
STREAMFLOW RELATIONS WITH INCREASING 
RIPARIAN WOODY COVER IN NORTH-CENTRAL 

OKLAHOMA 
 

 

By 

MICHAEL WINE 

Bachelor of Science in Natural Resources 

Cornell University 

Ithaca, NY 

2009 

 

 

   Submitted to the Faculty of the 
   Graduate College of the 

   Oklahoma State University 
   in partial fulfillment of 
   the requirements for 

   the Degree of 
   MASTER OF SCIENCE 

July, 2011



ii 

 

STREAMFLOW RELATIONS WITH INCREASING 
RIPARIAN WOODY COVER IN NORTH-CENTRAL 

OKLAHOMA 
 

   Thesis Approved: 

 

Dr. Chris B. Zou 

 Thesis Adviser 

Dr. Tyson E. Ochsner 

 

Dr. David M. Engle 

 

Dr. Mark E. Payton 

Dean of the Graduate College



iv 

 

ACKNOWLEDGMENTS 
 

 

 I wish to thank my committee members Chris Zou, Tyson Ochsner, and Dave Engle for 

their support and assistance in defining manageable goals and objectives. I also acknowledge the 

department for providing funding for my studies here. I wish to acknowledge Vicki Phillips 

invaluable contributions through her assistance in locating historical imagery. Mark Gregory 

provided geospatial advice during the early stages of research and Don Turton suggested Council 

Creek as a viable watershed for this study. 

 Finally, I recognize the years of support from my friends and family, who provided me 

with direction and inspiration.



v 

 

TABLE OF CONTENTS 
 

Chapter          Page 
 
I. INTRODUCTION AND LITERATURE REVIEW ..................................................1 

 
 Synopsis ...................................................................................................................1 
 Rangeland water cycle .............................................................................................2 
 Historical context of woody encroachment .............................................................5 
 Streamflow and woody encroachment .....................................................................8 
 Effects of scale .......................................................................................................10 
 North-central Oklahoma ........................................................................................12 
 Scope and objectives ..............................................................................................13 
 
II. MATERIALS AND METHODS ............................................................................15 
  
 Synopsis .................................................................................................................15 
 Study area...............................................................................................................16 
 Aerial photography processing procedure .............................................................17 
 Hydrologic variables and statistical analysis .........................................................21 
 
III. RESULTS AND DISCUSSION ............................................................................23 
 
 Synopsis .................................................................................................................23 
 Results ....................................................................................................................24 
 Discussion ..............................................................................................................32 
 
IV. CONCLUSIONS ...................................................................................................37 
 
REFERENCES ............................................................................................................39 
 



vi 

 

LIST OF TABLES 

 

 

Table           Page 
 

   1     Mean, median, first quartile, third quartile, and p-values from Mann-Kendall 
trend tests for annual hydrologic variables in the Council Creek watershed, 
Payne County, Oklahoma. Bold values are statistically significant (α = 0.1) ....
 ........................................................................................................................26 

 
   2     Results of Mann-Kendall trend tests on monthly baseflow from 1938-1992 in the 

Council Creek watershed, Payne County, Oklahoma. Bold values are statistically 
significant (α = 0.1). Negative values indicate a decreasing trend.  ...............31 

 
   3     Regression equations explaining variation in streamflow (Q), stormflow (q), 

baseflow (b), the proportion of streamflow that is baseflow (b/Q), and the 
duration of streamflow (QDUR). Predictor variables were potential 
evapotranspiration (PET), precipitation (PCP), and woody cover (CW). All 
variables are expressed in mm except QDUR, which is expressed in days and CW, 
which is expressed as percent. ........................................................................31 

 



vii 

 

LIST OF FIGURES 

 

Figure           Page 
 
   1     Maps of the distribution and abundance of woody cover in the United States, 

Oklahoma, and the Council Creek watershed. ..................................................17 
 
   2     Example dialog box associated with the Classify Watershed tool developed to 

facilitate classification of the historical aerial photographs. .............................20 
 
   3     Mean precipitation (PCP), potential evapotranspiration (PET), streamflow (Q) and 

baseflow (b) by month in the Council Creek watershed, Payne County, Oklahoma 
(1938-1992).  .....................................................................................................25 

 
   4     Annual precipitation, streamflow, baseflow, baseflow as a proportion of 

streamflow, and woody cover in the Council Creek watershed from 1938-1992. 
 ...........................................................................................................................27 

 
   5     Georeferenced aerial photograph mosaics masked to the watershed boundaries of 

the Council Creek watershed, Payne County, Oklahoma. ................................28 
 
   6     Changes in woody cover in the Council Creek watershed, Payne County, 

Oklahoma (1938-2010). ....................................................................................29 
 
   7     Chronosequence of woody encroachment in a riparian area representative of the 

Council Creek watershed. ..................................................................................30 
 



1 

 

CHAPTER I 
 

 

INTRODUCTION AND LITERATURE REVIEW 

 

Synopsis 

 The rangeland water budget is driven by pulsed, limited precipitation input. Precipitation 

that is not intercepted by plant canopies or litter is then available to increase soil water storage, 

recharge groundwater, or run off. Woody plant encroachment is a process affecting rangelands 

worldwide in which trees invade chronically overgrazed grasslands in which fire is rare or absent. 

Based on the traits of trees they may have the potential to increase evapotranspiration when trees 

colonize grassland. These traits include a high capacity to intercept rainfall as well as the ability 

to extract water from the soil at low water potentials, and draw water from deeper in the soil 

profile relative to grasses. In addition, increasing tree cover influences soil hydraulic properties 

by increasing the soil’s infiltration capacity by as much as a factor of eight. Greater infiltration of 

rainfall into the soil under forest cover, relative to grassland increases recharge of soil and 

perched aquifers. Though the aforementioned factors control runoff at the field scale, runoff at the 

watershed scale will also be controlled by the extent of woody cover and its distribution (i.e., 

riparian vs. upland). Therefore the objectives of this research are to determine how long-term 

changes in woody cover are related to trends in streamflow, and its components, stormflow and 

baseflow, at the watershed scale.
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Rangeland water cycle 

 Familiarity with the nature and extent of rangelands and the components of the rangeland 

water budget is a necessary precursor to the following discussion of the effects of woody plants 

on streamflow. Rangelands are open areas used for grazing animals and account for about 40% of 

the global land area (Bailey, 1996). Vegetation on rangelands can include only herbaceous 

species or a patchwork of herbaceous and woody species. On rangelands precipitation is 

described as pulsed because it is low relative to evaporative demand and as a result 

evapotranspiration is limited by water availability for much of each year. This contrasts with 

humid environments where precipitation is more plentiful and evapotranspiration is limited 

primarily by energy available to overcome the latent heat of vaporization. In the Great Plains 

precipitation is concentrated in the spring and summer and is determined in part by the surface 

temperature of the Pacific Ocean (Schubert et al., 2004). Precipitation inputs are balanced by the 

sum of evapotranspiration, streamflow, and soil water and groundwater recharge during a given 

time step. 

 Evapotranspiration is the sum of evaporation from plant canopies, leaf litter, and the soil 

surface, together with transpiration. In rangelands evapotranspiration is the largest component in 

the water budget, after precipitation. Water availability, canopy cover, leaf litter, evaporative 

demand, vegetation effective rooting depth, and growing season of vegetation interact to control 

evapotranspiration. Sequentially, interception is the first process influencing the fate of 

precipitation. Precipitation is either intercepted by plant canopies or leaf litter or flows to the 

ground as stem flow or throughfall. The proportion of precipitation intercepted during a given 

storm depends on the storm size, storm intensity, and interception capacity of the vegetation 

(Gash, 1979; Thurow et al., 1987). During large, intense storms, a smaller proportion of the storm 

is intercepted, whereas during small or low intensity storms less or no precipitation reaches the 

ground (Couturier and Ripley, 1973; Thurow et al., 1987). Annual precipitation interception 

usually ranges from 20-40% in rangelands (Skau, 1964; Wilcox et al., 2003b; Young et al., 1984). 
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Effective precipitation is the fraction of precipitation that reaches the soil surface. Effective 

precipitation can contribute to streamflow, increase soil water or groundwater storage, evaporate, 

or be transpired. 

