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ABSTRACT 

Many researchers have recognized the importance of unsaturated soil mechanics 

and studies on unsaturated soils are at a new pace within the current research community. 

Unsaturated soils are three-phase porous media consisting of a solid skeleton, pore liquid 

and pore gas. The overall behavior of unsaturated soils is influenced not only by these 

three bulk phases, but also by the interfaces between them. Therefore, a rigorous solution 

for the behavior of unsaturated soils requires the consideration of the interactions 

between the bulk phases and the interfaces at the governing equation level. In a typical 

finite element solution of these governing equations, the relative accelerations of the 

fluids are neglected and the equations are solved by considering the solid skeleton 

displacement, pore water pressure and pore air pressure as the nodal unknowns. The 

influence of the accelerations of the pore liquid and pore gas pressures has not been 

carefully studied. However, for certain high frequency problems, such as blast loading of 

unsaturated soils, the effect of relative accelerations of the fluids may be significant. The 

consideration of the relative accelerations leads to the full finite element formulation for 

unsaturated soils, where solid displacement, liquid displacement, gas displacement, pore 

water pressure and pore gas pressure, all have to be considered as the nodal unknowns.  

Solving the full formulation using finite element techniques requires tremendous 

computational capacity because of increased number of nodal unknowns and the 

nonlinear behavior of the soil skeleton. A single processor machine will not be adequate 

to solve real world problems. In such cases, the problem domain can be divided and 

distributed among a number of processors and solved. Writing finite element computer 

codes to run on multiple processors, however, requires a significant amount of computer 
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science knowledge that will not be readily available to a geotechnical engineer. A 

framework-based finite element technique can be used to simplify this effort. The 

framework provides the programming foundation upon which the core finite element 

algorithms can run in parallel using much of the existing code of the framework. The 

framework frees the finite element code developers from dealing with the computer 

science aspects of parallel computing as well as providing many common services 

necessary to such computations. A new high performance computational tool has been 

developed to analyze the static and dynamic behavior of saturated and unsaturated soils. 

The new tool is developed using a parallel finite element framework from TeraScale, 

LLC and is named TeraDysac. The TeraDysac is capable of running on multiple 

processors. The current version has been successfully tested on a two-processor machine. 

The performance of the uniform gradient element formulation is studied by 

simulating settlement of a footing and dynamic behavior of a saturated clay embankment 

and a level ground. Significant hourglassing is seen for the footing problem when the 

uniform gradient elements were used without any hourglass control. The hourglass modes 

triggered by the stress gradients underneath the footing were found to propagate in all 

directions. The proposed hourglass control scheme is shown to be effective in controlling 

the excitation of hourglass modes. It is also found that for the dynamic problems that 

involves only body forces very little hourglassing was seen even when uniform gradient 

elements were used without any hourglass controls. The solid stiffness and solid damping 

hourglass control parameters show minor impact on displacement and pore pressure time 

histories. On the other hand, the fluid stiffness parameter shows significant influence on 

the displacement and pore pressure time histories. From the parametric study on the fluid 
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stiffness hourglass control parameter, it is recommended that this parameter should be 

less than 0.1%. 

In the finite element simulation of dynamics of porous media, governing equations 

are derived and solved assuming that the material undergoes small deformation. 

However, liquefaction induced ground deformation and wetting induced slope failures 

are a few examples of large deformation problems. Therefore, large deformation analysis 

is required to correctly predict the behavior of porous media. A large deformation theory 

is developed for the saturated and unsaturated porous media and implemented within the 

TeraScale framework. The dynamic behavior of saturated and unsaturated porous media 

is studied using both small and large deformation analyses. The analyses show that the 

settlements are over predicted by small deformation analysis compared to the large 

deformation analysis. 

The full formulation and a reduced formulation for unsaturated soils are 

implemented within the TeraScale framework. A centrifuge shaking experiment on 

unsaturated low permeable Minco Silt is simulated using both full and reduced 

formulations. It has been found that the reduced formulation predicts the dynamic 

response of the unsaturated Minco Silt embankment reasonably well. The reduced 

formulation is computationally very efficient. Therefore, it can be concluded that the 

reduced formulation is sufficient to predict the dynamic behavior of unsaturated Minco 

Silt. 
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1 INTRODUCTION 

1.1 General 

Most engineering structures are ultimately supported on the earth’s surface that 

may consist of fully saturated soil, unsaturated soil and fully dry soil. One category of 

soil can become another due to seasonal variations. The mechanical behavior of each 

category of soil is different. The behavior of saturated and dry soils has been well studied 

in the past several decades. The study of unsaturated soil behavior is, however, a 

relatively new field. Geotechnical engineering structures designed with the knowledge of 

saturated and/or dry soils is inadequate to predict the performance of structures under 

unsaturated soil conditions. Therefore, construction of safe and economical structures 

requires extensive study of unsaturated soil behavior. 

Describing any real world problem in terms of mathematical equations for 

numerical modeling requires a clear understanding of the physical phenomena. Our 

material of interest in this study is porous media, which consists of solid particles, and 

voids in between solid particles. The voids can be filled completely or partially with a 

liquid or a gas. In the case of a fully saturated soil, the voids are completely filled with a 

liquid. Hence, there will be two bulk phases: solid and liquid and one interface: solid-

liquid interface. If the voids are completely filled with air, it is called a dry soil that has 

again two bulk phases: solid and air and one interface: solid-air interface. If the voids are 
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partly filled with a liquid and the rest with a gas, it is called an unsaturated soil which has 

three bulk phases: solid, liquid and gas and three interfaces: solid-liquid, liquid-gas and 

gas-solid. The unsaturated soil is the most difficult soil to study because of the additional 

bulk phase and the interfaces. It has also been found that the liquid pressure in the 

unsaturated soil system is always negative. The mechanical behavior of the unsaturated 

soil is governed not only by the behavior of the bulk phases and interfaces but also by the 

interaction between bulk phases and interfaces (Fredlund and Rahardjo, 1993). The 

behavior of bulk phases and interfaces can vary when the amount of liquid (degree of 

saturation) present within the voids vary. 

1.2 Mathematical Description and Solution Procedure 

The mathematical equations governing the behavior of the unsaturated soil system 

are derived based on physical laws. The balance of mass, balance of linear momentum, 

balance of angular momentum and the first and second laws of thermodynamics are used 

to derive the mathematical equations (for example, Wei, 2001). The mathematical 

equations will become more and more complicated when the true behavior has to be 

modeled. Difficulties arise when it comes to finding the solution of these complicated 

equations for a real word problem. In such cases, it is common to simplify the equations 

by neglecting less important terms and also terms that cause difficulties in finding the 

solution. In the case of unsaturated soils, the acceleration terms of the liquid and gas 

phases have been neglected in the solution procedure. Neglecting these terms from the 

governing equations will alter the actual physical problem to be solved. These 

acceleration terms not only contribute to inertial forces in dynamic problems, such as 

earthquake loading and blast loading of unsaturated soils but also cause the fluid phases 
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to move. Flow of liquid and gas phases changes the degree of saturation of the soil. When 

the degree of saturation changes, the behavior of unsaturated soil will change. Therefore, 

investigation of the effects of these terms on the overall behavior of the unsaturated soils 

is essential for safe and economical design of geotecnical engineering structures.  

1.3 Efficient Computational Techniques for the Finite Element 
Method 

Closed form solution to the nonlinear equations governing the dynamic behavior 

of porous media is impossible to find for a real problem. Therefore, numerical techniques 

such as the finite element method are widely used to solve the governing equations. In the 

finite element method, the problem domain is divided into finite number of small 

elements and the solutions are approximated within these elements. The number of finite 

elements increases with the size of the problem and the required accuracy. The 

computational cost will increase with the number of elements. Therefore, it is important 

to find a way to increase the efficiency of the computations in the finite element method 

so that large problems can be analyzed with reasonable accuracy. 

The Gauss quadrature integration procedure is commonly used to evaluate the 

element matrices and vectors associated with the finite element method. In practice, 

evaluating the elemental integrands (e.g., computing constitutive parameters at all the 

Gauss quadrature points) can be a substantial component of the computational effort in 

performing a finite element approximation. The constitutive calculations become more 

costly when nonlinear elastoplastic constitutive models are used. Therefore, a lower order 

numerical integration scheme is desirable. For example, a one-point integration can be 

used to increase the efficiency of the computation. This approach has been successfully 
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used in solid and structural mechanics together with the hourglass control algorithm 

(Flanagan and Belytschko, 1981). However, this approach has not been applied in the 

fully coupled dynamic analysis of saturated or unsaturated porous media. Therefore, the 

applicability and the efficiency of single-point integration scheme in the numerical 

modeling of geotechnical engineering structures will be investigated in order to increase 

the computational effeciency. 

1.4 Large Deformation Analysis in Numerical Modeling 

The amount of strain and deformation experienced by geotechnical engineering 

structures vary depending on the type of load, soil, environmental conditions, etc. 

Liquefaction induced slope failures due to earthquake loadings, and soil deformation 

during pile driving and cone penetration tests are a few examples of large deformation 

problems in geotechnical engineering. Numerical modeling of these problems has been 

an important research area. Small strain and small deformation theories have been 

commonly used in such numerical modeling. However, predicting the soil behavior 

accurately requires special considerations associated with large deformations. Large 

deformation theories have been developed for saturated soils (Kiousis et al., 1988; 

Manzari, 2004) and implemented using the finite element method. A large deformation 

theory for unsaturated soils will be derived and implemented. 

1.5 High-Performance Computational Framework 

Investigating the dynamic behavior of saturated and unsaturated soils through 

finite element modeling requires a significant computational capacity due to the 

complicated and nonlinear nature of the soil behavior. The behavior of unsaturated soils 

is more complicated compared to the saturated soils because of the additional bulk phase 
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and the interfaces. Compared to the saturated soils, the computational effort required to 

solve an unsaturated soil problem is very high, e.g., 16 degrees of freedom per element 

for saturated soils and 24 degrees of freedom per element for unsaturated soils for 4-node 

quadrilateral elements. It has been observed that solving a reasonable size problem with a 

single processor in a personal computer takes weeks and sometimes months. This 

difficulty can be overcome by parallel computational techniques where the problem 

domain is divided and distributed over a number of processors and solved. Then, the 

computational time can be reduced drastically. Even though the parallel computing 

technology is widely used to solve such problems, the knowledge of developing parallel 

computing codes is not easy for civil engineering researchers because of the required in-

depth knowledge of computer science techniques. Developing finite element computer 

codes with parallel capabilities is a very difficult task for civil engineers. 

A framework-based finite element technique can be used to simplify this effort. 

The framework provides the programming foundation upon which the core finite element 

algorithms can run in parallel using much of its existing code. The framework frees the 

finite element code developers from dealing with the computer science aspects of parallel 

computing as well as providing many common services necessary to such computations. 

A new high performance computational tool has been developed based upon the 

TeraScale framework (TeraScale, 2001) to analyze the static and dynamic behavior of 

saturated and unsaturated soils. 

In this research, the governing equations for the dynamics of unsaturated soils 

incorporating large deformation theories are derived. The governing equations for 

saturated and unsaturated soils incorporating small and large deformation theories are 
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implemented within the TeraScale finite element framework. The resulting computer 

code is named TeraDysac. The applicability and efficiency of the uniform gradient 

(single point integration) element together with an hourglass control scheme for the fully 

coupled analysis of porous media is investigated. The effects of accelerations of the fluid 

phases in the overall dynamic behavior of unsaturated soil are also investigated. The 

resulting computer code is named TeraDysac. 

1.6 Objectives 

Given below is a list of objectives of this dissertation. 

1. To implement the fully coupled governing equations for the dynamics of saturated 

porous media within the TeraScale framework and develop a high performance 

computational tool for analyzing large problems. 

2. To investigate the performance of the uniform gradient method of integrating the 

element matrices and vectors in the dynamic analysis of porous media. 

3. To develop a theoretical framework for large deformation analysis of saturated and 

unsaturated soil and implement it within the TeraScale framework and investigate the 

importance of large deformation analysis in the simulation of dynamics of porous 

media. 

4. To investigate the influence of accelerations of the fluid phases in the overall 

dynamic behavior of unsaturated soils. 

5. To implement the full formulation for unsaturated, which considers the pressure fields 

also as primary unknowns together with displacement fields, and investigate the 
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advantages of full formulation over the usual displacement based formulation that 

eliminates the pressure fields at the governing equation level. 

1.7 Thesis Layout 

This thesis is divided into 10 chapters. Following this introductory chapter, 

Chapter 2 presents the literature review on the topics related to the research program. 

Chapter 3 presents the governing equations and finite element formulations for saturated 

and unsaturated soils. The finite element framework that is used to implement the 

governing equations derived in Chapter 3, is briefly discussed in Chapter 4. The 

numerical model is validated against the experimental results in Chapter 5. The 

applicability of the uniform gradient method of evaluating the element matrices in the 

simulation of dynamic behavior of porous media is discussed in Chapter 6. A theoretical 

framework for large deformation analysis of porous media is given in Chapter 7. The 

importance of large deformation analysis over the small deformation analysis is also 

discussed in Chapter 7. The finite element model incorporating the large deformation 

theories is validated in Chapter 8. The importance of acceleration terms in the overall 

behavior of unsaturated soils is also discussed in Chapter 8. Conclusions drawn from this 

study and recommendations and suggestions for future work are presented in Chapter 9. 

Cited previous work related to this study is listed in Chapter 10. 
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2 LITERATURE REVIEW 

2.1 Porous Media 

Unsaturated porous media consists of three bulk phases: solid, liquid and gas as 

shown in Fig. 2.1. In addition to these three bulk phases there exists three interfaces: 

solid-liquid interface, liquid-gas interface and gas-solid interface as shown in Fig. 2.2. On 

the other hand, saturated porous media, a special case of unsaturated porous media, 

consists of two bulk phases: solid and liquid, and one interface: solid-liquid interface. 

Because of the large number of bulk phases and interfaces, the study of unsaturated 

porous media becomes complicated. Among the three interfaces, the liquid-gas interface, 

which is also known as contractile skin and characterized by surface tension, plays an 

important roll in the behavior of an unsaturated soil system (Fredlund and Rahardjo, 

1993). Wei (2001) and Wei and Muraleetharan (2002a, 2002b) have shown that the solid-

gas and solid-liquid interfaces can also affect the whole behavior of the unsaturated soil 

system to a certain level. The overall mechanical behavior of unsaturated porous media is 

influenced not only by the behavior of bulk phases and interfaces but also by the 

interaction among various bulk phases and interfaces. Therefore, coupling the interaction 

of the bulk phases and interfaces at the governing equation level is important for correctly 

characterizing the unsaturated soil behavior. 
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Figure 2.1: Unsaturated soil system 
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Figure 2.2: Interfaces and interface junctions 

There are many approaches used in the past to describe the unsaturated soil system 

and apply the physical laws to derive the mathematical equations describing its behavior. 

Because of the complexities involved with unsaturated soils, initial attempts to describe 

the physical processes have relied on descriptive models that are more or less intuitive or 

empirical in nature (Gouse, 1966; Butterworh and Hewitt, 1979). The formulations of 

these models usually begins with a physical description of the system in which each 

phase is considered to be separate and occupying a portion of the space. However, the 

final set of field equations are written in terms of material properties for each phase that 

are continuous and defined over the whole space. The second approach used to develop 

governing equations for an unsaturated soil system is the continuum theory of mixtures 
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(Truesdell and Toupin, 1960).  In this approach, it is assumed that all the existing phases 

are simultaneously present everywhere and occupy the whole domain. Continuous field 

variables are defined to account for the behavior of each phase and for the interaction 

among individual phases. The balance equations, which involve these variables, are 

postulated as an extension of the classical single-phase continuum equations. The third 

approach used to derive the multi-phase equations employs the technique of local volume 

averaging (Hassanizadeh and Gray, 1979). In this approach the system is assumed to 

consists, as in reality, of interpenetrating continua, each phase occupying only a part of 

the domain and separated by highly irregular interfaces. The usual field variables, 

associated with each phase and these variables, are continuous within each phase, but 

discontinuous over the entire domain. Muraleetharan and Wei (1999a), Wei (2001), and 

Wei and Muraleetharan (2002a, 2002b) developed a set of governing equations to 

describe the behavior of unsaturated soils using what they called the Theory of Mixtures 

with Interfaces (TMI). The TMI is based on the concept of local volume averaging and it 

gives explicit consideration to the interaction between various interfaces. 

2.2 Effective Stress Concept and Stress State Variables in 
Unsaturated Porous Media 

Terzaghi (1936) proposed the concept of ‘effective stress’ to describe the 

consolidation process of fully saturated porous media. The Terzaghi’s effective stress 

equation is expressed by the following equation in terms of soil mechanics sign 

convention.  

lpIσσ −=′   (2.1)   
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where σ′  is effective stress tensor, σ  is total stress tensor, I  is identity tensor and lp  is 

the liquid pressure. 

The proposed effective stress equation is independent of the soil properties and the 

validity of the effective stress as a stress state variable for saturated soils has been well 

accepted and experimentally verified by many researchers (Bishop and Eldin, 1950; 

Skempton, 1961).  

The effective stress concept, similar to saturated porous media, was extended to 

unsaturated porous media using a single stress variable, but considering the unsaturated 

medium as a three-phase system (Biot, 1941; Bishop, 1959; Aitchison, 1965; Aitchison et 

al., 1973). Among those various propositions, Bishop’s equation (Eq. 2.2) gained 

widespread reference. 

( ) ( )IIσσ lgg ppp −+−=′ χ  (2.2)   

where gp   is the gas pressure and χ  is a parameter related to the degree of saturation of 

the soil. The magnitude of the χ  parameter is unity for a saturated soil and zero for a dry 

soil. Jennings and Burland (1962) showed that Bishop’s equation did not provide an 

adequate relationship between volume change and effective stress for most soils, 

particularly those below a critical degree of saturation.   

Matyas and Radhakrishna (1968) introduced the concept of state parameters in 

describing the volume change behavior of unsaturated soils. Volume change was 

presented as a three-dimensional surface with respect to the state parameters, ( )gpIσ −  

and ( )lg pp − . Barden et al., (1969) also suggested that the volume change of 

unsaturated soils be analyzed in terms of two stress-state variables, i.e. ( )gpIσ −  and 
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( )lg pp − . Fredlund and Morgenstern (1977) suggested that any of the three 

combinations: net normal stress ( )gpIσ − , matric suction ( )lg pp − , and ( )lpIσ −  can 

be used to analyze unsaturated soils. Fredlund (1978) suggested that net stress ( )gpIσ −  

and matric suction ( )lg pp −  is the most advantageous combinations. These two stress 

state variables have gained widespread reference in the current state of the art in 

unsaturated soil mechanics and also will be used in this dissertation. 

Any stress measure used in an analysis should have a corresponding conjugate 

strain measure. Using TMI and considering energy dissipation mechanisms within an 

unsaturated soil, Muraleetharan et al., (2005), Wei (2001) and Wei and Muraleetharan 

(2002a, 2002b) showed what they called a pseudo effective stress (Eq. 2.3) is conjugated 

with the plastic strains of the solid skeleton. 

( ) ( )IIσσ lglg ppnp −+−=′  (2.3) 

where ln  is the volume fraction of liquid (volume of liquid/total volume). They also 

showed that the matric suction ( )lg pp −  is conjugated with the rate of change plastic ln . 

They proposed that the pseudo effective stress and matric suction be used as the stress 

state variables. This approach seems promising as a general framework to develop 

elastoplastic constitutive models. 

2.3 Relationship Between Matric Suction and Water Content 

As matric suction is one of the two stress state variables used for characterizing 

the unsaturated soil behavior, it has to be understood very well. The matric suction is 

directly related to the amount of water present in the unsaturated soil. The Soil Water 

Characteristic Curve (SWCC), is the relationship between the amount of water in the 
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unsaturated soil system and the matric suction. SWCC contains important information 

concerning the amount of water contained in the pores for a given suction, the pore size 

distribution and stress state of the soil water. Numerical modeling of unsaturated soil 

behavior requires a mathematical description of SWCC. Many researchers (Gardner, 

1958; Brooks and Corey, 1964; van Genuchten, 1980; Fredlund and Xing, 1994) have 

worked on establishing the SWCC for different soils and have approximated the 

experimental results with mathematical equations. 

Brooks and Corey (1964) equation (Eq. 2.4) is one of the first models proposed 

for the SWCC, and still remains a popular model. The shape of the SWCC is assumed to 

be an exponentially decreasing function for soil suctions greater than the air entry value 

and constant for suctions less than the air entry value. The equation uses two fitting 

parameters: a  and n. The parameter a  is related to the air entry value of the soil and 

parameter n  is related to the pore size distribution index in the unsaturated soil. 
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where ψ  is matric suction and Θ  is normalized water content given by  
rs
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−
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where θ  is water content, sθ  is saturated water content and rθ  is residual water content . 

The advantage of this model is that both the parameters have physical meanings and the 

effect of each parameter can readily be seen. The downside of the Brooks-Corey’s model 

is that it does not provide a continuous mathematical function for the entire range of 

suction. The degree of saturation can vary anywhere from zero to 100% during dynamic 
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analysis of unsaturated soils. The abrupt change in the curve at the value of a  can give 

rise to numerical instability when modeling unsaturated soil behavior. 

In 1980, van Genuchten proposed another model for SWCC. The model is a 

continuous function over the entire range of suction. The equation uses three fitting 

parameters; namely, a , n  and m . The parameter a  is related to the inverse of the air 

entry value; the parameter n  is related to the pore size distribution of the soil and the 

parameter m  is related to the asymmetry of the SWCC. The mathematical form of the 

van Genuchten model is given by: 

( )[ ]mnaψ+
=Θ

1

1  (2.5)   

Fredlund and Xing (1994) also proposed a three-parameter model (Eq. 2.6) for 

SWCC. Their equation is somewhat similar to that of van Genuchten (1980) equation. 
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The advantages of the Fredlund and Xing (1994) model are as follows: more flexibility to 

fit a wide variety of data sets; the soil parameters are meaningful; the effect of one 

parameter can be distinguished from the effect of other two parameters.  It has been also 

observed that the Fredlund and Xing (1994) model required fewer iterations to converge 

to the best fit parameters than the van Genuchten (1980) three parameter model (Fredlund 

and Xing, 1994). 
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2.4 Flow of Fluids in Unsaturated Soils 

The coefficient of permeabilities of liquid and gas are two of the engineering soil 

properties that can vary over a wide range. For example, it is not uncommon for the 

coefficient of permeability of liquid in a given soil to vary as much as four orders of 

magnitude as the degree of saturation changes. This wide range of variation in coefficient 

of permeability has proven to be a major obstacle in analyzing the flow of fluids in 

unsaturated porous media. The coefficient of permeabilities for a given unsaturated soil 

are primarily determined by the amount of each fluid in the system and can be predicted 

from the soil water characteristic curve. van Genuchten (1980)  and Fredlund and Xing 

(1994) have also proposed empirical equations for coefficient of permeabilities of 

unsaturated soils. 

