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CHAPTER I 
 

INTRODUCTION 

1.1 The Oklahoma Mesonet. In 1994, as a joint project between Oklahoma State 

University and the University of Oklahoma, the environmental monitoring system of the 

Oklahoma Mesonet was established. The Mesonet consists of 120 stations with at least 

one station in each of Oklahoma’s 77 counties. Average station spacing is 50 km, which 

encompasses the medium, or meso, scale of variability found in many environmental 

variables (McPherson et al., 2007). Over 20 environmental variables are monitored at 

each station with readings taken at 5 to 30 minute intervals (Brock et al., 1995). 

Beginning in 1996, the CSI 229-L heat dissipation sensor was installed at a majority of 

the sites to monitor soil matric potential with sensors at 5, 25, and 60 cm depths with 

readings available every 30 minutes (Illston et al., 2008) Detailed descriptions of the site 

design, data quality and control, and data acquisition for the Oklahoma Mesonet have 

already been completed and can be found by Brock et al., (1995), Illston and Basara 

(2008), and on the system website, www.mesonet.org , respectively.  

The comprehensive dataset of soil matric potential readings spanning nearly 16 

years, is often used by researchers in hydrology and related disciplines for studies of soil 

water content spatial and temporal variability (DeLiberty and Legates, 2008; DeLiberty 

and Legates, 2003), land atmosphere interaction (Godfrey and Stensrud, 2008), 

groundwater storage estimation (Swenson et al., 2008), and soil water content remote 

http://www.mesonet.org/
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sensing validation (Holmes et al., 2012). However, the estimated accuracy of the Mesonet 

soil water content data is ±0.066 cm
3
 cm

-3
 (Illston et al., 2008), which is not adequate to 

meet requirements of some applications.  For example, contemporary satellite missions 

(e.g. SMOS, SMAP) aim to provide surface soil moisture measurements with accuracy of 

±0.04 cm
3
 cm

-3
 (Kerr et al., 2001). Furthermore, direct measurement of many of the 

properties that control soil hydrology including field capacity (FC) and permanent wilting 

point (PWP) have not been completed for a majority of the Mesonet Stations. This 

deficiency limits the use of Mesonet data in research as well as in applied purposes like 

drought monitoring. Plant available water (PAW), an effective drought indicator, 

quantifies available soil moisture on a depth basis resulting in output that is readily 

understandable and applicable. In order to calculate PAW, key soil physical properties 

must be known. A comprehensive database that includes direct measurements of soil 

physical properties is needed to improve the accuracy and applicability of a major 

environmental monitoring system, the Oklahoma Mesonet. 

1.2 Soil Moisture Monitoring.  

1.2.1. Sensors. The CSI 229-L heat dissipation sensor consists of a heating element and 

thermocouple placed in epoxy in a hypodermic needle, which is encased in a porous 

ceramic matrix. A current is applied to the heating element for 21 seconds, after which 

the thermocouple measures the temperature rise. The amount of water in the porous 

ceramic matrix changes as the surrounding soil wets and dries, which effects the 

magnitude of the temperature rise, ΔT, that is observed (Flint et al., 2002). The 

temperature rise is then normalized using sensor specific calibration coefficients and 
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represented as ΔTref to account for sensor to sensor variation (Illston et al., 2008). Soil 

matric potential is then calculated using Eq. [1]. 

 
 

                     [1] 

where  m is the matric potential (kPa), ∆T is the temperature change and sensor output 

(°C), and c and a are calibration constants equal to 0.717 kPa and 1.7880 C
-1

, 

respectively (Illston et al., 2008).  

1.2.2. Pedo-transfer function. The matric potential can be converted to soil water 

content based on the site and depth specific water retention curve (WRC). The 

combination of particle size distribution along with bulk density  is often used to predict 

soil water retention and hydraulic conductivity functions (Mohanty et al., 2002). These 

prediction models are called pedo-transfer functions (PTFs). Several forms exits 

including a simple look up table based on textural class such as the ARS USDA Rosetta 

class average look up table (Schaap et al., 2001a), the Arya and Paris method (Arya and 

Paris, 1981) which uses a detailed particle size distribution along with the bulk density, 

and the neural network model Rosetta, used to model the drying water retention curve 

(Schaap et al., 2001a).  

The matric potential value from the 229-L Mesonet sensors was previously 

converted to soil water content based on  the site and depth specific water retention curve 

estimated from particle-size distribution and bulk density using the PTF developed by 

Arya and Paris (1981). This method does not take into account soil structure; methods 

failing to account for structure can lead to significant error in medium and fine texture 

soils in which the WRC is highly influenced by soil structure (Hillel, 2004). The current 
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method resulted in a root mean squared difference (RMSD), or deviation from the 1:1 

line, of 0.066 cm
3
cm

-3
 when volumetric water content estimates based on the 229-L 

sensor data were compared to direct measurements made by oven- drying (Illston et 

al.,2008). Vereecken et al. (2010) outlines the importance of continued development of 

PTFs through the “establishment of databases of soil hydraulic properties that are derived 

from standardized measurement procedures, and contain predictors of soil structure.” In 

order to improve the estimation of soil water content by the Mesonet, the establishment 

of a soil hydraulic properties database, combined with a PTF which considers soil 

structure, is crucial.  

One of the most widely-used PTFs to date is the artificial neural network (ANN) 

model, Rosetta (Schaap et al., 1998). The Rosetta model takes soil structure in to account 

through the input of soil water content at -33 kPa. Rosetta is an ANN for estimating the 

parameters of the water retention curve of van Genuchten (1980). The advantage to using 

an ANN compared to traditional PTFs is that ANNs do not require a prior model concept. 

Therefore, the optimal relationship between input and output data is obtained through the 

calibration process (Schaap et al., 1998). Rosetta utilizes a hierarchical structure that 

allows input of 1-5 predictors, with accuracy increasing with the number of predictors. 

The Rosetta neural network approach has been found to significantly reduce error 

associated with hydraulic property estimation. Schaap et al. (2001a) evaluated the root 

mean square error between measured and estimated water contents and found that the 

error decreased with the ANN method versus traditional PTFs as well as decreasing with 

increased number of input parameters in Rosetta from 0.078 cm
3 

cm
-3

 with only the 

textural class as an input to 0.044 cm
3 

cm
-3

 with five inputs. The five inputs required for 
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this increase in accuracy in Rosetta include the percent sand, silt, and clay, the bulk 

density, and the water content at -33 and -1500 kPa, which correspond to the field 

capacity and permanent wilting point of the soil. Because of its ease of use, options in 

input, and demonstrated accuracy (Schaap et al., 2004), Rosetta was selected in this study 

to estimate the water retention curve parameters of soil samples obtained from the 

Oklahoma Mesonet stations. 