 Soil water evaporation is lowest in soils with high leaf litter and vegetation canopy cover 

(Allen et al., 1998; Saugier and Katerji, 1991; Walsh and Voigt, 1977). Transpiration is 

potentially high among tree species that can transpire on any warm day, access soil water located 

deep in the soil profile (Jackson et al., 1999), transpire groundwater (Horton et al., 2003; Snyder 

and Williams, 2000), or absorb water at low soil water potentials (Bihmidine et al., 2010; Lassoie 

et al., 1983). In water-limited systems evapotranspiration nearly equals precipitation on an annual 

basis (Phillips, 1994; Reynolds et al., 2000; Sala et al., 1992), whereas in energy-limited mesic 

systems, evapotranspiration is nearly equal to potential evapotranspiration (Likens et al., 1970). 

Potential evaporation is the evaporation that would occur from a given land cover type if water 

were not limiting. 

 Streamflow in rangelands usually accounts for less than 20% of precipitation and can be 

composed of three components—overland flow, shallow lateral subsurface flow, and groundwater 

(Wilcox et al., 2003b). Overland flow from rangelands occurs in rapid response to storms (Chang, 

2006), ceases soon after the storm ends, is largely independent of evapotranspiration (Wilcox et 

al., 2010), and is a major contributor to total streamflow (Reid et al., 1999). Infiltration excess 

(Hortonian) overland flow occurs when the rainfall intensity exceeds the infiltration capacity of 

the soil (Horton, 1933), the maximum rate at which a soil in a given condition will absorb water. 

Saturation excess (Hewlettian) overland flow occurs when soils are saturated (Hewlett and 

Helvey, 1970). Hortonian overland flow is controlled by precipitation characteristics, soil 

infiltration capacity, and surface roughness (Descheemaeker et al., 2006). In rangelands 

Hortonian overland flow is lowest in shrublands or grasslands with highly porous soils, high leaf 

litter cover and low grazing rates (Berg et al., 1988; Wilcox et al., 2006a). Hortonian overland 

flow is highest on degraded and compacted sites with low leaf litter cover or high grazing rates 
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(Bartley et al., 2010). Grazing can increase runoff by compacting the topsoil and removing plant 

biomass. Hewlettian overland flow can occur when soils are frozen (Wilcox et al., 2003a), when 

there are shallow layers of low permeability (Walter et al., 2003; Wilcox et al., 1997), or as 

variable source area flow adjacent to a stream channel (Germer et al., 2010). Quickflow or 

stormflow is often assumed to be an indicator of overland flow. Such an assumption is not strictly 

correct because automated methods to separate baseflows from stormflow simply operate by 

removing high frequency signals from a streamflow time series (Arnold and Allen, 1999; Arnold 

et al., 1995). In regions where rapid subsurface flows can occur (Turton et al., 1992) there is no 

way to determine what component of a hydrograph consists of overland flow versus rapid 

subsurface flow and after using a hydrograph separation algorithm these two terms must be 

combined together and referred to as stormflow. 

 Shallow lateral subsurface flow occurs less rapidly than overland flow and may continue 

after overland flow has ceased. Subsurface flow is controlled by the amount of water held in the 

soil preceding a storm, by the presence of macropores, and by effective precipitation (Turton et 

al., 1992; Wilcox et al., 1997). Subsurface flow can be generated either through the soil matrix or 

as macropore flow that bypasses the soil matrix (Newman et al., 1998). 

 Groundwater can contribute to streamflow if the groundwater level is higher than the level 

of the stream channel. Groundwater recharge is typically low in rangelands whose soils have 

large storage capacities (Sandvig and Phillips, 2006; Scanlon et al., 2006; Scanlon et al., 2005; 

Seyfried et al., 2005; Seyfried and Wilcox, 2006; Wilcox et al., 2003b; Wilcox et al., 2006a). 

However, substantial groundwater recharge of 41 mm yr-1 has been reported for the Central 

Oklahoma aquifer (Runkle et al., 1997). Where groundwater recharge does occur it can be 

influenced by vegetation type (Peck and Williamson, 1987; Sandvig and Phillips, 2006). The 

effective rooting depth of plants represents an important factor determining the amount of water 

that can be stored in the root zone. Therefore vegetation change can alter the potential for the soil 

to store incident precipitation, thereby altering the probability of a deep drainage event (Seyfried 
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and Wilcox, 2006). The greatest potential for deep drainage is in course-textured soils (Gee et al., 

1994). 

 

Historical context of changes in tree distribution and abundance 

 One cyclic factor affecting the distribution of plant species is that the earth's orbit has 

become more circular over the course of millennia, changing the timing and distribution of 

incoming solar radiation (Imbrie and Imbrie, 1980). These cyclic changes in the distribution and 

timing of incoming solar radiation have influenced the Earth's climate over the past 420 millennia 

(Petit et al., 1999). Earth's changing climate over the course of hundreds of millennia has caused 

macro-scale migration of species (Delcourt et al., 1982). During the Holocene North American 

species have migrated northward in response to higher temperatures driven by increases in 

atmospheric CO2 (Van Auken, 2009). However, in the last 160 years unprecedented changes in 

many plant communities have occurred (Pimm et al., 1995). In Oklahoma increases in basal area 

and tree density of deciduous trees (Quercus stellata and Quercus marilandica) have been 

observed as well as increases in Juniperus virginiana (DeSantis et al., 2010; DeSantis et al., 

2011). 

 These trends may result from a combination of forestation of areas that historically had a 

more frequent fire return interval and colonization of abandoned farmland (DeSantis et al., 2011). 

Since the 1950’s cropland has decreased throughout most of the conterminous United States 

(Brown et al., 2005) and increasing forest cover has been observed throughout this region 

(Houghton, 2003). Riparian forest cover also has grown as greater awareness of the benefits of 

riparian forestation has spread in recent decades (Jones et al., 2010; Manoukian and Marlow, 

2002). 

 Riparian gallery forests are present in lowlands and streambeds in otherwise grassland 

landscapes in the central U.S. (Abrams, 1996; Danner and Knapp, 2001). Riparian gallery forest 

expansion has been documented extensively in Konza Prairie, Kansas (Abrams and Knapp, 1986; 
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Bragg et al., 1993; Loehle et al., 1996). At that site increases in oaks, eastern redbud, and red 

hackberry were observed from 1859-1978 after fire frequency declined with European settlement 

(Abrams, 1986). Another study at Konza Prairie uncovered similar results that gallery forest area 

increased from 157 ha in 1939 to 241 ha in 1985 throughout a 3487 ha study area (Knight et al., 

1994). Additional work in the Flint Hills of Kansas used historical aerial photography to uncover 

a 40% increase in woody cover concentrated on lower slopes from 1937-1969 (Bragg and 

Hulbert, 1976). Field observations revealed the presence of American elm, redcedar, and 

chinquapin oak. 