2.5 Constitutive Models for Unsaturated Soils 

If we want to predict the behavior of structures made of soils accurately under 

complex loading conditions, it is important to model the stress-strain behavior of the soil 

skeleton realistically. An elastic material behavior assumption is used in many analyses. 

This is mainly because of the computational efficiency. However, elastic behavior 

assumption is a very poor assumption for soils under most loading conditions.  

Alonso et al., (1990) proposed an elastoplastic constitutive model for describing 

the stress-strain behavior of unsaturated soils. This model is formulated within the 

framework of hardening plasticity using two independent stress state variables: net stress 

and matric suction. The model is able to represent, in a consistent and unified manner, 

many of the fundamental features of the behavior of unsaturated soil. However, this 

model does not represent the irreversible nature of expansion in swelling clays, the 
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decrease in collapse potential when confining stress becomes larger than a critical or 

threshold value, and the non-linear characteristics of the strength envelope. 

Wheeler and Sivakumar (1995) modified Alonso et al.,’s model to include an 

isotropic normal compression hyperline, representing soil states when isotropically 

loaded to virgin condition, a critical state hyperline, representing soil state when sheared 

to ultimate or critical conditions, and a section of the state boundary hypersurface, joining 

the critical state and normal compression hyperlines. This modified model is capable of 

predicting the pattern of swelling and collapse observed during wetting, the elasto-plastic 

compression behavior during isotropic loading and the increase in shear strength with 

suction. One major uncertainty within this model is the nature of the relationship 

describing the elastoplastic variation of the specific water volume. Knowledge of the 

relationships describing the variation of specific volume is necessary in order to predict 

the water movement during drained loading. A description of variation of specific 

volume is also important for undrained loading, when the soil response is entirely 

dependent on the equations governing the specific volume. 

Wheeler (1996) extended the previously proposed model to include the 

relationships describing the variation of specific volume that defines the volume of water 

within a given element of soil. The proposed form of the elastoplastic variation of 

specific water volume was based on the consideration of the soil fabric, i.e., there exists a 

saturated microstructure within individual clay packets and an unsaturated macrostructure 

of relatively large inter-packets of voids. The coupling of specific water volume within 

the elastoplastic model was achieved with two additional parameters. 
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Muraleetharan and Nedunuri (1998) developed an elastoplastic constitutive model 

for unsaturated soils incorporating the key concepts proposed by Alonso et al., (1990), 

Wheeler and Sivakumar (1995) and Wheeler (1996), but using a bounding surface model 

as the base model, i.e., at zero suction. This unsaturated model was also developed 

considering the net stress and matric suction as the stress state variables and is capable of 

predicting the monotonic and cyclic behavior of unsaturated soils. 

The base bounding surface model used by Muraleetharan and Nedunuri (1998) 

was originally developed by Dafalias and Herrmann (1982) for predicting the behavior of 

saturated clays and modified by various other researchers (Dafalias, 1986; Dafalias and 

Herrmann, 1986; Ananadarajah and Dafalias, 1986). The prominent feature of the 

bounding surface concept is that plastic deformations can occur for stress states inside the 

yield surface. In classical plasticity theory, no plastic deformations are allowed inside the 

yield surface. The classical yield surface formulation is transformed into a bounding 

surface formulation based on the concept that for any stress point inside the surface, a 

unique “image” point can be defined on the surface by means of a radial mapping rule. 

The value of the plastic modulus depends on the distance between the actual stress point 

and its “image” on the bounding surface. The gradient of the bounding surface is used to 

define the direction of the plastic loading for the actual stress point. 

Since the base model used by Muraleetharan and Nedunuri (1998) is specifically 

developed for clays, their unsaturated soil model can be expected to make better 

predictions for unsaturated clays compared to unsaturated sands and silts. 
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2.6 Finite Element Modeling of Porous Media 

The governing equations for static and dynamic problems involve nonlinear 

differential equations. Finding closed form solutions for these equations is not possible 

for most of the geotechnical engineering problems. In such cases numerical methods such 

as the Finite Element Method (FEM) are widely used to find an approximate solution for 

the problem. Finite Element procedures are well developed for many engineering 

problems (for example, Zienkiewicz, 1977). The important steps involved in the finite 

element modeling of porous media are discussed in the subsequent sections. 

2.6.1 Spatial Discretization of Field Equations 

In the solution procedure of equations governing the dynamics of porous media 

using a finite element technique, a decision has to be made on what field variables are 

used as primary unknowns. In the case of a saturated porous media, the final set of fully 

coupled governing equations consists of solid displacement, u , liquid displacement, U , 

and pore water pressure, p  (Zienkiewicz and Shiomi, 1984). One can use all three 

variables as the primary unknowns in the finite element solution. The full formulation 

( p−− Uu ) is the most general form and can be applied to saturated porous media filled 

with compressible or incompressible fluid. However, as far as the author knows, there is 

no published literature available on the solution of the full formulation. If the fluid is 

assumed to be compressible, the pore water pressure can be eliminated at the governing 

equation level or at element level and the final set of equations will have solid 

displacement and fluid displacement as nodal variables. This reduced formulation is 

called Uu −  formulation and was used by Zienkiewicz and Shiomi (1984) and 

Muraleetharan et al., (1994). If the fluid is assumed to be incompressible, then the full 
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formulation or a penalty formulation has to be used and pore pressure should be 

eliminated at equation level (Zienkiewicz and Shiomi, 1984). In quasi-static or slow 

motion phenomena, which are typical of consolidation behavior of soils, all the 

acceleration terms in the equation of motion become negligible and can be confidently 

omitted. The simplified equations can be expressed in terms of solid displacement and 

pore water pressure. This formulation is called the p−u  formulation and is used 

especially in the numerical simulation of consolidation phenomena (for example, 

Herrmann and Mish, 1983). If only fluid acceleration terms are neglected, a p−u  

formulation for dynamic problems can also be developed that will be applicable for 

medium speed such as such as earthquakes (Zienkiewicz and Shiomi, 1984). 

A similar approach is extended to the finite element simulation of unsaturated 

porous media. There has been only one form of finite element equations solved for the 

dynamics of unsaturated porous media. In this form, the accelerations relative to the solid 

skeleton of the liquid and gas phases are neglected and the equations are solved 

considering solid displacement, liquid pressure and gas pressure as the primary nodal 

unknowns ( gl ppu  formulation). The gl ppu  formulation is commonly used in 

computational geomechanics (Schrefler et al., 1990; Muraleetharan and Wei, 1999b; Wei 

2001). Four-node quadrilateral elements with continuous bilinear displacement and a 

pressure interpolation function have been used in the gl ppu . This violates the Babuska-

Brezzi conditions that are described in Section 2.6.4, for solvability and convergence. 

The degree of saturation can also be introduced in the formulation and considered as a 

primary nodal unknown (Xikui and Zienkiewicz, 1992). 
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2.6.2 Element Technology for Finite Element Method 

Lower-order elements when applied to incompressible material tend to lock 

volumetrically. In volumetric locking, the displacements are under-predicted by large 

factors. It is not uncommon for the displacement to be an order of magnitude too small 

for otherwise reasonable meshes. Although incompressible materials are quite rare in 

linear stress analysis, many materials behave in a nearly incompressible manner in the 

nonlinear region. For example, the plastic deformation of elastoplastic material shows 

incompressible behavior. The issue of incompressibility is an important problem in the 

simulation of saturated and unsaturated porous media because of the nearly 

incompressible nature of the liquid phase present in these soils. Therefore, the ability to 

treat incompressible materials effectively is important in the nonlinear finite element 

analysis of porous media. There are two methods commonly employed to eliminate the 

occurrence of volumetric locking in the modeling of incompressible materials and they 

are: 

1. Selective-Reduced integration procedures in which certain terms of the weak 

form are underintegrated. 

2. Multi-field elements in which the pressure or stress and strain fields are also 

considered as independent variables. 

2.6.3 Selective-Reduced Integration 

The concept of selective integration was first employed by Doherty et al., (1969) 

to obtain improved bending behavior in simple four-node elasticity elements. For 

incompressible or nearly incompressible materials, full quadrature of the nodal internal 

forces may cause an element to lock, i.e. the displacements are very small and do not 
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converge, or very slowly converge. The easiest way to circumvent this difficulty is to use 

selective-reduced integration. In selective reduced integration, the volumetric stress is 

under integrated, whereas the remainder of the stress matrix is fully integrated. For this 

purpose, the stress tensor is decomposed into hydrostatic and deviatoric components 

dev
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vol
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The rate-of-deformation is similarly split into dilatational (volumetric) and deviatoric 

components that are defined by 
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where ijD  is the rate of deformation tensor. 

Reduced integration was first devised by Zienkiewicz et al., (1971) to alleviate 

shear locking in plate bending. It saves a great deal of computational cost. For example, 

full integration (full Gauss quadrature) of the stiffness of a 4-node quadrilateral element 

requires four integration points, and for the 8-noded hexahedral element, eight integration 

points. Use of reduced integration only requires the evaluation of all the matrices at one 

point, the element centroid. One-point quadrature thus provides tremendous cost benefits 

in linear and nonlinear analyses. The reduced integration technique also provides the 

added benefit of eliminating spurious constraints in bending and incompressible 

applications, as demonstrated by Malkus and Hughes (1978). 
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Application of selective and reduced integration in the field of soil mechanics has 

lagged behind its common usage in the solid mechanics community. Solving the 

governing equations using finite element techniques involves several integrals, which 

should be evaluated over each element. In the case of the fully coupled analysis of porous 

media, the integrals consist of components of the solid skeleton and pore fluid fields. It 

should be noted here that the compressibility of the pore water in the saturated soils is 

small compared to the actual soil skeleton. Therefore, the problem of volumetric locking 

will arise not only in the calculation of consistent nodal point forces but also in the 

calculation of the fluid stiffness matrix. Typically, in 2-dimensions, a four-point Gauss 

quadrature integration rule is used to evaluate the matrices related to the solid skeleton 

and a single point integration rule is used to evaluate the fluid stiffness matrix. However, 

utilization of four-point quadrature rule to evaluate the solid stiffness matrix requires a 

large computational effort, as discussed before, due to the iterative process involved in 

nonlinear constitutive modeling.  

The reduced (one-point) integration scheme is very useful in nonlinear analysis in 

which the finite element equation is solved by iterative methods, and involves large-scale 

computations. However, a single point integration scheme results in certain deformation 

modes, which are called hourglass modes or zero energy modes. If these modes are not 

controlled, hourglassing can grow without limit and obscure the actual solution.  

Maenchen and Sack (1964) were the first to observe the hourglass modes in finite 

difference analysis. Little thought was given in the finite difference literature as to the 

origin of these hourglass modes. Further investigating along this line, Petschek and 

Hanson (1968) identified that the absence of bilinear terms in the velocity field accounts 
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for the hourglass modes. Belytschko (1974) established this idea in a finite element 

context. A number of techniques have been employed, with varying degrees of success, 

to control hourglassing. These can be divided into two types: 

(1) Artificial viscosity: In this method, nodal forces proportional to and opposing 

a measure of the hourglassing deformation rate are introduced (Maenchen and Sack, 

1964). There is no additional storage required for this method; only a relatively small 

increase in computational effort is required. On the other hand, control is often 

ineffective unless an extremely large viscous constant is used, which can result in 

reduction of the stable time step and distortion of the solution. 

(2) Artificial stiffness: In this method, which is of relatively recent origin, forces 

proportional to and opposing the hourglass deformation itself are used (Flanagan and 

Belytschko, 1981; Belytschko et al., 1983). Some additional storage and about the same 

increase in computational effort as for artificial viscosity are required. Artificial stiffness 

is much more effective than artificial viscosity for hourglass control.  

2.6.4 Mixed Formulation and Babuska-Brezzi Restriction 

Standard displacement-based finite element methods are known to behave poorly 

for nearly incompressible or dilatant/contractant elastoplastic media, exhibiting 

volumetric locking effect and failing to correctly reproduce ultimate loads in limit state 

analyses. Well-known finite elements, which overcome these difficulties, include 

enhanced-assumed strain (EAS) elements (Simo and Rifai, 1990) or high-order mixed 

displacement–pressure formulations (Zienkiwicz and Taylor, 2000). 

Mixed finite element formulations were first discussed by Fraeijs de Veubeke 

(1965) and Herrmann (1965). Herrmann (1965) developed a reduced form of Reissner’s 
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variational principle particularly suited to problems of incompressible and nearly 

incompressible elasticity and, based upon this principle, established the first effective 

finite elements for such cases. Prior to this development many displacement models were 

applied to these problems, and poor behavior was typically observed. The reasons for this 

were not understood at the time. Certain elements derived from Herrmann’s formulation 

also failed. Hughes and Allik (1969) traced this failure to correspondence between mixed 

and displacement models, contained within Fraeijs de Veubeke’s limitation principle 

(Fraeijs de Veubeke, 1965). 

Galerkin Methods applied to nearly incompressible or incompressible material in 

the setting of a mixed finite element method have to fulfill the Ladyzenskaya-Babuska-

Brezzi condition or the much simpler Zienkiewicz-Taylor patch test (Zienkiewicz and 

Taylor, 2000), to achieve unique solvability, convergence and robustness (Brezzi and 

Fortin, 1991). This imposes severe restrictions on the choice of the solution spaces for the 

unknowns. If these conditions are not satisfied the solution will show significant 

oscillations, rendering it useless. This prohibits the use of convenient elements that 

employ equal order shape functions for both, the displacements and the pressure, i.e., the 

four-node quadrilateral element with continuous bilinear displacements and pressure 

fields. 

The commonly used mixed elements with discontinuous pressure and continuous 

pressure elements are shown in Figs. 2.3 and 2.4. The four-node quadrilateral element is 

commonly used in computational geomechnaics to achieve computational efficiency. If 

the pressure fields have to be used together with the displacement field, the pressure field 

has to be discontinuous as shown in Fig. 2.3(a) to satisfy the Babuska-Brezzi condition. 
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Use of continuous bilinear pressure approximation in the four-node quadrilateral element 

(Fig. 2.4(a)) will violate the Babuska-Brezzi condition. However, the bilinear 

approximation for pressure and displacement fields has been used in the simulation of 

unsaturated soils for the sake of simplicity (Schrefler and Simoni, 1990; Wei, 2001). 

(a) (c)(b)(a) (c)(b)  
Figure 2.3: Discontinuous pressure elements 

(c)(b)(a) (c)(b)(a)  
Displacement nodes Pressure nodesDisplacement nodesDisplacement nodes Pressure nodesPressure nodes  

Figure 2.4: Continuous pressure field elements 

2.6.5 Pressure Oscillation in Reduced and Mixed Formulations 

The pressure field in the reduced and selective integration penalty function 

formulation is to be viewed as discontinuous from element to element. In fact, all 

displacement derivatives for C0 isoparametric elements are, in general, discontinuous 

across element boundaries. Thus, for plotting purpose, it is desirable to employ a 

smoothing procedure, which redefines the field under consideration in terms of the 

displacement shape functions. 

With specific reference to the pressure, there is at least one other reason for 

employing a smoothing procedure. It was mentioned earlier that, in certain situations, 
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discontinuous-pressure; mixed-method finite elements exhibit a rank-deficiency in the 

assembled pressure equations. By the equivalence theorem, problems are also to be 

expected with the pressure field in the penalty function formulation. These problems 

typically manifest themselves as pressure oscillations. For example, if four-node, 

quadrilateral elements are employed in a square mesh, with an even number of square 

elements in each direction, subjected to all velocity boundary conditions, then a 

checkboard pressure oscillation is produced. Despite the pressure oscillations, the 

velocity field remains acceptable. 

0>p

0<p

0>p

0<p

 

Figure 2.5: Checker-boarding mode, a consequence of pressure instability 

2.7 Finite Deformation Analysis in Porous Media 

Nonlinear response of geotechnical engineering structures typically results from 

plastic yielding and finite deformation of the solid skeleton. There are many classical 

geotechnical applications where nonlinear effects due to these two factors could critically 

influence the outcome of a numerical prediction. The large movement of slopes due to 

wetting and/or dynamic loading, collapse of embankments, lateral moments of level 

ground and tilting of structures due to earthquake loading, and movement of soil during 

cone and pile penetration are some of the examples where soils undergo finite 

deformations.  The impact of finite deformation and elastoplastic response is most 
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evident in soft clays where movements develop with time due to consolidation, a 

phenomenon that involves transient interaction between the solid and fluid phases of the 

solid-fluid mixture. 

In the development of theories for finite deformation analysis of elastoplastic 

materials, the decomposition of total strain is an important issue. The multiplicative 

decomposition and additive decomposition are equally used (Taylor and Becker, 1983; 

Simo and Hughes, 1986). In the multiplicative decomposition method, the deformation 

gradient, F , is decomposed into an elastic part, eF , and a plastic part, pF  as shown in 

Eq.2.7 and Fig. 2.6 (Simo and Hughes, 1986). This method completely circumvents the 

rate issue in finite deformation analysis (Hughes, 1984; Nagtegaal and Jong, 1981), and 

allows for the development of large elastic strains. 

X
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x

Ωt Reference configuration

Intermediate configurationΩi

Current configurationΩ∆+ tt

XX

xx

pF

eF

F

xx

Ωt Reference configuration

Intermediate configurationΩi

Current configurationΩ∆+ tt

 

Figure 2.6: Multiplicative decomposition of deformation gradient 

peFFF =  (2.7) 

In particular, a more recent development (Simo and Taylor, 1991; Simo, 1992) indicates 

that the multiplicative decomposition technique can be exploited to such an extent that 
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the resulting algorithm may inherit all the features of the classical models of infinitesimal 

plasticity. The downside of this method is that a new constitutive equation has to be 

developed. 

In the case of additive decomposition method, the deformation gradient is 

decomposed into elastic and plastic components as shown in Eq. 2.7. This method has 

been successfully used in the simulation of saturated porous media (Manzari, 1996, 2004; 

Kiousis et al., 1988). 

pe FFF +=  (2.8)  

The additive decomposition is valid when the elastic components of the total strain are 

small. This assumption is a reasonable one for modeling saturated and unsaturated soils 

because these soils produce very small elastic strains. Advantage of this method is that 

the existing constitutive models cam be used. 

2.7.1 Objective Stress Rates 

The large deformation analysis with large rotations requires the use of constitutive 

relationships in a form that satisfy the principle of material frame indifference. A 

constitutive equation in rate form typically relates a spatial stress rate to the rate of 

deformation. Consequently, the requirement of material frame indifference for the 

constitutive relation mandates the use of a stress rate, which is objective (co-rotational) 

with respect to arbitrary rigid body translations and rotations. Numerous objective stress 

rates and formulations have been developed which satisfy this requirement. Szabo and 

Balla (1988) studied the advantages and disadvantages of some objective stress rates at 

very large deformations. They identified that most of the stress rates show similar 

behavior when the strain is below 40 percent. Beyond this limit, the Jaumann stress rate 
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and Truesdell stress rate show oscillations. The Green-Naghdi stress rate does not show 

oscillation and this stress rate can be used for very large strains.     

2.8 Framework Based Finite Element Application Development 

The governing equations for static and dynamic problems involve nonlinear 

differential equations. Finding closed form solutions for these equations is not possible 

for most of the geotechnical engineering problems. For these problems numerical 

methods such as the Finite Element Method (FEM) are widely used to find an 

approximate solution. FEM procedures are well developed for many engineering 

problems (Zienkiewicz et al., 1977). Historically, the finite element application developer 

has been an engineer trained in some specific field of mechanics. Typically they spend an 

inordinate portion of their software development time dealing with computer science 

aspects rather than focusing on algorithms and mechanics. A finite element framework 

insulates the engineer from the computer science aspects and lets the engineer 

concentrate on the computational mechanics aspects of the application. 

A finite element framework represents a collection of software components for 

building finite element applications. By collecting these common calculations into a 

single toolkit, the framework enables the application developer to use these components 

in many different applications. Consequently, the amount of work and code required for 

developing and maintaining an application is greatly reduced. In addition to the computer 

science details, the framework may also provide the tools for parallel coding. The major 

coding required for running an analysis on multiple processors is hidden behind the 

framework. The major advantage of using a framework is, that the physics of a problem 

is completely separated from the computer science aspects of solving that problem. This 
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also helps in adding new physics (for example, changing a dynamic soil analysis code to 

predict contaminant transport as well) to an existing code developed within a framework. 

Many researchers are realizing the advantage of using a finite element framework 

for developing applications for simulating geotechnical engineering problems. Two of the 

finite element frameworks currently available are OpenSees (Open System for 

Earthquake Engineering Simulation) and TeraScale (TeraScale, 2001). The TeraScale 

framework is used in this study to develop a high performance computational tool for 

static and dynamic analysis of saturated and unsaturated soils. A detailed description of 

the TeraScale framework is given in Chapter 4. 
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3 MATHEMATICAL MODELING 
OF POROUS MEDIA 

3.1 Introduction 

A model is an idealized and simplified representation of reality by using the 

language of mathematics. Most of the engineering problems can be represented by a set 

of mathematical equations and these equations are derived based on some well known 

physical principles such as conservation of mass, conservation of linear momentum, 

conservation of angular momentum, conservation of energy, and laws of 

thermodynamics. It is important to have a clear understanding of the physical phenomena 

(reality) before starting to develop mathematical equations that govern the physical 

behavior.  The capability of the mathematical models to represent the true behavior 

depends on how clearly the physical problem is understood and whether or not all the 

factors influencing the physical behavior have been identified. It is worthwhile to note at 

this point that even if the actual behavior is very well understood, some of the 

complicated behavior in reality cannot be always represented with mathematical 

equations. In such situations, the true behavior is simplified with reasonable assumptions. 

These assumptions are made based on what features are important to predict a particular 

behavior.  
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In this chapter, general forms of the mathematical equations required for fully 

characterizing the dynamic behavior of saturated and unsaturated soils are derived. Wei 

(2001) also presented similar equations, but the governing equations are derived and 

presented here in forms that are more suitable for various finite element implementations 

of these equations. The general form does not apply any restrictions to the range of 

deformation, i.e., the finite deformation theories can be simply incorporated into these 

equations. The finite element formulations for various forms of these equations are also 

derived in this chapter. 

3.2 Motion of Unsaturated Soils 

The volume spanned by the solid phase is considered as the Representative 

Elementary Volume (R.E.V) and its motion is given by ( )ts ,Xφ . The fluids that occupied 

the voids in the reference configuration may move out of the R.E.V. and occupy a 

volume spanned by a different current configuration. Similarly, the fluids that occupy the 

voids in a different reference configuration can move into the current configuration that is 

being considered (Fig. 3.1). Therefore, there will be net flow across the closed R.E.V. 