The hydraulic parameters Rosetta estimates are from the van Genuchten equation 

shown here as Eq. [2] (van Genuchten, 1980).  

 

 

The parameters include r (cm
3
 cm

-3
), which is the residual volumetric water content (at 

high suction), s (cm
3
 cm

-3
) which is the saturated volumetric water content,  is a fitting 

parameter inversely related the air entry suction, n is a fitting parameter which affects the 

shape of the curve and m (-), a fitting parameter represented  as  m = 1 – 1/n (Schaap et 

al., 2001a). Theses parameters are then used to calculate the current volumetric water 

content, θ, given the soil matric potential,  m, measured by the Mesonet sensors. In 

addition, Rosetta models the saturated hydraulic conductivity, Ks, as Eq. [3]  

       
    [    

 

   ]
  

 

 

                              [3] 

where Ko  (cm day
-1

) is a fitted matching point at saturation, L (-) is an empirical 

parameter, and Se (-) is the effective saturation (Schaap et al., 2001a).  

 

 

m

n

mrs

r
















 



1

1
[2] 
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1.2.3. Plant available water. Improved estimates of the soil water retention properties at 

the Mesonet sites will create opportunities for studying not just soil water content but also 

plant available water (PAW). Plant available water is defined as the amount of water 

stored in the soil profile above  the permanent wilting point, estimated at -1500 kPa 

(Brady and Weil, 1999). Different soil textures will loose and retain water at different 

rates, making estimation based on detailed soil characterization important. Point 

measurements of PAW at each of the Mesonet stations have value, but maps produced by 

spatial interpolation of PAW allows visualization of patterns to facilitate decisions made 

by end users of Mesonet data. 

1.3. Spatial Interpolation. Soil water content varies at multiple scales in space and time 

and  is an important component of the energy and water cycle because it controls 

interactions between the land surface and the atmosphere (DeLiberty and Legates, 2008). 

Researchers have proposed that the spatial variation of soil water content consists of a 

smaller land surface scale and larger atmospheric scale. The smaller land surface scale is 

related to soil and topographic variability and hydrologic processes and varies on the 

scale of tens of meters; whereas the atmospheric variability is on a scale of several 

hundred kilometers (Vinnikov et al., 1996). Oklahoma Mesonet stations are 

approximately 50 km apart, making the interpolation based on large or atmospheric scale 

variability feasible.   

Many studies have investigated the spatial and temporal variability of soil 

moisture (Brocca et al., 2012; Choi et al., 2007; Illston et al., 2004; Lakhankar et al., 

2010). However, very few studies have looked at the large scale spatial patterns of soil 

water content through mapping monitoring network data and no published studies are 
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available on the spatial structure of PAW, most studies have focused instead on models 

or satellite data of soil moisture. However, kriging has been used successfully in a recent 

study by Lakhankar et al. (2010) to interpolate Mesonet soil water content data. 

Lakhankar et al. established a semivariogram for soil water content during their study. 

They found the semivariogram range is 175 km, meaning that the semivariance reaches a 

maximum at that distance; the nugget or initial rise, shows the small scale variation in 

samples that are close together. They found that large-scale spatial patterns account for 

approximately 66% of the spatial variance of soil water content in Oklahoma. The new 

soil property database combined with the Mesonet sensor network creates powerful new 

opportunities to study the spatial variability of soil moisture. 

1.4. Objective statement and thesis organization. This study differs from and expands 

on the existing studies of soil moisture networks in two important ways; (i) by improving 

the accuracy of the modeled hydraulic parameters through detailed physical and 

hydraulic property characterization at each Mesonet station, (ii) by development of PAW 

maps, currently available on the Oklahoma Mesonet website. The main objective of this 

research is to provide increased accuracy for the Mesonet soil water content data through 

improved estimates of water retention curve parameters enabled by a comprehensive new 

database of soil hydraulic and physical properties of the Oklahoma Mesonet station soils.

 Chapter 2 provides detailed descriptions of the sampling area and plan, lab 

procedures and database design. Chapter 3 describes the improved accuracy of Mesonet 

soil water content resulting from the new database along with other possible applications 

for the database, including maps of PAW based on kriging. Chapter four outlines possible 

sources of improvement and future research considerations. 
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Figure 1.1 Map of the Oklahoma Mesonet station locations (●) with validation sites 

indicated (●) 
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CHAPTER II 

 

MATERIAL AND METHODS 

2.1 Study Area and Sampling Plan. The study area encompassed the entire state of 

Oklahoma. Located in the Southern Great Plains, the topography varies from nearly flat 

in the west to rolling plains in the northeastern Ozark Plateau. Vegetation types vary from 

predominantly grasslands to mixed hardwood forests. Climate variation is pronounced 

with a humid subtropical climate in the east transitioning to semi-arid in the west with a 

sharp decrease in precipitation from the southeast corner where it averages 142 cm per 

year, to the northwest panhandle, with 43 cm per year. Extreme temperature variability 

exists with temperatures above 32° C occurring 60-65 days a year and temperatures of 0° 

C or less occurring on average 60 days a year. Severe weather outbreaks include 

flooding, tornadoes, severe thunderstorms, and severe drought. (Arndt, 1997). 

Soil core samples were collected April-August of 2009 and 2010 at 117 of the 120 

Oklahoma Mesonet stations. A Giddings hydraulic soil sampler, model 15-SC/ GSRPS, 

(Baarstad et al., 1992) was used to extract two replicate cores within a maximum distance 

of 3 m from the soil water content sensors.  Cores were collected using an 8.9 cm 

diameter steel tube to a depth of 80 cm or to the depth of bedrock. Care was taken to 

minimize effects to the stations by backfilling all core sites with sand.  Core integrity was 

determined by comparing the length of the core to the depth of the bore hole; only 

samples that had greater than 90% agreement were accepted.  
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2.2 Core Sections. Each core was sectioned into 3-10, 20-30, 40-50, 55-65, and 70-80 

cm intervals on site. The top 3 cm section of the cores were discarded due to thick grass 

roots which prevent accurate measurements (Mohanty et al., 2002). Each interval is 

centered on the depth of existing Mesonet 229-L sensors excluding the 40-50 cm interval 

which a candidate depth for future sensor installation.  The 70-80 cm interval sensors 

were decommissioned by the Mesonet in January of 2011; however archive data will 

remain available. Each core section was sealed in a plastic bag and placed in a cooler to 

minimize water loss from the samples during transport to the laboratory. All samples 

were weighed and placed in the laboratory controlled humidity and temperature room at 

5°C within 24 hours of collection.  