 Though gallery forests have not been widely studied in Oklahoma, more attention has been 

given to woody plant encroachment. Woody plant encroachment is a process by which native 

trees or shrubs increase in abundance in grasslands at the expense of herbaceous species (Van 

Auken, 2000). The woody encroachers do not themselves drive encroachment, but rather 

represent a symptom of other biotic and abiotic changes (Van Auken, 2009). Understanding 

woody encroachment is important because this process is estimated to occur over 220-330 million 

ha in the conterminous United States (Houghton et al., 1999; Pacala et al., 2001). Woody 

encroachment can occur rapidly. For example, in the Flint Hills of east-central Kansas, eastern 

redcedar (Juniperus virginiana) encroachment converted tallgrass prairie to closed-canopy 

woodland in 40 years (Briggs et al., 2002). In tallgrass prairie of Kansas and Oklahoma, eastern 

redcedar has encroached rapidly into upland and lowland environments without regard to soil 

type or depth (Engle and Kulbeth, 1992; Knapp et al., 2008b; Starks et al., 2011). By 2013 

eastern redcedar encroachment is predicted to exceed 3.5 million hectares in Oklahoma (Starks et 

al., 2011). 

 In grasslands worldwide numerous interacting anthropogenic factors have caused woody 

plant encroachment (Archer et al., 1995; Van Auken, 2009). Livestock overgrazing and fire 

exclusion are decisive factors that interact to favor woody encroachment (Bahre and Shelton, 

1993). Livestock overgrazing reduces the vigor of palatable herbaceous plants and reduces their 



7 

 

aboveground biomass. Less vigorous herbaceous species compete less effectively with woody 

species and less aboveground herbaceous biomass prevents fires that could otherwise destroy fire 

intolerant woody seedlings (Arend, 1950; Humphrey, 1958; Roques et al., 2001). Fragmentation 

of grasslands by roads and fire suppression reduce the frequency of fires, thereby favoring woody 

encroachment. 

 Though it is widely accepted that unrelieved high grazing rates and reduced fire frequency 

cause woody encroachment, a preponderance of the evidence does not support a causal 

relationship between climate change and woody encroachment. Increasing atmospheric CO2 

concentrations appear to facilitate and accelerate woody encroachment (Davis et al., 2007; 

Morgan et al., 2007). However, woody encroachment began prior to substantial increases in 

atmospheric CO2 concentrations. Thus increasing atmospheric CO2 concentrations can only be 

considered a background factor to woody encroachment, not a primary cause (Archer et al., 

1995). Similarly, because changes in climate were small when woody encroachment commenced, 

this factor should not be considered a primary cause (Archer et al., 1995), though climate change 

is clearly a component of the backdrop of present-day woody encroachment. 

 Seed dispersal and herbivory also moderate the rate of woody plant encroachment. 

Livestock effectively disperse seeds of woody plants thereby enabling encroachment of woody 

plants well beyond the canopies of existing trees (Brown and Archer, 1999). Animals can affect 

the process of woody plant encroachment not only by dispersing seeds, but also by inhibiting 

woody plant establishment. Animal species that require unobstructed open spaces girdle woody 

seedlings. Specifically black tailed prairie dogs (Cynomys ludovicianus) were found to destroy 

honey mesquite (Proposis glandulosa) within two days of when they were planted near a prairie 

dog colony (Weltzin et al., 1997). Thus complex biotic and abiotic factors vary in both space and 

time, interacting to influence woody encroachment. 
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Streamflow and forestation 

 For over a century watershed managers have examined the effects of woody plants on 

streamflow (Stednick, 1996; Wilcox, 2010). In water-limited systems plants are of primary 

importance in controlling deep seepage (Scanlon et al., 1997). Many studies have found lower 

streamflow from forested relative to grassland watersheds (Bosch and Hewlett, 1982; Hibbert, 

1983; Stednick, 1996; Thurow et al., 2000; Zou et al., 2010), though streamflow augmentation 

due to tree or shrub removal usually lasts no longer than a decade if woody vegetation is allowed 

to return (Hornbeck et al., 1993). Streamflow increases associated with woody plant removal 

occur in the form of increased baseflow during the growing season if soils are shallow (Hornbeck 

et al., 1993), but can extend into the dormant season if soils are deep (Miller et al., 1988). At 

Hubbard Brook in the White Mountains of New Hampshire, water yields decreased relative to 

pre-harvest levels several years after timber harvest when forests began to regenerate with trees 

having lower stomatal resistance than those that were harvested (Hornbeck et al., 1997). 

However, higher streamflow correlated with woody encroachment has also been reported (Wilcox 

and Huang, 2010). Others have found that after shrub removal herbaceous biomass increases 

rapidly, compensating for reduced evapotranspiration by woody plants and as a result there is 

little or no increase in streamflow (Carlson et al., 1990; Dugas and Mayeux, 1991; Weltz and 

Blackburn, 1995; Wilcox et al., 2010; Wright et al., 1976).  

 Climatic, hydrologic, edaphic, and geologic constraints largely determine the degree to 

which forestation might affect streamflow (Wilcox, 2002). Potential may exist for woody plants 

to reduce streamflow in areas where precipitation is greater than 500 mm, precipitation falls 

during a season of low evaporative demand, and subsurface flow is an important streamflow 

generation process (Hibbert, 1983; Huxman et al., 2005). In geology, such as karst, that allows 

for rapid drainage of water below plants’ root zones streamflow may be affected by vegetation 

(Gregory et al., 2009). However, there is little potential to increase streamflow by converting 

woody plants to grasses in areas where infiltration excess overland flow is the primary 
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streamflow generation process because in these dry areas most incident precipitation evaporates 

irrespective of vegetation cover (Wilcox et al., 2003c). To understand the potential effects of 

forestation on streamflow and associated uncertainties, we must understand how incident 

precipitation is partitioned in grassland and encroached systems. During a precipitation event, 

interception of incident precipitation by plant canopies and leaf litter is sequentially the first 

process that can affect the fate of precipitation. 

 In rangelands interception is an important process because it can reduce effective 

precipitation considerably. For example, Ashe juniper canopy in the Edwards Plateau of Texas 

were found to intercept 35% of rainfall and their leaf litter intercepted an additional 5%, reducing 

effective precipitation under these trees to 60% (Owens et al., 2006). However, precipitation 

interception is a more complex process in grasslands where canopy characteristics can vary 

greatly throughout the season (Gilliam et al., 1987). For instance, burned tallgrass prairie in the 

northeast Kansas foothills intercepted 19% of annual precipitation, whereas unburned tallgrass 

prairie at the same site intercepted 38% of precipitation (Gilliam et al., 1987). The fraction of 

precipitation not lost to interception then determines how much streamflow and increase in soil 

water storage will occur. 

 Baseflow is a secondary streamflow generation process in central Oklahoma, contributing a 

smaller proportion of total streamflow than stormflow. Baseflow is made up exclusively of 

subsurface and groundwater flow. The amount of baseflow that occurs depends largely on the 

initial water storage in the soil profile and how much water infiltrates into the soil. For example, 

modeling in the Blue River Basin in Oklahoma determined that after the deeper part of the soil 

profile dries down during the summer, streamflow is considerably lower than would be expected 

from a wet soil profile (Gourley and Vieux, 2006).Woody plants potentially affect these 

properties because they can transpire for more of the year relative to grasses (Eggemeyer et al., 

2006; Lassoie et al., 1983; Ormsbee et al., 1976), can access water deeper in the soil profile 

(Asner et al., 2004; Eggemeyer et al., 2009), substantially reduce effective precipitation (Skau, 
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1964), and can extract water from lower soil water potentials (Seyfried et al., 2005). Thus, it 

seems plausible that increasing woody cover might have the potential to reduce streamflow 

during wet years. 

