and NDVI. At the 0% ETo irrigation level, the OSU experimental bermudagrasses that 

performed lower than Celebration but better than all other entries were #2, #12, #16, #24, 

and #27. At the 33% ETo irrigation level, Celebration, #2, #12, and #27 performed better 

than all other bermudagrass entries. Future work should assess the drought tolerance 

and/or drought avoidance mechanisms of these entries.   
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Table 1. Twenty-three bermudagrass cultivars and experimental selections tested for field 
drought performance in Oklahoma 

Bermudagrass Selection Notes 

Celebration Good drought performance standard (Chalmers et al., 2008) 

Premier Poor drought performance standard (Chalmers et al., 2008) 

Tifway Golf course standard 

Tifsport Sports field standard 

SIU U-3 Southern Illinois University U-3 standard 

TGS U-3 Tulsa Grass and Sod farm U-3 standard 

NC U-3 Northcutt sod farm U-3 standard 

Patriot Sports field standard (OSU release) 

OKC 70-18 OSU Experimental 

OKC 1119 OSU Experimental 

OKC 1134 OSU Experimental 

#2 OSU Experimental 

#4 OSU Experimental 

#12 OSU Experimental 

#16 OSU Experimental 

#17 OSU Experimental 

#18 OSU Experimental 

#20 OSU Experimental 

#22 OSU Experimental 

#24 OSU Experimental 

#25 OSU Experimental 

#26 OSU Experimental 

#27 OSU Experimental 
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Table 2. Significance (p values) for the tests of fixed effects from the ANOVAs for turf quality, 
leaf firing, and NDVI of 23 bermudagrass entries with four irrigation treatment levels over rating 
datesz. 

Fixed effects TQy LFx NDVIw 

 ________________________________ p________________________________ 
 Date <0.0001 <0.0001 <0.0001 

Block <0.0001 0.0004 <0.0001 

Date x Block 0.2815 0.9960 0.0588 

Bermudagrass entry <0.1701 <0.0001 <0.0001 

Date x Bermudagrass entry <0.0001 0.8102 0.0079 

Irrigation <0.0001 <0.0001 <0.0001 

Date x Irrigation <0.0001 <0.0001 <0.0001 

Bermudagrass entry x Irrigation <0.0001 <0.0001 <0.0001 

Date x Bermudagrass entry x 
Irrigation 

<0.0001 0.1474 0.0032 

zTurf quality ratings and NDVI values were recorded from each plot on 11 weekly rating dates 
while leaf firing ratings were recorded on four weekly rating dates, each after initiation of 
irrigation treatments. 
yTurf quality ratings were based on a 1-9 scale where 1 = lowest quality, 6 = acceptable quality, 
and 9 = excellent quality.  
xLeaf firing ratings were based on a 1-9 scale where 1 = highest leaf firing and 9 = no leaf firing. 
wNDVI  (normalized difference vegetative index) readings were collected using the CM1000 
NDVI meter (Spectrum Technologies, Plainfield, IL). 
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Table 3. Turf quality ratingsz of 23 bermudagrass entries prior to initiating irrigation treatmentsy. 

 Turf Quality 

Bermudagrass Entry 0% 33% 66% 100% 

Celebration 7.5 ax 8.0 a 8.0 a 8.0 a 

Patriot 6.3 b 7.3 a 7.7 ab 8.0 a 

Premier 6.5 ab 7.3 a 8.0 a 7.5 a 

Tifsport 6.0 b 6.3 b 7.3 b 7.7 a 

Tifway 6.3 b 8.0 a 8.0 a 8.0 a 

NC U-3 6.5 ab 7.3 a 7.3 b 8.0 a 

TGS U-3 6.3 b 7.0 ab 8.0 a 8.0 a 

SIU U-3 7.5 a 7.0 ab 7.8 ab 7.5 a 

OKC 1119 7.0 ab 8.0 a 8.0 a 8.0 a 

OKC 1134 6.5 ab 7.5 a 8.0 a 8.0 a 

OKC 70-18 6.5 ab 8.0 a 8.0 a 8.0 a 

#2 6.8 ab 7.5 a 8.0 a 8.0 a 

#4 6.8 ab 7.3 a 8.0 a 8.0 a 

#12 6.8 ab 7.0 ab 7.8 ab 7.5 a 

#16 6.5 ab 7.5 a 8.0 a 8.0 a 

#17 6.8 ab 7.0 ab 8.0 a 8.0 a 

#18 7.0 ab 7.0 ab 7.8 ab 8.0 a 

#20 7. 0 ab 7.5 a 8.0 a 8.0 a 

#22 6.3 b 7.8 a 8.0 a 8.0 a 

#24 6.8 ab 7.8 a 8.0 a 8.0 a 

#25 6.8 ab 7.5 a 8.0 a 8.0 a 

#26 6.5 ab 8.0 a 8.0 a 8.0 a 

#27 6. 0 b 7.3 a 7.8 ab 8.0 a 

zTurf quality ratings were based on a 1-9 scale where 1 = lowest quality, 6 = acceptable quality, 
and 9 = excellent quality. 
yIrrigation treatments were based on a percentage of local reference evapotranspiration data. 
xMeans followed by different letters are statistically different at the P = 0.05 significance level 
according to Duncan’s multiple range test. 
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Table 4. Turf quality ratingsz of 23 bermudagrass entries one week following the initiation of 
irrigation treatmentsy. 

 Turf Quality 

Bermudagrass Entry 0% 33% 66% 100% 

Celebration 8.0 ax 8.0 a 8.0 a 8.0 a 

Patriot 6.2 c 7.0 ab 7.6 ab 8.0 a 

Premier 6.5 bc 7.2 a 8.0 a 7.5 a 

Tifsport 6.0 c 6.2 b 7.3 b 7.6 a 

Tifway 6.2 c 8.0 a 8.0 a 8.0 a 

NC U-3 6.5 bc 7.0 ab 7.2 b 8.0 a 

TGS U-3 6.2 c 7.0 ab 8.0 a 8.0 a 

SIU U-3 7.5 ab 7.0 ab 7.7 ab 7.5 a 

OKC 1119 7.0 abc 8.0 a 8.0 a 8.0 a 

OKC 1134 6.5 bc 7.5 a 8.0 a 8.0 a 

OKC 70-18 6.5 bc 8.0 a 8.0 a 8.0 a 

#2 6.7 bc 7.5 a 8.0 a 8.0 a 

#4 6.7 bc 7.2 a 8.0 a 8.0 a 

#12 6.7 bc 7.0 ab 7.7 ab 7.5 a 

#16 6.5 bc 7.5 ab 8.0 a 8.0 a 

#17 6.7 bc 7.0 ab 8.0 a 8.0 a 

#18 7.0 abc 7.0 ab 7.7 ab 8.0 a 

#20 7.0 abc 7.5 a 8.0 a 8.0 a 

#22 6.2 c 7.7 a 8.0 a 8.0 a 

#24 6.7 bc 7.7 a 8.0 a 8.0 a 

#25 6.7 bc 7.5 a 8.0 a 8.0 a 

#26 6.5 bc 8.0 a 8.0 a 8.0 a 

#27 6.0 c 7.2 a 7.7 ab 8.0 a 
zTurf quality ratings were based on a 1-9 scale where 1 = lowest quality, 6 = acceptable quality, 
and 9 = excellent quality. 
yIrrigation treatments were based on a percentage of local reference evapotranspiration data. 
xMeans followed by different letters are statistically different at the P = 0.05 significance level 
according to Duncan’s multiple range test. 
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Table 5. Turf quality ratingsz of 23 bermudagrass entries two weeks following the initiation of 
irrigation treatmentsy. 

 Turf Quality 

Bermudagrass Entry 0% 33% 66% 100% 

Celebration 5.5 ax 6.7 a 8.0 a 8.0 a 

Patriot 2.7 fghi 6.0 a 7.0 bc 7.2 dc 

Premier 2.5 ghi 6.2 a 7.7 a 8.0 a 

Tifsport 3.5 defgh 6.2 a 6.6 c 7.0 d 

Tifway 4.0 bcdef 6.7 a 7.5 ab 8.0 a 

NC U-3 2.7 fghi 6.2 a 7.7 a 7.7 ab 

TGS U-3 2.2 hi 6.2 a 7.5 ab 7.7 ab 

SIU U-3 3.0 efghi 6.2 a 7.5 ab 8.0 a 

OKC 1119 3.5 defgh 6.5 a 8.0 a 8.0 a 

OKC 1134 4.5 abcd 6.2 a 7.7 a 7.7 ab 

OKC 70-18 3.5 defgh 6.0 a 8.0 a 8.0 a 

#2 5.0 abc 6.5 a 8.0 a 8.0 a 

#4 3.7 cdefg 6.2 a 7.5 ab 7.5 bc 

#12 4.5 abcd 6.5 a 8.0 a 8.0 a 

#16 4.2 abcde 6.5 a 7.7 a 7.7 ab 

#17 3.2 defghi 5.7 b 7.0 bc 7.2 dc 

#18 2.0 i 6.0 a 7.5 ab 7.7 ab 

#20 3.2 defghi 6.2 a 8.0 a 8.0 a 

#22 3.0 efghi 6.2 a 7.7 a 8.0 a 

#24 4.2 abcde 6.5 a 8.0 a 8.0 a 

#25 3.0 efghi 6.2 a 7.7 a 8.0 a 

#26 4.0 bcdef 6.7 a 8.0 a 8.0 a 

#27 5.2 ab 6.7 a 7.5 ab 8.0 a 
zTurf quality ratings were based on a 1-9 scale where 1 = lowest quality, 6 = acceptable quality, 
and 9 = excellent quality. 
yIrrigation treatments were based on a percentage of local reference evapotranspiration data. 
xMeans followed by different letters are statistically different at the P = 0.05 significance level 
according to Duncan’s multiple range test. 
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Table 6. Turf quality ratingsz of 23 bermudagrass entries three weeks following the initiation of 
irrigation treatmentsy. 