2.3 Volumetric water content at sampling. The volumetric water content at field 

conditions was calculated from the gravimetric water content found through oven drying 

a subsample of each core section multiplied by the bulk density determined from the total 

core section volume and dry mass (Topp and Ferre', 2002). Samples were weighed before 

and after being dried at 105° C. The volumetric water content was calculated from the 

daily average ∆Tref output from the Oklahoma Mesonet 229-L heat dissipation sensors on 

the day each site was sampled. The ∆Tref values were converted to ψm by Eq. [1] and then 

to volumetric water content by Eq. [2] using the parameters in the new database.  

Uncertainty in the soil water content due to small scale spatial variations and the 

unavoidable distance (2-3 m) between soil cores and the in situ sensors was estimated 

based on the RMSD between water contents from replicate soil cores for each site and 

depth combination.  
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2.4 Bulk density.  An adapted version of the core method (Grossman and Reinsch, 2002) 

was used to determine the bulk density of the samples. The resulting bulk density 

represents that of the soil matrix only. A subsample of the core section was used to 

determine the rock fraction, or percentage of particles larger than 2 mm, present in the 

larger sample. The subsample was dried at 105° C, ground using a hammer mill and, if 

necessary, a mortar and pestle, and then sieved through a 2 mm sieve. The mass of the 

rocks in the subsample was then determined. The ratio of that mass to the dry mass of the 

subsample provided an estimate of the rock fraction, RF. The rock fraction was then 

applied to Eq. [4] to determine bulk density, b, of the soil matrix. 

   
         

          
             [4] 

where md (g) is the mass of the dry core section including rocks, V (cm
3
) is the volume of 

the core section, and R (g cm
-3

) is the density of rock. A rock bulk density of 2.6 g cm
-3

 

was used because it is the average of shale and sandstone, two of the most common rock 

parent materials found in Oklahoma (Johnson, 2008). A total of four samples had large 

rocks that prevented subsampling. For these samples, the entire section was used as 

opposed to a subsample. The section was dried, separated, and the rock fraction 

determined as in Eq. [4]. A total of 7.4 percent of the samples contained a rock fraction of 

5 percent or greater. This method was used, as opposed to a more rigorous method for 

estimating rock fraction, due to the extensive area covered by the sampling plan, as well 

as the destructiveness of collecting samples large enough to accurately represent the bulk 

density of the soil with rocks present. The bulk density data were analyzed for quality 

control by removing outliers from the data set. Outliers were determined as values that 
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were 2 times the interquartile range (IQR) below the first quartile or above the third 

quartile. 

2.5 Water content at -33 and -1500 kPa.  All gravimetric water content values were 

converted to volumetric water content using the determined bulk density. Field capacity 

was approximated by the amount of water remaining in the soil after equilibration at –33 

kPa by the pressure cell (Tempe cell) method (Dane and Hopmans, 2002). The intact core 

sections were trimmed to a height of ~4 cm and sealed with wax to fill the annular gap 

between the 8.9 cm pressure cell ring and the 7.5 cm sample (Ahuja et al., 1985). The 

permanent wilting point (PWP), defined as the soil water content at which plants wilt and 

cannot recover, was approximated in the laboratory by pressure plate extraction at -1500 

kPa (Dane and Hopmans, 2002).  Pressure plate extraction was performed using a 

subsample of each core section that had been dried at 105C and ground to pass a 2 mm 

sieve.  

The water content at -33 kPa and -1500 kPa data were analyzed for quality control 

by removing outliers from the data set. Outliers were determined as values that were 1.5 

times the IQR below the first quartile or above the third quartile. The available water 

capacity, or the water between -33 and -1500 kPa, was calculated and if the result was 

negative both water retention measurements were removed from the dataset. 

2.6 Particle size distribution. The textural class of each sample was determined  based 

on the percent sand, silt, and clay measured using the hydrometer method outlined by 

Gavlak et al. (2003). Samples were prepared by oven drying followed by grinding to pass 

a 2 mm sieve. Prior to the hydrometer procedure the gravimetric water content of a 
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subsample (~5 g) of the prepared sample was determined and the result was subtracted 

from the sample weight in calculations. 

2.7 Soil thermal properties. The Decagon KD2 Pro dual-probe, heat pulse sensor was 

used to determine thermal diffusivity, volumetric heat capacity, thermal conductivity and 

thermal resistivity of each sample after equilibration at -33 kPa (Bristow et al., 1994). 

The analysis of these data is outside the scope of this paper. 

2.9 Validation Sites. Nine validation sites were selected based on the presence of soil 

water content sensors to 60 cm as well as varying soil textural classes. Water content was 

measured at -8, -16, -33, -66, -125, -250, -500, -1,000, and -1,500 kPa for each sample for 

a total of 45 samples. Equation [2] was then fitted to the points and the measured water 

retention curves were compared to those estimated by Rosetta. The validation sites were 

Acme, Burneyville, Byars, Chickasha, El Reno, Eufala, Hobart, Oklahoma City West, 

and Shawnee.  

The accuracy of the Rosetta water retention curves was determined by the root 

mean squared difference (RMSD), which was found as the deviation from the 1:1 

relationship with the measured data as shown in Eq. [5], 

      √
 

 
∑    

 
     

 
        [5] 

and the mean error (ME) to measure over or under estimation by Rosetta when compared 

to the measured data as Eq. [6] 

    
 

 
∑    

 
    

 
        [6] 
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where γ′ and γ are the estimated and measured values of the variable under consideration 

and N is the number of measurements. Root mean squared difference was used as 

opposed to the root meant squared error (RMSE), or deviation from the regression line, 

because the measured values and those estimated by Rosetta should have a 1:1 

relationship. 

2.10 Plant available water. PAW at the Mesonet stations is determined by converting 

volumetric water content into PAW (mm) via Eq. [7]  

 

 

where i (cm
3
 cm

-3
) is the current volumetric water content of layer i, wpi  (cm

3
 cm

-3
) is 

the permanent wilting point for layer i, dzi  (mm) is the thickness of layer i, and n is the 

number of layers. Calculated values of PAW based on the Mesonet sensors were 

compared to values determined through soil samples taken at each site. Three variations 

of that comparison were explored. The first method compared PAW by the sensors using 

the volumetric water content at wilting point, wpi (cm
3
 cm

-3
), from the Rosetta van 

Genuchten parameters with a matric potential of -1500 kPa to PAW by sampling using 

the wpi determined through the pressure plate method. The second method compared 

PAW by the sensors as in method one with PAW by sampling using the wpi from the 

Rosetta van Genuchten parameters with a matrix potential of -1500 kPa. The third 

method compared PAW by the sensors using wpi determined through the pressure plate 

method to PAW by sampling using wpi determined through the pressure plate method. 

