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CHAPTER I  

INTRODUCTION 

 

Water Quality 
 

Our modern definition of water quality and approaches to maintaining this 

limiting resource has undergone rapid changes in the last several decades.  Increased 

urbanization of our populations and unchecked growth following the Industrial 

Revolution has placed the state of our water resources in peril.  It has only been since the 

1970s that Lake Erie was thought to be altogether “dead” and fires on the Cuyahoga 

River caught national attention.  These incidents and other historic events have shaped 

the way we approach the conservation of our natural resources.   

In the early 1970s Congress revised existing water laws in the spirit of a more 

comprehensive means to address the needs of a growing population and increasing 

industry.  Several decades later these changes are still being implemented in the 

protection of our waters and have continued to changed with the increasing pressures of 

technology and a growing population. 

Originally, Congress targeted municipal sewer systems and direct industrial 

dumping or point sources (PS) of pollution into our natural waterways but since the 

1980s non-point sources (NPS) and stormwater have received increasingly 



 2 

more attention.  As the nation and our economy have changed so too have our population 

dynamics and sources of water degradation.  Non-point sources of pollution are now the 

leading contributors to impairment and PS are less of a problem following decades of 

targeted management (USEPA 2003).  With continued improvements to the methods that 

address these two types of water pollution there are increasingly advanced technologies 

for protecting and restoring the nations “waters”. 

 

Bioretention and Stormwater Management 
 

Urban sprawl and densely populated municipalities alter the natural hydrology 

and have been shown to contribute significant amounts of pollution to stormwater that 

enters natural waterways, contributing to reduced quality and altered flow rates.  With 

conventional land development there is an increase in the amount of impervious surface 

in the respective watershed and a subsequent increase in the volume of stormwater and 

peak flow. These anthropogenic sources of stormwater can have many impacts on the 

environment contributing to erosion, silting, and habitat deterioration.   

Stormwater leaving urban/suburban landscapes may carry oil and metals from 

automobiles, pesticides, herbicides, nutrients, and animal wastes.  Some of these 

pollutants can lead to eutrophication of water bodies from erosion and nutrient loading, 

others simply altogether impair water quality if present in significant concentrations such 

as pesticides, heavy metals and hydrocarbons. 
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Use of bioretention as a Best Management Practice (BMP) has only been utilized 

in the recent decades. This novel approach to stormwater management was first applied 

in the use of Bioretention Cells.  Bioretention Cells are landscaped areas with amended 

soil that is engineered to increase infiltration, and designed to mitigate runoff associated 

with a delineated area. These BMPs are used to reduce stormwater pollution and naturally 

manage quantities of runoff following precipitation events through an integrated onsite 

approach (PGDER 2002)(NCES 2005).  Stormwater has been conventionally managed 

by detention ponds, which are centralized BMPs that store large qualities of water that is 

then slowly released off-site.  Bioretention Cells, also known as rain gardens, can be 

integrated throughout a site to suite developers’ needs or can be installed post 

development to address unanticipated storm-water issues.  

This technology is continuously being improved.  As such, there is inadequate 

knowledge of the effects of ecological processes occurring within these systems.  

Ecological processes in the context of this study refer to the cumulative effects of 

dormant and foliaged plants and vesicular arbuscular mycorrhizal fungi (VAM) on 

uptake and sequestration of elements in the root zone (i.e. their influence on rhizospheric 

nutrient cycling and other soil processes). 
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Plants & Mycorrhizal Fungi 
 
 

The influence of plants and symbiotic VAM on soil properties has not been 

addressed in the Bioretention Cell literature.  However, there is extensive documentation 

of the plant and VAM role in the uptake of elements and modification of the rhizosphere 

(Bolan 1991)(Varma and Hock 1998).  For instance, vascular plants have been used for 

some time for their known phytoremediative attributes and ability to modify the soil 

environment (i.e. soil organic matter, CEC, soil stability)(EPA 2006).   

The same is true of VAM, an endophytic symbiont that is increasingly being used 

for enhanced bioremediation, especially for heavy metals (Read and Perez-Moreno 

2003)(Varma and Hock 1998).   The lack of quantification of the intrinsic benefits of 

plants and their symbionts in Bioretention Cells may lead to a gross underestimation of 

the ameliorative potential of these BMPs which could otherwise further encourage their 

implementation. 



 5 

CHAPTER II  

REVIEW OF LITERATURE 

Water Quality 
 
 

In 1948 Congress passed the Federal Water Pollution Control Act, which in 1977 

after further amendment became known as the Clean Water Act (CWA), a statute that 

provides both regulatory and non-regulatory tools to protect the surface waters of the 

United States.  This Congressional Act is intended to restore and maintain the chemical, 

physical, and biological integrity of the nation’s waters; specifically to support “the 

protection and propagation of fish, shellfish, and wildlife and recreation in and on the 

water (GPO 1972).”  

The CWA was initially used to address industrial and municipal PS and the 

chemical aspects of “integrity” (USEPA 1999).  Point source pollution, as defined by the 

CWA, includes all pollution originating from discrete conveyances (i.e. end-of-pipe).  

Since the 1980’s, increasingly more attention is given to NPS such as agricultural and 

residential overland runoff following precipitation events and the biological aspects of 

“integrity” (USEPA 1999).  Non-point sources, as interpreted by the CWA, include all 

pollution that is not classified as PS. 
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In recent years the Environmental Protection Agency (EPA) reported that NPS is 

linked to over 40% of the nations impaired waters while only 10% of impairments can be 

solely attributed to PS (USEPA 1999).  More specifically, pollutants and erosion from 

agriculture and urbanized areas (UAs) are leading causes of water quality impairment in 

the nation. 

Non-point sources are typically addressed by the CWA with measures other than 

regulatory forms.  Concentrated Animal Feeding Operations (CAFOs) are the exception 

and are treated as PS.  Similarly, some pollution from UA originates as NPS but as 

stormwater is directed through Municipal Separate Stormwater Systems (MS4s) it 

becomes PS and is regulated as such. 

Section 319 of the CWA addresses NPS by providing monies to states, tribes, and 

local governments for the development and implementation of programs aimed at the 

reduction of NPS pollution.  Stormwater from urban areas and densly populated 

municipalities can be indirectly addressed with 319 funds and programs, since the 

implemented practices target NPS to overall reduce stormwater pollutants (i.e. the 

resultant PS pollution from MS4s). 

The CWA does not provide regulatory constraints for NPS, but stormwater BMPs 

are mandatory.  Urban BMPs that target stormwater include detention ponds, grassed 

swales, and bioretention.  Non-regulatory strategies utilize public educational materials 

and other forms of outreach as a major component of the BMP strategy.   
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In 1987 the scope of Section 402(p) under the CWA was expanded requiring 

permitting for some MS4s under the National Pollutant Discharge Elimination System 

(NPDES) regulatory program.  This program requires most entities with MS4s to obtain a 

NPDES permit.  Urbanized areas and densely populated municipalities fall under this 

regulatory framework.  The EPA can delegate permitting for NPDES to states and tribal 

governments once they demonstrate at least equally stringent regulations as the EPA.   

The implementation of this comprehensive regulatory plan for municipal PS 

discharge was to be achieved in two phases.  Progress is monitored with a biannual 

Integrated Water Quality Assessment Report that is required of entities that issue permits.  

Phase I under section 402(p) was announced in 1990 requiring permits for stormwater 

discharge from MS4s serving populations of 100,000 or more.  Phase II under section 

402(p) began in 1999 requiring permits for stormwater discharge from small MS4s 

located within an UA.  In the EPA Stormwater Phase II Final Rule document (USEPA 

2005) “an UA is a land area comprising one or more places, central place(s), and the 

adjacent densely settled surrounding area, urban fringe, that together have a residential 

population of at least 50,000 and an overall population density of at least 1,000 people 

per square mile.” 
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Oklahoma Water Quality 
 
 

As of 2010, Oklahoma is in compliance with Phase I and Phase II requirements as 

determined by the EPA and Oklahoma Department of Environmental Quality (ODEQ) is 

authorized to administer most of the NPDES permitting.  Oklahoma has two cities 

regulated under Phase I (Tulsa and Oklahoma City) and 45 Phase II entities (GCSA).   

Oklahoma’s 2008 Integrated Water Quality Assessment Report covered 622,176.5 

lake acres of a total 1,041,884.0 lake acres and 12,415.7 river and stream miles of a total 

78,778 river and stream miles.  This report identified Total-phosphate as the main source 

of nutrient impairment in 24,317 lake acres and 160.2 river and stream miles.  Nitrates 

and ammonium were causes of impairment in 117.7 and 115.5 river and stream miles, 

respectively.  Urban-related runoff (stormwater) was listed as a probable source of 

contamination for 20,553.0 lakes, reservoirs, and pond acres and 6,573.8 river and stream 

miles (ODEQ 2008).  The EPA reported in 2003 “The most recent National Water 

Quality Inventory identified runoff from urbanized areas is the leading source of water 

quality impairments to surveyed estuaries and the third-largest source of impairments to 

surveyed lakes” (EPA 2003).  

Oklahoma water quality standards are variable and dependent upon locality and 

defined beneficial use, in terms of nutrient limitations in water bodies and are more often 

narrative than numerical.  For instance, the only Oklahoma numeric water quality 

standard for phosphorus (0.037 mg/L) solely applies to waters designated as a “Scenic 
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River” (OWRB 2007).  Oklahoma currently has only one designated “Scenic River”; the 

Illinois River but Flint Creek and Barren Fork Creek, tributaries of the Illinois River, also 

fall under this designation. 

Oklahoma Water Quality Standard 785:45-5-9 describes applicable general 

narrative criteria and states “Nutrients from point source discharges or other sources shall 

not cause excessive growth of periphyton, phytoplankton, or aquatic macrophyte 

communities which impairs any existing or designated beneficial use (OWRB 2007).”   

Municipal stormwater is regulated as PS under Section 402(p) of the CWA but is 

typically managed with BMPs.  In Oklahoma and surrounding states the use of 

Stormwater Detention Facilities is a dominant urban BMP in the management of 

stormwater.  These facilities are artificial detention basins (ponds) that trap and store 

excessive stormwater and slowly release it to minimize peak flow.  This BMP primarily 

targets water quantity issues allowing some pollutants to settle out of solution and be 

retained in the pond sediment.  Most importantly, these BMPs manage the peak flow and 

reduce down stream erosion that would otherwise result in sedimentation of streams, 

nutrient release, and lead to habitat disturbance or destruction.   

 Stormwater management in Oklahoma is generally addressed by conventional 

strategies but increasing populations and regulatory constraints will continue to demand a 

more natural and integrated approach.  It has been these pressures that led to a more 

holistic strategy in both development and resource management across the nation.  

Conventional stormwater management has undergone many changes, some mere 
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modifications of a theme and some vast improvements or novel practices altogether, all 

of which are used in a Low Impact Development (LID) strategy.  