This net fluid flow has to be accounted for in deriving the mass balance equations for the 

unsaturated soils. 
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Figure 3.1: Motion of the unsaturated soil system 
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3.3 Governing Equations for Unsaturated Soils 

3.3.1 Mass Balance for the Solid Phase: 

The mass of the solid phase within an arbitrary R.E.V at time tt ∆+  

( ) ( )∫
Ω∆+

Ω=Ω
tt

dnm sss ρ   (3.1) 

where sρ  is the density of the solid phase and sn  is the volume fraction of the solid 

phase and is given by 
Ω
Ω

=
s

sn  where sΩ  is volume of solid phase and Ω  is total 

volume of  R.E.V. Applying the law of conservation of mass to Eq. 3.1 and then the 

Reynold’s transport theorem, the following equation can be obtained. 

( ) ( ) ( ) 0div =+ sssss
s

nn
Dt
D vρρ   (3.2) 

where sv  is the absolute velocity vector of the solid phase and 
Dt
D s

 is the material time 

derivative. The material time derivatives for the other phases will be taken with respect to 

the solid phase. Therefore, the superscript s  in the material derivative will be omitted in 

the subsequent derivations. By taking the partial time derivatives and dividing by sρ , the 

equation reduces to: 

( ) 0s =++ vdivn
Dt

Dn
Dt

Dn s
ss

s

s ρ
ρ

  (3.3) 

The density of the solid phase is a function of the inter particle pressure (compression 

positive) and it can be expressed as: 

( )sss pρρ =   

Dt
Dp

Dp
D

Dt
D s

s

ss ρρ
=   
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Dt
Dp

Dp
D

Dt
D s

s

s

s

s

s

ρ
ρ

ρ
ρ

11
=   

Substituting for the derivative of the density into Eq. 3.3, Eq. 3.4 can be obtained. 

( ) 0div =++ ssss
s

s

nnp
K
n v&&  (3.4) 

The physical meaning of each components of the above equation can be explained 

as follows: the first component represents the change in volume due to the 

compressibility of the solid grains, the second component represents the change in 

porosity of the solid grains and the third component represents the change in volume due 

to the volumetric strain of the solid skeleton. To be consistent with the subsequent 

derivations, the volume fraction of the solid phase is expressed in terms of the total 

porosity of the unsaturated soils as follows. 

1=+ nns  

( )nns −= 1  

Substituting for sn  and sn&  in Eq. 3.4 and neglecting the compressibility of the solid 

particles, Eq. 3.4 can be reduced to: 

( ) ( ) 0div1 =−+− snn v&  (3.5) 

3.3.2 Mass Balance for the Liquid phase: 

Similar to the solid phase, the mass balance equation for the liquid phase can be 

written as follows. 

( ) ( ) 0div =+ lllll
l

nn
Dt
D vρρ  (3.6) 
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where lv  is the velocity vector of the liquid phase and ln  is volume fraction of the liquid 

phase and is given by 

Ω
Ω

=
l

ln  where lΩ  is volume of liquid phase in the R.E.V. 

Since the flow of the liquid phase is described with respect to the solid phase. The 

material time derivatives associated with the liquid phase have to be taken with respect to 

the solid phase. The material time derivative reference can be converted to the solid 

phase by the following equation. 

( ) ( ) ( ) sl
l

Dt
D

Dt
D ,grad v⋅+=  (3.7) 

where sl ,v  is the absolute relative velocity vector of the liquid phase with respect to the 

solid phase. 

Incorporating Eq. 3.7 into Eq. 3.6, the mass balance for the liquid phase in the R.E.V 

spanned by the solid phase is obtained as: 

( ) ( ) ( ) ( ) ( ) 0divgrad1 , =+⋅++ llslll
l

ll
l

l

nnn
Dt
D

Dt
Dn vvρ

ρ
ρ

ρ
 (3.8) 

Expressing the density of the liquid in terms of its pressure (compression positive) under 

the isothermal condition, Eq. 3.8 can be reduced to:  

( ) ( ) ( ) 0grad1div , =⋅+++ slll
l

llll
l

l

nnnp
K
n vv ρ

ρ
&&  (3.9) 

where lK  is the bulk modulus of the liquid phase and is given by
Dt

D
Dt

Dp
K

l

l

l

l

ρ
ρ
11

=  
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3.3.3 Mass Balance for the Gas Phase 

Following a similar procedure, the mass balance equation for the gas phase can be 

written as: 

( ) ( ) ( ) 0grad1div , =⋅+++ sggg
g

gggg
g

g

nnnp
K
n vv ρ

ρ
&&  (3.10)  

where sg ,v  is the relative velocity of the gas phase with respect to the solid phase, and gn  

is the volume fraction of the gas phase and is given by 
Ω

Ω
=

g
gn  

where gΩ  is the volume of the liquid phase in the R.E.V, gK  is the bulk modulus of the 

gas phase and is given by
Dt

D
Dt

Dp
K

g

g

g

g

ρ
ρ
11

=  

The volume fraction of the gas phase can be removed from the mass balance equation by 

substituting in terms of total porosity and volume fraction of the liquid phase as follows. 

lg nnn −=  (3.11) 

Substituting Eq. 3.5 into Eq.3.11, the time derivative of the volume fraction of the gas 

phase can be written as: 

( ) ( ) lsg nnn && −−= vdiv1  (3.12) 

Substituting Eq. 3.11 and 3.12 into Eq.3.10, the mass balance equation for the gas phase 

can be reduced to: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) 0grad1divdiv1 , =⋅+−
−

+−+− sggg
g

lg
g

l
gls nnp

K
nnnnn vvv ρ

ρ
&&  (3.13) 

3.3.4 Constitutive Equation for the Volume Fraction of the Liquid Phase 

The amount of water present in the unsaturated soil is directly related to the matric 

suction through the Soil Water Characteristic Curve (SWCC). The matric suction is one 
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of the two stress state variables controlling the overall behavior of the unsaturated soils. 

The volume fraction of the liquid phase is expressed as a function of the volumetric strain 

of the solid skeleton and the matric suction as follows (Wei, 2001). 

( )Snn v
ll ,ε=  (3.14) 

where S  is the matric suction and is given by lg ppS −=  and vε  is volumetric strain of 

the solid skeleton. 

Then, the time derivative of the volume fraction of the liquid phase is given by: 

( ) ( )lg
l

s

v

l
l pp

S
nnn &&& −

∂
∂

+
∂
∂

= vdiv
ε

 (3.15) 

It is required to calculate the derivative of the volume fraction of the liquid phase with 

respect to the volumetric strain of the solid skeleton and the matric suction to calculate 

the time derivative of the liquid phase.  

Substituting Eq. 3.15 into Eq. 3.9 and Eq. 3.13, the following equations can be derived. 

Liquid phase: 

( ) ( ) ( )

( ) ( ) 0grad1

divdiv
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 (3.16) 

Gas phase: 

( ) ( ) ( ) ( )

( )( ) ( ) 0grad1

divdiv1
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 (3.17)  
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3.3.5 Linear Momentum Balance for the Mixture 

The linear momentum balance for a single phase (α - phase) is given by: 

( ) ( ) gσv αααα
α

αα ρρ n
Dt
Dn += div  (3.18) 

where ασ is the stress tensor acting on the α -phase and g  is the gravitation acceleration 

vector. Expanding Eq. 3.18 and rearranging the components of the momentum balance 

for the unsaturated soil mixture can be written as: 

( ) ( )
( ) gσ

vvvvvvv

ρ

ρρρ

+=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅++⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⋅++

div

gradgrad ,, sgg
g

ggsll
l

ll
s

ss

Dt
Dn

Dt
Dn

Dt
Dn

 (3.19) 

where σ  is the total stress tensor and is given by gls σσσσ ++=  and ρ  is the total 

density of the unsaturated soil and is given by ggllss nnn ρρρρ ++=  

3.3.6 Linear Momentum Balance for the Liquid Phase 

Describing the flow of the liquid and gas phase within the unsaturated soil system 

is important to correctly model the overall behavior. The momentum balance equations 

for these fluids are simply the Darcy’s flow equation for the liquid phase (Eq.3.20). The 

major resistance to the flow of liquid in the unsaturated soil system is the drag force from 

the solid skeleton and the major driving force is the liquid pressure gradient (Fig. 3.2). 
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Figure 3.2: Motion of liquid phase 
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( ) ( ) slllll
l

l p
Dt
D ,div vµgv ⋅−=−+ ρρ  (3.20) 

where lµ  is the viscosity tensor of the liquid phase. 

The soil mechanics sign convention (positive in compression) is applied to the pressure 

term in the above equation. Taking material time derivatives with respect to the solid 

phase, the flow equation (Eq. 3.20) becomes: 

( ) ( ) sllllsll
l

l p
Dt

D ,, divgrad vµgvvv
⋅−=−+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⋅+ ρρ  

The viscosity of the liquid phase is related to the permeability of the liquid phase through 

the following equation. 

ll

l

n k
µ 1

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
 

Substituting for the viscosity tensor and rearranging the components, the following 

equation can be derived for the linear momentum balance for the liquid phase in the 

unsaturated soil system. 

( ) ( ) 0divgrad ,, =−+⋅+⋅+ gv
k

vvv llsl
l

l
slll

l
l pn

Dt
D ρρρ  (3.21) 

3.3.7 Linear Momentum Balance for the Gas Phase 

The major resistance to the flow of gas is the drag force from the solid skeleton 

presence on the path of the gas flow and the major driving force is the gas pressure 

gradient (Fig. 3.3). Following similar procedure as for the liquid phase, the momentum 

balance for the gas phase can be written as shown in Eq. 3.22. 
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Figure 3.3: Motion of gas phase 

( ) ( ) 0divgrad ,, =−+⋅+⋅+ gv
k

vvv ggsg
g

g
sggg

g
g pn

Dt
D ρρρ  (3.22) 

3.3.8 The Convective Terms 

The convective acceleration terms ( ) slll ,grad vv ⋅ρ  and ( ) sggg ,grad vv ⋅ρ  in the 

momentum balance equations of the liquid and gas phases and terms 

( ) ( )slll
l n ,grad1 v⋅ρ

ρ
 and ( ) ( )sggg

g n ,grad1 v⋅ρ
ρ

 in the mass balance equations are 

neglected in the subsequent derivations because of numerical complexities. 

In most past research, the relative acceleration and velocity terms were also 

neglected to obtain simplified equations. It can be argued that these relative terms are not 

significant because of the very small permeabilities associated with the liquid and gas 

phases of the unsaturated soil system. However, these terms may important to correctly 

predict the dynamic behavior of the unsaturated soils. It also tightly couples the 

individual phases of the unsaturated soils at the governing equation level. The significant 

of the accelerations and velocities of the pore fluids particularly on the dynamic behavior 

of the unsaturated soils are investigated by solving complete and reduced formulations 

and comparing the results. Finite element forms for complete and reduced formulations 

are derived in the next section. 
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3.4 Complete Formulation 

In this formulation, the relative accelerations and relative velocities of the liquid 

and gas phases are taken into account. Substituting for the relative velocities in terms of 

absolute velocities of the liquid and gas phases, the mathematical equations describing 

the motion of the unsaturated soil system are summarized below. 

The index “j” is reserved for direction and the index “i” is used primarily as 

repeated index. Bar (-) is used to indicate the nodal and element values of the variable and 

the hat (^) is used for specified boundary values in the derivation of finite element 

equations. The governing equations are rewritten in the indicial notation form as follows. 

Linear momentum balance for the mixture: 

0, =−−++ jiij
g
j

ggl
j

ll
j

ss gUnUnun ρσρρρ &&&&&&  (3.23) 

Linear momentum balance for the liquid: 

( ) ( ) ( ) 0
,

** =−++− j
l

i
l

ji
l
i

ll
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Linear momentum balance for the gas:   
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Mass balance for the liquid: 
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Mass balance for the gas: 
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Note: the mass balance of the solid phase has been used in deriving Eq. 3.26 and 3.27.  
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3.4.1 The Full ( glgl pp−UuU ) Form of the Complete Formulation 

There are various finite element forms that can be derived from the above 

governing equations. If the liquid has to be considered as an incompressible material, the 

full formulation is the only possible form. In the full formulation, the solid displacement 

(u ), liquid displacement ( lU ), gas displacement ( gU ), liquid pressure ( lp ) and gas 

pressure ( gp ) all are considered as primary unknowns in the solution procedure. To 

satisfy the convergence condition explained by Babuska-Brezzi condition (Section 2.6.4), 

the interpolation function space for the pressure fields has to be one order less than that of 

displacement fields. This leads to a constant pressure field approximation for the pressure 

fields when bilinear interpolation fields are used for displacement fields. Fig. 3.4 shows 

the nodal and element unknowns for the full formulation. To date this formulation has not 

been implemented into a finite element code. It should be noted, however, that 

tremendous computational effort will be required to solve the full formulation because of 

the large number of element degrees of freedom. 
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Figure 3.4: Continuous bilinear displacement and constant pressure approximation 
in two dimensions 
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3.4.1.1 Weak formulation of momentum balance equation for the mixture 

The weak formulation is obtained by taking the product of the momentum balance 

equation with the test function as follows: 

( ) 0, =Ω−−++∫
Ω∆+ tt

dgUnUnun jiij
g
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Ω∆+ tt

dgUnUnun jiij
g
j
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j

ll
j

sss
j ρσρρρφ &&&&&&  

where s
jφ  is a test function for the momentum balance for the mixture. 

Rearranging the components and Green’s , the following equation can be derived 
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Figure 3.5: Schematic of the boundaries of multi phase porous media 

Applying the Gauss theorem to the 4th integral and substituting the traction boundary 

conditions (Fig. 3.5), we get: 
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 (3.28) 

where jiji te ˆ=σ  on t
tt Γ∆+  and ie  is the unit normal to the surface t

tt Γ∆+ . 

3.4.1.2 Weak formulation of momentum balance equation for the liquid and 
gas phase 

Following similar procedures, the weak form of the momentum balance equation for the 

liquid can be reduced to:  
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where l
jφ  is a test function for the momentum balance for liquid phase. 

l
ji

l
j pδφ  is piecewise continuously differentiable even though a constant pressure 

approximation is expected to use for the pressure field. Then, applying the Gauss’s 

theorem for the fourth integral and substituting the liquid pressure boundary conditions, 

we get: 
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 (3.29) 

where lp̂  is the specified liquid pressures on the liquid pressure boundary. 

Similarly the weak form of the momentum balance for the gas phase can be derived as 

follows: 
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where g
jφ  is a test function and gp̂  is the specified gas pressures on the gas pressure 

boundary. 

3.4.1.3 Weak formulation of mass balance equations 

The weak form of the mass balance equation for the liquid and gas phases can be derived 

as follows: 
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 (3.32) 

where lpφ  gpφ  are test functions 

3.4.2 The Matrix Form 

The test functions and other fields are expressed in terms of the nodal quantities 

and appropriate shape functions. In this study, an isoparametric quadrilateral element 

with bilinear continuous approximation is assumed for the solid, liquid and gas 

displacements fields and discontinuous constant approximation is used for the pressure 

fields. 
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jIIj N φφ αα =  and jIφ  are the nodal values of the test functions. 

jI
s
Ij uNu = , l

jI
l
I

l
j UNU =  and g

jI
g
I

g
j UNU =  

where the repeated index “I” means summation over all nodes and “j” indicates the 

coordinate direction. 

llpl pNp =  

ggpg pNp =  

3.4.2.1 Matrix form of momentum balance equation for the mixture 

Most of the elastoplastic constitutive equations are developed considering the net 

stress and matric suction as the stress state variables. Therefore, the total stress in the 

momentum balance equation is replaced by net stress as follows.  

g
ijijij pδσσ −′′=  

Substituting into Eq. 3.28, we get: 
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Substituting for the accelerations and pressures fields in terms of nodal and or element 

values, we get: 
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3.4.2.2 Matrix form of momentum balance equation for the liquid and gas 
phases 

Substituting for the test functions and other primary variables in terms of nodal variables, 

the following equations can be derived. 

Liquid phase: 
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Gas Phase: 
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3.4.2.3 Matrix form of mass balance equation for the liquid and gas phases 

Liquid phase: 
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 (3.36) 

Gas Phase: 
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The shape functions for solid displacement, sN , liquid displacement, lN , and gas 

displacement, gN , are assumed to be the same and bilinear.  The shape functions for gas 

pressure and liquid pressure are the same and constant and discontinuous. Therefore, it 

should be noted that there is no summation over nodal indices for the pressure 

approximation in the equation. These approximations will be used throughout this 

dissertation. 

The system of equations (Eqs. 3.33, 3.34, 3.35, 3,36 and 3.37) can be written in the 

following general and compact form. 

extffxKxCxM =+++ int&&&  

where M  is the mass matrix, C  is the damping matrix, K  is the fluid stiffness matrix, 

intf  is the internal force vector,  extf  is the external force vector and x  is the generalized 

displacement vector given by 
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where u  is the solid displacement, lU  is the liquid displacement, gU  is the gas 

displacement, lp  is the liquid pressure and gp  is the gas pressure. 
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This formulation is computationally intense. This formulation will have 2626 ×  element 

degrees of freedom for four-node quadrilateral element and 7474 ×  element degrees of 

freedom for eight-node brick element in 2D and 3D, respectively. 

3.4.3 The Irreducible ( gl UuU ) Form of the Complete Formulation 

If the liquid phase in the unsaturated soil system can be assumed to be a 

compressible material, then the pore liquid pressure and pore gas pressure terms in the 

momentum balance equations can be eliminated using the mass balance equations at the 

governing equation level. In this case, only the solid displacement, liquid displacement 

and gas displacements are considered as primary unknowns (Fig. 3.7) in the solution 

procedure. The liquid and the gas pressures are calculated outside the solver using the 

mass balance equations when the volumetric strain of the solid, liquid and gas are known. 

To author’s knowledge this form also has not been used previously in any finite element 

implementation. 
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Figure 3.6: Nodal variables for the uUU formulation for the full form 

The mass balance equations are rewritten in the following form for the shake of 

convenience. 

l
kkkk

gl Ububpapa ,12,111211
&&&& −−=+  
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The coefficients are defined as follows. 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−
Γ

=
S
nna

l

l

l

11 , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

=
S
na

l

12 , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

=
v

lnb
ε11 , lnb =12  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

=
S
na

l

21 , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−
Γ

=
S
nna

l

g

g

22 , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−−=
v

lnnb
ε

121  and ( )gnb =22  

where lΓ  and gΓ  are defined before. The above set of equations can be solved for lp  

and gp . The pore liquid pressure is given by: 
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The pore gas pressure is given by: 
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Now, the liquid and gas pressure terms can be eliminated from the balance 

equations. The resulting equations will have only the displacement or the time derivatives 

of the displacement of the bulk phases. The momentum balance for the liquid phase is 

reduced as follows. 
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Similarly, the momentum balance for the gas phase is reduced as follows. 
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The final set of equations governing the motion of the unsaturated soil system is reduced 

to the following three equations. 
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3.4.3.1 Weak form of the momentum balance equation for the mixture 

From the gl UuU  formulation, the weak form of the momentum balance equation 

for the mixture is given by: 
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3.4.3.2 Weak form of the momentum balance equation for the liquid and 
gas phases 

Liquid phase: 
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Gas phase: 
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3.4.3.3 Matrix form of the momentum balance equation for the mixture 

Replacing the total stress in terms of net stress and substituting for the pore gas 

pressure, the following equation can be derived. 
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Substituting for test functions, accelerations and displacements, we get: 
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3.4.3.4 Matrix form of the momentum balance equation for the liquid and 
gas phases 

Liquid phase: 
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Gas phase: 
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The above equations can be written in a compact form as follows. 

extffxKxCxM =+++ int&&&  

where x  is given by 
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=
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All the element matrices are 2424×  and 7272 ×  in size for 2D and 3D, respectively. All 

the vectors are 124×  and 172 ×  in size for 2D and 3D, respectively. 

3.5 Reduced Formulation 

In this formulation, the system of equations is simplified by neglecting the relative 

velocities and relative accelerations of the liquid and gas phases. Thus, the flow of liquid 

and gas phases is not taken into consideration. The change in pore liquid and gas 
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pressures is only affected by the deformation of the solid phase. This condition replicates 

the undrained condition for the unsaturated soils. Experimental studies on the flow 

through unsaturated soils reveals that the permeability of the fluids is small compared to 

the permeability of fluids in the saturated and dry soils. Therefore, the undrained 

condition assumption for analyzing the dynamic behavior of unsaturated soils may give 

reasonable results.  

When the accelerations and velocities of the fluids are neglected, there will be only 

three equations left: momentum balance for the mixture, mass balance equation for the 

liquid phase and mass balance equation for the gas phase. The equations are summarized 

as follows. 

Linear momentum balance for the mixture: 

0, =−− jiijj gu ρσρ &&  in Ω∆+ tt  (3.47) 

Mass balance for the liquid: 
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Mass balance for the gas: 
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The above governing equations look uncoupled at the governing equation level, but 

there are actually coupled through constitutive equation in which matric suction is one of 

the stress state variables governing the mechanical behavior of unsaturated soils 
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3.5.1 The Full ( gl pp−u ) Form of the Reduced Formulation 

Again, to combat the incompressible behavior of the liquid phase, in addition to 

the solid displacement, the pressure fields should also be considered as primary 

unknowns. The element and nodal unknowns for this formulation is shown in Fig. 3.7. 
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Displacement nodes
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Displacement nodes

 

Figure 3.7: Continuous bilinear displacement and pressure interpolations in two 
dimensions 

3.5.1.1 Weak and matrix formulation of momentum balance equation for 
the mixture 

( ) 0, =Ω−−∫
Ω∆+ tt

dgu jiijj ρσρ &&  in Ω∆+ tt  
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where s
jφ  is a test function for the momentum balance equation. Integrating the second 

integral by parts, we get: 
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The Gauss theorem is used to convert a closed volume integral into a surface integral. 

The surface integral can be related to the external boundary conditions applied to the 

system. Utilizing the Gauss theorem for the second integral on the L.H.S, we get: 
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Inserting the traction boundary conditions into the equations, we get 
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Rearranging the components 
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Substituting the total stress in terms of net stress, we get: 
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3.5.1.2 Matrix formulation of mass balance equation for the liquid and gas 
phase 

Liquid phase: 
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Gas Phase: 
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The general matrix form has a mass matrix and a damping matrix. This formulation does 

not have any pore fluid stiffness matrix in the formulation. 
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extffxKxCxM =+++ int&&&  

where x  is given by 
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3.5.1.3 The irreducible (u) form of the reduced formulation 

If the liquid phase can be considered as a compressible material, then the solid 

displacement alone can be considered as the primary unknown as shown in Fig. 3.8. 
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Figure 3.8: Continuous bilinear displacement interpolations in two dimensions 

In this formulation only the solid displacement is considered as the nodal unknown. 

The liquid and gas pressures are calculated outside the solver using the mass balance 

equations. 

3.5.1.4 Matrix formulation of momentum balance for the mixture 

The liquid pressure and gas pressure are reduced from the mass balance equations 

to the following form: 
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where 
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extffxKxM =++ int&&  

where { }u=x  

The liquid pressure and the gas pressures are calculated using the mass balance equations 

outside the solver using the volumetric strain of the solid phase. 

