

UNIVERSITY OF OKLAHOMA

GRADUATE COLLEGE

CONSTRAINED SHORTEST PATHS FOR QOS ROUTING AND PATH
PROTECTION IN COMMUNICATION NETWORKS

A Dissertation

SUBMITTED TO THE GRADUATE FACULTY

in partial fulfillment of the requirement for the

degree of

Doctor of Philosophy

By

YING XIAO
Norman, Oklahoma

2005

UMI Number: 3203306

3203306
2006

UMI Microform
Copyright

All rights reserved. This microform edition is protected against
 unauthorized copying under Title 17, United States Code.

ProQuest Information and Learning Company
300 North Zeeb Road

P.O. Box 1346
 Ann Arbor, MI 48106-1346

 by ProQuest Information and Learning Company.

CONSTRAINED SHORTEST PATHS FOR QOS ROUTING AND PATH
PROTECTION IN COMMUNICATION NETWORKS

A Dissertation APPROVED FOR THE
SCHOOL OF COMPUTER SCIENCE

BY

 Krishnaiyan Thulasiraman, Committee Chair

 Sudarshan Dhall

 Sivaramakrishnan Lakshmivarahan

 Sridhar Radhakrishnan

 Theodore B. Trafalis

 Copyright by YING XIAO 2005
All Rights Reserved.

 iv

Acknowledgement

First, I thank my advisor Dr. Krishnaiyan Thulasiraman for his support and inspiration

during my doctoral research. Krishnaiyan was always there for discussion and to give

advice. He helped me become a real researcher from a student with only a little research

experience. His research philosophy and approach to make complex problems simple

and concise will accompany me and influence my future career. I also thank Dr.

Guoliang Xue from Arizona State University and Dr. Christoforos Hadjicostis from

University of Illinois. Working with them extended my knowledge to different areas

and brought new ideas to our research.

 Besides my advisor, I would like to thank all other members of the dissertation

committee: Dr. Sudarshan Dhall, Dr. Sivaramakrishnan Lakshmivarahan, Dr. Sridhar

Radhakrishnan, and Dr. Theodore Trafalis for their questions and comments on my

research.

 During the course of my doctoral research, I was supported by the school of

computer science, NSF ITR grants ANI-0312435, NSF ITR grants ECS-0426831, and

Hitachi Chair in Computer Science. A special thank goes to Dr. Ming Xue who

provided me the initial financial support so that I could start my study at the University

of Oklahoma.

 Last, but not the least, I thank my family: my wife Mingjing Tong, my son Albert

Xiao, my parents Mr. Shirong Xiao and Mrs. Keqiong Pan, and parents in-law Mr.

Guangsheng Tong and Mrs. Shufen Zhou. Without their support and encouragement,

the research would not have been possible.

 v

Table of Contents

ABSTRACT.. X

CHAPTER 1. INTRODUCTION..1
1.1. QOS ROUTING AND PATH PROTECTION PROBLEMS ..3
1.2. OVERVIEW OF LITERATURE..5

1.2.1. The Constrained Shortest Path (CSP) Problem..5
1.2.2. The Constrained k Shortest Disjoint-Paths (CSDP(k)) Problem:9
1.2.3. Most Probable Delay Constrained Path Selection under Inaccurate
Information (MP-DCP Problem)..9
1.2.4. Constrained Shortest Paths Problem under Multiple Additive Constraints
(CSP (k) Problem)...10

1.3. SCOPE OF THE DISSERTATION...11

CHAPTER 2. THE CSP PROBLEM: LAGRANGIAN RELAXATION BASED
ALGORITHMIC APPROACHES AND AN ALGEBRAIC STUDY......................16

2.1. INTRODUCTION ..16
2.2. THE CONSTRAINED SHORTEST PATH (CSP) PROBLEM AND GENERALITY OF
THE LARAC ALGORITHM ...18
2.3. AN ALGEBRAIC STUDY OF THE RELAX-CSP PROBLEM AND ITS
GENERALIZATION ..23
2.4. LARAC-BIN: A BINARY SEARCH BASED APPROACH TO THE DUAL-RELAX-
CSP PROBLEM..29
2.5. STRONG POLYNOMIALITY OF DUAL-RELAX-CSP: A PARAMETRIC SEARCH
BASED ALGORITHM..33
2.6. CLOSING THE GAP: AN INTEGRATED APPROACH TO Ε-APPROXIMATION
ALGORITHM DESIGN FOR THE CSP PROBLEM ...36
2.7. SUMMARY ..40

CHAPTER 3. THE CSP PROBLEM: APPROXIMATION ALGORITHMS
BASED ON THE PRIMAL SIMPLEX METHOD OF LINEAR
PROGRAMMING ..42

3.1. THE CSP PROBLEM: LP FORMULATION AND INTEGER RELAXATION..............43
3.2. A TRANSFORMED PROBLEM AND BASIC CONCEPTS ..46
3.3. SIMPLEX METHOD: BASIC SOLUTIONS OF RELAX-TCSP48
3.4. REVISED SIMPLEX METHOD ON THE RELAX-TCSP PROBLEM.......................51

3.4.1. Revised Simplex Method ...51
3.4.2. Initialization..52
3.4.3. Solving the System Y B = cB..53
3.4.4. Solving the System B V = ak..55
3.4.5. A Pivot Rule and Structure of Basic Feasible Solutions...............................58
3.4.6. An Anti-Cycling Strategy ..60

3.5. A STRATEGY FOR AVOIDING DEGENERATE PIVOTS AND THE NETWORK
SIMPLEX BASED (NBS) ALGORITHM ...63

 vi

3.5.1. Avoiding Degenerate Pivots ...63
3.5.2. Finding a Leaving Arc (Out-Arc) ...65
3.5.3. NBS Algorithm, Complexity Analysis, and an Approximate Solution68

3.6. SIMULATION AND COMPARATIVE PERFORMANCE EVALUATION73
3.7. SUMMARY ..77

CHAPTER 4. CONSTRAINED SHORTEST LINK-DISJOINT PATHS
SELECTION (CSDP(K)): A NETWORK PROGRAMMING BASED
APPROACH..79

4.1. INTRODUCTION ..79
4.2. CONSTRAINED SHORTEST LINK-DISJOINT PATHS SELECTION PROBLEMS:
FORMULATIONS, RELAXATIONS AND THEIR EQUIVALENCE81
4.3. G-LARAC(K) ALGORITHM: A DUAL BASED APPROACH TO RELAX-CSDP(K)
...87
4.4. TRANSFORMATION OF THE RELAX-CSDP(K) PROBLEM..................................89
4.5. PROPERTIES OF BASIC SOLUTIONS OF RELAX-TCSDP(K) AND GENERATION
OF AN APPROXIMATE SOLUTION TO THE CSDP(K) PROBLEM92
4.6. REVISED SIMPLEX METHOD FOR THE RELAX-CSDP(K) PROBLEM..............101
4.7. INITIALIZATION AND PIVOT RULES ..103

4.7.1. Initialization..103
4.7.2. Pivot Rules and an Anti Cycling Strategy...104
4.7.3. Leaving Variable...108

4.8. SIMULATION ..111
4.9. SUMMARY ..113

CHAPTER 5. DELAY CONSTRAINED PATH SELECTION UNDER
INACCURATE STATE INFORMATION ..115

5.1. THE MP-DCP PROBLEM AND A FORMULATION ..115
5.2. ALGORITHMS FOR CASE 1 ...117

5.2.1. An Exact Algorithm...117
5.2.2. A Fully Polynomial Time Approximation Scheme: Case 1.........................120
5.2.3. A Strongly Polynomial Approximation Algorithm: Case 1.........................123

5.3. MP-DCP PROBLEM: CASE 2...127
5.4. SUMMARY ..129

CHAPTER 6. GEN-LARAC: A GENERALIZED APPROACH TO THE
CONSTRAINED SHORTEST PATH PROBLEM UNDER MULTIPLE
ADDITIVE CONSTRAINTS...131

6.1. FORMULATION OF THE CSP(K) PROBLEM AND ITS RELAXATION131
6.2. A STRONGLY POLYNOMIAL TIME APPROXIMATION ALGORITHM FOR CSP(1)
PROBLEM ..134
6.3. GEN-LARAC FOR THE CSP(K) PROBLEM ..137

6.3.1. Optimality Conditions...137
6.3.2. GEN-LARAC: A Coordinate Ascent Method ..138
6.3.3. Verification of Optimality of Λ ...139
6.3.4. Analysis of the Algorithm..141

 vii

6.4. SIMULATION ..144
6.5. SUMMARY AND CONCLUSION ..147

CHAPTER 7. SUMMARY...148

REFERENCES..150

APPENDIX A. WAXMAN’S RANDOM GRAPHS..158

APPENDIX B. POWER LAW GRAPHS...159

 viii

List of Tables

TABLE 2.1. SIMULATION RESULTS..39
TABLE 4.1. PATHS OBTAINED FROM THE OPTIMAL SOLUTION TO RELAX-TCSDP(2)

APPLIED ON RANDOM GRAPHS ..112
TABLE 4.2. PATHS OBTAINED FROM THE OPTIMAL SOLUTION TO RELAX-TCSDP(2)

APPLIED ON POWER-LAW GRAPHS ..112
TABLE 4.3. PATHS OBTAINED FROM THE OPTIMAL SOLUTION TO RELAX-TCSDP(4)

APPLIED ON REGULAR GRAPHS ...113
TABLE 5.1. NUMERIC SIMULATION RESULTS ON TWO CLASSES OF GRAPH TOPOLOGIES..126
TABLE 6.1: QUALITY OF PSEUDO-OPTIMAL PATHS ...145

 ix

List of Figures

FIGURE 1.1: AN EXAMPLE OF THE CSP PROBLEM...4
FIGURE 2.1: LARAC ALGORITHM..20
FIGURE 2.2: MCRT ALGORITHM..21
FIGURE 2.3: LARAC-BIN ALGORITHM ...29
FIGURE 2.4: PSCSP ALGORITHM (λ* IS UNKNOWN) ..34
FIGURE 2.5: AN INTEGRATED APPROXIMATION ALGORITHM: LARAC + SEA38
FIGURE 2.6: HK, N GRAPHS...38
FIGURE 3.1: AN EXAMPLE OF CSP PROBLEM..44
FIGURE 3.2: STRUCTURE OF BASIS GRAPH..50
FIGURE 3.3: LINK COSTS FOR THE TRANSFORMED GRAPH ..64
FIGURE 3.4: FIND LEAVING VARIABLE: SUB-CASES OF CASE 2 ...67
FIGURE 3.5: NETWORK BASED SIMPLEX ALGORITHM ...68
FIGURE 3.6: AN EXAMPLE SHOWING THAT THE GAP CAN BE ARBITRARILY LARGE73
FIGURE 3.7: SIMULATION ON REGULAR GRAPHS ..74
FIGURE 3.8: WAXMAN’S RANDOM GRAPHS ..75
FIGURE 3.9: POWER-LAW OUT-DEGREE GRAPHS...76
FIGURE 3.10: NBS AND CPLEX COMPARISON ..77
FIGURE 4.1: G-LARAC(K) ALGORITHM...88
FIGURE 4.2: STRUCTURE OF BASIC SOLUTIONS...93
FIGURE 4.3: BRANCHING AND MERGING NODES ...96
FIGURE 4.4: ILLUSTRATIONS FOR THE PROOF OF THEOREM 4.4......................................100
FIGURE 4.5: BASIC SOLUTION STRUCTURES IN CASE 2 ...109
FIGURE 4.6: COMPARISON OF DISJOINT-NBS, CPLEX, AND G-LARAC(K)...............112
FIGURE 5.1: THE EXACT ALGORITHM FOR CASE 1 ..118
FIGURE 5.2: CSP ALGORITHM ..118
FIGURE 5.3: FPTAS FOR CASE 1..121
FIGURE 5.4: THE APPROXIMATION ALGORITHM ...124
FIGURE 6.1: PARAMETRIC SEARCH BASED ALGORITHM FOR CSP(1) PROBLEM...............135
FIGURE 6.2: ORACLE TEST ALGORITHM..136
FIGURE 6.3: GEN-LARAC: A COORDINATE ASCENT ALGORITHM.................................139
FIGURE 6.4: COMPARISON OF GEN-LARAC, HULL APPROACH, AND SUBGRADIENT

METHOD ...146

 x

Abstract

We have studied certain combinatorial optimization problems that arise in the context of

two important problems in computer communication networks: end-to-end Quality of

Service (QoS) and fault tolerance. These problems can be modeled as constrained

shortest path(s) selection problems on networks with each of their links associated with

additive weights representing the cost, delay etc.

 First we studied the QoS single route selection problem, i.e., the constrained shortest

path (CSP) problem. The goal of the CSP problem is to identify a minimum cost route

which incurs a delay less than a specified bound. It can be formulated as an integer

linear programming (ILP) problem which is computationally intractable. The LARAC

algorithm reported in the literature is based on the dual of the linear programming

relaxation of the ILP formulation and gives an approximate solution. We proposed two

new approximation algorithms solving the dual problem. Next, we studied the CSP

problem using the primal simplex method and exploiting certain structural properties of

networks. This led to a novel approximation algorithm.

 The CSDP (k) problem requires the selection of a set of k > 1 link-disjoint paths with

minimum total cost and with total delay bounded by a given upper bound. This problem

arises in the context of provisioning paths in a network that could be used to provide

resilience to link failures. Again we studied the LP relaxation of the ILP formulation of

the problem from the primal perspective and proposed an approximation algorithm.

 The problems considered above assume that the network status is known and accurate.

However, in real networks, this assumption is not realistic. So we considered the QoS

route selection problem under inaccurate state information. Here the goal is to find a

 xi

path with the highest probability that satisfies a given delay upper bound. We proposed

a pseudo-polynomial time approximation algorithm, a fully polynomial time

approximation scheme, and a strongly polynomial time heuristic for this problem.

Finally we studied the constrained shortest path problem with multiple additive

constraints. Using the LARAC algorithm as a building block and combining ideas from

mathematical programming, we proposed a new approximation algorithm.

 1

Chapter 1. Introduction

This dissertation is concerned with the design of algorithms for different classes of

constrained shortest path problems. In these problems path are required to satisfy

certain pre-specified constraints on the path weights. These problems arise in i) the

selection of routes that satisfy certain quality of service (QoS) guarantees and ii) the

provision of alternate paths that provide protection against failures of links on the path.

 Routing is a fundamental problem in communication networks. In traditional data

networks, routing is achieved by best effort routing. Best effort routing is primarily

concerned with providing connectivity. FIFO provides best-effort service. Here, flows

are not differentiated and are serviced on a first-come, first-served basis. In best effort

routing the routing protocol usually characterizes the network with a single metric such

as hop-count or delay and uses a shortest path algorithm for path computation. Whereas

the best-effort routing paradigm is adequate to serve the needs for traditional

applications such as FTP (File Transfer Protocol) it is quite inadequate in providing the

stringent quality of service (QoS) guarantees demanded by popular multimedia

applications such as real time digital video or audio transmission. To support a broad

range of QoS requirements, routing protocols need to consider more complex models

that incorporate multiple metrics such as cost, delay, delay variation, loss probability,

and bandwidth. This has triggered efforts towards proposals for QoS based frameworks

such as DiffServe and IntServ, QoS routing protocols that accommodate multiple QoS

requirements such as Q-OSPF and PNNI, and QoS routing algorithms (See [12, 15, 46,

52]). Despite these efforts, there is no standardized QoS routing protocol for the Internet.

 2

To the best of our knowledge the only standardized QoS routing protocol is ATMF

PNNI [46].

 Two activities are involved in routing: i) capturing the network state information and

disseminating the information throughout the network. This requires detection of

significant changes, topology updates, distributed broadcasting (flooding) of the

information to each node in the network etc. (ii) routing algorithms that compute the

paths that satisfy certain performance guarantees.

 In this dissertation we are concerned with the latter, namely, QoS routing algorithms.

QoS measures can be classified into two types of metrics, non-additive (also called

bottleneck, e.g., bandwidth) and additive constraints. Each measure is modeled by

associating a weight with each link. For a non-additive measure QoS weight of a path is

the minimum weight along the path. In the case of additive measures such as cost, delay,

reliability, and delay-jitter, the QoS weight of a path is the sum of the QoS weights of

the links on the path. Non-additive measures can be handled easily by simply removing

from the network the links that do not satisfy the required QoS measure.

 Fault tolerance is a topic of great interest in the study of communication networks. In

the context of routing, a problem of importance is to select a set of disjoint paths

between a source node and a destination node that provide path protection against one

or more link failures. Here arises the problem of finding a set of disjoint path that

satisfy certain QoS requirements.

 The central theme of the dissertation is to study different classes of constrained

shortest path problems that arise in the applications discussed above: QoS routing and

path protection.

 3

1.1. QoS Routing and Path Protection Problems

In this dissertation we are concerned with finding paths that satisfy additive QoS

metrics. In particular, we are interested in the following classes of constrained shortest

path problem that arise in QoS routing and path protection.

 Consider a directed network G(V, E) where V is the set of nodes and E is the set of

links of the network. Each link (u, v) ∈ E is associated with two integer weights cuv > 0

(cost) and duv > 0 (delay). Also given are two nodes s and t. The cost c(p) and delay d(p)

of a directed s-t path are defined as follows:

 c(p) = ∑(u, v) ∈ p cuv and d(p) = ∑(u, v) ∈ p duv.

 Given an integer ∆ > 0, a directed s-t path p is said to be feasible if d(p) ≤ ∆. In the

following a directed s-t path will simply be called an s-t path.

 Constrained Shortest Path (CSP) problem: Find an s-t path popt = arg min{c(p)| p

is a feasible s-t path}. This is illustrated with the example in Figure 1.1.

Constrained k Shortest Disjoint-Paths (CSDP(k)) problem: Here the objective is

to find a set of k link-disjoint paths between a source node and a destination node with

minimum total cost and with the total delay satisfying certain pre-specified bound. This

problem arises in the context of providing alternate QoS paths to achieve protection

against link failures.

Most Probable Delay Constrained Path selection under inaccurate information

(MP-DCP): Objective here is to identify a path that has the highest probability of

satisfying a delay bound. The delay of each link is a random variable. This problem is

 4

of great importance since accurate state of a network (parameter information) is not

often available.

 Constrained Shortest Path Problem under Multiple Additive Constraints

(CSP(k)): Suppose that each link (u, v) is associated with a set of k + 1 additive non-

negative integer weights Cuv = (cuv, w1
uv, w2

uv…, wk
uv). Here cuv is called the cost of link

(u, v) and wi
uv is called the ith delay of (u, v). For an s-t path p define

 c(p) ≡ ∑
∈pvu

uvc
),(

 and di(p) ≡ kiw
pvu

i
uv ,...1,

),(
=∑

∈
.

 The value c(p) is called the cost of path p, and di(p) is called the ith delay of path p.

Given k positive integers r1, r2…, rk, an s-t path is called feasible (resp. strictly feasible)

if di(p) ≤ ri (resp. di(p) < ri), for all i = 1, 2… k (ri is called the bound on the ith delay of

a path). The CSP(k) problem is to find a minimum cost feasible s-t path.

Figure 1.1: An example of the CSP problem

∆ = 70

s

4

3

5
1, 51

2, 10 1, 30

1 6

4

3

 3, 10

1, 30

1 6

5, 10

u v

cuv , duv

5, 10

Cost
Delay

2

4

3

5

3, 12

1, 51

 3, 10

3,
50

1, 52

2, 10 1, 30

t

6, 64

1, 10

Min-cost path

Min-cost feasible path

 5

1.2. Overview of Literature

In this section we give an overview of literature on the four problems defined in the

previous section.