 

Low Impact Development 

 
Conventional stormwater management has undergone many changes since the 

inception of the CWA.  Decades of efforts to manage stormwater, and the resultant 

natural water degradations, have led to innovative strategies and insight into ecological 

processes associated with stormwater.  In the last 30 years different methods and policies 

have been evaluated, improved, and/or abandoned.  Low Impact Development (LID), a 

more recent development, is an approach combining many of these successful strategies 

and policies with a decentralized methodology aimed at restoring the natural hydrologic 

regime to pre-development conditions (ACB 2002; PGDER 2002; PSAT 2003; PGDER 

1999). 

The increasing demands on conventional stormwater management infrastructure 

and increasing regulatory constraints led to the concerted efforts of resource managers 

across the United States.  Among the pioneers of the LID approach are Prince George’s 

County, Maryland Department of Environmental Resources (PGDER) and the Center for 

Watershed Protection (CWP).  Since the inception of LID several entities, local and 

regional, have incorporated these practices into their development guidelines and many 

have contributed to the improvement and acceptance of LID strategies. 
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In “Low Impact Works!” Hood et al (2006) share results of a 10-year USEPA 

section 319 National Management Project that directly compares water quality and 

quantity impacts from a integrated LID site approach and a centralized conventional 

stormwater approach.  They reported the site with LID more resembled pre-development 

conditions than the conventional site in all the variables measured: peak discharge, runoff 

volume, coefficient, and lag time. 

Although LID has met enthusiastic acceptance within the water quality 

community, existing regulations and guidelines can be preventative for implementation.  

For example, a city ordinance requiring the use of a centralized drainage system, curb 

specifications, and required widths for roadways could limit or prevent many LID 

designs.  Minimizing road widths, sharing driveways and the use of permeable pavement 

are all LID practices that may conflict or not fit within the scope of conventional 

standards being implemented.   

An LID practitioner is not confined to the predominately engineered, structural, or 

end-of-pipe approach of the past.  Low Impact Development is a more natural strategy 

that utilizes landscape elements and benefits from decades of experience with site-

specific issues.  Conventional stormwater management often leads to a quick evacuation 

of precipitation from the development site then detention and slow release to natural 

waterways.  This method primarily treats quantity rather than quality of stormwater 

entering natural waterways and is not capable of maintaining pre-development conditions 

(ACB 2002; Davis 2005; PGDER 1999). 
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In Coffman’s (2003) Discussion of an Ecosystem Basis for Protecting Receiving 

Waters he succinctly details the need for an ecosystem-based approach and the 

advantages of a more natural strategy to manage runoff quality and quantity.  In 

application this is achieved with the “toolbox” of strategies when coupled with 

conventional stormwater practices to reduce pollutant loading and volume of stormwater 

entering natural waterways by 20 to 60% (CWP 1998). 

 

“In a natural setting, stormwater is controlled by a variety of mechanisms 

(interception by vegetation, small depression storage, channel storage, infiltration 

and evaporation) uniformly distributed throughout the landscape.  LID mimics 

these mechanisms by uniformly distributing small infiltration, storage, and 

retention and detention measures throughout the developed landscape.  What we 

soon began to see is that every development feature (green space, landscaping, 

grading, streetscapes, roads, and parking lots) can be designed to provide some 

type of beneficial hydrologic function (PGDER 1997).” 

 

 
Low Impact Development approaches pre-development conditions utilizing 

existing vegetation and natural landscape elements with an ultimate goal of minimizing 

impact to natural habitats and entire ecosystems, both immediate and downstream, 

additionally achieving cost benefits by reducing the need for centralized stormwater 

infrastructure.  An onsite evaluation is conducted to determine hydrologic soil groups, 
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ground water depth, seasonal precipitation, etc.  Conservation of onsite natural resources 

such as floodplains, forested stream buffers, hydrologic soil groups A and B, and long-

lived trees can reduce the cost and need for installation of conventional BMPs as well as 

enhance the overall aesthetics and value of the site. 

Many of the elements of an LID practitioner’s “toolbox” are site-specific, smaller 

scale, and more natural in structure and function working with the in-situ conditions. 

These and other LID strategies can also fulfill the “Green Building” and “Smart Growth” 

perspectives.   

Bioretention Cells, water features, and grassed swells retain runoff, which through 

infiltration, evaporation, and transpiration reduces the resultant stormwater (PGDER 

2002; Davis 2005; PGDER 1999).  An integral difference between LID and conventional 

stormwater management is onsite reduction of stormwater, achieved by decentralizing 

runoff then utilizing infiltration and evapotranspiration.  Bioretention cells use the onsite 

topography and hydrologic soil groups paired with selected plant species. 

Bioretention Cells are fundamental examples of the LID approach; site-specific, 

non-structural, utilized throughout the site.  These practices like many LID strategies can 

be designed in a multitude of ways depending on the needs and desires of the developer 

and the topography of the site.  Many LID practices utilize some form of infiltration 

and/or bioretention thus knowledge of these systems can lead to a greater understanding 

of LID. 
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Bioretention Cells and other LID strategies are being used increasingly and 

studied more thoroughly since the release of the Low-Impact Development Design 

Manual (PGDER 1997).  In application to all other benefits LID exhibits versatility, 

aesthetic appeal, and carries the shared cost and goals of onsite landscaping requirements.  

The versatility and effectiveness of the LID approach to mitigate stormwater will soon 

lead to LID as the conventional approach to stormwater management. 

Most recently, Congress enacted the Energy Independence and Security Act of 

2007 (EISA) that includes Section 438 establishing stormwater management 

requirements for federal development and redevelopment projects.  The scope of this 

section reads as follows:  

 

“The sponsor of any development or redevelopment project involving a Federal 

facility with a footprint that exceeds 5,000 square feet shall use site planning, design, 

construction, and maintenance strategies for the property to maintain or restore, to the 

maximum extent technically feasible, the predevelopment hydrology of the property 

with regard to the temperature, rate, volume, and duration of flow.” 

 

To facilitate this new mandate the Obama administration issued Executive Order 

13514 Federal Leadership in Environmental, Energy, and Economic Performance calling 

for the publication of EPA document 841-B-09-001 Technical Guidance on 

Implementing the Stormwater Runoff Requirements for Federal Projects under Section 
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438 of the Energy Independence and Security Act.  This technical guidance illustrates the 

environmental, sociological, and economical benefits of the LID approach to stormwater 

management.  This initiative and the increased intensity of related efforts across the 

nation can serve to stimulate the use of LID approaches in Oklahoma’s stormwater 

management. 

 

Bioretention 
 
 

Bioretention is a process that is applied in the use of Bioretention Cells.  It was 

this process that led to the paradigm shift towards the more holistic approach of LID. 

 

“The bioretention technique has led to the creation of a new, holistic development 

philosophy known as Low Impact Development (PGDER 2002).” 

 

 Rain gardens as defined by The Bioretention Manual are preexisting and natural 

low topographic features that are landscaped with water tolerant plants, soil is not 

engineered as in a Bioretention Cell (PGDER 2002).  However, term “Rain Garden” is 

applied to both LID strategies throughout the literature.   

 Bioretention Cells harbor a complex plant-soil-microbe-microfauna relationship; 

these units are engineered to function similarly to an upland riparian natural ecological 

community in terms of nutrient cycling, retention, and soil stability (Coffman 2002; 
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PGDER 2002).  This is a terrestrial based approach that utilizes the relationships between 

vascular plants, soil microfauna, and soil microorganisms and how these communities 

influence soil and hydrologic processes and nutrient cycling.  In simpler terms these 

systems are strategically placed volumes of engineered soil, with high infiltration rates, 

that are used to backfill a void in the ground that was prepared and situated accordingly 

to a size determined to treat a specified amount of stormwater, then landscaped with 

recommended native plant species. 

Other LID strategies harbor similar relationships but differ fundamentally in 

design.  A majority of these other systems remain saturated throughout the year such as 

constructed wetlands and ponds.  The soil of Bioretention Cells must have a high 

infiltration rate that is usually engineered to achieve full drainage of all water remaining 

above the surface within a 48-hour period.  This is in reference to the shallow basin 

associated with these units designed to hold a height of 15 to 30 centimeters of 

stormwater. 

Bioretention Cells are part of the decentralized approach integrated throughout the 

site.  Through evapotranspiration, detention, and infiltration these units balance the 

requirement of onsite management of pollutants and runoff volumes while mimicking the 

natural hydrological regime (PGDER 2002; Davis 2005).  This approach can allow 

bioretention to treat more runoff yet require less space (Hood et al. 2006).  Conventional 

detention ponds reduce the potential profitability of a site by requiring large areas of land 

compared.  Bioretention Cells are integrated into the site as landscaping thus requiring 
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little to no land explicitly used for stormwater control (PGDER 2002; Hood et al. 2006).  

However, in regions with high intensity annual precipitation some conventional detention 

areas may be required to capture flash flood events. 

Bioretention Cells are integrated management practices designed to suit 

developers’ needs or to retrofit post-development sites, for unanticipated storm-water 

issues.  These site-specific integrated management practices can be utilized in all 

terrestrial-based applications (i.e. residential, commercial, and industrial) and have been 

shown, in some cases, to be a suitable alternative to conventional stormwater detention 

basins (PGDER 2002; Hunt 2005).  Some intrinsic values of Bioretention Cells as listed 

by PGDER include, establishing a unique sense of place by using native plants, 

encouraging environmental stewardship and community pride, increasing real estate 

values up to 20%, and a host of other benefits associated with mitigating the impacts of 

urban development. 

The Bioretention Manual highlights four fundamental performance categories of 

Bioretention Cells that designers may modify to mitigate site-specific development 

impacts (PGDER 2002).  These categories differ mainly in the way they treat water 

and/or interface with the subsoil: the basic design is the same for each.  The first and 

most basic design is an Infiltration/Recharge Facility.  This design is utilized when the 

groundwater is a recommended distance below the cell and the subsoil has the minimum 

required infiltration rate.  The second category, Filtration/Partial Recharge, only differs 

from the first design in the inclusion of an under-drain discharge tube and partial pea-
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gravel lined bottom covered in filter fabric.  These cells are usually routed to the 

centralized stormwater drainage system or directly into a body of water, as is also the 

case with the next two categories.  Category three, Infiltration/Filtration/Recharge, 

features a raised under-drain that is blanketed in pea gravel, as is the entire bottom of the 

cell.  The final category is Filtration only.  This category is the only facility that 

employee a liner/barrier to segregate the in-situ soils from the Bioretention Cell 

engineered soils.   

In a laboratory and pilot scale Bioretention Cell study that utilized a Synthetic 

Stormwater (SSW), Davis et al (2001) observed reductions greater than 90% for copper, 

lead, and zinc but only moderate reductions in Total Kjeldahl nitrogen (TKN), 

ammonium, and phosphates with little to no nitrate reduction.  Likewise, Clausen and 

Dietz (2005) found, in a field evaluation of a rain garden, heavy metal concentrations 

below detectable limits but poor retention rates for nitrate and negative retention rates for 

phosphates.  