Mass balance for the liquid: 
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Mass balance for the gas: 
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3.6 Governing Equations for Saturated Porous Media 

The key governing equations for the dynamics of saturated porous media are 

summarized below (Zienkiewicz and Shiomi, 1984; Muraleetharan et al., 1994). 

Linear momentum balance for the mixture: 
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Linear momentum balance for the liquid phase: 
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Mass balance for the mixture: 
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,, 1 &&&
−+−=

Γ
 (3.56) 

3.6.1 Full Formulation for Saturated Soils 

Similar to unsaturated soils, the full formulation can be derived considering the 

solid displacement, liquid displacement and liquid pressure as the primary unknowns. 

The advantage of using these variables as the primary unknown is the same as discussed 

for the saturated soils. The full formulation for the saturated soils has never been 

attempted, but it is the only form possible when the compressibility of the fluid is 

negligible and when no penalty procedure is used. Following the notations used by 

Zienkiewicz and Shiomi (1984), the matrix form of the system of equations can be 

written as follows. 
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3.6.2 Irreducible (uU ) Formulation 

If the fluid is assumed to be compressible, then the liquid pressure can be 

eliminated from the equations and the final set of equations can be expressed in terms of 

the solid and liquid displacement. This formulation is called as uU  formulation. The 

matrix form of the uU  formulation has the following form: 
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The coefficients are given by 
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3.7 Updated Lagrangian Formulation for Large Deformation 
Analysis 

For small deformation analysis, the current configuration at time tt ∆+  coincides 

with the reference configuration at time 0. Therefore, the integrals associated with the 

element matrices can be evaluated. However, for large deformation analysis, the current 

configuration and the reference configurations are not the same because of the large 

deformation of the material, and the current configuration is not known at time tt ∆+ . 

Therefore, the equilibrium position at time tt ∆+  cannot be found. 

Therefore, the governing equations have to be transferred to a known 

configuration. In the case of an updated Lagrangian formulation, the configurations from 

time 0 to t  are known. Therefore, the field equations can be written at time tt ∆+  on the 
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configuration at time t . The detail formulation of these equations for saturated and 

unsaturated soils is shown in Chapters 7 and 8, respectively. 

3.8 Time Integration Procedure 

Time integration of the spatially discritized governing equations is one of the 

important steps in numerical analysis of dynamic problems for achieving accurate results 

and saving substantial computational effort. In many dynamic problems, only low-

frequency modes are of interest, since the major contribution to the overall behavior 

comes from low frequency modes. Furthermore, in dynamic analysis using finite element 

methods some of the high frequency modes are due to the spatial discretization of the 

problem domain rather than due to the real behavior of the material. Hence, it is desirable 

to have a time integration algorithm, which poses some form of numerical dissipation, to 

damp out any spurious participation of high frequency modes. Desirable properties of a 

time integration algorithm are: unconditionally stable, posses numerical dissipation that 

can be controlled by a parameter other than the time increment and weak influences of 

numerical dissipation to the low frequency modes. 

Conditionally stable algorithms require that the size of the time step employed be 

inversely proportional to the highest frequency of the discrete system. In practice, this is a 

severe limitation as accuracy in the lower modes can be attained with time steps, which 

are very large compared with the period of the highest mode. For unconditionally stable 

algorithms, a time step may be selected independent of stability considerations and thus 

can save substantial saving of computational effort. 

The Newmark’s family of time integration methods (1959) is widely used in the 

dynamic analysis of geotechnical engineering problems. The amount of dissipation can 
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be continuously controlled by a parameter other than time step. The Newmark’s method 

is unconditionally stable for linear problems when the parameters, β and γ associated 

with the method, are selected such that 5.0≥γ  and ( )25.025.0 +≥ γβ . γ and β are free 

parameters, which govern the stability and numerical dissipation of the algorithm. The 

amount of dissipation, for a fixed time step, is increased by increasing γ. The 

disadvantage of Newmark’s method is that it has second order accuracy in linear 

problems only when 5.0=γ  and ( )25.025.0 += γβ , which applies restriction in 

controlling the numerical dissipation of higher frequency modes. For other values of β 

and γ, it has only first order accuracy (Hughes, 1983). In addition, for the values at which 

the method gives second order accuracy, the Newmark’s method does not posses any 

numerical dissipation. 

Hilber, Hughes and Taylor (1977) improved Newmark’s method by incorporating 

an additional parameter α. This improved method is called α-method and it shows second 

order accuracy and unconditional stability when the parameters α, β and γ are selected 

such that 03
1 ≤≤− α , ( )αγ 215.0 −=  and ( )2125.0 αβ −≥  in linear problems. This 

integration rule, increases the range of numerical dissipation. The numerical dissipation, 

for a given time step, is increased by increasing the absolute value of α. 

For nonlinear problems, as in this research, when an algorithm is used in a 

consistent linear manner (Hughes and Pister, 1978) some of the conditions derived for 

linear problems are applicable to the nonlinear problems to a certain extent. For example, 

the necessary and sufficient stability conditions derived for the linear problems become 

only the necessary condition for stability in nonlinear problems (Hughes, 1983). In this 
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research, the α-method together with the predictor corrector algorithm proposed by 

Hughes (1983) is used to integrate the spatially discretized nonlinear governing equations 

in the time domain. Muraleetharan et al., (1994) used a similar algorithm to study 

dynamics of saturated soils. 

3.8.1 −α Method with Predictor and Multi-Corrector Algorithm 

The general form of the dynamic governing equation can be written as follows 

using the α-method. 
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The fully discretized, in space and time, governing equation gets the following form.  
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The incremental acceleration is calculated by solving the Eq. 3.60 and these acceleration 

increments are used to calculate the acceleration, velocity, and displacement for the next 

iteration as follows. 
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The convergence of the solution is verified for both the effective force and the 

acceleration as follows. 
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The equations derived in this chapter are implemented within a finite element framework. 

A detail description of the finite element framework used is given in the next chapter.  
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4 FINITE ELEMENT 
FRAMEWORK 

4.1 Introduction 

 An important step in the design and evaluation of geotechnical and structural 

systems during earthquakes is the determination of stresses, deformations, and measures 

of damage induced by ground motion. This process includes four major ingredients: (1) 

development of a mathematical model representing the geometry, topology, materials, 

loads, and boundary conditions of the system, (2) spatial discretization to give the 

governing equations of motion, (3) numerical computation to solve the discretized 

equations, and (4) processing of the solutions to evaluate the performance of the 

components and the system. This entire process can broadly be described as simulation in 

the sense of simulating the behavior of a system in an earthquake loading.  

This research focuses on 

information technology 

techniques for improving 

simulation of geotechnical 

engineering structures. In 

each of the steps involved in 

a simulation, there have been important and wide-ranging research advances over the past 

As long as there were no machines, programming was 

no problem at all; when we had a few weak 

computers, programming became a mild problem, and 

now we have gigantic computers, programming has 

become an equally gigantic problem (Dijkstra, 1972). 
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decades. Geotechnical engineers use a variety of specialized or general software 

(“codes”) depending on the appropriateness of the mathematical models implemented in 

the codes, the available computational resources, or individual and organizational 

experience and policies. In the research area, there are tremendous needs for 

improvements in simulation methods, for example, new models, computational 

procedures and visualization of performance. Individual researchers often have 

customized versions of specialized codes or work within the limits imposed by 

commercial, general-purpose computer codes.  

Typically, development of finite element codes is started by research 

organizations. Then the codes are transferred to private companies, where the codes are 

extended and enhanced for commercial use. The researchers have been left with a 

multitude of rather incomplete code fragments, each tailored to a specific topic of 

interest. Due to advances in programming and because of the conventional, inflexible 

design, scientists usually could not rely on existing code and had to start practically from 

scratch for each new research project. 

An important question is, how well does this approach fit into simulation, 

particularly in regards to utilizing the dramatic improvements in information technology? 

The current software approaches make it difficult for researchers and developers to 

improve simulation methods that take advantage of the rapid changes in parallel and 

distributed processing, networking, databases, visualization, and entirely new approaches 

to computing such as application service providers, peer-to-peer computing and 

computational grids. The inability to exchange and communicate software 

implementations of models, computational methods, and performance evaluation 
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methods is a significant drag on research and on transfer of new methods to industry and 

engineering professionals. 

From the perspective of an engineer conducting a simulation, there are a number of 

desirable requirements, such as capabilities for using, selecting, and sharing models for 

materials, elements, components, and entire substructures. The models should be 

independent of the simulation methods used to compute the state of the model so as to 

provide flexibility in how simulations are performed. There should be interfaces between 

models, databases, and visualization tools to provide capabilities for interrogating and 

investigating the model and results of the simulation. A scenario for such a framework is 

that engineers have access libraries of material models, component models, model 

building tools, computational resources, visualization tools, and performance evaluation 

over the network. 

In this research program, an attempt has been made to develop a high performance 

computational tool incorporating the latest technologies in simulation methods. A finite 

element framework that provides the capabilities discussed above, is used to develop a 

software tool for analyzing dynamics of porous media. 

4.2 Finite Element Framework 

A framework represents a collection of software components for building finite 

element applications. By collecting these software components into a single toolkit, a 

framework enables the application developer to leverage these components into many 

different applications. Consequently, the amount of work and code required for 

developing and maintaining an application is greatly reduced.  
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Historically, the finite element applications developer has been an engineer 

trained in some specific field of mechanics. Typically, they spend an inordinate portion 

of their software development time dealing with computer science details rather than 

focusing on algorithms and mechanics. The finite element framework insulates the 

engineer from the computer science details and lets the engineer concentrate on the 

computational mechanics aspects of the application. 

The realm of high performance, parallel, finite element application provides a rich 

set of common abstractions upon which to build a computational framework. Examples 

of common services or tasks found in finite element applications include:  

1. Input/Output services  

2. Memory management  

3. Parallel gather/scatter operations and global reductions 

4. Mathematical libraries and algorithmic controls 

5. Linear algebra solution services  

The common thread that runs through all these services is that they are essentially 

computer science or mathematical exercises that are not dependent upon physics 

equations or formulations in which a civil engineer is an expert. It is precisely these 

services that require the most attention when porting scientific applications between 

different hardware platforms. Generally, the scientific or physics parts of any application 

compile, link and run correctly on disparate hardware platforms with little porting effort. 

The vast majority of the porting effort goes into dealing with the highly system dependent 

intricacies of such tasks as Input/Output services, memory management and 

locating/linking the proper support libraries. By placing these services into a common 
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framework, all finite element applications built using the framework leverage the porting 

efforts required to move between new hardware platforms. 

Finite element application developers, such as university researchers and finite 

element software developers, are the main users of the framework. The designers and 

analysts are the customers of the finite element application built using the framework. 

4.3 TeraScale (TSC) Framework Services 

In this research, a finite element framework called TeraScale (TSC; TeraScale, 

2001) is used to develop applications for analyzing dynamics of porous media. The 

common services provided by the TSC framework for developing an application are 

described in the proceeding sections. 

4.3.1 Generic Data Model 

The Data Model is a generic container object (DataModel) for holding meta data. 

The data model has an XML (eXtensible Markup Language) representation, which allows 

the framework to read and write data across the Internet. 

4.3.2 Finite Element Procedural Abstractions 

Procedural abstractions are a set of algorithmic abstractions that is common to all 

finite element applications. For example, physics algorithm, element based algorithm, 

material algorithm, etc. 

4.3.3 Parallel Mesh Object (PMO) 

The PMO is a high-level mesh object for the finite element application. The PMO 

is fundamentally structured to support parallel computation in Single Program Multiple 

Data manner (SPMD). 
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The TSC framework makes use of the TSC parallel Mesh Object (PMO) to 

represent the mesh. The PMO is a stand-alone library that can be deployed independent 

of the TSC framework. The PMO provides a coherent array of services for computing on 

a finite element mesh distributed over some set of processors. The PMO can be thought 

as a virtual mesh object that is cognizant of where all its pieces reside across the parallel 

platform. The concept of general subsetting mechanisms for nodes, edges and faces is 

supported, with full capabilities to create, query, and access the mesh data.  

The PMO contains the abstraction of mesh reader and mesh writer. These define a 

set of interfaces for reading and writing finite element data to permanent storage. The 

concept is quite simple; the application accesses data through the set of interfaces defined 

upon the mesh object. The mesh object performs read/write on demand (i.e., it does not 

read/write anything from file unless requested to do so). The particular flavor of mesh 

reader or mesh writer that is given to the mesh object can be changed at run time. Mesh 

readers and writers for alternate mesh formats can be derived with minimal effort. The 

advantage is that any finite element application can use a new mesh reader without 

changing any code in the finite element application. If the finite element application reads 

and writes its mesh through the PMO, then it can instantly leverage any new file formats 

available through the library of mesh readers and mesh writers. 

4.3.4 Finite Element Infrastructure 

Finite element infrastructure consists of the basic core libraries of finite element 

applications necessary to support general-purpose physic applications. This consists of an 

element library, which holds all the discrete calculus methods necessary for the 

application. 
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4.3.5 Scalable Linear Equation Solver 

The equation solver is a common interface to linear solver services for the 

scalable solution of sparse systems of equations on distributed and shared memory 

parallel architectures. This abstraction allows the interchange or selection of different 

linear algebra solvers and/or preconditioners without modifying the physics 

implementation. 

The TSC Framework provides a common interface to linear solver services for 

scalable solution of sparse systems of equations on distributed and shared memory 

parallel architectures. The interface to linear algebra packages is based upon a finite 

element view of the process that augments the native solver view. The underlying linear 

algebra representation of the assembled global element operators and right-hand-sides is 

hidden from the physics application developer. This abstraction layer allows the 

interchange or selection of different linear algebra solvers and/or preconditioners without 

modifying the physics implementation.  

4.3.6 Multi-Physics Infrastructure 

The framework also provides the facilities to rapidly couple single physics 

applications into a multi-physics package based on solution transfer operator. These 

operators are parallel in nature and highly scalable. 

4.4 Developing Parallel Finite Element Computer Code using a 
Framework 

One of the motivations for using a finite element framework to develop a computer 

code is to make use of the parallel and distributed processing facility provided by the 

framework. Solution of three-dimensional problems and complicated two-dimensional 
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problems such as a full formulation for unsaturated soils requires tremendous 

computational capacity. 

The TSC framework architecture is designed to minimize the amount of 

specialized parallel coding that the finite element applications developer must understand 

and code. Ideally, the engineer simply writes code in a serial mode with no regard for 

parallel issues. However, the application developer cannot be completely isolated from 

all parallel issues. The computational framework provides the application developer a set 

of interfaces that isolate the parallel coding to a few simple interfaces.  

The TSC framework is based upon a "SPMD Model" (Single Program Multiple 

Data). The SPMD model is based upon the concept that the finite element mesh is 

decomposed (i.e., partitioned) into a set of sub-meshes that are assigned to each processor 

and spread onto the individual processors. Once the mesh is distributed over a number of 

processors, each processor executes a copy of the same application on the piece of the 

mesh that it has been assigned. A fundamental aspect of the partitioning process is to 

embed into the partitioned/spread sub-meshes the information about mesh entities that are 

shared by multiple processors. These parallel data structures are discussed in Section 4.5.  

The TSC framework hides these parallel aspects behind well-defined interfaces 

that are familiar to the finite element applications developer. One important guideline that 

is used in the design of the finite element framework is that there will be no performance 

penalty for running the parallel framework code on a single processor. In general, 

applications built upon the framework should run seamlessly on any of: a single 

processor CPU, Parallel hardware based upon shared memory architecture and distributed 

memory architectures and clusters of shared memory machines. 
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4.5 Partitioning the Model for Parallel Computation 

Solving a large problem on a parallel computer with distributed memory usually 

requires that the data for the problem be partitioned somehow among the processors. The 

quality of the partition affects the speed of solution; a good partition divides the work up 

evenly and requires as little communication as possible. 

There are numerous partitioning algorithms that can be used. The two most 

common are topological partitioning and geometrical partitioning. In topological 

partitioning, the partitioner application performs a graph analysis of the connection of the 

mesh to minimize the number of shared nodes across processor boundaries. A 

geometrical partitioner uses some algorithm to slice up the mesh in space and is typically 

much faster than a topological partitioner. In general, applications will run slightly faster 

with a good topological partitioning than with a simple geometric partitioning. However, 

there are numerous finite element algorithms that require a geometric partitioning (e.g., 

contact between two bodies) in order to achieve parallel performance. TSC provides a 

geometric partitioner application, which is based upon the recursive coordinate bisection 

algorithm. The TSC partitioner is designed to be able to accommodate new algorithms in 

the future should they be deemed necessary or desirable.  

Fig. 4.1 shows an embankment mesh and its partitioning across 2 processors. The 

mesh contains nodes, edges, faces, and elements, referred to as mesh entities. The nodes, 

edges, and faces that reside on the inter-processor boundaries are shared between 

multiple processors. In some cases, elements can be shared as well. TSC's 

implementation of the SPMD model requires that one processor own the mesh entity 

while the other processors simply have a copy of the mesh entity. Also, the TSC SPMD 
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model requires every mesh entity to have a unique global ID (i.e., unique across all 

processors).  

The partitioner application reads in the original mesh and spreads it into pieces for 

each processor. Fig. 4.1 shows the mesh partitioned into two pieces, each of which 

resides in its own mesh file after partitioning. While it is not formally a part of the 

computational framework, the partitioning services are a fundamental infrastructure 

requirement for deploying parallel finite element applications. Furthermore, the SPMD 

model usually takes advantage of independent parallel Input/Output. That is, each 

processor can write output to its own independent disk (hence there is no contention for 

the disk amongst processors). As a consequence, upon completion of the analysis there 

may be a set of files that must be recombined (i.e., results file, restart file, history file). 

This calls for a "departitioner" service that puts them back together again. The partitioner 

and departitioner services are provided along with the TSC framework. 

Processor 1 Processor 2Processor 1 Processor 2
 

Figure 4.1: Two way partitioning of an embankment mesh 
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4.6 Organizational Structure of the TSC Framework  

The TSC framework provides a predefined set of abstractions for the procedural 

flow of algorithms for the finite element application. These abstractions are in the form of 

a set of C++ base classes. An abstract base class cannot be used directly, but a specific 

class can be derived for the implementation of some required methods in the base class 

with specific interfaces. The common finite element calculations are grouped into six 

major classes: Application, Procedure, Physics, Element Block, Section and Material, and 

are discussed briefly in the proceeding sub sections. 

4.6.1 Application 

Application is the overall global construct for a finite element application and 

holds the finite element application together. It holds certain global data made available 

throughout the application (e.g., all the data model objects instantiations). 

4.6.2 Procedure 

The procedure class represents a container for different physics objects and the 

algorithms to perform multi-physics coupling. The multi-physics can be sequentially 

invoked transforming field data from one to another. The procedure class’s main 

responsibility is to manage the time marching algorithm. This includes advancing the 

state of the fields and global reductions and reading/writing the “state” for the mesh 

object. 

4.6.3 Physics 

The Physics class is a container class that holds a collection of element block 

objects and the algorithms required to perform a single subset of physics. Generally, this 



 77

represents a single physics but it could hold tightly coupled multi-physics where the set 

of physics is coupled through the solver. The Physics’ main job is to advance the solution 

one increment in "time" at the request of the Procedure class. The physics layer of the 

framework maps cleanly onto the traditional notion of a finite element code. The nodal 

fields are registered in this object. Different physics will have different nodal unknowns 

which will requires a different physics object to be derived. A very simple example is that 

two different physics objects are used for implementing the complete formulation and the 

reduced formulation presented in Chapter 3 because of different nodal unknowns. 

4.6.4 Element Block 

The Element Block class is a container class that holds either a section object or a 

material object. An element block object is derived to hold a particular element type and 

physics formulation. For example, the uniform gradient element formulation (element 

type) for unsaturated soils (physics type). It also holds the algorithms to compute the 

element response to the global nodal fields. The concept of work set is used to define 

element variables and perform element calculations. 

4.6.5 Section 

The section object holds the physical representation of the element at each 

integration station of the element. The section object also holds algorithms to integrate 

the section. For solid elements, the section only holds the material object (see below). For 

a complicated element, such as a layered shell, the section holds descriptions for the 

geometric lay-up of the shell layers, the integration rules for integrating through the 

layers, and the material objects for each of the layers. 
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4.6.6 Material 

A material object integrates the material response through time at a set of material 

points in the model. The usual constitutive equation is incorporated into this class. Any 

material routine written in FORTRAN or any other language can be simply ported into 

the material base class and used in the finite element application. The TSC framework 

provides a straightforward mechanism to call FORTRAN from C++. 

4.7 The High Performance Computational Tool - TeraDysac 

The application developed in this research for analyzing the dynamics of saturated 

and unsaturated soils are named TeraDysac. The current version of the TeraDysac has 

two separate applications: one for saturated soils and the other one for unsaturated soils. 

These codes will be combined together in the future to make a single application for soils. 

4.7.1 Capabilities of the Current Version of the TeraDysac for Saturated Soils 

The organization of the TeraDysac for saturated soils is shown in Fig. 4.2. There is one 

physics and five element blocks. 

1. Type of Deformation 

Depending on the users requirement, the user can perform small deformation 

analysis or large deformation analysis. 

2. Type of Element Formulation 

The user can select uniform gradient element with hourglass control or full Gauss 

quadrature element formulation. 

3. Static analysis procedure 
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In the current version, the static analysis is performed dynamically by setting the 

mass matrix to zero. In addition to that, the time integration parameters can also be 

adjusted to obtain reasonable results. 

4. Irreducible formulation and full formulation 

The irreducible formulation uses solid displacement and liquid displacement as 

nodal unknowns and the full formulation uses solid displacement and liquid displacement 

as nodal unknowns and pore pressure as an element unknown. 

5. 2D and 3D capabilities 

Four nodded isoparameteric quadrilateral elements are used for 2D analysis and 

eight nodded brick elements are used for 3D analysis. 

6. Elastic and elastoplastic constitutive models 

Elastoplastic constitutive models for clay and sand based on the bounding surface 

concept are implemented. Linear elastic model can also be used to represent the soil 

skeleton. 

4.7.2 Capabilities of the Current Version of the TeraDysac for Unsaturated 
Soils 

The organization of the TeraDysac for unsaturated soils is shown in Fig. 4.3. The 

TeraDysac for unsaturated soils has three physics applications and six element blocks. 

1. Complete formulation 

In this formulation, the accelerations and velocities of the pore liquid and gas 

phases are taken into account. The effect of relative velocities and accelerations of the 

pore fluid can be investigated using this formulation. 

a. Full form 
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In this form, solid displacement, fluid displacement, and gas displacement are 

considered as nodal unknowns and liquid pressure and gas pressure are considered as 

element unknowns.  

b. Irreducible form 

In this method, solid displacement, liquid displacement and gas displacements are 

used as nodal unknowns. The liquid and gas pressures are calculated outside the solver. 

2. Reduced formulation 

In this method, the accelerations and velocities of the fluids are neglected at the 

governing equation level. The undrained behavior of the unsaturated soils can be 

investigated using this formulation. 

a. Full form 

Solid displacement is used as nodal unknown and liquid pressure and gas pressure 

are used as element unknowns. 

b. Irreducible form 

Solid displacement is used as nodal unknown and the liquid and gas pressures are 

calculated outside the solver. 