 Turf Quality 

Bermudagrass Entry 0% 33% 66% 100% 

Celebration 4.2 ax 6.7 a 8.0 a 8.0 a 

Patriot 2.2 de 5.0 bc 7.0 bc 7.2 dc 

Premier 2.5 cde 5.5 bc 7.7 a 8.0 a 

Tifsport 2.5 cde 6.0 ab 6.6 c 7.0 d 

Tifway 3.0 bcde 5.7 bc 7.5 ab 8.0 a 

NC U-3 2.7 cde 5.2 bc 7.7 a 7.7 ab 

TGS U-3 2.0 e 5.0 bc 7.5 ab 7.7 ab 

SIU U-3 2.2 de 5.7 bc 7.5 ab 8.0 a 

OKC 1119 2.5 cde 5.0 bc 8.0 a 8.0 a 

OKC 1134 3.5 abcd 5.7 bc 7.7 a 7.7 ab 

OKC 70-18 2.2 de 5.0 bc 8.0 a 8.0 a 

#2 4.0 ab 6.0 ab 8.0 a 8.0 a 

#4 2.7 cde 5.2 bc 7.5 ab 7.5 bc 

#12 3.5 abcd 6.0 ab 8.0 a 8.0 a 

#16 3.2 abcde 5.7 bc 7.7 a 7.7 ab 

#17 2.5 cde 5.0 bc 7.0 bc 7.2 dc 

#18 2.0 e 4.7 c 7.5 ab 7.7 ab 

#20 2.7 cde 5.2 bc 8.0 a 8.0 a 

#22 2.2 de 5.0 bc 7.7 a 8.0 a 

#24 3.7 abc 5.5 bc 8.0 a 8.0 a 

#25 2.2 de 5.2 bc 7.7 a 8.0 a 

#26 3.0 bcde 5.7 bc 8.0 a 8.0 a 

#27 3.7 abc 6.0 ab 7.5 ab 8.0 a 
zTurf quality ratings were based on a 1-9 scale where 1 = lowest quality, 6 = acceptable quality, 
and 9 = excellent quality. 
yIrrigation treatments were based on a percentage of local reference evapotranspiration data. 
xMeans followed by different letters are statistically different at the P = 0.05 significance level 
according to Duncan’s multiple range test. 
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Table 7. Turf quality ratingsz of 23 bermudagrass entries four weeks following the initiation of 
irrigation treatmentsy. 

 Turf Quality 

Bermudagrass Entry 0% 33% 66% 100% 

Celebration 4.0 ax 6.2 a 8.0 a 8.0 a 

Patriot 1.2 ef 4.3 de 7.0 bc 7.2 bc 

Premier 2.0 cdef 4.5 de 6.7 bc 8.0 a 

Tifsport 2.0 cdef 5.5 abcd 6.6 c 7.0 c 

Tifway 2.5 abcdef 5.2 abcd 7.5 ab 8.0 a 

NC U-3 2.0 cdef 4.5 de 7.5 ab 7.7 ab 

TGS U-3 1.2 ef 4.0 e 7.2 abc 7.7 ab 

SIU U-3 1.7 def 4.5 de 7.5 ab 8.0 a 

OKC 1119 1.5 def 4.5 de 7.2 abc 8.0 a 

OKC 1134 3.0 abcd 5.0 bcde 7.0 bc 7.5 ab 

OKC 70-18 2.0 cdef 4.5 de 7.5 ab 8.0 a 

#2 3.7 ab 5.7 abc 8.0 a 8.0 a 

#4 2.2 bcdef 5.0 bcde 7.2 abc 7.5 ab 

#12 3.0 abcd 6.0 ab 7.2 abc 8.0 a 

#16 2.7 abcde 5.7 abc 7.2 abc 7.5 ab 

#17 1.7 def 4.0 e 7.0 bc 7.2 bc 

#18 1.0 f 4.0 e 6.7 bc 7.5 ab 

#20 2.2 bcdef 4.5 de 7.5 ab 8.0 a 

#22 1.5 def 4.5 de 7.2 abc 8.0 a 

#24 3.5 abc 5.2 abcd 7.2 abc 8.0 a 

#25 1.2 ef 4.7 cde 7.0 bc 8.0 a 

#26 3.0 abcd 5.7 abc 7.5 ab 8.0 a 

#27 3.0 abcd 5.2 abcd 7.5 ab 8.0 a 
zTurf quality ratings were based on a 1-9 scale where 1 = lowest quality, 6 = acceptable quality, 
and 9 = excellent quality. 
yIrrigation treatments were based on a percentage of local reference evapotranspiration data. 
xMeans followed by different letters are statistically different at the P = 0.05 significance level 
according to Duncan’s multiple range test. 
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Table 8. Turf quality ratingsz of 23 bermudagrass entries one week following the initiation of re-
watering all plots according to the 100% irrigation treatmenty. 

 Turf Quality 

Bermudagrass Entry 0% 33% 66% 100% 

Celebration 5.2 ax 6.7 a 8.5 a 8.25 a 

Patriot 2.5 cde 5.6 bcd 7.0 d 7.0 c 

Premier 2.5 cde 4.7 de 7.2 cd 8.0 ab 

Tifsport 3.5 bcd 5.7 bc 7.0 d 7.0 c 

Tifway 2.7 bcde 5.7 bc 7.7 bc 8.0 ab 

NC U-3 3.7 bc 6.0 ab 7.7 bc 7.7 ab 

TGS U-3 3.0 bcde 5.5 bcd 7.5 bcd 8.0 ab 

SIU U-3 2.2 cde 5.5 bcd 8.0 ab 8.0 ab 

OKC 1119 2.5 cde 5.2 bcde 7.5 bcd 8.0 ab 

OKC 1134 3.5 cde 5.5 bcd 7.2 cd 7.5 bc 

OKC 70-18 2.5 cde 5.0 cde 7.5 bcd 8.0 ab 

#2 4.2 ab 6.0 ab 8.0 ab 8.0 ab 

#4 2.7 bcde 5.5 bcd 7.2 cd 7.5 bc 

#12 3.7 bc 6.0 ab 7.2 cd 8.0 ab 

#16 3.7 bc 5.7 bc 7.5 bcd 7.5 bc 

#17 2.2 cde 5.0 cde 7.2 cd 7.5 bc 

#18 2.0 de 4.5 e 7.5 bcd 7.7 ab 

#20 2.7 bcde 4.7 de 8.0 ab 8.0 ab 

#22 1.7 e 4.5 e 7.5 bcd 8.0 ab 

#24 4.2 ab 5.7 bc 7.5 bcd 8.0 ab 

#25 2.5 cde 5.5 bcd 7.2 cd 8.0 ab 

#26 3.5 cde 5.7 bc 7.5 bcd 8.0 ab 

#27 3.2 bcde 5.5 bcd 7.5 bcd 8.2 a 
zTurf quality ratings were based on a 1-9 scale where 1 = lowest quality, 6 = acceptable quality, 
and 9 = excellent quality. 
yIrrigation treatments were based on a percentage of local reference evapotranspiration data. 
xMeans followed by different letters are statistically different at the P = 0.05 significance level 
according to Duncan’s multiple range test. 
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Table 9. Turf quality ratingsz of 23 bermudagrass entries three weeks following the initiation of 
re-watering all plots according to the 100% irrigation treatmenty. 

 Turf Quality 

Bermudagrass Entry 0% 33% 66% 100% 

Celebration 6.0 ax 6.7 a 7.0 a 6.7 a 

Patriot 3.75 cde 5.3 bc 6.3 bc 6.5 a 

Premier 3.5 de 5.5 bc 6.7 ab 6.7 a 

Tifsport 4.0 bcde 5.7 abc 6.0 c 6.0 b 

Tifway 3.7 cde 6.0 abc 7.0 a 7.0 a 

NC U-3 4.2 bcde 6.2 ab 6.5 abc 6.5 a 

TGS U-3 4.0 bcde 5.5 bc 6.5 abc 6.5 a 

SIU U-3 3.0 e 5.7 abc 7.0 a 6.7 a 

OKC 1119 4.5 bcd 5.5 bc 7.0 a 7.0 a 

OKC 1134 4.5 bcd 5.7 abc 6.7 ab 6.7 a 

OKC 70-18 3.5 de 5.0 c 6.5 abc 6.6 a 

#2 5.2 ab 6.2 ab 7.0 a 7.0 a 

#4 4.2 bcde 5.7 abc 7.0 a 7.0 a 

#12 5.0 abc 6.2 ab 6.5 abc 6.5 a 

#16 4.7 abcd 6.0 abc 6.5 abc 6.7 a 

#17 4.0 bcde 5.2 bc 6.7 ab 6.7 a 

#18 4.0 bcde 5.2 bc 7.0 a 7.0 a 

#20 4.0 bcde 5.5 bc 7.0 a 7.0 a 

#22 3.5 de 5.2 bc 6.5 abc 6.7 a 

#24 4.7 abcd 5.7 abc 6.7 ab 6.7 a 

#25 4.2 bcde 5.7 abc 6.7 ab 6.7 a 

#26 4.7 abcd 6.0 abc 7.0 a 7.0 a 

#27 4.2 bcde 6.0 abc 6.7 ab 6.7 a 
zTurf quality ratings were based on a 1-9 scale where 1 = lowest quality, 6 = acceptable quality, 
and 9 = excellent quality. 
yIrrigation treatments were based on a percentage of local reference evapotranspiration data. 
xMeans followed by different letters are statistically different at the P = 0.05 significance level 
according to Duncan’s multiple range test. 
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Table 10. Turf quality ratingsz of 23 bermudagrass entries four weeks following the initiation of 
re-watering all plots according to the 100% irrigation treatmenty. 