1.2.1. The Constrained Shortest Path (CSP) Problem

It has been shown in [13, 58] that the CSP problem is NP-hard even for acyclic

networks. So, in the literature, heuristic approaches and approximate algorithms have

been proposed. Heuristics, in general, do not provide performance guarantees on the

quality of the solution produced, though they are usually fast in practice. On the other

hand, ε-approximation algorithms deliver solutions with cost within (1 + ε) time the

optimal cost, but are usually very slow in practice because they guarantee the quality of

the solutions produced.

1.2.1.1. Heuristics with Performance Guarantees

As regards heuristics, several of them have appeared in the literature providing different

levels of performance with regard to the quality of the solution as well as the

computation time required. For instance, the LHWHM algorithm [37] is a simple

heuristic which is very fast (requiring only two invocations of Dijkstra’s shortest path

algorithm for a feasible problem). Reference [48] also discusses further enhancements

of the LHWHM algorithm as well as a heuristic based on the Bellman-Ford-Moore

(BFM) algorithm for the shortest path problem. It should be emphasized that in all these

cases, only simulations are used to evaluate the performance of the algorithms. Usually,

 6

theoretical analysis is not given as regards the quality of the solution. A comprehensive

overview of a number of QoS routing algorithms may be found in [9, 31].

 There are heuristics that are based on sound theoretical foundations. These algorithms

are based on solutions to the integer relaxation or the dual of the integer relaxation of

the CSP problem. To the best of our knowledge, the first such algorithm was reported in

[17] by Handler and Zang. This is based on the geometric approach (also called the hull

approach [39, 69]). More recently, in an independent work, Jüttner etc. [23] developed

the LARAC algorithm which solves the Lagrangian relaxation of the CSP problem

(Here, the Lagrangian relaxation method is equivalent to the dual method). In contrast

to the geometric method, they used an algebraic approach. They also presented several

interesting results relating to the structure of the optimal solutions of the Lagrangian

relaxation. In another independent work, Blokh and Gutin [6] defined a general class of

combinatorial optimization problems (that are called the MCRT problems, namely,

Minimum Cost Restricted Time Combinatorial Optimization problems) of which the

CSP problem is a special case, and proposed an approximation algorithm to this

problem. In recent work, Xiao etc. [60, 61] drew attention to the fact that the algorithms

in [6] and [23] are equivalent. Mehlhorn and Ziegelmann [39] and Ziegelmann [69]

have also observed this equivalence and have developed several insightful results. They

arrived at these results using the hull (geometric) approach. In view of this equivalence,

we shall refer to these algorithms as the LARAC algorithm. The work in [61] also

establishes certain results using the algebraic approach. These results also hold true in

the case of the general optimization problem considered in [6]. In another independent

work, Xue [66] also arrived at the LARAC algorithm using the primal-dual method of

 7

linear programming. A more recent variant of these approaches may be found in [30].

As regards computational complexity, in an unpublished work [25], Jüttner proves the

strong polynomiality of the LARAC algorithm, both for the general case and for the

CSP problem. He has used certain results from the general area of fractional

combinatorial optimization. An application of the parametric search method to the

general class of combinatorial optimization problems involving two additive parameters

may be found in [24]. Radzik [47] gives an excellent exposition of approaches to

fractional combinatorial optimization problems. Binary search based algorithms for the

integer relaxation of the CSP problem are discussed in [30], [61] and [69]. They also

establish the polynomial complexity of this approach using geometric and algebraic

methodologies, respectively. Several interesting algorithms related to the CSP problem

and motivated by applications have appeared in the literature. For examples, see [36]

and [49].

1.2.1.2. ε-Approximation Algorithms:

A Fully Polynomial Time Approximation Scheme (FPTAS) is a type of approximation

algorithms for optimization problems (most often, NP-hard optimization problems). A

FPTAS for a minimization problem is an algorithm which takes an instance of an

optimization problem and a parameter ε > 0 and produces a solution of an optimization

problem that is within ε factor of being optimal and the running time of the algorithm is

a polynomial of the problem size and 1 / ε. We shall simply use ε-approximation

algorithm to denote a FPTAS.

 8

 For a graph / network optimization problem, a FPTAS is called a Strongly

Polynomial Time Approximation Scheme (SPTAS) if its running time is a polynomial

of the number of nodes / edges and 1 / ε.

 Approximation algorithms for CSP problem are usually based on scaling and

rounding of data. Certain fundamental techniques presented by Sahni [50] and Ibarra

and Kim [20] have been used by later researchers for designing ε-approximation

algorithms for the CSP problem. To the best of our knowledge, Warburton [57] was the

first to develop a fully polynomial time approximation algorithm for the CSP problem

on acyclic networks. Hassin [18] later improved upon this to derive two fully

polynomial time approximation schemes. His methods are applicable for general

networks. The first one is based on a combination of dynamic programming and

scaling/rounding and has a complexity of O(log log(U/L)[mn ε-1 + log log(U/L)]), where

m and n are, respectively, the number of nodes and links in the network, and U and L

are, respectively, an upper bound and a lower bound on the optimal cost. In a more

recent work Lorenz and Raz [35] improved upon this result by giving a strongly

polynomial time approximation scheme of complexity O(mn (log log n + ε-1)). This is

also applicable to general networks. The second algorithm of Hassin is based on the

interval partitioning technique developed by Sahni [50]. This is applicable only to

acyclic networks. In [45], Philips proposed another strongly polynomial time

approximation scheme applicable for general networks. In a subsequent work, Hong,

Chung and Park [19] drew attention to certain flaws in the second algorithm of Hassin

and the algorithm of Philip’s. Other related approximation schemes providing certain

improvements to Hassin’s algorithm may be found in [36]. In another interesting paper

 9

[14], the authors considered the problem of determining a delay sensitive path whose

delay is at most (1 + ε) times the specified delay bound and whose cost is no greater

than that of the minimum cost path of the CSP problem.

1.2.2. The Constrained k Shortest Disjoint-Paths (CSDP(k)) Problem:

Recall that the CSDP(k) problem is to select a set of k link-disjoint paths from s to t

such that the total cost of these paths is minimum and that the total delay of these paths

is not greater than a specified bound. This problem, being a generalized version of the

CSP problem, is NP-hard. The CSDP(k) problem arises in the context of provisioning

paths in a network that could be used to provide resilience to failures in one or more of

these paths. Orda et al. [43] have studied the CSDP(2) problem extensively and have

provided several approximation algorithms. A special case of the CSDP(k) problem

which does not have the delay requirement has been studied in [54]. The algorithms in

[6] and [54] can be integrated to provide an approximate solution to the CSDP(k)

problem.

1.2.3. Most Probable Delay Constrained Path Selection under Inaccurate

Information (MP-DCP Problem)

In the definition of the CSP problem it is assumed that the exact state of the network is

known. However, in practice this is not the case. For several reasons [16, 28], full

knowledge of the network state is not available. This has led researchers to study the

 10

routing problem with uncertain parameters [16, 28, 34, 64]. The objective in these

papers is to identify a path that is most likely to satisfy the delay requirement. This

problem is referred to as the MP-DCP problem. In their pioneering works [16] and [34],

the authors studied several aspects of this problem and related computational issues.

Unlike the CSP problem that involves two deterministic metrics, namely, link cost and

link delay, only one link metric, say delay, is considered in the MP-DCP problem. In

[28], an approximate algorithm similar to the LARAC algorithm was proposed based on

the assumption that the path delay is normally distributed. This assumption is fully

justified by the central limit theorem and extensive numerical simulations. In [64], Xiao

et al. proposed an exact algorithm, a FPTAS, and a strongly polynomial time

approximation algorithm for the MP-DCP problem.

1.2.4. Constrained Shortest Paths Problem under Multiple Additive Constraints

(CSP (k) Problem)

The CSP(k) problem is more general than the CSP problem in that it asks for a

minimum cost path from a source node to a target node satisfying multiple constrains on

the path weights. A variation of CSP(k) problem, called the Multi-Constrained Path

(MCP) problem has also been a topic of extensive study. The difference between CSP(k)

and MCP problems is that the MCP problem only asks for a path satisfying all the

constraints simultaneously without the requirement of minimizing the cost. Several

heuristics and approximation algorithms for the MCP problem can be found in [9, 22,

29, 40, 41, 42, 65, 67, 68].

 11

 Two methods for the CSP(k) problem based on mathematical programming have

been proposed by Beasley and Christofides [2], and Mehlhorn and Ziegelmann [39].

Reference [2] uses a subgradient procedure to compute the Lagrangian relaxation

function of the ILP formulation. With the geometrical interpretation of the algorithm of

[17], the authors of [39] proposed an algorithm which is a special case of cutting planes

method [51].

1.3. Scope of the Dissertation

The main contributions of the dissertation are organized into five chapters as follows.

 Chapter 2: In this chapter we first present the CSP problem and the general class

of optimization problems, namely the MCRT problem [6]. We then present the LARAC

algorithm of [23] for the CSP problem and the MCRT algorithm of [6] for the MCRT

problem. We point out the equivalence of the LARAC algorithm and the MCRT

algorithm. We present an algebraic study of the integer relaxation of the CSP problem.

In view of the equivalence of the LARAC and the MCRT algorithms, one would expect

the results in [23] (stated without proof), though originally intended for the CSP

problem, to hold true for the MCRT problem too. We establish these results and certain

new results for the general case without involving the properties of shortest paths. We

present a binary search approach for the CSP problem and also show that both the

LARAC algorithm and this algorithm can be embedded with a tuning parameter whose

value can be specified in advance depending on the allowable deviation of the cost of

the path produced from the optimal cost. Finally we develop a strongly polynomial time

 12

algorithm for the integer relaxation of the CSP problem. This is based on the parametric

approach developed by Megiddo [38] for fractional combinatorial optimization

problems. We conclude the chapter showing how one can integrate the LARAC

algorithm with ε-approximation techniques to achieve considerable speedup of

approximation algorithms. Simulation results demonstrating the value of the integrated

approach are also presented.

 Chapter 3: In this chapter we present a novel approach to the QoS routing

problem, making a departure from currently available approaches. We study the

problem using the primal simplex method of Linear Programming (LP) and exploiting

certain structural properties of networks. We start with the Integer Linear Programming

(ILP) formulation of the CSP problem and its integer relaxation formulation. The

relaxed problem is the same as the LP formulation of the minimum cost flow problem

[1, 4, 5] except for an additional constraint due to the delay requirement. This additional

constraint gives rise to several questions that need to be investigated to achieve an

efficient implementation of the primal simplex method. This leads us to the definition of

an equivalent problem on a transformed network, called the TCSP problem. We discuss

several issues that arise in the application of the revised simplex method of linear

programming on the TCSP problem and strategies to achieve an implementation of the

revised simplex method. This results in an algorithm allowing degenerate pivots and

using an anti-cycling strategy specifically designed for the TCSP problem. Another

algorithm called NBS algorithm avoids degenerate pivots completely. Both these

algorithms are of pseudo polynomial complexity. We also show how to extract an

approximate solution to the original CSP problem from the optimum solution to the

 13

RELAX-TCSP problem and derive bounds on the quality of this solution with respect to

the optimum solution. Finally experimental results comparing the NBS algorithm with

the LARAC algorithm [23], the LHWHM algorithm [37], and general purpose LP

solvers are presented.

 Chapter 4: In this chapter we study the CSDP(k) problem which is also NP-hard. So

our goal is to design an efficient algorithm for constructing an approximate solution to

this problem. Towards this end, we study the LP relaxation of CSDP(k) problem using

the revised simplex method of linear programming. This relaxed problem is an upper

bounded LP problem. We have discussed several issues relating to an efficient

implementation of our approach. We have shown that an approximate solution to the

CSDP(k) problem can be extracted from an optimal solution to the relaxed problem. We

have derived bounds on the quality of this solution with respect to the optimal solution.

Our work can be considered as the study of the CSDP(k) problem from a primal

perspective in contrast to the dual perspective employed in the G-LARAC(k) algorithm

which is based on the algorithms in [23] and [54]. Simulation results comparing our

algorithm with the general LP solvers are also presented.

 We denote a general version of CSDP(k) problem as GCSDP(k) problem which

requires that the delay of each individual path satisfies a specified bound, in contrast to

the CSDP(k) problem where the constraint is on the total delay of all the k link-disjoint

paths. We have shown that the LP relaxations of the two problems have the same

optimal objective value. Thus, if one is interested in obtaining the optimal objective

values of RELAX-GCSDP(k) and RELAX-CSDP(k) problems, then starting with the

RELAX-CSDP(k) does not result in any loss of generality. However, the paths

 14

produced by the approximate solution derived from the optimal solution to RELAX-

CSDP(k) may not satisfy the individual path delay requirements of the GCSDP(k)

problem. Our simulation results indicate that in most cases the individual delays of the

paths produced starting from RELAX-CSDP(k) do not deviate in a significant way from

the individual delay requirements of the GCSDP(k) problem.

 Chapter 5: In this chapter we studied the stochastic shortest path problem aimed at

identifying the most probable delay constrained path (MP-DCP problem). Our work is

based on the formulation given in [28]. The work in [28] focused on developing

approximate approaches using the Lagrangian relaxation or line search techniques. In

contrast, our focus has been on developing polynomial time ε-approximation and

heuristic algorithms. For the case (Case 1) when there is a path whose mean delay is

less than or equal to the specified delay bound T, we presented an exact algorithm of

pseudo polynomial time complexity, a FPTAS, and a strongly polynomial time heuristic

algorithm. In the unlikely case (Case 2) when every path violates this assumption we

have shown that the problem is NP-hard. We have also shown that for this case no

pseudo polynomial time exact algorithm or fully polynomial time constant factor

approximation algorithm is possible unless P = NP. The difficulty in this case arises

because we need to find a path minimizing one path metric and maximizing another

path metric simultaneously.

 Chapter 6: In this chapter we present a new approach to the CSP(k) problem using

Lagrangian relaxation. We first show that for k = 1, an approximation solution can be

computed in O ((m + n log n) 2) time which is better than the complexity of the Hull

approach and the LARAC algorithm. Because this algorithm and the LARAC algorithm

 15

are both based on the same methodology and obtain the same solution, we also denote

our algorithm as LARAC. For arbitrary k, we use the LARAC algorithm as a building

block and combine it with ideas from mathematical programming to achieve

progressively higher values of the Lagrangian function. We present the resulting GEN-

LARAC algorithm and prove its correctness and convergence properties. Simulation

results comparing our algorithm with two other algorithms are presented. We conclude

the chapter by pointing out that our approach is quite general and is applicable for the

general class of combinatorial optimization problems studied in [6].

 16

Chapter 2. The CSP Problem: Lagrangian Relaxation Based

Algorithmic Approaches and an Algebraic Study

2.1. Introduction

Shortest path, minimum cost flow, and maximum flow computations are fundamental

problems in operations research. Though interesting in their own right, algorithms for

these problems also serve as building blocks in the design of algorithms for complex

problems encountered in large scale industry applications. So, over the years there has

been an extensive literature on various aspects of these two problems. Both these

problems are solvable in polynomial time. But adding one or more additional additive

constraints makes these problems intractable.

 In this chapter, we focus on the constrained shortest path (CSP) problem. This

problem requires determination of a minimum cost path from a source node to a

destination node of a network subject to the condition that the total delay of the path be

less than or equal to a specified value. The CSP problem has attracted considerable

attention from different research communities: operations research, computer science,

and telecommunications. The interest from the telecommunications community arises

from the great deal of emphasis on the need to design communication protocols that

deliver certain performance guarantees. This need, in turn, is the result of an explosive

growth in high bandwidth real time applications that require stringent QoS guarantees.

It is for this reason that the CSP problem has assumed great importance in

telecommunication network applications.

 17

 The chapter is organized as follows. In Section 2.2, we present the CSP problem and

the general class of optimization problems, namely the MCRT problem [6]. We also

present the LARAC algorithm of [23] for the CSP problem and MCRT algorithm of [6].

We point out the equivalence of the LARAC algorithm and the MCRT algorithm. In

Section 2.3 we present an algebraic study of the integer relaxation of the CSP problem.

In view of the equivalence of the LARAC and the MCRT algorithms, one would expect

the results in [23] (stated without proof), though originally intended for the CSP

problem, to hold true for the MCRT problem too. We establish these results and certain

new results for the general case without involving the properties of shortest paths. These

results provide the basis for other algorithms considered in later sections. In Section 2.4,

we present a binary search based approach for the CSP problem and also show that both

the LARAC algorithm and this algorithm can be embedded with a tuning parameter

whose value can be specified in advance depending on the allowable deviation of the

cost of the path produced from the optimal cost. In Section 2.5, we develop a strongly

polynomial time algorithm for the integer relaxation of the CSP problem. This is based

on the parametric search approach developed by Megiddo [38] for fractional

combinatorial optimization problems. Finally in Section 2.6, we show how the LARAC

algorithm can be integrated with ε-approximation techniques to achieve considerable

speedup of ε-approximation algorithms. Simulation results demonstrating the value of

the integrated approach are also presented.

 The results in this chapter have been repeated in [61].

 18

2.2. The Constrained Shortest Path (CSP) Problem and Generality of

the LARAC Algorithm

 We first recall the definition of the CSP stated in Chapter 1.

 Constrained Shortest Path Problem (CSP): Consider a network G(V, E). Each link

(u, v) ∈ E is associated with two weights cuv > 0 (say, cost) and duv > 0 (say, delay).

Also are given two distinguished nodes s and t and a real number ∆ > 0. Let Pst denote

the set of all s-t paths and for any s-t path p, define

 ∑ ∑==
∈ ∈pvu pvu

uvuv dpdandcpc
),(),(

)()(.

 Let Pst(∆) be the set of all the s-t paths p such that d(p) ≤ ∆. A path in the set Pst(∆) is

called a feasible path. The CSP problem is to find a path p* = arg min{c(p)| p ∈ Pst(∆)}.

In other words, the CSP problem is to find a minimum cost feasible s-t path. It can be

formulated as the following integer linear program.

CSP:

 Minimize ∑
∈Evu

uvuv xc
),(

 subject to ∀ u ∈ V,








=−
=

=∑−∑
∈∈

otherwise
tufor
sufor

xx
Euvv

vu
Evuv

uv

0
1
1

}),(|{}),(|{

 0,
),(

≥∆−=−∑ ⋅−
∈

wwxd
Evu

uvuv

 Evuorxuv ∈∀=),(,10

 19

 The CSP problem is known to be NP-hard [13, 58]. The main difficulty lies with the

integrality condition that requires that the variables xuv be 0 or 1. Removing or relaxing

this requirement from the above integer linear program and letting xuv ≥ 0 leads to

RELAX-CSP, the relaxed CSP problem. It is often convenient to solve the dual of the

relaxed form of the CSP problem which we present below.

 The dual involves s-t paths and a variable λ ≥ 0. For each link (u, v), let the

aggregated cost cλ be defined as cuv + λ duv. For a given λ, let cλ(p) denote the aggregated

cost of the path p. Finally define L(λ) as:

L(λ) = min{cλ(p)| p ∈ Pst} – λ ∆. (2.1)

 Note that in the above, min{cλ(p)| p ∈ Pst} is the same as the minimum aggregated

cost of an s-t path with respect to a given value of λ. This can be easily obtained by

applying Dijkstra’s algorithm using aggregated link costs. Let the s-t path which has

minimum aggregated cost with respect to a given λ be denoted as pλ. Then L(λ) = cλ (pλ)

– λ ∆ and the dual of the RELAX-CSP can be presented in the following form.