Hunt (2003) reported Bioretention Cells installed without the inclusion of an 

anaerobic zone may not properly attenuate nitrate, and there is a relationship between 

depth of the cell and nitrate retention capacity.  Kim et al (2003) observed modified 

Bioretention Cells utilizing an anaerobic zone and microbial denitrification achieved 

nitrate plus nitrite mass removal rates of up to 80%.  They also found the use of shredded 

newspaper, as a source of carbon for a solid-phase-electron-donor (compost), facilitates 

the denitrification process and worked better than many alternatives tested. 
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Studies consistently found greater amounts of phosphates in the resultant effluent 

than that placed in SSW or that present in inflow.  Clausen and Dietz (2005) observed 

significant reductions of nitrates but negative reductions (increases) of Total-phosphate.  

Soil disturbance and settling was the speculated source of this phosphorus export.  Recent 

modifications to bioretention guidelines have illustrated the importance of media (soil) 

sampling and the utilization of sandy-loams with preexisting low nutrient levels. 

Implementation of Bioretention Cells requires a multidisciplinary approach and 

understanding that recommended guidelines and relationships vary regionally and locally.  

Bioretention is a complex approach that requires the appropriate use of environmentally 

dependant guidelines.  For example, atmospheric nitrogen deposition varies regionally 

and locally and results in varied levels of nitrates in stormwater. 

Bioretention Cells utilize the absorptive and adsorptive (sorption) properties of 

sandy-loams to retain phosphorus primarily in the rhizosphere and nitrogen in the last 

stage or anaerobic portion of the cell (PGDER 2002).  The sorption properties of sandy-

loams vary at the state and national level (NRCS 2010) and are reduced by large initial 

concentrations of in situ pollutants.  Sandy-loams acquired in historically agricultural 

regions are likely to have elevated phosphorus levels (NRCS 2010).  Regardless, all 

sandy-loams have a finite capacity for retention of nutrients, in the absence of 

biogeochemical processes, and once this capacity is exceeded they become a potential 

source of pollution. 
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Life expectancy and performance of a typical Bioretention Cell is determined via 

the aforementioned physical soil properties without consideration of biological process 

(Davis et al 2001; NCES 2005; PGDER 2002).  Bioretention Cells studies in the present 

literature have explored many properties that influence performance, especially inclusion 

of an anaerobic zone and testing of alternative bioretention mediums but none have 

focused on the effect of plants on these systems.  Also, the effect of seasonality has 

largely been overlooked. 

 
 

Plants and Mycorrhizal Fungi 

 
The role of plants and soil microorganisms and how their interactions influence 

soil structure, hydrologic processes, and nutrient cycling are not well understood in the 

Bioretention Cell environment.  However, there is extensive documentation of the 

vascular plant and vesicular arbuscular mycorrhizal (VAM) role in the uptake of nutrients 

and modification of the rhizosphere (Bolan 1991; Varma and Hock 1998; Godbold et al. 

2006).  For instance, vascular plants have been used for some time for their known 

phytoremediative attributes and ability to modify the soil environment (i.e. soil organic 

matter, CEC, soil stability).  The latter is also true of plants in a symbiotic association 

with VAM; an endophytic symbiont that is increasingly being used for enhanced 

bioremediation especially in heavy metal contaminated soils (Gerdemann 1968; Varma 

and Hock 1998; Khan 2006; Giasson et al 2006). 
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Knowledge of vascular plant uptake of nutrients and minerals, plant nutrition, is 

extensively studied and their ubiquitous symbiotic relationship with soil microbes has 

been well documented to facilitate this process (Coffman 2002).  Mycorrhizal fungi are 

especially known for facilitating the uptake of poorly soluble minerals like zinc and 

phosphorus in oligotrophic (nutrient limited) environments.  More specifically enhanced 

uptake of phosphorus as orthophosphate is the primary element that mycorrhizal plants 

benefit from (Bolan 1991) and is of particular interest in stormwater and land 

management in Oklahoma (Correll 1998; ODEQ 2006).  

 Two distinct types of MF dominate this ecological niche, vesicular-arbuscular 

mycorrhizal fungi (VAM) and ectomycorrhizal fungi (EM). Vesicular-arbuscular 

mycorrhizal fungi are characterized by the formation of external hyphal networks in the 

surrounding soil and intracellular growth on symbiont(s) root cortex. Ectomycorrhizal 

fungi form dense mycelial sheaths with intercellular invasion of the root cortex and are 

limited to mostly temperate forest trees.  Of the two, VAM are most widely distributed 

and associated with the vast majority of species with the exception of a few families. 

Chenopodiaceae, Cruciferaceae, Cyperaceae, Juncaceae, and Proteaceae are typically 

ruderal species and rarely form MF symbiosis (Harley and Harley 1987).  

Vesicular-arbuscular mycorrhizal fungi exhibit less host specificity; this typically 

results in a suite of VAM species on a single host in a natural setting (Bolan 1991).  

Although VAM are generally considered symbiotic in high nutrient environments they 
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can exhibit pathogenic properties, depleting photosynthate (carbohydrate sources) from 

their symbionts and overall inhibiting growth-rate of their symbiont 

Vesicular-arbuscular mycorrhizal fungi collectively increase the effective 

rhizosphere, exude organic acids and phosphatase enzymes, and are involved in soil 

weathering processes (George 1995).  These influences are accomplished by exploration 

of a larger soil volume both decreasing the physical distance phosphorus ions must travel 

and increasing the surface area for adsorption, solubilization of mineral phosphates, and 

increasing affinity for P ions (decreasing threshold concentration required for 

adsorption), respectively (Bolan 1991).  Other attributes of VAM associations include 

competition against pathogenic fungi and bacteria, increased water use efficiency in host 

plants, and aeration of the soil above and below the root zone but are thought to be less 

significant than the latter attributes (Bolan 1991).   

Selection of inoculum is important since there are over 5000 known species of 

naturally occurring VAM (Varma and Hock 1998).  Primarily, members of the order 

Glomales are known for their beneficial attributes and are also the most abundantly found 

of all the VAM in soil communities.  Inoculums are typically administered as a powder or 

solution but MF can also be introduced by naturally occurring communities (Varma and 

Hock 1998). 

The significance of the intrinsic benefits of VAM have long been debated; 

scientific and horticultural communities alike have sought the applicability of VAM 

despite the lack of extensive understanding and commercial availability.  It is well know 



 23 

that more that 90% of all vascular plants form symbiotic VAM relationships in natural 

environments (Varma and Hock 1998).  However, plant responses to VAM are highly 

variable and some plants may host a suite of MF, while others only form associations 

with fewer species of VAM. 

Vesicular arbuscular mycorrhizal fungi although not entirely understood have 

been shown to enhance the uptake of certain nutrients and increase the growth rate of 

their symbionts (Bolan 1991). There are many biochemical process influenced by soil 

microorganisms including VAM and the lack of quantification of the intrinsic benefits of 

plants and these orgamisms in Bioretention Cells may lead to a gross underestimation of 

the ameliorative potential and duration of these BMPs which could otherwise further 

encourage their implementation.   

Plants can significantly influence soil properties and are necessary for healthy 

communities of soil micro-organisms and development of complex soil horizons (Sparks 

2003).  There are many species of plants and the selection of plants can be very site 

specific.  With a better understanding of how recommended plants and soil 

microorganisms influence the soil properties and the overall ameliorative potential of 

Bioretention Cells we could potentially improve these systems.  Knowledge of soil 

microbe communities such as VAM and nitrifying bacteria could also lead to increased 

performance of these systems.  The significant effect of nitrifying bacteria and the 

dynamic nature of the Nitrogen Cycle on bioretention performance (Siegel 2008) is a 

primary example of how knowledge of these microbial communities and plants that 
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largely influence soil ecology can increase our overall knowledge of the process of 

bioretention.
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Chapter III  

METHODOLOGY 

 

Overview and Scope 
 
 

The desirable outcome of this study was to evaluate the significance of plant 

presence in laboratory-scale Bioretention Cells by quantifying reductions of nitrate, 

phosphate, and ammonium in effluent following volumetric additions of known 

concentration of a prepared synthetic stormwater (SSW).  Although many complex 

biogeochemical and geophysical processes are responsible for these results the scope of 

this work is focused on determining percent reduction of nutrient concentration and load 

in effluent from the laboratory-scale Bioretention Cells and does not attempt to quantify 

soil processes nor changes in Bioretention cell medium.  In general, this study is intended 

to prompt further investigation into the role of plants in the bioretention process by 

quantifying percent reduction of nutrient concentration and load as influenced by the 

presence of plants in a Bioretention cell. 

From 2_April_2007 through 25_May_2008 four species of vascular plants were 

utilized in a laboratory scale bioretention study using a Complete Factorial Randomized 

Experimental Design: Panicum virgatum (Switchgrass), Chilopsis linearis (Desert 

willow), Sambucus canadensis (Elderberry), and Itea virginica 



 26 

(Virginia sweetspire). These plants were treated with an inoculum containing three 

species of VAM Glomus clarum, G. intraradices, and G. mosseae and grown in 

commercially available topsoil for 16 weeks, then exposed to a SSW as shown in Table 1 

(see Appendix-C for SSW preparation).  An ANOVA (Analysis of variance) was used to 

analyze data with a PROC MIXED statement in SAS 9.2 (Statistical Analysis Software).  

This model included volume, nutrient, time, and seasonality data (the SAS model and 

output tables can be found in Appendix (b) and Appendix(c), respectively).  Probability 

values (p-values < 0.05 as significant) were obtained from the SLICE option in the 

LSMEANS statement to include interactions in the level of significance. 

Effluent was collected and weighed at three time intervals: 6 hrs, 24 hrs, and 168 

hrs following SSW application (weight of effluent was converted to volume based on 1ml 

of water equals 1mg).  The total mixed leachate was sampled to determine concentrations 

of nitrate, ammonium, Ortho-phosphate, and Total-phosphate concentrations in the SSW.  

Nitrates and ammonium levels were determined using automated cadmium reduction and 

phosphate levels were determined using elemental analysis by inductively coupled 

plasma (ICP).   

Treatment one was Bioretention Cells with plants and treatment two was 

Bioretention Cells with plants in the presence of symbiotic VAM fungus.  The following 

interactions where statistically analyzed: plant vs. control, plants + VAM vs. control, 

species vs. control, and species + VAM vs. control.  Bioretention Cells with only topsoil 
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and either control inoculum or bulk inoculum were used for controls (VAM inoculum 

and the inoculum control was obtained from INVAM see Appendix-C). 

Initially, each treatment-species combination had six replicates for a total of 48 

Bioretention Cells.  Elderberry and Virginia sweetspire died before data was collected 

(this was due to a heater failure before the plants were bare-rooted and potted, the plants 

were potted anticipating recovery during the acclimation period, neither species 

recovered).  Switchgrass and Desert willow were not adversely affected by the heater 

failure.  However, three Switchgrass plants died before data SSW application and one 

control was removed (due to complete failure to drain).  There was no mortality for 

Desert willow.  Synthetic Stormwater data was collected from 32 laboratory-scale 

Bioretention Cells. 