2D versions of TeraDysac for saturated and unsaturated soils are capable of 

running on parallel. These codes have been tested on two processors. The simulations 

shown in this dissertation for unsaturated soils were run on two processors. The 

verification runs of the TeraDysac for 3-D problems on multiple processors are currently 

under investigation. The main problem faced in the 3-D analysis on multiple processors is 

the lack of good preconditioner for the iterative solvers. 
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Figure 4.2: Current TeraDysac organization for saturated soils
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Figure 4.3: Current TeraDysac organization for unsaturated soils
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4.8 Pre and Post Processing in TeraDysac 

4.8.1 Target Code Template 

Every finite element application has some prescribed feature base. That is, there 

are capabilities and algorithms within the finite element code that users can invoke if they 

provide the proper data for a particular feature. A target code template (TCT) is a file that 

holds the entire set of features for a particular finite element code (the “target code”). The 

TCT can be created or modified for a finite element application with the TSC 

Configurator application. Configurator is a software tool available within the TSC 

system. Configurator has a graphical user interface that allows the user to precisely define 

all the features for a particular code. Furthermore, default values can also be defined for 

certain features.  

4.8.2 Data Model 

A huge amount of data has to be given as input to a finite element software. The 

amount of data will vary depending on the complexity of the problem to be analyzed and 

how complicated the finite element software is. Traditionally, these data are given in 

sequence in a text file prepared by an engineer. This text file is created following a 

manual or handout given by the code developer. Giving a huge amount of data in a text 

file is very inconvenient and it is easy to make mistakes. 

The TSC provides a Graphical User Interface (GUI) to create an input file for 

TeraDysac. The input file is called the data model in the TSC system. The data model is 

created within the GUI using rules of the TCT explained in the previous section. The 

TCT and the Data Model for the dynamic analysis of soils are shown in Fig.4.4. Note that 

the various items created by the configurator for the TCT (e.g. Analysis) shows as folder 
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tabs in the Data model. In addition, the same TCT and Data Model can be reused for 

different analyses with a different feature base. There is no penalty for leaving data in the 

data model, which is not needed for the particular analysis, i.e. leaving the data for 

bounding surface model for sand in the Data Model while doing an analysis using 

bounding surface clay model.  

Data Model

TCT

Data ModelData Model

TCTTCT
 

Figure 4.4: TCT and Data Model for TeraDysac 
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5 VALIDATION OF TERADYSAC 
FOR SATURATED SOILS 

5.1 Introduction 

The governing equations derived for the saturated porous media in Chapter 3 are 

implemented within the TeraScale framework. The resulting computer code is named 

TeraDysac. TeraDysac predictions with four-node Gauss Quadrature elements (single-

point integration for fluid stiffness terms) are first verified against manual calculations for 

single and two element problems with an elastic material model. TeraDysac predictions 

are then validated against a centrifuge model test of an embankment subjected to base 

shaking (Kutter, 1982). Use of uniform gradient elements (single-point integration for all 

the terms) in TeraDysac is discussed in Chapter 6. 

5.2 Verification with Manual Calculations 

The finite element model developed in this study was verified against hand 

calculations for one and two element problems. The matrices were formed in Microsoft 

Excel and the complete problem was solved for simple loads with elastic constitutive 

model. These calculations were done for the first five time increments and the results 

were found to be consistent with the TeraDysac predictions. 
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5.3 Summary of Centrifuge Model Test 

The centrifuge model test carried out at the Cambridge University (Kutter, 1982) 

is used for validation purposes. The model embankment (Fig. 5.1) was consolidated into 

blocks from slurry of Speswhite Kaolin in a large consolidometer to a vertical stress of 

125 kPa. The blocks of clay were then extruded from the consolidometer and trimmed 

into a symmetrical triangular cross-section with 26.6 deg slopes to get the embankment 

model for the centrifuge test. During trimming, care was taken to cover the clay blocks 

with thin plastic wrap to prevent significant drying or wetting of the clay. With these 

precautions, the pore water suctions during model making were maintained in the range 

of 25-45 kPa, indicating that the models did not suffer significant swelling or drying that 

could drastically affect the soil properties. 

During the centrifuge test, the centrifugal acceleration was gradually brought up 

to 80g. Then the water was introduced at equal heights on both sides of the embankment 

as shown in Fig.5.1. Water was not introduced before spin-up to prevent excessive 

swelling of the clay. The model was then allowed to consolidate until pore pressure came 

into hydrostatic equilibrium with the water levels at the sides of the embankment. Then, a 

base acceleration-time history shown in Fig. 5.6 was applied to the model. 
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(b) Elevation 

Figure 5.1: Centrifuge experimental setup (a) Plan view and (b) Elevation (after 
Kutter, 1982) 

5.4 Numerical Modeling of Centrifuge Experiment 

The actual three-dimensional centrifuge experiment (Section 5.3) is simulated 

using a two-dimensional plane strain numerical model. It is assumed that the boundary 

effects are negligible in this simulation. The finite element mesh for the centrifuge model 
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is shown in Fig.5.2. The analysis was done in two steps: static analysis and dynamic 

analysis. It has been shown that the initial stresses play an important role in dynamic 

response of embankments (Ravchandran, 2004). A static analysis was carried out prior to 

the dynamic analysis to obtain the correct initial stresses. A fixed base boundary 

condition is used for both static and dynamic analysis. An elastoplatic constitutive model 

was used to represent the stress-strain behavior of the solid skeleton and is described in 

the next sub section. 
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Figure 5.2: Finite element mesh of the model embankment (all dimensions are in 

meters and model scale) 

5.4.1 Constitutive Model for Cohesive Soils 

If the true behavior of structures made of soils must be accurately predicted under 

complex loading conditions, it is important to model the stress-strain behavior of the soil 

skeleton realistically. An elastic material behavior assumption is used in many analyses. 

This is mainly for computational efficiency. However, elastic behavior assumption is a 

very poor assumption for soils under most loading conditions. Here, we use an 

elastoplastic phenomenological constitutive model based on the bounding surface 

concept to represent the stress-strain behavior of the soil skeleton (Dafalias & Herrmann, 

1986). A schematic diagram of the bounding surface is shown in Fig.5.3. 
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Figure 5.3: Schematic illustration of bounding surface in stress invariant space 

The prominent feature of the bounding surface concept is that plastic 

deformations can occur for stress points inside the bounding surface. In classical 

plasticity theory, no plastic deformations are allowed inside the yield surface. The 

classical yield surface formulation is transformed into a bounding surface formulation 

based on the concept that for any stress point inside the surface, a unique “image” point 

can be defined on the surface by means of a radial mapping rule (Fig. 5.3). The value of 

the plastic modulus depends on the distance between the actual stress point and its 

“image” on the bounding surface. The gradient of the bounding surface is used to define 

the direction of the plastic loading for the actual stress point. 

The material properties and the bounding surface model parameter of the 

Speswhite Kaolin are obtained from the experimental results (Muraleetharan et al., 1994). 

The bounding surface model parameters are listed in Table 5.1.  
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  Table 5.1: Soil properties and model parameters for Speswhite Kaolin 

Parameter Value 

Initial void ratio (e0) 1.48 

Liquid limit (LL) (%) 69 

Specific gravity 2.62 

Plasticity index (PI) (%) 31 

Permeability (m/s) 1.733x10-10 

Traditional Model Parameters 

Slope of isotropic consolidation line on p  n  - e ′l  plot ( λ ) 0.25 

Slope of elastic rebound line on p  n  - e ′l plot (κ ) 0.05 

Slope of critical state line in p - q ′space (compression) ( cM ) 0.88 

Poisson’s ratio (ν ) 0.3 

Ratio of extension to compression value of M ( ce MM / ) 1.0 

Bounding Surface Configuration Parameters 

Value of parameter defining the ellipse1 in compression ( CR ) 2.4 

Value of parameter defining the hyperbola in compression ( CA ) 0.01 

Parameter defining the ellipse 2 (tension zone) (T) 0.01 

Projection center parameter (C ) 0.0 

Elastic nucleus parameter ( S ) 1.0 

Ratio of triaxial extension to compression value of R ( ce RR / ) 0.92 

Ratio of triaxial extension to compression value of A ( ce AA / ) 1.2 

Hardening Parameters 

Shape hardening parameter in triaxial compression ( ch ) 3.0 

Ratio of triaxial extension to compression value of h ( ce /hh ) 1.0 

Hardening parameter on I-Axis (ho) 2.0 
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5.4.1.1 Static Analysis 

The static analysis was carefully performed to exactly simulate the model making 

and experimental procedures. The gravitational acceleration was first increased to 80 g in 

2400 seconds and maintained at 80 g for another 5820 seconds (Fig. 5.4(a)). Pore 

pressures on the submerged nodes along the embankment sides were increased from zero 

to hydrostatic pressure in 1380 seconds to simulate the introduction of water on both 

sides (Fig. 5.4(b)). Ponding the reservoir could not be simulated using the current version 

of the TeraDysac because, pressure boundary conditions could not be specified in the 

displacement formulation. Because of the importance of the initial stresses for the 

dynamic analysis, a true static analysis computer program (SAC2) (Herrmann and Mish, 

1983) was used to obtain the initial stresses. 

Pore water pressure contours in the model embankment at the end of the static 

analysis (8220 sec) are shown in Fig. 5.5(a). Pore water pressures obtained from the 

analysis clearly show that pore pressures are in hydrostatic equilibrium with the water 

levels on both sides. The contours of index ( )NJI +  are shown in Fig. 5.5(b).  I  is the 

first invariant of the effective stress tensor (Eq. 5.1) and J is the square root of the second 

invariant of the deviatoric stress tensor (Eq. 5.2) (also see Fig. 5.3). N  is the slope of the 

critical state line in I-J space. 

kkI σ ′=  (5.1) 

ijij ssJ
2
1

=  (5.2) 

where ijσ ′  is the effective stress tensor, and ijs  is the deviatoric stress tensor. 
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The ( )NJI +  value is considered as an indicator of the proximity of the initial 

stresses to the critical state line. The initial stresses will be closer to the critical state line 

for smaller absolute values of ( )NJI + . When the initial stress state is close to the 

critical state line, then the soil will show dilative and contractive behavior and this will be 

replicated in the development of cyclic dynamic pore water pressures. 

The shear stress contours and vertical stress contours at the end of the static 

analysis are shown in Figs. 5.5(c) and 5.5(d). Higher shear stresses are concentrated at the 

bottom left and right of the embankment. This will also produce more cyclic pore water 

pressures around these areas. 
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(b) Reservoir ponding history 

Figure 5.4: Centrifuge spin-up and reservoir ponding history for the model 
embankment for static analysis 
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Figure 5.5: Stresses and pore water pressure contours at the end of static analysis 
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5.4.1.2 Dynamic Analysis 

With the initial stresses calculated from the static analysis, a dynamic analysis 

was carried out using TeraDysac. The horizontal base motion shown in Fig. 5.6 was 

applied to the embankment. 

 The horizontal displacement at the crest (N188) of the embankment is shown in 

Fig. 5.7(a). All the results are plotted in model dimensions. There was no horizontal 

displacement measurement available for the node N188. The prediction shows that the 

crest continuously moved to the right with a slight cyclic component. The predicted and 

measured vertical settlements at node N188 are compared in Fig. 5.7(b). The numerical 

model slightly over predicts the settlement at Node N188. It is observed that the 

numerical prediction begins to show settlement earlier than measured response and is 

consistent with the applied base motion. Measured and predicted horizontal 

displacements at node N67 are shown in Fig. 5.8. The horizontal displacement at node 

N67 is predicted well by the numerical model. The negative horizontal displacement 

means that the model moved to the left at this point. Measured and predicted 

displacements at node N43 are shown in Fig. 5.9. It can be seen that at this point the 

model moved to the right. 

The measured and predicted dynamic pore water pressure-time histories in 

elements E112 are shown in Fig. 5.10. Predicted pore water pressures in elements E8 and 

E157 are shown in Figs. 5.11(a) and (b), respectively. The pore water pressure in E112 is 

well predicted. Among predicted pore pressure-time histories in all the elements, the pore 

pressure-time history in E157 shows higher cyclic and dilative (negative pore pressure) 
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behavior. This can be explained by the smaller ( )NJI +  value and higher shear stresses 

around E157. 

Comparison between measured and predicted horizontal and vertical acceleration 

time histories at node N181 are shown in Figs. 5.12 and 5.13, respectively. The vertical 

and horizontal acceleration-time histories at node N251 are shown in Figs. 5.14 and 5.15, 

respectively. Only the horizontal acceleration measurement is available at N251. The 

frequency of the predicted and measure accelerations matches well. However, the 

amplitudes of the predicted accelerations are higher than that of the measured values, 

especially at node N181. The maximum amplitude of the input base motion acceleration 

is around 200 ms-2. The measured and predicted accelerations show higher amplitudes 

than that of applied. This observation clearly shows that the base motion is amplified at 

the crest of the embankment.  

 At this point we can conclude that the numerical model reasonably captures the 

dynamic response of a saturated clay embankment. Muraleetharan et al., (1994) also 

predicted the behavior of the centrifuge model used here. Overall the predictions shown 

here are better than those shown by Muraleetharan et al., (1994). This is likely due to the 

finer mesh used in this study. 

The analyses were run on single and dual processors of similar specifications 

(Intel-Xeon processor with 3.0 GHz clock speed). The single processor took 16 min and 

30 sec and two processors took 23 min and 30 sec. The speedup gained is 1.43. This is a 

reasonable speedup for the problem (225 elements and 252 nodes) used to validate the 

numerical model. For larger problems, the speedup is expected to be even higher because 
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the processors will spend more time doing calculations rather communicating with each 

other. 
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Figure 5.6: Horizontal base motion (model dimensions) 
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(b) 

Figure 5.7: Comparison between the measured and predicted horizontal and 
vertical displacement-time histories at node N188 
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Figure 5.8: Comparison between the measured and predicted horizontal and 

vertical displacement-time histories at node N67 
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Figure 5.9: Comparison between the measured and predicted horizontal and 

vertical displacement-time histories at node N43 
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Figure 5.10:Comparison between the measured and predicted pore water pressure-

time histories in elements E112 

0.00 0.04 0.08 0.12 0.16
Time (s)

-20.0

-10.0

0.0

10.0

20.0

30.0

Po
re

 W
at

er
 P

re
ss

ur
e 

(k
Pa

)

Predicted

E8

 
(a) 

0.00 0.04 0.08 0.12 0.16
Time (s)

-60.0

-50.0

-40.0

-30.0

-20.0

-10.0

0.0

10.0

Po
re

 W
at

er
 P

re
ss

ur
e 

(k
Pa

)

Predicted

E157

 
(b) 

Figure 5.11: Predicted pore water pressure-time histories in elements E8 and E157 
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Figure 5.12: Comparison between the measured and predicted horizontal 

acceleration-time histories at node N181 
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Figure 5.13: Comparison between the measured and predicted vertical acceleration-

time histories at node N181 
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Figure 5.14: Comparison between the measured and predicted horizontal 

acceleration-time histories at node N251 
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Figure 5.15: Predicted vertical acceleration-time history at node N251 

5.5 Three-Dimensional Analysis 

Three-dimensional finite element model for saturated porous media is also 

implemented into TeraDysac. A three-dimensional analysis was carried out and the 

predictions were compared with a 2-D plane strain analysis. Because of time limitation, a 

coarser mesh compared to the one used in Section 5.4 was prepared in 2-D and then 

extruded into a 3-D mesh (Fig. 5.16). The base motion shown in Fig. 5.6 was applied to 

the embankment. The horizontal and vertical displacement-time histories at nodes N1 

(N281 for 3-D analysis) and N4 (N284 for 3-D analysis) are shown in Figs. 5.17 and 

5.18, respectively. Pore water pressure-time histories in elements E23 (E191 in 3D) and 

E2 (E170 for 3D) are shown in Figs. 5.19 and 5.20, respectively. Elements E191 and 

E170 are located in the middle layer of the 3-D mesh. The results show that the 

predictions made by 2-D and 3-D analysis are very close. The slight differences in 

displacements and pore pressures can be attributed to the boundary effects in the third 

direction (z-direction). In terms of computational requirements, the 2-D analysis (56 

elements) took 11 minutes and 3-D analysis (392 elements) took 26 hours on a 64-bit 
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Dual-Core Intel Xeon processor with 3.0 GHz clock speed. This clearly shows the need 

for parallel computing for 3-D problems. 
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Figure 5.16: Finite element mesh for 3-D analysis (all dimensions are in meters) 
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Figure 5.17: Comparison between 3-D and 2-D analysis – Displacement-time 

histories at node N281 (3D) and N1 (2D) 
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Figure 5.18: Comparison between 3-D and 2-D analysis – Displacement-time 

histories at node N284 (3D) and N4 (2D) 
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Figure 5.19: Comparison between 3-D and 2-D analysis - Pore pressure-time 

histories in E191 (3D) and E23 (2D) 



 103

0.00 0.04 0.08 0.12 0.16
Time (s)

-10.0

0.0

10.0

20.0

30.0

Po
re

 W
at

er
 P

re
ss

ur
e 

(k
Pa

)

E170(3D) E2(2D)

3D Analysis

2D Analysis

 
Figure 5.20: Comparison between 3-D and 2-D analysis - Pore pressure-time 

histories in E170 (3D) and E2 (2D) 

5.6 Comparison of Computational Efficiency Between Traditional 
and Framework-Based Finite Element Codes 

The 2-D problem discussed in Section 5.4.1.2 was run using DYSAC2 

(Muraleetharan et al., 1988, 1997) and the new framework-based computer code 

TeraDysac to study the efficiency of the framework-based finite element approach. Both 

codes were run on a single Intel-Xeon processor with 3.0 GHz clock speed. The 

DYSAC2 took 1 hour 39 minutes and 32 seconds and the framework-based code 

TeraDysac took only 23 minutes and 30 seconds. By using the new computer code a 

424% increase in computational efficiency was achieved over the traditional computer 

code. This increase in efficiency is attributed to the efficient, modern computational 

techniques, such as the robust global matrix equation solver and element matrix 

calculation algorithm, used in the framework-based method. The framework-based 

method incorporates modern computer science aspects at each and every calculation to 

increase the computational efficiency. On the other hand, in the traditional computer 

codes such as DYSAC2, more attention is paid to getting a working code rather than 

finding efficient ways to do the calculations. 
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In addition, the same problem was run on two processors with similar 

specifications using TeraDysac and a speedup of 1.43 was achieved (one processor took 

23 minutes and 30 seconds and two processors took 16 minutes and 30 seconds). The 

DYSAC2 could not be run on two processors because it does not have the capability to 

run on multiple processors. The speedup of TeraDysac on multiple processors will 

increase even further for large 3-D problems because more time will be spent on 

calculations compared to message passing between processors. 
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6 PERFORMANCE OF THE 
UNIFORM GRADIENT ELEMENT 

6.1 Introduction 

As discussed in Chapter 2, the Gauss quadrature (GQ) method is typically used to 

evaluate the element matrices and vectors in finite element analyses. Four-node 

quadrilateral elements are commonly used in computational mechanics to achieve 

computational efficiency in large-scale simulations. However, these lower order elements 

lock volumetrically when fully integrated using the Gauss quadratue method for 

compressible or nearly incompressible materials. In order to avoid elements locking up 

and to achieve computational efficiency the Uniform Gradient (UG) method to calculate 

elements matrices and vectors can be used. The UG method uses a single point 

integration scheme, but requires a special hourglass control technique. 

In this chapter, the applicability of uniform gradient method for evaluating the 

element matrices and vectors is investigated. Implementation of the uniform gradient 

element formulation in TeraDysac is verified using a 2-D fully coupled dynamic analysis 

code, DYSAC2 (Muraleetharan et al., 1988, 1997). The performance of the uniform 

gradient element is investigated by simulating the settlement of a footing and the 

dynamic behavior of a saturated clay embankment and a level ground. The performance 
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is also compared against the Gauss Quadrature (GQ) method. The effect of the hourglass 

control algorithm and the hourglass control parameters are also investigated. 

6.2 Gauss Quadrature Element Formulation 

The general form of the governing equations for the dynamics of multiphase porous 

media can be written using the usual notations as follows. 

extf ffuKCvMa =+++ int  

The mass matrix, damping matrix and internal loads ( intf ) are evaluated using full 

Gauss quadrature formulation, i.e. integrated over all four integration stations (Fig. 6.1) 

for a four-node quadrilateral element. The constitutive calculation is also performed at 

each integration station using the strains calculated at that integration station. The only 

exception is the evaluation of the fluid stiffness matrix. The fluid stiffness matrix is 

calculated using a uniform gradient element formulation because of the incompressible or 

nearly incompressible behavior of water in saturated porous media. The Gauss quadrature 

method has been implemented into the TeraDysac and this procedure is validated in 

Chapter 5. 

η

ζ
+

+

+

+

η

ζ
++

++

++

++

 

Figure 6.1: Gauss qudrature integration points for a 2-D quadrilateral element 
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6.3 Uniform Gradient Element Formulation 

For the uniform gradient element formulation, the element fields are assumed to 

be uniform within the element and the integration is performed at one point as shown in 

Fig. 6.2. Since the values are evaluated at one point, looping over the integration stations 

is not required and thus a significant amount of computational effort can be saved for 

large scale and nonlinear elastoplastic calculations. Furthermore, the necessary footprint 

of the analysis is significantly reduced. 

η

ζ+

η

ζ++

 

Figure 6.2: Single point integration for a 2-D quadrilateral element 

It is dangerous to use single point integration without proper consideration for the 

zero energy or hourglass modes that exist. The mesh distortion due to hourglass modes is 

shown in Fig. 6.3. The evolution of hourglass modes can be eliminated by systematically 

calculating a resistance force. 

 

Figure 6.3: Hourglass patterns for 2D quadrilateral elements 
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Clearly, if the strains at the centroid of the elements shown in Fig 6.3 are evaluated, they 

will be zero and then the strain energy will also be zero. 

6.4 Evidence of Excitation of Hourglass Modes in Fully Coupled 
Analysis of Porous Media 

A rigid footing problem was selected to show the excitation of hourglass modes in 

the fully coupled analysis of porous media. The schematic of the problem is shown in 

Fig.6.4 (a). The footing was pushed down as shown in Fig. 6.4 (b) and the deformed 

mesh at 100 seconds is shown in Fig. 6.5. The analysis was done using the uniform 

gradient element formulation without any hourglass control with the foundation soil 

modeled as a saturated linear elastic material ( kPaE 4100.3 ×= , 3.0=ν , 62.2=sρ , 

0.1=fρ  and 48.1=porosity ). The formation of hourglass modes can be seen around 

the surface and left and right boundaries but not close to the bottom boundary. The 

hourglass modes are not seen at the bottom boundary because the solid and liquid 

displacements are fixed at this boundary. The left and right boundaries are free to move 

in the vertical direction, but not in the horizontal direction. The top surface is a free 

surface. This caused the hourglass modes triggered by the stress gradients underneath the 

footing corners to propagate to the left, right, and top boundaries. It is also found through 

many numerical experiments that the level of excitation of hourglass modes is problem 

dependent. For example, the hourglassing shown in Fig. 6.5 will vary depending on the 

depth and the width of the soil layer and the maximum displacement of the footing. 