 DUAL-RELAX-CSP: Find L* = max {L (λ) | λ ≥ 0}.

 We note that the problem of maximizing L(λ) as above is also called the Lagrangian

dual problem. The value of λ that achieves the maximum L(λ) in DUAL-RELAX-CSP

will be denoted by λ*. Note that L*, the optimum value of DUAL-RELAX-CSP is a

lower bound on the optimum cost of the path solving the corresponding CSP problem.

The key issue in solving DUAL-RELAX-CSP is how to search for the optimal λ and

determining the termination condition for the search. The LARAC algorithm of [23]

presented in Figure 2.1 is one such efficient search procedure.

 20

Figure 2.1: LARAC algorithm

 Description of the algorithm: In the LARAC algorithm of Figure 2.1, Dijkstra(s, t,

c), Dijkstra(s, t, d), and Dijkstra(s, t, cλ) denote, respectively, Dijkstra’s shortest path

algorithm using link costs, link delays, and aggregated link costs with respect to the

multiplier λ.

1. In the first step, the algorithm calculates the shortest path on link costs. If the

path found meets the delay constraint, this is surely the optimal path. Otherwise,

the algorithm stores the path as the latest infeasible path, simply called the pc

path. Then it determines the shortest path on link delays denoted as pd. If pd is

infeasible, there is no solution to this instance.

2. Set λ = (c(pc) – c(pd))/(d(pd) – d(pc)). With this value of λ, we can find a new cλ-

minimal path r. If cλ(r) = cλ(pc) (= cλ(pd)), we have obtained the optimal λ

according to Claim 2.5 to be proved in Section 2.3. Otherwise, set r as the new

pc or pd according to whether r is infeasible or feasible.

Procedure LARAC(s, t, d, ∆)
),,(: ctsDijkstrapc =
 if ∆≤)(cpd then return pc
),,(: dtsDijkstrapd =
 if ∆>)(dpd then return “there is no solution”
 repeat

)()(
)()(

:
cd

dc

pdpd
pcpc

−
−

=λ

),,(: λctsDijkstrar =
 if)()(cpcrc λλ = then return dp
 else if ∆≤)(rd then rpd =: else rpc =:
 end repeat
end procedure

 21

 We next define the Minimum Cost Restricted Time Combinatorial Optimization

(MCRT) Problem studied in [6].

Figure 2.2: MCRT algorithm

 Minimum Cost Restricted Time Combinatorial Optimization (MCRT) Problem:

Given a finite set P, finite family set S of subsets of P, non-negative threshold h, and

two non-negative real-valued functions y: P→ R+ (say, cost) and x: P → R+ (say, delay).

The MCRT problem is to seek a solution F* = arg min{y(F)| F ∈ S, x(F) ≤ h}, where

z(G) = ∑ ∈Gg
gz)(for z ∈ {x, y} and G ∈ S.

 Evidently, the CSP problem is a special case of the MCRT problem and so the

MCRT problem is also NP hard. Therefore, we consider solving the integer relaxation

of the MCRT problem. This is achieved by the MCRT algorithm given in [6] and

Procedure MCRT (h)
 F := A(0, 1)
 if x(F) ≤ h then return F.
 H := A(1, 0)
 if x(H) > h then return “no solution”
 repeat
 a := y (H) – y(F)
 b := x(F) – x(H)
 c := x(F)y(H) – x(H)y(F) (a)
 G := A(a, b)
 if c = ax(G) + by(G) then (b)
 if x(G) ≤ h then return G else return H
 if c > ax(G) + by(G) then (c)
 if x(G) ≤ h then H := G else F := G.
 end repeat
end procedure

 22

presented in Figure 2.2. In this algorithm, it is assumed that there is an effective

algorithm A(a, b) for the corresponding minimum cost problem with respect to a x(p) +

b y(p), p ∈ S, where a, b are the multipliers. For instance, in the case of the CSP

problem, Dijkstra’s algorithm for the minimum cost path problem can play the role of

algorithm A. In Figure 2.2, algorithm A(a, b) returns p = arg min{ax(r) + by(r)| r ∈ S}.

 Equivalence of LARAC and MCRT Algorithms: Following the definition of the

variables in Figure 2.1 and Figure 2.2, it can be seen that H corresponds to pd while F

corresponds to pc and λ corresponds to a/b because

 .
)()(
)()(

HxFx
FyHy

b
a

−
−

=

 Furthermore,

).()()()(
)()(
)()(

)()(
)()()()(Fx

b
aFyFyFx

HxFx
FyHy

HXFx
FyHxHyFx

b
c

+=+
−
−

=
−
−

=

 If the expressions (a), (b) and (c) in procedure MCRT are scaled by b, the MCRT

algorithm reduces to the LARAC algorithm. In view of the equivalence of the LARAC

algorithm and the MCRT algorithm, in the rest of the chapter we shall refer to both

these algorithms as simply LARAC.

 To conclude this section, to the best of our knowledge, the LARAC algorithm was

first presented in [17]. More recently, Xue [66] presented another variant of this

algorithm. Mehlhorn and Ziegelmann [39] and Ziegelmann [69] point out that the

algorithm as presented in [6] can be derived from what they call the hull approach.

Blokh and Gutin [6] also use geometric ideas in developing the MCRT algorithm. On

 23

the other hand, Jüttner et al. [23] developed this algorithm using a purely algebraic

approach.

2.3. An Algebraic Study of the Relax-CSP Problem and its

Generalization

The LARAC algorithm as developed in [23] was originally intended for the CSP

problem. In view of its generality as discussed in the previous section, one would expect

that the claims in [23] (stated without proof) on which the LARAC algorithm is based

do not depend on the properties of shortest paths. In other words, we would like to

establish these claims without invoking properties of shortest paths. This is indeed true.

In this section, we will present proofs of some of these claims for the sake of

completeness. Furthermore, in the following section we also establish certain other new

results that throw much insight into the structure of the solutions of the DUAL-

RELAX-CSP problem. Though our proofs below do not involve shortest paths or their

properties, we have decided to retain the terms such as “minimal path” whose

interpretation in the general context should be obvious.

 Claim 2.1[23]: Let L(λ) = min{cλ(p)| p ∈ Pst} – λ ∆. Then L(λ) is a lower bound to

the optimum objective of the CSP problem for any λ ≥ 0.

 Claim 2.2[23]: L is a concave piecewise linear function, namely, the minimum of the

linear functions c(p) + λ(d(p) – ∆) for all p ∈ Pst.

 Claim 2.3[23]: For any λ ≥ 0 and cλ-minimal path pλ, d(pλ) is a supgradient of L in

the point λ.

 24

 Claim 2.4[23]: If λ < λ*, then d(pλ) ≥ ∆ and if λ > λ*, then d(pλ) ≤ ∆ for each cλ-

minimal path pλ.

 Proof: Let p and p* denote a cλ-minimal path and cλ* -minimal path respectively

 L(λ*) = c(p*) + λ* d(p*) – λ* ∆ ≤ c(p) + λ* d(p) – λ*∆ = L(λ) + (λ* – λ)(d(p) – ∆).

 Since L(λ*) ≥ L(λ), (λ* – λ)(d(p) – ∆) ≥ 0.

 Therefore, if λ < λ* then d(pλ) ≥ ∆ and if λ > λ* then d(pλ) ≤ ∆ for each cλ-minimal

path pλ. ■

 Claim 2.5[23]: A value λ > 0 maximizes the function L(λ) if and only if there are

paths pc and pd which are both cλ-minimal and for which d(pc) ≥ ∆ and d(pd) ≤ ∆ (pc and

pd can be the same, in this case d(pd) = d(pc) = ∆).

 Proof: a) Proof of only if part: Suppose λ is the optimal value that maximizes L(λ).

Let p be the corresponding cλ-minimal path and thus L(λ) = c(p) + λ(d(p) – ∆). Without

loss of generality, we only consider the case d(p) > ∆. If the λ is slightly increased to λ'

(> λ), c(p) + λ (d(p) – ∆) is also increased. Since L(λ) is optimal, p cannot be the cλ'-

minimal path any more; otherwise L(λ') > L(λ). Let p' be the new cλ'-minimal path. If | λ

– λ'| is small enough, p' is also the cλ-minimal path because there are only a finite

number of paths. It follows that c(p') + λ'(d(p') – ∆) = L(λ') ≤ L(λ) = c(p') + λ (d(p') – ∆).

 Hence λ' (d(p') – ∆) ≤ λ (d(p') – ∆) ⇒ d(p') ≤ T since λ' > λ.

 Let pc = p and pd = p' completing the proof of the only if part.

 b) Proof of if part: Let pc and pd be two cλ-minimal paths and d(pc) ≥ ∆ and d(pd) ≤ ∆.

Without loss of generality, assume λ* maximizes the function L(λ*) and λ* > λ.

 Since λ < λ*, d(pc) ≥ ∆ and d(pd) ≤ ∆, it follows that d(pd) = ∆.

 25

 Let p* denote the cλ*-minimal path. Then,

)())()(*()(

)()(**)(**)(*)(
λλλλ

λλλλλ
LpdL

pdpcpdpcL

d

dd

≤∆−−+=
∆−+≤∆−+=

 Therefore, L(λ) = L(λ*), which proves that λ maximizes L(λ). ■

 Claim 2.6[23]: Let 0 ≤ λ1 < λ2, and stPpp ∈
21

, λλ be
1λ

c -minimal and
2λ

c -minimal

paths. Then)()()()(
2121 λλλλ pdpdandpcpc ≥≤ .

 Proof: Note that cλ(p) = c(p) + λ d(p).

 Because stPpp ∈
21

, λλ are
1λ

c -minimal and
2λ

c -minimal paths

)()()()()()(
22112111 11 λλλλλλλλ λλ pdpcpdpcpcpc +≤+⇔≤ , and

)()()()()()(
22112212 22 λλλλλλλλ λλ pdpcpdpcpcpc +≥+⇔≥ . Then

).()]()([)()(

)()()()()()(

21221

2121

1

2121

λλλλλ

λλλλ

λ

λλλλ

pcpdpdpcpc

pdpdpdpd

≤−+≤

≥⇒−≤−

 Hence the claim holds. ■

 The convergence of the LARAC algorithm is guaranteed by the following result.

 Claim 2.7[23]: Let ,...,, 321
ccc ppp and ,...,, 321

ddd ppp denote the sequences of paths

generated by the LARAC algorithm. Then

 ∆>>>> ...)()()(321
ccc pdpdpd and ∆≤<<< ...)()()(321

ddd pdpdpd .

 Proof: Suppose pc and pd are the current paths in the LARAC algorithm with λc

and λd as the corresponding λ values. Suppose that neither of these two λ values is the

maximizing value.

 Let λ =
)()(
)()(

cd

dc

pdpd
pcpc

−
− and pλ be the corresponding cλ-minimal path.

 26

 Evidently, cλ(pc) = cλ(pd) (recalling that cλ(p) = c(p) + λ d(p)).

 Suppose λ is not the maximizing value either; otherwise, the algorithm stops

immediately. We also have

 c(pc) + λc d(pc) ≤ c(pd) + λc d(pd),

 c(pc) + λd d(pc) ≥ c(pd) + λd d(pd).

 In fact, the equality cannot hold because neither λc nor λd is the maximizing multiplier.

 So d
cd

dc
c pdpd

pcpc λλλ <=
−
−

<
)()(
)()(.

Consider 2 cases:

 1) d(pλ) ≤ ∆: In this case, because d(pλ) ≥ d(pd) by Claim 2.6, it suffices to show that

d(pλ) ≠ d(pd).

 Assume d(pλ) = d(pd). Consider the following inequalities

 c(pλ) + λ d(pλ) ≤ c(pd) + λ d(pd) and c(pλ) + λd d(pλ) ≥ c(pd) + λd d(pd).

 Because d(pλ) = d(pd), it follows that c(pλ) = c(pd). Hence cλ(pc) = cλ(pd) = cλ(p),

which implies that λ is the maximizing value. This contradiction establishes the theorem.

 2) d(pλ) > ∆: Proof in this case follows along the same lines as above. ■

 Theorem 2.1: Consider the problem:

Minimize y c(pd) + (1 – y) c(pc) (2.2)

subjects to y d(pd) + (1 – y) d(pc) = ∆ and 0 ≤ y ≤ 1, (2.3)

where pc and pd are two s-t paths such that d(pd) > ∆ and d(pc) < ∆.

 Let
)()(
)()(

dc

cd

pdpd
pcpc

−
−

=λ and suppose that for all s-t path p, d(p) ≠ ∆.

 Then pd and pc minimize (2.2) if and only if they both are cλ-minimal.

 27

 Proof: First, we prove that

y c(pd) + (1 – y) c(pc) ≥ +∈ RL ξξ),(. (2.4)

 In fact,

).()1()(
))()(()1())()((

))()1()(()()1()(
}|)(min{)(

cd

ccdd

cdcd

st

pcypcy
pdpcypdpcy

pdypdypcypcy
PppcL

−+=

−−+−=

−+−−+≤

∆−∈=

ξξ
ξ

ξξ

ξξ

ξξ

ξ

 Using (2.3), (2.2) can be rewritten as:

y c(pd) + (1 – y) c(pc) = c(pc) + λ (d(pc) – ∆) = c(pd) + λ (d(pd) – ∆). (2.5)

 Evidently, d(pc) ≠ ∆ and d(pd) ≠ ∆.

a) Proof of the if part: Suppose pd and pc are cλ-minimal paths. Then

 L(λ) = c(pc) + λ (d(pc) – ∆) = y c(pd) + (1 – y) c(pc),

where y d(pd) + (1 – y) d(pc) = ∆, 0 ≤ y ≤ 1. So (2.2) is minimized.

b) Proof of the only if part: Suppose pd and pc minimize (2.2) or rather (2.5). Assume p

is a cλ-minimal path and pd and pc are not cλ-minimal. Consider the case when p is

infeasible (if p is feasible, the theorem can be proven similarly). We have

c(p) + λd(p) < c(pd) + λd(pd). (2.6)

 Then

 λλ >
−
−

=
)()(
)()('

d

d

pdpd
pcpc .

 Thus

 28

),()1()())(()(

))((')()()'1()('

cddd

ddd

pcypcypdpc
pdpcpcypcy
−+=∆−+<

∆−+=−+
λ

λ

where .)()1()()()'1()(' ∆=−+=−+ cdd pdypdypdypdy

 The contradiction above proves that pc and pd are cλ-minimal paths. ■

 From the above proof, it can be shown that the value of λ defined by the optimal

solution pc and pd of (2.2) is equal to the maximizing λ searched by LARAC algorithm.

Also the optimum value of RELAX-CSP is equal to the optimum value L(λ*) of

DUAL-RELAX-CSP.

 There may be more than one maximizing λ. Assume that there is some multiplier λ

such that the delay of the corresponding path pλ is equal to the delay bound. In this case,

an interval will serve as the maximizing multiplier and we can find the actual optimal

path for the original CSP problem with that λ, recalling that c(pλ) = L(λ) which is the

lower bound on the cost of the actual optimal path.

 Theorem 2.2: If ∃ λ and the corresponding path pλ such that d(pλ) = ∆, the

maximizing λ is one unique interval (maybe just one point); Otherwise, the maximizing

λ* is unique.

 Proof: This is a direct consequence of the concavity of the function L(λ) as stated

in Claim 2.2. ■

 Theorem 2.3: Given λ1 and λ2, such that d(pλ1) > ∆ ≥ d(pλ2). If we start the LARAC

algorithm by initializing pc and pd as pλ1 and pλ2, respectively, then the LARAC

algorithm finds a maximizing multiplier λ* satisfying λ1 < λ* ≤ λ2.

 29

2.4. LARAC-BIN: A Binary Search Based Approach to the DUAL-

RELAX-CSP Problem

In this section we present a new algorithm called LARAC-BIN that uses the binary

search technique to find the maximizing multiplier. LARAC-BIN as presented in Figure

2.3 stops when L(λ*) – L(λ) < τ. The parameter τ serves as a tuning parameter and can

be specified in advance depending on the allowable deviation of the cost of the

produced solution from the optimum value. We also establish an optimality condition.

This criterion can be used to terminate the algorithm and at termination the optimum

value of L(λ) will be obtained.

Figure 2.3: LARAC-BIN algorithm

Procedure LARAC-BIN),,,(τ∆ts
),,(: ctsDijkstrapc =
 if ∆≤)(cpd then return cp
),,(: dtsDijkstrapd =
 if ∆>)(dpd then return “there is no solution”
 if ∆=)(dpd or)()(cd pcpc = then return dp
))(/())()((:,0: dcdendbegin pdpcpc −∆−== λλ
 while τλλ >−∆−))()((dbeginend pd
 2/)(: endbegin λλλ +=
),,(: λctsDijkstrar =
 if ∆=)(rd then return r
 else if ∆<)(rd then λλ =:end else λλ =:begin
 end while
 return),,(:

end
ctsDijkstrar λ=

end procedure

 30

 In effect, the goal of the LARAC-BIN is to find the minimum λ with which we can

obtain a feasible path because the smaller the λ, the smaller the cost of the path obtained.

This goal is compatible with that of the LARAC algorithm searching for the

maximizing λ* and L(λ*). To put it formally, we have the following theorem.

 Theorem 2.4: Let λ* denote the smallest maximizing value for L(λ) and pλ denote a

path corresponding to λ. Then c(pλ*) ≤ c(pλ) for all λ such that d(pλ) ≤ ∆.

 Proof: According to Claim 2.6, if λ* ≤ λ, c(pλ*) ≤ c(pλ). So assume λ* > λ.

 In this case, d(pλ) ≤ ∆ implies d(pλ) = T by Claim 2.4. Hence L(λ) = L(λ*) according

to Claim 2.5, which is impossible because λ* is the smallest maximizing value for L(λ).

 The above contradiction proves the theorem. ■

 The initial values of λbegin and λend in Figure 2.3 are to be selected such that pbegin is

infeasible and pend is feasible. We can initialize λend as in the following theorem.

 Theorem 2.5: If
)(

)()(

d

cd

pd
pcpc

−∆
−

=λ , d(pd) < ∆ and c(pd) > c(pc), then the cλ-minimal

path is feasible, where pc and pd are the minimal cost and minimal delay path,

respectively.

 Proof: Assume that p is a cλ-minimal path and d(p) > ∆. It follows that

 c(pd) + λ d(pd) ≥ c(p) + λ d(p).

 Then

 0 ≤ c(pd) – c(p) –
)(

)()(

d

cd

pd
pcpc

−∆
−

(d(p) – d(pd))

 < c(pd) – c(p) – (c(pd) –c(pc)) = c(pc) – c(p) ≤ 0.

 31

 The above contradiction proves the theorem. ■

 Theorem 2.6: Let λ* denote the smallest maximizing Lagrangian multiplier of L(λ)

and p* be the resulting path. Let pbegin and pend be the minimal aggregated cost paths

with respect to λbegin and λend, where λbegin and λend are as defined in the LARAC-BIN

algorithm in Figure 2.3. Here pbegin is infeasible and pend is feasible. Then

))()(()(*)(0 endbeginendend pdLL −∆−≤−≤ λλλλ .

 Proof: The left inequality holds because L(λ*) is the maximum value.