 
Table 1:  Synthetic stormwater (SSW) constituents 
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Laboratory Scale Bioretention Cells 
 
 

Each plant and control was placed in a 3-gallon drain-less container modified with 

a drainage tube (Figure 1).  Bioretention Cells were modified with a 16mm diameter hole 

in the center of the container bottom.  Each hole was fitted with a 16mm insert adapter 

and rubber grommet (NETAFIM™) attached to 31 centimeters of 16mm vinyl tubing.  

Tubes were piped to individual correspondingly numbered 1-liter effluent sample 

containers (Nalgene™).  The 1-liter effluent sample containers were weighed and 

emptied after each sampling period.  Weights were recorded and converted to volumes. 

 

 

Figure 1:  Nursery container (3gal black plastic drain-less) used for laboratory scale 
Bioretention Cells 
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Soil Preparation 
 
 

Approximately 400 liters of topsoil (Minick Materials Oklahoma City, OK) was 

mixed in a 424-liter cement mixer for 1 hour at full throttle.  This soil was used to 

prepare inocula and pots all specimens.  A 127-liter cement mixer was used to prepare a 

42-liter bulk inoculum and a 42-liter control inoculum.  Each inoculum mixture was 

allowed to mix for 10 minutes at full throttle.    

Experimental soil was prepared by mixing 42 liters of topsoil that was utilized in 

a 1:35 ratio of bulk inoculum to topsoil mixture by adding 1.2 liters of bulk inoculum 

containing 1:1:1 (v/v/v) of Glomus clarum, G. intraradices, and G. mosseae.  The bulk 

inoculum/topsoil combination was allowed to mix for 10 minutes in a 127-liter cement 

mixer.  This procedure was also used to prepare a 1:35 ratio sterile control inoculum 

known to be devoid of VAM. 

 

Plant Preparation 
 

One-gallon commercial nursery stock (Greenleaf Nursery Company, Tahlequah, 

OK) was used for all plant specimens.  Desert willows were selectively pruned to obtain 

an initial visually uniform plant size for all specimens.  Non-photosynthetic Switchgrass 

foliage above the joint of the first culm was removed.  Photosynthetic foliage of both 

species was left.   
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In order to obtain a homogenous experimental soil, commercial nursery media 

was removed from the root ball of all specimens (i.e. all plants were bare-rooted).  After 

removal of commercial soil medium, the roots were rinsed with tap water until all nursery 

media was removed.  All bare-root balls were wrapped in a moistened paper towel then 

foliage was allowed to air-dry overnight.  One-gram root samples were taken from both 

species to assess initial VAM percent colonization (see Appendix: Standard Operating 

Procedures).  Once the soil was removed from the roots of all specimens the plants were 

pruned to remove non-photosynthetic foliage, then root samples were taken from all 

specimens.  An initial weight was obtained and recorded for each specimen after root 

samples were taken (this was later used to obtain % change). 

 

Inoculation 
 
 

To facilitate a more rapid VAM colonization a 16 cm diameter aluminum duct 

pipe was used to selectively place two liters of the inoculum mixtures in the upper center 

portion of the container, in direct contact with bare-roots.  This pipe was placed in the 

center of the Bioretention Cells atop a 8.5 centimeter depth of topsoil.  More topsoil was 

added around the outside of the pipe until it reached the rim of the pipe (Figure 2).  

Root-balls of each plant were centrally placed in the pipe and the inoculum 

mixture was used to fill the pipe.  Two liters of the 1:35 bulk inoculum mixture was 

placed in the pipe under and around the root-ball of all treatment-II specimens and within 
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the pipe of the treatment-II controls.  Treatment-I plants and controls were treated the 

same except a 1:35 control inoculum to topsoil mixture was used.  As each container was 

potted a few grams of topsoil was added or removed as needed until each contained 9.65 

kilograms of topsoil (including inoculum mixtures).   

 

 
 

 
Figure 2:  Selective placement of inoculum to increase symbiont contact with roots 
 

 

Greenhouse and Tables 
 

Two 92 x 305 centimeter greenhouse tables were located in the center of the 

Biosystems and Agricultural Engineering greenhouse (Oklahoma State University, OK) 

against the Southern edge.  All Bioretention Cells were randomly arranged on these 

tables with 10 centimeters distance between each container (Figure 3). 
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Figure 3:  Plant position and greenhouse orientation for the duration of the experiment.   
(Crossed-out specimens died and were not included in this study) 
 
 

During winter months two Dayton™ propane heaters were employed to attain the 

most uniform greenhouse temperature possible, heaters were set to 24°C.  Once the 

overnight-low temperature was above 24°C the heaters were retired.  A swamp-pump and 

greenhouse cooling cells were employed to moderate elevated summer temperatures and 

the greenhouse was covered with a 20% shade cloth during the summer. 

Each Bioretention Cell was systematically assigned a pot number, with all 

specimens within a species in sequential order, controls numbered last.  Bioretention 

Cells were also marked with the genus initials and an accession number from 1 to 6 for 

each treatment-I and treatment-II replicates of a species (Table 2). 

The random number generator in Excel (Macintosh version 11.2) was used to 

generate all whole numbers from 1 to 99.  Numbers were selected in the order generated 

(repeating numbers disregarded) and used for pot position on the table.  The 
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corresponding pot number for the first randomly generated number was placed on the 

southeast corner of the most southern table.  The following randomly generated numbers 

were then used to determine pot row position of correspondingly numbered Bioretention 

Cells from Southeast to Southwest for eight Bioretention Cells in a row.  For each new 

row, the succeeding randomly generated number started from the remaining most 

southeastern position of the table and moved from east to west.  This procedure was 

followed for each table.  Each table held 3 rows of 8 Bioretention Cells for a total of 48. 
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Table 2:  Pot number and treatment list (crossed out specimens were not used for this 
study) 
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Treatment Randomization 
 

 Prior to potting plants in the Bioretention Cells, each bare-root specimen was 

numbered from 1 to 12 for each of the species.  The random number generator in Excel 

(Macintosh version 11.2) was used to generate all whole numbers from one to twelve for 

each of the three species.  Numbers where then selected in the order generated (repeating 

numbers disregarded) and used to determine potting order. 

Plants were potted in Bioretention Cells in ascending order, starting with the 

VAM treatment, with respect to pot ascension number as their randomly generated 

numbers appeared in the excel column.  For example, the first randomly generated 

number was twelve so this specimen was placed in container IV1-1.  The next randomly 

generated number was five, so this specimen was placed in IV2-2.  This procedure was 

used to randomize the order in which all specimens were selected for the treatment 

replicates.   

 

Watering 
 
 

On Monday 2_Apr_07 plants were placed in the BAE greenhouse.  Each 

container received approximately 2 liters of tap water following placement on the 

greenhouse tables.  The plants were misted daily for 2 weeks following placement in the 

greenhouse.  Plants received 2-liter applications of tap water as needed for the first 6 

weeks to initialize roots and promote VAM colonization.  If one container appeared to 
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need water each container received a 2-liter application of tap water.  This initialization 

period concluded Sunday 13_May_07. 

 

Data Acquisition    
 
 

Sampling Effluent 
 

Following the initialization period, each container received a 2-liter volumetric 

application of deionized water (DI), applied weekly for 33 weeks, to leach nutrients 

below SSW concentrations.  Effluent from five consecutive preliminary leaching were 

collections following the initialization period (August 4th through September 1st), and one 

was collected in January a week before the first SSW application.  One specimen was 

selected to represent each treatment-species combination and one for each of the two 

controls.  Representatives were selected for their median total effluent volume, plants 

were foliaged and had no visual signs of disease or stress.   

Leaching data was taken from every Bioretention Cells for leaching 5 during 

week 15 (the last of the five preliminary leaching collections) and for leaching 6 during 

week 33, the last DI application the week prior to SSW application to dormant plants.  

During the period between SSW application to dormant plants and SSW application to 

foliaged plants two liters of DI was added weekly. 
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Effluent samples were collected in one-liter Nalgene ™ sample Bioretention Cells 

for the preliminary leaching experiments and SSW applications. The labeled Nalgene ™ 

sample containers were suspended below the correspondingly labeled Bioretention Cells 

and a 16mm vinyl tubing was placed into the sample containers.  Each sample container 

was covered with foil, to prevent light entry, and paraffin wax covered the mouth to 

reduce evaporation.  A small slit was placed in the center of the paraffin wax and the 

16mm vinyl tube was placed through this slit.  At the end of the collection period a total 

Effluent volume was measured and recorded for each container by weighing the sample 

containers and converting grams to milliliters, weight of sample containers were 

subtracted.  After each sampling period the Nalgene™ sample containers were washed 

and dried (see Appendix-C). 

 

Synthetic Stormwater Application to Dormant and Foliaged Plants 
 
 

Saturday 12_Jan_08, week 34 of the experiment, 2-liter volumetric applications of 

DI were substituted with 2-liter volumetric applications of SSW for three weeks of the 

experiment.  This SSW application was added while the plants were dormant.  The SSW 

effluent was collected and a volume recorded for a 6, 24, and 168 hour collection period.  

Each effluent collection was held for the duration of the 168 hr sampling period and 

mixed with subsequent collections from the same experimental container during the 

sampling period to acquire a total volume.  A 120 ml sub-sample of the total SSW 
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effluent was taken for each specimen.  All 120 ml effluent samples were sent to the OSU 

Soil, Water, and Forage Analytical lab for analysis of nitrate, ammonium, Ortho-

phosphate, and Total-phosphate for each of three SSW applications. 

Saturday 19_April_08, week 48 of the experiment, the 2-liter volumetric 

applications of DI were again substituted with 2-liter volumetric applications of SSW for 

three weeks of the experiment. These SSW applications were added while the plants were 

fully foliaged.  The SSW effluent was collected and a volume recorded for a 6, 24, and 

168-hour collection period.  A 120 ml sub-sample of the total SSW effluent was taken for 

each specimen.  All samples were sent to the OSU Soil, Water, and Forage Analytical lab 

for analysis of nitrate, ammonium, Ortho-phosphate, and Total-phosphate from each of 

three SSW applications.  Total volume and concentration data was used to determine 

load.  Volume, concentration, and load data can be found in Appendix-A (Table 1a 

through Table 12a).  
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CHAPTER IV  

RESULTS 

 

Arbuscular Mycorrhizal Fungi 
 
 

Preliminary one-gram root samples taken as plants were potted yielded no sign of 

VAM.  Once the experiment concluded (total duration of 58 weeks) one-gram root 

samples were taken from each specimen and examined for VAM presence.  VAM was 

not present and statistical analysis indicated no significant effect of VAM.  

 

Preliminary Leaching  
 
 

Volume and leachate concentration data (Table 3, Table 4, and Table 5) were 

collected from weeks 11 through 15, after plants had time to establish (i.e. show visual 

signs of health such as continued growth and no visible signs of disease or stress).  This 

pre-experiment was to assess the state of the experimental containers by analyzing 

nitrate, ammonium, and Ortho-phosphate concentration in leachate following 2-liter 

applications of DI.  The desirable outcome was two fold; determine if data was consistent 

weekly and determine if leachate concentrations were below SSW levels 
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(i.e. nitrate, ammonium, and Ortho-phosphate concentration below 2 mg/L).  Leachate 

was analyzed for week 33 to determine if concentrations were below SSW levels, so the 

effect of SSW could be observed.  

