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CHAPTER 1 

 INTRODUCTION 

When a researcher is performing a study with more than two levels of a factor variable, 

often the purpose is to quantify the differences among the factor level means. We refer to the 

problem of determining simultaneously which levels of a factor differ significantly from a control 

as multiple comparisons with a control (MCC). Dunnett (1955) developed conservative 

simultaneous (1-α)100% confidence intervals to estimate these differences simultaneously under 

normality with independent samples. Assuming that kµ is the mean of the control and 11,..., −kµµ
are the means of the non-control levels of the factor variable, the parameters of interest are 

ki µµ − , for 1,...,1 −= ki . Sometimes, however, the response of interest is binary. For example, 

when determining human immunodeficiency virus (HIV) seropositivity, individuals are classified 

as either positive or negative, and when detecting defective items in large populations, items are 

classified as either defective or non-defective. In cases like these, rather than estimating the 

differences between factor level means, the goal of the researcher might be to estimate 

differences between proportions of independent binomial variables, with ki pp − for 

1,...,1 −= ki as the parameters of interest, where kp is the proportion of the level considered the 

control and 11,..., −kpp are the proportions of the non-control levels of the factor of interest. A 

useful application of the later design occurs in the analysis of prevalence of a given disease in 

humans, where the population of interest is divided into subgroups that share the same 

characteristic such as age, race or social status. Similarly, in plant/animal disease assessment it is 

of interest to know the proportion of vectors (organisms such as insects)
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capable of transmitting a virus, in this case the population can be subdivided by vector species, 

plant variety, or environmental conditions. 

Consider specifically an experiment involving determination of HIV seropositivity. The 

HIV virus can be transmitted in different ways, through sexual contact with others that are 

infected, from an infected mother to her unborn baby, and through blood; the latter occurs when 

people share needles or from blood transfusions in hospitals. Currently, effective methods are 

available for prevention of HIV transmission through blood, as a result, the risk has been reduced 

to low levels in the developed countries; however, screening tests can be relatively expensive for 

developing countries where the government faces serious financial restrictions. One possible way 

to reduce the cost of HIV testing involves pooling the sera from several individuals and then 

testing the pool for HIV infection; we refer to this methodology as group-testing. 

Group-testing involves pooling individuals into groups, testing the groups and classifying 

each group as either positive or negative. A negative result for the group occurs when none of the 

individuals possesses the characteristic of interest; a positive result for the group occurs when at 

least one of the individuals possesses the characteristic. This type of sampling provides 

substantial benefits, among them the reduction of cost of classifying all individuals of a 

population according to whether or not they possess a certain trait when the incidence rate is very 

low. Benefits from group testing depend on the size of the pools. Unfortunately, optimum 

selection of group sizes is difficult because it requires knowledge of the unknown prevalence 

(Hughes-Oliver & Rosenberger 2000).  

The origin of group-testing is credited to Robert Dorfman (1943); he proposed the use of 

a simple binomial model to reduce the number of medical tests while detecting all members of a 

population that have the syphilis antigen. Dorfman suggested pooling several blood samples and 

testing the pool for the syphilis antigen; and in the cases where a group tested positive, all the 

subjects from that particular group would be re-tested on an individual basis. Dorfman’s goal was 

to classify each of the individuals in the population as infected or not while reducing the expected 
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number of tests, this is known as the classification problem. One can also use group testing to 

estimate the proportion infected in a population without necessarily identifying the infected 

individuals, which is known as the estimation problem. In fact, Dorfman’s idea of pooling blood 

samples for syphilis screening was not used; but some years later the concept was analyzed again 

and today useful applications can be found in the literature of group-testing. Among those 

applications are determination of HIV seropositivity (Gastwirth & Hammick 1988, Gastwirth & 

Johnson 1994, Kline, Brothers, Brookmeyer, Zeger & Quinn 1989, Wein & Zenios 1996), 

estimation of virus infection rates in plants (Bhattacharyya, Karandinos & DeFolliart 1979, 

Hepworth 1996, Swallow 1985, Tebbs & Bilder 2004, Thompson 1962), leak testing of sealed 

radioactive sources (Thomas, Pasternack, Vacirca & Thompson 1973) and genetics (Chick 1996); 

while group testing has been shown to have substantial benefits, multiplicity adjustments for 

experiments conducted under this protocol has been limited. 

McCann and Tebbs (2006) derive two simultaneous confidence interval approaches for 

all pairwise proportion differences when the data is obtained under a group-testing scenario. Both 

of their procedures, Tukey-Kramer and Jeffreys-Perks, are based on asymptotic results; the 

authors evaluate both approaches in terms of simultaneous coverage probability and mean 

interval length for small sample cases. McCann and Tebbs conclude that both procedures have 

good performance for small samples, recommending the Tukey-Kramer approach for large 

groups of about 10 individuals or more; and the Jeffreys-Perks procedure for small groups of less 

than 10 individuals. McCann and Tebbs also illustrate the application of both procedures using 

data from an HIV study involving drug users in Houston. The population of interest is classified 

based on two different factors, race and type of drug injected, with three levels for the race factor 

(Hispanic, white, and black) and four levels for the type of drug used by the individual (heroin, 

cocaine/heroine, cocaine, and cocaine/amphetamines). Pairwise differences are estimated 

between the proportion of positives at each level within each factor. This methodology allows the 
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researcher to rank the different levels of a factor based on HIV prevalence while also retaining the 

ability to assess practical significance via the interval estimates. 

In some cases, however, differences with a control are of interest. The goal of the current 

paper is to provide, within a group-testing context, simultaneous confidence intervals for 

proportion differences between the control and all other levels. Both simultaneous inferential 

procedures presented by McCann and Tebbs (2006), will be modified for this scenario and 

subsequently the Dunnett and Jeffreys-Perks simultaneous confidence intervals will be generated 

and illustrated using data from a multiple-vector transfer design study.  

For reference throughout the paper, we now consider a specific example where MCC is 

clearly wanted and the data are correlated via a group testing protocol. 

It is well known that plant viruses are the causes of big losses in crop production and 

quality all over the world, therefore developing treatments to control the spread of viruses is of 

prime importance. Normally, organisms such as insects transmit viruses. An insect that is capable 

of transmitting the causative agent of diseases is known as vector.  In pathology, often it is of 

interest to estimate the probability of virus transmission by a single vector; one way to do it 

consists of collecting samples of insects and caging insects individually with a healthy plant. If 

after a virus test the plant tests positive, then the insect is classified as a vector; and the proportion 

of infected plants can be used as an estimate of the proportion of vectors in the population. 

Usually, the populations of insects are very large, and the previous procedure may be cost 

prohibitive due to the required number of plants, cages and space; thus it is convenient to test 

several insects on each healthy plant; this is known in the literature as multiple-vector transfer 

design (Thompson 1962).  

Consider for instance a study by Bawden and Kassanis (1946) to compare the 

susceptibility of five different varieties of potato to the transmission of potato virus Y. In the 

same research, the authors performed an experiment, which showed that tobacco is more easily 

infected than potato by the virus Y, and thus it can be used as a reference when measuring 
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infection rate. For this reason, when illustrating the Dunnett and Jeffreys-Perks approaches under 

the MCC modality, tobacco is used as the control level and five different varieties of potato are 

used as the non-control levels. Bawden and Kassanis, first used two insects to transmit the virus 

from infected tobacco plants to 36 healthy plants of each of the varieties under analysis and the 

proportion of healthy plants that showed symptoms of the disease was recorded as a measure of 

the susceptibility of a plant to the virus Y infection. In a second replicate of the experiment, four 

insects were used to transmit the virus to another 36 healthy plants of each variety and again the 

proportion of test plants that became infected was recorded. 