 Evidently, d(pend) ≤ ∆, endbegin λλλ ≤≤ * , and

).(*)(*)(**)(endend pdpcpdpc λλ +≤+

 It follows that

])()([**)(**)()(*)(∆−+−∆−+=− endendendendend pdpcpdpcLL λλλλλλ
∆−+−−+−+= *)()(*)()]}(*)([*)(**)({ λλλλλλ endendendendend pdpdpcpdpc

)).()(())(*)((endbeginendendend pdpd −∆−≤−∆−≤ λλλλ ■

 Note that we have used the result of the above theorem in the termination of the

LARAC-BIN algorithm (Figure 2.3).

 Since a number of optimization problems only involve integer values (integer

problems) or can be converted to integer problems, we now derive a termination

condition for the LARAC-BIN algorithm when all the link costs and delays are integers.

If terminated according to this condition, the algorithm computes the maximizing λ*

with polynomial time complexity.

 Consider the set of rational numbers Q(D) = {p / q | GCD(p, q) = 1, q ≤ D, and p, q,

D ∈ N+}. Define the density of Q(D) as DENS(Q(D)) = min{|x1 – x2|: x1, x2 ∈ Q(D) and

 32

x1 ≠ x2}. It is easy to show that DENS(Q(D)) =1/D2 and that for x, y ∈ Q(D), x = y if |x –

y| < DENS(Q(D)).

 Suppose that we modify LARAC-BIN so that it terminates when | λbegin – λend| < 1 /

D2 and that the paths at termination are pend and pbegin, where D = |d(pbegin) – d(pend)|. Let

)()(
)()(

'
endbegin

beginend

pdpd
pcpc

−

−
== λλ .

 Theorem 2.7: λ' defined as above is a maximizing multiplier.

 Proof: Consider Q(D), where D = |d(pbegin) – d(pend)|. Because

),()()()(

and)()()()(

endendendbebinendbegin

endbeginendbebinbeginbegin

pdpcpdpc
pdpcpdpc

λλ

λλ

+≥+

+≤+

 end
endbegin

beginend
begin pdpd

pcpc
λλλ ≤

−

−
=≤

)()(
)()(

' .

 Suppose that λbegin ≤ λ* ≤ λend, where λ* is the maximizing Lagrangian multiplier

obtained by LARAC algorithm initialized with pc = pbegin and pd = pend.

 Clearly λ* = (c(pλ1) – c(pλ2)) / (d(pλ2) – d(pλ1)) for some paths pλ1 and pλ2 w.r.t. the

Lagrangian multipliers λ1 and λ2. It can be seen that λ1 and λ2 ∈ [λbegin, λend] following

the similar argument above. Hence | d(pλ2) – d(pλ1)| ≤ D according to Claim 2.6, i.e., λ*

∈ Q(D).

 Evidently |d(pbegin) – d(pend)| = D ≤ D and thus λ ∈ Q(D).

 Because | λ' – λ*| < |λbegin – λend| < 1 / D2 = DENS (Q(D)), the only possibility is that

λ' = λ*. ■

 33

 For the CSP problem, the size of D is bounded as D ≤ n max {dij | (i, j) ∈ E}, where n

is the number of nodes in the network. If the LARAC-BIN algorithm is terminated

using the condition given above, then we have the following complexity result.

 Theorem 2.8: LARAC-BIN terminates in O((m + n log n)(log (COST × DELAY 2)))

time where COST is the cost of the minimum delay path and DELAY is the delay of the

minimum cost path in the network.

2.5. Strong Polynomiality of DUAL-RELAX-CSP: A Parametric

Search Based Algorithm

In an unpublished work, Jüttner [25] has shown that the LARAC algorithm for DUAL-

RELAX-CSP is strongly polynomial. We wish to recall that the time complexity of an

algorithm for a graph/network problem is strongly polynomial if the computational time

is a polynomial of only m and n, where m and n are respectively the number of links and

the number of nodes in the graph/network. In this section, we present another strongly

polynomial time algorithm, namely the PSCSP (Parametric Search based Constrained

Shortest Path) algorithm (Figure 2.4), for solving DUAL-RELAX-CSP. This method is

based on a methodology first proposed by Megiddo [38] to solve fractional

combinatorial optimization problems. In this section, we only handle the shortest path

problem without generalization due to the nature of the parametric search. The

algorithm PSCSP in Figure 2.4 is based on the BFM algorithm.

 Let λ* ≥ 0 denote the maximizing Lagrangian multiplier for the L(λ) function.

Assume node 1 is the source node and node n is the sink node. Each node v of the

 34

network is associated with a pair Mv = (xv, yv), where xv and yv keep track of the cost and

delay of some 1-v path during the execution of the PSCSP algorithm. M is initialized as

M1 = (0, 0) and Mv = (∞, ∞) for v ≠ 1. The algorithm computes the cλ*-minimal 1 – n

path. This algorithm does not guarantee the feasibility of the obtained path. In order to

get a feasible cλ*-minimal 1 – n path, we can revise the BFM algorithm using

lexicographic ordering on the combined link costs and link delays [30, 53]. We shall

give the details of the algorithm to compute a feasible cλ*-minimal path in Chapter 6.

),(
(2.7)])**

y*(if [*
do),(such that each for

do to1for
do 1- to1 ifor

)0,0(
2,... for),(),(

),,(PSCSP Procedure

1

uvuuvuv

uvuvuu

vv

vvv

dycxM
dcyx

x
Evuv

nu
n

M
nvyxM

ts

++←
+++≥

+
∈

←
←
=

=∞∞==
∆

λλ
λ

Figure 2.4: PSCSP Algorithm (λ* is unknown)

 In the algorithm in Figure 2.4, we need extra steps to decide whether the Boolean

expression (2.7) (it is called oracle test) is true or false since λ* is unknown.

 If xv = ∞, yv = ∞, then the inequality holds. Assume xv and yv are finite non-negative

values. Then it suffices to evaluate the following Boolean expression.

 (xu + cuv – xv)+ λ*(yu + duv – yv) = p + q λ* ≤ 0, (2.8)

where p = xu + cuv – xv and q = (yu + duv – yv).

 35

 If p · q ≥ 0, then it is trivial to tell whether (2.8) holds or not. Suppose p · q < 0, i.e., –

p/q > 0.

 Let λ = – p/q and let r = Dijkstra(s, t, cλ), where Dijkstra computes a cλ-minimal path.

 Now consider three cases:

a) d(r) > ∆: By Claim 2.4 of Section 2.3, λ ≤ λ* and thus (2.8) can be decided

according to whether q is positive or negative.

b) d(r) < ∆: By Claim 2.4, λ ≥ λ* and (2.8) can be evaluated similarly.

c) d(r) = ∆: Return the path r as the optimal path (by Claim 2.5).

 If PSCSP is based on Dijkstra’s algorithm, instead of the BFM algorithm, the

complexity of the resultant algorithm is reduced to O((m + n log n)2). Thus we have the

following result.

 Theorem 2.9: The parametric search algorithm PSCSP for DUAL-RELAX-CSP is

strongly polynomial with time complexity O((m + n log n)2). ■

 In the implementation of the PSCSP algorithm, the number of invocations of

Dijkstra’s algorithm is reduced by maintaining an interval [a, b] containing λ*, where a

is the maximum known value of – p/q < λ* and b is the minimum known value of – p/q

> λ* during the execution of the algorithm. We only need to call Dijkstra algorithm for

λ within the interval [a, b] and update the interval accordingly. A discussion of the

application of the parametric approach to the general class of optimization problems

involving two additive parameters may be found in [24].

 36

2.6. Closing the Gap: An Integrated Approach to ε-Approximation

Algorithm Design for the CSP Problem

In this section, we show how the LARAC algorithm can be used to considerably speed

up an ε-approximation scheme. A few definitions are now in order.

 An approximation algorithm for a minimization problem obtains a solution whose

cost is within a specified multiple of the optimum cost. This idea is formally stated as

follows [50].

 An approximation scheme for a problem P is an algorithm that, given an instance I

and a desired degree of accuracy ε > 0, constructs a problem solution with value F̂ (I),

such that, if F*(I) > 0 is the value of an optimal solution to I, then

 ε≤−
)(*

|)(ˆ)(*|
IF

IFIF .

 A fully polynomial time approximation scheme for a graph/network optimization

problem is an approximation scheme whose computing time is a polynomial function of

the input size and 1/ε. A strongly polynomial time approximation scheme for a

graph/network optimization problem is an approximation scheme whose computing

time is a polynomial function of the number of nodes and 1/ε.

 In the literature, there has been an extensive discussion of approximation algorithms

for the CSP problem. Of particular interest to us are Hassin’s algorithm [18] and the

more recent algorithm due to Lorenz and Raz [35]. Hassin presents a fully polynomial

time ε-approximation and Lorenz and Raz present a strongly polynomial time

 37

approximation scheme (denoted as SEA algorithm). There are two phases in the design

of approximation algorithms:

Phase1:

Start with an interval [LB, UB] where LB and UB are lower and upper bounds to the

objective value of the optimum solution to the CSP problem, and iteratively shrink

the interval until the ratio of the upper bound and the lower bound is below some

constant (say, 2). This is achieved using a combination of a dynamic programming

algorithm and a test procedure to determine whether the optimum is greater than or

equal to a specified value.

Phase 2:

Determine an ε-approximate solution using the dynamic programming algorithm with

the lower and upper bounds obtained in the phase 1.

 Since LARAC/LARAC-BIN is very fast, we can use them to construct Phase 1. This

considerably improves the computational time over the original ε-approximation

algorithm which does not use LARAC for the first phase. The details of this integration

are given below.

 LARAC algorithm terminates with two paths pc and pd one of which is feasible,

denoted by pd, and the other is infeasible, denoted by pc. It is easy to see that the cost of

the infeasible path is the lower bound and the cost of the feasible path is the upper

 38

bound on the optimal cost. The cost of pc at termination of LARAC is also a lower

bound on the cost of the optimal path to the CSP problem. Given a parameter ε, if the

cost of pd at termination is less than (1 + ε) c(pc), then pd is an ε-approximation to the

CSP problem. If this is not the case, then the paths pc and pd can be used to get the initial

lower and upper bounds required by ε-approximation algorithms. The integrated

algorithm incorporating the above ideas is presented in Figure 2.5. Here we have used

the SEA algorithm presented in [35] for Phase 2.

Figure 2.5: An integrated approximation algorithm: LARAC + SEA

Figure 2.6: Hk, n graphs

 (a) H6, 8 (b) H7, 9

Phase 2
SEA Algorithm

Phase 1: LARAC
Generates
LB and UB

LB UB

ε CSP
Problem

ε-Approximation
Solution OPT*

ε≤−

OPT
OPTOPT |*|

OPT*: the solution obtained by SEA.
OPT: the actual optimal cost

 39

 We next discuss results of our simulation of the integrated approach. In our

experiments we have used regular graphs Hk,n (See Figure 2.6) proposed by Harary (See

[55]), where k is the degree and n is the number of nodes, respectively. The link costs

are randomly generated integers in the range 2 to 198 and delays are assigned values as

follows: dij = 200 – cij, where cij and dij are the cost and delay of link (i, j), respectively.

For each pair of vertex and degree, 10 experiments are carried out and the average value

is given in Table 2.1.

 As we can see from column six in the table, the ratio of the cost of pd and the cost of

pc returned by LARAC is very close to 1. This is much better than the ratio of 2 which

Phase 1 tries to achieve. Column seven shows that the total time for Phase 1 (when

LARAC is used) is only about 5% of the total running time. We also note that Phase 1

when LARAC is used takes only 0.1% of the time for Phase 1 when the dynamic

programming approach is used. Furthermore, we can also see from the last column in

the table that the integrated approach achieves a speedup of 6.

Table 2.1. Simulation results

 R = the ratio of the cost of pd and the cost of pc returned by LARAC
 LT = the ratio of the time used by LARAC and the total running time (LARAC + SEA)
 T = the ratio of the time used by LARAC+SEA and the time used by pure SEA algorithm

SEA LARAC+SEA
LARAC NODE DEG ε

Cost
Cost R LT

Cost T

1000 6 .05 13290 13290 1.1 .005 13388 .16
1000 16 .05 9696 9748 1.1 .002 9696 .27
1000 32 .05 5946 6196 1.2 .004 5966 .14
2000 6 .05 28002 29888 1.1 .002 28000 .14
2000 16 .05 19704 20222 1.1 .003 19704 .10
2000 32 .05 11634 11778 1.1 .002 11636 .12

 40

2.7. Summary

In this chapter, we have studied several aspects of the constrained shortest path (CSP)

problem. This is an NP-complete problem and so in the literature, the focus has been on

solving the integer relaxation of the problem called RELAX-CSP. We first pointed out

the equivalence of the algorithms presented in [6], [17] and [23]. In view of this

equivalence, we call these algorithms simply as the LARAC algorithm. Whereas the

algorithms in [17] and [23] were intended for the CSP problem, the one in [6] was

intended for a general class of combinatorial optimization problems (MCRT problem)

involving two additive parameters. Using an algebraic approach, we have shown in

Section 2.3 that all the claims in [23] also hold for the MCRT problem. We have also

established certain new results on the properties of the solutions obtained by the

LARAC algorithm. In particular, we have shown that the paths pc and pd that result at

the termination of LARAC have an interesting property and, in fact, solve another

optimization problem (Theorem 2.1). In Section 2.4, we presented a heuristic called

LARAC-BIN based on binary search. The new heuristic involves a tuning parameter

whose value can be specified in advance depending on the allowable deviation of the

cost of the path produced by the heuristic from the optimum value. Whereas binary

search is a commonly employed technique for algorithm design, incorporation of the

tuning parameter as in LARAC-BIN enhances the value of the binary search based

approaches.

 In Section 2.5, we presented a strongly polynomial time algorithm for DUAL-

RELAX-CSP. This algorithm is based on Megiddo’s parametric search method [38] and

 41

certain techniques from fractional combinatorial optimization [47]. To the best of our

knowledge, this algorithm has the best time complexity to date for DUAL-RELAX-CSP.

 In Section 2.6, we pointed out how LARAC and LARAC-BIN can be used in

conjunction with ε-approximation techniques to generate paths whose costs are

guaranteed to be within certain factor of the optimum. The value of L(λ) at termination

of these algorithms is a lower bound on the cost of the optimum solution to the CSP

problem. Given a parameter ε, if the cost of the path pd at termination is less than (1 + ε)

c(pc), then pd is an ε-approximation to the CSP problem. If this is not the case, then the

paths pc and pd can be used to generate lower and upper bounds needed for an ε-

approximation algorithm. An integrated approach to the design of ε-approximation

algorithms based on these ideas has been presented in Section 2.6. Effectiveness of this

integrated approach has been illustrated through simulation.

 42

Chapter 3. The CSP Problem: Approximation Algorithms

Based on the Primal Simplex Method of Linear Programming

The approaches discussed in Chapter 2 including the LARAC algorithm for the CSP

problem are based on the dual of the integer relaxation of the ILP formulation of the

CSP problem. In this chapter, we present a novel approach to the CSP problem, making

a departure from these currently available approaches. We study the problem using the

primal simplex method of linear programming and exploiting certain structural

properties of networks.

 The chapter is organized as follows. In Section 3.1, we define the CSP problem and

present its integer linear programming (ILP) formulation as well as its linear

programming (LP) relaxation. This formulation is the same as the LP formulation of the

minimum cost flow problem [1] except for an additional constraint due to the delay

requirement. This additional constraint gives rise to several questions that need to be

investigated to achieve an efficient implementation of the primal simplex method. This

leads us to the definition in Section 3.2 of an equivalent problem on a transformed

network, called the TCSP problem. Section 3.3 deals with the structure of the basic

solutions of the RELAX-TCSP problem, the relaxed form of the TCSP problem.

Section 3.4 discusses the revised simplex method of linear programming, its application

on RELAX-TCSP, and several strategies to achieve an efficient implementation. This

results in an algorithm allowing degenerate pivots and using an anti-cycling strategy

developed in Section 3.4.6. Another algorithm called NBS algorithm presented in

Section 3.5 avoids degenerate pivots completely. Both these algorithms are of pseudo

 43

polynomial complexity. In Section 3.5.3.2, we show how to extract an approximate

solution to the original CSP problem from the optimum solution to the RELAX-TCSP

problem and derive bounds on the quality of this solution with respect to the optimum

solution. In Section 3.6, experimental results comparing the NBS algorithm with the

LARAC algorithm [23], the LHWHM algorithm [37], and the general purpose LP

solvers are presented. Section 3.7 concludes with a summary of the main contributions.

 The results in this chapter have been repeated in [63].

3.1. The CSP Problem: LP Formulation and Integer Relaxation

We first recall the definition of the CSP problem and its ILP formulation.

 Definition 3.1: Consider a directed network G(V, E) where V is the set of nodes and

E is the set of links of the network. Each link (u, v) ∈ E is associated with two integer

weights cuv > 0 (representing cost, the expense imposed by using or installing the link)

and duv > 0 (transmission delay along the link). For any path p (or cycle with a given

orientation) define the cost c(p) and delay d(p) of p as

∑ ∑−∑=∑−=
+ −+−∈ ∈∈∈pvu Pvu

uv
Pvu

uv
pvu

uvuv ddpdccpc
),(),(),(),(

)(and)(,

where p+ (p-) is the set of forward (backward) links on p as we traverse p from the start

node to the end node of p.

 Notice that our assumption that link weights are integers does not involve any loss of

generality because, in digital systems, all numbers are represented discretely and can be

scaled and rounded to integers. In order to simplify our presentation, we assume all the

values to be integers. We also assume that only links impose costs and delays. If the

 44

nodes impose costs and delays, we can use the node splitting technique to transform

node costs and delays into link costs and delays (See Chapter 2.4 of [1]).

 We use the terms “link” and “arc” interchangeably. Without loss of generality, we

assume that for every node i, there is a directed path from i to the destination node t. In

the rest of the chapter, m = |E| and n = |V|.

 A path is called a directed path (cycle) if there are no backward links in the path

(cycle). Given two nodes s, t and an integer ∆ > 0, a directed s-t path p is said to be

feasible if d(p) ≤ ∆.

Figure 3.1: An example of CSP problem

 Constrained Shortest Path (CSP) problem: Find an s-t path popt = arg min{c(p)| p

is a feasible s-t path}. This is illustrated with the example in Figure 3.1.

 The CSP problem can be formulated as an ILP problem as follows.

∆ = 70

s

u v

cuv , duv

5, 10

Cost Delay 2

4

3

5

3, 12

1, 51

 3, 10

3, 50

1, 52

2, 10 1, 30

t

6, 64

1, 10

Min-cost path (not feasible)

4 5
1, 51

2, 10 1, 30

1 6

4

3

 3, 10

1, 30

1 6

5, 10 Min-cost feasible path

 45

CSP: Minimize ∑
∈

⋅
Evu

uvuv xc
),(

 (3.1)

 subject to

∀ u ∈ V,







=−
=

=− ∑∑
∈∈ .,0

;,1
;,1

}),(|{}),(|{ otherwise
tuif
suif

xx
Euvv
vu

Evuv
uv (3.2)

 ∑ ∈
∆−=−⋅−

Evu uvuv wxd
),(

, (3.3)

 ∀ (u, v) ∈ E, xuv = 0 or 1. (3.4)

 In (3.3), w is the slack variable for the delay constraint.

 The main difficulty with the CSP problem lies with the integrality condition that

requires that the variables xuv be 0 or 1. Removing or relaxing this requirement from the

above integer linear program leads to RELAX-CSP, the relaxed CSP problem.