Containers with plants had much lower nutrient leachate concentrations than 

containers without plants (controls), ammonium leachate concentration was very low in 

all leachate samples.  Overall leachate concentrations were still high during week 15 and 

required seventeen more weeks of 2-liter applications of DI to reach leachate levels 

below initial SSW nutrient concentration.  Leachate data from 2-liter applications of DI 

from weeks 11 through 15 represent individuals that were selected for their median 

effluent volume; week 33 represents averages from all replicates. 

 

Table 3:  Nitrate leachate concentration from DI application to Bioretention Cells 
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Table 4:  Ammonium leachate concentration from DI application to Bioretention Cells 

 

 
 
 

Table 5:  Ortho-phosphate leachate concentration from DI application to Bioretention 
Cells 

 
 

 

Vascular Plants 
 
 

Overall plants maintained observable healthy growth free of disease and pestilent 

insect species.  There were no problems with water-use or greenhouse temperature.  
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However, three Switchgrass specimens died before SSW application and were not 

included in this study.  There was no mortality for Desert willow.  This species appears to 

be an outstanding specimen for bioretention; it never had signs of wilt or other stress 

indicators and bloomed throughout summer.  Switchgrass also grew well and filled-in the 

containers nicely, developing culms throughout the experiment.  Each species had 

considerable root growth as shown in Figure 4 through Figure 7.  Neither species was 

root-bound at the conclusion of the experiment, but every specimen could have been 

transplanted to larger containers.  

 

 

 

Figure 4:  Photograph of Chilopsis linearis (Desert willow) entire rootball 
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Figure 5:  Photograph of Chilopsis linearis (Desert willow) rootball vertically halved 
 

 

 

Figure 6:  Photograph of Panicum virgatum (Switchgrass) entire rootball 
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Figure 7:  Photograph of Panicum virgatum (Switchgrass) rootball vertically halved  
 
 

Specimen PV1-13, a Switchgrass specimen with VAM, grew relatively slow and 

almost died, thus performing more like controls than other plants with VAM.  This 

specimen consistently responded like controls throughout the experiment.  Without this 

specimen included in “Plants + VAM” the data would look more like the “Plants” data 

that is represented in the following figures and can be clearly seen when compared to 

“Grass + VAM” vs. “Grass”. 

After the third effluent samples were collected from Bioretention Cells with 

foliaged plants, plants were harvested to obtain a final plant weight (using the same 

method used for initial weight).  Initial and final plant weights were used to calculate the 

percent change in total biomass found in Table 6.  
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Table 6: Total biomass and percent change (above and below ground). 
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Synthetic Stormwater Application to Bioretention Cells with Dormant Plants 
 
 

On Saturday 12_Jan_08, week 34 of the experiment 2-liters of SSW was applied 

weekly for three weeks to all Bioretention Cells in place of DI.  All plants were dormant 

or in a non-photosynthetic state as shown in Figure 8 (i.e. transpiration was not taking 

place in Bioretention Cells with plants).  Sampling while plants were dormant allowed 

assessment of plant influence on the ameliorative soil properties, independent of 

transpiration and relative to controls. 

 

 
 

Figure 8:  Photograph of experimental setup in the greenhouse with dormant plants 
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Effluent Volume from Bioretention Cells with Dormant Plants 
 

Figure 9 shows Bioretention Cells with dormant plants released between 60 and 

85% of total effluent volume during the 6 hr collection period whereas controls released 

about 20% of total effluent volume during the 6 hr period.  As shown in Figure 10 a, 

species effect is not apparent. 

 
 
Figure 9:  Cumulative effluent volumes from 2-liter SSW applications to Bioretention 
Cells with dormant plants 
 
 



 48 

 
 
 
Figure 10:  Cumulative effluent volumes from 2-liter SSW applications to Bioretention 
Cells with dormant plants (species effect) 
 
 

When volume collected from each time period is observed independently from 

cumulative volumes, large differences are apparent between Bioretention Cells with 

dormant plants vs. controls in the 6 hr and 168 hr periods with only a small difference for 

the 24 hr collections. 
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Effluent Concentration from Bioretention Cells with Dormant Plants 
 
 

In Table 7 Bioretention Cells with dormant plants reduced nitrate and phosphate 

concentrations below SSW levels (2mg/L), whereas Bioretention Cells without plants 

(controls) increased concentrations of both nutrients in the effluent above SSW levels.  

Effluent ammonium concentration was small from plants and controls. 

 

Table 7:  Effluent concentration from SSW application (2mg/L) to Bioretention Cells 
with dormant plants 

 

 
 
 

As shown in Table 8 there was over a 41% reduction of nitrate effluent 

concentration from Bioretention Cells with dormant plants, whereas Bioretention Cells 

without plants released about six times as much nitrate.  Phosphate effluent concentration 

reduction from Bioretention Cells with dormant plants was between 28 and 35%.  

Bioretention Cells without plants released between 53 and 85% more phosphate. 
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Table 8:  Percent reduction of concentration from SSW application to Bioretention Cells 
with dormant plants 

 

 

 

In Table 9 the reductions shown for Total-phosphate effluent concentration from 

Bioretention Cells with dormant Switchgrass were between 20 and 50%.  Reductions of 

Ortho-phosphate effluent concentration from Bioretention Cells with dormant 

Switchgrass were between 30 and 55%.  Dormant Desert willow percent reduction was 

below half that of dormant Switchgrass percent reduction for Total-phosphate and just 

about half that of Desert willow for Ortho-phosphate. 
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Table 9:  Percent reduction of effluent concentration from SSW applications to 
Bioretention Cells with dormant plants (species effect) 

 

 
 
 
 

Effluent Load from Bioretention Cells with Dormant Plants 
 

In Table 10 we can see the overall effect of plants on pollutant effluent loading.  

Bioretention Cells, with and without plants, reduced load below SSW levels (4 mg) for 

all nutrients and treatments except loading of nitrate from controls.  Effluent load from 

Bioretention Cells with dormant plants was observably lower than effluent from controls 

for nitrates and about half of phosphate loading from controls.  Ammonium effluent load 

was very small from all Bioretention Cells. 
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Table 10:  Effluent load from SSW application (4 mg) to Bioretention Cells with dormant 
plants 

 

 
 
 

In Table 11 over a 60% decrease of nitrate loading from Bioretention Cells with 

dormant plants is shown.  Bioretention Cells without plants released over three times as 

much nitrate as SSW levels.  Phosphate reduction from Bioretention Cells with dormant 

plants was between 40 and 50% whereas Bioretention Cells without plants increased 

phosphate effluent load between 3 and 24% above SSW levels. 

 
 

Table 11:  Percent reduction of effluent load from SSW application to dormant plants  
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In Table 12 Bioretention Cells with both dormant plant species achieved at least a 

41% reduction of effluent loading below SSW levels for all pollutants.  Bioretention 

Cells without plants increased nitrate and phosphate load; releasing about four times the 

amount of nitrate and between 4 and 24% more phosphate. 

 
Table 12:  Percent reduction of effluent load from SSW application to dormant plants 

(species effect) 
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Synthetic Stormwater Application to Bioretention Cells with Foliaged Plants 
 
 

On Saturday 19_April_08, week forty-eight, of the experiment 2-liters of SSW 

was applied for three weeks to all Bioretention Cells in place of DI.  All plants were 

foliaged or in a photosynthetic state as shown in Figure 11 (i.e. transpiration was taking 

place in Bioretention Cells with plants). 

 

 
 

Figure 11:  Photo of experimental setup in the greenhouse with foliaged plants 
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Effluent Volume from Bioretention Cells with Foliaged Plants 
 
 

Cumulative effluent volumes as shown in Figure 12 were observably different for 

6 hr, 24 hr and 168 hr sampling periods.  Bioretention Cells with foliaged plants released 

all effluent during the 6 hr period, controls released between 50 and 60% of total effluent 

during the 6 hr period.  In Figure 13 we can see foliaged Desert willow released about 

half as much effluent volume as foliaged Switchgrass. 

 

 

Figure 12:  Cumulative effluent volumes from 2-liter SSW application to Bioretention 
Cells with foliaged plants 
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Figure 13:  Cumulative effluent volumes from 2-liter SSW application to Bioretention 
Cells with foliaged plants (species effect) 
 
 

When we look at the volume collected from each time period independently from 

cumulative volumes we see an observable difference between foliaged plants vs. controls 

in the 6 hr, 24 hr, and 168 hr periods. 

Bioretention Cells with foliaged plants released all effluent volume during the 6 

hr period whereas controls released about half of the total effluent volume.  Volume of 

effluent released from foliaged plants and controls during the 6 hr period was not clearly 

different but total effluent volume from Desert willow was about half that of Switchgrass.   
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Total effluent was collected from Bioretention Cells with foliaged plants before 

the 24 hr period and the remaining majority of total effluent from controls was collected 

during this period. 

 

Effluent Concentration from Bioretention Cells with Foliaged Plants 
 
 

Table 13 shows Bioretention Cells with foliaged plants reduced effluent 

phosphate concentration below SSW levels, whereas controls increased phosphate 

effluent concentration.  Plants and controls released higher nitrate effluent concentrations 

than that of SSW levels.  There was very little ammonium effluent concentration 

collected from any Bioretention Cell. 

 

Table 13: Effluent concentration from SSW application (2mg/L) to Bioretention Cells 
with foliaged plants 
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As shown in Table 14 there was about a 90% increase of nitrate effluent 

concentration from Bioretention Cells with foliaged plants.  Bioretention Cells without 

plants released as much as nine times the concentration of nitrate in the effluent.  

Bioretention Cells with foliaged plants reduced phosphate effluent concentration by over 

35%.  Bioretention Cells without plants released over 33% more Total-phosphate and 

over 21% more Ortho-phosphate than that of SSW levels. 

 

 
Table 14: Percent concentration reduction from SSW application to Bioretention Cells 

with foliaged plants 
 

 

 

In Table 15 percent reduction of phosphate effluent concentration from 

Bioretention Cells with foliaged plants was between 32 and 54%.  All Bioretention Cells 

had increased nitrate loading relative to SSW levels.  Bioretention Cells with foliaged 

Switchgrass released over 68% more nitrate and Bioretention Cells with foliaged Desert 

willow released over 79% more nitrate.  
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Table 15: Percent reduction of concentration in effluent from SSW application to 
Bioretention Cells with foliaged plants (species effect) 

 
 
 
 

Effluent Load from Bioretention Cells with Foliaged Plants 
 

 

As we can see in Table 16 nutrient loading in effluent from Bioretention Cells 

with foliaged plants was reduced well below SSW levels for nitrates and phosphates.  

Bioretention Cells without plants reduced phosphate loading in effluent and increased 

nitrate loading in effluent relative to SSW levels.  There was very little ammonium 

effluent loading from any Bioretention Cells. 
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Table 16:  Effluent load from SSW application (4 mg) to Bioretention Cells with foliaged 
plants 

 

 
 

In Table 17 Bioretention Cells with foliaged plants reduced nitrate loading by 

about 70%.  Bioretention Cells without plants released twice as much nitrate load.  