The remainder of the paper is organized as described next. In Chapter 2, we review the 

methodology of the Tukey-Kramer and Jeffreys-Perks procedures for all pairwise proportion 

differences, when the data is collected under a group-testing context. In Chapter 3, we present the 

theoretical background that makes possible the transition from all pairwise comparisons to 

multiple comparisons with a control. In Chapter 4, we evaluate the performance of both the 

Dunnett and Jeffreys-Perks approaches based on simultaneous coverage probability for various 

scenarios. In Chapter 5, we illustrate the above procedures using data from a multiple-vector 

transfer design study. In Chapter 6, we discuss the general conclusions of this work and consider 

some future extensions. 
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CHAPTER 2 

 THEORETICAL BACKGROUND 

For the purpose of this analysis we assume that the population of interest is divided into 

subgroups that share a specific characteristic; henceforth, the subgroups will be referred as strata. 

Suppose there are a total of k strata; individuals are then pooled into groups within each stratum, 

with the ith stratum containing in groups all of sample size is , ki ,...,1= . In group-testing, each 

unit is assumed to represent an independent Bernoulli variable where the probability that a 

randomly selected subject possesses the characteristic of interest is ip , and the probability of 

randomly selecting a subject not possessing the characteristic is )1( ip− . Thus the probability of 

randomly selecting a group of is subjects all of whom do not possess the characteristic of interest 

is is
ip )1( − , and consequently the probability of obtaining a group of is subjects where at least 

one subject possesses the trait of interest is is
ii p )1(1 −−=θ . Let 1=ilY if the lth group in the 

ith stratum possesses the characteristic of interest, and 0=ilY otherwise, ki ,...,2,1= ,

inl ,...,2,1= . It is assumed that the ilY are also independent and identically distributed Bernoulli 

random variables with mean is
ii p )1(1 −−=θ . Using the invariance property of maximum 

likelihood estimators and the usual binomial MLE for iθ , the MLE of ip can be written as 

is
iip /1)ˆ1(1ˆ θ−−= for all i ; where ∑ == in

l iili ny1 /θ̂ corresponds to the observed proportion of 

groups possessing the characteristic of interest in stratum i (see Appendix A for specific details). 
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Recall that our goal is to obtain simultaneous confidence intervals for all ki pp − ,

1,...,1 −= ki , where kp represents the prevalence for the subgroup deemed the control in this 

setting. McCann and Tebbs (2006) consider a similar problem and develop two simultaneous 

confidence interval approaches for  all pairwise proportion differences when the data is obtained 

under a group-testing scenario. Both of their procedures, the Tukey-Kramer and Jeffreys-Perks, 

are based on asymptotic results, and both have good performance for small sample cases in terms 

of simultaneous coverage probability and mean interval length. McCann and Tebbs apply both 

procedures to cases where the researcher is interested in all pairwise differences; for example, if 

the purpose is to rank different races based on the proportion of HIV positives, while retaining the 

ability to estimate the differences in these proportions, all pairwise differences can be estimated 

via simultaneous confidence intervals and the ranking determined as a result of the pairwise 

comparisons. These procedures can be modified appropriately for our all comparisons with a 

control scenario. The Tukey-Kramer and Jeffreys-Perks approaches derived by McCann and 

Tebbs are presented next. 

 

2.1 Tukey-Kramer confidence intervals 

The Tukey-Kramer method is an appropriate multiple comparison procedure when all 

pairwise differences are of interest. Hochberg and Tamhane (1987) provide the details of this 

multiple comparison procedure for the individual testing case. This approach can be also applied 

to the group-testing scenario since we have independent group binary responses for all strata. 

Hochberg and Tamhane recommend the use of the Tukey-Kramer intervals noting that they are 

conservative for large sample sizes ( 300≥in ), and have smaller width than other typical 

procedures; however, for small sample sizes the procedure exhibits poor coverage characteristics 

and alternative procedures should be considered.  
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Recall that the usual binomial MLE, iθ̂ , has an asymptotic normal distribution with mean 

iθ and variance iii n/)1( θθ − . As is
iii gp /1)ˆ1(1)ˆ(ˆ θθ −−== , the delta method yields that the 

asymptotic distribution of ip̂ is also normal with mean ip and variance 

i
s

i
s

iiiii nppsspvv ii /])1)()1(1([),( 22 −− −−−=≡ (see Appendix B for specific details). 

By the properties of the MLE’s, ip̂ is a consistent estimator of ip , and since  

),ˆ(ˆ iii spvv = is a function of ip̂ , we can also say that iv̂ is a consistent estimator of iv . Hence, it 

is appropriate to use iv̂ as an estimate of the unknown quantity iv . Thus, for the group-testing 

case, the Tukey-Kramer simultaneous 100 )1( α− percent asymptotic confidence intervals for all 

pairwise differences ji pp − , ji < , are given by 

 jikji qpp ννα ˆˆ||)ˆˆ( *
,, +±− ∞ (1) 

where ),ˆ(ˆ iii spνν = and ),ˆ(ˆ jjj spνν = are the asymptotic estimated variances of ip̂ and jp̂

respectively, and || *
,, ∞kqα is as described in section 5.1.1 of Hsu 1996 (McCann and Tebbs 2006).  

Since this statistical procedure involves proportions, some difficulties occur when none 

of the groups in stratum i and stratum j have the characteristic of interest ( 0== ji xx ); in this 

case a degenerate interval is produced. There is also a problem when all the groups possess the 

characteristic of interest in stratum i or stratum j ( ii nx = or jj nx = ); under this scenario a non-

informative interval is given, [-1,1].  

The second procedure derived by McCann and Tebbs (2006), the Jeffreys-Perks 

confidence intervals, is presented next. 

 

2.2 Jeffreys-Perks confidence intervals 

Beal (1987) analyses the use of asymptotically-based confidence intervals for the 

difference between the probability of success for two binomial populations. She evaluates the 
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statistical behavior of five such intervals (Wald, Mee, Miettinen & Nurminen, Haldane, and 

Jeffreys-Perks). Except for the Jeffreys-Perks intervals, these procedures will not be illustrated in 

this paper but they are described in Beal (1987). Beal recommends the Jeffreys-Perks interval if 

one wants to compute a simple interval. The Jeffreys-Perks interval shows a considerable 

improvement over other options when the values of both ip and jp are not very small or very 

large.  

Piegorsch (1991) considers Beal’s formulation of a Jeffreys-Perks interval, but rather 

than estimating the difference between the proportions of two binomial populations, Piegorsh 

considers simultaneous intervals for all ji pp − and for all comparisons with a control. He shows 

that the Jeffreys-Perks procedure exhibits generally nominal empirical coverage characteristics, 

and recommends it for use with small to moderate sample sizes. 