 RELAX-CSP:

Minimize ∑
∈

⋅
Evu

uvuv xc
),(

 (3.5)

 subject to

 ∀ u ∈ V,







=−
=

=− ∑∑
∈∈ .,0

;,1
;,1

}),(|{}),(|{ otherwise
tuif
suif

xx
Euvv
vu

Evuv
uv (3.6)

 ∑ ∈
∆−=−⋅−

Evu uvuv wxd
),(

, (3.7)

 ∀ (u, v) ∈ E, xuv ≥ 0. (3.8)

 We will show later that by using a transformation and applying certain pivot rules we

can enforce xuv ≤ 1 (the discussion after Theorem 3.3, Section 3.5.5).

 LARAC algorithm considered in Chapter 2 solves the dual of RELAX-CSP. In the

rest of the chapter we study this problem using the primal simplex method.

 46

3.2. A Transformed Problem and Basic Concepts

 In order to achieve an efficient implementation of our approach we transform the

problem to an equivalent one on a transformed network defined below.

• The graph of the transformed network is the same as that of the original

problem, i.e., G(V, E),

• For (u, v) ∈ E, d'uv and c'uv in the transformed problem are given by d'uv = 2 duv

and c'uv = cuv, and

• The new upper bound in the transformed problem is ∆' = 2 ∆ + 1. (3.9)

 The transformed problem will be referred to as the TCSP problem.

 Theorem 3.1: An s-t path p* is a feasible solution (resp. an optimal solution) to the

CSP problem iff it is a feasible solution (resp. an optimal solution) to the TCSP

problem.

 Proof: Please see the proof to Theorem 4.3 which is a general version of this

theorem. ■

 In view of the above result, we consider in the rest of the chapter only the relaxed

form of the TCSP problem, namely, RELAX-TCSP (same as RELAX-CSP except that

the network is the transformed one as defined above). Also we use ∆ (being odd) and

duv (being even) to denote the delay bound and link delay in the transformed problem,

respectively. Notice that the transformation does not change the cost of any path in the

network.

 In the rest of the section we shall define certain terminology leading to a matrix

representation of RELAX-TCSP. Let the links be labeled as e1, e 2 …, em and the nodes

 47

be labeled as 1, 2 …., n. We shall denote the delay of edge ei as di and the cost of ei as ci.

The incidence matrix of G has m columns, one for each link and n rows, one for each

node [55]. The rank of this matrix is (n – 1), and removing any row of this matrix will

result in a matrix of rank (n – 1). We denote this resulting matrix as H. We also assume

that the row removed from the incidence matrix corresponds to node n. Also we assume

that the column of H corresponding to link ek will be denoted by the vector hk. For ek =

(i, j), we have hk = (h1,k…, hi,k …, hj,k …, hn-1,k)t with all its components being 0 except

for hi, k = 1 and hj, k = –1. Let

),...,(
1
0

121 +=







−

= mm aaaa
D
H

A , (3.10)

where D = (– d1, – d2…,– dm), (3.11)

 mi
d
h

a
i

i
i ≤








−

= , , and (3.12)

 







−

=+ 1
0

1ma . (3.13)

 Also, let x be the column vector of the m flow variables xuv and the slack variable w,

and c be the row vector of the costs (c1…, cm, 0). Note that the cost of the slack variable

is 0. Let b = (b1…, bn-1, – ∆)t with bs = 1, bt = –1, and bi = 0 for i ≠ s, t. The LP

formulation of the RELAX-TCSP problem can now be written in matrix form as

follows.

 48

 RELAX-TCSP

 Minimize c x

subject to A x = b (3.14)

 x ≥ 0 for ∀(u, v) ∈ E

 The rest of the chapter deals with the primal simplex based solution of RELAX-

TCSP.

3.3. Simplex Method: Basic Solutions of RELAX-TCSP

Simplex method of linear programming starts with a basic solution and proceeds by

constructing one basic solution from another. A basic solution consists of two sets of

variables, basic and non-basic. For the RELAX-TCSP problem under consideration, all

the non-basic variables in a basic solution will have zero values. Given a basic solution,

we shall denote by Gb the subgraph of G corresponding to the basic variables (except

the slack variable if it is in the basic solution) in this solution. Note that there is no link

associated with the slack variable. The subgraph Gb will be called the subgraph of the

basic solution or simply the basis graph. The non-singular submatrix of A defined by

the basic variables is called a basis matrix or simply, a basis. In this section we present

certain important properties of the basic solutions of the RELAX-TCSP problem.

 Lemma 3.1 [55]: Let G(V, E) be a directed network with at least one cycle W (not

necessarily directed). Assigning an arbitrary orientation to W, let U(W) = (u1…, um)t,

where

 49









∈−

∈

=

.,0
;,1

;,1

otherwise
WofnorientatiothewithdisagreeseofdirectiontheandWeif

WofnorientatiothewithagreeseofdirectiontheandWeif

u jj

jj

j

 Then, H • U (W) = 0.

 We shall denote by d(W) the signed algebraic sum of the delays of the links in a cycle

W as we traverse around the cycle along the given orientation.

 Lemma 3.2: The subgraph Gb of a basic solution contains at most one cycle.

 Proof: Assume that there is more than one cycle, say W1 and W2, in Gb. Suppose

W1 has k links and W2 has l links. According to Lemma 3.1, there exist λ1…, λk and u1…,

ul such that

 ∑ =⋅
∈ 1

0
We

ii
i

hλ and ∑ =⋅
∈ 2

0
We

ii
i

hu .

 So 







−

=∑ ⋅
∈)(

0

11 Wd
a

We
ii

i

λ and ∑ 







−

=⋅
∈ 2)(

0

2We
ii

i Wd
au .

 Without loss of generality, assume that d(W1) ≠ 0 and d(W2) ≠ 0 (Otherwise, rank(Gb)

< n). Then

 0)()(
21

12 =∑ ⋅⋅−∑ ⋅⋅
∈∈ We

ii
We

ii
ii

auWdaWd λ .

 Since W1 ≠ W2, the above implies rank(Gb) < n which is the desired contradiction. ■

 Lemma 3.3: If there is a cycle W in Gb, then d(W) ≠ 0.

 Proof: Let 









= −

n

nn

D
E

B
,1

,1 be a basis matrix (submatrix of A), where H n - 1, n is a (n – 1)

× n submatrix of H and D1, n is the vector of n components (corresponding to the basic

variables) of the last row of A. Then En - 1, n U(W) = 0 by Lemma 3.1.

On the other hand, D1, n U(W) = – d(W).

 50

 Since rank (B) = n, we have

 B U(W) = 0
)(

0
)(

)(,1 ≠







−

=








−

•−

WdWd
WUE nn .

 Thus the lemma follows. ■

 Lemma 3.4: If the basis subgraph Gb contains no cycle that is not a directed cycle,

there are exactly two s-t paths in Gb.

 Proof: The proof follows from the flow balance constraints and the transformation.

■

Figure 3.2: Structure of basis graph

flow

s t 1

1

0 1

0

0

0

a) Tree basic solution

b) Basic solution with a cycle (not directed)

c) Basic solution with a directed cycle

0 < λ < 1

t

Branching Point

0

s 1 1

0

λ
λ λ

1- λ 1-λ

1- λ

t

t

0

s 1

1

0

1+λ
1 + λ

1+ λ

 λ
 λ

 λ

0 < λ < 1

 51

 Thus it follows from the above lemma that the transformation we introduced

guarantees that the structure of the basis subgraph will be one of the three forms shown

in Figure 3.2 (a spanning tree or a spanning tree plus an extra link). In a later section we

shall introduce a pivot rule which will ensure that the basis subgraph will not contain

any directed cycle, thereby eliminating the structure in Figure 3.2(c).

3.4. Revised Simplex Method on the RELAX-TCSP Problem

In this section, we first briefly present the different steps in the revised simplex method

of linear programming that is described in detail in [11]. We then derive formulas

required to identify the entering and the leaving variables.

3.4.1. Revised Simplex Method

Consider an arbitrary linear programming (LP) problem in the standard form.

 Minimize c x

 subject to A x = b, x ≥ 0.

 Here A is an n × (m + 1) matrix with rank (A) = n, x = (x1…, xm + 1)t, c = (c1…, cm + 1),

and b = (b1…, bn)t. Each feasible basic solution x* is partitioned into two sets, one set

consisting of the n basic variables and the other set consisting of the remaining m + 1 –

n non-basic variables. This partition induces a partition of A into B and AN, a partition

of x into xB and xN, and a partition of c into cB and cN, corresponding to the set of basic

variables and the set of non-basic variables, respectively. The basis matrix B is

nonsingular.

 52

Revised Simplex Method [11]:

 Step 1: Solve the system Y B = cB, where Y = (y1, y2…, yn).

 Step 2: Choose an entering column. It may be any column ai of AN such that Y ai is

greater than the corresponding component of cN. The current solution is optimal if there

is no such column.

 Step 3: Solve the system B V = ai, where V = (v1, v2…, vn)t.

 Step 4: Find the largest t such that x*B – t V ≥ 0. If there is no such t, then the

problem is unbounded; otherwise, at least one component of x*B – t V is equal to 0 and

the corresponding variable leaves the basis.

 Step 5: Set the value of the entering variable as t and replace the values x*B of the

basic variables by x*B – t • V. Replace the leaving column of B by the entering column

and in the basis heading, replace the leaving variable by the entering variable. Then go

to Step 1.

 In the following we solve the systems of equations in Steps 1 and 3 and derive

explicit formulas for Y and V. If a link flow variable is chosen as the entering variable

then the corresponding link is called the in-arc. Out-arcs are similarly defined.

3.4.2. Initialization

To construct an initial basic feasible solution we first determine a spanning tree

containing a feasible s-t path. This can be done by applying Dijkstra’s algorithm to

compute the shortest path tree with respect to the delay from all nodes to the destination

node t. If the resulting s-t path in the tree is infeasible, then no feasible path exists and

 53

the algorithm terminates. Without loss of generality we assume that the s-t path is

feasible.

 Clearly in the basic solution corresponding to the spanning tree selected as above, the

flows in all the links in the s-t path in the spanning tree will be equal to one, and flows

in all other links will be zero. Since the delay of every link in the TCSP problem is even

and the upper bound ∆ on path delay is odd, the slack variable w > 0 and so it is in the

initial basic feasible solution.

3.4.3. Solving the System Y B = cB

Let Y = (y1…, yn – 1, γ). Here y1…, yn – 1, γ are called potentials (or dual variables) and Y

is called the potential vector. Each yi, i = 1, 2…, n – 1 is the potential associated with

node i (or the row i) and γ is the potential associated with the last row (delay constraint

row) of A.

 Now consider

 Y B = cB (3.15)

 This system of equations has n equations in n variables. We get the following from

(3.15).

 For each link ek = (i, j) in Gb, (y1…, yn-1,γ) hk = cij. That is,

 yi – yj – γ dij = cij, if i ≠ n and j ≠ n,

yi – γ din = cin, if j = n, and (3.16)

 – yj – γ dnj = cnj , if i = n.

 From the above, we can see that we can set the potential of node n at any constant. In

all computations that follow, we shall set the potential of node n equal to zero.

 54

 Definition 3.2:

 1) For link ek = (i, j), c(ek, γ) = γ dij + cij is called the active cost of link (i, j),

 2) r(i, j) = yj – yi + γ dij + cij is called the reduced cost of link (i, j),

 3) The reduced cost of w is given by r(w) = γ , and

 4) The reduced cost of a path p is defined as

 ∑−∑=
−+ ∈∈ pjipji

jirjirpr
),(),(

),(),()(.

 It can be seen from (3.16) that for any link (i, j) in Gb

 r(i, j) = yj – yi + γ dij + cij = 0. (3.17)

 From (3.17) we also have that for any path p from i to j and any cycle W in Gb

 r(p) = yj – yi + γ d(p) + c(p) = 0 and r(W) = γ d(W) + c(W) = 0. (3.18)

 Lemma 3.5: If Gb contains a cycle W, then γ = – c(W) / d(W); Otherwise, γ = 0.

 Proof: If there is no cycle in Gb then the slack variable w is a basic variable and the

corresponding column [0, 0…, 0, -1]t will be a column of B. Since the cost of the slack

variable is zero, we get from (3.15) that γ = 0. Suppose that Gb contains a cycle W. By

(3.18), we get

γ d(W) + c(W) = 0. By Lemma 3.3, d(W) ≠ 0. So γ = – c(W) / d(W). ■

 Lemma 3.6: A link is eligible to enter the basis if its reduced cost is negative and the

slack variable is eligible to enter the basis if γ < 0.

 Proof: The proof follows from Step 2 of the revised simplex method. ■

 Once we have computed the value of γ as in Lemma 3.5, the other potentials yi’s can

be calculated using equation (3.18) and selecting the path in Gb from node n to node i.

 55

Summarizing the above, we have the following procedure for solving Y B = cB and

calculating the potentials.

(1) Set the potential of node n to zero.

(2) Compute γ as in Lemma 3.5.

(3) For each node i, let pi be a simple path in Gb from node n to node i. If there are

two paths in Gb due to the cycle, we will get the same results no matter which path is

selected.

(4) Set ∑ ∑−∑=∑−=
+ −+−∈ ∈∈∈pvu Pvu

uv
Pvu

uv
pvu

uvuv ddpdccpc
),(),(),(),(

)(and)(,

where pi
+ and pi

- are the sets of forward and backward links on pi, respectively, as we

traverse the path from node n to node i.

 Once the potentials are determined, an entering variable, if it exists, can be selected

as in Step 2 of the revised simplex method.

3.4.4. Solving the System B V = ak

We next show how to solve the system of equations B V = ak. We consider three cases:

 Case a): Gb contains no cycle, that is, G contains only n – 1 links and the slack

variable w is a basic variable. The link ek = (i, j) is the entering variable.

 Case b): Gb contains a cycle (that is, Gb has n links) and the entering variable is ek =

(i, j).

 Case c): Gb contains a cycle (Gb has n links) and the entering variable is the slack

variable.

 Solutions in all the three cases are summarized in the following theorem.

 Theorem 3.2: a) If Gb contains no cycle and the entering variable is an in-arc ek = (i,

 56

j), then the vector V defined below is the desired solution to B • V = ak, where W' is the

new cycle formed by adding the in-arc ek and the orientation of W' is chosen to agree

with the direction of ek. The vector V = (v1…, vn)t is defined as:
















=

<

<−

=

otherwise,
niifd(W'),

tation;ycle orienwith the cdisagrees ientationand its or
in W'n of B is i th columng to the orrespondithe link candniif,

ion;e orientath the cyclagrees witientation and its or
is in W'n of Bi th columng to theorrespondithe link candniif,

vi

0

1

1

 (3.19)

 b) If Gb contains a cycle W and link ek = (i, j) enters the basis, then V = – V'p +

(d(W')/d(W)) • V0 is the solution of B • V = ak, where d(W') and d(W) are the delays of

cycle W' and W, respectively and V'p and V0 are vectors defined by the cycles W' and W

as in Lemma 3.1.

 c) If Gb contains a cycle W and the entering variable is the slack variable w, then V =

(1/d(W)) V0 is the solution to B • V = ak, where V0 is defined by cycle W.

Proof: Case a): Gb contains no cycle, that is, G contains only n – 1 links and the slack

variable w is a basic variable. The link ek = (i, j) is the entering variable. In this case,

 B = 










−−

−−

1,
0,

1,1

1,1

n

nn

D
H

,

where Hn - 1, n - 1 is associated with the n – 1 links and the n – 1 nodes in Gb, and D1,n - 1 is

the vector of n – 1 components (corresponding to the delays of the n – 1 links in the

basis subgraph) of the last row of A.

 Let W' denote the new cycle formed by adding the in-arc ek = (i, j) and let the

orientation of W' be chosen to be the same as the direction of the in-arc. Using Lemma

 57

3.2 and the cycle W', it is easy to verify that the vector V = (v1…, vn)t defined in (3.19)

solves the system B • V = ak.

 Case b): Gb contains a cycle (that is, Gb has n links) and the entering variable is ek =

(i, j). Note that the slack variable w is not a basic variable. Hence,

 









= −

n

nn

D
H

B
,1

,1 ,

where Hn - 1, n corresponds to n links and n – 1 nodes, D1, n is the vector of n components

(corresponding to the basic variables) of the last row of A and

 ak = 







− ij

k

d
h

.

 We need to solve the system of equations









−

=








 −

ij

k

n

nn

d
h

V
D
H

,1

,1 . (3.20)

 First, let us consider

Hn - 1, n V = hk. (3.21)

 Because there are n links in Gb, there is exactly one cycle, denoted by W.

 Therefore according to Lemma 3.1,

 ∃V0, Hn -1, n V0 = 0. (3.22)

 After adding link ek = (i, j), we get a new cycle W' and let us choose the orientation of

this cycle to be the same as that of ek. Then by Lemma 3.1,

∃ 









=

1
'

'
pV

V , .0
1

),(
'

,1 =







−

p
knn

V
hH (3.23)

(Note: V'p can be derived using Lemma 3.1 and the cycle W'). So

 58

 Hn - 1, n (– V'p) = hk. (3.24)

 Because rank (Hn - 1, n) = n – 1, – V'p + u • V0, u ∈ R is the solution space of (3.21).

 Using the equation D1, n • V = – dij, we can compute u as follows.

D1, n • (– V'p + u V0) = – dij. (3.25)

 Since D1, n V0 = – d(W) and D1, n (– V'p) + dij = d(W'), we get from (3.25)

 d(W') – u d(W) = 0 and thus u = d(W') / d(W). Note: d(W) ≠ 0, by Lemma 3.3.

 Hence V = – V'p + (d(W') / d(W))V0 is the desired solution to B V = ak.

 Case c): Gb contains a cycle W and the entering variable is the slack variable w.

 Following the arguments in Case 2, we can show that

V = (1 / d(W)) V0. (3.26)

is the desired solution of the equation system B V = ak. Here V0 is defined by W. ■

3.4.5. A Pivot Rule and Structure of Basic Feasible Solutions

In this subsection we present a pivot rule and study the structure of subgraphs of basic

solutions generated by the simplex method. The subgraph Gb of the initial basic feasible

solution has n – 1 links and the nth variable in this basic solution is the slack variable w

> 0. At this initial step, γ = 0 (Lemma 3.5). Define d(Gb) = .),(∑ ∈ bGvu uvuv dx By (3.7),

d(Gb) = ∆ – w. Now one of the following two possibilities occurs in the next pivot.

 1. The simplex method constructs a new spanning tree solution with the slack

variable w remaining nonzero in the new solution.

 2. The simplex method constructs a Gb that contains one cycle W (formed by adding

the in-arc) and w becomes non-basic with respect to this solution. The cycle W cannot

be a directed cycle. If it were a directed cycle, then the reduced cost of the entering link

 59

will be equal to the sum of the costs of the links in W. This sum is a positive number

contradicting the requirement that the reduced cost of the entering link must be negative

(Step 2 of the revised simplex method). By Lemma 3.4, there will be exactly two s-t

paths in Gb. Also, the flow values on all the links in W must be nonzero, for otherwise

all the link flows will be either 0 or 1 making w nonzero and hence basic.

 Summarizing, when the first time a Gb with a cycle is encountered, it will be

necessarily of the form shown in Figure 3.2(b). Flows on the links in the cycle will be λ

or 1 – λ. The simplex method will select the value of λ > 0 in such a way that d(Gb) = ∆.

 Though the cycle in the Gb encountered the first time after initialization will not be a

directed cycle, in a subsequent step, a Gb with a directed cycle may be created. To

achieve an efficient implementation of the simplex method, we would like to avoid

generating any Gb containing a directed cycle. This can be achieved by the pivot rule P1

given next.

 Pivot Rule P1: Select the slack variable w as the entering variable if it is eligible to

enter.