 Turf Quality 

Bermudagrass Entry 0% 33% 66% 100% 

Celebration 6.0 ax 6.5 a 6.7 ab 6.5 ab 

Patriot 4.5 bcde 6.0 a 6.3 bc 6.2 ab 

Premier 4.0 de 5.7 a 6.2 bc 6.2 ab 

Tifsport 4.0 de 5.5 a 6.0 c 6.0 b 

Tifway 4.2 cde 6.0 a 6.7 a 6.7 a 

NC U-3 4.7 abcde 6.2 a 6.2 bc 6.2 ab 

TGS U-3 4.5 bcde 5.5 a 6.2 bc 6.2 ab 

SIU U-3 3.7 e 6.0 a 6.2 bc 6.2 ab 

OKC 1119 5.0 abcde 5.7 a 7.0 a 6.5 ab 

OKC 1134 5.0 abcde 6.2 a 6.5 abc 6.5 ab 

OKC 70-18 4.5 bcde 5.5 a 6.5 abc 6.3 ab 

#2 5.7 ab 6.5 a 7.0 a 6.7 a 

#4 4.5 bcde 6.5 a 6.7 ab 6.7 a 

#12 5.2 abcd 6.0 a 6.2 bc 6.2 ab 

#16 5.5 abc 6.2 a 6.5 abc 6.5 ab 

#17 4.5 bcde 5.7 a 6.5 abc 6.2 ab 

#18 4.0 de 5.5 a 6.2 bc 6.2 ab 

#20 4.5 bcde 5.7 a 6.5 abc 6.5 ab 

#22 4.0 de 5.5 a 6.5 abc 6.5 ab 

#24 5.0 abcde 6.0 a 6.7 ab 6.5 ab 

#25 4.7 abcde 5.7 a 6.7 ab 6.2 ab 

#26 5.0 abcde 6.7 a 7.0 a 6.7 a 

#27 4.5 bcde 6.5 a 6.5 abc 6.5 ab 
zTurf quality ratings were based on a 1-9 scale where 1 = lowest quality, 6 = acceptable quality, 
and 9 = excellent quality. 
yIrrigation treatments were based on a percentage of local reference evapotranspiration data. 
xMeans followed by different letters are statistically different at the P = 0.05 significance level 
according to Duncan’s multiple range test. 
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Table 11. Turf quality ratingsz of 23 bermudagrass entries eight weeks following the initiation of 
re-watering all plots according to the 100% irrigation treatmenty. 

 Turf Quality 

Bermudagrass Entry 0% 33% 66% 100% 

Celebration 6.5 ax 7.2 a 7.0 a 6.7 a 

Patriot 5.5 abcde 6.5 a 6.6 ab 6.5 a 

Premier 4.7 de 7.0 a 7.0 a 7.0 a 

Tifsport 4.7 de 5.7 b 6.6 ab 6.6 a 

Tifway 5.2 bcde 6.7 a 7.0 a 7.0 a 

NC U-3 5.0 cde 7.0 a 7.0 a 7.0 a 

TGS U-3 5.5 abcde 6.7 a 6.5 b 6.7 a 

SIU U-3 4.5 e 7.0 a 7.0 a 6.5 a 

OKC 1119 6.0 abc 7.0 a 7.0 a 7.0 a 

OKC 1134 6.2 ab 6.7 a 7.0 a 7.0 a 

OKC 70-18 5.2 bcde 7.0 a 7.0 a 7.0 a 

#2 6.2 ab 7.2 a 7.0 a 7.0 a 

#4 5.5 abcde 6.7 a 7.0 a 7.0 a 

#12 6.2 ab 6.7 a 7.0 a 6.7 a 

#16 6.5 a 7.2 a 7.0 a 6.7 a 

#17 5.5 abcde 6.5 a 7.0 a 6.7 a 

#18 5.5 abcde 7.0 a 7.0 a 7.0 a 

#20 5.7 abcd 7.0 a 7.0 a 7.0 a 

#22 5.2 bcde 6.7 a 7.0 a 6.7 a 

#24 6.0 abc 7.0 a 7.0 a 7.0 a 

#25 6.0 abc 7.0 a 7.0 a 7.0 a 

#26 6.0 abc 7.0 a 7.0 a 7.0 a 

#27 6.2 ab 6.7 a 6.7 ab 6.7 a 
zTurf quality ratings were based on a 1-9 scale where 1 = lowest quality, 6 = acceptable quality, 
and 9 = excellent quality. 
yIrrigation treatments were based on a percentage of local reference evapotranspiration data. 
xMeans followed by different letters are statistically different at the P = 0.05 significance level 
according to Duncan’s multiple range test. 
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Table 12. Leaf firing ratingsz of 23 bermudagrass entries presented across all rating datesy 
following the initiation of irrigation treatmentsx. 

 Leaf Firing 
Bermudagrass Entry 0% 33% 66% 100% 
Celebration 5.0 aw 7.0 a 9.0 a 9.0 a 

Patriot 2.8 kl 5.6 j 7.3 i 7.7 d 

Premier 2.8 kl 6.0 fghi 8.1 efg 8.9 a 

Tifsport 3.2 ijk 6.2 cdef 7.3 i 7.4 e 

Tifway 3.8 fgh 6.5 bcd 8.2 cdefg 9.0 a 

NC U-3 3.1 ijk 5.8 ghij 8.5 bcde 8.6 b 

TGS U-3 2.5 lm 5.7 hij 8.0 fgh 8.5 b 

SIU U-3 3.1 ijk 6.3 bcdef 8.1 efg 9.0 a 

OKC 1119 3.5 ghi 6.1 efg 8.7 abc 9.0 a 

OKC 1134 4.2 cde 6.2 def 8.2 cdefg 8.5 b 

OKC 70-18 3.4 ijk 6.2 fgh 8.8 ab 9.0 a 

#2 4.8 ab 6.7 ab 9.0 a 9.0 a 

#4 3.5 ghi 6.1 efg 8.0 efg 8.2 c 

#12 4.2 cdef 6.5 bcde 8.6 abcd 9.0 a 

#16 3.9 efg 6.5 bcd 8.3 bcdef 8.5 b 

#17 3.2 ijk 5.5 j 7.6 h 7.8 d 

#18 2.3 m 5.6 ij 7.8 gh 8.3 bc 

#20 3.4 ijk 6.0 fghi 8.8 ab 9.0 a 

#22 3.0 jk 6.0 fghi 8.4 bcdef 9.0 a 

#24 4.3 cd 6.3 cdef 8.7 abc 9.0 a 

#25 3.0 jk 6.0 fgh 8.2 cdefg 9.0 a 

#26 3.9 defg 6.6 bc 8.8 ab 9.0 a 

#27 4.5bc 6.3 bcdef 8.1 defg 9.0 a 
zLeaf firing ratings were based on a 1-9 scale where 1 = complete leaf firing and 9 = no leaf 
firing. 
yLeaf firing was analyzed across all rating dates, which were one, two, three, and four weeks after 
inititation of irrigation treatments.   
xIrrigation treatments were based on a percentage of local reference evapotranspiration data.  
wMeans followed by different letters are statistically different at the P = 0.05 significance level 
according to Duncan’s multiple range test. 
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Table 13. NDVIz of 23 bermudagrass entries one week following the initiation of irrigation 
treatmentsy. 

 NDVI 

Bermudagrass Entry 0% 33% 66% 100% 

Celebration 0.75 ax 0.79 a 0.79 a 0.80 a 

Patriot 0.49 ef 0.66 g 0.66 g 0.71 f 

Premier 0.47 f 0.76 abc 0.78 abc 0.78 abcde 

Tifsport 0.54 cdef 0.69 efg 0.71 ef 0.74 ef 

Tifway 0.64 bcd 0.77 ab 0.73 cdef 0.81 a 

NC U-3 0.54 cdef 0.74 abcde 0.75 abcde 0.76 bcde 

TGS U-3 0.52 def 0.71 cdef 0.75 abcde 0.75 def 

SIU U-3 0.61 bcd 0.74 abcd 0.74 bcdef 0.75 cdef 

OKC 1119 0.64 bc 0.76 abc 0.78 abc 0.78 abcde 

OKC 1134 0.61 bcd 0.75 abcd 0.77 abcd 0.79 abc 

OKC 70-18 0.59 bcde 0.76 abcd 0.75 abcde 0.78 abcde 

#2 0.64 bcd 0.75 abcd 0.77 abc 0.77 abcde 

#4 0.54 cdef 0.72 cdef 0.75 abcde 0.78 abcde 

#12 0.55 bcdef 0.68 fg 0.72 def 0.74 ef 

#16 0.59 bcde 0.74 abcd 0.75 abcde 0.79 abcd 

#17 0.55 cdef 0.72 bcdef 0.77 abcd 0.78 abcde 

#18 0.53 cdef 0.71 defg 0.77 abc 0.78 abcde 

#20 0.64 bc 0.75 abcd 0.78 ab 0.80 a 

#22 0.54 cdef 0.73 bcde 0.75 abcde 0.76 abcde 

#24 0.66 ab 0.72 cdef 0.74 bcde 0.77 abcde 

#25 0.60 bcde 0.73 abcde 0.76 abcde 0.77 abcde 

#26 0.60 bcde 0.74 abcde 0.78 ab 0.80 a 

#27 0.63 bcd 0.67 fg 0.69 fg 0.75 cdef 
zNDVI (normalized difference vegetative index) readings were collected using the CM1000 
NDVI meter (Spectrum Technologies, Plainfield, IL).  
yIrrigation treatments were based on a percentage of local reference evapotranspiration data. 
xMeans followed by different letters are statistically different at the P = 0.05 significance level 
according to Duncan’s multiple range test.  
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Table 14. NDVIz of 23 bermudagrass entries two weeks following the initiation of irrigation 
treatmentsy. 

 NDVI 

 Bermudagrass Entry 0% 33% 66% 100% 

Celebration 0.60 ax 0.82 a 0.85 bcdef 0.86 abc 

Patriot 0.37 de 0.80 a 0.80 g 0.85 abc 

Premier 0.33 e 0.79 a 0.85 abcd 0.87 ab 

Tifsport 0.38 de 0.79 ab 0.82 efg 0.84 bc 

Tifway 0.39 cde 0.81 a 0.86 abcd 0.88 a 

NC U-3 0.37 de 0.76 abc 0.83 defg 0.83 cd 

TGS U-3 0.32 e 0.71 bc 0.83 cdef 0.85 abc 

SIU U-3 0.35 e 0.77 ab 0.80 g 0.81 d 

OKC 1119 0.38 de 0.82 a 0.88 a 0.86 abc 

OKC 1134 0.50 abcd 0.80 a 0.85 abcd 0.86 ab 

OKC 70-18 0.31 e 0.76 abc 0.84 bcdef 0.86 ab 

#2 0.53 abc 0.82 a 0.86 abc 0.85 abc 

#4 0.36 de 0.79 a 0.82 fg 0.85 abc 

#12 0.42 cde 0.79 a 0.84 cdef 0.85 abc 

#16 0.45 bcde 0.80 a 0.86 abcd 0.85 abc 

#17 0.34 e 0.77 ab 0.84 bcdef 0.85 abc 

#18 0.31 e 0.69 c 0.84 bcdef 0.86 ab 

#20 0.42 cde 0.80 a 0.87 ab 0.87 ab 

#22 0.33 e 0.79 ab 0.84 bcdef 0.84 bc 

#24 0.50 abcd 0.77 ab 0.83 cdef 0.85 abc 

#25 0.38 de 0.77 ab 0.85 abcde 0.86 ab 

#26 0.41 cde 0.83 a 0.85 abcde 0.88 a 

#27 0.57 ab 0.79 ab 0.84 cdef 0.87 ab 
zNDVI (normalized difference vegetative index) readings were collected using the CM1000 
NDVI meter (Spectrum Technologies, Plainfield, IL).  
yIrrigation treatments were based on a percentage of local reference evapotranspiration data. 
xMeans followed by different letters are statistically different at the P = 0.05 significance level 
according to Duncan’s multiple range test.  
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Table 15. NDVIz of 23 bermudagrass entries three weeks following the initiation of irrigation 
treatmentsy. 