Both Beal (1987) and Piegorsch (1991), only consider the case when .1== ji ss

However, McCann and Tebbs (2006) generalise the Jeffreys-Perks procedure for the case when 

1>is and 1>js , which corresponds to the group-testing scenario. They utilise Beal’s 

reparameterisation, ji ppa +=  and ji ppb −= . However, Beal considers a prior distribution 

),(, jiPP ppf ji
that is proportional to 2/1)}1()1({ −−− jjii pppp for 10 << ip and 10 << jp ;

but McCann and Tebbs place a non-informative prior distribution on the proportion of groups 

possessing the characteristic of interest ( ji θθ , ), since group responses are observed under the 

group-testing scenario. Thus, the prior ),( jijif θθΘΘ is proportional to 2/1)}1()1({ −−− jjii θθθθ ,

for 10 << iθ and 10 << jθ . Consequently, if we consider is
iip /1)1(1 θ−−= and 

js
jjp /1)1(1 θ−−= , solve for is

ii p )1(1 −−=θ and js
jj p )1(1 −−=θ respectively, and perform 
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a bivariate transformation with 11 )1()1(..|| −− −−=∂
∂

∂
∂−∂

∂
∂
∂= ji s

j
s

iji
i

j

j

i

j

j

i

i ppssppppJ θθθθ , then we 

can write the prior distribution on an individual scale as 

Jppfppf ji
jiji

s
j

s
ijiPP ))1(1,)1(1(),( −−−−∝ ΘΘ or 

1)2/(2/11)2/(2/1 )1(})1(1{)1(})1(1{),( −−−− −−−−−−∝ jjii
ji

s
j

s
j

s
i

s
ijiPP ppppppf , for values of 

 10 << ip and 10 << jp .

Now, let Xi be the number of groups in stratum i that possess the trait of interest, thus 

∑
=

= in

l
ili YX

1
. The kXXX ,...,, 21 are independent and identically distributed Binomial random 

variables, hence the likelihood function ),|,(,|, jijiPPXX ppxxf jiji
for ii nx ,...,1,0= and 

jj nx ,...,1,0= , is proportional to )()( )1(})1(1{)1(})1(1{ jjjjjiiiii xns
j

xs
j

xns
i

xs
i pppp −− −−−−−− .

Consequently, the posterior distribution of ip and jp is given by 

∫∫
= 1

0
,,|,

1

0

,,|,
,|,

),().,(

),().,(
),|,(

jijiPPjiPPXX

jiPPjiPPXX
jijiXXPP

dpdpppfxxf

ppfxxf
xxppf

jijiji

jijiji
jiji .

First, consider the denominator where the double integral can be expressed as follows: 

∫∫ −+−−−+−− −−−−−−
1

0

1)2/1(2/1
1

0

1)2/1(2/1 )1(})1(1{*)1(})1(1{ j
xns

j
xs

ji
xns

i
xs

i dpppdppp jjjjjiiiii .

Since ip and jp are independent and identically distributed, then without loss of generality we 

can work with ip individually.  The integral involving ip can be rewritten as 

 ∫ −+−− −−−−
1

0

12
1

2/1 )1()1(})1(1{ ii
sxsns

i
xs

i dpppp iiiiiii . (2) 

Now, utilize the change of variable is
ii pt )1( −= with i

s
iii dppsdt i 1)1( −−−= . Thus the integral 

(2) is equivalent to 
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∫∫ −−−−−− −=−−
1

0

)2
1(2

10

1

)2
1(2

1
)1(1)1(1

i
xn

i
x

i
i

i
xn

i
x

i
i

dtttsdttts
iiiiii . (3) 

Let 2/1+−= ii xna and 2/1+= ixb . After adding the appropriate constants, equation (3) can 

be expressed as 

 i
a

i
b

i
i

dtttab
ba

ba
ab

s
11

1

0
)1()()(

)(
)(
)()(1 −−−ΓΓ

+Γ
+Γ
ΓΓ ∫ (4) 

where (.)Γ symbolizes the regular gamma function. Now the solution of the integral in equation 

(4) is one, and thus the posterior distribution of ip can be written as  

.)1(})1(1{)2/1()2/1(
)1(

)(
)()(1

)1(})1(1{ 1)2
1(2

11)2
1(2

1
−+−−

−+−−
−−−×+−Γ+Γ

+Γ=
+Γ
ΓΓ
−−− iiiii

iiiii xns
i

xs
i

iii

ii

i

xns
i

xs
i ppxnx

ns

ba
ab

s

pp

Consequently the posterior distribution of ip and jp is given by  

1)2
1(2

11)2
1(2

1
)1(})1(1{)1(})1(1{ −+−−−+−− −−−×−−−× jjijjiiiii

xns
j

xs
j

xns
i

xs
iij ppppc

for 10 << ip and 10 << jp , where the constant is 

)2/1()2/1()2/1()2/1(
)1()1(

+−Γ+Γ+−Γ+Γ
+Γ+Γ=

jjjiii

jiji
ij xnxxnx

nnssc .

Now, let ip̂ , jp̂ and b̂ be the maximum likelihood estimates of ip , jp and b

respectively. Then the Jeffreys-Perks simultaneous 100 )1( α− percent confidence intervals for 

all pairwise differences ji pp − , ji < , are constructed by solving 

 )~;ˆ(||)ˆ( *
,,

2 aabVqbb k ==− ∞α (5)                                           

for b , where || *
,, ∞kqα is described in equation (1), and )~;ˆ( aabV = is the asymptotic variance 

of ji ppb ˆˆˆ −≡ , with a~ , the posterior mean of ji ppa +≡ , inserted as an estimate of a .
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The posterior mean of a is calculated by taking the expected value with respect to 

the posterior distribution ),|,(,|, jijiXXPP xxppf jiji
as follows 

∫∫ +===+=
1

0
,|,

1

0
,|, ),|,()(),|(~

jijijiXXPPjijjiijiXXPP dpdpxxppfppxXxXppEa jijijiji .

Again, because of independence and identical distributions we can work with ip

and jp separately. The posterior mean of ip can be estimated by solving the following equation 

∫ −+−− −−−+−Γ+Γ
+Γ1

0

1)2/1(2/1 )1())1(1()2/1()2/1(
)1(

i
xns

i
xs

i
iii

ii
i dpppxnx

nsp iiiii .

If we use the same change of variables as before, is
ii pt )1( −= with i

s
iii dppsdt i 1)1( −−−= ,

then we have 

∫ −−−−+−Γ+Γ
+Γ−

1

0

)2/1(2/1/1 )1()2/1()2/1(
)1()1( i

xn
i

x
i

iii

is
i dtttxnx

nt iiii

∫ +−−−−+−Γ+Γ
+Γ−=

1

0

)/1()2/1(2/1)1()2/1()2/1(
)1(1 i

sxn
i

x
i

iii

i dtttxnx
n iiii . (6) 

Now let )/1(2/1' iii sxna ++−= and 2/1' += ixb , then equation (6) becomes 

 ∫ −−−ΓΓ
+Γ

+Γ+−Γ
Γ+Γ−==

1

0

1'1'
| )1()'()'(

)''(
)''()2/1(

)'()1(1]|[ i
a

i
b

i
ii

i
iiixp dtttba

ba
baxn

anxXpE ii .