Each method was analyzed by regression and RMSD to determine which option produced 

   


n

i iwpii dzPAW
1

 [7] 
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the best agreement. The point estimates of θ and PAW were then interpolated by kriging 

to produce continuous surface maps. 

2.11 Kriging and Semivariogram. MATLAB BMElib numerical toolbox (Bogaert et al., 

2001) was used to compute empirical semivariograms, fit semivariograms models, and 

krige the θ and PAW data. Ordinary kriging, which assumes no spatial trend, was 

selected for use as an initial trial and to enable comparison with the results of Lakhankar 

et al.(2010). Model selection was based on visual inspection of the data. 

The semivariance is the variance based on samples separated by a given lag 

distance (h) and was calculated via Eq. [8], (Pilz, 2008).  

      
 

     
∑          

     
        [8] 

where γ(h) = semi-variance for a lag interval group (h), Zi = measured sample value at 

point i, Zi+h = measured sample value at point i + h, and N (h) = total number of sample 

pairs for the lag distance h (Lakhankar et al., 2010). 

Semivariances over the range of lag distances determined by Eq. [8] were then 

plotted on a semivariogram. The semivariogram was then used to determine the optimal 

weights for predicting values at locations that were not measured by Mesonet stations 

using Eq. [9] (Bolstad, 2008) 

   ∑     
             [9] 

where Q is the unknown value, wj is the weight for each sample j, and vj is the know 

value at sample point j (Bolstad, 2008).  
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CHAPTER III 

 

RESULTS AND DISCUSSION 

3.1 Soil Properties. The resulting Mesonet soil database (Meso-Soil) covers 13 

environmental variables with 541 complete replicated sample sets (1,082 individual core 

sections) that represent combinations of site and depth for 117 Mesonet Stations. The 

database contains the percent sand, silt, and clay; the bulk density, the volumetric water 

content at -33, and -1500 kPa; the van Genuchten parameters of residual volumetric water 

content, θr, saturated volumetric water content, θs (cm
3
 cm

-3
), alpha, α (kpa

-1
), and n 

(unitless); the saturated hydraulic conductivity, Ks (cm day
-1

), as well as the matching 

point parameter, Ko
 
(cm day

-1
), and the empirical parameter, L (unitless). The percent 

sand, silt, and clay found through the hydrometer method were used to determine the 

textural class of each sample. Percentages varied from 2 to 88 percent for sand, 0 to 74 

percent for silt, and from 4 to 78 percent for clay. Of the 12 major texture classes, all 

were represented except sand and silt. Fine textures are well represented in the database 

with 70 percent of samples having greater than 20 percent clay content. The clay and 

loam classes have the most representation at 85 samples each whereas loamy sand and 

sandy clay have the least representation at 6 samples each. The textural triangle 

distribution can be seen in Figure 3.1. After quality control, bulk density measurements 

of the soil matrix varied from 0.92 to 1.95 g cm
-3

 with an average of 1.50 g cm
-3

. Water 
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retention measurements at -33 kPa vary from 0.06 to 0.50 cm cm
-3

 with a mean of 0.28, 

and at -1500 kPa from 0.01 to 0.35 cm cm
-3

 with a mean of 0.15.  

Table 3.1 shows the input variables for Rosetta averaged by textural class 

including bulk density, percent sand, percent clay, water content at -33 kPa, and water 

content at -1500 kPa. The percent silt is not included because it was not measured 

directly, but found through the sum of clay and sand taken from 100 percent. The Meso-

Soil database enables the creation of PTFs that are specific to Oklahoma’s unique 

climate. Table 3.2 provides a texture class average hydraulic parameter PTF lookup table 

for the Meso-Soil database modeled after the Rosetta class average table (Schaap et al., 

2001b). The Rosetta class average table has all texture classes represented, however the 

majority of samples are in the loam and sand texture classes. As determined through 

textural analysis, the majority of Oklahoma Mesonet station soils are fine textured, 

making the development of an Oklahoma specific table beneficial. The residual 

volumetric water content, θr, and saturated volumetric water content, θs, of the Meso-Soil 

database tended to be lower than the Rosetta class average values. Alpha, α, and n did not 

vary significantly between the two datasets. The Meso-Soil database values for saturated 

hydraulic conductivity, Ks, tended to be lower for finer textures and higher for coarse 

textures relative to the Rosetta look up table with the largest difference of 197 cm d
-1

 in 

the loamy sand texture class. The matching point, Ko, followed the same trend as Ks with 

the largest discrepancy in the loamy sand of 42 cm d
-1

. The empirical parameter L values 

are comparable to the Rosetta values with few exceptions, in both datasets L tended to be 

less than zero.  



18 
 

3.2 Laboratory Water Retention Curve Validation. The Rosetta van Genuchten 

parameters were able to accurately predict the water retention points measured in the lab. 

The RMSD was evaluated based on the soil texture families (Baillie, 2001) of coarse 

loamy with 0-18% clay, fine loamy, with 18-35% clay, fine clayey, with 35-60% clay, 

and very fine clayey with greater than 60% clay. The relationship between increasing 

fines, or increase in percent clay, and RMSD was not conclusive with 0.064, 0.050, 

0.045, and 0.064 cm
3 

cm
-3

, respectively. However, the water retention curves for the 

Burneyville site are shown in Figure 3.2. All five depths are sandy loam. The RMSD of 

the direct fit to Eq. [2] varied from 0.010 to 0.025 (cm
3
 cm

-3
), the RMSD of the Rosetta 

prediction varied from 0.013 to 0.035 (cm
3
 cm

-3
). The water retention curve established 

for the Shawnee site, shown in Figure 3.3, represent the finest textures of the 9 validation 

sites with silt loam at 3-10 cm, silty clay loam at 20-30 cm, and silty clay from 40-80 cm. 

The greatest deviation from the direct fit data can be seen in the finest textured silty clay 

from 40-80 cm. The RMSD of the direct fit varied from 0.010 to 0.015 (cm
3
 cm

-3
), the 

Rosetta prediction RMSD varied from 0.026 in the silty clay loam to 0.068 in the finest 

textured silty clay. In general, Rosetta tended to better predict the water retention curves 

for coarse textured soil. 