 Trees can also indirectly influence streamflow through their effects on soil hydraulic 

properties, particularly the soil’s infiltration capacity. Relative to grassland soil, surficial forest 

soils have lower bulk density and as much as eight times higher infiltration capacity (Price et al., 

2010). As a result conversion of grassland to forest increases recharge to groundwater and 

perched aquifers, thereby augmenting low flows during the dry season (Chandler, 2006). 

 Climate is important in controlling the threshold of woody plant cover change necessary to 

elicit a hydrologic response (Stednick, 1996; Zou et al., 2010). For example, in a semiarid 

shrubland in the Rolling Plains of Texas variation in shrub cover had no effect on streamflow 

because evapotranspiration accounted for over 99% of precipitation (Wilcox et al., 2006a). In 

contrast, in the Ouachita Mountains where precipitation averages 1317 mm, clearing 50% of the 

forest generated up to 558 mm of increased water yield (Miller et al., 1988). 

 

Effects of scale  

 Measurement scale greatly affects the observed effects of woody encroachment on 

streamflow (Wilcox et al., 2006b). Under conifers, soils often become water repellent when they 

dry (Lebron et al., 2007; Madsen et al., 2008; Robinson et al., 2010), though much remains 

unknown about the temporal stability of soil water repellency (Doerr and Moody, 2004). Water 

repellent soils have lower infiltration capacity and hydraulic conductivities relative to wettable 

soils (Burch et al., 1989; Van Dam et al., 1990). At a square meter scale lower infiltration and 

hydraulic conductivity have caused as much as 35 times more runoff as would have occurred 

from wettable soils (Doerr et al., 2003). Thus under juniper trees high micro-plot runoff can be 

expected when soils are dry, assuming the rainfall event exceeds the canopy and litter 

interception capacity. Soil water repellency and high point-scale runoff might also be expected 
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from prairie vegetation after fires of moderate intensity coat soil particles with hydrophobic 

substances (Glenn and Finley, 2010; Letey, 2001).  

 How far water travels over hydrophobic soils and the degree to which soil water repellency 

affects field-scale runoff are determined by the density of macropores, cracks, or hydrophilic 

patches in the landscape (Doerr et al., 2003). In juniper woodlands leaf litter retards the flow of 

water, which may then infiltrate rapidly via macropore flow. As a result, juniper woodlands do 

not substantially increase field-scale runoff even when soils are dry and hydrophobic at the point 

scale (Pierson et al., 2010). Furthermore, small-scale increases in runoff in general may not be 

realized at larger scales due to transmission losses (Wilcox et al., 2006b). Transmission losses 

occur when raindrops initially contact a substrate with low infiltration capacity, then run off and 

infiltrate in an area with greater infiltration or storage capacity. Such features that promote 

infiltration of runoff can include areas with high surface roughness, hydrophilic soil, or riparian 

aquifers. 

 The effects of forestation on a watershed scale are more complex than at plot or field scales 

because numerous land-uses and land-covers may be present in a single watershed and each may 

affect streamflow uniquely (Jang et al., 2010). These may include cropped fields, livestock 

grazing, roads, and urban development. Within each of these categories great variation can exist 

in the form of different crops, management practices, grazing rates, road characteristics, and 

density of development. Amidst this great variability some minimum threshold of encroachment 

must occur for it to be detectable at the watershed scale. 

 In addition to the potential effects of the extent of woody plant coverage on streamflow, the 

topographic position of vegetation may also influence evapotranspiration (Compaore et al., 2008), 

and by inference, streamflow. Whereas upland vegetation obtains most of its water directly from 

soil water, phreatophytic, woody riparian vegetation transpires groundwater when topsoils are dry 

(Scott et al., 2000), and may therefore have a greater potential to reduce streamflow than a similar 

area of woody upland vegetation (Dunford and Fletcher, 1947; Wilcox et al., 2006b). However, 
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where overland flow passes through a woody riparian buffer, infiltration is increased (Hernandez-

Santana et al., 2011; Schultz et al., 1995), increasing the potential for baseflow. Transpiration of 

riparian vegetation explains diurnal variation in streamflow in which baseflows are lowest during 

the afternoon and greatest at night (Gribovszki et al., 2008). Phreatophytic plants have the 

greatest potential to reduce baseflow on days with the most incoming solar radiation (Nyholm et 

al., 2003). 

 

North-central Oklahoma 

 North-central Oklahoma is a relatively flat region whose upland geology consists primarily 

of shale and secondarily of limestone and sandstone formed 300 million years ago during the Late 

Pennsylvanian age (Stoeser, 2005). There are some discontinuous, narrow corridors of Holocene-

age alluvium contiguous with riparian corridors of higher order streams in this region (Stoeser, 

2005). Eastern redcedar encroachment into tallgrass prairie is a widely reported regional issue 

(Engle and Kulbeth, 1992; Linneman and Palmer, 2006; Palmer, 2007; Palmer and Rusch, 2001; 

Starks et al., 2011; Van Els et al., 2010). Understanding how woody encroachment affects 

streamflow in central Oklahoma is important because in this region users obtain water primarily 

from surface sources. For example, in Payne county, 80% of water was drawn from surface 

sources in 2005 (Tortorelli, 2009). From 1950-2005 Oklahoma’s population grew by 50% and 

withdrawals for livestock and aquaculture, primarily from surface waters, have also increased 

along with withdrawals for thermoelectric power (Tortorelli, 2009). Concomitantly, the 

population served by surface water sources has increased (Tortorelli, 2009). Lakes McMurtry, 

Carl Blackwell, and Keystone are important water supply reservoirs for cities in this region. 

However, droughts occur regularly in this region, including from 1929-1941, 1952-1956, 1961-

1972, 1976-1981, and 2002-2006 (Tortorelli, 2008). 
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Scope and objectives 

 In north-central Oklahoma demand for water resources is increasing, yet the effects of 

forestation of degraded grassland on streamflow are unknown. Field-scale runoff from 

agricultural operations has been quantified across Oklahoma (Berg et al., 1988; Sharpley and 

Smith, 1994; Smith et al., 1992; Smith et al., 1991) and the effects of forest harvesting in the 

Ouachita mountains have been examined (Miller et al., 1988). However, it is widely perceived 

that encroachment of woody species can threaten water supplies by increasing evapotranspiration, 

thereby reducing streamflow (Starks et al., 2011). It would seem that expanding riparian gallery 

forests could have a similar effect. This effect is likely minimal in western Oklahoma where 

almost all water evaporates due to high evaporative demand and low precipitation. Similarly, 

woody encroachment is not likely to greatly increase evapotranspiration in areas that are 

historically forested in eastern Oklahoma. However, less is known regarding the degree to which 

forestation affects streamflow in north-central Oklahoma, where precipitation is intermediate 

between eastern and western Oklahoma. Therefore, the goal of the present study is to determine 

the effects of forestation in north-central Oklahoma’s grassland-forest ecotone on streamflow. 

Several objectives were conceived to fulfill this goal: 

(1)  Determine how woody cover has changed over time in a study area representative of 

north-central Oklahoma.  

(2)  Assess whether and to what degree changes in baseflow, stormflow, and streamflow are 

related to changes in woody cover. 

 Though it is widely assumed, both among Oklahoma residents and lawmakers, that 

woody encroachment reduces streamflow, this has never been demonstrated, and evidence on this 

topic is anecdotal. Furthermore, woody encroachment in Oklahoma is patchy at small scales. 

Even if woody encroachment reduces streamflow at small scales, it is unclear if present 

encroachment is extensive enough to reduce streamflow at the watershed scale. The watershed 

scale is an ideal scale at which to examine the effects of forestation on water yield because this 
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scale is directly relevant to water supply. Examining the effects of forestation at the watershed 

scale integrates both the degree to which forestation reduces water yields along with the extent of 

forestation in the watershed. Finally, this study provides a valuable framework by which to 

couple historical aerial photographs and USGS stream gauge records to elucidate long-term 

drivers of streamflow. 