The integral in this expression equals one and consequently the posterior mean of ip is 

given by 

))/1(1()2/1(
))/1(2/1()1(1

iiii

iiii
snxn
sxnn

++Γ+−Γ
++−Γ+Γ− .

Thus  the posterior mean of ji ppa −= can be written as 

))/1(1()2/1(
))/1(2/1()1(

))/1(1()2/1(
))/1(2/1()1(2~

jjjj

jjjj

iiii
iiii

snxn
sxnn

snxn
sxnna ++Γ+−Γ

++−Γ+Γ−++Γ+−Γ
++−Γ+Γ−= .
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When a~ is used as an estimate of a , the estimated asymptotic variance of 

ji ppb ˆˆˆ −≡ is as follows 

jj

ss

ii

ss

ns
bagbag

ns
bagbagaabV

jjii

2

2
22

2

2
11 ),~(}),~(1{),~(}),~(1{)~;ˆ(

−− −+−== ,

where 2/)~2(),~(1 babag −−= and 2/)~2(),~(2 babag +−= (see Appendix C for specific 

details). 

As with the Tukey-Kramer intervals, some difficulties can be found with calculation of 

these intervals when all the groups within strata i and j possess the characteristic of interest or 

when none of the groups possess such a trait. When ii nx ≅ and jj nx ≅ , equation (5) may not 

have any solution, in this case a non-informative interval [-1,1] is set for ji pp − . When 

0== ji xx , often only one solution is present. In this case a one-sided interval will be provided. 

 Both procedures, Tukey-Kramer and Jeffreys-Perks, as presented by McCann and Tebbs, 

include a critical value || *
,, ∞kqα which is the upper α critical point described in Section 5.1.1 of 

Hsu (1996); this critical value is appropriate when all pairwise comparisons are of interest; 

however, multiple comparisons with a control are of concern in the current paper and therefore a 

Dunnett critical  value || *
,, ∞kdα is required. Next we describe how this Dunnett critical point is 

estimated when the parameter of interest is ki pp − , where k represents the control level, and we 

also present the Dunnett and Jeffreys-Perks confidence intervals utilizing a Dunnett critical point 

which is appropriate for simultaneous inferences with a control for the group testing scenario. 
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CHAPTER 3 

 MULTIPLE COMPARISONS WITH A CONTROL 

When a researcher is interested in comparing all treatment groups with a control group, 

the multiple comparison procedure due to Dunnett is often appropriate. Dunnett (1955) provides 

the details on calculating the appropriate critical value for simultaneous confidence intervals for 

the differences between all non-control level factor means with the mean for the control level. 

The parameters of interest in this case are ki µµ − , where kµ represents the mean of the control 

factor and iµ is the mean of the ith non-control factor for i=1,…,k-1. The point estimate of 

ki µµ − is the difference between the sample means ki uu − , where ku is the sample mean of the 

control factor and iu is the sample mean of the ith non-control factor, i=1,…,k-1. Under the 

assumption that iu and ku have independent normal distributions with constant variance 2σ ,

ki uu − is normally distributed with mean ki µµ − and variance 
ki nn
22 σσ + , where kn and in are 

the sample sizes of the control factor and the ith non-control factor, i=1,…,k-1,  respectively. If 

we let 

ki

kiki
i

nn

uuz
11

)(
+

−−−=
σ

µµ

then iz has a normal distribution with mean zero and variance one. As we are concerned with 

simultaneous intervals, we need to examine the joint distribution of kii uuu −=* , i=1,...,k-1. The 

joint distribution of the *
iu , i=1,...,k-1, is a multivariate normal distribution with mean vector 
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µ )',...,,( 121 kkkk µµµµµµ −−−= − and variance-covariance matrix given by 
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2/1

1
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 +=

i

k
i n

nλ , for i=1,…,k-1.  

Dunnett further assumes that an estimate of 2σ is available which is independent of 

kuu ,...,1 ; for example he proposes using ∑∑
= =

−=
k

i

n

j
iij

i
nxxs

1 1

22 /)( where knn
k

i
i −= ∑

=
)(

1
; hence 

2

2

σ
ns  has a chi-square distribution with n degrees of freedom and σ

σ
/

2

2 s
z

n

ns
zt ii

i == follows 

a student’s t-distribution with  n degrees of freedom. 

The required critical values id needed to construct simultaneous confidence intervals for 

ki µµ − , i=1,…,k-1, are then chosen to satisfy P =∀≤ )( idt ii P Pisdz i
i =∀≤ )( σ , where P is the 
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joint confidence coefficient. The solutions are found by solving the following equation for id ,

i=1,…,k-1 

dsspsdsdsdF k )(,...,,( 121∫
∞

∞−
− 




σσσ

where ),...,,( 121 −kzzzF is the multivariate normal c.d.f. of the iz and  p(s) is the probability 

density function of s. Standard practice is to require dddd k ==== −121 ... . Then Dunnett’s 

procedure sets the above integral equal to P and solves for d .

However, for the purpose of the current paper, the parameters of interest are not ki µµ − ,

i=1,…,k-1, but rather ki pp − , i=1,…,k-1, as defined in Chapter 1. Recall that in Chapter 2 the 

MLE of ip , is
iip /1)ˆ1(1ˆ θ−−= , and its asymptotic distribution were derived. As the strata are 

independent, the joint asymptotic distribution of the vector p̂ )'ˆˆ( k1 p,...,p= is multivariate 

normal with mean p )'( k1 p,...,p= and variance-covariance matrix given by 
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where i
s

i
s

iii nppsv ii /})1)()1(1{( 22 −− −−−= . (By arguments similar to those in  

Appendix B). 

Since our goal is to estimate simultaneous confidence intervals for each of the differences 

ki pp − , we need to determine the joint distribution of ( )ˆ(1 pg kpp ˆˆ1 −= , )ˆ(2 pg kpp ˆˆ 2 −= ,…, 

)ˆ(1 p−kg kk pp ˆˆ 1 −= − )', where k again denotes our control level. By the multivariate delta method 

)ˆ( pg ))'ˆ(),...,ˆ(( 11 pp −= kgg has an asymptotic normal distribution with mean )( pg and variance 

C'CV Σ= , where C is a (k-1) by k matrix of partial derivatives with elements given by 
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Thus V is a (k-1) by (k-1) matrix given by 
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The correlation between )ˆ( pig and )ˆ( pjg can be calculated via the following equation: 
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Now unlike Dunnett (1955), we do not have an independent estimate for the variance 

component, and consequently we cannot utilize a student’s t-distribution. Instead we can 

construct test statistics with an asymptotic multivariate normal distribution with a mean vector of 

zeros and a covariance matrix with one’s on the diagonal via standardization; i.e. 

 i
d

ki

kiki zvv
pppp →+

−−− )()ˆˆ( ~ N(0,1), i=1,…,k-1.                                   (8) 

Consequently infinity degrees of freedom are used in the previous Dunnett formulation, as a t∞
distribution corresponds to a z distribution. 
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Since the iv , ki ,...,1= , are unknown quantities we cannot obtain the exact critical value 

d . (Even if we knew iv the corresponding d would still yield only asymptotically correct 

intervals as ki pp ˆˆ − is only asymptotically normal.) However, as iv̂ is a consistent estimator of 

iv (by the properties of the MLE’s); we can use iv̂ in equations (7) and (8) for iv and obtain a 

consistent estimator of the asymptotically correct critical value d . Consequently )ˆ(ˆ ii vλλ = are 

used as estimates of iλ , 1,...,1 −= ki .