The RMSD and ME for the direct fit of Eq. [2] to the measured water retention 

data for all of the validation sites and for the water retention curves based on the 

parameters estimated using Rosetta were determined at each of the 9 pressures as shown 

in Figure 3.4. The RMSD for all depths and pressures of the direct fit of Eq. [2] to the 

data was 0.011 cm
3 

cm
-3

 and remained relatively flat with the lowest RMSD of ~0.008 at 

low and higher pressures. The greatest error of 0.017 occurred at -66 kPa. The RMSD for 
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all pressures of the Rosetta water retention curves was 0.043 cm
3 

cm
-3

 with a RMSD of 

~0.025 at the lowest pressures increasing to a high of 0.060 at -250 kPa and decreasing 

steadily to 0.037 at -1500 kPa.   

The mean error of the direct fit of Eq. [2] to the data was 1.2x10
-4

 cm
3 

cm
-3

 with 

the greatest error of 0.007 cm
3 

cm
-3

 at -33 and -125 kPa. Rosetta tended to underestimate 

the water content compared to the laboratory measured water retention curve data with a 

ME of -0.023 cm
3 

cm
-3

.  The ME was greatest at -66 and -250 kPa at -0.043 cm
3 

cm
-3

. At 

matrix potentials near zero, the ME was ~0.01 while at matrix potentials from 500 to 

1,500 kPa the mean was -0.03 cm
3 

cm
-3

.  

Lab analysis of the Rosetta model was completed by Schaap et al. (2001a) based 

on the calibration data set by evaluating the root mean square error between measured 

and estimated water contents. They found that the error decreased with the ANN method 

versus traditional PTFs as well as decreasing with increased number of input parameters 

in Rosetta to 0.044 cm
3 

cm
-3

.  That value is nearly identical to the 0.043 cm
3 

cm
-3

 RMSD 

found for our validation data. 

3.3 Field θ and PAW Validation. Field validation of the complete Meso-Soil 

database was verified by comparing the volumetric water content calculated from the 

Rosetta van Genuchten parameters and the daily average ∆Tref output from the Oklahoma 

Mesonet 229-L heat dissipation sensors on the day of soil sampling to the volumetric 

water content determined by oven-drying a sub-sample of the core section (Figure 3.5). 

The RMSD of the complete dataset was 0.053 cm
3 

cm
-3

, this is the best current estimate 

for the overall network-wide uncertainty of the Oklahoma Mesonet soil water content 



20 
 

data when using the new Meso-Soil database. The RMSD decreased with depth from 

0.061 cm
3 

cm
-3

 at 5cm, to 0.053 at 25, 0.044 at 60, and 0.033 at 75 cm. The slope for the 

regression was significantly different from one based on the 95% confidence interval, and 

the intercept is significantly different from zero.  

Possible sources of error include variations at the field scale due to the 3 meter 

spacing between replicate cores, sensor errors present in the ∆Tref values, calculation of 

matric potential from Eq. [1], error present in the lab measurements, and modeling error 

present in the Rosetta program. The RMSD between duplicate core sections for the water 

content at sampling found through oven drying, -33 kPa found through the Tempe cell 

method, and -1500 found using the pressure cell method were 0.036, 0.040, and 0.038 

cm
3
 cm

-3
, respectively.  This means that a substantial portion of the 0.053 cm

3 
cm

-3
 

overall uncertainty likely arises from small scale spatial variability in soil moisture at the 

Mesonet sites.   

The volumetric water content at sampling estimated from the pre-existing Arya 

and Paris derived van Genuchten parameters had substantial bias at the dry end as 

indicated by overestimation of water content (Figure 3.6). The RMSD of the complete 

dataset was 0.078 cm
3 

cm
-3

 based on sampling of all the Mesonet sites, which is larger 

than the published values of 0.066 which was based on a smaller subset of sites (Illston et 

al., 2008). The RMSD decreased with depth from 0.089 cm
3 

cm
-3

 at 5cm, 0.078 at 25, 

0.062 at 60, and 0.067 at 75 cm. The slope and intercept for the regression are 

significantly different from one and zero respectively, based on a 95% confidence 

interval. The new database led to a 32% improvement in the RMSD of volumetric water 

content for the Mesonet, therefore previous studies using the Arya and Paris predicted 



21 
 

van Genuchten parameters may be worth reanalyzing with the new Meso-Soil database 

parameters.  

Knowing the soil characteristics lets us estimate the PAW for all sites in the 

network. Plant available water may be a better variable than volumetric water content for 

applications such as ecohydrology and agronomy because the characteristics of the soil 

are taken into account. The PAW option that performed best in comparing sensor data to 

sampled data was option three which is recommended as the method of use for the 

Mesonet website. This comparison shown in Figure 3.7 resulted in a RMSD of 19 mm 

which corresponds approximately to the RMSD value of 0.053 cm
3 

cm
-3 

from Figure 3.5 

when integrated over the 40 cm profile. The R
2
 value was 0.67 with a slope of 0.942 

which was not significantly different than one at a 95% confidence interval while the 

intercept of 10.2 mm was significantly different from 0. Option two resulted in an 

increase in RMSD to 20 mm and a slight increase in the R
2
 value to 0.68. The slope was 

not significantly different than one at 0.91; however the intercept was significantly 

different than 12.7 mm. The first option performed the worst with a RMSD of 25 mm and 

a R
2 

of 0.64, the slope and intercept were 0.935 and 19.4, respectively.  

3.4 Spatial Variability Analysis.  

In Figure 3.8, semivariogram models of the spatial variation in soil water content 

at the 5 cm depth on a) March 29, 2010 during wet conditions, b) August 07, 2011 during 

dry conditions, and c) May 15, 2011 during transitional conditions, in Oklahoma are 

presented. The semivariogram model with the best visual fit for Fig. 3.8a was a 

combination nugget and Gaussian model. The resulting semivariogram indicates a lack of 
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spatial structure; the semivariogram is mostly sill with no identifiable range. In contrast, 

the semivariogram of the dry day, Fig. 3.8b, gives a range of 189 km found when fit with 

a combined model of nugget and exponential. This is similar to the 175 km range found 

by Lakhankar et al.(2010). For Fig. 3.8b, the state lacked a strong spatial trend in soil 

water content due to widespread dry conditions, resulting in an identifiable nugget and 

sill of 1.4x10
-3

 and 3.3x10
-3

, respectively. Nugget to sill (N/S) ratios characterize the 

strength of the spatial structure of the data with the majority of N/S ratios for soil 

property data ranging from 0.1 to 0.6 for strong to weak spatial structures, respectively 

(Kravchenko, 2003).  The N/S ratio of Figure 3.8b was 0.44, suggesting a weak spatial 

structure. Whereas, large scale spatial patterns accounted for 66 percent of the mesoscale 

spatial variance of soil moisture found in the previous study of the Mesonet soil moisture 

systems (Lakhankar et al., 2010). Figure 3.8c was produced on a precipitation transition 

day in which approximately half the state had recently experienced precipitation while 

the rest remained dry. The best visual fit was a combined nugget and Gaussian 

semivariogram model as in Fig. 3.8a.  As expected, this resulted in the greatest spatial 

variation. The semivariogram was unbounded as a result of the known strong spatial 

trend in moisture from east to west with no identifiable sill or range. These data 

demonstrate that soil moisture exhibits spatial structure beyond the 300 km scale.   