Kinematics behind the hourglass modes is discussed in the next section and a method to 

control hourglassing is proposed. In Section 6.7 this footing problem is analyzed again 

with proper hourglass control. 
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(b) 

Figure 6.4: Schematic of the consolidation problem (all dimensions are in meters) 

 
 

Figure 6.5: Deformed mesh at 100 seconds 
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6.5 Kinematics Behind the Single Point Integration and Hourglass 
Control Scheme 

The hourglass control scheme presented by Flanagan and Belytschko (1981) are 

used in this study to control the hourglass mode and are summarized in this section.  

6.5.1 Isoparametric Shape Function and Deformation Modes 

Mapping of a unit square in iξ - space ( )ηξ ,  to a general quadrilateral in ix - 

space in two dimensions is shown in Fig 6.6 (a) and the displacement modes are shown in 

Fig 6.6(b). Choosing the center of the square at the origin in iξ -space, the shape 

functions can be expanded in terms of an orthogonal set of base vectors, IΣ , iIΛ  and IΠ  

as shown in Eq. 6.1. The values of base vectors are listed in Table 6.1 for each node. 

IIIIIN Π+Λ+Λ+Σ= ςηηξ
4
1

4
1

4
1

4
1

21  (6.1) 

In Eq. 6.1, IΣ  is the summation vector that accounts for rigid body translation. 

The IΣ  vectors are summation vectors since it may be employed in indicial notation to 

represent the algebraic sum of vectors. The linear base vectors iIΛ  may be readily 

combined to define two normal strain modes, two uniform shear strain modes and two 

rigid body rotation modes for the unit square. Thus the iIΛ  vectors are referred as the 

volumetric base vectors since they are the only base vectors, which appear in the element 

volume expression. The last vector IΠ  gives rise to linear strain modes, which are 

neglected by one-point integration. These vectors define the hourglass patterns for a unit 

square. 
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Figure 6.6: Quadrilaterals and its displacement modes; hourglass modes are ΠI 

Table 6.1: Base vectors and their values at each node 

Node ξ  η  IΣ  I1Λ  I2Λ  IΠ  

1 -1/2 -1/2 1 -1 -1 1 

2 1/2 -1/2 1 1 -1 -1 

3 1/2 1/2 1 1 1 1 

4 -1/2 1/2 1 -1 1 -1 
 

6.5.2 One-Point Integration and the Calculation of Consistent Nodal Point 
Forces 

The principle of virtual work gives us the following relationship for the element 

nodal forces iIf : 
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∫=
V

ijijiIiI dVDfu σ&  

where ijσ  is stress tensor, ijD  is deformation rate tensor and V  is the volume of the 

element. The deformation rate tensor can be replaced by the velocity gradient since the 

Cauchy’s stress tensor is symmetric. When the one-point integration is used, the 

nonlinear portion of the element displacement fields is neglected, and results in a uniform 

state of strain and stress. The preceding expression is approximated by 

jiijiIiI uVfu ,
&& σ=  

where ijσ  represents the assumed uniform stress field and will be referred to as the mean 

stress tensor. 

By neglecting nonlinear displacements, we assume that the mean stresses depend only on 

the mean strains. Mean kinematic quantities are defined by integrating over the element 

as follows: 

∫=
V

jiji dVu
V

u ,,
1

&&  (6.2) 

The velocity gradient is expressed in terms of nodal displacement and shape functions as 

follows: 

∫=
V

jIiIji dVNu
V

u ,,
1

&&  (6.3) 

Define 

∫=
V

jIjI dVNB ,  
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Then, the mean velocity gradient is given by: 

jIiIji Bu
V

u && 1
, =  

Therefore, the nodal forces are expressed by the following equation: 

jIijiI Bf σ=  (6.4) 

The B-matrix has to be evaluated to calculate the nodal forces. The B-matrix 

contains only components of the volumetric base vectors iIΛ . Therefore, only the 

volumetric base vectors lead to stresses or nodal forces within the one-point integration 

framework. 

The nodal point forces calculated using above equation can not resist the formation 

of hourglass modes. Therefore, the force contribution from the nonlinear displacement 

fields has to be calculated and added to resist the formation of hourglass modes as 

described in Section 6.5.4. 

6.5.3 Stress-Strain Relationship 

The integration scheme described above does not assume any constitutive law, i.e. 

it is material independent. The only stipulation is that the stress state does not depend on 

the nonlinear portion of the element displacement field. Hence the mean stress must be 

related only to the mean strain rates (as opposed to the full strain field) through the 

governing material law. 

6.5.4 Anti-Hourglassing Force 

The idea behind the use of hourglass control scheme is the application of 

additional force to resist the formation of hourglass modes. The resistant can be applied 
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as stiffness and or damping. In the case of fully saturated porous media, stiffness can be 

applied to the solid and pore fluid and damping can be applied to the solid and pore fluid. 

In this study, however, only solid stiffness, solid damping, and fluid stiffness are used to 

control the hourglass mode shapes. The equations for solid and fluid stiffnesses for a two 

dimensional quadrilateral element are derived in the later part of the this section. 

The mean stress-strain formulation considers only a fully linear velocity field. The 

remaining portion of the nodal velocity field is the so-called hourglass field. Excitation of 

these modes may lead to severe, unresisted mesh distortion. The following method is 

used to isolate the hourglass modes so that they may be treated independently of the rigid 

body and uniform strain modes. 

The hourglass field hg
iIu&  may now be defined by removing the linear portion of the 

nodal velocity field: 

lin
iIiI

hg
iI uuu &&& −=  

It can be proved that the summation vectors and B-matrix are orthogonal to the hourglass 

field: 

0=Σ I
hg
iIu&  

0=jI
hg
iI Bu&  

Since the B-matrix is a linear combination of volumetric base vectors iIΛ , the last 

contribution may be stated equivalently as: 

0=Λ jI
hg
iIu&  
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From the above equation it can be said that the hourglass fields are orthogonal to 

all the base vectors as given in Table 6.1 except the hourglass base vectors. Therefore, the 

hourglass velocity fields can be expanded as a linear combination of the hourglass base 

vectors. 

The contribution of the hourglass resistance to the nodal force is given by: 

Ii
hg

iI Qf γ
2
1

=  (6.5) 

where iQ  are anti-hourglass stiffness ( hgK ) or damping ( hgC ) defined in the next 

sections and Iγ  are the hourglass shape vectors. There are two types of hourglass 

resistances: artificial damping and artificial stiffness. The anti-hourglass stiffness and 

damping resistances are defined in terms of the maximum frequency and stiffness of the 

element. The stiffness and damping are given in the next section. 

6.5.5 Anti-Hourglass Stiffness 

The artificial solid hourglass stiffness resistance for a 2-D isoparametric element 

is given by: 

hgstiff
r

ss
hg K

A
D

kK ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

8
4,4  (6.6) 

where 4,4D  is the deviatoric component of the material stiffness matrix, sk  is solid 

hourglass stiffness coefficient, rA  is the aspect ratio and hgstiffK  is the hourglass stiffness 

matrix. For an elastic analysis, 4,4D will be µλ 2+ . 

The corrected solid stiffness matrix is the summation of solid stiffness matrix calculated 

using single point integration and the solid hourglass stiffness, i.e. 



 116

s
hg

s
sp

s KKK +=  

The artificial fluid hourglass stiffness resistance is given by: 

hgstiff
r

ff
hg K

A
kK ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ Γ
=

8
 (6.7) 

where Γ  is the bulk modulus of liquid, fk  is fluid hourglass stiffness coefficient,  rA  is 

the aspect ratio and hgstiffK  is the hourglass stiffness matrix 

The equivalent fluid stiffness is, 

f
hg

f
sp

f KKK +=  

6.5.6 Anti-Hourglass Damping 

The artificial solid hourglass damping resistance is given by: 

hgstiff

s
ss

hg K
D

cC ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

8
4,4ρ

 and the equivalent solid damping is: 

s
hg

s
sp

s CCC +=  (6.8) 

The artificial fluid hourglass damping resistance is given by: 

hgstiff

f
ss

hg KcC ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ Γ
=

8
ρ  and the equivalent fluid damping is: 

f
hg

f
sp

f CCC +=  (6.9) 

Flanagan and Belytschko (1981) emphasized that a more successful approach to 

combat hourglassing is to use an artificial stiffness, which allows only mild hourglassing. 

Unlike damping, hourglass stiffness does not attenuate global modes. Even though 

artificial stiffness and damping could be combined, it is found no evidence that additional 
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damping provides any improvement. However, the effect of artificial damping is also 

studied in this research. The solid stiffness, solid damping and fluid stiffness, hourglass 

control algorithms are implemented within TeraDysac. 

6.6 Verification of the Numerical Model Using DYSAC2 

The finite element model for saturated soil used in TeraDysac was verified using a 

fully coupled analysis code DYSAC2 (Muraleetharan, 1988, 1997). In DYSAC2, the 

constitutive calculation is done only at the center of the element. This value is used to 

calculate the consistent nodal point forces at all integration station. This procedure is 

same as to the uniform gradient calculation in TeraDysac without any hourglass control. 

The same problem was run using both codes and the results were compared. The mesh 

used in a two-element problem is shown in Fig. 6.7. The loading was a simple sinusoidal 

base shaking. 

The vertical and horizontal displacements at nodes N4 and N5 (Fig. 6.7) are plotted 

in Fig. 6.8 and 6.9, respectively. The displacements predicted by DYSAC2 and 

TeraDysac matched very well. Therefore, it can be concluded that the implementation of 

the governing equation for saturated porous media using uniform gradient elements is 

correctly done in TeraDysac.  

N5 N4N5 N4

 

Figure 6.7: Two-element mesh for verification using DYSAC2 
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Figure 6.8: Comparison of horizontal and vertical displacement between TeraDysac 

and DYSAC2 at N4 
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Figure 6.9: Comparison of horizontal and vertical displacement between TeraDysac 

and DYSAC2 at N5 
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6.7 Effectiveness of the Proposed Hourglass Control Method 

The same problem used to show the excitation of the hourglass modes in Section 

6.4 is simulated with proper hourglass control (solid stiffness parameter = 5%, solid 

damping parameter = 5%). The deformed mesh at 100 seconds is shown in Fig. 6.10. The 

deformed mesh shows that the proposed hourglass control methods effectively eliminated 

the excitation of hourglass modes. The critical places of formation of hourglass modes: 

surface and left and right boundaries were further examined by magnifying the deformed 

shape by different factors. 

The performance of the uniform gradient element formulation and the 

effectiveness of the anti-hourglass method on the dynamic behavior of some of the 

common geotechnical engineering problems are discussed in the following sub sections. 

 
Figure 6.10: Deformed mesh with hourglass control 

6.8 Performance of the Uniform Gradient Element Formulation for 
the Dynamic Behavior of Saturated Clay Embankment  

The centrifuge model embankment described in Chapter 5 is used here. The 

experiment is simulated using both GQ method and the UG method. The finite element 

mesh for the embankment is shown in Fig. 6.11 and the base motion time history is 
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shown in Fig. 6.12. Simulation with UG method has been performed without any 

hourglass control and 5% of solid stiffness and 5% of solid damping as suggested by 

Flanagan and Belytschko (1981). 

The deformed shapes and displacement vectors at mid (0.07875 sec) and end 

(0.1575 sec) of the analysis without hourglass control are shown in Fig. 6.13. Excitation 

of hourglass modes in this analysis is visible neither on the deformed shapes nor 

displacement vectors. The displacement-time histories predicted by the GQ and UG 

formulations at nodes N188 and N67 are shown in Fig. 6.14. Vertical displacement at 

node N188 is slightly under predicted by the UG formulation with and without hourglass 

control. The differences between the GQ and UG formulations with and without 

hourglass control are not very obvious. In some cases, for example for the vertical 

displacement time history at node N67, the GQ formulation and UG formulation without 

hourglass control fall on top of each other. The pore pressure time histories in element 

E112 and E157 are shown in Fig. 6.15. Pore pressures in E157 predicted by UG methods 

are slightly different than that predicted by the GQ method. The horizontal and vertical 

accelerations at nodes N181 and N251 are shown in Figs. 6.16 and 6.17, respectively. 

The amplitude and frequency of the acceleration predicted by GQ and UG formulations 

look similar. 

At this point, the effect of single point integration (UG formulation) could not be 

seen in the overall dynamic behavior of the clay embankment. The consolidation problem 

discussed in Section 6.4 and 6.7 shows formation of hourglass. However, the dynamic 

problem discussed in this section does not show any hourglass modes. The reason for this 

difference is that the inertial load caused by the base shaking is a body force and does not 
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have sharp stress gradients as in the footing problem. Sharp stress gradients are needed to 

trigger hourglass modes. The effect of the UG element formulation on the acceleration 

time histories are further investigated using Fast Fourier Transformation in the next 

section.  
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Figure 6.11:  Finite element mesh of the model embankment (All dimensions are in 
meters and model scale) 
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Figure 6.12: Horizontal base motion acceleration (model dimensions) 
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(a) Deformed mesh at 0.07875 sec (displacement magnified by 2) 
 

 
 

(b) Displacement vectors at 0.07875 sec 
 

 
 

(c) Deformed mesh at 0.1575 sec (displacement magnified by 2) 
 

 
 

(d) Displacement vectors at 0.1575 sec 

Figure 6.13: Deformed shapes and displacement vectors using UG formulation 
without hourglass control 
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Figure 6.14: Comparison between the predicted horizontal and vertical 
displacement at nodes N188 and N67 using GQ and UG formulations  
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Figure 6.15: Comparison between predicted pore water pressures using GQ and UG 

formulations in elements E112 and E157 
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Figure 6.16: Comparison between predicted horizontal accelerations at node N181 

using GQ and UG formulations 



 125

0.00 0.04 0.08 0.12 0.16
Time (s)

-800.0

-400.0

0.0

400.0

800.0

H
or

i. 
A

cc
el

er
at

io
n 

(m
/s

^2
)

N251

GQ

UG: No HG Control

UG: 5% Solid Stiffness and 5% Solid Damping

 

0.00 0.04 0.08 0.12 0.16
Time (s)

-800.0

-400.0

0.0

400.0

800.0

V
er

t. 
A

cc
el

er
at

io
n 

(m
/s

^2
)

N251

GQ

UG: No HG Control

UG: 5% Solid Stiffness and 5% Solid Damping

 
Figure 6.17: Comparison between predicted vertical acceleration at node N251 

using GQ and UG formulations 

6.8.1 Further Investigation of Acceleration Time Histories Using Fast Fourier 
Transformation 

Hourglass effects were not apparent in the displacement, pore pressure and 

acceleration time histories. Fourier analysis was performed on the nodal accelerations to 

further investigate the performance of uniform gradient element formulation. Fourier 

analysis is based on the concept that real world signals can be approximated by a sum of 

series of sinusoidal functions. The normalized (with maximum amplitude of each 

acceleration) Fast Fourier Transform (FFT) of the horizontal and vertical accelerations 

with and without hourglass control at nodes N188 and N251 are shown in Figs. 6.18 and 

6.19, respectively. The predominant frequency for the input motion is located around 120 

Hz. There is only one predominant frequency for the horizontal accelerations at nodes 

N181 and it is located around 600 Hz. The predominant frequency for the vertical 
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acceleration is also located around 600 Hz, but there is a second predominant frequency 

around 1200 Hz. This is observed for both GQ and UG formulations. The predominant 

frequency for the horizontal acceleration at N251 is located around 600 Hz and the 

second predominant frequency is located around 1200 Hz. For the vertical acceleration, 

the predominant frequency is shifted to 1200 Hz. There is a difference in the third 

predominant frequencies produced by GQ and UG formulation without hourglass control. 

The third predominant frequency occurs around 1800 Hz for the GQ formulations and 

around 2400 Hz for the UG formulation without hourglass control. The amplitudes of the 

higher frequency modes for the UG formulation without hourglass control are in general 

higher than that of GQ formulation. The hourglass control scheme effectively reduces 

these high frequency amplitudes. 
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Figure 6.18: FFT of horizontal and vertical acceleration at N181 
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Figure 6.19: FFT of horizontal and vertical acceleration at N251 
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6.8.2 Parametric Study on Hourglass Control Parameters 

The effect of solid stiffness, solid damping and fluid stiffness hourglass control 

parameters on the overall behavior of the saturated clay embankment is investigated in 

this section. 

6.8.2.1 Effect of solid stiffness coefficient 

The solid stiffness coefficient is the highly recommended parameter to be used in 

controlling the hourglass modes. To investigate the effect of the solid stiffness parameter 

on the overall behavior, the parameter was varied from 0 to 15%. The horizontal and 

vertical displacements at nodes N188 is shown in Fig. 6.20. The pore pressure-time 

history in element E112 is shown in Fig. 6.21. A slight decrease in displacements and 

slight increase in pore water pressures are observed with increasing solid stiffness 

coefficient. Similar trends were observed at nodes N67 and N43 and in elements E218, 

E80 and E8. 
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Figure 6.20: Effect of solid stiffness parameter on horizontal displacement 
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Figure 6.21: Effect of solid stiffness parameter on pore water pressure 
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6.8.2.2 Effect of solid damping coefficient 

The solid damping coefficient was also varied from 0 to 15%. The horizontal and 

vertical displacements at nodes N188 is shown in Fig. 6.22. The pore pressure-time 

histories in element E112 is shown Fig. 6.23. It is observed that the solid damping 

coefficient does not affect the solution. Similar behavior was observed at other nodes and 

elements. 
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Figure 6.22: Effect of solid damping parameter on vertical displacement 
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Figure 6.23: Effect of solid stiffness parameter on pore water pressure 

6.8.2.3 Effect of fluid stiffness coefficient 

Since the saturated porous media consist of a solid and a liquid phase, similar to 

the solid stiffness, the fluid stiffness was also applied to control the hourglass modes. The 

fluid stiffness parameter can not be varied form from 0 to 15% because the bulk modulus 

of liquid ( Γ ) used in the calculation of anti-hourglass fluid stiffness is very high (2.2 

Gpa). Therefore, the appropriate percentages to use for the parametric study were 

calculated by dividing the corresponding solid stiffness parameters by 
µλ 2+

Γ .  

where λ and µ  are Lame’s elastic constants and Γ  is the bulk modulus of liquid phase. 

The following values were used for these constants: 

kPa4107.1 ×=λ  

kPa41015.1 ×=µ  

( kPaE 4100.3 ×=  and 3.0=ν ) 

kPa6102.2 ×=Γ  
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The displacements and pore pressures time histories are shown in Figs. 6.24, 6.25 

and 6.26. Unlike solid stiffness hourglass control, the fluid stiffness hourglass control 

parameters affect the response of the embankment. Horizontal displacement at node 

N188 and N43 are under predicted and at N67 is over predicted by the application of 

fluid stiffness hourglass control. Similar trend is observed in the vertical displacement 

time histories at these nodes also. The difference increases with increasing value of fluid 

stiffness hourglass control parameter. As shown in Fig. 6.26 pore water pressures in 

element E112, E80 and E8 are over predicted by the use of anti-hourglass fluid stiffness 

parameter. The differences in pore water pressures increase with increasing value of fluid 

stiffness parameter. The pore pressure in element E8 is severely altered by the hourglass 

control method. 

From the above discussion, it is obvious that a small percentage (0.1) of fluid 

stiffness anti-hourglass parameter has greater influence on some vertical displacement 

and pore pressures and alter the overall solution considerably. Therefore, it is 

recommended that fluid stiffness coefficient smaller than 0.1 % has to be used to control 

the hourglass modes. 
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Figure 6.24: Effect of fluid stiffness parameter on horizontal displacement 
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Figure 6.25: Effect of fluid stiffness parameter on vertical displacement 
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Figure 6.26: Effect of fluid stiffness parameter on pore pressure development 
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6.9 Performance of the Uniform Element Formulation on the 
Dynamic Behavior of Saturated Level Ground 

The hourglass modes were not observed in the analysis of saturated clay 

embankment. Therefore, a different problem was picked to investigate the occurrence of 

hourglass modes. In this case, a level ground with 22.8 m width and 10.00 m height was 

picked (Fig. 6.27). This model is similar to the Model #1 of the VELACS project 

(Arulanandan and Scott, 1993), but the soil profile in this analysis consists of Speswhite 

Kaolin instead of sand. The bottom boundary was fixed in all direction for solid and 

liquid and the left and right boundaries were fixed in horizontal direction and allowed to 

move in the vertical direction for both solid and liquid. 
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Figure 6.27: Finite element mesh of the level ground (all dimensions are in meters 

and prototype scale) 

The initial stresses were calculated at the center of each layer. A 0K  value of 0.5 

was used to calculate the lateral pressures. Bounding surface model parameters used in 

the previous case (Table 5.1) were used again. The model was shaken with an El Centro 

earthquake base motion (Fig. 6.28(a)) in the horizontal direction and 10% of the 

horizontal motion was used in the vertical direction (Fig. 6.28(b)). The predictions by the 
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UG method with (5% solid stiffness and 5% solid damping) and without hourglass 

control are compared with the GQ method to investigate the apparent formation of 

hourglass modes in this particular problem. 
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Figure 6.28: Horizontal and vertical base acceleration-time histories 

The deformed shape and nodal solid displacement vectors at 2 seconds and 10 

seconds for UG methods without hourglass control are shown in Figs. 6.29 and 6.30, 

respectively. Excitation of hourglass modes is visible neither on deformed shape nor on 

the displacement vectors. Horizontal and vertical displacements at adjacent nodes N41 

and N42 are shown in Figs. 6.31 and 6.32, respectively. FFT of the horizontal and 

vertical accelerations at nodes N41 and N42 are shown in Figs. 6.33 and 6.34, 

respectively. Unlike in the embankment, considerable difference between GQ and UG 

formulations in the displacement-time histories is observed. The difference is small in the 
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horizontal displacement and large in the vertical displacements. The effect of hourglass 

control can be readily seen in the displacement-time histories. The displacements 

predicted with hourglass control fall in between those predicted with GQ formulation and 

UG formulation without hourglass control. 

Similar difference is also seen in the normalized FFT amplitude of the horizontal 

and vertical accelerations.  At nodes N41 and N42, the predominant frequencies of 

horizontal accelerations appear at 2.1 Hz for all three formulations. The UG formulation 

without hourglass control has shifted the vertical acceleration predominant frequency at 

node N41 to 18.41 Hz. When the hourglass control is applied, the predominant frequency 

is brought back to 2.1 Hz. 