In order to estimate the appropriate Dunnett critical values required to construct 

simultaneous confidence intervals for ki pp − where k is the control level, a Fortran program 

provided by Hsu (1996) was adapted for our specific group testing scenario. The inputs for this 

computer program are the significance level, the degrees of freedom and  λλλλ̂ )ˆ,...,ˆˆ( 12,1 −= kλλλ .

After calculating the appropriate Dunnett critical point, the simultaneous confidence 

intervals are estimated. These intervals involve adjusting the simultaneous inference procedures 

derived by McCann and Tebbs (2006) for the MCC scenario and are used to simultaneously 

estimate proportion differences between a control group and several non-control groups.  

Thus, for the group-testing case, the Dunnett simultaneous 100(1-α) percent confidence 

intervals for the differences ki pp − , where k represents the group that acts as control, are given 

by 

 kikki dpp ννα ˆˆ||)ˆˆ( *
,, +±− ∞ (9) 

where ),ˆ(ˆ iii spνν = and ),ˆ(ˆ kkk spνν = are the asymptotic variances of ip̂ and kp̂ respectively, 

and || *
,, ∞kdα is the Dunnett critical value calculated using λλλλ̂ .

Additionally, the Jeffreys-Perks simultaneous 100(1-α) percent confidence intervals for 

the differences ki pp − , where k is again the group that acts as control, are constructed by 

solving 
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)~;ˆ(||)ˆ( *
,,

2 aabVdbb k ==− ∞α (10) 

for b (recall ki ppb −= ), where || *
,, ∞kdα is as in equation (9), and )~;ˆ( aabV = is the 

asymptotic variance of ki ppb ˆˆˆ −≡ , with a~ , the posterior mean of ki ppa +≡ , inserted as 

an estimate of a . (See Chapter 2 for a detailed derivation of the Jeffreys-Perks approach). 
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CHAPTER 4 

 SIMULATIONS 

The Dunnett and Jeffreys-Perks approaches derived in Chapter 3 for multiple 

comparisons with a control under a group testing scenario, are now evaluated and compared in 

terms of simultaneous coverage probability.  

Usually, when working with proportions, some complications arise when either all 

responses are positive or when all are negative. For example, in our setting, suppose that the 

number of groups possessing the trait of interest in stratum k, is zero; that suggests that the 

observed proportion of groups with the characteristic of interest in stratum k is zero, 0ˆ ==
k

k
k n

xθ ,

and consequently 0)ˆ1(1ˆ /1 =−−= ks
kkp θ , where kp̂ and ks are as defined in previous Chapters. 

When 0ˆ =kp , then the estimated variance 0/)ˆ1}()ˆ1(1{ˆ 22 =−−−= −−
k

s
k

s
kkk nppsv kk , and as a 

result the correlation between kii ppg ˆˆ)ˆ( −=p and kjj ppg ˆˆ)ˆ( −=p is non-estimable; recall that 

this correlation is estimated by ji
k

j

k

i
ij v

v
v
v λλρ ˆˆ

ˆ
ˆ1ˆ

ˆ1ˆ
2/12/1
=



 +



 +=

−−
. (See equation (7) in Chapter 

3 for more details). If jiij λλρ ˆˆˆ = cannot be estimated, then we also cannot estimate the Dunnett 

critical point and therefore the confidence intervals are not available. A similar problem occurs 

when kk nx = .

Having all responses positive is not only a problem for the control level, but also for the 

non-control levels. In order to calculate the Dunnett critical values we need to solve an equation 

that involves the factor 2/12 )ˆ1/(1 iic λ−= ; however recall that 1ˆ =iθ implies that 0ˆ =iv and 
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1ˆ =iλ , and consequently the factor ic is non-estimable, and once again the confidence intervals 

would not be available. 

To avoid these problems, we make some adjustments every time the observed proportion 

of positives is either zero or one. When 0ˆ =iθ , we set 
i

i n
5.0ˆ =θ and when 1ˆ =iθ , we set 

i

i
i n

n )5.0(ˆ −=θ . While these estimates are not technically the MLE’s, notice that as ∞→n the 

probability of making such adjustments, provided 10 << ip , i=1,…,k, will converge to zero. 

Thus, the adjustments should not significantly change the overall behavior of our estimator for 

large samples. The percentage of times such adjustments were made is included in the simulation 

results. 

To run the simulations, random draws were taken from a binomial distribution with 

parameters iθ and in ; recall from Chapter 2 that ix , i=1,…,k, is a binomial random variable. A 

significance level of 0.95 was used throughout. Now, let k be the number of strata, n=(n1,…, nk)

the number of groups within each stratum, p=(p1,…,pk) the vector of proportions, and s=(s1,…,sk)

the respective group sizes. In our setting the first stratum is considered the control level. Now, 

using different values of n, s, p and k, and keeping for simplicity ni and si constant in all strata; we 

ran 10,000 simulations for each set of data and estimated the simultaneous coverage for the 

confidence intervals derived in equations (9) and (10) in Chapter 3.  

In order to estimate this simultaneous coverage probability, we simply counted the 

number of times the intervals simultaneously contained the true differences ki pp − , i=1,…,k-1, 

and divided that number by 10,000. We also kept track of the number of times we made the 

adjustment previously discussed to avoid 0ˆ =iθ or 1ˆ =iθ . The percentage of times the 

adjustments were made to avoid 0ˆ =iθ for each set of data is provided in Table 2. The 
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percentage of times the adjustments were made to avoid  1ˆ =iθ for each set of data is provided in 

Table 3, and the estimated simultaneous coverage probability results are shown in Table 1. 

Since the nominal coverage is 0.95, we expect that when the number of groups within 

each stratum, in , increases, then the estimated coverage probability converges to the 0.95 

nominal level. In Table 1, the estimated coverage probabilities in bold are those within two 

estimated standard deviations using 0.95 as the true proportion value.  

From Table 1, we notice that in the case of individual testing, both the Dunnett and 

Jeffreys-Perks procedures are very conservative as the coverage probabilities are more than two 

standard deviations above 0.95 for most of the cases. (This is probably due to the large percentage 

of times we make the adjustments in these cases.) We also notice that when si > 1, the Jeffreys-

Perks procedure is often slightly more conservative than the Dunnett procedure, since more of the 

time the coverage probability is larger for the Jeffreys-Perks case. 

From Table 1, we can also observe that when si=15, both procedures perform fairly well 

as the estimated coverage probability is very close to the nominal coverage of 0.95. When si=5 or 

si=10, the Jeffreys-Perks procedure tends to perform better than the Dunnett procedure, as it is 

often closer to the nominal coverage level. In the situations where none of the approaches is close 

to the nominal level, Jeffreys-Perks provides conservative confidence intervals while the Dunnett 

procedure is anticonservative, this also suggests that it is better to use the Jeffreys-Perks 

approach. In conclusion, both the Dunnett and Jeffreys-Perks approaches perform well for large 

group sizes (si ≥ 15). For smaller groups sizes (5 < si < 10) the Jeffreys-Perks methodology is 

recommended.  