 NDVI 

 Bermudagrass Entry 0% 33% 66% 100% 

Celebration 0.52 ax 0.78 a 0.84 ab 0.85 abcd 

Patriot 0.35 cde 0.63 abc 0.79 c 0.83 cd 

Premier 0.34 cde 0.72 abc 0.85 a 0.87 ab 

Tifsport 0.34 cde 0.72 abc 0.81 bc 0.82 d 

Tifway 0.31 de 0.70 abc 0.85 ab 0.87 ab 

NC U-3 0.31 de 0.67 abc 0.83 ab 0.83 cd 

TGS U-3 0.30 e 0.56 bc 0.83 ab 0.86 abcd 

SIU U-3 0.31 de 0.78 a 0.81 bc 0.82 d 

OKC 1119 0.31 de 0.66 abc 0.86 a 0.87 abc 

OKC 1134 0.40 bcde 0.76 a 0.85 ab 0.85 abcd 

OKC 70-18 0.31 de 0.54 c 0.86 a 0.87 ab 

#2 0.44 abc 0.76 a 0.83 b 0.86 abcd 

#4 0.32 de 0.68 abc 0.84 ab 0.84 bcd 

#12 0.37 bcde 0.75 a 0.84 ab 0.86 abc 

#16 0.42 abcd 0.74 ab 0.86 a 0.86 abcd 

#17 0.31 de 0.67 abc 0.83 ab 0.84 bcd 

#18 0.30 de 0.59 abc 0.85 a 0.86 abcd 

#20 0.34 cde 0.64 abc 0.87 a 0.88 a 

#22 0.29 e 0.68 abc 0.85 ab 0.85 abcd 

#24 0.44 abc 0.64 abc 0.84 ab 0.85 abcd 

#25 0.24 cde 0.78 a 0.85 ab 0.85 abcd 

#26 0.37 bcde 0.74 ab 0.85 ab 0.87 ab 

#27 0.47 ab 0.76 a 0.83 ab 0.85 abcd 
zNDVI (normalized difference vegetative index) readings were collected using the CM1000 
NDVI meter (Spectrum Technologies, Plainfield, IL).  
yIrrigation treatments were based on a percentage of local reference evapotranspiration data. 
xMeans followed by different letters are statistically different at the P = 0.05 significance level 
according to Duncan’s multiple range test.  
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Table 16. NDVIz of 23 bermudagrass entries four weeks following the initiation of irrigation 
treatmentsy. 

 NDVI 

 Bermudagrass Entry 0% 33% 66% 100% 

Celebration 0.49 ax 0.74 a 0.82 ab 0.85 abc 

Patriot 0.32 cd 0.60 abcd 0.77 de 0.80 de 

Premier 0.31 d 0.63 abcd 0.84 ab 0.86 ab 

Tifsport 0.34 cd 0.57 abcd 0.75 e 0.80 e 

Tifway 0.30 d 0.55 abcd 0.86 a 0.87 a 

NC U-3 0.30 d 0.57 abcd 0.80 bcde 0.83 abcde 

TGS U-3 0.29 d 0.49 cd 0.81 abcd 0.85 abcd 

SIU U-3 0.29 d 0.72 ab 0.82 abc 0.83 abcde 

OKC 1119 0.29 d 0.53 abcd 0.79 bcde 0.84 abcde 

OKC 1134 0.38 bcd 0.64 abcd 0.79 bcde 0.83 abcde 

OKC 70-18 0.28 d 0.43 d 0.79 bcde 0.82 bcde 

#2 0.46 ab 0.70 abc 0.82 ab 0.83 abcde 

#4 0.35 cd 0.62 abcd 0.77 cde 0.81 cde 

#12 0.36 bcd 0.68 abc 0.81 abcd 0.84 abcde 

#16 0.34 cd 0.64 abcd 0.82 ab 0.84 abcde 

#17 0.33 cd 0.53 abcd 0.81 abcd 0.84 abcd 

#18 0.28 d 0.49 bcd 0.84 ab 0.86 abc 

#20 0.35 cd 0.54 abcd 0.83 ab 0.86 abc 

#22 0.31 cd 0.52 abcd 0.80 bcd 0.86 abc 

#24 0.39 abcd 0.59 abcd 0.79 bcde 0.85 abcd 

#25 0.32 cd 0.62 abcd 0.81 abcd 0.83 abcde 

#26 0.36 bcd 0.66 abc 0.82 ab 0.83 abcde 

#27 0.42 abc 0.70 abc 0.83 ab 0.86 ab 
zNDVI (normalized difference vegetative index) readings were collected using the CM1000 
NDVI meter (Spectrum Technologies, Plainfield, IL).  
yIrrigation treatments were based on a percentage of local reference evapotranspiration data. 
xMeans followed by different letters are statistically different at the P = 0.05 significance level 
according to Duncan’s multiple range test.  



 

68 
 

Table 17. NDVIz of 23 bermudagrass entries one week following the initiation of re-watering all 
plots according to the 100% irrigation treatmenty. 

 NDVI 

 Bermudagrass Entry 0% 33% 66% 100% 

Celebration 0.72 ax 0.84 ab 0.85 bcd 0.86 abcd 

Patriot 0.43 cd 0.79 ab 0.83 de 0.83 de 

Premier 0.43 cd 0.70 ab 0.87 ab 0.87 a 

Tifsport 0.49 bcd 0.80 ab 0.82 e 0.83 e 

Tifway 0.45 cd 0.80 ab 0.86 abc 0.87 ab 

NC U-3 0.53 abcd 0.79 ab 0.84 cde 0.84 cde 

TGS U-3 0.43 cd 0.77 ab 0.84 cde 0.86 bcde 

SIU U-3 0.37 d 0.81 ab 0.82 e 0.85 abcde 

OKC 1119 0.45 cd 0.77 ab 0.86 abc 0.87 ab 

OKC 1134 0.54 abcd 0.81 ab 0.86 abc 0.87 ab 

OKC 70-18 0.47 cd 0.79 ab 0.86 abc 0.87 ab 

#2 0.68 ab 0.84 a 0.85 abc 0.87 ab 

#4 0.44 cd 0.82 ab 0.84 cde 0.86 abc 

#12 0.53 bcd 0.82 ab 0.85 bcd 0.85 abcde 

#16 0.52 bcd 0.81 ab 0.84 bcde 0.84 bcde 

#17 0.40 cd 0.68 b 0.85 bcde 0.86 abcde 

#18 0.39 d 0.71 ab 0.84 bcde 0.85 abcde 

#20 0.46 cd 0.70 ab 0.88 b 0.87 ab 

#22 0.38 d 0.70 ab 0.85 bcd 0.86 abcde 

#24 0.60 abc 0.80 ab 0.85 bcd 0.85 abcde 

#25 0.45 cd 0.72 ab 0.85 bcd 0.84 bcde 

#26 0.56 abcd 0.82 ab 0.86 abc 0.85 abcde 

#27 0.49 bcd 0.78 ab 0.86 abc 0.87 ab 
zNDVI (normalized difference vegetative index) readings were collected using the CM1000 
NDVI meter (Spectrum Technologies, Plainfield, IL).  
yIrrigation treatments were based on a percentage of local reference evapotranspiration data. 
xMeans followed by different letters are statistically different at the P = 0.05 significance level 
according to Duncan’s multiple range test. 
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Table 18. NDVIz of 23 bermudagrass entries four weeks following the initiation of re-watering all 
plots according to the 100% irrigation treatmenty. 

 NDVI 

 Bermudagrass Entry 0% 33% 66% 100% 

Celebration 0.77 abcx 0.80 abc 0.79 abc 0.75 bc 

Patriot 0.71 bcd 0.73 abc 0.76 bc 0.72 cd 

Premier 0.78 abc 0.73 abc 0.78 abc 0.79 ab 

Tifsport 0.65 d 0.70 bc 0.74 c 0.68 d 

Tifway 0.75 abc 0.70 abc 0.79 abc 0.78 abc 

NC U-3 0.76 abc 0.77 abc 0.75 bc 0.75 bc 

TGS U-3 0.75 abc 0.72 abc 0.76 bc 0.77 abc 

SIU U-3 0.65 d 0.76 abc 0.78 abc 0.74 bc 

OKC 1119 0.80 ab 0.79 abc 0.80 ab 0.80 abc 

OKC 1134 0.80 ab 0.81 ab 0.80 ab 0.77 abc 

OKC 70-18 0.75 abc 0.70 bc 0.79 abc 0.76 abc 

#2 0.84 a 0.83 a 0.79 abc 0.80 ab 

#4 0.76 abc 0.75 abc 0.79 abc 0.82 a 

#12 0.75 abc 0.79 abc 0.75 bc 0.77 abc 

#16 0.77 abc 0.81 ab 0.79 abc 0.76 abc 

#17 0.77 abc 0.75 abc 0.76 bc 0.78 abc 

#18 0.68 cd 0.69 c 0.77 abc 0.79 ab 

#20 0.75 abc 0.76 abc 0.82 a 0.80 ab 

#22 0.73 bcd 0.75 abc 0.78 abc 0.78 ab 

#24 0.77 abc 0.82 ab 0.80 ab 0.78 ab 

#25 0.79 ab 0.78 abc 0.77 abc 0.77abc 

#26 0.80 ab 0.81 ab 0.79 abc 0.79 ab 

#27 0.79 ab 0.79 abc 0.77 abc 0.80 ab 
zNDVI (normalized difference vegetative index) readings were collected using the CM1000 
NDVI meter (Spectrum Technologies, Plainfield, IL).  
yIrrigation treatments were based on a percentage of local reference evapotranspiration data. 
xMeans followed by different letters are statistically different at the P = 0.05 significance level 
according to Duncan’s multiple range test. 
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Table 19. NDVIz of 23 bermudagrass entries eight weeks following the initiation of re-watering 
all plots according to the 100% irrigation treatmenty. 