Three problems were discussed to study the performance of the hourglass modes: 

one quasi-static problem and two dynamic problems. The footing problem was used to 

show the evidence of hourglass modes in the fully coupled analysis of porous media. The 

level of excitation of hourglass modes seems problem dependent. Severe hourglassing 

was observed in the footing problem discussed in Section 6.4 and 6.7 that had higher 

stress gradients. The effectiveness of the hourglass control scheme was also shown 

through this problem. Hourglassing was not seen in the dynamic analysis of saturated 

clay embankment that involves only body forces and did not have higher stress gradients.  

At the same time, the dynamic analysis of level ground showed some effect of the UG 

element formulation in the displacement time histories. The effect of hourglass control 

scheme could also be seen in the dynamic analysis of level ground. With the experience 

gained from this study, it is safe to use the hourglass control scheme to avoid any 

distortion of solution. 
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Figure 6.29: Deformed shape and displacement vectors at 2 sec using UG element 
formulation without hourglass control (displacement magnified by 10) 
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Figure 6.30: Deformed shape and displacement vectors at 10 sec using UG element 
formulation without hourglass control (displacement magnified by 10) 
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Figure 6.31: Horizontal and vertical displacements at node N41- comparison 

between GQ and UG formulation 
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Figure 6.32: Horizontal and vertical displacements at node N42- comparison 

between GQ and UG formulation 
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Figure 6.33: FFT of horizontal and vertical accelerations at node N41- comparison 

between GQ and UG formulation 
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Figure 6.34: FFT of horizontal and vertical accelerations at node N42- comparison 
between GQ and UG formulation 
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6.9.1.1 Checker-boarding effect of uniform gradient element 

The single point integration procedure has produced checker-boarding effect on 

the pressure field. The checker-boarding causes pressure fields in two adjacent elements 

to be mirror image of each other, but with opposite signs (see Section 2.6.5). Therefore, 

this effect is also investigated in this study for completeness. For this purpose, three 

locations were selected: E161, E170 and E70 (see Fig. 6.27). The element E170 is located 

at the surface and away from all the boundaries. Element E161 is also at the surface, but 

closer to the left boundary. Element E70 is located middle-center of the level ground. The 

pore pressures around elements E170, E70 and E161 are shown in Figs. 6.35, 6.36 and 

6.37, respectively. The pore pressures show gradual increase in all elements. Elements 

located at higher depths show higher pore water pressures compared to those located at 

shallow depths. There is no checker-boarding effect observed without hourglass control. 
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Figure 6.35: Pore pressure-time histories around element E170-UG formulation 
without hourglass control 
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Figure 6.36: Pore pressure-time histories around element E70-UG formulation 
without hourglass control 
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Figure 6.37: Pore pressure-time histories around element 161-UG formulation 
without hourglass control 
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7 LARGE DEFORMATION 
ANALYSIS FOR SATURATED 

POROUS MEDIA 

7.1 Importance of Large Deformation Analysis in Porous Media 

Fully coupled nonlinear dynamic analysis of porous media and its computer 

implementation using the finite element method has been treated in great detail. 

However, significantly less effort has been spent on introducing the equally important 

concepts of finite strain/large deformation in soil mechanics, despite the fact that many 

geotechnical engineering problems involve large deformations. Liquefaction induced 

flow failure is one of the most dramatic consequences of liquefaction that may cause 

significant lateral spreading, in the case of mild slopes, and may lead to flow slide and 

slope instability in embankments containing liquefiable soils. Wetting induced slope 

failures in unsaturated soils also involves large deformation. Most of the current 

liquefaction analysis procedures, however, use a small deformation and small strain 

assumption even for fully coupled nonlinear analyses. 

In this chapter, the governing equations for the dynamics of saturated porous media 

undergoing large deformation are derived. The governing equations are implemented 

within the TeraScale framework. The importance of large deformation analysis is 

discussed by simulating a centrifuge model tests.  
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7.2 Fully Coupled Field Equations for Large Deformation 
Analysis 

7.2.1 Choice of Formulation 

For a saturated earthen structure, which occupies an initial volume of Ω0  with the 

boundary surface S0  at time 0, we seek to establish the governing field equations 

necessary to evaluate its equilibrium positions and entire history of response during a 

quasi-static or transient process of deformation.  

It is assumed that the specified displacements, and surface tractions for solid and 

liquid phases are defined on different portions of the boundary surface Stt ∆+  at a generic 

time tt ∆+ . The governing equations are established without imposing any restrictions 

on the magnitude of the displacements and strains. Adopting an incremental analysis 

because of the nonlinear behavior of the soils, an equilibrium position at time tt ∆+  is 

searched assuming that the solutions for all time steps from 0  to t  are known.  

Ωt Reference configuration

Current configurationΩ∆+ tt

Ω0 Initial configuration

1x
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xt
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Figure 7.1: Configurations of a body at different times 

Lagrangian and Eulerian formulations are commonly used to derive the field 

equations for large deformation analysis. In solid mechanics, the Lagrangian formulations 
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and meshes are most popular. Their attractiveness stem from the ease with which they 

handle complicated boundaries and their ability to follow the material points. Therefore, 

the history-dependent material, such as soils, can be treated accurately. In the 

developments of Lagrangian finite elements, two approaches are commonly taken: Total 

Lagrangian formulation and Updated Lagrangian formulation. In this study, the updated 

Lagrangian formulation is used to derive the field equations. 

7.2.2 Summary of Governing Equations 

The dynamic behavior of the saturated soil system is expressed by the following 

three governing equations. 

Linear momentum balance for the mixture: 

0, =−−+ i
l

iijji wub &&&& ρρρσ  in Ω∆+ tt  

Linear momentum balance for the liquid phase: 

jijil

l

i
l

i
l

i wkw
n

ubp &&&&& 1
,

−++=+−
ρρρ  in Ω∆+ tt  

Mass balance for the mixture: 

( )iiii uwp ,, &&& +Γ−=  in Ω∆+ tt  

The pressure terms can be removed from the above equations by using the mass balance 

equation. The irreducible form of the governing equations, where solid displacement and 

fluid displacements are considered as nodal unknowns, will be considered in the 

subsequent derivation of the governing equations. 
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7.2.3 Principle of Virtual Work 

The principle of virtual work requires that the virtual work performed, when the 

soil body undergoes a virtual displacement uδ , is equal to the external work done by the 

body force and traction, i.e. 

Ω= ∆+∆+

Ω

∆+∆+ ∫
∆+

deW tt
ij

tt
ij

tttt

tt

δσint  (7.1) 
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 (7.2) 

where the ij
tt σ∆+  are the Cartesian components of the Cauchy total stress tensor, and 

ij
tt e∆+  are the Cartesian components of the strain tensor. There are four contribution to the 

external work of the system: contribution from the body force, contribution from the 

inertial force of the solid skeleton, contribution from the inertial force of the pore fluid 

and the contribution from the surface traction. Similar equation can be derived for the 

motion of the pore fluid. There are two major difficulties in applying the above equations 

for large deformation problems, which involve rotation and change in configuration, for 

saturated porous media. First, the configuration at time tt ∆+  is unknown and the 

integrals over the volume Ω∆+ tt  and surface Stt ∆+  can not be evaluated before calculating 

the equilibrium position at time tt ∆+ . Therefore, the virtual work equations have to be 

transformed to the reference configuration at time tt ∆+ . The second difficulty is the 

presence of total stress in the internal work equation. The total stress does not have any 

direct influence on the mechanical behavior of the soil. Therefore, the principle of 
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effective stress, which is expressed in terms of Cauchy stress, has to be applied with 

proper consideration for the large deformation. 

7.2.4 Principle of Effective Stress for Saturated Soils 

The single stress state variable, which governs the mechanical behavior of the 

saturated soil, is the effective stress. Terzaghi’s principle of effective stress can be written 

as: 

Iσσ p−′=   (7.3) 

where σ  is the total stress tensor, σ′  is the effective stress tensor, and p  is the pore 

water pressure. The conventional solid mechanics sign convention is used in the above 

equation, i.e. tensile stresses are considered positive. Since the effective stress principle is 

defined in terms of Cauchy stress tensor, which is not an objective measure of stress, it is 

important to establish a suitable rate form for the effective stress equation. Taking the 

time derivative of Eq. 7.3 

Iσσ p
Dt
D

Dt
D

Dt
D

−′=  (7.4)  

The Terzaghi’s effective stress equations can be rewritten in the co-rotational form as 

follows 

Iσσ p&−′= ∇∇  (7.5)  

where ∇σ  is the objective total stress tensor, ∇′σ  is the objective effective stress tensor 

and p& is the pore water pressure. The objective form of the effective stress principle can 

be incorporated into the virtual work equation with an objective measure of stress. 
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7.2.5 Constitutive Equation for the Solid Skeleton 

When dealing with large deformation effects, involving large rotations, care must 

be taken in the material frame invariance of the constitutive law. Before discussing frame 

indifference of stress measures, lets discuss the strain measures. During the elastoplastic 

deformation of the body from a reference configuration to the current configuration, the 

material undergoes elastic, reversible, deformation and plastic, irreversible, deformation. 

Define three configurations: a reference configuration Ωt , a virtual intermediate 

configuration Ωi  and a current configuration Ω∆+ tt .  

X

x

pF

eF

F

x

Ωt Reference configuration

Intermediate configurationΩi

Current configurationΩ∆+ tt

XX

xx

pF

eF

F

xx

Ωt Reference configuration

Intermediate configurationΩi

Current configurationΩ∆+ tt

 

Figure 7.2: Elastic-plastic deformation 

The motion of the body from Ωt  to Ω∆+ tt  is considered in two steps: motion of 

the body from Ωt  to Ωi  and then from Ωi  to Ω∆+ tt . The motion form Ωt  to Ωi  is 

purely plastic and irreversible. Therefore, the configuration iΩ  can be considered as an 

unstressed configuration. The motion from Ωi  to Ω∆+ tt  is purely elastic and reversible. 
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The deformation gradient for the motion from Ωt  to iΩ  is denoted by pF  and the 

deformation gradient from Ωi  to Ω∆+ tt  is denoted by eF . When the motion from Ωt  to 

Ω∆+ tt  is continuous, the deformation gradient has the following non-cumulative 

representation in its plastic and elastic part (Bannmann and Johnson, 1987; Lee, 1981). 

peFF
X
x

x
xF =

∂
∂

∂
∂

=  (7.6) 

where x  is the spatial coordinates, X  is the material coordinates and x  is the 

intermediate coordinates. Since the deformation measures are not linearly expressed in 

terms of displacements, generally the elastic and plastic components are not summable. 

In fact, choosing a representation of the elastic part of deformation independent from 

rigid body motion, the deformation rate tensor is given by the symmetric part of the 

velocity gradient (Lee, 1981; Lubarda and Lee, 1981) 

( ) ( ) ( ) 1e1ppe1ee FFFFFFL −−−
+⋅= &&  

( ) ( )s
epe

s
epee 11 −−

++= FWFFDFDD  (7.7) 

where WDL +=  

If the elastic components of the total strain are assumed to be small, which is true for 

most soils, 1≈eF  and the last term in Eq. 7.7 is also small. Then the rate of deformation 

reduces to  

pe DDD +=  

pe ddd εεε +=  

where eD  and pD  are the elastic and plastic parts of the total strain rate. This 

formulation is also called the additive decomposition of the rate of deformation in large 
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deformation finite element plasticity. It should also be noted here that the additive 

decomposition is the simplification of the exact kinematics. 

 Now, lets discuss the frame indifference of the stress measures. The corotational 

form of the stress-strain relationship for the elastoplatic material is expressed in the 

following form: 

DCσ :ep=′∇&  

where epC  is the tangential elastoplastic stiffness tensor which may be a function of the 

current state of effective stress, strains and some internal variables. 

There are different forms of objective stress rates developed and used in the large 

deformation analysis. The Jaumann stress rate, which is most commonly used in solid 

mechanics, shows oscillation at very large strain values (Szabo and Balla, 1988). 

Therefore, the Green-Naghdi stress rate is used in this study. The Green-Naghdi rate 

differs from the Jaumann rate only in using a different measure of rotation of the 

material: the Green-Naghdi rate employs the angular velocity Ω . It has been observed 

that the use of different rotation measure changes the behavior of the material model 

markedly. The Green-Naghdi stress rate is expressed as follows: 

T

Dt
D ΩσσΩσσ ⋅−⋅−=∇  (7.8) 

The angular velocity is given by  

TRRΩ ⋅= &  

The rotation tensor R  can be calculated by the polar decomposition theorem. The Polar 

decomposition theorem states that any deformation gradient tensor F  can be 

multiplicatively decomposed into product of an orthogonal matrix R  and a symmetric 

tensor U , called the right stretch tensor. 
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=  

Rearranging the objective rates, and applying the effective stress principle for total 

objective rate, the effective stress is expressed as 

T
kjikkjikijij

ij p
Dt

D
Ω+Ω+−=

∇

σσδσ
σ

&  

T
kjikkjikijkl

ep
ijkl

ij pDC
Dt

D
Ω+Ω+−= σσδ

σ
&  (7.9) 

7.2.6 Boundary Conditions 

Solid and liquid displacement, solid traction and pore pressure boundary 

conditions are assumed to exist in this derivation. These boundary conditions are 

specified on different portion of the boundary surface Stt ∆+  of the saturated soil body at a 

generic time tt ∆+  and defined as follows: 

• Solid displacement boundary condition 

i
tt

i
tt uu ∆+∆+ =  on u

tt S∆+  

where i
tt u∇+  is the specified value of displacement on the boundary surface u

tt S∆+  at time 

tt ∆+ . 

• Liquid displacement boundary condition 

i
tt

i
tt UU ∆+∆+ =  on 

U
tt S∆+  

where i
tt U∇+  is the specified value of liquid displacement on the boundary surface U

tt S∆+  

at time tt ∆+ . 

• Traction boundary condition 
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t
i

tt
jij

tt fn ∆+∆+ =σ  on T
tt S∆+  

where t
i

tt f∇+  is the specified value of traction on the boundary surface T
tt S∆+  at time 

tt ∆+ . jn  is the unit normal and ij
tt σ∆+  is the total Cauchy stress tensor acting on the 

neighborhood of T
tt S∆+ . 

• Pore Pressure Boundary Condition 

pp tttt ∇+∇+ =  on p
tt S∇+  

where ptt ∇+  is the specified value of the pore water pressure at time tt ∆+ . 

7.3 Virtual Work Equations in Reference Configuration 

The stress measure in the linear momentum balance equation in the current 

configuration is the Cauchy stress tensor and the strain measure is the rate of 

deformation. These stress and strain measures have to be pulled back to the reference 

configuration through appropriate methods. It is well known that the second Piola-

Kirchhoff stress tensor and Green–Lagrange strain tensors are work conjugate pairs of 

stress and strain measures which relates the σtt ∆+  and Ett ∆+  to the configuration at time 

t . The pull back transformations for the stress and strain measures are given by the 

following equations.  

T
ljklikij FJFS −−= σ1  

ljkl
T

ikij FeFE =  

The following transformation can be obtained though the axiom of mass balance 

equation: 

Ω=Ω=Ω ∆+∆+ ddd tttttt ρρρ 00  
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In general the, the external loading, such as the surface traction, external water 

pressure, gravitational and centrifugal loading is deformation dependent, i.e., the 

magnitude and direction of a load changes when the shape of the body changes. 

However, in most geotechnical structures, the change in aforementioned loadings due to 

change in configuration can be neglected. Therefore, it is reasonable to assume that the 

magnitude and directions of surface and body forces are independent of the configuration 

of the soil body, i.e. 

i
tt
ti

tt bb ∆+∆+ =  

dSfdSf tt
i

tt
t

ttt
i

tt ∆+∆+∆+ =  

In other words, the load stiffness contribution to the total stiffness is neglected. Then, the 

internal virtual work equation can be rewritten as follows on the reference configuration: 

Ω= ∆+

Ω

∆+∆+ ∫ dSW t
ij

tt
ij

tttt

t

εδint   

Substituting the total stress tensor in terms of effective stress and pore water pressure the 

following equation can be derived for internal work. 
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where ( ) T
ljklikij
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t FpJFh −−∆+ = δ1  

The external work equation can be written as  
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7.4 Incremental Equations and Newton’s Method 

The equilibrium state of the soil body is known at some time t  and the state Π  

can be defined by the known stresses, tractions, deformations and history of the soil 

body.   Let the right hand side and the left hand side of the virtual work equation in the 

reference configuration be ( )ΠI  and ( )ΠE , respectively. At time tt ∆+  a new 

equilibrium state must be established for the body. Let Π∆  be the change in the state 

which is the solution of  

( ) ( )[ ] 0=⋅∆+−∆+ vΠΠΠΠ δEI  

Denoting, Π  as a guess for the new equilibrium state, the above equation can be 

expanded about the new guessed state 

( ) ( )[ ] ( ) ( )[ ] ( ) ( )
⋅⋅⋅+⋅⎥

⎦

⎤
⎢
⎣

⎡
∂

∂
∂

−∂
∂

∂
+⋅−=⋅∆+−∆+ vΠ

Π
ΠΠ

Π
ΠvΠΠvΠΠΠΠ δδδ EIEIEI  

where the Π∂  is the increment between the correct equilibrium state ΠΠ ∆+  and the 

guessed equilibrium state Π . Taking first order approximation, the above equation 

reduces to  

( ) ( ) ( ) ( )[ ] vΠΠvΠ
Π
ΠΠ

Π
Π δδ ⋅−−=⋅⎥

⎦

⎤
⎢
⎣

⎡
∂

∂
∂

−∂
∂

∂ EIEI  

Successive solution of the above equation for various trial states Π  can be found until 

the right hand side of the equation becomes zero, i.e. Π  equal ΠΠ ∆+  and equilibrium 

is satisfied. 

These stress measures can be substituted in Eq. 7.9 and replacing the rate form 

with increments we get the following equations. 

( ) T
lj

T
mlkmmlkmmn

ep
klmnikij FDCJFS −− Ω+Ω+= σσ1&  
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( ) T
lj

T
mlkmmlkmmn

ep
klmnikij FDCJFS −− Ω∂+Ω∂+∂=∂ σσ1  (7.12) 

Eq. 7.12 can be substituted into Eq. 7.10 and the incremental internal virtual work 

equation can be expressed as follows:  
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 (7.13) 

Eq. 7.13 together with other components can be simplified by instantaneously choosing 

the current configuration to coincide with the reference configuration. Then, the 

deformation gradient simply becomes the identity tensor and all the stress measures 

remain the same. This choice of reference configuration is called the Updated Lagrangian 

method. This method is very easy to use in the computer programming because it 

requires only the coordinates of the body to be updated after each iteration so that the 

current configuration is also the reference configuration. 

7.5 Initial Stress Stiffness 

The gradients in the above equation can be symbolically represented with respect 

to the independent variables as follows. 
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σ
ε

ε
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=∂
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∂ EEE  

These gradients give rise to different stiffness matrices such as initial stress stiffness 

matrix, small strain stiffness matrix and initial load stiffness matrix, which is neglected in 

Section 7.3. In addition to the usual small strain stiffness, the initial stress stiffness has to 
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be added to obtain the final stiffness matrix. This initial effective stress stiffness is given 

by the following equations in terms of Viot’s stress notations for plane strain case: 
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where N is the shape function. 

7.6 Numerical Simulation 

The field equations for the saturated porous media undergoing large deformation 

have been implemented using the TeraScale framework. It was initially planned to 

validate the large deformation finite element code developed in this study by simulating 

the centrifuge experiment on sand embankment undergoing large deformations. 

However, due to some unexpected problems encountered in the constitutive model for 

sand, as a first step, the centrifuge experiment on the clay embankment (Chapter 5) was 

used to verify the large deformation capabilities. The finite element mesh for the 

centrifuge model is shown in Fig.7.3. The uniform gradient element formulation together 

with 5% solid stiffness and 5% solid damping was used for both small and large 

deformation analyses. 
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7.7 Comparison of Small and Large Deformation Analyses for a 
Small Earthquake 

In this case, the centrifuge model test described in Chapter 5 was simulated using 

both small and large deformation analysis computer codes. The base motion applied to 

the model is shown in Fig. 7.4. The displacement-time histories at nodes N188 and N251 

are shown in Figs.7.5 and 7.6. The predicted responses by both analysis methods are 

similar to each other. This is because the embankment did not under go large 

deformation. The surface settlement is only about 5% of the embankment. When the 

deformations are small, both analysis methods predicted similar responses. The pore 

water pressure-time history in element E80 is shown in Fig. 7.7. Pore pressures predicted 

by both the analyses show a slight difference. This difference in pore pressure can be 

attributed to incompressible nature of the pore fluid, i.e., the very large value of the bulk 

modulus of the liquid used in the calculation of the pore pressure amplified the small 

difference in the predicted displacements. These analyses show that the predictions made 

by both analyses are similar when the material undergoes small deformation, i.e., the 

small deformation theory is a subset of the large deformation theory. There is no error 

associated with using a large deformation theory to solve a small deformation problem.  
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Figure 7.3: Finite element mesh for large deformation analysis (all dimensions are in 

meters and model scale) 
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Figure 7.4: Horizontal base motion (model dimension) 
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Figure 7.5: Horizontal and vertical displacement-time histories at node N188-

Comparison between small and large deformation analysis 
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Figure 7.6: Horizontal and vertical displacement-time histories at node N251-

Comparison between small and large deformation analysis 

0.00 0.04 0.08 0.12 0.16
Time (s)

-10.0

0.0

10.0

20.0

30.0

Po
re

 W
at

er
 P

re
ss

ur
e 

(k
Pa

)

Large Deformation Analysis

Small Deformation Analysis

E80-ugsssd

 
Figure 7.7: Pore water pressure-time histories in element E80-Comparison between 

small and large deformation analysis 
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7.8 Comparison of Small and Large Deformation Analyses for a 
Large Earthquake 

In this case, a large deformation problem was created by applying five times 

larger earthquake motion than that was used Section 7.7. The vertical and horizontal 

displacements at nodes N188, N251 and N67 are shown in Figs. 7.8, 7.9 and 7.10, 

respectively. The small deformation analysis shows considerably larger displacements at 

all nodes compared to the large deformation analysis, i.e., the large deformation 

formulation is stiffer than the small deformation formulation. This is because of the initial 

stress stiffness added to the total stiffness in the large deformation formulation (see 

Section 7.5). The final vertical and horizontal displacements predicted by small 

deformation analysis are almost two times that of large deformation analysis. When the 

material undergoes large deformations such as in this problem, the small deformation 

analysis will not predict the true response of the structure. This clearly shows the 

importance of large deformation analysis for correctly predicting the response of 

structures. Comparisons to experimental results will validate this further. 