In Tables 2 and 3, we present the number of times an adjustment was made due to 

∑ = =in
i ix1 0 and ∑ = =in

i ii nx1 , i=1,…,k, respectively. As expected, the first type of adjustment 

when 0ˆ =iθ , occurred much more often than the second type of adjustment, when 1ˆ =iθ . This is 

because the true values of the pi’s in our simulations are typically very small (0.01-0.13), 
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consequently the θi’s are also small and it is reasonable to obtain an observed number of groups 

with the characteristic of interest of zero. 
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CHAPTER 5 

APPLICATION 

In this Chapter a practical application of the Dunnett and Jeffreys-Perks procedures will 

be presented using data from a multiple-vector transfer design study. 

In order to control the spread of plant diseases in Pathology, often it is of interest to 

estimate the proportion of a population that is infected with a plant virus. A multiple-vector 

transfer design is widely used for this purpose. This procedure consists of collecting a sample of 

aphids or insects, feeding them on an infected plant, and then separating these insects into groups 

and caging each group with a healthy or test plant. Subsequently, the researchers observe if the 

test plant develops the symptoms of the disease or not, and this is how the proportion of infected 

plants is estimated.  

To illustrate the Dunnett and Jeffreys-Perks confidence intervals, data obtained from a 

multiple-vector transfer design was used. The objective of this study was to compare the 

susceptibility of different varieties of potato to the transmission of potato virus Y (Bawden and 

Kassanis 1946). The different varieties of potato analyzed were arran banner, majestic, arran 

consul, arran pilot and may queen.  

Bawden and Kassanis wanted to identify the resistance of various potato varieties to the 

potato virus Y. For that purpose, they performed field and glasshouse experiments comparing 

several potato diversities. The former type of analysis involved plots of different varieties, which 

were exposed equally to chances of infection. The plots consisted of five rows of five plants each, 

where the plant located at the center was infected with virus Y. The results of this experiment are 

not provided in the current paper, however they can be found on Bawden and Kassanis (1946). 

The glasshouse experiments are described next. 
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Bawden and Kassanis analyzed the infection rate of different potato varieties using first 

an inoculation procedure and then using insects to transmit the virus Y. The inoculation method 

consists of taking sap from infected plants and rubbing healthy plants with the substance. Bawden 

and Kassanis obtained sap from plants infected with the virus Y and used it as inoculum after 

dilution with water. Ten plants of each variety of potato and tobacco were inoculated. Two 

leaflets of approximately the same size were rubbed over their surfaces with the inoculum. The 

results showed that 100% of the tobacco plants were infected, but the observed proportion that 

was infected was much lower with the potato varieties. From this study, Bawden and Kassanis 

concluded that tobacco is more easily infected than potato. Therefore, under our multiple 

comparisons with a control setting, tobacco is used as the control level. 

When Bawden and Kassanis analyzed the infection rate of the varieties of potato under a 

multiple-vector transfer design protocol, they used the aphid Myzus persicae Sulz. to transmit the 

virus. The aphids were raised on turnips or radishes and starved for 4 hours. Then they were fed 

for 3 or 4 minutes on the undersurface of an infected tobacco leaf and immediately transferred to 

the healthy potato and tobacco plants. Thirty-six plants of each variety were colonized with two 

aphids and the number of infected plants was counted. To assess the differences among the 

varieties, Bawden and Kassanis simply observed the proportion of plants per variety that became 

infected after exposure to the virus Y; these observed proportions are given in Table 4. The 

researchers did not adjust in their analyses for either the group-testing setting or multiplicity, 

probably because these procedures were formally derived years later. (Dunnett’s procedure for 

means appeared in 1955 and formal analyses of group testing experiments had only just began to 

appear by 1946). Regardless, simply reporting the percentage of infected plants does not give 

accurate estimates of the percentage of aphids that transmit the disease nor does it allow for 

accurate determination of the potato varieties whose transmission rates differ significantly from 

tobacco, the control. 
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In our current paper, the data from the Bawden and Kassanis studies were extended for 

our MCC case under a group-testing protocol. The differences between the proportion of infected 

plants of each of the varieties of potato and the proportion of infected tobacco plants were 

simultaneously estimated using the Dunnett and Jeffreys-Perks procedures with 95% confidence. 

The estimated confidence intervals are shown in Table 5.  

From Table 5 we notice that the Dunnett and the Jeffreys-Perks approaches generated 

very similar results. We can conclude that the proportion of infected tobacco plants is 

significantly greater than the proportion of infected plants for the following potato varieties: arran 

banner, majestic, arran consul, and arran pilot. We did not find a significant difference between 

tobacco and the may queen potato variety. 

Bawden and Kassanis again performed the same general experiment using insects, but 

this time they colonized the healthy plants with four aphids rather than two; the other conditions 

remain the same. In Table 4 we present the observed proportion of test plants that were infected 

for the different varieties when si=4. As we expected, increasing the number of aphids per test 

plant (group size), resulted in an  increased observed proportion of infected plants. Since tobacco 

is very sensitive to the Y virus; with four aphids per plant, all of the tobacco test plants acquired 

the disease. Now the difference between tobacco and each of the potato varieties, as far as 

infected plants is concerned, is larger; which agrees with the main conclusion provided by 

Bawden and Kassanis. 

 Table 6 shows the Dunnett and Jeffreys-Perks 95% confidence intervals when si=4. Since 

there is a larger observed difference between tobacco and each of the potato varieties, the 

confidence intervals are wider than in the previous case, when si=2. However, from this study we 

can conclude that tobacco is significantly more susceptible to infection than all of the potato 

varieties considered in this study. We also observed that the Jeffreys-Perks procedure found only 

one root for all intervals within the [-1,1] range and therefore the upper limit was set to 1; 

consequently the Jeffreys-Perks approach generated wider intervals than Dunnett’s. (This is not 
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surprising as the Jeffreys-Perks procedure can yield only one root when the observed proportion 

for one group is at or near zero or one. Recall that here θ̂ for tobacco is one.) 

 In this section we presented the results of two general experiments performed by Bawden 

and Kassanis (1946). Their goal was to analyze the susceptibility of potato varieties to the virus 

Y. The experiments were conducted under a group-testing setting and used tobacco as a control 

level to compare several potato varieties with respect to the transmission rate. The authors did not 

use any statistical procedures that adjusted for the group testing or multiplicity involved in this 

experiment. In contrast, our analysis of the work of Bawden and Kassanis used the MCC setting 

under a group-testing protocol and conclusions that are more accurate are provided. 
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CHAPTER 6 

SUMMARY AND CONCLUSIONS 
 

McCann and Tebbs (2006) presented two approaches, the Tukey-Kramer and Jeffreys-

Perks, for obtaining pairwise simultaneous confidence intervals for all comparisons of 

proportions under a group-testing protocol. In some cases, however, differences with a control 

rather than all pairwise comparisons are of interest. The purpose of the current paper is to 

provide, within a group-testing scenario, simultaneous confidence intervals for proportion 

differences between the control and all other levels. Consequently, the McCann and Tebbs 

approaches were adjusted for the MCC case; with the main difference here being that a Dunnett 

critical value is required to construct the confidence intervals. This critical point depends on the 

correlation between kii ppg ˆˆ)ˆ( −=p and kjj ppg ˆˆ)ˆ( −=p , where the sub index k represents the 

control level. 