 NDVI 

 Bermudagrass Entry 0% 33% 66% 100% 

Celebration 0.78 ax 0.77 a 0.74 ab 0.71 abcde 

Patriot 0.68 abcd 0.65 abcd 0.64 cdef 0.60 g 

Premier 0.63 bcd 0.68 abcd 0.73 abc 0.57 g 

Tifsport 0.68 abcd 0.58 cd 0.67 abcdef 0.67 abcdefg 

Tifway 0.76 ab 0.75 ab 0.75 a 0.77 a 

NC U-3 0.59 cd 0.57 d 0.63 def 0.61 fg 

TGS U-3 0.57 d 0.57 d 0.62 ef 0.66 bcdefg 

SIU U-3 0.67 abcd 0.74 ab 0.70abcde 0.65 cdefg 

OKC 1119 0.70 abcd 0.72 ab 0.60 f 0.72 abcde 

OKC 1134 0.74 ab 0.77 a 0.75 a 0.72 abcde 

OKC 70-18 0.67 abcd 0.63 bcd 0.69 abcdef 0.65 defg 

#2 0.68 abcd 0.70 abc 0.70 abcde 0.70 abcdef 

#4 0.71 abcd 0.73 ab 0.65 bcdef 0.73 abcde 

#12 0.64 abcd 0.65 abcd 0.68 abcdef 0.70 abcdef 

#16 0.74 ab 0.77 a 0.71 abcd 0.72 abcde 

#17 0.68 abcd 0.64 bcd 0.71 abcde 0.64 fg 

#18 0.65 abcd 0.63 bcd 0.72 abcd 0.71 abcde 

#20 0.64 abcd 0.74 ab 0.76 a 0.75 abcd 

#22 0.64 abcd 0.73 ab 0.73 abc 0.72 abcde 

#24 0.76 ab 0.71 ab 0.71 abcd 0.71 abcde 

#25 0.72 abc 0.74 ab 0.76 a 0.75 abc 

#26 0.72 abc 0.73 ab 0.74 ab 0.75 ab 

#27 0.77 a 0.76 a 0.75 a 0.76 a 
zNDVI (normalized difference vegetative index) readings were collected using the CM1000 
NDVI meter (Spectrum Technologies, Plainfield, IL).  
yIrrigation treatments were based on a percentage of local reference evapotranspiration data. 
xMeans followed by different letters are statistically different at the P = 0.05 significance level 
according to Duncan’s multiple range test. 
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Table 20. Recoveryz of 23 bermudagrass entries eight weeks following the initiation of re-
watering all plots according to the 100% irrigation treatmenty. 

 Recovery 

Bermudagrass Entry 0% 33% 

Celebration 100 ax 100 a 

Patriot 87 de 97 abc 

Premier 94 abcde 100 a 

Tifsport 77 f 93 bc 

Tifway 87 de 99 ab 

NC U-3 91 abcde 97 abc 

TGS U-3 90 abcde 92 c 

SIU U-3 77 f 100a 

OKC 1119 95 abcde 98 ab 

OKC 1134 96 abcd 97 abc 

OKC 70-18 86 e 99 a 

#2 98 abc 100 a 

#4 93 abcde 97 abc 

#12 98 abc 100 a 

#16 99 ab 100 a 

#17 89 cde 95 abc 

#18 90 abcde 98 ab 

#20 90 bcde 99 a 

#22 89 cde 97 abc 

#24 95 abcde 98 ab 

#25 96 abcde 99 a 

#26 97 abcd 100 a 

#27 94 abcde 97 abc 
zRecovery ratings were based on visual estimates of percent living bermudagrass coverage from 
0-100%. 
yIrrigation treatments were based on a percentage of local reference evapotranspiration data. 
xMeans followed by different letters are statistically different at the P = 0.05 significance level 
according to Duncan’s multiple range test. 
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Fig. 1. Mean soil volumetric water content (%) of each irrigation treatment plot area. 

Irrigation treatments were based on a percentage of local reference evapotranspiration 

data (ETo). Data was collected prior to beginning irrigation treatments (7/15/2010); at one 

week (7/22/2010), two weeks (7/30/2010), three weeks (8/4/2010), and four weeks 

(8/9/2010) after treatments were imposed; and at one week after re-watering all plots 

according to the 100% ETo treatment (8/16/2010).  
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Differences in Root Growth Characteristics of Eight Clonally Propagated Bermudagrass 

Cultivars and Experimental Genotypes 

Additional index words: Cynodon dactylon, drought, root growth, root mass, root length 

Abstract: Bermudagrass is used in many parts of the world as a forage crop and as 

turfgrass in sports fields, golf courses and lawns. Selection and identification of drought 

resistant bermudagrass cultivars under acute or chronic drought stress is important for 

sustainable turfgrass management and water conservation. Typical mechanisms of 

drought avoidance include deep, extensive root growth. Extensive root systems allow 

turfgrasses to avoid drought, enabling them to extract water from deeper in the soil 

profile during severe moisture stress. The objective of this research was to evaluate and 

explain differences in root growth characteristics of selected clonal industry standard and 

OSU experimental bermudagrass entries.  It was hypothesized that there were significant 

differences in clonal industry standard and OSU experimental bermudagrass entries for 

root growth characteristics. The study was conducted at the Oklahoma State University 

(OSU) Turfgrass Research Center Greenhouse Facility located in Stillwater, OK. Eight 

bermudagrass entries were chosen for this study including three industry standards and 

five OSU experimental selections. The standards were: Celebration, Tifsport, and Patriot. 

The OSU experimental bermudagrasses were: OKC 1119, OKC 1134, # 2, # 12, and # 

17. Uniform sod pieces were transferred from the field to clear polyethylene tubing and 

were grown in a screened fritted clay material (1 – 2 mm diameter particle size) for root 

growth analysis. Roots were scanned and analyzed for total root length (TRL), average 

root diameter (ARD), root surface area (RSA) and root volume. After root characteristics 

were scanned and analyzed, the root materials were oven dried for 48 h at 80° C and root 
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dry weights (RDW) were recorded. Shoots were collected and dry weights (SDW) were 

recorded twice per week. Also, the root/shoot ratio (R/S) was calculated based on the 

SDW and RDW for each entry. Celebration, OKC 1119, and #2 had the highest R/S 

among the bermudagrass entries. Celebration, OKC 1119, and #2 also ranked highly for 

root dry weight in the upper 0 – 30 cm profiles. In addition, Celebration, OKC 1119, and 

#2 ranked highly in total root length in the upper 0 – 30 cm profiles.  Tifsport, Patriot, 

and #12 had the lowest R/S among the bermudagrass entries. Tifsport, Patriot, and #12 

also ranked poorly for root dry weight in the upper 0 – 30 cm profiles. In addition, 

Tifsport, Patriot, and #12 ranked poorly for total root length in the upper 0 – 30 cm 

profiles. Based on the results of this study, Celebration, OKC 1119, and #2 have good 

genetic potential for improved drought performance if proper root growth occurs during 

the year before a drought event.  Tifsport, Patriot, and #12 did not perform as well as 

Celebration, OKC 1119, and #2 in this study and thus may not have acceptable genetic 

potential for improved drought performance due to rooting characteristics. 
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Bermudagrass is used in many parts of the world as a forage crop and as turfgrass 

in sports fields, golf courses and lawns. Bermudagrass is a warm-season perennial grass 

species best adapted to tropical and subtropical climates with high temperatures, mild 

winters and high rainfall (Taliaferro et al., 2004). Bermudagrass is native to Africa and 

Southeast Asia and is currently found all over the world (Harlan and de Wet, 1969; de 

Wet and Harlan, 1970; de Wet and Harlan, 1971; Taliaferro et al., 2004). Selection and 

identification of drought resistant bermudagrass cultivars under acute or chronic drought 

stress is important for sustainable turfgrass management and water conservation. 

Plants survive water stress with mechanisms of drought avoidance and/or drought 

tolerance. Drought resistance refers to the ability of a plant to avoid dehydration or 

tolerate dehydration in plant tissue (Levitt, 1980). Typical mechanisms of drought 

avoidance include deep, extensive root growth. Extensive root systems allow turfgrasses 

to avoid drought, enabling them to extract water from deeper through the soil profile 

during severe moisture stress (Hurd, 1975). Bermudagrasses capable of avoiding drought 

through extensive root systems can extract water from deeper soil layers (Boeker, 1974) 

which is important for future varietal development. Typical mechanisms of drought 

tolerance include cell membrane stability and increased or decreased hormone production 

under drought stress. Turfgrass cultivars with good shoot characteristics for efficient 

transpiration and extended root system for proper moisture absorption are considered 

drought resistant (Youngner, 1985). 

 In comparison to cool-season grasses, warm-season grasses possess better turf 

quality during periods of drought. Cultivar performance and their selection based on 

factors responsible for this phenomenon like vertical root distribution, soil water 
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depletion, leaf firing and turf quality is essential. In a drought study of various 

bermudagrass genotypes, total root mass at the depths of 30 - 60 cm, 60 - 90 cm, 90 - 120 

cm and 120 - 150 cm was correlated with turf quality with r = 0.72, 0.86, 0.80, and 0.81, 

respectively (Hays et al., 1991).  

In areas of irregular rainfall, greater root size (diameter) is also a desirable traits 

for drought resistant bermudagrasses. It is important to screen genotypes for their rooting 

characteristics within controlled environment and to screen for high root/shoot ratio 

(Bonos et al., 2004). For example, Karcher et al. (2008) selected tall fescue cultivars with 

high root/shoot ratios and planted them in field trials for drought performance analysis.  

These selections performed well under field drought conditions and exhibited improved 

drought performance compared to their parental lines (Karcher et al., 2008). The 

objective of this research was to evaluate and explain differences in root growth 

characteristics of selected clonal industry standard and OSU experimental bermudagrass 

entries.  It was hypothesized that there were significant differences in clonal industry 

standard and OSU experimental bermudagrass entries for root growth characteristics. 