Figure 3.9a-c are maps created from Figure 3.8a-c semivariograms, respectively. 

The spacing for the kriging grid was set to 30 km, with the maximum number of 

neighboring points considered set at 10 and a maximum distance of 100 km. The 

uncertainty associated with the maps is related to the kriging variance, the square root of 

which averaged, 0.076, 0.052, and 0.085 cm
3
 cm

-3
 for Figs. 3.9a-c, respectively. Clearly, 
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a large, dynamic range of soil water content conditions exist with the spatial structure 

changing over time. The Meso-Soil database and Oklahoma Mesonet sensor data present 

many opportunities for research on the spatial and temporal variability of soil water 

content at the state scale. These maps may be particularly valuable for evaluating large-

scale remotely-sensed or modeled soil moisture.  

Plant available water may be a better variable than soil water content for mapping 

because PAW integrates multiple sensor depths, accounts for differences in soil type, and 

is more closely related to plant water stress. One application of the Meso-Soil database is 

the creation of PAW semivariograms and maps. Figure 3.10a-c and 3.11a-c show 

semivariograms and maps of PAW in the 0-40 cm soil layer for the a) wet, b) dry, and c) 

transition days used in Fig. 3.8.  The semivariogram models with the best visual fit for 

PAW were consistent with those for soil water content. The square root of the kriging 

variance averaged, 19.7, 8.5, and 23.7 mm for Figs. 3.11a-c, respectively. The 

assumption of no spatial trend required in ordinary kriging was violated in Figures 3.10a 

and c as indicated by the unbounded structure of the semivariograms. More research 

needs to be done to determine how to best detrend these data. These are the first known 

semivariograms and maps for PAW. Nonetheless, Fig. 3.10 provides some evidence that 

PAW can exhibit stronger spatial structure than soil water content. For example, the 

maximum semivariance in Fig. 3.10c is four times the minimum semivariance, whereas 

in Fig. 3.8c the maximum semivariance is only twice the minimum semivariance. The 

new soil database, combined with the Mesonet sensors, create rich opportunities to 

explore the spatial structure of this key variable.  
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The development of the Meso-Soil soil property database combined with the 

archived data of the Oklahoma Mesonet provides opportunities to study existing theories 

regarding preferential states in soil water content (D'Odorico et al., 2000) and soil, plant, 

atmosphere coupling (Chen et al., 2011). Studies that examine these phenomena often 

look at frequency distributions of soil water content (D'Odorico et al., 2000). Figure 3.12 

shows the frequency distributions of PAW in the 0-40 cm layer at the Oklahoma Mesonet 

stations Goodwell, Norman, and Idabel which span a northwest to southeast transect 

across the state. All stations are still actively recording data; the Goodwell station began 

recording soil moisture data in August of 1997, Norman in September of 2002, and 

Idabel in June of 1999.  The frequency distribution of the Goodwell site indicates 

primarily dry conditions with plant available water below 25 mm occurring 50 percent of 

the time. The Idabel site tended to be wet with PAW of 75 mm or greater over 50 percent 

of the time. These results are as expected with Oklahoma’s strong precipitation gradient 

which increases from northwest to southeast. However, the frequency distribution at the 

Norman site was strongly bimodal with PAW of 25 mm or less over 30 percent of the 

time and PAW of 75 or greater approximately 40 percent of the period of  study. These 

findings are consistent with the hypothesis that soil water deficits have a positive 

feedback effect on drought by reducing the probability of precipitation. This in turn 

results in two preferential states of wet or dry, with a low frequency of occurrence of 

intermediate conditions in soil water content (D'Odorico et al., 2000). Oklahoma’s 

uniquely varying climate provides an opportunity to further study the causes of these 

preferential states and their effects on prolonged drought.  
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Oklahoma Mesonet has been archiving soil water content data at many locations 

since 1996. Because of the length of the data record, these stations can begin to be used 

in climatology studies across the large climate gradient of Oklahoma. For example, time 

series of soil water content allow visualization of anomalous events such as the droughts 

of 2006 and 2011. In Fig. 3.13, a severe drought is reflected in an extended period of 

unusually low water content at the 60 cm depth in a time series analysis of the Stillwater 

Mesonet station from January, 2011 to December, 2012. As expected, the 5 cm VWC has 

high frequency variations at shorter time scales, while deeper depths respond more 

slowly. These kinds of data are especially useful in evaluating model predictions of soil 

moisture variation with depth and time at individual locations.   
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CHAPTER IV 

CONCLUSIONS 

The soil property database will be available for download from the Oklahoma 

Mesonet website; www.mesonet.org.  

In order to simplify the conversion of the sensor ΔTref data to volumetric water 

content and plant available water, two Matlab functions were created. MesothetaS 

facilitates spatial investigation using a single day of data. It provides three outputs, the 

volumetric soil water content for the 5, 25, and 60 cm sensors for each station, the plant 

available water for the 0-10, 0-40, and 0-80 cm layers at of each station, and a map of 

PAW produced by ordinary kriging. Inputs required to run the function include the ΔTref  

data for each station for the selected day and the soil property database file. MesothetaT 

is a function which interprets a time series of data for a single site. The outputs include 

soil water content for the 5, 25, and 60 cm depths, plant available water for the 0-10, 0-

40, and 0-80 cm layers, and a time series plot of PAW for the available sensor depths. 