The two procedures discussed in this paper for the MCC case, Dunnett and Jeffreys-

Perks, were derived in Chapter 3 and evaluated and compared in terms of coverage probability in 

Chapter 4. Ten thousand simulations were ran for each specific scenario which consisted of 

specified values for p=(p1,…,pk), n=(n1,…, nk), and s=(s1,…,sk). Three, four and five strata were 

also considered with a confidence level of 0.95. The coverage probability was then estimated for 

both procedures in these scenarios. The results show that for large group sizes, si ≥ 15, the 

Dunnett and the Jeffreys-Perks approaches both perform very well. As the Dunnett procedure is 

much less intense computationally, we recommend Dunnett for these situations. For smaller 

group sizes, the Jeffreys-Perks methodology is recommended since it is closer to the nominal 

level of 1-α and is a conservative procedure. 
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Both procedures, Dunnett and Jeffreys-Perks, were also used to evaluate real data from a 

multiple-vector transfer design study. Comparing the susceptibility of tobacco and five different 

potato varieties to the virus potato Y. When a group size of two was used, tobacco proved more 

sensitive than four of the potato varieties. When a group size of four was used, tobacco was more 

susceptible to infection than all of the potato varieties considered in this study. 

The ideas presented in this paper can also be extended to other cases. For example if the 

investigator wants to select treatments or strata from a set such that the best treatment or 

population is included in a winning subset; then multiple comparisons with the best treatment or 

best strata level could be of interest. A Dunnett critical point is also utilized in this scenario, so 

the results of our setting could easily be adapted. In addition, although the calculations are much 

more intense, it is also possible to extend these results to other sets of defined contrasts, which 

may be required to answer research questions specific to a particular experiment. In this case, we 

would use a critical value from a conservative method such as Bonferroni, Sidak, McCann-

Edwards or Hunter-Worsley, again with infinity degrees of freedom as we are analyzing 

proportional data. 
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Table 1: Estimated simultaneous coverage probabilities for the Dunnett (D) and Jeffreys-Perks 
(JP) procedures with α=0.05 where the number of tests, ni, and the group size, si, are constant for 
all strata and the first stratum is considered the control level. 
*The estimated coverage probabilities in bold are those within two estimated standard deviations 
using 0.95 as the true proportion. 
 

si ni=25 ni=50 ni=25 ni=50 ni=25 ni=50
1 1.000 0.999 1.000 0.991 0.999 0.961 D

1.000 1.000 1.000 0.998 0.999 0.973 JP
5 0.957 0.937 0.921 0.934 0.922 0.942 D

0.979 0.963 0.964 0.950 0.937 0.954 JP
10 0.947 0.950 0.942 0.942 0.943 0.943 D

0.964 0.956 0.956 0.952 0.951 0.946 JP
15 0.947 0.952 0.946 0.946 0.944 0.947 D

0.961 0.953 0.951 0.953 0.953 0.951 JP

si ni=25 ni=50 ni=25 ni=50 ni=25 ni=50
1 0.999 0.999 0.999 0.965 0.998 0.934 D

1.000 0.999 1.000 0.972 0.943 0.937 JP
5 0.933 0.940 0.916 0.937 0.901 0.941 D

0.972 0.962 0.956 0.951 0.954 0.948 JP
10 0.943 0.946 0.935 0.941 0.940 0.943 D

0.963 0.957 0.949 0.952 0.947 0.951 JP
15 0.948 0.949 0.943 0.948 0.946 0.949 D

0.954 0.959 0.954 0.950 0.951 0.951 JP

si ni=25 ni=50 ni=25 ni=50 ni=25 ni=50
1 1.000 0.999 0.999 0.917 0.964 0.911 D

1.000 0.999 0.999 0.936 0.999 0.909 JP
5 0.922 0.933 0.921 0.932 0.884 0.933 D

0.972 0.956 0.943 0.943 0.945 0.943 JP
10 0.940 0.944 0.929 0.939 0.933 0.934 D

0.958 0.955 0.948 0.950 0.947 0.949 JP
15 0.943 0.949 0.946 0.944 0.945 0.950 D

0.960 0.958 0.953 0.948 0.960 0.947 JP

p=(.01,.02,.03,.04,.05) p=(.01,.03,.05,.07,.09) p=(.01,.04,.07,.10,.13)

p=(.01,.02,.03) p=(.01,.03,.05) p=(.01,.04,.07)

p=(.01,.02,.03,.04) p=(.01,.03,.05,.07) p=(.01,.04,.07,.10)
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Table 2: Percentage of times the adjustment for 0ˆ =iθ was made during the simulations for 
Dunnett (D) and Jeffreys-Perks (JP). 
 

si ni=25 ni=50 ni=25 ni=50 ni=25 ni=50
1 0.9559 0.8062 0.9158 0.7063 0.8837 0.6706 D

0.9527 0.8062 0.9118 0.7123 0.8862 0.6693 JP
5 0.3598 0.0882 0.3009 0.0768 0.2911 0.0773 D

0.3507 0.0906 0.2996 0.0804 0.2870 0.0801 JP
10 0.0863 0.0070 0.0811 0.0070 0.0805 0.0068 D

0.0877 0.0074 0.0856 0.0071 0.0826 0.0063 JP
15 0.0239 0.0003 0.0232 0.0005 0.0244 0.0004 D

0.0239 0.0004 0.0244 0.0003 0.0226 0.0004 JP

si ni=25 ni=50 ni=25 ni=50 ni=25 ni=50
1 0.9685 0.8320 0.9320 0.7282 0.8885 0.6713 D

0.9709 0.8358 0.9283 0.7184 0.8883 0.6621 JP
5 0.3622 0.0857 0.2976 0.0822 0.2841 0.0779 D

0.3523 0.0895 0.2990 0.0835 0.2809 0.0821 JP
10 0.0860 0.0068 0.0835 0.0050 0.0763 0.0080 D

0.0891 0.0066 0.0804 0.0057 0.0801 0.0077 JP
15 0.0230 0.0004 0.0212 0.0003 0.0250 0.0005 D

0.0231 0.0006 0.0227 0.0008 0.0251 0.0005 JP

si ni=25 ni=50 ni=25 ni=50 ni=25 ni=50
1 0.9793 0.8394 0.9352 0.7216 0.8927 0.6678 D

0.9774 0.8441 0.9354 0.7291 0.8899 0.6682 JP
5 0.3580 0.0886 0.3057 0.0842 0.2891 0.0796 D

0.3602 0.0860 0.2992 0.0825 0.2896 0.0844 JP
10 0.0902 0.0060 0.0822 0.0063 0.0812 0.0065 D

0.0907 0.0054 0.0774 0.0053 0.0811 0.0055 JP
15 0.0207 0.0004 0.0219 0.0001 0.0248 0.0005 D

0.0214 0.0003 0.0234 0.0008 0.0216 0.0007 JP

p=(.01,.02,.03,.04,.05) p=(.01,.03,.05,.07,.09) p=(.01,.04,.07,.10,.13)

p=(.01,.02,.03) p=(.01,.03,.05) p=(.01,.04,.07)

p=(.01,.02,.03,.04) p=(.01,.03,.05,.07) p=(.01,.04,.07,.10)
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Table 3: Percentage of times the adjustment for 1ˆ =iθ was made during the simulations for 
Dunnett (D) and Jeffreys-Perks (JP). 
 