 Theorem 3.3: If the pivot rule P1 is followed and the simplex method on the

RELAX-TCSP problem is initialized as in Section 3.4.2, then no basic solution

subgraph Gb will contain a directed cycle.

 Proof: Assume that a Gb with a directed cycle W' is created and let eij = (i, j) be the

in-arc with which this cycle is created.

 Suppose W' = ijjjjjij k
eeee ...,

211
 and pji is the directed path from j to i in W'.

 Since eij is an in-arc and Y = (y1, y2…, yn - 1, γ) is the potential vector, we have

 r(i, j) = y j – yi + γ dij + cij < 0 and r(pji) = yi – yj + γ d(pji) + c(pji) = 0.

 60

 Summing the above, we obtain γ d(W') + c(W') < 0 .

 Since d(W') > 0 and c(W') > 0, γ < 0. This implies that the slack variable is eligible to

enter the basis but was not selected. This is a contradiction. ■

 Theorem 3.3 implies that pivot rule P1 along with the transformation introduced in

Section 3.2 guarantees that Gb will take only the structures shown in Figure 3.2(a) and

Figure 3.2(b). Under these conditions we are also guaranteed that the values of the

variables xuv will be restricted to the range 0 ≤ xuv ≤ 1.

3.4.6. An Anti-Cycling Strategy

A basic solution in which one or more basic variables assume zero values is called

degenerate. A degenerate basic solution may result in a pivot that does not alter the

basic solution. Such pivots are called degenerate. Furthermore, a basic solution

generated at one pivot and reappearing at another will lead to cycling. Since degenerate

pivots do not result in any improvement of the solutions, they are also a cause of

inefficiency. We present two strategies to handle degeneracy. The first one to be

presented in this subsection is the anti-cycling strategy which is a variation and

extension of Cunningham’s anti-cycling strategy in [1], [4], and [11]. The second

strategy to be presented in Section 3.5 is designed to avoid degenerate pivots

completely.

 Definition 3.3: Given a feasible basic solution subgraph Gb and a node called the

root, we say that the link (u, v) ∈ Gb is oriented toward (resp. away from) the root if any

path in Gb from the root to u (resp. v) passes through v (resp. u). A feasible basic

 61

solution Gb with corresponding flow vector x is strongly feasible if every link (u, v) of

Gb with xuv = 0 is oriented toward the root.

 If the out-arc (u, v) is not a link of the cycle in the basic solution, then Gb – (u, v)

contains exactly two components Gb(u) and Gb(v) such that u ∈ Gb(u) and v ∈ Gb(v). If

the root is in Gb(v), link (u, v) is oriented toward the root; otherwise it is oriented away

from the root. See Figure 3.3(a), (b) for examples of a strongly feasible Gb. We shall

select node t as the root node.

 Lemma 3.7: For any degenerate pivot, the out-arc is not on the cycle of the current

Gb.

 Proof: A degenerate pivot does not alter the basic solution. This means that each

variable has the same value in the current basic solution as well as in the basic solution

resulting from the degenerate pivot. The flow on each link in a cycle is non-zero. If a

link on a cycle were to leave the basis, then after the degenerate pivot it would become

non-basic with flow 0. But that would contradict that the current pivot is degenerate. ■

 If the out-arc is not on the cycle in the current Gb, then the potentials can be updated

easily as described next (See Chapter 5.1.2 of [4]). Let T be the current Gb and e = (u, v)

and e' = (u', v') be the out-arc and the in-arc, respectively. Let T' = T – e + e' be the

subgraph of the new basic variables. If e is not on the cycle in the current Gb, the new

potential vector Y' associated with T' can be obtained as follows (notice that γ does not

change in this case):





∈
∈+

=
'

''''
vu

uvuu
u Tuify

Tuifry
y , (3.27)

where ru'v' = c(e u'v',γ) + yv' – yu' and Tu' (Tv') is the component of T – e containing u' (v').

 62

 Theorem 3.4: If the subgraphs Gb’s of feasible basic solutions generated by the

simplex method are strongly feasible, then the simplex method does not cycle.

 Proof: First observe that in any sequence of degenerate pivots, the value of the

slack variable will remain the same. So the leaving and entering variables can only be

the links in the network. Let Gb be a feasible basic solution subgraph and t be the root.

We define two unique values for Gb: C(Gb) = ∑
∈Evu

uvuv xc
),(

 and W(Gb) = ∑ −
∈Vu

ut yy)(.

Notice that for a given Gb, the value of W(Gb) is unique even though the values of the

potentials Y may not be unique.

Consider two consecutive basic solutions Gb
i = Gb and Gb

i + 1 = Gb
i + e – f, where e

and f are the in-arc and out-arc, respectively.

We first show that either C(Gb
i +1) < C(Gb

i) or W (Gb
i +1) > W (Gb

i).

 Indeed if the pivot that generates Gb
i +1 from Gb

i is nondegenerate, then C(Gb
i +1) <

C(Gb
i). If it is degenerate, we have C(Gb

i +1) = C(Gb
i). In this case we shall prove W

(Gb
i+1) > W (Gb

i).

 Here the in-arc e = (u, v) still has zero flow in Gb
i +1. By Lemma 3.7, f is not a link on

the cycle in Gb
i, so the value of γ does not change. Because Gb

i+1 is strongly feasible, in

Gb
i+1, link e must be oriented toward the root node t, which implies that node t belongs

to Gb(v) (the component of Gb
i – f containing v). Now we can obtain the potentials using

equation (3.27).

 Since ruv = c(euv, γ) + yv – yu < 0, W(Gb
i +1) = W(Gb

i) – |Gb(u)| ruv > W (Gb
i).

 63

 If the simplex method cycles, then for some i < j, Gb
i = Gb

j. This means Gb
i = Gb

i + 1...

= Gb
j
. But then W(Gb

i) > W(Gb
i + 1) > … > W(Gb

j) = W(Gb
i) contradicting that W(Gb

i) =

W(Gb
j). ■

3.5. A Strategy for Avoiding Degenerate Pivots and the Network

Simplex Based (NBS) Algorithm

In this section we first present in Section 3.5.1 a strategy for avoiding degenerate pivots.

We then show in Section 3.5.2 how to select a leaving variable. In Section 3.5.3 we

present a complete description of the new Network Based Simplex (NBS) algorithm and

its complexity analysis. We also show how to extract an approximate solution to the

TCSP (hence the original CSP) problem and performance bounds on the approximate

solution.

3.5.1. Avoiding Degenerate Pivots

In this section we shall develop a strategy which avoids performing degenerate pivots

which is based on the following pivot rule.

 Enhanced Pivot Rule P2: If there is a choice for selecting the entering variables,

then select an entering variable in the following order of preference:

 a) The slack variable if it is eligible to enter.

 b) Eligible links whose tail nodes are on the directed s-t path(s) in the current Gb.

 As we discussed in Section 3.4, rule a) above guarantees that every Gb is of one of

the two forms in Figure 3.2 (a), (b). Both these subgraphs of basic solutions are strongly

 64

feasible. Consider next rule b). Suppose we can find an in-arc e = (u, v) according to

rule b). Let W' denote the new cycle in Gb + e with its orientation defined as the

direction of e. It can be seen that the flows on all links in W' whose directions disagree

with that of W' are nonzero and thus we can push positive amount of flow along the

cycle until the flows on some links of the s-t path (whose directions disagree with the

orientation of W') reach zero. By removing one such link with zero flow, we obtain a

new Gb. In fact, we can select the out-arc in such a way that the resulting Gb is also

strongly feasible (see next subsection). This pivot will not lead to degeneracy. On the

other hand, if no such link is eligible to enter the basis (note: in this case γ is

nonnegative), then we have no option but to perform a degenerate pivot. To avoid

performing degenerate pivots we proceed as follows.

 Let P be the set of nodes on the s-t path(s) in the current basis subgraph Gb. Assign

costs to links in the network as follows: Link cost cuv with u ∉ P and v ∈ P is set as

c(euv, γ) + yv > 0; Otherwise cuv is set as c(euv, γ).

Figure 3.3: Link costs for the transformed graph

 Now condense all the nodes in P into a single node, say, R, and reverse the directions

of all the links. Let the resulting network be called N'. Note that none of the links with

both its ends in P will be in N'. Now use Dijkstra’s algorithm on N' and obtain the

c(euv, γ) + yv

c(exy, γ)

P Node potentials
in P do not

v

u

x
y

 65

shortest path tree with node R as the start node. The links of G corresponding to the

links of the shortest path tree of N' and the links with their both end nodes in P will be a

new basis subgraph G'b (Notice that this operation preserves the strongly feasibility of

Gb and will not change the value of γ). Let the shortest distance value of the node u

computed by the algorithm be d(u). Then we set the potentials of the nodes with respect

to G'b: For each node u ∉ P, yu = d(u), and for all other nodes (all the nodes in P) the

potentials are the same as in the previous Gb.

Now, ∀ (u, v), u ∉ P, yu = d(u) ≤ d(v) + c(euv, γ) = y v + c(euv, γ) , which implies that

for all such links, r(u, v) = yv – yu + γ duv + cuv ≥ 0 and those links whose tails are not in

P are not eligible for choice as in-arc. Since the above operation does not affect the

value of γ, w is not eligible either. Thus we can only consider arcs whose tails are in P

(part (b) of enhanced rule P2). If we still cannot find an in-arc according to enhanced

rule P2 after the above operation, it implies that we have got the optimal basic solution

since no entering variable is available.

 We will show in the following section how to choose a leaving variable using

Theorem 3.2.

3.5.2. Finding a Leaving Arc (Out-Arc)

Suppose the current feasible basic solution Gb is strongly feasible and link e = (u, v) is

the in-arc. If Gb contains a cycle W, then the flow can be decomposed into exactly two

s-t paths. We define the branching point as the first node on W as we traverse the paths

from node s to t (see Figure 3.2(b)). In this subsection, e and e' always denote the in-arc

and out-arc, respectively.

 66

 Claim 3.1: If the current basic solution Gb is strongly feasible and is not optimal,

then one of the arcs e' incident to the branching node or the tail node of the in-arc e is

eligible for choice as out-arc and Gb + e – e' is still strongly feasible.

 We prove the claim by enumerating all possible cases and determining the leaving

variable in each case using Theorem 3.2 and Step 4 of the revised simplex method. Let

the cycle created by adding the in-arc be denoted by W' with its orientation defined as

that of the in-arc.

 Case 1: Slack variable w is in the basic solution (the current Gb is a tree, γ = 0 and w

> 0). This corresponds to Theorem 3.2 (a). According to Step 4 of the revised simplex

method, we need to consider only the entries of V that are 1 or d(W') if d(W') > 0.

Without loss of generality, assume d(W') > 0. These entries correspond to the links of

W' that lie on the s-t path of the current Gb or the slack variable w. The corresponding

entries in the current basic solution x*B are 1 for the links and its current value for w.

The minimum value of t satisfying the constraint x*B – t • V ≥ 0 will be determined by

the inequalities 1 – t ≥ 0 and w – t d(W') ≥ 0. Thus the maximum value of t will be

min{1, w / d(W')}. Since w = ∆ – d(Gb) is odd and d(W') is even, w / d(W') ≠ 1. So, if w

< d(W'), w will leave the basis. Otherwise, the links in W' that lie on some s-t path in the

current Gb are eligible to leave the basis. We shall select the unique link e' on the s-t

path in Gb that is incident to the tail node of the in-arc. This guarantees that the new Gb,

denoted as G'b, is strongly feasible.

 Notice that if w leaves the basis, w = 0 in G'b. This means that d(G'b) = ∆. In this case,

G'b contains two s-t paths p1 and p2 with flow λ and 1 – λ, respectively (see Figure 3.2).

 The value of λ can be calculated from the equation: λ d(p1) + (1 – λ) d(p2) = ∆.

 67

 Case 2: The basic solution consists of n links, i.e., there is a cycle W with branching

point a in the basic solution. The slack variable w is eligible to enter the basis if γ < 0.

Then according to part a) of pivot rule P2, we let w enter the basis and shall select one

of the two links in the current Gb that are incident on the branching point a to leave the

basis. The choice can be made using Theorem 3.2 (c) of Section 3.4.4.

Suppose γ > 0. An in-arc will create a new cycle W'. This corresponds to Theorem

3.2(b) in Section 3.4.4. We need to consider three sub-cases that capture all possibilities.

Without loss of generality, we assume that the orientation of W is clockwise and the

orientation of W' agrees with the direction of the in-arc.

Figure 3.4: Find leaving variable: sub-cases of Case 2

 Case 2.1 (Figure 3.4(a)): Possible out-arcs: (1, 2), (3, 5) and (3, 4). Here, (x12, x35,

x34) = (1, λ, 1 – λ) and thus the out-arc corresponds to the first zero component in the

following formula as t increases from 0.

 (1, λ, 1 – λ) – t (1, d(W') / d(W), – d(W') / d(W))

 = (1 – t, λ – t d(W') / d(W), 1 – λ + t d(W') / d(W)).

 Case 2.2 (Figure 3.4(b)): Possible out-arcs: (1, 2), (2, 7) and (2, 3). Link (7, 6) is not

eligible for out-arc because otherwise w ≠ 0 in the next basic solution due to the

property of the transformed network. The out-arc is decided by the following formula as

in Case 2.1.

s W' W t
in-arc

 1 2 3 4

6 5

 λ
s

t

5

9

2

3 4

7

6

8

in-arc

W'

W

 1 - λ

 λ 6

4

s

3
1

5

t

in-arc 7

 2
W

W'

1 - λ

λ

a)Sub-case 2.1 b) Sub-case 2.2 c) Sub-case 2.3

 68

 (x12, x27, x23) - t (1, 1 + d(W') / d(W), - d(W')/d(W))

 = (1, λ, 1 – λ) – t (1, 1 + d(W')/d(W), - d(W')/d(W)).

 Case 2.3 (Figure 3.4(c)): Possible out-arcs: (2, 3), (2, 9) and (4, 5). The out-arc

corresponds to the first zero component in the following formula when t increases.

 (x23, x29, x45) – t (– d(W') / d(W), d(W') / d(W), 1 – d(W') / d(W)).

3.5.3. NBS Algorithm, Complexity Analysis, and an Approximate Solution

We now present a complete description of the Network Based Simplex (NBS) algorithm

that uses the strategies developed in Section 3.5.1 and 3.5.2 for the RELAX-TCSP

problem. We show in Section 3.5.3.1 that the algorithm is of pseudo-polynomial time

complexity. In Section 3.5.3.2 we show how to extract from an optimum solution to the

RELAX-TCSP problem a feasible solution to the TCSP problem and hence to the

original CSP problem and derive bounds on the deviation of this solution from the cost

of the optimum solution.

Procedure NBS
 Transform the original network as in Section 3.2
 Find an initial feasible basic solution as in Section 3.4.2
 loop {
 if (γ < 0) then

 Let slack variable w be the entering variable (rule (a) of Pivot rule P2)
else if an in-arc satisfying rule (b) of Pivot Rule P2 is available then
 Choose one of them as the entering variable
 else {
 Invoke Dijkstra’s algorithm on the active costs to update the potentials.
 if an in-arc satisfying rule (b) of Pivot Rule P2 is available then
 Choose one of them as the entering variable
 else stop /*has reached the optimal condition*/
 }
}
Determine a leaving variable as in Section 3.5.2
Update the flows and the potentials as in steps of Section 3.4.3

Figure 3.5: Network based simplex algorithm

 69

3.5.3.1. Complexity Analysis

Fact 1: If there is no cycle in the basic solution subgraph, then for each link euv, the link

flow xuv is either 1 or 0. If there is a cycle W in Gb, xij is 0 or at least 1 / |d(W)|.

 Proof: If there is no cycle, the proof is trivial. Assume there is a cycle W. It can be

seen that the flow on links not on the two paths are 0 and the flows on the paths but not

on the cycle is 1. Since there is a cycle, the flow can be decomposed into two paths p1

and p2. Consider flows on the cycle W. Suppose the flow on p1 and p2 are λ and 1 – λ

with 0 < λ < 1.

 Assume d(p1) ≥ d(p2). Since d(p1) and d(p2) are both even and ∆ is odd, d(p1) ≠ ∆ and

d(p2) ≠ ∆. Also by Lemma 3.3, d(W) ≠ 0.

 So d(p1) ≠ d(p2) because d(W) = d(p1) – d(p2).

 We also have λ d(p1) + (1 – λ) d(p2) = λ(d(p1) – d(p2)) + d(p2) = ∆. So,

 min{d(p1), d(p2)}≤ ∆ ≤ max{d(p1), d(p2)} and λ = (∆ – d(p2)) / (d(p1) – d(p2)).

 Hence λ ≥ 1 / d(W) because ∆ – d(p2) ≥ 1 and d(W) = d(p1) – d(p2)> 0.

 Similarly, we can prove that 1 – λ ≥ 1 / d(W). ■

 Fact 2: If euv is the in-arc and W' and W are the newly created cycle and the old cycle

(if it exists), respectively, we have

 0 < |yu – yv – γ duv – cuv| = | γ d(W') + c(W')| =





≠−
=

.0|,)(|/|)()'()()'(|
;0|,)'(|

γ
γ

WdWcWdWdWc
Wc

 Proof: Suppose the cycle W' is e1e2…ek where e1 = euv. Since all the links but euv

on W' are in the basic solution, the reduced costs on all these links but euv are 0. So |yu –

 70

yv – γ duv – cuv| = |γ d(W') + c(W')|. Recalling that γ = – c(W) / d(W), if there exists a

cycle W in the basic solution or γ = 0 if no such cycle exists, we get the rightmost

equality.

Since euv is an in-arc, |yu – yv – γ duv – cuv| > 0. ■

 Fact 3: Let t be the maximal flow that can be pushed on the new cycle W'. Suppose

that euv and xuv are a link and its flow in the basic solution, respectively. Then the

strictest constraint on t is given by xuv – t (1 + |d(W') / d(W)|) ≥ 0, t ≥ 0 and t ≤ 1. Hence

max t ≥ min{1, 1 / (|d(W)| + |d(W')|)} = 1 / (|d(W)| + |d(W')|).

 Proof: First assume there is a cycle W in the current basic solution. If we push

flow t on the new cycle W', according to Theorem 3.2 and Step 4 of the revised simplex

method, in the worse case, the flow on all links will be decreased by at most

t(1+|d(W')/d(W)|). Proof follows if we recall that xuv ≥ 1 / d(W). The proof is similar if

there is no cycle in the basic solution. ■

 Fact 4: Let T and T' be two consecutive feasible basic solutions in the simplex

method and c(T) denote the cost of the flow associated with the basic solution T. If c(T')

< c(T) and D is the maximal link delay, then |c(T') – c(T)| = t |yu – yv – γ duv – cuv| ≥ 1 /

(2n2D2).

 Proof: Follows from |c(T') – c(T)| = t |yu – yv – γ duv – cuv| and Facts 2 and 3. ■

 Theorem 3.5: NBS algorithm terminates within 2n3D2C pivots, where n = |V| and D

(resp. C) is the maximum link delay (resp. cost) and hence its complexity is pseudo-

polynomial.

 71

 Proof: Let T0, T1… Tl be the sequence of consecutive feasible basic solutions. It

suffices to show that l ≤ 2(n D) 3. According to Fact 4, c(T0) – c(Tl) ≥ l /(2 (n D) 2) and

c(T0) ≤ n C.

 This implies that l ≤ 2 n3 D2 C. Since each pivot requires O(m) operations, the NBS

algorithm is of pseudo-polynomial complexity. ■

 Using similar arguments, the revised simplex method that allows degenerate pivots

but only uses the anti-cycling strategy of Section 3.4.6 can also be shown to be of

pseudo-polynomial time complexity.