15 

 

CHAPTER II 
 

 

MATERIALS AND METHODS 

 

Synopsis 

 The 78 km2 Council Creek watershed, located in Payne County, Oklahoma was chosen as 

the study site to assess changes in woody cover and streamflow because no major reservoirs were 

constructed during the study period in this watershed, historical aerial photography classification 

would be manageable over this area, adequate aerial photography was available for the study 

duration, and woody cover represents a substantial component of the watershed area. Aerial 

photography was georeferenced and classified using maximum likelihood classification. Then a 

process was developed to edit the initial classification to correct for spectral similarities between 

the forest cover and darkly colored agricultural fields. Aerial photographs from 1938, 1954, 1974, 

and 1995 were classified and woody cover during intervening years was estimated by linearly 

interpolating between the former years. Streamflow was separated into baseflow and stormflow 

using an automatic algorithm to remove the high frequency stormflow signals. Annual 

evapotranspiration was estimated as the complement of annual streamflow. Thornthwaite 

potential evapotranspiration was computed and precipitation data were obtained from Stillwater, 

Oklahoma’s long-term climate station. Along with woody cover, these variables were used as 

covariates in stepwise regressions to determine which factors are related to changes in 

streamflow. Nonparametric Mann-Kendall tests were used to assess long-term hydrologic trends.
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Study area 

 The study area is the Council Creek watershed (Fig. 1) located in Payne County in north-

central Oklahoma, east of Stillwater (36° 10’ N, 96° 53’ W). Council Creek is a third order 

stream following the Horton (1945) classification system. Its watershed is 78 km2 in area and 

includes 68 km of stream channel. The highest point in the watershed is 333 m above sea level 

and its mouth is at 255 m elevation. Beyond the mouth of Council Creek where the USGS gauge 

is located, the stream flows 19 km southeast where it empties into the Cimarron River. From the 

point where Council Creek empties into the Cimarron River, there are 116 km of stream channel 

before the Cimarron River empties into the Arkansas River within Keystone Lake. Keystone Lake 

is used for water supply, hydroelectric power, fishing, and other recreation. The Council Creek 

watershed contributes directly to these vital societal services and was selected to be representative 

of north-central Oklahoma. The topography of the watershed is typical of north-central Oklahoma 

in that it is relatively flat. From 1961-1990 the area-averaged precipitation in this watershed 

averaged 894 mm (Smith et al., 2010). Major soils in the watershed include Pulaski fine sandy 

loam, Grainola-Ashport-Mulhall complex, Zaneis-Huska complex, Grainola-Lucien complex, 

Renfrow loam, Mulhall loam, and Stephenville-Darnell. Land-cover in the watershed includes 

roads, developments, agricultural fields, grassland, deciduous trees, and areas encroached by 

eastern redcedar (Juniperus virginiana). This watershed was chosen because of its relatively long 

streamflow record, because encroachment in this watershed is representative of north-central 

Oklahoma, and because it has only a few small farm ponds and no major impoundments. 
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Figure 1. Maps of the distribution and abundance of woody cover in the United States, Oklahoma, 
and the Council Creek watershed. 

Aerial photography processing procedure 

 The Council Creek watershed was delineated using a 10-m resolution USGS digital 

elevation model (DEM). First, sinks (local depressions in the landscape) were filled using the Fill 

tool in ArcGIS 10’s Hydrology toolset. Then, the direction of water flow was determined from 

each 10-m raster cell based on slopes determined from the DEM. The flow direction raster was 

then used as input for the Watershed tool, which determines the contributing area above a set of 

cells in a raster. In this case I used the Watershed tool to determine which cells in the raster 
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contributed to streamflow measured at the USGS gauging station. The raster representing the 

Council Creek watershed was used to mask all aerial photo mosaics to the watershed area.  

 Aerial photographs obtained via USGS Earth Explorer (earthexplorer.usgs.gov) were 

used to determine change in woody cover because multispectral imagery was not available prior 

to 1972 and it seemed desirable to use a consistent image source for all image classification in 

this study. Road intersections on the aerial photographs were georeferenced as necessary using 

the georeferencing toolbar in ArcGIS 10 to a 1:12,000 scale June, 2010 USDA-FSA-APFO NAIP 

color orthophoto mosaic of Payne County with ±5 m horizontal accuracy obtained from the 

Oklahoma Geographic Information Council (ftp://ftp.okcc.state.ok.us/GIS/County/). 

Georeferencing was usually accurate to within ±10 m. In certain cases, slightly greater errors 

resulted because several roads were moved somewhat between the date of the early imagery and 

2010. However, overall errors in georeferencing were small. Georeferenced aerial photographs 

were then mosaicked and balanced by dodging, a common photogrammetric process in which 

each pixel value is changed toward the mean color in a panchromatic raster mosaic. Images from 

February 1995 were obtained from the National Aerial Photography Program at a scale of 

1:40,000. Imagery from February 1974 was obtained from the USGS at a scale of 1:24,000. 

Imagery from March 1954 was obtained from the Army Map Service at a scale of 1:64,600. 

Imagery from April 1938 was obtained from the USDA at a scale of 1:20,000 and scanned using 

an Epson Perfection 4490 at 1,200 dpi. 

 The greatest challenge in the present study as well as the greatest uncertainty involved 

classifying the historical aerial photography. One challenge was that the aerial photos were from 

three different months. In April of 1938 there was the potential that some deciduous trees could 

have started to leaf out, causing a potential inconsistency with the other photos, in which leaf out 

had not occurred. Therefore, throughout classifying the historical aerial photos I attempted to 

classify them on the basis of where I believed the canopy cover of the trees would be if they had 

leaves. Another issue was that some dark areas on photos were present that could not be 
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identified as trees with a high degree of confidence. Features other than trees can appear dark on 

panchromatic aerial photographs, such as wet areas or fertilized vegetation. Thus only those areas 

that clearly appeared to be trees based on both their color and texture were classified as such. 

Though this clearly entails some inexactitude I am confident that any errors in this regard are 

small relative to the over threefold variation in woody canopy cover. 

 Maximum likelihood classification was used to determine which cells in each raster 

image represented forested and non-forested areas. This supervised classification procedure 

assumes that the pixel density values of each class are normally distributed. (Pixel density 

quantifies how dark or light a pixel is.) Tree-covered areas on each image were selected from 

several regions to ensure that the spectral signature of trees from all parts of the image would be 

captured. Then the spectral signatures of several background (non-forested) classes within the 

image were obtained. Based on these user-selected samples within each image, every cell of each 

raster image was classified. 

 However, it would be impractical to verify that classification of each pixel proceeded 

correctly. Therefore, the image was resampled to 10 m2 pixels to reduce processing time; 

reclassified to only include the forested class; converted to features (polygons) for easier editing; 

and then simplified to preserve only contiguous 1,000 m2 or greater areas classified as entirely 

forested. (A tolerance was set to allow forested patches within 10 m of one another to be 

considered contiguous.) Since this post classification process was repetitive, the “Classify 

Watershed” workflow was automated using Model Builder (Fig. 2).  
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Figure 2. Example dialog box associated with the Classify Watershed tool developed to facilitate 
classification of the historical aerial photographs. 

 Once patches of forest of at least 1,000 m2 (the minimum mapping unit) were converted 

to features, the individual features (forest patches) were edited until they satisfactorily 

represented all and only large forested patches. This manual correction was deemed necessary 

because the initial density-based classification method was prone to classifying dark-colored 
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agricultural fields as forest and also classified some light-colored leaf-off deciduous trees as non-

forest. 