The inputs required include the Mesonet ΔTref data for a single site during the time period 

of interest and the soil property database file. Both Matlab functions will be available for 

download on the Oklahoma State University Soil Physics Website, 

http://soilphysics.okstate.edu/.  

http://www.mesonet.org/
http://soilphysics.okstate.edu/
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Through the development of the Oklahoma Mesonet Soil Property database the 

accuracy of soil water content measurement has been improved by 32% for the Mesonet 

system. The RMSD between the values found through direct measurement and those 

found using the 229-L sensor with the new soil properties was 0.053 cm
3
 cm

-3
 while the 

corresponding value with the pre-existing soil database was 0.078 cm
3
 cm

-3
. The 

measurement of the additional soil properties of water retention at -33 kPa and -1500 kPa 

along with the neural network model Rosetta enabled this improvement in the accuracy 

of soil water content measurement based on Mesonet ΔTref   data. Another major benefit 

of having such a detailed and extensive database of the Mesonet station soils is future 

adaptability. As more effective pedo-transfer functions are developed, the existing 

database can be utilized as input parameters allowing for further increases in accuracy of 

soil water content measurement.  

Oklahoma Mesonet products that utilize the new database are currently in use and 

under development. One product resulting from this work that is currently available on 

the website is the daily plant available water maps that provide the 4, 16, and 32 inch 

depth plant available water in inches 

(http://www.mesonet.org/index.php/weather/category/soil_moisture_temperature). These 

PAW maps allow for quick and easy interpretation versus the previous mapping variable, 

fractional water index, a unitless measure of the ratio of the current conditions to the 

sensor extremes. Currently, the OK-FIRE division of the Mesonet is working to 

incorporate plant available water data into models that predict fire danger. The plant 

available water data will be used in fuel moisture models that predict the amount of 

moisture present in vegetation.  

http://www.mesonet.org/index.php/weather/category/soil_moisture_temperature
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Continued research on the spatial structure of plant available water is needed. The 

results of the semivariogram analysis suggested a stronger spatial pattern in PAW than in 

soil water content. The stronger spatial pattern may result from the fact that PAW 

accounts for spatial variations in soil water retention at -1500 kPa. However, of the three 

days analyzed only the dry day had a meaningful nugget to sill ratio, allowing a clear 

estimate of the strength of the spatial structure. The unbounded shape of the wet and 

transitional moisture days are evidence of the large-scale spatial trends present in the 

data. Determining a method of successfully detrending the data, or research into more 

flexible methods of spatial interpolation, are necessary.   
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Table 3.1 Textural class average, bulk density, particle size percent, and water content for the 

soils of the Oklahoma Mesonet stations. Number of samples in each textural class (N), bulk 

density (ρb), percent sand, percent clay, water content at -33 kPa (θ-33), and water content at -

1500 kPa (θ-1500). Percent silt was determined as the difference between 100 percent and the sum 

of clay and sand and is therefore not shown. 

Textural 

Class 
N 

ρb sand  clay          θ-33     θ-1500                 

(g
 
cm

-3
) (%) (%) (cm

3
 cm

-3
) (cm

3
 cm

-3
) 

Clay 85 1.52 (0.16) 17.4 (9.4) 52.8 (8.6) 0.38 (0.06) 0.25 (0.05) 

C Loam 83 1.51 (0.15) 30.6 (6.3) 32.9 (3.7) 0.28 (0.05) 0.15 (0.04) 

Loam 85 1.46 (0.15) 41.1 (6.0) 20.7 (4.2) 0.23 (0.05) 0.09 (0.03) 

L Sand 6 1.49 (0.21) 81.7 (3.8) 6.9 (2.9) 0.09 (0.02) 0.02 (0.01) 

Sand N/A - - - - - - - - - - 

S Clay 6 1.67 (0.15) 53.7 (4.6) 40.5 (5.8) 0.34 (0.03) 0.21 (0.03) 

S C L 37 1.57 (0.19) 55.7 (7.4) 25.8 (4.1) 0.22 (0.05) 0.12 (0.04) 

S Loam 58 1.51 (0.21) 66.5 (9.5) 12.8 (3.9) 0.16 (0.05) 0.06 (0.02) 

Silt N/A - - - - - - - - - - 

Si C L 56 1.45 (0.20) 13.2 (4.7) 33.9 (3.7) 0.28 (0.05) 0.10 (0.03) 

Si Clay 55 1.58 (0.13) 9.9 (4.3) 45.3 (3.6) 0.38 (0.05) 0.25 (0.05) 

Si Loam 70 1.48 (0.18) 21.1 (7.6) 18.7 (4.6) 0.31 (0.05) 0.17 (0.05) 
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Table 3.2 Textural class average hydraulic parameters for the soils of the Oklahoma Mesonet stations. Number of samples in each 

textural class (N), residual water content (θr), saturated water content (θs), fitting parameters alpha (α) and n, saturated hydraulic 

conductivity (Ks), fitted matching point at saturation (Ko), empirical parameter (L).     

Textural 

Class 
N 

θr  θs  α      n           Ks        Ko                   L                        

(cm
3 

cm
-3

) (cm
3 

cm
-3

) (1 kPa
-1

) (unitless) (cm d
-1

) (cm d
-1

) (unitless) 

Clay 85 0.07 (0.01) 0.45 (0.04) 0.13 (0.10) 1.26 (0.10) 11.3 (15.2) 3.5 (3.2) -1.2 (1.5) 

C Loam 83 0.06 (0.01) 0.40 (0.03) 0.16 (0.12) 1.36 (0.11) 13.7 (11.5) 7.1 (9.1) -0.7 (0.7) 

Loam 85 0.04 (0.01) 0.38 (0.03) 0.16 (0.10) 1.43 (0.10) 22.7 (14.7) 8.7 (8.1) -0.4 (0.6) 

L Sand 6 0.02 (0.01) 0.38 (0.05) 0.58 (0.15) 1.55 (0.15) 302.5 (201) 67.0 (48.2) -1.1 (0.1) 

Sand N/A - - - - - - - - - - - - - - 

S Clay 6 0.06 (0.01) 0.39 (0.04) 0.11 (0.11) 1.28 (0.06) 16.8 (33.0) 3.9 (4.4) -0.6 (1.1) 

S C L 37 0.05 (0.01) 0.38 (0.04) 0.29 (0.16) 1.35 (0.06) 60.0 (73.2) 16.9 (19.1) -1.2 (0.6) 

S Loam 58 0.03 (0.01) 0.37 (0.05) 0.35 (0.18) 1.41 (0.08) 101.5 (97.6) 26.6 (22.5) -0.9 (0.6) 

Silt N/A - - - - - - - - - - - - - - 

Si C L 56 0.07 (0.03) 0.42 (0.03) 0.16 (0.12) 1.36 (0.13) 10.3 (7.2) 5.4 (7.6) -1.1 (1.8) 

Si Clay 55 0.08 (0.01) 0.43 (0.03) 0.16 (0.11) 1.25 (0.12) 3.7 (4.4) 3.5 (2.1) -2.2 (2.3) 