3.5.3.2. An Approximate Solution to the TCSP / CSP Problem and Performance

Bounds

If the optimal basic solution subgraph for the RELAX-TCSP problem contains no cycle,

then clearly the s-t path in this subgraph is also the optimum solution to the original

CSP problem. On the other hand, if the optimal basic solution graph contains a cycle,

then the optimum flow can be decomposed into flows along two directed s-t paths p1

and p2 with positive flow along each path.

 Lemma 3.8: If c(p2) ≤ c(p1), then either c(p2) ≤ c(p*) ≤ c(p1) and d(p2) ≥ ∆ ≥ d(p1),

where p* is the optimal path of the original CSP problem or one of the two paths p1 and

p2 is optimal.

 Proof: Let 0 < λ < 1 and 1 – λ be the flows on p1 and p2, respectively. We have

 λ d(p1) + (1 – λ) d(p2) = ∆, and (3.28)

 λ c(p1) + (1 – λ) c(p2) ≤ c(p*). (3.29)

 It follows from (3.28) that

 72

min{d(p1), d(p2)} ≤ ∆ ≤ max{d(p1), d(p2)}. (3.30)

 By (3.29), c(p1) and c(p2) cannot both be greater than c(p*). So c(p2) ≤ c(p*).

 If c(p2) = c(p*) then by (3.29), c(p1) ≤ c(p*) which implies p1 or p2 is optimal.

 Assume c(p2) < c(p*). Now min(d(p1), d(p2)) = d(p1) ≤ ∆, for otherwise p2 will be a

feasible solution to the CSP problem with cost smaller than c(p*).

 So we have the required inequality d(p2) ≥ ∆ ≥ d(p1).

 Also path p1 is feasible for the original CSP problem by Theorem 3.1. So c(p1) ≥

c(p*). Thus we have the required inequality c(p2) ≤ c(p*) ≤ c(p1). ■

 It follows from the above lemma that the path p1 is a feasible solution to the TCSP

problem. We may use this as an approximate solution to the original CSP problem. We

next evaluate the quality of this approximate solution.

 Theorem 3.6: Let p1 and p2 be the two paths derived from the optimal solution to the

RELAX-TCSP problem with c(p1) ≥ c(p2), then

)
)(
)(

1(11
*)(
)(

1

21

pc
pc

pc
pc

−
−

+≤
λ
λ and)

)(
1(

1
1

)(12

∆
−

−
+≤

∆
pdpd

λ
λ ,

where λ is the flow on path p1 at termination and ∆ is the delay bound.

 Proof: From *)()()1()(21 pcpcpc ≤−+⋅ λλ , we obtain

*)(
)(11

*)(
)()1(*)(

*)(
)(221

pc
pc

pc
pcpc

pc
pc

λ
λ

λλ
λ −

−=
⋅

⋅−−
≤ .

 Because c(p*) ≤ c(p1),)
)(
)(

1(11
)(
)(11

*)(
)(11

1

2

1

22

pc
pc

pc
pc

pc
pc

−
−

+=
−

−≤
−

−
λ
λ

λ
λ

λλ
λ

λ
.

 Similarly, we can prove that))(1(
1

1)(12

∆
−

−
+≤

∆
pdpd

λ
λ . ■

 73

 Using a special example below, we can show that no constant factor approximation

solution based on relaxation approach (including NBS and LARAC algorithm) is

possible (However, simulations show that the approximate solution is very close to the

optimum). For closing the gap between the optimum value and the approximate value

see Section 2.6.

Figure 3.6: An example showing that the gap can be arbitrarily large

 Let OPT, OPTS, and ∆ denote the optimal cost, the cost of the path returned by

relaxation method, and the delay upper bound. In Figure 3.6, the solid links correspond

to the basic variables in the optimal basis. Thus OPTS = ∆ – 4. Since OPT = 4, |OPTS –

OPT| / OPT = (∆ – 8) / 4, where ∆ can be specified arbitrarily.

3.6. Simulation and Comparative Performance Evaluation

We compared our NBS algorithm with the general purpose LP solvers, LARAC

algorithm [23], parametric search based LARAC algorithm [61] (denoted as PARA),

and the LHWHM algorithm [37]. The LARAC algorithm has time complexity of O(m2

log4m) [25] while the parametric search based LARAC algorithm has better complexity,

namely, O((m + n log n)2) [65]. However, the complexity results are derived using the

worst scenario and thus they may not be an accurate indicator of the performance of

algorithms on average basis. So we compared the four methods using simulations.

s

 0, 4 0, ∆ - 2

 4, 0 ∆ - 4, 0

 t

Cost, Delay

 74

Figure 3.7: Simulation on regular graphs

 We use three classes of network topologies: regular graphs Hk, n (see [55]), Power-

Law Out-Degree graph [44], and Waxman’s random graph [59]. For a network G(V, E),

the nodes are labeled as 1, 2…, n = |V|. Nodes n / 2 and n are chosen as the source and

target nodes. For the Power-Law Out-Degree graph and Waxman’s random graph, the

hop number of feasible s-t paths is usually very small even when the network is very

large. This will bias the results in favor of the LHWHM algorithm. So, for Waxman’s

random graphs, a link joining node u and v is added if |u – v| < |V| / 50 besides other

rules for generating random graphs. We keep the original version of Power-Law Out-

Degree graph as in [44]. Even though this kind of graphs favors the LHWHM algorithm,

the comparison of the performance of the LARAC and NBS algorithms is still an

indicator of the merits of NBS. The link costs and delays are randomly independently

(a) Quality of Solution on Regular graph
(Out-Degree = 6)

0

10000

20000

30000

40000

50000

0 1000 2000 3000 4000 5000

Node

C
os

t
LHWHM

NBS

OPT

(c) Computational Time on Regular Graph
 (Out-Degree = 6)

0
50

100
150
200
250
300
350

0 1000 2000 3000 4000 5000

Node

Ti
m

e(
m

s)

NBS-TIM E
LHWHM -TIM E
LARAC-TIM E
PARA-TIM E

(d) Computational Time on Regular Graph
(Out-Degree = 36)

0
100
200
300
400
500
600
700

0 1000 2000 3000 4000

Node

Ti
m

e(
m

s)

NBS-TIM E
LHWHM -TIM E
LARAC-TIM E
PARA-TIM E

(b) Computational Time on Regular Graph
(number of nodes = 2000)

0
100
200
300
400
500
600
700
800

0 16 32 48 64 80 96 112 128

Out-Degree

Ti
m

e(
m

s)

NBS-TIM E
LARAC-TIM E
PARA-TIM E

 75

generated even integers in the range from 1 to 200. The delay bound is 1.2 times the

delay of the minimum delay s-t paths in G.

 The results are shown in Figure 3.7-3.10. Experiments show that NBS algorithm can

usually find better solutions than the LARAC algorithm by selecting the best feasible

path encountered during the execution instead of the optimum path to the RELAX-

TCSP problem. We also find that for sparse graphs (Figure 3.7(c)), NBS takes more

time than the LARAC algorithm. However, when the network is dense (large out-degree,

See Figure 3.7(d)), NBS beats LARAC. Basically, NBS algorithm is a neighbor search

algorithm in which a better solution is derived from the current solution. At each pivot,

the NBS algorithm tries all the nodes in the s-t path in the current basic graph in order to

find an in-arc emanating from a node in the path. When the graph is dense, it is more

likely that an eligible in-arc can be found in fewer tries. On the other hand, the LARAC

algorithm invokes a series of Dijkstra’s shortest path algorithm. When the graph is

denser, each step in Dijkstra’s algorithm takes more time since Dijkstra’s algorithm

checks all the neighbors of the currently processed node.

Figure 3.8: Waxman’s random graphs

(a) Quality of Solutions on Waxman's
Random Graph(α = 0.6, β = 0.9)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 500 1000 1500 2000 2500 3000 3500 4000

Node

C
os

t

OPT
LHWHM
NBS
LRARC

(b) Computational Time

0

100

200

300

400

500

600

700

0 1000 2000 3000 4000

Node

Ti
m

e(
m

s)

NBS-TIME
LHWHM-TIME
LARAC-TIME
PARA-TIME

 76

 We also compared the NBS algorithm with general purpose LP solvers: CPLEX 8.0

(www.ilog.com/products/cplex), QSopt (www2.isye.gatech.edu/~wcook/qsopt), and

CLP (www.coin-or.org). Among all the three solvers, CPLEX is always the fastest (this

is not surprising because CPLEX is recognized as one of the best LP solvers). So we

only report the experiments with CPLEX. In our experiments with CPLEX, we have

used the same graphs as above. Using CPLEX package, we may choose different

optimizers such as the primal dual method, network simplex etc. Our experiments show

that the CPLEX using the primal dual uses the least time and so our comparison is with

respect to this optimizer. Notice that CPLEX can also retrieve the network structure

underlying the CSP problem. But we found that this does not help decrease the running

time. Actually, it takes longer time to find the optimal solution if CPLEX is directed to

use the special structure of the networks. The numerical simulation results in Figure

3.10 show that the NBS algorithm is faster.

Figure 3.9: Power-Law Out-Degree graphs

Computational Time on Power-Law
Out-Degree graph

0

50

100

150

200

250

300

0 1000 2000 3000 4000
Node

Ti
m

e(
m

s)

NBS-TIM E
LHWHM -TIM E

LARAC-TIM E
PARA-TIM E

 77

Figure 3.10: NBS and CPLEX comparison

3.7. Summary

In this chapter, we studied the QoS routing problem (or equivalently the CSP problem)

from the primal perspective in contrast to most of the currently available approaches

that studied the problem from a dual perspective. Specifically we applied the revised

simplex method on the primal form of the RELAX-TCSP problem. Several strategies

are employed to achieve efficient implementation of the revised simplex method. These

strategies include: explicit formulas to solve the systems of equations needed to find

entering and leaving variables, an anti-cycling strategy, and a strategy to avoid

degenerate pivots. These result in two algorithms. One of these allows degenerate pivots

and uses an anti-cycling strategy developed in this chapter. The other algorithm called

NBS algorithm avoids degenerate pivots. We show that both algorithms are of pseudo-

polynomial-time complexity. We have also shown how to extract an approximate

solution to the original CSP problem from the optimum solution to the RELAX-TCSP

0

0.2

0.4

0.6

0.8

1

1.2

0 500 1000 1500 2000 2500 3000 3500
Node

R
un

ni
ng

 T
im

e

CPLEX-REGULAR

CPLEX-RANDOM

CPLEX-POWER

NBS-REGULAR

NBS-RANDOM

NBS-POWER

 78

problem and derive bounds on the quality of this solution with respect to the optimum

solution. Extensive simulation results are presented to demonstrate that our approach

compares favorably with the LARAC algorithm and is faster on dense graphs. Also, our

algorithm is faster than the general purpose LP solvers.

 79

Chapter 4. Constrained Shortest Link-Disjoint Paths

Selection (CSDP(k)): A Network Programming Based

Approach

4.1. Introduction

In this chapter we are interested in selecting a set of paths satisfying certain constraints.

This problem is a fundamental one and arises in several applications. Specifically the

problem, denoted as the CSDP(k) problem, is to select a set of k link-disjoint paths from

s to t such that the total cost of these paths is minimum and that the total delay of these

paths is not greater than a specified bound. The CSDP(k) problem arises in the context

of provisioning paths in a network that could be used to provide resilience to failures in

one or more of these paths. Note that this is a generalized version of the CSP problem

considered in Chapter 3 and so it is NP-hard. This has led researchers to propose

heuristics and approximation algorithms for these problems.

 Orda et al. [43] have studied the CSDP(2) problem extensively and have provided

several approximation algorithms. A special case of the CSDP(k) problem which does

not have the delay requirement has been studied in [54]. The algorithms in [23] and [54]

can be integrated to provide an approximate solution to the CSDP(k) problem. We call

this the G-LARAC(k) algorithm.

 The rest of the chapter is organized as follows. In Section 4.2 we define the CSDP(k)

problem and a generalized version of this problem called the GCSDP(k) problem. The

GCSDP(k) problem requires that the delay of each path in the set of link-disjoint paths

 80

be bounded by a specified value. This is in contrast to the CSDP(k) problem wherein the

delay constraint is with respect to the total delay of the paths. However, even finding

two delay constrained link-disjoint paths is NP-hard and is not approximable within a

factor of 2 – ε for any ε > 0 [32]. We first show that the optimal objective values of the

LP relaxations of these two problems have equal value. Hence we focus our study on

the relaxed version of the CSDP(k) problem, namely, the RELAX-CSDP(k) problem. In

Section 4.3 we review the G-LARAC(k) algorithm which is a dual based approach to

solving RELAX-CSDP(k). In Section 4.4 we introduce a transformation on the CSDP(k)

problem. The transformed problem will be called the TCSDP(k) problem. We show that

the CSDP(k) problem and the TCSDP(k) are equivalent. As we show later in the chapter

the transformed problem has several properties that enable us to achieve an efficient

implementation of our approach. In the remainder of the chapter we study the LP

relaxation of the TCSDP(k) problem, namely, RELAX-TCSDP(k), using the revised

simplex method of linear programming. In Section 4.5, several properties of basic

solutions of RELAX-TCSDP(k) are established. We also show how to extract an

approximate solution to the CSDP(k) problem starting from an optimal solution to

RELAX-TCSDP(k). In Sections 4.6-4.7, the revised simplex method and several issues

relating to an efficient implementation are discussed. We also develop an anti-cycling

strategy and establish the pseudo-polynomial time complexity of the revised simplex

method when applied on RELAX-TCSDP(k). Simulation results comparing our

approach with the G-LARAC(k) algorithm and the commercially available CPLEX

package are presented in Section 4.8. These results demonstrate that our algorithm is

faster than currently available approaches. They also indicate that in most cases the

 81

individual delays of the paths produced starting from RELAX-CSDP(k) do not deviate

in a significant way from the individual delay requirements of the GCSDP(k) problem,

thereby demonstrating that there is not much loss of generality in focusing on RELAX-

CSDP(k) rather than on the relaxed version of the more complex GCSDP(k) problem.

We conclude in Section 4.9 with a summary of our work and pointing to certain

directions for future research.

 The results in this chapter have been repeated in [62].

4.2. Constrained Shortest Link-Disjoint Paths Selection Problems:

Formulations, Relaxations and Their Equivalence

We first define two classes of link-disjoint paths selection problems. One is a special

case of the other. They both admit integer linear programming (ILP) formulations. They

are computationally intractable because of the integrality constraints. For networks

involving small numbers of nodes and links, these problems can be solved using any

general purpose ILP package. For larger networks, faster algorithms that exploit the

special network structure of the problems are desired. So, we are interested in solving

these problems after relaxing the integrality requirement. The relaxed versions of these

problems are upper bounded LP problems. The main result in this section is that the

relaxed versions of both these problems are equivalent in the sense they have the same

optimal objective value.

 General Constrained Shortest k-Disjoint Paths Problem (GCSDP(k)): Given two

nodes s and t and a positive integer T, the GCSDP(k) problem is to find a set of k (k ≥ 2)

 82

link-disjoint s-t paths p1, p2…, pk such that the delay of each path pi is at most T and the

total cost of the k paths is minimum.

 Constrained Shortest k-Disjoint Paths Problem (CSDP(k)): Given two nodes s

and t, and a positive integer T, the CSDP(k) problem is to find a set of k link disjoint s-t

paths p1, p2…, pk such that the total delay of these paths is at most k T and that the total

cost of the k paths is minimum.

 Both the above problems can be formulated as ILP problems. Relaxing the integrality

constraints we get the following relaxed versions of these problems.

 RELAX-GCSDP(k)

Minimize: ∑ ∑
∈ =Evu

k

i

i
uvuv xc

),(1
 (4.1)

 subject to

 For i = 1, 2 …, k, ∀u∈ V,








=−
=

=∑−∑
∈∈

.0
1
1

}),(|{}),(|{

otherwise
tuif
suif

xx
Euvv

i
vu

Evuv

i
uv (4.2)

∑ ⋅
∈ Evu

i
uvuv xd

),(
 ≤ T (4.3)

∑
=

k

i

i
uvx

1
 ≤ 1 and i

uvx ≥ 0 for all (u, v) ∈ E (4.4)

 The solutions to the above problem may not, in general, be integral. However, every

integer solution defines a set of k link-disjoint s-t paths. In other words, an integer

solution X i = {xi
uv}(u, v) ∈ E for i = 1, 2…, k is the flow vector corresponding to the ith

path pi, i.e., link (u, v) is in path pi iff xi
uv = 1.

 83

 RELAX-CSDP(k)

Minimize: ∑ ⋅
∈Evu

uvuv xc
),(

 (4.5)

 subject to

∀ u ∈V,







=−
=

=∑−∑
∈∈

.0
}),|({}),|({

otherwise
tuifk
suifk

xx
Euvv
vu

Evuv
uv (4.6)

∑ ⋅
∈Evu

uvuv xd
),(

 ≤ k T and (4.7)

 0 ≤ xuv ≤ 1, for all (u, v) ∈ E

 We now proceed to show that the RELAX-GCSDP(k) and RELAX-CSDP(k) are

equivalent in the sense that they both have optimal solutions with the same value for the

objective. Let Λ = (λ1, λ2 …, λk) ≥ 0 and define

 LG(k, Λ) = Minimize { ∑ ∑
∈ =Evu

k

i

i
uvuv xc

),(1
 + ∑ −∑ ⋅

= ∈

k

i Evu

i
uvuvi Txd

1),(
)(λ }.

 Then the Lagrangian dual of RELAX-GCSDP(k) is as follows.

 LAGRANGIAN-GCSDP(k)

 Maximize LG(k, Λ) among all Λ ≥ 0

 subject to

 For i = 1, 2 …, k, ∀ u ∈V,








=−
=

=∑−∑
∈∈

.0
1
1

}),|({}),|({
otherwise

tuif
suif

xx
Euvv

i
vu

Evuv

i
uv (4.8)

0and1
1

≥≤∑
=

i
uv

k

i

i
uv xx , for all (u, v) ∈ E (4.9)

 The vector Λ is called the Lagrangian multiplier. The above problem can be solved

by finding the Lagrangian multiplier vector Λ that maximizes LG(k, Λ).

 84

 Property 4.1: Given any Lagrangian multiplier Λ = (λ1…, λk), let Λ' be obtained by

permuting the components of Λ. Then LG(k, Λ) = LG(k, Λ').

 Property 4.2 ([7]): LG(k, Λ) is a concave function of Λ.

 Property 4.3: There exists Λ with all components equal that maximizes LG(k, Λ).

 Proof: Let Λ* = (λ1…, λk) be a maximizing multiplier.

 Let S(Λ*) denote the set of vectors whose elements are permutations of the elements

of Λ*.

 Let C = |S(Λ*)| = k! and θ = 1 / C.

 By Property 4.1, ∀H ∈ S(Λ*), LG(k, Λ*) = LG(k, H).

 By the concavity of LG(k, Λ*),

LG(k, Λ*) = θ C L(k, Λ*) = ∑
Λ∈)(

),(
SH

HkLθ ≤ ∑
Λ∈)(

),(
SH

HkL θ ≤ L(k, Λ*).