 For the 1938 imagery several additional processing steps were necessary. The dodging 

procedure was ineffective in balancing the 1938 mosaic and the maximum likelihood 

classification was unable to classify the images from 1938. Dodging apparently failed because the 

image was scanned at 16-bit grayscale to preserve image quality and too many bins or pixel 

densities (tens of thousands) were created for each image with too few pixels assigned to each 

bin. To solve this problem each 1938 image was sliced into 255 bins of approximately equal area 

and thereafter classified. All geographic analyses were conducted in ArcGIS 10 (ESRI, Redlands, 

CA). 

 

Hydrologic variables and statistical analysis 

 Climate data were obtained from the U.S. Historical Climatology Network’s Stillwater, 

Oklahoma station (36.1175 N, 97.095 W). Potential evapotranspiration (PET) was calculated 

from monthly average temperature (Thornthwaite, 1948). Actual evapotranspiration (ET) was 

estimated as the complement of streamflow on an annual basis (Garbrecht et al., 2004). Daily 

streamflow was obtained from the USGS Council Creek gage and separated into stormflow and 

baseflow using an algorithm that assigns the high frequency signals associated with storms to 

stormflow and the remaining streamflow to baseflow (Arnold and Allen, 1999; Arnold et al., 

1995). This gauge ceased to operate in mid-1993, so annual streamflow data were available only 

through 1992. Where necessary variables were appropriately transformed to centralize their 

distribution mode following Helsel and Hirsch (2002). Mann-Kendall trend tests were performed 

on the annual time series of each variable other than tree cover. Mann-Kendall tests are widely 

used in analyzing hydrologic time series because this nonparametric test is not sensitive to non-

normally distributed data and is not unduly influenced by unusually large storms that occur 

infrequently. Stepwise regression was used to determine which variables were significant 
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predictors of total streamflow, stormflow, and baseflow. Stepwise regression was chosen because 

it determines whether a response is related to a predictor independent of potentially confounding 

factors if these factors are included as covariates. Since only four aerial photos were classified 

during the study, linear interpolation was used to fill tree cover values for years in which aerial 

photography had not been classified so that this variable could be used as a predictor in statistical 

analyses. All statistical analyses were carried out in Minitab 16. An α value of 0.1 was used to 

determine statistical significance (Wilcox and Huang, 2010). 
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CHAPTER III 
 

 

RESULTS AND DISCUSSION 

 

Synopsis 

 From 1938-1992 precipitation trended significantly upward driven by above average 

precipitation from 1980-1992. Baseflows, the ratio of baseflow to precipitation, the ratio of 

baseflow to total streamflow, the duration of streamflow, and evapotranspiration also trended 

upward over time. Woody cover increased from 5% in 1938 to 18% in 1992. However, eastern 

redcedar woodland never comprised more than 15% of woody cover and covered less than 2.6% 

of the watershed area in the 2006 National Land Cover Dataset. Canopy cover was directly and 

PET inversely related to the ratio of baseflow to streamflow. However, the present study does not 

prove that the trees themselves caused the observed increase in baseflows. Possible alternative 

explanations include landscape-wide hydrologic recovery from clean tillage and overgrazing, 

non-linear baseflow responses to increased precipitation, or changes in precipitation 

characteristics. The results fail to support the common assumption that woody cover reduces 

streamflow, particularly baseflows. Another common assumption is that woody cover along 

riparian corridors is particularly efficient in reducing streamflows. The present study fails to 

support this assumption as well since woody cover in the present study increased in abundance 

primarily along the riparian corridors, yet all measures of baseflow increased over time and 

streamflow did not change significantly. However, it is unknown how baseflow and total 

streamflow would have been affected had precipitation remained constant over the study period 

and not increased at the end, coincident with the increase in woody cover. The results indicate 

that there is no measurable tradeoff between water yields and forestation of riparian areas at 1992 

levels of woody plant cover. 
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Results 

 From 1938-1995 precipitation averaged 850 mm (Table 1) and ranged from 424 mm in 

1956 to 1572 mm in 1959 when Hurricane Debra doused north-central Oklahoma. During the 

study precipitation trended significantly upward (p = 0.021, Fig. 3), increasing at an average rate 

of 2.7 mm yr-1. This trend was driven in part by above average precipitation of 955 mm from 

1980-1992. During this period precipitation was 12% higher than average during the study. PET 

averaged 1171±12 mm, ranging from 1047 mm in 1961 to as high as 1422 mm during 1954, the 

second driest year of the study. There was no evidence of an upward trend in PET (p = 0.849). 

Evapotranspiration increased significantly during the study (p = 0.086), increasing at an average 

rate of 1.5 mm yr-1. Precipitation was highest in May, June, and September whereas evaporative 

demand peaked from June through September (Figure 3). Median streamflow and baseflow peak 

in May at 11 mm and 3 mm, respectively. 

  



 

Figure 3. Mean precipitation
baseflow (b) by month in the Council Creek watershed, Payne County, Oklahoma (1938

 Cover of the woody class

11.0% in 1954. Cover of the woody class

increased to 19.2% in 1995 

From 1974 to 2010, canopy cover increased at an average annual rate of 0.4 percentage points of 

the watershed area, or 0.33 km

corridors (Fig. 7). According to the 2006 Nation

comprised only 15% the total woody cover in the Council Creek watershed, despite their present 

rapid encroachment. 

 Streamflow averaged 143 mm and ranged from 4 mm in 1956 to 724 mm in 1959. From 

1980-1992 annual streamflow averaged 195 mm, 36% higher than mean streamflow during the 
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From 1974 to 2010, canopy cover increased at an average annual rate of 0.4 percentage points of 

the watershed area, or 0.33 km2. Increases in woody cover were most concentrated along riparian 
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1992 annual streamflow averaged 195 mm, 36% higher than mean streamflow during the 
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comprised only 15% the total woody cover in the Council Creek watershed, despite their present 

Streamflow averaged 143 mm and ranged from 4 mm in 1956 to 724 mm in 1959. From 

1992 annual streamflow averaged 195 mm, 36% higher than mean streamflow during the 
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study period. Despite this substantial decadal increase in streamflow toward the end of the study 

the total variability in streamflow was high and no significant trends were observed in annual 

streamflow (p > 0.129) or stormflow (p > 0.248). On average Council Creek flowed for 264 days 

of the year, making it an intermittent stream. However, it became ephemeral during 1956 when it 

only flowed for 9 days. The stream has also flowed perennially during five of the years of the 

study, including 1992, a leap year, when it flowed for 366 days. The number of days that the 

stream flowed increased significantly over the course of the study (p = 0.008), an average 

increase of 1.8 days yr-1. This increase was associated with an increase in the number of days the 

stream flowed from 1980-1992. During this period the stream flowed on average 307 days per 

year, 16% higher than the average from 1938-1992.  

 

Table 1. Mean, median, first quartile, third quartile, and p-values from Mann-Kendall trend tests 
for annual hydrologic variables in the Council Creek watershed, Payne County, Oklahoma. Bold 
values are statistically significant (α = 0.1). Negative signs indicate decreasing trends and positive 
p-values correspond to positive trends. 