 

Materials and Methods 

 The study was conducted at the Oklahoma State University (OSU) Turfgrass 

Research Center Greenhouse Facility located in Stillwater, OK.  This research was 

conducted from Feb. to May 2010 (study one) and was repeated from July to Sep 2010 

(study two). The average greenhouse conditions for study one were 29/18° C day/night 

air temperature and 66% relative humidity (RH). The average greenhouse conditions for 

study two were 32/24° C day/night air temperature and 76% RH. Natural light in the 

greenhouse was supplemented with an overhead lamp set to turn on/off daily at 6:00 
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AM/20:00 PM and average photosynthetically active radiation (PAR) was 1000 µm m-2 

sec-1.  Eight bermudagrass entries were chosen for this study including three industry 

standards and five OSU experimental selections. The standards were: Celebration (good 

drought performance standard; Chalmers et al., 2008), Tifsport (sports field standard), 

and Patriot (cold tolerant standard, OSU release; Wu et al., 2009). The OSU experimental 

bermudagrasses were: OKC 1119, OKC 1134, # 2, # 12, and # 17. The OSU 

experimental standards have excellent sod strength, but little is known about their 

specific root growth characteristics (Han, 2009). 

Growth tubes were made from clear polyethylene tubing (3.5 cm diameter) cut 

into uniform 120 cm long pieces (Su et al., 2008). Polyvinylchloride (PVC) pipe of 5.08 

cm diameter were cut to a uniform 120 cm length to create holding tubes. Holding tubes 

were capped at bottom and small holes were drilled in the bottom of each cap to facilitate 

drainage. Fritted clay (Chandler Materials, Tulsa, OK) was used as the bermudagrass root 

growth medium. The fritted clay had a dry bulk density of 0.67 kg L-1, particle density of 

2.50 kg L-1, total porosity of 0.73, and saturated hydraulic conductivity of 9.5 x 10-4 m 

sec-1 (van Bavel et al., 1978). The fritted clay was screened to 1-2 mm where particles 

greater than 2 mm in diameter were removed with a first screening and particle size of 

less than 1 mm in diameter were removed during a second screening. Each clear growth 

tube was evenly filled with the screened fritted clay material and tubes were saturated 

before plugs were planted (plugs collected from field established as sod). For initial 

establishment, the growth tubes were set under a mist system for two weeks. The mist 

system had an automatic irrigation timer control setting and was set to water every 20 

min for 15 sec during the day. After a two week establishment period, the tubes were then 
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transferred to a growth tube holding rack. The growth tube holding rack had an automatic 

irrigation assembly with an SVC-100 smart valve controller (Hunter Industries Inc., San 

Marcos, CA). A drip-tubing system was setup from the controller to drip-irrigate each 

individual growth tube. The controller was set to irrigate for ten minutes every four hours 

during the daytime. Fertilizer was applied during establishment and once a week after 

establishment at 250 mg N L-1 with 20N–8.7P–16.6K fertilizer (J.R. Peters, Inc., 

Allentown, PA) for a total of 130 kg N ha-1 week-1 during the study period. The fritted 

clay material had little N nutrient holding capacity. Therefore, N fertilizer rates were 

higher than normal field N fertilizer rates to ensure that N was sufficiently applied to 

each growth tube for proper bermudagrass growth and development.  

Grasses were mowed twice a week at 4 cm height and clippings collected. The 

clippings were collected in paper envelop, immediately after mowing. Collected clippings 

shoot dry weight (SDW) was recorded twice a week throughout the study period. The 

visual maximum root extension in each growth tube was measured weekly with a meter 

stick ruler. The study was stopped once the maximum root extension in one of the tube 

was observed to reach 120 cm depth. At the end of each study, the clear polyethylene 

growth tubes were cut into six sections from 0 - 7.5 cm, 7.5 - 15 cm, 15 - 30 cm, 30 - 60 

cm, 60 - 90 cm and 90 - 120 cm. The totals for each study parameter were also calculated 

by adding together the totals for each individual section (0 - 120 cm). Any aboveground 

shoots were collected at the end of the study and final shoot dry weight was recorded. 

The clay from each section was washed out by hand and roots were collected in plastic 

bags and refrigerated at 4̊ C  until further analysis. Roots were separated, scanned and 

analyzed with Win-Rhizo software (Regent Instruments, Nepean, ON, Canada).  Methyl 
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blue (5 g L-1 water) was used to stain roots for proper imaging of fine roots. Once the 

roots were scanned the software was used to calculate total root length (TRL), average 

root diameter (ARD), root surface area (RSA) and root volume (RV). After root 

characteristics were scanned and analyzed, the root materials were oven dried for 48 h at 

80° C and root dry weights (RDW) were recorded. Also, the root/shoot ratio (R/S) was 

calculated based on the SDW and RDW for each entry. Lastly, visual turf quality was 

rated weekly on a 1-9 scale where: 1 = completely brown, dormant, or dead grass, 6 = 

acceptable visual turf quality, and 9 = excellent turf quality.   

The design of the experiment was a randomized complete block (RCBD) with 

four replications and eight bermudagrass entries. Analysis of variance (ANOVA) was 

performed using PROC GLM (SAS Institute Inc., Cary, NC). There was no significant 

date x cultivar treatment interaction for TQ or SDW and data was analyzed as one 

combined experiment. When the criteria for ANOVA were met at the P = 0.05 level, 

mean separation tests were performed using Duncan’s multiple range test at the P = 0.05 

significance level. 

 

Results  

 

Total root length (TRL) 

There was no significant difference in entries for mean TRL from 0-120 cm 

(Table 21). For the 0 – 7.5 cm section, mean TRL was highest for # 2 and #17 and was 

lowest for Celebration, Tifsport, Patriot and #12 (Table 23). For the 7.5 – 15 cm section, 

mean TRL was highest for Celebration, OKC 1119, and #17 and was lowest for Tifsport 
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and #12 (Table 25). For the 15 – 30 cm section, mean TRL was highest for Celebration 

and Patriot and lowest for Tifsport, OKC 1134, #2, #12, and #17 (Table 23). For the 30 – 

60 cm section, Celebration and Patriot had the highest mean TRL while OKC 1119, OKC 

1134, #2, and #17 had the lowest mean TRL (Table 24). For the 60-90 cm section, Patriot 

and #12 had the highest mean TRL while Celebration and #17 had the lowest mean TRL 

(Table 24).  There was difference in mean TRL at the 90 – 120 section where Tifsport, 

#12, OKC 1119, and Patriot had greater mean TRL than Celebration, OKC 1134, #2, and 

#17 (Table 24). 

 

Root surface area (RSA) 

There were no differences in mean RSA from 0 – 120 cm (Table 21). For the 0 – 

7.5 cm section, mean RSA was highest for # 2 and #17 and was lowest for Tifsport and 

Patriot (Table 23). For the 7.5 – 15 cm section, mean RSA was highest for Celebration 

and OKC 1119 and was lowest for Tifsport and #12 (Table 23). For the 15 – 30 cm 

section, mean RSA was highest for Celebration and Patriot and lowest for Tifsport (Table 

23). For the 30 – 60 cm section, Celebration and Patriot had the highest mean RSA while 

OKC 1119, #2, and #17 had the lowest mean RSA (Table 24). There were no differences 

in mean RSA for the 60 – 90 cm. There was difference in mean RSA at the 90 – 120 

section where Tifsport, #12, OKC 1119, and Patriot had greater mean RSA than 

Celebration, OKC 1134, #2, and #17 (Table 24). 
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Average root diameter (ARD): 

There were differences in ARD from 0- 120 cm where Celebration, OKC 1119, 

OKC 1134, and #2 had the highest ARD while Tifsport had the lowest ARD (Table 21). 

For the 0 – 7.5 cm section, mean ARD was highest for OKC 1119, OKC 1134, #2, and 

#17 and was lowest for Tifsport (Table 23). For the 7.5 – 15 cm section, mean ARD was 

highest for Celebration and OKC 1119 and was lowest for Tifsport and Patriot (Table 

23). For the 15 – 30 cm section, mean ARD was highest for Celebration, OKC 1119, and 

OKC 1134 and lowest for Tifsport (Table 23). There were no differences in mean ARD 

for the 30 – 60 cm, 60 – 90 cm. There was difference in mean ARD at the 90 – 120 

section where Tifsport, #12, OKC 1119, and Patriot had greater mean ARD than 

Celebration, OKC 1134, #2, and #17 (Table 24). 

 

Root volume (RV) 

There were differences in RV from 0- 120 cm where Celebration and #2 had the 

highest RV while Tifsport had the lowest ARD (Table 21). For the 0 – 7.5 cm section, 

mean RV was highest for #2 and was lowest for Tifsport and Patriot (Table 23). For the 

7.5 – 15 cm section, mean RV was highest for Celebration, OKC 1119, and #2 and was 

lowest for Tifsport (Table 23). For the 15 – 30 cm section, mean RV was highest for 

Celebration and lowest for Tifsport (Table 23). For the 30 – 60 cm section, Celebration 

and Patriot had the highest mean RV while OKC 1119, #2, and #17 had the lowest mean 

RV (Table 24). There were no differences in mean RV for the 60 – 90 cm. There was 

difference in mean RV at the 90 – 120 section where Tifsport, #12, OKC 1119, and 

Patriot had greater mean RV than Celebration, OKC 1134, #2, and #17 (Table 24). 
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Shoot dry weight (SDW) 

 There were differences in SDW among cultivars where Celebration, #12, and #17 

had the highest mean SDW while Tifsport had the lowest mean SDW (Table 22). 

 

  Root dry weigh (RDW) 

There were differences in RDW for the 0 – 120 cm totals where Celebration and 

#2 had the highest RDW and were not different from each other. Tifsport had the lowest 

mean RDW, which was lower than Celebration, OKC 1119, OKC 1134, #2, #12, and #17 

but was not different from Patriot. For the 0 – 7.5 cm section, mean RDW was highest for 

Celebration, OKC 1134, #2, #12, and #17 and was lowest for Tifsport and Patriot (Table 

23). For the 7.5 – 15 cm section, mean RDW was highest for Celebration, OKC 1119, 

OKC 1134, #2, and #17 and was lowest for Tifsport (Table 23). For the 15 – 30 cm 

section, mean RDW was highest for Celebration and lowest for Tifsport, Patriot, OKC 

1134, #2, #12, and #17 (Table 23). There were no differences in mean RDW for the 30 – 

60 cm, 60 – 90 cm. There was difference in mean RDW at the 90 – 120 section where 

Tifsport, #12, OKC 1119, and Patriot had greater mean RDW than Celebration, OKC 

1134, #2, and #17 (Table 24). 