Bioretention Cells with foliaged plants reduced Ortho and Total-phosphate loading by 

over 70 and 90%, respectively.  Controls reduced Ortho and Total-phosphate loading by 

over 30 and 60%, respectively. 

 

Table 17:  Percent reduction of load from SSW application to Bioretention Cells with 
foliaged plants 
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  Table 18 shows reduction of loading in the effluent following SSW application to 

Bioretention Cells with foliaged plants does not appear to be influenced by species.  

Percent reduction of phosphate loading from Bioretention Cells with Desert willow was 

just slightly better than Switchgrass. 

 
 

Table 18:  Percent reduction of load from SSW application to Bioretention Cells with 
foliaged plants (species effect) 

 
 
 

Reduction of nitrate and phosphate by Bioretention Cells with both foliaged plant 

species reduced loading below SSW levels.  Bioretention Cells without plants increased 

nitrate loading in the effluent; releasing more than twice as much nitrate than SSW levels.  

Controls reduced phosphate loading by 34 to 65%.
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CHAPTER V  

DISCUSSION 

 
 

Plants had observable and quantifiable effects on Bioretention Cell effluent 

nutrient concentration, loading, volume, and infiltration.  In addition dormant and 

foliaged plants responded differently (i.e. seasonality).  We initially hypothesized that 

plant species could significantly influence retention of nutrients in a Bioretention Cell.  

We also expected an altered hydrologic regime from Bioretention Cells with plants vs. no 

plants (controls).  Within one year we saw the latter assumptions bear true with 

significance and in most cases with great magnitude.  We gained further insight into the 

effect of plants by application of SSW to dormant and foliaged plants.  

At the beginning of this experiment each container had an equal mass and volume 

of bioretention soil medium with the same in situ nutrient levels.  Containers with and 

without plants responded similarly to the weekly 2-liter additions of DI.  However, as 

preliminary leaching results indicated: differences between plants and controls became 

observable relatively soon.
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Vesicular Arbuscular Mycorrhizal Fungi 

 
 

Vesicular arbuscular mycorrhizal fungi were not found to be present before or 

after the experiment and had no significant effect on Bioretention Cell performance.  This 

result was not surprising since commercial nursery potting medium is a soil-less medium 

generally consisting of peat, bark and vermiculite.  VAM propagules are predominantly 

found in soil, and are naturally associated with nutrient limited environments (Varma and 

Hock 1998).  Many nursery specimens are propagated through cuttings, which also 

decreases the chance of vegetative material coming into contact with soil and VAM 

fungus.  Nursery potting medium contains all the necessary nutrients in abundance thus 

also decreasing the likelihood of developing a symbiotic VAM relationship.  There was a 

high level of phosphorus and nitrogen in the initial experimental soil medium 

(preliminary P-index 317).  It is known that VAM preferentially develop symbiosis with 

vascular plants when found in phosphorus-limited environments and soils with high 

phosphate levels inhibit VAM inoculation (Gerdemann 1968). 

 

Vascular Plants 

 

The species selected for this study were chosen for their appropriate use in 

Bioretention Cells based on aesthetic value, rapid growth, root type, and their ability to 

survive in saturated and xeric conditions.  Desert willow is a native species to the 
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Southwestern United States that can be found naturalized in the western counties of 

Oklahoma.  This species was planted in windbreaks to prevent erosion and has a taproot.  

Switchgrass is a recommended species in several Bioretention manuals and is known to 

be a facilitative wetland species; this species has coarse roots that form a dense root ball.  

Both species are utilized in landscaping for their aesthetic appeal and horticultural 

cultivars are available for this species. As mentioned earlier, species effect was apparent 

sometimes but was not always clear and was not statistically analyzed. 

 

Nitrogen and Ammonium 
 
 

Significant nitrate retention in the Bioretention Cell literature without an 

anaerobic zone has been reported to be poor (Clausen and Dietz 2005, Hunt 2003), and in 

some cases likely unattainable (Kim et al 2003).  Davis et al (2001) found moderate 

reductions of ammonium but nitrate reduction was low and in some cases nitrate was 

increased in the effluent.  In this study dormant and foliaged plants reduced nitrate 

loading in effluent by more than 60% and 70%, respectively.  Ammonium effluent 

concentration and load was very low for all containers (below 0.45 mg) with and without 

plants. 

Nitrate effluent concentration from Bioretention cells with plants was increased 

relative to SSW concentration while plants were foliaged and decreased while plants 

were dormant.  However, ammonium effluent concentration and correspondingly 
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ammonium load were reduced well below the initial 2 mg/L and 4 mg (containers with 

and without plants reduced concentration below 0.60 mg/L and load below 0.45 mg).  

The nitrification processes where nitrifying bacteria convert ammonium to nitrite then 

nitrate explain this result.   

In the nitrogen cycle ammonium cations are oxidized by ubiquitous nitrifying 

bacteria living in soil, most commonly from the genus Nitrosomonas.  This reduction 

yields nitrite, which is then further oxidized to nitrate, most commonly by bacteria of the 

genus Nitrobacter.  Plants and other microbial organisms can interfere with the nitrifying 

process, albeit much slower than nitrification, and assimilate ammonium into organic 

compounds.  The assimilation process is also called immobilization since the organic 

nitrogen complex must go through the process of mineralization and subsequent 

nitrification before leaching from the soil is possible (Sparks 2003).   

The nitrogen cycle processes are dependant on pH, temperature, soil moisture and 

the presence of oxygen.  Nitrification occurs at increased rates with increasing soil 

temperature (Seifert 1980).  However, nitrifying bacteria are active over a wide 

temperature range (between 4ºC and 50ºC).  Other environmental variables such as 

presence of oxygen and soil moisture can be assumed to have been favorable for 

nitrifying bacterial growth thus nitrification since all plants increased biomass throughout 

the experiment (Table 6).  Although the nitrification process was not quantified under the 

scope of this study it is noteworthy and best explains conversion of ammonium to nitrate 

and increased concentration and loading of nitrate in Bioretention cell effluent. 
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Dormant vs. Foliaged (Seasonal Effect) 
 
 

Effluent Volume 
 

We can see in Figure 14 the lower total effluent volumes from Bioretention Cells 

with foliaged plants vs. dormant plants (i.e. seasonality) was highly significant (p < 

0.001).  However, total effluent volumes from Bioretention Cells with plants vs. 

Bioretention Cells without plants (controls) are only significantly different while plants 

are foliaged (p < 0.001).  Bioretention cells with and without plants always had a highly 

significant (p < 0.001) effect on the effluent collection time periods but differences 

between time periods were variable so only the 6-hour and 24-hour periods are discussed. 
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Figure 14:  Total effluent volumes from SSW application to Bioretention Cells with 
dormant and foliaged plants 
 
 

The data represented in Figure 15 provides a visual representation of increased 

infiltration for Bioretention Cells with dormant vs. foliaged plants.  However, this result 

does not provide a good estimation of infiltration rate since many of the Bioretention 

Cells with plants (dormant and foliaged) released all effluent before the end of the 6 hr 

collection period. 
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Figure 15:  Six hr effluent volumes from SSW application to Bioretention Cells with 
dormant and foliaged plants 
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Figure 16: Effluent volume averages from 6 hr sampling periods for each SSW 
application to Bioretention Cells 
 

 

An important distinction between Bioretention Cells with plants and controls as 

shown in Figure 16 is the effect of seasonality on stability (i.e. smaller differences 

between 6hr effluent volumes during dormant vs. foliaged events).  Bioretention Cells 

with dormant plants released between 62 and 87% of total effluent during the 6 hr 

collection periods, controls released between 20 and 24%.  Foliaged plants released 100% 

of total effluent during the 6 hr collection period, controls released between 48 and 60%.  

Effluent volume collected beyond the 6 hr sampling period, shown in Figure 17 and 18, 

was reduced to zero for foliaged plants. 
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Figure 17:  Effluent volume for 24 hr periods from SSW application to Bioretention Cells 
(dormant and foliaged plants) 
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Figure 18: Effluent volume averages from 24 hr sampling periods for each SSW 
application to Bioretention Cells with foliaged and dormant plants 
 
 

Effluent Concentration 
 
 

The effect of plants on nitrate effluent concentration was highly significant from 

dormant and foliaged SSW events (p < 0.001), seasonality was also significant for 

controls (p = 0.018).  When we compare percent reduction of nitrate concentration from 

SSW applications in dormant and foliaged plants we see less variability between events 

from Bioretention Cells with plants (Figure 19).  Bioretention Cells with dormant plants 

reduced the concentration by over 40% and below SSW levels (2 mg/L) for each event, 

whereas foliaged plants increased nitrate effluent concentration by more than 70%.  
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Although foliaged plants released more nitrate effluent concentration than that found in 

SSW it was still about ten times less than the controls contributed increases. 

 

Figure 19:  Nitrate effluent concentration from SSW application for each SSW 
application to Bioretention Cells with foliaged and dormant plants 

 

Bioretention Cells with dormant plants reduced nitrate effluent concentration by 

41%, whereas Bioretention Cells with foliaged plants released over 73% more nitrate 

than found in SSW.  Bioretention Cells with dormant and foliaged plants greatly out-

performed Bioretention Cells without plants as shown more plainly in Figure 20.  In 

Figure 21 there appears to be no apparent species effect on nitrate effluent concentration 

from application of SSW from dormant or foliaged plants. 
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Figure 20:  Percent reduction of nitrate effluent concentration from SSW application to 
dormant and foliaged plants 

 
 
Figure 21:  Percent reduction of nitrate effluent concentration from SSW application to 
dormant and foliaged plants (species effect) 
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Reduction of Ortho and Total-phosphate concentration in effluent by Bioretention 

Cells with dormant and foliaged plants was highly significant (p < 0.001).  Seasonality 

had a significant influence on reduction of Ortho-phosphate effluent concentration, with 

plants (p = 0.048) and controls (p < 0.001).  The seasonality effect on reduction of Total-

phosphate effluent concentration was only significant for controls (p = 0.025).  

Differences between Bioretention Cells with plants vs. controls were highly significant (p 

< 0.001). 

Figure 22 shows less variability in Total-phosphate effluent concentration from 

Bioretention Cells with plants relative to controls.  Synthetic Stormwater application to 

Bioretention Cells with dormant and foliaged plants released an average stable 

concentration at or below 2.00 mg/L. 
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Figure 22:  Total-phosphate concentration in effluent for each SSW application to 
Bioretention Cells with foliaged and dormant plants 
 
 

Bioretention Cells with dormant plants reduced Total-phosphate effluent 

concentration by more than 16% whereas Bioretention Cells with foliaged plants reduced 

concentration by over 45%.  In each case, Bioretention Cells with plants greatly out-

performed Bioretention Cells without plants as shown in Figure 23.  As we can see from 

Figure 24 species effect for percent reduction of Total-phosphate appears to be stronger 

for Switchgrass. 
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Figure 23: Percent reduction of Total-phosphate effluent concentration from SSW 
application to dormant and foliaged plants 
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Figure 24:  Percent reduction of Total-phosphate effluent concentration from SSW 
application to dormant and foliaged plants (species effect) 
 
 

Reduction of ammonium concentration in the effluent was significant for 

Bioretention Cells with plants (p = 0.031), but when compared to controls, only foliaged 

plants were significantly different than controls (p = 0.009).  Seasonality was significant 

for the effect of plants (p = 0.027).  Differences between Bioretention Cells with foliaged 

plants vs. dormant plants were highly significant (p < 0.001). 
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Ammonium concentration from SSW applications to dormant vs. foliaged plants 

as shown in Figure 25 showed little to no variability between events.  In all cases SSW 

application to Bioretention Cells with and without plants released much less than 2.00 

mg/L ammonium, well below the ammonium concentration of the SSW. 