Variable Mean Median (Q1–Q3) P-value 
Precipitation (mm) 850 818 (711–950) 0.021 
Potential Evapotranspiration (mm) 1170 1160 (1109–1216) -0.151 
Streamflow (mm) 143 110 (49–212) 0.129 
Stormflow (mm) 114 90 (38–151) 0.248 
Baseflow (mm) 30 21 (10–42) 0.012 
Evapotranspiration (mm) 706 718 (621–772) 0.086 
Baseflow / Streamflow (%) 20% 19 (15–24) 0.001 
Streamflow / Precipitation (%) 15% 14 (7–20) 0.173 
Flow Duration (Days) 264 275 (220–330) 0.008 
 

 



 

Figure 4. Annual precipitation, streamflow, baseflow, baseflow as a proportion of streamflow, 
and woody cover in the Council Creek watershed from 1938
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. Annual precipitation, streamflow, baseflow, baseflow as a proportion of streamflow, 
in the Council Creek watershed from 1938-1992. 

 

. Annual precipitation, streamflow, baseflow, baseflow as a proportion of streamflow, 
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Figure 5. Georeferenced aerial photograph mosaics masked to the watershed boundaries of the 
Council Creek watershed, Payne County, Oklahoma. 

April 1938

February 1995February 1974

March 1954
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Figure 6. Changes in woody cover in the Council Creek watershed, Payne County, Oklahoma 
(1938-2010). 

Streamflow was composed primarily of stormflow, on average 114 mm. Though there 

were no trends in stormflow (p = 0.248), annual baseflow increased significantly over time (p = 

0.012), at an average rate of 0.5 mm yr-1. From 1980-1992 substantially higher median baseflows 

occurred primarily from February through May relative to pre-1980 flows. However, monthly 

baseflows trended up significantly during all months except June through September (Table 2). 

Over time baseflows accounted for a greater proportion of precipitation (p = 0.018) and total 

streamflow (p < 0.001). 
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Figure 7. Chronosequence of woody encroachment in a riparian area representative of the Council 
Creek watershed. 
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Table 2. Results of Mann-Kendall trend tests on monthly baseflow from 1938-1992 in the 
Council Creek watershed, Payne County, Oklahoma. Bold values are statistically significant (α = 
0.1). Negative values indicate a decreasing trend. 

Month P-value 

January 0.001 
February <0.001 
March 0.001 
April 0.001 
May 0.002 
June 0.222 
July 0.319 
August 0.360 
September -0.425 
October 0.065 
November 0.009 
December 0.006 

 

 

Table 3. Regression equations explaining variation in streamflow (Q), stormflow (q), baseflow 
(b), the proportion of streamflow that is baseflow (b/Q), and the duration of streamflow (QDUR). 
Predictor variables were potential evapotranspiration (PET), precipitation (PCP), and woody 
cover (CW). All variables are expressed in mm except QDUR, which is expressed in days and CW, 
which is expressed as percent. 

Regression Equation P-value R2 
LOG10Q = 2.005 -0.073 PET1/3 + 0.088 PCP1/2 <0.001 67.2% 
LOG10q = -0.796 + 0.096 PCP1/2 <0.001 66.1% 
b1/3 = -3.485 +0.059 CW + 0.195 PCP1/2 <0.001 61.3% 
b/Q = 75.80 + 0.8845 CW -6.244 PET1/3 0.001 21.1% 
QDUR

2 = 389224 + 2750 CW – 45449 PET1/3 + 4678 PCP1/2 <0.001 46.8% 
 

 Total streamflow was directly related to precipitation, but inversely related to PET (p < 

0.001, Table 3). Precipitation explained 67% of the variation in streamflow and PET, an 

additional 1%. Stormflow was only related to precipitation (p < 0.001, R2 = 66%). Baseflow was 

related to precipitation and woody cover (p < 0.001). Precipitation explained 58% of the variation 

in baseflow and woody cover, an additional 3%. Canopy cover was related and PET inversely 

related to the ratio of baseflow to total streamflow (p = 0.001). Canopy cover explained 19% of 

the variability in this ratio and PET explained an additional 5%. The number of days that the 

stream flowed was related to precipitation and woody cover and inversely related to PET (p < 
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0.001). Precipitation explained 38% of the variability in flow duration; PET an additional 7%, 

and woody cover, 5%. 

Discussion 

 Similar to the present study, increases in woody cover centered in riparian corridors were 

observed in Northern Texas (Asner et al., 2003). Increases in forest cover observed in the 

Southern Great Plains are part of a larger-scale reforestation in the Southern United States that 

started in the early 20th century after the intensive agriculture of the 19th century (Wear and 

Greis, 2002). In the present study, a slight reduction in tree cover between 1954 and 1974 may 

have resulted from a drought in Oklahoma from 1952-1956 that caused tree mortality (Rice and 

Penfound, 1959). 

 It has been widely believed that woody cover in rangeland reduces streamflow (Kreuter 

et al., 2004; Starks et al., 2011; Tennesen, 2008). The present study questions whether 1992 

levels of woody cover in north-central Oklahoma, such as in the Council Creek watershed, are in 

fact producing the postulated reduction in streamflow. This study fails to uncover decreases in 

streamflow associated with increased tree cover. In 1956, the driest year on record, 99% of 

precipitation was lost to evaporation, assuming that ET is the complement of runoff. In this year 

baseflow was absent so vegetation management strategies intended to reduce evapotranspiration 

would have been ineffectual. In fact, to increase streamflow during the driest years, such as 1956, 

water-harvesting—practices that reduce infiltration and increase overland flow— would be 

necessary. 

 The present study finds that baseflows actually increased with forestation, similar to on 

the Edwards Plateau of Texas (Wilcox and Huang, 2010). However, encroachment in the Council 

Creek watershed is less extensive than on the Edwards Plateau. Accepting that infiltration is a 

prerequisite for baseflow and assuming that forestation of grassland improves the soil’s 

infiltration capacity, less extensive forestation in the Council Creek watershed relative to on the 

Edwards Plateau provides a possible explanation for less dramatic increases in baseflow in the 
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present study. Baseflows require permeable subsurface geology. Thus, lower baseflows in the 

present study may also reflect less permeable subsurface geology in the Council Creek watershed 

relative to the Edwards Plateau. Wilcox and Huang (2010) qualified the results of their study, 

noting that baseflows may only increase with hydrologic recovery in areas with similar geology 

to the Edwards Plateau. The present study indicates that hydrologic recovery may convey 

increased baseflows in non-karst geological settings as well, though the potential magnitude of 

baseflow increases in deeper, finer textured substrates is lower. In deep, fine textured soils there 

is less potential for changes in vegetation to influence baseflows because these soils can store 

more water than coarser substrates. 

 Modification of soil hydraulic properties may represent the physical mechanism causing 

higher baseflows with greater woody cover (Bruijnzeel, 2004). In the 1930’s, much of the study 

site was degraded cropland. Hydraulic conductivity is lower and overland flow, higher on 

degraded, sparsely vegetated hillslopes relative to areas with intact vegetation cover (Moreno-de 

las Heras et al., 2010; Wilcox et al., 2003c). Other land-uses within the watershed such as 

agricultural fields or grazinglands tend to have lower macroporosity than forest soils (Neary et al., 

2009). As a result higher infiltration rates have been reported as overgrazed lands revert to forest 

(Gilmour et al., 1987). Since baseflow is made up entirely of water that infiltrates into the soil, 

high infiltration is a prerequisite for high baseflows. From 1938-1992 Council Creek infiltration 

must have increased to a greater extent than evapotranspiration, thus creating the observed 

positive trend in baseflows. 