  

Root shoot ratio (R/S) 

 There were differences in R/S for the total 0 – 120 cm where Celebration, OKC 

1119 and #2 had the highest R/S while Tifsport, Patriot, and #12 had the lowest R/S.  
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Visual turf quality (TQ) 

 There were no differences in TQ among the bermudagrass entries at any rating 

date and all ratings were ≥ 6, the minimum acceptable TQ rating (data not shown).  This 

is due to the uniform maintenance conditions given to each bermudagrass growth tube 

during this study. All bermudagrass growth tubes were given adequate irrigation, 

fertilizer, light, and ideal environmental conditions to prevent any turf stress from 

occurring over the course of these studies. 

 

Discussion 

 

For all entries 85 % to 90 % of TRL was located in upper 30 cm of soil. Similar 

results were observed for bermudagrasses in a greenhouse study conducted by Qian et al. 

(1997). Greater root mass within the upper 30 cm profile is desirable to extract water 

during periods of adequate rainfall. Genetic variability of root characteristics is of prime 

importance for selecting species that have potential to survive better under drought stress 

(Su et al., 2008). Extensive deep rooting is essential for selecting cultivars that perform 

better in drought stressed environments (Duncan, 1994). Higher R/S is also important and 

accounted for better water use efficiency when measured to evaluate cultivar differences 

for potential to survive under drought stress (Bonos, 2004). Based on the results of this 

study, Celebration, OKC 1119, and #2 had the highest R/S among the bermudagrass 

entries. Celebration, OKC 1119, and #2 also ranked highly for root dry weight in the 

upper 0 – 30 cm profiles. In addition, Celebration, OKC 1119, and #2 ranked highly in 

total root length in the upper 0 – 30 cm profiles and demonstrated excellent performance 

under drought in the field (Chapter II).  Tifsport, Patriot, and #12 had the lowest R/S 
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among the bermudagrass entries. Tifsport, Patriot, and #12 also ranked lowly for root dry 

weight in the upper 0 – 30 cm profiles. In addition, Tifsport, Patriot, and #12 ranked 

poorly for total root length in the upper 0 – 30 cm profiles and demonstrated relatively 

poor performance in drought induced field test (Chapter II).  

Based on the results of this study, Celebration, OKC 1119, and #2 have good 

genetic potential for improved drought performance through extensive rooting and high 

root/shoot ratios.  Tifsport, Patriot, and #12 did not perform as well as Celebration, OKC 

1119, and #2 in this study and did not demonstrated good genetic potential for improved 

drought performance due to rooting characteristics. While rooting characteristics are 

important to avoid drought conditions, turfgrass drought tolerance mechanisms should 

also be studied for use in selecting and breeding drought resistant bermudagrasses.  

Future work should focus on any potential genetic variation that confers physiological 

attributes that may contribute to differences in bermudagrass drought resistance.   
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Table 21. Total root length, surface area, average diameter and volume of eight bermudagrass 
entries from 0-120 cm depthz, as calculated using Win-Rhizo scanning software. 
Soil 
Depth 
(cm) 

Bermudagrass 
Entries 

Length 
 
(cm) 

Surface Area 
 
(cm2) 

Average  
Diameter 
(mm) 

Volume 
 
(cm3) 

0-120 Celebration 18403 ay 946.59 a 0.62 a 3.93 a 
 Tifsport 13638 a 656.86 a 0.46 b 2.49 b 
 Patriot 17143 a 813.01 a 0.53 ab 3.09 ab 
 OKC 1119 17442 a 850.47 a 0.66 a 3.33 ab 
 OKC 1134 14921 a 769.37 a 0.59 a 3.21 ab 
 #2 16672 a 875.63 a 0.60 a 3.71 a 
 #12 14926 a 759.34 a 0.57 ab 3.11 ab 
 # 17 17268 a 826.69 a 0.55 ab 3.18 ab 
zGrowth tubes were made from clear polyethylene tubing (3.5 cm diameter x 120 cm 
length). 
yMeans followed by same letters within each column are not significantly different at the 
P = 0.05 significance level according to Duncan’s multiple range test. 
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Table 22. Total shoot dry weight, root dry weight, and root-to-shoot ratio of eight 
bermudagrass entries from 0-120 cm depthz. 
Soil  
Depth 
(cm) 

Bermudagrass 
Entries 

Shoot Dry 
Weighty 
(g) 

Root Dry 
Weight 
(g) 

Root/Shoot  
Ratio 

0-120 Celebration 5.75 abx 0.76 a 0.13 a 
 Tifsport 4.59 c 0.44 c 0.09 b 
 Patriot 4.85 bc 0.49 bc 0.10 b 
 OKC 1119 5.06 bc 0.67 ab 0.13 a 
 OKC 1134 5.36 abc 0.64 ab 0.11 ab 
 #2 5.50 abc 0.71 a 0.12 a 
 #12 6.28 a 0.66 ab 0.09 b 
 # 17 5.66 ab 0.64 ab  0.11 ab 
zGrowth tubes were made from clear polyethylene tubing (3.5 cm diameter x 120 cm 
length). 
yDry weights were determined after drying at 80° C for 48 hours. 
xMeans followed by same letters within each column are not significantly different at the 
P = 0.05 significance level according to Duncan’s multiple range test. 
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Table 23. Root length, surface area, average diameter, volume, and dry weight of eight 
bermudagrass entries from 0-7.5, 7.5-15, and 15-30 cm depthsz, as calculated using Win-Rhizo 
scanning software. 
Soil  
Depth 
 
(cm) 

Bermudagrass 
Entries 

Root  
Length 
 
(cm) 

Surface Area 
 
 
(cm2) 

Average 
Diameter 
 
(mm) 

Volume 
 
 
(cm3) 

Root 

Dry 
Weighty 
(g) 

0 - 7.5 Celebration 4121.1 cdx 245.5 bc 0.82 ab 1.17 b 0.29 ab 
 Tifsport 3348.6 d 173.8 d 0.59 c 0.72 c 0.16 c 
 Patriot 3595.1 d 186.6 cd 0.64 bc 0.77 c 0.17 c 
 OKC 1119 4879.3 bc 258.8 b 0.93 a 1.09 b 0.27 b 
 OKC 1134 4910.2 bc 272.5 b 0.92 a 1.22 b 0.29 ab 
 #2 6288.9 a 361.2 a 0.98 a 1.66 a 0.37 a 
 #12 4466.6 cd 256.1 bc 0.81 ab 1.17 b 0.29 ab 
 # 17 5973.6 ab  313.5 ab 0.88 a 1.31 b 0.31 ab 
7.5-15 Celebration 5516.9 ab 275.5 a 0.64 ab 1.10 a 0.21 a 
 Tifsport 3977.9 c 187.0 c 0.47 c 0.70 c 0.10 c 
 Patriot 4400.2 bc 204.5 bc 0.46 c 0.75 bc 0.12 bc 
 OKC 1119 5918.0 a 277.8 a 0.72 a 1.04 ab 0.20 a   
 OKC 1134 4671.3 abc 226.6 abc 0.59 abc 0.88 abc 0.18 ab 
 #2 5027.1 abc 252.1 abc 0.57 bc 1.01 ab 0.18 ab 
 #12 3785.8 c 189.9 c 0.56 bc 0.76 bc 0.16 abc 
 # 17 5771.2 ab 264.5 ab 0.56 bc 0.96 abc 0.17 ab 
15-30 Celebration 6052.5 a 292.1 a 0.57 a 1.12 a 0.18 a 
 Tifsport 3740.8 b 169.7 c 0.36 c 0.61 c 0.10 b  
 Patriot 5944.6 a 269.8 ab 0.52 ab 0.97 ab 1.13 b 
 OKC 1119 5104.6 ab 235.8 abc 0.55 a 0.87 abc 0.14 ab 
 OKC 1134 3738.2 b 186.7 bc 0.51 ab 0.75 bc 0.11 b 
 #2 3894.4 b 187.3 bc 0.45 abc 0.72 bc 0.11 b 
 #12 4144.5 b 193.4 bc 0.39 bc 0.71 bc 0.13 b 
 # 17 4206.2 b 187.3 bc 0.46 abc 0.66 bc 0.11 b 
zGrowth tubes were made from clear polyethylene tubing (3.5 cm diameter x 120 cm length) and 
were sections were cut for analysis from 0-7.5, 7.5-15, 15-30, 30-60, 60-90, and 90-120 cm 
depths. 
yRoot dry weight determined after drying at 80° C for 48 hours. 
xMeans followed by same letters within each column are not significantly different at the P = 0.05 
significance level according to Duncan’s multiple range test. 
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Table 24. Root length, surface area, average diameter, volume, and dry weight of eight 
bermudagrass entries from 30-60, 60-90, and 90-120 cm depthsz, as calculated using Win-Rhizo 
scanning software. 
Soil  
Depth 
(cm) 

Bermudagrass 
Entries 

Root  
Length 
(cm) 

Surface Area 
 
(cm2) 

Average 
Diameter 
(mm) 

Volume 
 
(cm3) 

Rooty 

Dry Weight 
(g) 