 

 

 
 
Figure 25:  Ammonium concentration in effluent for each SSW application to 
Bioretention Cells with foliaged and dormant plants 
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Effluent Load 
 

 

The effect of plants on reduction of nitrate load in the effluent was highly 

significant for Bioretention Cells with plants (p < 0.001).  Seasonality was only 

significant for controls (p = 0.003).  Differences between Bioretention Cells with plants 

vs. controls were highly significant (p < 0.001). 

As shown in Figure 26 load responses of nitrate from SSW applications to 

dormant and foliaged plants had less variability between events from Bioretention Cells 

with plants relative to controls.  Synthetic Storm Water application to Bioretention Cells 

with dormant and foliaged plants released a stable load below 4.00 mg, well below the 

nitrate load of SSW; this is also true for SSW application to foliaged plants.  Foliaged 

plants released about 10% less nitrate than dormant plants. 
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Figure 26:  Nitrate load in effluent for each SSW application to Bioretention Cells with 
foliaged and dormant plants 
 
 

Bioretention Cells with plants, dormant and foliaged, reduced nitrate loads by 60 

and 70%, respectively whereas Bioretention Cells without plants increased nitrate loading 

by as much as 150 and 90%, respectively as shown in Figure 27.  When we look at Figure 

28 we see no apparent species effect on nitrate effluent loading from application of SSW 

to Bioretention Cells with Dormant vs. Foliaged plants however much less loading 

occurred while plants were dormant. 
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Figure 27:  Percent reduction of nitrate effluent load from SSW application to 
Bioretention Cells with dormant and foliaged plants 
 
 

The effect of plants on reduction of Ortho and Total-phosphate loading in the 

effluent was highly significant (p < 0.001).  Seasonality was also highly significant (p < 

0.001) for reduction of Ortho and Total-phosphate for plants and controls.  Differences 

between Bioretention Cells with plants vs. controls were highly significant (p < 0.001). 
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Figure 28:  Percent reduction of nitrate effluent load from SSW application to 
Bioretention Cells with dormant and foliaged plants (species effect) 
 
 

We can see in Figure 29 Total-phosphate loading from SSW applications to 

Bioretention Cells with dormant and foliaged plants shows less variability from 

containers with plants.  In Figure 30 we can see SSW application to dormant and foliaged 

plants released an average stable loading below 4 mg, well below the Total-phosphate 

load of SSW.  In Figure 31we see a species effect on phosphate load is not apparent. 
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Figure 29:  Total-phosphate load in effluent for each SSW application to Bioretention 
Cells with foliaged and dormant plants 

 
Figure 30: Percent reduction of Total-phosphorus effluent load from SSW application to 
Bioretention Cells with dormant and foliaged plants  
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Figure 31: Percent reduction of Total-phosphorus effluent load from SSW application to 
Bioretention Cells with dormant and foliaged plants (species effect) 

 

The effect of plants on reduction of ammonium effluent load and the difference 

between containers with plants and controls was not significant for dormant or foliaged 

SSW events (p = 0.446) but seasonality was highly significant for containers with plants 

and controls (p < 0.001).  Ammonium loading from SSW applications shown in Figure 

32 resulted in little to no variability between events from Bioretention Cells with plants 

relative to controls but differences between dormant and foliaged SSW applications are 

relatively large. 
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Figure 32:  Ammonium effluent load from SSW application to Bioretention Cells with 
foliaged and dormant plants 
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CHAPTER VI  

CONCLUSION 

 
 

In this study plants had observable and quantifiable effects on Bioretention Cell 

effluent nutrient concentration, loading, volume, and infiltration rate.  In addition 

dormant and foliaged plants responded differently.  Vesicular arbuscular mycorrhizal 

fungi had no significant effect on effluent nutrient concentration, loading, volume, or 

infiltration rate nor was it related to a seasonal effect. 

 Foliaged plants increased infiltration and decreased total effluent volume relative 

to controls, whereas dormant plants only increased infiltration.  Total-volume from 

dormant plants was not significantly different from controls.  During the six-hour 

collection period containers with dormant and foliaged plants released all effluent 

whereas controls continued to drain throughout the 168hr period.  In some cases there 

were higher concentrations from containers with foliaged plants but these containers still 

had lower loading than that of controls. 

Dormant plants reduced nitrate concentration by more than 40% below SSW 

levels (2mg/L as N and P), whereas foliaged plants increased nitrate concentration by 
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more than 70%.  Although foliaged plants increased nitrate concentration it was only 

10% that of controls contributed increase.   

The effect of seasonality on nitrate concentration in the effluent was only 

significant for controls (p = 0.018), but the difference between containers with plants and 

controls were highly significant (p < 0.001) for each season.  Overall, nitrate effluent 

concentration from containers with plants was less variable than controls and 

significantly lower. 

Dormant and foliaged plants reduced nitrate loading in effluent by more than 60% 

and 70%, respectively.  Differences between containers with and without plants were 

highly significant (p < 0.001) whereas seasonality was only significant for controls (p = 

0.003).  Nitrate loading in effluent from containers with plants was less variable than 

controls and significantly lower. 

Dormant and foliaged plants reduced phosphate effluent concentration by more 

than 16 and 45%, whereas controls released 85% more phosphorus while plants were 

dormant and 33% while plants were foliaged.  Seasonality had a significant influence on 

reduction of Ortho-phosphate effluent concentration by Bioretention Cells with plants (p 

= 0.048) and controls (p < 0.001).  Seasonality effect on reduction of Total-phosphate 

effluent concentration was only significant for controls (p = 0.025).  Differences between 

Bioretention Cells with plants vs. controls were highly significant (p < 0.001). Total-

phosphorus effluent concentration was less variable for containers with plants than that of 
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controls and was consistently lower than SSW levels.  Reduction of phosphate effluent 

concentration was observably stronger for Switchgrass.   

Dormant and foliaged plants reduced phosphate load by more than 46 and 90%, 

respectively.  Controls during the dormant sampling increased loading of phosphate by 

more than 11%, whereas controls during the foliaged sampling period reduced phosphate 

loading by more than 58%.  Seasonality had a highly significant (p < 0.001) influence on 

reduction of Ortho and Total- phosphate effluent loading by Bioretention Cells with 

plants and controls.  Differences between Bioretention Cells with plants vs. controls were 

highly significant (p = 0.009, p < 0.001). 

Ammonium effluent concentration and load was very low for containers (in all 

cases concentration was below 0.60 mg/L and loading below 0.45 mg) with and without 

plants.  Seasonality significantly affected concentration in the effluent of plants (p = 

0.027), whereas it was highly significant (p < 0.001) for loading from containers with and 

without plants. Differences between ammonium concentration and loading from 

Bioretention Cells with plants vs. controls were not significant. 

Ameliorative effects of plants in the rhizosphere of Bioretention Cells could be 

attributed to many factors.  Plants increase macro-pores and the permeability of 

Bioretention Cell medium.  They increase organic matter thus increasing sorption 

(adsorption and absorption) properties of the soil.  Transpiration decreases effluent 

volume possibly retaining more nutrients in the Bioretention Cells for further plant 

uptake but can lead to relative increases in nutrient concentrations.  These plant attributes 
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are variable both influenced by species and rate of growth thus ultimately species 

selection could be significant in increasing Bioretention Cell performance. 

Some considerations for species selection could include type of root structure, rate 

of growth, N:P ratio in foliage, wetland indicator status, relative depth of rhizosphere and 

the use of locally collected germplasm (provenance).  Species selection should be site-

specific: dependent on precipitation and average annual minimal temperatures.  For 

example appropriate species for the Southeastern corner of Oklahoma would tolerate 

more inundation but may have increased sensitivity to drought such as Taxodium 

distichum (Bald cyprus) or Itea virginica (Virginia sweetspire) whereas potential species 

for Western Oklahoma such as Salix exigua (Coyote willow) or Chilopsis linearis (Desert 

willow) have excellent drought resistance yet prolonged inundation may lead to death.  

Oklahoma has vast differences in precipitation from east to west, from about 17 inches in 

the panhandle to 56 inches in the Southeast, and falls under 3 USDA “Plant Hardiness 

Zones”. 

Initial soil nitrate and phosphate levels were high in the sandy loam used for this 

study (P-index 317).  It took over 30 weeks of weekly 2-liter additions of DI to leach 

nutrients below SSW levels (2mg/L as N and P).  Initial soil nutrient levels appear to 

have a profound effect on nutrient effluent concentration and load but the establishment 

of plants significantly reduces this concern and could lead to increased life expectancy 

and further utilization of these LID practices.     
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APPENDICES 

 

 Appendix (a):  Experimental Data 
 

Table 1a:  Effluent volumes from SSW addition one 
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Table 2a:  Effluent volumes from SSW addition two 
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Table 3a:  Effluent volumes from SSW addition three 
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Table 4a:  Effluent volumes from SSW addition four 
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Table 5a:  Effluent volumes from SSW addition five 
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Table 6a:  Effluent volumes from SSW addition six 
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Table 7a:  Effluent concentration of total volume from SSW addition one  
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Table 8a:  Effluent concentration of total volume from SSW addition two 
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Table 9a:  Effluent concentration of total volume from SSW addition three 
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Table 10a:  Effluent concentration of total volume from SSW addition four 
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Table 11a:  Effluent concentration of total volume from SSW addition five 
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Table 12a:  Effluent concentration of total volume from SSW addition six 
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Appendix (b):  Statistical Model (SAS 9.2) 
 
 
DM 'LOG; CLEAR; OUTPUT; CLEAR;'; 
OPTIONS PAGENO=1 LS=85 NODATE PAGESIZE=75; 
*TITLE 'Bond2.sas'; 
 
PROC IMPORT OUT=ONE  
            DATAFILE= "H:\Statistics Department\Consulting 
Clients\Ag\Bond\BOND1.xls"  
            DBMS=EXCEL REPLACE; 
     GETNAMES=YES; 
     MIXED=NO; 
     SCANTEXT=YES; 
     USEDATE=YES; 
     SCANTIME=YES; 
  SHEET='Volume'; 
 
DATA TWO; SET ONE; 
 
PROC PRINT; 
 