The pore pressure in elements E8, E80 and E112 are shown in Fig. 7.11. The pore 

pressure in E8 is predicted by both methods very closely. It should be noted here that the 

element E8 is located at the center and bottom of the embankment. The strain 

experienced by the element is small and the difference in small deformation and large 

deformation analysis could not be seen. However, large deformation analysis shows more 

cyclic behavior compared to the small deformation analysis in element E80 and even 

more cyclic component in element E112 that is located above element E80. These regions 

undergo large cyclic loading. Therefore, the cyclic behavior predicted is justifiable. 
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The horizontal and vertical acceleration time histories at nodes N188, N251, and 

N67 are shown in Figs. 7.12 - 7.17. The accelerations predicted by both the analyses are 

comparable. 
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Figure 7.8: Horizontal and vertical displacement-time histories at node N188-

Comparison between small and large deformation analysis 
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Figure 7.9: Horizontal and vertical displacement-time histories at N251-Comparison 

between small and large deformation analysis 
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Figure 7.10: Horizontal and vertical displacement-time histories at N67-Comparison 

between small and large deformation analysis 
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Figure 7.11: Pore water pressure-time histories in selected elements-Comparison 

between small and large deformation analysis 
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Figure 7.12: Horizontal acceleration-time histories at N188-Comparison between 

small and large deformation analysis 
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Figure 7.13: Vertical acceleration-time histories at N188-Comparison between small 

and large deformation analysis 
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Figure 7.14: Horizontal acceleration-time histories at N251-Comparison between 

small and large deformation analysis 
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Figure 7.15: Vertical acceleration-time histories at N251-Comparison between small 

and large deformation analysis 
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8 DYNAMICS OF UNSATURATED 
POROUS MEDIA 

8.1 Introduction 

The equations governing the dynamic behavior of unsaturated soils derived in 

Chapter 3 are implemented within the TeraScale framework, which is described in 

Chapter 4. The importance of the large deformation analysis over the small deformation 

analysis is also discussed.  The effect of relative accelerations and velocities on the 

overall behavior of the unsaturated soil embankment is studied by simulating a centrifuge 

test on unsaturated soil embankment (Deshpande, 1997). The implementation of the 

governing equations for the unsaturated porous media is similar to that of saturated 

porous media and the differences are summarized in the next section. 

8.2 Updated Lagrangian Formulation of Governing Equations 

The updated Lagrangian formulation of the governing equations and the 

constitutive relations for the unsaturated soils can be derived in a manner similar to that 

of saturated soils. The net stress for the unsaturated soils is given by: 

Iσσ gp−′′=  
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The objectivity of the effective stress principle for the saturated porous media can be 

extended to the net stress for the unsaturated soils. The objectivity for the net stress can 

be written as: 

Iσσ gp&−′′= ∇∇  

The equilibrium equation on the current configuration for the reduced formulation is 

written as follows: 

( ) ( ) ( ) ( ) ( ) ∫∫∫∫∫
ΓΩΩΩΩ ∆+∆+∆+∆+∆+
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g
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,,,
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The coefficients are defined in Chapter 3. The general framework for the large 

deformation analysis described in Chapter 7 can be extended to the unsaturated soils. The 

equations can be transformed to the reference configuration and then the incremental 

equations can be derived. 

8.3 Validation of the Numerical Model 

8.3.1 Centrifuge Experiment 

The numerical model developed for an unsaturated soil is validated using a 

centrifuge model test results (Deshpande, 1997). The schematic of the centrifuge model 

embankment used in the centrifuge test is shown in Fig. 8.1. The locations of the Linear 

Variable Displacement Transducers (LVDT), pore pressure transducers and 

accelerometers are shown in Table 8.1. All dimensions are given in model scale. The 

Minco silt was used to prepare the model. The properties of Minco Silt are listed in Table 

8.2. 

The centrifuge test was done in two steps: static test and dynamic test. In the static 

test, the centrifuge was brought to 50 g gradually, in about 30 minutes. This procedure 
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simulated the construction procedure of the embankment at prototype scale. The 

centrifuge was then spun for another 10 minutes at 50 g to allow the soil to consolidate. 

At the end of the static test, while the centrifuge was spinning at constant speed, vertical 

and horizontal base motions were applied to the model. 
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Figure 8.1: Schematic illustration of centrifuge model and instrument locations 

(after Desphande, 1997) 

Table 8.1: Initial locations of the instruments 

 x (m) z(m)   x(m) z(m) 
ACC 1 Base H 0.00  PPT 1 0.080 0.067
ACC 2 Base V 0.00  PPT 2 0.120 0.042
ACC 3 0.140 0.064  PPT 3 0.170 0.140
ACC 4 0.155 0.140  PPT 4 0.170 0.080
ACC 5 0.065 0.051  PPT 5 0.270 0.058
ACC 6 0.230 0.112  PPT 6 0.220 0.053
ACC 7 0.150 0.155  PPT 7 -0.050 0.00

LVDT 1 0.095 0.105     
LVDT 2 0.160 0.170     
LVDT 3 0.250 0.110     
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Table 8.2: Physical and engineering properties of the Minco silt 

Property Value 

Specific gravity of solids 2.67

Liquid limit, % 28.0

Plastic limit, % 20.0

Gravel, % 0.0

Sand, % 27.0

Fines, % 73.0

Clay size fraction, % 18.0

USCS Classification CL

Maximum dry unit weight, kN/m3 17.9

Optimum moisture content, % 12.8

Model dry unit weight, kN/m3 14.2

Model moisture content, % 14.0

8.3.2 Numerical Modeling 

The centrifuge experiment is simulated using the numerical model developed for 

the unsaturated soils using both small and large deformation formulations. The finite 

element mesh for the unsaturated soil embankment used in this study is shown in Fig. 8.2. 

The simulation is carried out on the model scale and the results are also reported on the 

model scale. The prototype values can be calculated by using centrifuge-scaling laws. 

The calibration of the soil water characteristic curve and the constitutive model are 

described in the following sections.  
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Figure 8.2: Finite element mesh of unsaturated model embankment (All dimensions 
are in meters) 

8.3.3 Calibration of Soil Water Characteristic Curve 

The soil water characteristic curve proposed by van Genuchten (1980) is used in 

this simulation to represent the relationship between matric suction and degree of 

saturation in an unsaturated soil. The SWCC model parameters were determined by 

adjusting the model parameters until the model matches the experimental curve 

(Ananthanathan, 2002). The calibrated van Genuchten’s model and the experimental 

results are shown in Fig. 8.3.  
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Figure 8.3: Calibration of soil water characteristic curve model parameters 
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It was found that there was a discrepancy in the measured suction (30 kPa) at a 

moisture content of 13.82 % and a density of 14.23 kN/m3 (Vinayagam, 2004) and that 

obtained from SWCC shown in Fig. 8.3 (10 kPa). This difference may be attributed to the 

different initial compaction moisture contents used in both cases. A 6% of initial 

compaction moisture content was used for generating the SWCC shown in Fig. 8.3. The 

centrifuge model soil had a compaction moisture content of 14.0%. This is closer to the 

moisture content used by Vinayagam (2004) and therefore, the SWCC was shifted to 

obtain 30 kPa for moisture content of 13.82 % (no reliable initial suction measurements 

are available for the centrifuge model soil). The shifted model parameters are listed in 

Table 8.3. 

Table 8.3: Calibrated van Genuchten model parameters 

Parameter van Genuchten model values 

Dry Density (kN/m3) 14.14 

Parameter a 0.172 

Parameter  n 1.500 

Parameter  m 0.333 

Irreducible saturation 0.005 
 

8.3.4 Constitutive Equation 

The stress strain behavior of unsaturated Minco Silt is modeled using an 

elastoplastic constitutive model based on the bounding surface concept. The schematic 

illustration of the bounding surface on stress invariant space is shown in Fig. 8.4. The 

original three-surface model developed for cohesive soils (Dafalias and Herrmann, 1986) 

was modified for unsaturated soils by Muraleetharan and Nedunuri (1998). Additional 

parameters related to matric suction have been incorporated into the original model. This 
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model uses two stress state variables: net stress ( ij
g

ij p δσ − ) and matric suction ( S ). The 

original bounding surface model is considered as the base model at zero suction. The 

bounding surface expands when the matric suction increases. The modifications to the 

base model to incorporate the suction effects are based on the concepts proposed by 

Alonso et al., (1990), Wheeler and Sivakumar (1995) and Wheeler (1996) for unsaturated 

soils. 
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Figure 8.4: Schematic illustration of bounding surface constitutive model in stress 

invariant space 

8.3.5 Calibration of the Constitutive Model Parameters 

The bounding surface material model requires 25 input parameters. The parameters 

defining the initial state of the material, elasoplastic model parameters, traditional 

material constants, surface configuration parameters. Some of the parameters were 

calculated directly from experimental results (Vinayagam, 2004) and others were 

determined by calibrating the model against the experimental results. 
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The parameters determined by calibrating the constitutive model against the 

monotonic loading did not predict the cyclic behavior well (Vinayagam, 2004). For the 

dynamic analysis, the model parameters have to be calibrated against a cyclic test so that 

the model behavior can replicate the actual material behavior. The cyclic test was 

performed in two steps: loading the specimen monotonically for a certain stress level 

(200 kPa) and then unloading and reloading cycles were applied. Keeping the directly 

calculated model parameters constant, other parameters were adjust to predict the cyclic 

test results. Capabilities of the current constitutive model for predicting the cyclic 

behavior were found to be very limited. This is expected since the base model used 

(Dafalias and Herrmann, 1986) is a model for clay. A base sand model is expected to 

yield better predictions for Minco Silt and one such model is currently under 

development. It is impossible to predict the cyclic loading portion after matching the 

monotonic loading portion with the current model. Therefore, a reasonable judgment had 

to be made to use the existing constitutive model with reasonable values for model 

parameters. Since the dynamic behavior is related to the cyclic behavior, the model was 

calibrated to reach the same amount of total plastic strain with the same number of cycles 

used in the experiment. The calibrated model parameters are shown in Table 8.4.  

The calibrated and measured deviatoric stress, change is suction and change in 

volumetric strain are plotted against axial strain as shown in Figs. 8.5(a), (b) and (c), 

respectively. The experimental results show complexity in the cyclic loading region not 

only for the deviatoric stresses but also for the change in suction and change in 

volumetric strain.  However, the final values are predicted well by the model. 
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Figure 8.5: Measured and calibrated model curves (a) deviatoric stress versus axial 
strain, (b) suction change versus axial strain and (c) volumetric strain versus axial 

strain 
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Table 8.4: Calibrated model parameters for Minco Silt 

No Parameters Values 

(a) Traditional Model Parameters 

1 Slope of isotropic consolidation line, λ  0.0954

2 Slope of elastic rebound line, κ  0.0103

3 Slope of bounding surface line OA in compression, cM  1.2678

4 Ratio of extension to compression value of M, ce MM  1.0

5 Poisson ratio or elastic shear modulus, υ  0.2

6 Limit pressure, lP  (kPa) 33.8

7 Atmospheric pressure, aP  (kPa) 101.3

(b) Surface Configuration Parameter 

8 Parameter defining the ellipse 2, T  0.01

9 Bounding surface shape parameter in compression, cR  2.41

10 Ratio of triaxial extension to triaxial compression value of R, ce RR  1.0

11 Value of parameter defining the hyperbola in compression, cA  0.05

12 Ratio of triaxial extension to triaxial compression value of A, ce AA  1.0

13 Elastic nucleus parameter, S 1.03

14 Projection center parameter, C 0.0

(c) Hardening Parameters 

15 Hardening parameter, m 0.02

16 Shape hardening parameter in compression, ch  0.8

17 Ratio of extension to compression value of H, ce hh  1.0

18 Shape hardening parameter on the I-Axis, 0H  0.8

(d) Suction Related Parameters 

19 Suction dependent parameter, )(sµ  4.7028

20 Suction dependent parameter, )(sα  0.0889

21 Suction dependent parameter, )(sN  1.752

22 Suction dependent parameter, )(sA  0.3587

23 Suction dependent parameter, )(sr  3.0

24 Suction dependent parameter, )(sβ  0.5
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8.3.6 Static Analysis 

The initial stresses for the dynamic analysis are determined by performing static 

analysis. To save computational time, static analysis is performed using the reduced 

formulation. The static analysis is calculated dynamically, by setting the algorithmic 

Newmark parameters in the integration scheme to 0=α , 0.1=β  and 5.1=γ . The 

stresses at the end of the static analysis are used as the initial stresses for the dynamic 

analysis. At the end of consolidation, the nodal displacements, velocities and 

accelerations are set to zero, i.e. the stresses are applied to an undeformed mesh for the 

dynamic analysis. The elastoplastic constitutive model requires initial stresses even for 

static analysis. Therefore, 20% of the vertical stress (10 g values) at the middle height of 

the embankment is used as the initial stresses for the static analysis. During the static 

analysis the maric suction was kept constant. Then, the gravity load is increased from 10 

g to 50 g in 300 seconds as shown in Fig 8.6. 

300 400

50

G
ra

vi
ta

tio
na

l A
cc

el
er

at
io

n 
(g

)

Time (sec)

End of static analysis and 
beginning of dynamic analysis

10

300 400

50

G
ra

vi
ta

tio
na

l A
cc

el
er

at
io

n 
(g

)

Time (sec)

End of static analysis and 
beginning of dynamic analysis

10

 

Figure 8.6: Centrifuge spin-up time history for static analysis 
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8.3.7 Dynamic Analysis 

The stresses at the end of static analysis were used as the initial stresses for the 

dynamic analysis. The time integration parameters were changed to 3.0−=α , 

4225.0=β  and 8.0=γ . The model embankment was shaken with the horizontal and 

vertical accelerations shown in Fig. 8.7. The validation of the numerical model against 

the experimental results is shown for the large deformation analysis with reduced 

formulation (Section 3.5). The vertical settlements at nodes N88 and N146 are compared 

with the experimental results in Fig. 8.8. The change in pore liquid pressures in elements 

E126, E124, E16, and E11 are compared with the experimental results in Fig. 8.9.  

The predicted settlements at nodes N88 and N146 are higher than the measured 

values, but some general trends are predicted. For example, more settlement is observed 

and predicted at node N146 than N88. The major factor contributing to this softer 

behavior is the constitutive model parameters. As discussed before, the constitutive 

model used is not ideally suited for simulating Minco Silt behavior.  

The pore liquid prediction in element E126 is very close to the measured value. 

Pore liquid pressure predictions at other locations are off from the measured values. It 

was reported that some of the pore pressure transducers did not function well 

(Deshpande, 1997). The pore liquid pressures in elements E126, E124 and E11 show a 

gradual increase. The pore liquid pressure in element E16 decreases at the beginning and 

then increases.  
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Figure 8.7: Horizontal and vertical input base acceleration-time history (model 

dimensions) 
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Figure 8.8: Comparison between the measured and predicted displacements at node 

N88 and N146 
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Figure 8.9: Comparison between the measured and predicted pore liquid pressures 
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8.4 Comparison Between Complete and Reduced Formulation 

The centrifuge experiment was simulated using the complete formulation and the 

reduced formulation to study the effect of fluid accelerations and velocities on the overall 

behavior of the unsaturated soils under earthquake loading. The matrices of the complete 

formulation are highly nonlinear and the simulation could not be completed with initially 

calibrated model parameters. Two of the bounding surface model parameters, λ and κ , 

were decreased ( 02.0=λ , 002.0=κ ) to make the model embankment more stiff, as 

observed in the centrifuge experiment, and then the complete formulation was run. The 

reduced formulation was also run with the new model parameters. Large deformation 

analyses were carried out with these two formulations. 

 The displacement time histories from these two formulations are compared in 

Figs. 8.10 through 8.12. The reduced formulation shows more displacements compared to 

the complete formulation. The reduced formulation assumes an undrained condition and 

the complete formulation allows the liquid and gas to flow. Therefore, the predictions are 

consistent with the drained and undrained behavior of the soil. Similar responses are 

observed at other nodes also. 

The time histories of the pore liquid pressure, pore gas pressure, matric suction 

and degree of saturation are shown in Fig. 8.13. An interesting phenomenon is observed 

in the liquid pressure time history. The pore liquid pressure increases at the beginning 

and shows some dissipation after shaking subsides. This behavior is obviously not 

observed in the reduced formulation. The matric suction time history shows this 

phenomenon clearly. 
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Looking at the results from both these formulations, it can be concluded that both 

formulations predict the overall behavior reasonably well. However, the accelerations and 

velocities of the pore fluids do have some influence on the overall behavior. The major 

disadvantage of using the full formulation is that it requires tremendous computational 

resources. It is also found that the complete formulation requires very small time steps. It 

is approximately calculated that the complete formulation requires 36 times more 

computational effort than reduced formulation. Finally, it can be concluded that the 

reduced formulation can be used to simulate the earthquake behavior of the unsaturated 

soils such as the Minco Silt and reasonable preliminary results can be obtained. For soils 

with larger permeabilities (e.g. sands) caution should be exercised when using the 

reduced formulation. 
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Figure 8.10: Horizontal and vertical displacements at node N88 
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Figure 8.11: Horizontal and vertical displacements at node N146 
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Figure 8.12: Horizontal and vertical displacements at node N165 
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Figure 8.13: Fluid pressures, suction, and degree of saturation at element E126 
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8.5 Comparison Between Small and Large Deformation Analysis 

Small and large deformation theories for the dynamics of unsaturated porous 

media have been implemented within the Terascale framework. The response of the 

unsaturated soil embankment discussed in Section 8.3 is analyzed using both methods 

utilizing the reduced formulation. Horizontal and vertical displacements at nodes N88, 

N146 and N165 are shown in Figs. 8.14, 8.15 and 8.16, respectively. It is found that the 

large deformation analysis gives smaller vertical and horizontal displacements compared 

to the small deformation analysis. Time histories of pore liquid pressure, pore gas 

pressure, matric suction and degree of saturation in element E126 are shown in Fig. 8.17. 

The pore liquid and gas pressures show slightly higher values for the large deformation 

analysis. 
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Figure 8.14: Horizontal and vertical displacements at node N88 
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Figure 8.15: Horizontal and vertical displacements at node N146 
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Figure 8.16: Horizontal and vertical displacements at node N165 
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Figure 8.17: Time histories of fluid pressures, suction and degree of saturation in 

element E126 
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8.6 Parametric Study on Bounding Surface Model Parameters 

To further investigate the softer simulation response of the embankment, a 

parametric study on the constitutive model parameters was performed. Out of many 

model parameters used, the influence of λ and κ  on the behavior of the embankment is 

investigated here. The selection of these two parameters is also supported by 

discrepancies found in these parameters calculated using different experimental results 

(Vinayagam, 2004; Ananthanathan, 2002).  

The values of λ  and κ  were reduced by approximately 4.8 times and 1.6 times 

and the response is compared. The values reduced by 4.8 times are equal to the values 

calibrated from a different set of experimental results (Ananthanathan, 2002). The 

horizontal and vertical displacements at nodes N88, N146 and N165 are shown in Figs. 

8.18, 8.19 and 8.20, respectively. The element variables, pore liquid pressure, pore gas 

pressure, matric suction and degree of saturation, in element E126 are shown in Fig. 8.21. 

Reduction in λ and κ  greatly alters the simulation results. The response gets stiffer as 

λ and κ  reduce. The vertical settlement at the top of the embankment is reduced almost 

by a factor of 10. Similar response is also observed on the horizontal displacement at the 

left (N88) and right (N165) sides of the embankment. Reduced λ and κ  also shows 

slight decrease in pore liquid and pore gas pressures development. 
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Figure 8.18: Horizontal and vertical displacement at node N88 
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Figure 8.19: Horizontal and vertical displacement at node N146 
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Figure 8.20: Horizontal and vertical displacement at node N165 
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Figure 8.21: Fluid pressures, suction, and degree of saturation at element E126 
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8.7 Parametric Study on Overconsolidation Ratio 

The value of the overconsolidation ratio is a difficult parameter to determine for 

compacted soils. For this study, the overconsolidation ratio could not be calculated from 

experimental results. A value of 12.6 was used in the calibration of model parameters 

(see Fig. 8.5). Therefore, a parametric study was performed to investigate the influence of 

the overconsolidation ratio. 

Different values for overconsolidation ratios (20.0 and 27.4) were used and the 

predicted responses were compared. The horizontal and vertical displacement at nodes 

N88, N146 and N165 are shown in Figs. 8.22 to 8.24. Various element variables are 

shown in Fig. 8.25. The comparison shows that the increase in overconsolidation ratio 

shows stiffer response. Reductions in settlements, pore liquid pressure and pore gas 

pressure developments are observed. 
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Figure 8.22: Horizontal and vertical displacements at node N146 
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Figure 8.23: Horizontal and vertical displacements at node N88 
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Figure 8.24: Horizontal and vertical displacements at node N165 
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Figure 8.25: Fluid pressures, suction, and degree of saturation at element E126 
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9 CONCLUDING REMARKS AND 
FUTURE WORK 

9.1 Conclusions 

The following conclusions are made from this study. 

• The governing equations for the dynamics of saturated and unsaturated soils have 

been successfully implemented within the TeraScale framework. It is found that the 

framework-based approach to develop a high performance computing tool is a 

promising approach for future research. 

• The uniform gradient element formulation together with hourglass control scheme is 

found to be applicable for the simulation of dynamic behavior of porous media. 

Significant hourglassing is seen for a footing problem with large stress gradients 

when the uniform gradient elements were used without any hourglass control. The 

proposed hourglass control scheme is shown to be effective in controlling the 

hourglassing. For base shaking problems involving only body forces very little 

hourglassing was seen even when no hourglass controls were used. It is found that the 

solid stiffness and solid damping hourglass control parameters have minor impact on 

the displacement and pore pressure time histories. It is also found that the fluid 

stiffness hourglass control parameter has significant influence on the displacement 
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and pore pressure time histories. From the parametric study on the fluid stiffness anti-

hourglass parameter, it is recommended that this parameter should be less than 0.1%. 

• The large and small deformation theories for saturated and unsaturated soils have 

been implemented within the TeraScale framework. The small deformation analysis 

is observed to predict larger displacements than the large deformation analysis. These 

analyses should be compared to experimental results with larger deformations to 

determine the significance of this observation. 

• The complete formulation for unsaturated soil has been successfully solved. Some 

effects of fluid accelerations and velocities on the overall behavior of unsaturated 

soils are observed. However, the reduced formulation is found to be computationally 

very efficient and captures the overall behavior well for the soil studied (Minco Silt) 

and can be used for preliminary evaluation of earthquake effects on similar 

unsaturated soils. 

9.2 Recommendations 

Following recommendations are made for the future research. 

• Numerical predictions of the dynamic behavior of unsaturated soils highly depend on 

the constitutive model used to represent the stress-strain behavior of the soil. A better 

constitutive model should be developed to predict the behavior of silts such as Minco 

Silt. 

• The complete formulation is highly nonlinear and seems computationally inefficient. 

Its use and computational efficiency should be further evaluated. 
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• Centrifuge experiments involving large deformations of saturated and unsaturated 

soils are needed to validate the numerical models. 

• Even though, the transition from saturated to unsaturated soil can be achieved at the 

governing equation level, it is very difficult to implement the transition into a finite 

element code. This is mainly due to the different nodal variables used for saturated 

and unsaturated soils for the finite element implementation. It is important to find an 

efficient way to implement the changes in primary unknowns and model the transition 

so that saturated, unsaturated and dry soils can be analyzed using a single finite 

element implementation. 
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