30-60 Celebration 2677.3 abx 130.7 ab 0.35 a 0.51 a 0.07 a 
 Tifsport 2354.0 abc 115.2 abc 0.31 a 0.40 ab  0.06 a 
 Patriot 2935.5 a 140.5 a 0.34 a 0.53 a 0.06 a 
 OKC 1119 1439.3 c 71.8 c 0.25 a 0.28 b 0.04 a 
 OKC 1134 1543.3 bc 80.2 bc 0.32 a 0.33 ab 0.05 a 
 #2 1384.9 c 69.9 c 0.24 a 0.28 b 0.04 a 
 #12 2281.7 abc 106. 8 abc 0.32 a 0.39 ab 0.06 a 
 # 17 1302.7 c 60.4 c 0.24 a 0.22 b 0.03 a 
60-90 Celebration 35.1 cd 2.8 a 0.10 a 0.02 a 0.0022 a 
 Tifsport 197.9 abc 10.2 a 0.13 a 0.04 a 0.0049 a 
 Patriot 206.1 ab 10.8 a 0.12 a 0.05 a 0.0056 a 
 OKC 1119 85.9 abcd 5.2 a 0.11 a 0.03 a 0.0033 a 
 OKC 1134 57.6 bcd 3.4 a 0.13 a 0.02 a 0.0027 a 
 #2 77.0 abcd 4.9 a 0.14 a 0.03 a 0.0029 a 
 #12 228.9 a 11.7 a 0.14 a 0.05 a 0.0069 a 
 # 17 14.5 d 1.0 a 0.05 a 0.01 a 0.0007 a 
90-120 Celebration 0.0 b 0.0 b 0.00 b 0.000 b 0.0000 b 
 Tifsport 19.0 a 1.0 a 0.02 a 0.004 a 0.0010 a 
 Patriot 11.2 a 0.8 a 0.06 a 0.004 a 0.0005 a 
 OKC 1119 15.0 a 1.0 a 0.06 a 0.006 a 0.0012 a 
 OKC 1134 0.0 b 0.0 b 0.00 b 0.00 b 0.0000 b 
 #2 0.0 b 0.0 b 0.00 b 0.00 b 0.0000 b 
 #12 19.0 a 1.6 a 0.06 a 0.010 a 0.0007 a 
 # 17 0.0 b 0.0 b 0.00 b 0.00 b 0.0000 b 
zGrowth tubes were made from clear polyethylene tubing (3.5 cm diameter x 120 cm length) and 
were sections were cut for analysis from 0-7.5, 7.5-15, 15-30, 30-60, 60-90, and 90-120 cm 
depths. 
yRoot dry weight determined after drying at 80° C for 48 hours. 
xMeans followed by same letters within each column are not significantly different at the P = 0.05 
significance level according to Duncan’s multiple range test. 
 
 



 

 

VITA 
 

Bishow Prakash Poudel 
 

Candidate for the Degree of 
 

Master of Science 
 
Thesis:    TESTING OF CLONAL BERMUDAGRASS CULTIVARS AND 

EXPERIMENTAL GENOTYPES FOR DIFFERENCES IN DROUGHT 
PERFORMANCE 

 
 
Major Field:  Horticulture 
 
Biographical: 
 

Education: 
 
Completed the requirements for the Master of Science in Horticulture at 
Oklahoma State University, Stillwater, Oklahoma in December, 2010. 

 
Completed the requirements for the Master of Science in Agronomy at H.N.B. 
Garhwal University, India in 2007.  
 
Completed the requirements for the Bachelor of Science in Agriculture at 
Tribhuvan University, Nepal in 2004. 
 
 
Experience: 
 
Graduate Research Assistant at Oklahoma State University Department of 
Horticulture and Landscape Architecture from August 2008 to December 2010. 
   
 
Professional Memberships:   
 
American Society of Agronomy 
Crop Science Society of America 
Soil Science Society of America 
 
 

 



 

 
ADVISER’S APPROVAL:  Dr. Justin Q. Moss 
 
 
 

 

Name: Bishow Prakash Poudel                                        Date of Degree: December, 2010 
 

Institution: Oklahoma State University                  Location: Stillwater, Oklahoma 
 

Title of Study: TESTING OF CLONAL BERMUDAGRASS CULTIVARS AND 
EXPERIMENTAL GENOTYPES FOR DIFFERENCES IN DROUGHT 
PERFORMANCE 

 
 
 

Pages in Study: 92                              Candidate for the Degree of Master of Science 

Major Field: Horticulture 
 

Scope and Method of Study:  
 
Bermudagrass is used in many parts of the world as a forage crop and as turfgrass in 
sports fields, golf courses and lawns. Selection and identification of drought resistant 
bermudagrass cultivars under acute or chronic drought stress is important for sustainable 
turfgrass management and water conservation. The objective of this research were to: 1) 
identify differences in overall field drought performance of selected industry standard 
and OSU experimental bermudagrass entries; and 2) evaluate and explain differences in 
root growth characteristics of selected clonal industry standard and OSU experimental 
bermudagrass entries. This research was conducted at the Oklahoma State University 
Turfgrass Research Center in Stillwater, OK. Twenty-three clonal bermudagrasses were 
used in the field study for objective 1 while eight clonal bermudagrasses were used in the 
greenhouse study for objective 2. 
 
Findings and Conclusions:   
 
Based on the overall results from the field study, the hypothesis that were differences in 
bermudagrass entries for their field drought performance was accepted. At the 0% ET 
irrigation level, the OSU experimental bermudagrasses that performed lower than 
Celebration but better than all other entries were #2, #12, #16, #24, and #27. At the 33% 
ET irrigation level, Celebration, #2, #12, and #27 performed better than all other 
bermudagrass entries. Based on the overall results from the greenhouse study, the 
hypothesis that there were differences in bermudagrass entries for their root growth 
characteristics was accepted. Celebration, OKC 1119, and #2 have great genetic potential 
for improved drought performance if proper root growth occurs during the year before a 
drought event.  Tifsport, Patriot, and #12 did not perform as well as Celebration, OKC 
1119, and #2 in this study and thus may not have great genetic potential for improved 
drought performance due to rooting characteristics. 
 


	By
	Submitted to the Faculty of the
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	CHAPTER I
	INTRODUCTION
	CHAPTER II
	Drought Performance of Clonal Bermudagrass Cultivars and Experimental Selections in the Transition Zone
	Bishow P. Poudel, Justin Q. Moss1, Dennis L. Martin, and Greg E. Bell
	Department of Horticulture and Landscape Architecture, Oklahoma State University, 358 Ag Hall, Stillwater, OK 74078
	Yanqi Wu
	Department of Plant and Soil Sciences, Oklahoma State University, 368 Ag Hall, Stillwater, OK 74078
	1To whom reprint requests should be addressed. Email address: mossjq@okstate.edu
	CHAPTER III
	Differences in Root Growth Characteristics of Eight Clonally Propagated Bermudagrass Cultivars and Experimental Genotypes
	Bishow P. Poudel, Justin Q. Moss1, Dennis L. Martin, and Greg E. Bell
	Department of Horticulture and Landscape Architecture, Oklahoma State University, 358 Ag Hall, Stillwater, OK 74078
	Yanqi Wu
	Department of Plant and Soil Sciences, Oklahoma State University, 368 Ag Hall, Stillwater, OK 74078
	1To whom reprint requests should be addressed. Email address: mossjq@okstate.edu
	Subject Category: Crop Production: Turf
	Differences in Root Growth Characteristics of Eight Clonally Propagated Bermudagrass Cultivars and Experimental Genotypes
	Additional index words: Cynodon dactylon, drought, root growth, root mass, root length
	The study was conducted at the Oklahoma State University (OSU) Turfgrass Research Center Greenhouse Facility located in Stillwater, OK.  This research was conducted from Feb. to May 2010 (study one) and was repeated from July to Sep 2010 (study two)....
	Growth tubes were made from clear polyethylene tubing (3.5 cm diameter) cut into uniform 120 cm long pieces (Su et al., 2008). Polyvinylchloride (PVC) pipe of 5.08 cm diameter were cut to a uniform 120 cm length to create holding tubes. Holding tubes ...
	Grasses were mowed twice a week at 4 cm height and clippings collected. The clippings were collected in paper envelop, immediately after mowing. Collected clippings shoot dry weight (SDW) was recorded twice a week throughout the study period. The visu...
	The design of the experiment was a randomized complete block (RCBD) with four replications and eight bermudagrass entries. Analysis of variance (ANOVA) was performed using PROC GLM (SAS Institute Inc., Cary, NC). There was no significant date x cultiv...
	Results
	Total root length (TRL)
	There was no significant difference in entries for mean TRL from 0-120 cm (Table 21). For the 0 – 7.5 cm section, mean TRL was highest for # 2 and #17 and was lowest for Celebration, Tifsport, Patriot and #12 (Table 23). For the 7.5 – 15 cm section, m...
	Root surface area (RSA)
	There were no differences in mean RSA from 0 – 120 cm (Table 21). For the 0 – 7.5 cm section, mean RSA was highest for # 2 and #17 and was lowest for Tifsport and Patriot (Table 23). For the 7.5 – 15 cm section, mean RSA was highest for Celebration an...
	Average root diameter (ARD):
	There were differences in ARD from 0- 120 cm where Celebration, OKC 1119, OKC 1134, and #2 had the highest ARD while Tifsport had the lowest ARD (Table 21). For the 0 – 7.5 cm section, mean ARD was highest for OKC 1119, OKC 1134, #2, and #17 and was l...
	Root volume (RV)
	There were differences in RV from 0- 120 cm where Celebration and #2 had the highest RV while Tifsport had the lowest ARD (Table 21). For the 0 – 7.5 cm section, mean RV was highest for #2 and was lowest for Tifsport and Patriot (Table 23). For the 7....
	Shoot dry weight (SDW)
	There were differences in SDW among cultivars where Celebration, #12, and #17 had the highest mean SDW while Tifsport had the lowest mean SDW (Table 22).
	Root dry weigh (RDW)
	There were differences in RDW for the 0 – 120 cm totals where Celebration and #2 had the highest RDW and were not different from each other. Tifsport had the lowest mean RDW, which was lower than Celebration, OKC 1119, OKC 1134, #2, #12, and #17 but w...
	Root shoot ratio (R/S)
	There were differences in R/S for the total 0 – 120 cm where Celebration, OKC 1119 and #2 had the highest R/S while Tifsport, Patriot, and #12 had the lowest R/S.
	Visual turf quality (TQ)
	There were no differences in TQ among the bermudagrass entries at any rating date and all ratings were ≥ 6, the minimum acceptable TQ rating (data not shown).  This is due to the uniform maintenance conditions given to each bermudagrass growth tube d...
	For all entries 85 % to 90 % of TRL was located in upper 30 cm of soil. Similar results were observed for bermudagrasses in a greenhouse study conducted by Qian et al. (1997). Greater root mass within the upper 30 cm profile is desirable to extract wa...
	Based on the results of this study, Celebration, OKC 1119, and #2 have good genetic potential for improved drought performance through extensive rooting and high root/shoot ratios.  Tifsport, Patriot, and #12 did not perform as well as Celebration, OK...
	VITA
	Bishow Prakash Poudel
	Candidate for the Degree of
	Thesis:    TESTING OF CLONAL BERMUDAGRASS CULTIVARS AND EXPERIMENTAL GENOTYPES FOR DIFFERENCES IN DROUGHT PERFORMANCE
	Major Field:  Horticulture