PROC MIXED; 
CLASS POT FUNGUS PLANT TRANS RUN TIME; 
MODEL VOL = PLANT|FUNGUS|TRANS|TIME/DDFM=KR; 
RANDOM POT(PLANT*FUNGUS); 
REPEATED /SUBJECT=TRANS*POT(PLANT*FUNGUS) TYPE=AR(1); 
LSMEANS PLANT*FUNGUS*TRANS*TIME/SLICE=(PLANT*FUNGUS*TIME 
PLANT*TRANS*TIME FUNGUS*TRANS*TIME PLANT*FUNGUS*TRANS); 
 
RUN; 

 

Figure 1(b) PROC MIXED statement for ANOVA model used to analyze volume data  
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DM 'LOG; CLEAR; OUTPUT; CLEAR;'; 
OPTIONS PAGENO=1 LS=85 NODATE PAGESIZE=75; 
*TITLE 'Bond1.sas'; 
 
PROC IMPORT OUT=ONE  
            DATAFILE= "H:\Statistics Department\Consulting 
Clients\Ag\Bond\BOND1.xls"  
            DBMS=EXCEL REPLACE; 
     GETNAMES=YES; 
     MIXED=NO; 
     SCANTEXT=YES; 
     USEDATE=YES; 
     SCANTIME=YES; 
  SHEET='Pollutants'; 
 
DATA TWO; SET ONE; 
 
*PROC PRINT; 
 
PROC MIXED; 
CLASS POT FUNGUS PLANT TRANS RUN; 
MODEL TOTVOL = PLANT|FUNGUS|TRANS/DDFM=SATTERTH; 
RANDOM POT(PLANT*FUNGUS); 
LSMEANS PLANT*FUNGUS*TRANS/SLICE=(PLANT*FUNGUS PLANT*TRANS 
FUNGUS*TRANS); 
 
PROC MIXED; 
CLASS POT FUNGUS PLANT TRANS RUN; 
MODEL C_NO3 = PLANT|FUNGUS|TRANS/DDFM=SATTERTH; 
RANDOM POT(PLANT*FUNGUS); 
LSMEANS PLANT*FUNGUS*TRANS/SLICE=(PLANT*FUNGUS PLANT*TRANS 
FUNGUS*TRANS); 
 
PROC MIXED; 
CLASS POT FUNGUS PLANT TRANS RUN; 
MODEL C_NH4 = PLANT|FUNGUS|TRANS/DDFM=SATTERTH; 
RANDOM POT(PLANT*FUNGUS); 
LSMEANS PLANT*FUNGUS*TRANS/SLICE=(PLANT*FUNGUS PLANT*TRANS 
FUNGUS*TRANS); 
 

Figure 2(b): PROC MIXED statement for ANOVA model used to analyze nutrient data 
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PROC MIXED; 
CLASS POT FUNGUS PLANT TRANS RUN; 
MODEL C_ORTHO = PLANT|FUNGUS|TRANS/DDFM=SATTERTH; 
RANDOM POT(PLANT*FUNGUS); 
LSMEANS PLANT*FUNGUS*TRANS/SLICE=(PLANT*FUNGUS PLANT*TRANS 
FUNGUS*TRANS); 
 
PROC MIXED; 
CLASS POT FUNGUS PLANT TRANS RUN; 
MODEL C_ICP = PLANT|FUNGUS|TRANS/DDFM=SATTERTH; 
RANDOM POT(PLANT*FUNGUS); 
LSMEANS PLANT*FUNGUS*TRANS/SLICE=(PLANT*FUNGUS PLANT*TRANS 
FUNGUS*TRANS); 
 
PROC MIXED; 
CLASS POT FUNGUS PLANT TRANS RUN; 
MODEL NO3 = PLANT|FUNGUS|TRANS/DDFM=SATTERTH; 
RANDOM POT(PLANT*FUNGUS); 
LSMEANS PLANT*FUNGUS*TRANS/SLICE=(PLANT*FUNGUS PLANT*TRANS 
FUNGUS*TRANS); 
 
PROC MIXED; 
CLASS POT FUNGUS PLANT TRANS RUN; 
MODEL NH4 = PLANT|FUNGUS|TRANS/DDFM=SATTERTH; 
RANDOM POT(PLANT*FUNGUS); 
LSMEANS PLANT*FUNGUS*TRANS/SLICE=(PLANT*FUNGUS PLANT*TRANS 
FUNGUS*TRANS); 
 
PROC MIXED; 
CLASS POT FUNGUS PLANT TRANS RUN; 
MODEL ORTHO = PLANT|FUNGUS|TRANS/DDFM=SATTERTH; 
RANDOM POT(PLANT*FUNGUS); 
LSMEANS PLANT*FUNGUS*TRANS/SLICE=(PLANT*FUNGUS PLANT*TRANS 
FUNGUS*TRANS); 
 
PROC MIXED; 
CLASS POT FUNGUS PLANT TRANS RUN; 
MODEL ICP = PLANT|FUNGUS|TRANS/DDFM=SATTERTH; 
RANDOM POT(PLANT*FUNGUS); 
LSMEANS PLANT*FUNGUS*TRANS/SLICE=(PLANT*FUNGUS PLANT*TRANS 
FUNGUS*TRANS); 
 
RUN; 

 
Figure 2(b) (continued): PROC MIXED statement for ANOVA model used to analyze 

nutrient data 
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Appendix (c):  Statistical Outputs 
 

The Mixed Procedure:  Dependant Effluent Collection Time 
 
 

Table 1c:  Least square means effluent collection time 
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Table 2c:  Test of effect slices effluent collection time 
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The Mixed Procedure:  Dependant Total Volume 
 
 
 

Table 3c:  Test of fixed effects total volume 
 
 

 
 
 

Table 4c:  Least square means total volume 
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Table 5c:  Test of effect slices total volume 
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The Mixed Procedure:  Dependant Nutrient Concentration 
 
 

Table 6c:  Test of fixed effects nitrate concentration 
 
 

 
 
 

Table 7c:  Least square means nitrate concentration 
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Table 8c:  Test of effect slices nitrate concentration 
 
 

 
 
 

Table 9c:  Test of fixed effects ammonium concentration 
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Table 10c:  Least square means ammonium concentration 
 
 

 
 

Table 11c:  Test of effect slices ammonium concentration 
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Table 12c:  Test of fixed effects Ortho-phosphate concentration 
 
 

 
 
 

Table 13c:  Test least square means Ortho-phosphate concentration 
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Table 14c:  Test effect slices Ortho-phosphate concentration 
 
 

 
 
 

Table 15c:  Test fixed effects Total-phosphate concentration 
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Table 16c:  Least square means Total-phosphate concentration 
 
 

 
 
 

Table 17c:  Effect slices Total-phosphate concentration 
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The Mixed Procedure:  Dependant Nutrient Load 
 

 

Table 18c:  Test of fixed effects nitrate load 
 
 

 

 

Table 19c:  Least square means nitrate load 
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Table 20c:  Test of effect slices nitrate load 
 
 

 
 
 

Table 21c:  Test of effect slices ammonium load 
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Table 22c:  Least square means ammonium load 
 
 

 
 
 

Table 23c:  Test of effect slices ammonium load 
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Table 24c:  Test of fixed effects Ortho-phosphate load 
 
 

 
 
 

Table 25c:  Least square means Ortho-phosphate load 
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Table 26c:  Test of effect slices Ortho-phosphate load 
 
 

 

 

Table 27c:  Test of fixed effects Total-phosphate load 
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Table 28c:  Least square means Total-phosphate load 
 
 

 
 
 

Table 29c:  Test of effect slices Total-phosphate load 
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Appendix (d):  Standard Operation Procedures 
 

Cleaning sample containers 
 
 

Before Effluent samples were taken each effluent sample container and lid was 

washed with phosphorus free soap and rinsed with 30% HCl then rinsed with DI water.  

Phosphate free soap was added to each container and lid then scrubbed with a bottlebrush 

until no residue remained on the surface.  Containers were then rinsed with tap water six 

times.  Once rinsed, 10 ml of 30% HCl solution was added to each container and shaken 

with the lid tightened for 10 seconds.  Lids were removed and containers and lids were 

rinsed with DI water six times.  Containers and lids were allowed to air dry and were 

stored in plastic bags until ready for effluent collection. 

Synthetic Stormwater (SSW) Preparation 
 
 

Four 18L solutions were prepared for each SSW application with the three 

respective constituents in each solution: sodium nitrate (2 mg/L as N), phosphorus (2 

mg/L as P), and ammonium chloride (2 mg/L as N).  The pH of each solution was noted 

but not adjusted if found to be in the range of 6.5-6.8, no adjustment was necessary for 

any of the applications. 

Sodium nitrate (561.173 mg/L) was added to the 18L of DI water and allowed to 

dissolve.  Sodium phosphate (110.69 mg/L) was added to the 18L of DI water and 
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allowed to dissolve.  Ammonium chloride (353.193 mg/L) was added to the 18L of DI 

water and allowed to dissolve.  Once all three constituents were placed into the 18L of 

water the water was transferred to an empty 18L container and then back into the original 

container, this was repeated three times for each mixture to better dissolve the chemical 

constituents.   

Determination of Percent Colonization 
 
 

The extent of colonization of plant roots by mycorrhizal fungi was evaluated 

using “ Quantification of Vesicular-Arbuscular Mycorrhizal Colonization in Roots” 

found in chapter 18 of SSSA Book Series: 5, Methods of Soil Analysis: Part 2- Microbial 

and Biochemical Properties.   

 

Inoculum and Control Inoculum 
 
 
 Vesicular Arbuscular Mycorrhizae (VAM) used for this experiment was acquired 

from the International Culture Collection of (Vesicular) Mycorrhizal Fungi (INVAM).  

This non-profit research organization is located on the Evansdale Campus of West 

Virginia University. Through INVAM Dr. Joseph B. Morton, Professor & Curator and 

Dr. Ranamalie Amarasinghe, Assoc. Curator “Acquire, propagate, characterize, and 

maintain germplasm of arbuscular mycorrhizal fungi in living cultures for preservation 

and distribution to any person or institution.”  
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Vesicular Arbuscular Mycorrhizae obtained from INVAM was used to prepare a 

1:35 ratio of bulk inoculum to topsoil mixture by adding 1.2 liters of bulk inoculum 

containing 1:1:1 (v/v/v) of Glomus clarum, G. intraradices, and G. mosseae.  This 

procedure was also used to prepare a 1:35 ratio sterile control inoculum known to be 

devoid of VAM.  Inoculum was delivered in a perlite medium with viable VAM spores 

and colonized roots of Switchgrass.  The control inoculum was an identical medium 

guaranteed to be devoid of VAM spores and with non-colonized roots from Switchgrass. 

 

Appendix (e):  Acronyms 
 

- Oklahoma Water Resources Board (OWRB)  

- Low Impact Development (LID) 

- Urbanized Area (UA) 

- Concentrated Animal Feeding Operations (CAFOs) 

- National Pollutant Discharge Elimination System (NPDES) 

- Environmental Protection Agency (EPA) 

- Clean Water Act (CWA), 

- Non-point Sources of Pollution (NPS) 

- Point Source Pollution (PS) 

- Vesicular Arbuscular Mycorrhizal Fungus (VAM) 

- Ectomycorrhizal Fungus (EM) 

- Municipal Separate Storm Sewer Systems (MS4s) 
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