Si Loam 70 0.04 (0.02) 0.39 (0.04) 0.09 (0.10) 1.58 (0.25) 22.5 (27.1) 4.6 (6.2) 0.1 (0.6) 
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Figure 3.1 Particle size distribution for the soils of the Oklahoma Mesonet stations at the 

sampled depths (○). 
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Figure 3.2 Measured water retention curve (○), direct fit of Eq. [3] to the measured data   ( - ), 

and water retention curve based on the parameters estimated using Rosetta (- -), for the 

Burneyville Mesonet station by sampling depth. All depths are sandy loam.
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Figure 3.3 Measured water retention curve (○), direct fit of Eq. [3] to the measured data   ( - ), 

and water retention curve based on the parameters estimated using Rosetta (- -), for the Shawnee 

Mesonet station by sampling depth. All depths are fine textures with silt loam at 3-10 cm, silty 

clay loam at 20-30 cm, and silty clay from 40-80 cm. 
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Figure 3.4 Root mean square error (RMSD) and mean error for direct fit of Eq. [3] to the 

measured water retention data for the validation sites ( - )  and for the water retention curves 

based on the parameters estimated using Rosetta (- -). 
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Figure 3.5 Volumetric water content calculated from the daily average ∆Tref output from the 

Oklahoma Mesonet 229-L heat dissipation sensors on the day of soil sampling (VWC, sensors) 

versus volumetric water content determined by oven-drying a sub-sample of the core section. 

The ∆Tref values were converted to ψm by Eq. [1] and then to VWC by Eq. [3] using the 

parameters in the new database. Where (○) is the VWC data, ( - ) is the regression line, and (- -) 

is the 1:1 line.
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Figure 3.6 Volumetric water content calculated from the daily average ∆Tref output from the 

Oklahoma Mesonet 229-L heat dissipation sensors on the day of soil sampling (VWC, sensors) 

versus volumetric water content determined by oven-drying a sub-sample of the core section. 

The ∆Tref values were converted to ψm by Eq. [1] and then to VWC by Eq. [3] using the existing 

parameters found by the Arya and Paris method. Where (○) is the VWC data, ( - ) is the 

regression line, and (- -) is the 1:1 line.  
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Figure 3.7 Plant available water for 0-40 cm calculated from Eq. [6] where θi is the current 

volumetric water content (VWC) found through the daily average ∆Tref output from the 

Oklahoma Mesonet 229-L heat dissipation sensors on the day of soil sampling converted to ψm 

by Eq. [1] and then to VWC by Eq. [3] using the parameters in the new database minus the θwpi 

as the VWC found via the pressure plate method (PAW, sensors) versus plant available water 

determined by oven-drying a sub-sample of the core section as θi minus θwpi found via pressure 

plate. Where (○) is the PAW data, ( - ) is the regression line, and (- -) is the 1:1 line. 
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Figure 3.8 Soil water content semivariograms of the Oklahoma Mesonet stations during (a) wet, (b) dry, and (c) transitional moisture 

conditions on 3/29/2010, 8/07/2011, and 5/15/2011 respectively, where (●) are the empirical semi-variances and ( - ) are the fitted 

models. Semivariograms (a) and (c) are combination nugget, Gaussian models, whereas (b) is a nugget, exponential model. 
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Figure 3.9 Kriged maps of soil water content for Oklahoma Mesonet stations generated using 

Figure 3.8 semivariograms during (a) wet, (b) dry, and (c) transitional moisture conditions on 

3/29/2010, 8/07/2011, and 5/15/2011, respectively.  
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Figure 3.10 Plant available water semivariograms of the Oklahoma Mesonet stations during (a) wet, (b) dry, and (c) transitional 

moisture conditions on 3/29/2010, 8/07/2011, and 5/15/2011, respectively, where (●) are the empirical semi-variances and ( - ) are the 

fitted models. Semivariograms (a) and (c) are nugget, Gaussian models, whereas (b) is a nugget, exponential model. 
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Figure 3.11 Kriged maps of plant available water for Oklahoma Mesonet stations generated 

using Figure 3.10 semivariograms during (a) wet, (b) dry, and (c) transitional moisture 

conditions on 3/29/2010, 8/07/2011, and 5/15/2011, respectively.
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Figure 3.12 Frequency distributions of daily averaged plant available water in a northwest to 

southeast transect of low to high precipitation. Goodwell is in the Oklahoma panhandle, Norman 

is near the center of the state, and Idabel is in the far southeast.  
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Figure 3.13 Partial time series of volumetric water content for the 5 cm ( - ), 25 cm ( - ) and 60 

cm (- -) sensors of the Stillwater Oklahoma Mesonet station from January, 20011 to December, 

2011. Data is available for the Stillwater site from 1996 to present.
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APPENDIX I 

 

The following seven figure are the measured water retention curve (○), direct fit of Eq. [3] to the 

measured data   ( - ), and water retention curve based on the parameters estimated using Rosetta 

(- -), for the validation Mesonet stations by sampling depth in the following order Acme,  Byars, 

Chickasha, El Reno, Eufala, Hobart, and Oklahoma City West. 
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APPENDIX II 

The Matlab code used in processing the data for this thesis will be submitted electronically as a 

companion to this thesis. Created as part of the analysis, and to facilitate future analysis, the two 

Matlab function, MesothetaS and MesothetaT were created and are available for download at 

www.soilphysics.okstate.edu  
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Mesonet Stations. The database contains the percent sand, silt, and clay; the bulk density, 

the volumetric water content at -33, and -1500 kPa; the van Genuchten parameters of 

residual volumetric water content, θr, saturated volumetric water content, θs (cm
3
 cm

-3
), 

alpha, α (kpa
-1

), and n (unitless); the saturated hydraulic conductivity, Ks (cm day
-1

), as 

well as the matching point parameter, Ko
 
(cm day

-1
), and the empirical parameter, L 

(unitless). The performance of the Rosetta model was determined based on the root mean 

squared difference (RMSD) of the modeled data vs. that found through oven-drying and 

was found to be 0.053 cm
3 

cm
-3

, compared to the Arya and Paris method RMSD of 0.078 

cm
3 

cm
-3

. The improved estimates of the soil hydraulic and physical properties of the 

Mesonet station soils has expanded the functionality of the monitoring system by 

providing increased accuracy for the Mesonet soil water content data. The estimation of 

soil water content by the Oklahoma Mesonet was improved by 32%. In addition, daily 

plant available water maps are currently available on the website, www.mesonet.org. 

 

 

 

 

 

 

 

 

 