si ni=25 ni=50 ni=25 ni=50 ni=25 ni=50
1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 D

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 JP
5 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 D

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 JP
10 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 D

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 JP
15 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 D

0.0000 0.0000 0.0000 0.0000 0.0001 0.0000 JP

si ni=25 ni=50 ni=25 ni=50 ni=25 ni=50
1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 D

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 JP
5 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 D

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 JP
10 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 D

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 JP
15 0.0000 0.0000 0.0002 0.0000 0.0033 0.0001 D

0.0000 0.0000 0.0000 0.0000 0.0037 0.0000 JP

si ni=25 ni=50 ni=25 ni=50 ni=25 ni=50
1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 D

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 JP
5 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 D

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 JP
10 0.0000 0.0000 0.0000 0.0000 0.0009 0.0000 D

0.0000 0.0000 0.0000 0.0000 0.0012 0.0000 JP
15 0.0000 0.0000 0.0010 0.0000 0.0404 0.0012 D

0.0000 0.0000 0.0010 0.0000 0.0410 0.0019 JP

p=(.01,.02,.03,.04,.05) p=(.01,.03,.05,.07,.09) p=(.01,.04,.07,.10,.13)

p=(.01,.02,.03) p=(.01,.03,.05) p=(.01,.04,.07)

p=(.01,.02,.03,.04) p=(.01,.03,.05,.07) p=(.01,.04,.07,.10)
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Table 4: Bawden and Kassanis (1946). Observed proportion of infected plants with the potato 
virus Y for different varieties. 
 

*Using two aphids to colonize the healthy plants 
 

Test plant Proportion of
infected plants

Arran Banner (3/36)=0.083
Majestic (5/36)=0.139

Arran Consul (10/36)=0.278
Arran Pilot (12/36)=0.333
May Queen (15/36)=0.417

Tobacco (25/36)=0.694

*Using four aphids to colonize the healthy plants 
 

Test plant Proportion of
infected plants

Arran Banner (10/36)=0.278
Majestic (17/36)=0.472

Arran Consul (19/36)=0.528
Arran Pilot (25/36)=0.694
May Queen (21/36)=0.583

Tobacco (36/36)=1.000
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Table 5: Analysis of the multiple-vector transfer design study of Bawden & Kassanis (1946). 
Dunnett and Jeffreys-Perks 95% simultaneous confidence intervals for pk-pi, where pk=proportion 
of tobacco infected plants and pi=proportion of infected plants for the diverse varieties of potato.  
 

*Two aphids were used to colonize each test plant.  
Difference between Point Estimate

varieties Dunnett Jeffreys-Perks
Tobacco - Arran Banner 0.4044 (0.2278 , 0.5815) (0.2204 , 0.5729)

Tobacco - Majestic 0.3747 (0.1921 , 0.5583) (0.1856 , 0.5500)
Tobacco - Arran Consul 0.2965 (0.0993 , 0.4950) (0.0948 , 0.4876)

Tobacco - Arran Pilot 0.2635 (0.0604 , 0.4670) (0.0567 , 0.4604)
Tobacco - May Queen 0.2103 (-0.0004 , 0.4224) (-0.0028 , 0.4165)

Confidence Intervals
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Table 6: Analysis of the multiple-vector transfer design study of Bawden & Kassanis (1946). 
Dunnett and Jeffreys-Perks 95% simultaneous confidence intervals for pk-pi, where pk=proportion 
of tobacco infected plants and pi=proportion of infected plants for the diverse varieties of potato.  
 

*Four aphids were used to colonize each test plant. 
Difference between Point Estimate

varieties Dunnett Jeffreys-Perks
Tobacco - Arran Banner 0.5786 (0.3018 , 0.8553) (0.3422 , 1.0000)

Tobacco - Majestic 0.5090 (0.2272 , 0.7909) (0.2658 , 1.0000)
Tobacco - Arran Consul 0.4857 (0.2020 , 0.7694) (0.2397 , 1.0000)

Tobacco - Arran Pilot 0.4002 (0.1090 , 0.6914) (0.1421 , 1.0000)
Tobacco - May Queen 0.4601 (0.1743 , 0.7459) (0.2110 , 1.0000)

Confidence Intervals
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APPENDIX A: The maximum likelihood estimator of ip̂

Recall that is
ii p )1(1 −−=θ is the probability that a group of size is subjects has at 

least one subject possessing the trait of interest. The usual binomial MLE of iθ is estimated with 
the following procedure. 

The likelihood is given by: 
iii xn

i
x

i
ii

i xxn
nL −−−= )1(!)!(
!)( θθθ ;

where ∑
=

= in

l
ili YX

1
with ilY defined in Chapter 2. Thus, the natural logarithm of the likelihood is 

given by 
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To find the MLE iθ̂ , we set the first derivative of )(ln iL θ to zero and solve for iθ̂
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To ensure that we have a maximum, we need to find the second derivative of )(ln iL θ , evaluate 
this for ii θθ ˆ= , and verify that the result is negative. Here 
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 Thus, by the invariance properties of maximum likelihood estimators, the MLE of 
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i
i n
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APPENDIX B: The distribution of ip̂

As the binomial likelihood is a member of the regular exponential class (REC) the 
regularity conditions regarding the limiting distribution of the MLE’s are satisfied, and the 
distribution of iθ̂ is asymptotically normal with asymptotic mean iθ and asymptotic variance 

given by  





− )(ln

1

2

2
i

i
Ld

dE θθ
.

To calculate the asymptotic variance we first consider the denominator, where the 
likelihood is given by 
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and the natural logarithm of the likelihood is 
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The expected value of the second derivative of )(ln iL θ is given by 
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after multiplying by -1 the denominator of the asymptotic variance becomes  
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Consequently, the asymptotic variance of iθ̂ is 
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Now, the delta-method states: 
 “If ),0()( 2σθ NTn n →− , then { } { } ))(',0()()( 22 θσθ hNhThn n →− , provided )(' θh
exists and it is not zero”.1

Recall that is
iii gp /1)ˆ1(1)ˆ(ˆ θθ −−== , and since above we derived the asymptotic 

normal distribution of iθ̂ , then applying the delta-method we can derive the distribution of ip̂ as 
follows: 
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Thus ip̂ also follows an asymptotic normal distribution with mean ip and variance 
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1 Lehmann, E. & Casella, G. (1998) 
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APPENDIX C: The estimated asymptotic variance of ji ppb ˆˆˆ −=

In appendix B, we showed that ip̂ has an asymptotic normal distribution with mean ip

and variance i
s

i
s

iii nppsv ii /])1)()1(1([ 22 −− −−−= . Since ji ppb ˆˆˆ −= is a linear combination of 
variables with independent asymptotic normal distributions; then its distribution is also 
asymptotic normal with mean ji pp − and variance  
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Recall that ji ppa +=  and ji ppb −= , and note that   

 i
jiji pppppba −=+−−−=−− 1222212

2 , and also that          
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2 .

Now, using a~ , the posterior mean of a derived in Chapter 2, as an estimate of a and 

letting 2
)~2(),~(1

babag −−= and 2
)~2(),~(2

babag +−= , we can rewrite the asymptotic variance 

of ji ppb ˆˆˆ −= as: 
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