 From 1992-2010 woody cover increased by 8%. This higher level of cover may influence 

present-day streamflow and since the gauge ceased recording in 1992 it is impossible to 

determine at what point, if any, a reduction in total streamflow will occur. Such a reduction was 

observed when grazingland in central Texas converted to woodland (Wilcox et al., 2008). Though 

there are numerous benefits associated with augmenting baseflows, in water-limited regions, 

these benefits have historically been viewed as coming at the expense of reduced streamflows 
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(Calder, 2007). Benefits associated with increased baseflows include greater streamflow during 

the summer, healthier riparian zones, greater channel and bank stability, lower erosion and 

sediment transport, enhanced habitat for aquatic species, cooler stream temperatures, and more 

aesthetically appealing streams (Ponce and Lindquist, 1990). My results suggest that increases in 

woody cover, baseflow, and their aforementioned ecohydrologic benefits do not necessarily come 

at the cost of reduced streamflow. 

 It is a generally accepted precept that on watersheds where subsurface flow is an 

important streamflow generation process, the potential exists for increases in woody cover to 

diminish streamflow (Huxman et al., 2005; Wilcox, 2002). However, at the watershed scale the 

extent of woody cover change required to elicit a streamflow response has also been described as 

a threshold process (Lewis et al., 2000; Stednick, 1996). Lack of observed decreases of 

streamflow or its components may have resulted because the extent of forestation was insufficient 

to detect a reduction and because of the increasing trend in precipitation. In rangeland studies that 

have observed large streamflow changes with woody encroachment, the extent of encroachment 

was substantially greater than in the present study (Afinowicz et al., 2005; Wilcox et al., 2008). It 

is reasonable to anticipate that a high woody cover change threshold would be necessary to alter 

streamflow in Council Creek because evaporative demand is high relative to precipitation and the 

climate is continental. In climates in which precipitation and evaporative demand are out of 

phase, such as Mediterranean climates, changes in vegetation characteristics are more likely to 

influence streamflow. In contrast, in continental climates where precipitation and evaporative 

demand are more nearly in phase with one another, most precipitation that infiltrates into the soil 

ultimately evaporates, irrespective of plant characteristics. 

 Since this retrospective study indicates a weak correlation between woody cover and 

baseflow, but by its design cannot prove causation, it seems prudent to evaluate possible alternate 

explanations for increasing baseflows over time. Elevated precipitation from 1980-1992 near the 

Council Creek watershed was representative of the Central and Southern Great Plains (Garbrecht 



35 

 

et al., 2004; Garbrecht and Rossel, 2002). These increases in precipitation in the Central and 

Southern Great Plains were observed to cause non-linear, exponential increases in streamflow 

(Garbrecht et al., 2004). Since peak woody cover coincided with elevated decadal precipitation, it 

is possible that observed increases in baseflows would have occurred without increases in tree 

cover, as a result of precipitation alone. 

 Precipitation characteristics, including the storm size distribution, also have changed over 

time. In central Oklahoma the average size of individual storms increased dramatically from 

1950-1990 (Knapp et al., 2008a). Small, frequent storms wet the soil surface and can produce 

overland flow, but do not saturate deeper soil layers. Large less frequent storms—in which a 

greater depth of water is conveyed to the soil—are more likely to saturate the soil deeply. Since 

the water content of the deep soil is an important predictor of streamflow in central Oklahoma 

(Gourley and Vieux, 2006), it is reasonable to expect that an increase in the average size of a 

storm event would produce greater baseflows. 

 In addition to the potential confounding effects of precipitation on baseflows, changing 

land use can also affect baseflows (Dams et al., 2008). The Dust Bowl occurred in the 1930’s and 

spurred awareness of soil and water conservation practices. Thereafter, programs, such as the 

Conservation Reserve Program encouraged planting perennial grasses to replace former cropland 

(Dewald et al., 1985). In addition, cropland management practices in Oklahoma are sensitive to 

other economic incentives, such as commodity prices (Berg et al., 1988). On the historical aerial 

photos it is difficult to distinguish between specific non-forest land uses. Therefore, no attempt 

was made to quantify changes from cropland to grazingland or changes in grazing rate. Thus, 

woody cover may simply be a surrogate for wider land-use and soil hydraulic changes. 

 The effects of farm ponds and impoundments in the Council Creek watershed are also 

unknown. After floods vitiated agricultural lands during the late 1930’s and early 1940’s the 

Federal Flood Control Act of 1944 was passed authorizing pilot flood-control programs in the 

United States (Schoof et al., 1978). In 1953, the Watershed Protection and Flood Prevention Act 
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directed government agencies to protect vulnerable areas from flooding (Van Liew et al., 2003). 

As a result, the USDA NRCS built 2,500 flood control structures in Oklahoma to reduce peak 

discharge. These flood retarding structures reduce storm flows and augment baseflows 

immediately following storms as impounded water pours over the spillway of dams (Van Liew et 

al., 2003). Thus increasing impoundments might explain the change in the ratio of baseflows to 

stormflows over time. In light of the great abundance of ponds, reservoirs, and flood control 

structures in Oklahoma, it is nearly impossible to find watersheds that are unaffected by dams. 

However, dams also reduce low flows by trapping baseflows from above the flood control 

structure (Van Liew et al., 2003). There are only a few small farm ponds and no major 

impoundments in the Council Creek. Thus, any changes in impoundments that may have occurred 

in the Council Creek watershed do not appear to drive observed baseflow trends since the number 

of days that the stream flowed increased and was correlated to increases in woody cover.  
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CHAPTER IV 
 

 

CONCLUSIONS 

 

 Retrospective analysis of the Council Creek watershed provided useful information 

regarding trends in woody species and the nature of their association with the rangeland water 

cycle. First, a semi-automated supervised classification method was developed to assess woody 

cover changes using aerial photography throughout the entire watershed from 1938-1992. Then, 

stepwise regression and Mann-Kendall trend tests were used to assess hydrologic changes and to 

determine how observed hydrologic changes were related to measured changes in woody canopy 

cover. 

 Classification of woody cover on historical aerial photographs is a promising, affordable 

approach to determine large-scale, long-term changes in woody cover starting in the 1930’s when 

the first organized aerial photography campaigns were carried out in the United States. The 

process developed for estimating woody cover was more laborious than necessary. Future studies 

should consider investing in object-recognition software as these products become more 

powerful. Furthermore, at the beginning of future studies an assessment should be made to 

determine to what degree historical woody cover increases were confined to the present extent of 

woody cover. If most historical woody cover is within the bounds of present-day woody cover 

classifications (available from sources such as the National Land Cover Dataset) then restricting 

classification to these areas could save valuable time.
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 As woody cover (composed primarily of deciduous trees) increased, baseflows increased 

significantly as a proportion of total streamflow, though total streamflow did not change 

significantly. Confounding factors within the Council Creek watershed and during the study 

period included increased precipitation toward the end of the study period when woody cover was 

highest, construction of impoundments, and potential land-use change within the non-forested 

areas of the watershed. Nonetheless, the present study failed to support two prevailing paradigms 

in range management. The first states that woody cover should reduce the subsurface component 

of streamflows. The second states that phreatophytic riparian vegetation should have a differential 

impact in reducing baseflows, relative to upland plants that cannot access water tables. In 

contrast, the present study suggests the hypothesis that forestation of riparian areas may have a 

differential effect on increasing baseflows. Increases of woody cover to 1992 levels showed no 

decrease in streamflow and only increases of baseflow, indicating no measurable reduction in 

water yields despite the ecological benefits of increased woody cover. 

 Further research is needed into the hydrologic effects of changing forest cover along 

Oklahoma’s unique grassland-forest ecotone. Though the methods presented herein seem viable 

for watersheds that are nearly devoid of impoundments, these structures are especially common in 

the state of Oklahoma. Further application of aerial photography to assess drivers of change in 

streamflow in Oklahoma will require highly accurate reconstruction of streamflow components 

that have been altered by impoundments in most large gauged watersheds in Oklahoma.
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