 So, Γ = ∑
Λ∈)(SH

Hθ is also a maximizing multiplier and Γ has identical components. ■

 By Property 4.3, LG(k, Λ) can be reformulated with respect to some Λ = (λ, λ …, λ) ≥

0 as follows:

LG(k, Λ) = Minimum{ ∑ ∑
∈ =Evu

k

i

i
uvuv xc

),(1
)(+ λ (∑ ∑

∈ =Evu

k

i

i
uvuv xd

),(1
)(– k T)}. (4.10)

 Let

∑=
=

k

i

i
uvuv xx

1
 for all (u, v) ∈ E. (4.11)

 We now define UNIFORM-LAGRANGIAN-GCSDP(k) as follows.

 First let L(k, λ) = min { ∑
∈Evu

uvuv xc
),(

 + λ (∑
∈Evu

uvuv xd
),(

– k T)}.

 UNIFORM-LAGRANGIAN-GCSDP(k):

 85

Maximize L(k, λ) among all scalars λ ≥ 0 (4.12)

 subject to

∀ u ∈V,







=−
=

=∑−∑
∈∈

.0
}),(|{}),(|{

otherwise
tuifk
suifk

xx
Euvv

vu
Evuv

uv (4.13)

 0 ≤ uvx ≤ 1, for all (u, v) ∈ E (4.14)

 Note that (4.13) is obtained by summing up the k flow balance constraints in (4.8)

and that λ is a scalar.

 Theorem 4.1: UNIFORM-LAGRANGIAN-GCSDP(k) and LAGRANGIAN-

GCSDP(k) have the same optimal value for the objective.

 Proof: Let Λ = (λ, λ…, λ) ≥ 0. We first show LG(k, Λ) ≥ L(k, λ).

 Let {xi
uv}(u, v) ∈ E, i = 1 …, k minimize LG(k, Λ). Then we have

 LG(k, Λ) = ∑ ∑
∈ =Evu

k

i

i
uvuv xc

),(1
 + ∑ −∑ ⋅

= ∈

k

i Evu

i
uvuv Txd

1),(
)(λ

 = ∑
∈Evu

uvuv xc
),(

 + λ (∑
∈Evu

uvuv xd
),(

– k T) ≥ L(k, λ),

where uvx is defined as in (4.11).

 It follows from the unimodularity [1] of the constraints (4.13)-(4.14) that for a given λ,

there exists an optimal integer solution to UNIFORM-LAGRANGIAN-CSDP(k)

problem. Also an integer solution Y = {yuv}(u,v) ∈ E of UNIFORM-LAGRANGIAN-

CSDP(k) that achieves the minimum in L(k, λ) defines a set of k link-disjoint s-t paths

Pk = (p1, p2, … pk). Let X i = {xi
uv}(u,v) ∈ E be the flow vector for path pi, i.e., xi

uv = 1 iff (u,

v) ∈ pi; otherwise, xi
uv = 0.

 86

 Observe that yuv = ∑
=

k

i

i
uvx

1
. Then

 L(k, λ) = ∑
∈Evu

uvuv yc
),(

 + λ (∑
∈Evu

uvuv yd
),(

– k T)

 = ∑ ∑
∈ =Evu

k

i

i
uvuv xc

),(1
 + ∑ −∑ ⋅

= ∈

k

i Evu

i
uvuv Txd

1),(
)(λ ≥ LG(k, Λ).

 Hence, L(k, λ) ≥ LG(k, Λ). So L(k, λ) = LG(k, Λ).

 By Property 4.3, there exists a vector Λ* = (λ*, λ*…, λ*) that maximizes LG(k, Λ).

Let η* be a maximizing multiplier for L(k, λ) and denote H* = (η* …, η*).

 By definition of Λ* and η*, we have

 LG(k, Λ*) = L(k, λ*) ≤ L(k, η*) = LG (k, H*) ≤ LG(k, Λ*).

 Hence LG(k, Λ*) = L(k, η*). ■

 The above theorem has an important implication. It shows that the optimal objective

to RELAX-GCSDP(k) can be obtained by solving UNIFORM-LAGRANGIAN-

GCSDP(k). But UNIFORM-LAGRANGIAN-GCSDP(k) is the general linear

programming dual of the RELAX-CSDP(k) problem (See page. 183 of [5]). Thus we

have the following result by the strong duality theorem [5].

 Theorem 4.2: RELAX-GCSDP(k) and RELAX-CSDP(k) have the same optimal

objective value.

 The intuition behind the above result is as follows. The indistinguishability of the k

path constraints represented by (4.3) guarantees that if P is a set of feasible paths

constituting a solution to RELAX-GCSDP(k) problem then any permutation of these

paths is also a solution (Property 4.1). Also in the optimum solution there is no reason

 87

for paths to be weighted differently (Property 4.3). As formally proved, these two

properties lead to Theorem 4.2.

 Theorem 4.2 implies that if we are interested only in obtaining the optimal objective

value of the RELAX-GCSDP(k), then starting with the RELAX-CSDP(k) does not

result in any loss of generality. In view of this, we shall focus on RELAX-CSDP(k) in

the rest of the chapter.

4.3. G-LARAC(k) Algorithm: A Dual Based Approach to RELAX-

CSDP(k)

The G-LARAC(k) algorithm [6] is a generalization of the LARAC algorithm [23] that

was specifically designed for the CSP problem. The G-LARAC(k) algorithm may be

viewed as an algorithm for solving RELAX-CSDP(k) problem using its Lagrangian

dual which is the same as UNIFORM-LAGRANGIAN-GCSDP(k) repeated below.

 In the following we use ∆ in place of k T.

 UNIFORM-LAGRANGIAN-GCSDP(k)

 Maximize L(k, λ) = Minimize{ ∑
∈Evu

uvuv xc
),(

 + λ (∑
∈Evu

uvuv xd
),(

– ∆)} for all λ ≥ 0.

 subject to







=−
=

=∑−∑
∈∈

.0
}),|({}),|({

otherwise
tuifk
suifk

xx
Euvv
uv

Evuv
uv

 0 ≤ xuv ≤ 1, for all (u, v) ∈ E.

 88

 Given λ, L(k, λ) = Minimum{ ∑
∈Evu

uvuv xc
),(

 +λ (∑
∈Evu

uvuv xd
),(

– ∆)} is achieved by a set of k

link-disjoint paths with minimum total weight, where the weight associated with link (u,

v) is given by cuv + λ duv. The key issue is how to search for the optimal λ that

maximizes L(k, λ) and determining the termination condition for the search. The G-

LARAC(k) algorithm presented in Figure 4.1 is one such efficient search procedure. In

this procedure cλ cost of a path (also called minimum aggregate cost) refers to the cost

of the path computed using cuv + λ duv as the cost of link (u, v).

Figure 4.1: G-LARAC(k) algorithm

 Basically G-LARAC(k) performs the following steps.

1. In the first step, the algorithm calculates the minimum cost of a set of k link-

disjoint s-t paths using link costs. This can be done by the algorithm in [54].

If the total delay of these paths is at most ∆, this is surely the required set of

paths. Otherwise, the algorithm stores this set as the latest infeasible set,

simply called the Pc set. Then it determines the minimum delay of a set of k

Procedure G-LARAC (s, t, ∆, k)
 Pc :=Disjoint (s, t, c, k) /*Compute minimum cost of a set of k link-disjoint s-t paths*/
 if d(Pc) ≤ ∆ then return Pc
 Pd := Disjoint (s, t, d, k) /*Compute minimum delay of a set of k link-disjoint s-t paths*/
 if d(Pd) > ∆ then return “no solution”
 repeat
 λ = (c(Pc) – c(Pd)) / (d(Pd) – d(Pc))
 R = Disjoint(s, t, cλ, k) /*Compute minimum aggregate cost cλ of s-t path*/
 if cλ (R) = cλ (Pc) then return Pd
 else if d(R) ≤ ∆ then Pd := R else Pc := R
 end repeat
end procedure

 89

link disjoint s-t paths, called the Pd set. If Pd is infeasible, there is no solution

to this instance.

2. Set λ = (c(Pc) – c(Pd)) / (d(Pd) – d(Pc)). With this value of λ, we can find a

set of k link-disjoint paths with minimum cλ-cost. Let this set be denoted as

R. If cλ(R) = cλ(Pc) (= cλ(Pd)), we have obtained the optimal λ. Otherwise, set

R as the new Pc or Pd according to whether R is infeasible or feasible.

 A detailed discussion of several issues relating to G-LARAC(k) and properties of

solutions produced by G-LARAC(k) were presented in Chapter 2.

 In contrast to the dual approach taken by the G-LARAC(k) algorithm our interest in

the remainder of the chapter is to design an approach to obtain an approximate solution

to the CSDP(k) problem using the primal simplex method of linear programming.

4.4. Transformation of the RELAX-CSDP(k) problem

To achieve an efficient implementation of our approach to the RELAX-CSDP(k)

problem we consider problem TCSDP(k) on a transformed network defined as follows.

• The graph of the transformed problem is the same as that of the original problem,

that is, G(V, E).

• For all (u, v) ∈ E, d'uv and c'uv in the transformed problem are given by d'uv = 2

duv and c'uv = cuv.

• The new upper bound ∆' in the transformed problem is given by ∆' = 2 ∆ + 1.

 Note that the transformation above is the same as the transformation for the CSP

problem presented in Chapter 3.

 90

 Let Pk
 denote a set of k link-disjoint s-t paths. Let c(Pk) and d(Pk) denote the total cost

and the total delay of the k paths in Pk. The TCSDP(k) problem asks for a set of k link-

disjoint s-t paths with minimum total cost and with total delay at most ∆'.

 Theorem 4.3: Pk is a feasible solution (resp. an optimal solution) to the CSDP(k)

problem iff it is a feasible solution (resp. an optimal solution) to the TCSDP(k) problem.

 Proof: Given the set of paths Pk, let Tc(Pk) and Td(Pk) denote the total cost and the

total delay of the paths in Pk in the TCSDP(k) problem, respectively. Evidently, Tc(Pk)

= c(Pk) and Td(Pk) = 2 d(Pk). It suffices to show that Pk is feasible in the CSDP(k)

problem iff it is feasible in the TCSDP(k) problem.

 If Pk is feasible in the CSDP(k) problem, then d(Pk) ≤ ∆ and Td(Pk) = 2 d(Pk) ≤ 2 ∆ <

2 ∆ + 1. So Pk is also feasible in the TCSDP(k) problem.

 If Pk is feasible in the TCSDP(k) problem, then 2 d(Pk) = Td(Pk) ≤ ∆' = 2 ∆ + 1.

From the assumption that delays have integer values it follows that d(Pk) ≤ ∆. So Pk is

also feasible in the CSDP(k) problem. ■

 In view of this equivalence we only consider, in the rest of the chapter, the RELAX-

TCSDP(k) problem. Also we use ∆ (being odd) and duv (being even) to denote the delay

bound and link delay in the TCSDP(k) problem. Notice that the transformation does not

change the costs of paths.

 We conclude this section by recalling some terminology defined in Section 3.3 and

presenting the RELAX-TCSDP(k) problem in matrix form.

 Let the links be labeled as e1, e2 …, em and the nodes be labeled as 1, 2 …., n. We

shall denote the delay of each edge ei as di and the cost of ei as ci. The incidence matrix

of G has m columns, one for each link and n rows, one for each node [55]. The rank of

 91

this matrix is n – 1, and removing any row of this matrix will result in a matrix of rank n

– 1. We denote this resulting matrix of rank n – 1 as H. We also assume that the row

removed from the incidence matrix corresponds to node n. We denote the column of H

corresponding to ek by the vector hk. For ek = (i, j), i, j ≠ n we have hk = (h1,k…, hi, k ,…

hj, k ,… hn-1, k)t with all its components being 0 except for hi, k = 1 and hj, k = – 1. Also for

ek = (i, n), hi, k = 1, and for ek = (n, j), hj, k = – 1. Let

),...,(
1
0

121 +=







−

= mm aaaa
D
H

A , where D = (– d1, – d2…, – dm), (4.15)

 mi
d
h

a
i

i
i ≤








−

= , and 







−

=+ 1
0

1ma . (4.16)

 Let x be the column vector of the m flow variables xuv and the slack variable w

corresponding to the delay constraint (4.7), and c be the row vector (c1, c2 …, cm, 0) of

the costs. Note that the cost of the slack variable is 0. Then the RELAX-TCSDP(k)

problem (see (4.5)-(4.7)) can be written in matrix form as follows. Note that to conform

to the standard form for a minimization problem we have used “≥“ form of (4.7) and

added a slack variable w, i.e., ∑ ⋅−
∈Evu

uvuv xd
),(

 – w = – ∆.

 RELAX-TCSDP (k)

 Minimize c x

subject to A x = b (4.17)

 0 ≤ x ≤1, for ∀(u, v) ∈ E

 w ≥ 0,

 92

where w is the slack variable added to (4.7) and b = (b1, b2…, bn-1, – ∆)t with bs = k, bt =

- k and bi = 0 for i ≠ s, t.

 We note that the above problem is almost the same as the minimum cost flow

problem except for the additional delay constraint.

 The rest of the chapter is concerned with the simplex method based solution of

RELAX-TCSDP(k) and several issues relating to its efficient implementation. We want

to emphasize that most of these properties hold only with the transformation and we

shall use “*” to denote those properties that also hold without the transformation. The

cost of the optimal solution to RELAX-TCSDP(k) will be a lower bound to the optimal

cost of the original CSDP(k) problem. We will show in the next section how to extract

an approximate solution to TCSDP(k) (hence the CSDP(k)) problem from an optimal

solution to the RELAX-TCSDP(k) problem.

4.5. Properties of Basic Solutions of RELAX-TCSDP(k) and

Generation of an Approximate Solution to the CSDP(k) Problem

Simplex method of linear programming starts with a basic solution and proceeds by

constructing one basic solution from another. A basic solution consists of two sets of

variables, basic and nonbasic. For the RELAX-TCSDP(k) problem under consideration,

all the nonbasic variables in a basic solution will be 0 or 1 [11]. Note that the value of

the slack variable, when it is nonbasic, must be equal to 0 because it does not have an

upper bound. Given a basic solution, we shall denote the subgraph of G corresponding

to the basic variables (except the slack variable if it is in the basic solution) in this

 93

solution by Gb. The subgraph Gb will be called the subgraph of the basic solution or

simply the basis graph. The nonsingular submatrix of A defined by the basic variables is

called a basis matrix or simply, a basis and is denoted as B. The rest of the matrix

corresponding to the nonbasic variables is called the nonbasic matrix. In this section we

present certain important properties of the basic solutions of the RELAX-TCSDP(k)

problem. For the sake of continuity some of the lemmas proved in Chapter 3 will be

stated here without proof.

 Lemma 4.1* [55]: Let G (V, E) be a directed network with at least one cycle W (not

necessarily directed). Assigning an arbitrary orientation to W, let U = (u1, u2, u3…, um)t,

where









∈−

∈

=

.,0

,1

,1

otherwise

WofnorientatiothewithdisagreeseofnorientatiotheandWeif

WofnorientatiothewithagreeseofnorientatiotheandWeif

u jj

jj

j

Then, H U = 0.

 We shall use U(W) to denote the vector derived from cycle W as in the above lemma.

We shall denote by d(W) the signed algebraic sum of the delays of the links in a cycle W

as we traverse around the cycle.

Figure 4.2: Structure of basic solutions

flow

0

1

t 1 1

0

λ
λ λ

1- λ
1 - λ

1 - λ

t 1
1

1

1

0

0

a) Tree basic solution b) Basic solution with a cycle

0 < λ < 1

 94

 Lemma 4.2*: Every basis matrix contains the last row of A.

 Lemma 4.3*: The subgraph Gb of a basic solution contains at most one cycle (See

Figure 4.2).

 Lemma 4.4*: If there is a cycle W in a basic solution, then d(W) ≠ 0.

 Lemma 4.5: If there is no cycle in a basic solution, then for ∀(u, v) ∈ E, xuv = 0 or 1.

If there is a cycle W in a basic solution, then for ∀(u, v) ∈ W, 0 < xuv < 1 and for ∀(u, v)

∈ E – W, xuv = 0 or 1.

 Proof: Let B = (b1, b2 …, bn), AN, xB, and xN denote the basis matrix, nonbasic

matrix, column vector of basic variables, and column vector of nonbasic variables in the

basic solution, respectively.

 Let b' = b – AN xN, Then we have B xB = b'.

 Since all the components in AN xN and b are integers, so are all the components in b'.

 By Cramer’s rule, we have

 xi = det (Bi) / det (B), where Bi = (b1…, bi – 1, b', bi + 1…, bn).

 We first show xi is an integer if the corresponding link is not in the cycle. We

consider two cases:

 Case 1: There is no cycle in the basic solution. Thus the slack variable is a basic

variable. Also Gb is a spanning tree. Let the nth column in the basis B correspond to the

slack variable.

 Then bn = (0 …, 0, – 1)t and so B has the following form.

 







−

=
1'
0'

D
H

B , where H' is the incidence matrix of Gb and D' is the

corresponding delay vector.

 95

 Since H' is the incidence matrix of a spanning tree it follows that |det(H')| = 1. So

|det(B)| = 1. Also, det(Bi) is an integer because all the components of Bi are integers. So

xi is also an integer for all i.

 Case 2: There is a cycle W in the basic solution. That is, the slack variable is not in

the basis.

 Let l = |W|, i.e., l is the number of links in W.

 In this case, we first show that the flow on any link i not on the cycle is an integer.

Without loss of generality, let

 







=

'
'

DD
HH

B
W

W and 







=

iW

iW
i DD

HH
B

'
'

,

where the columns of HW = (h1, h2…, hl) correspond to the links on the cycle W and the

components of DW are the delays of these links. Note that H'i contains the column

vector b'.

 Let H'W = (h2…, hl) and D'W = (d2…, dl). Defining the direction of the link h1 as the

orientation of the cycle W we get by Lemma 4.1 that HW U(W) = 0.

 Using elementary column operations, det(B) and det(Bi) can be written as:

 det(B) = ()))(()''det()1(
'')(
''0

det 1 WUDHH
DDWUD
HH

WW
n

WW

W ×•−=







×

+ ,

and

 det(Bi) = ()))(()''det()1(
'')(
''0

det 1 WUDHH
DDWUD
HH

WiW
n

iWW

iW ×•−=







×

+

 Hence xi = det((H'W H'i)) / det((H'W H')).

 Since all the components in matrix (H'W H'i) are integers, det((H'W H'i)) is also an

integer.

 96

 The denominator is equal to ±1 because (H'W H') is the incidence matrix of the

spanning tree obtained by removing link i from Gb. So it is follows that xi is an integer.

Hence xuv = 0 or 1 because 0 ≤ xuv ≤ 1.

 We next show that if the basis graph contains a cycle, then the flow on each link on

the cycle W is less than 1 and greater than 0. Assuming the contrary we establish a

contradiction. First recall that the flow on each link that is not in Gb (that is, each

nonbasic variable) is either 0 or 1. If the flow on any link on W is an integer (0 or 1)

then it follows from the flow balance constraints that all the flows on the links on W

will be integers. But this would mean that in the current basic solution the total delay of

all the links is an even integer. This violates the requirement that the total delay must be

equal to ∆ which is odd. ■

Figure 4.3: Branching and merging nodes

Definition 4.1:

 (a) In a directed cycle, a node is called a branching (resp. merging) node if it is the

tail (resp. head) of two links in the cycle (See Figure 4.3). A segment of the cycle is the

s Branching node

Merging node

λ

1 - λ λ

1 - λ
t1

1

1

1

1 0 < λ < 1

 97

set of all the links on the cycle between two consecutive branching and merging nodes.

A segment consists of consecutive links with the same direction and the direction of a

segment is defined as the direction of its links.

 (b) For a subgraph Gs of G, let

 d(Gs) = ∑ ∈ sGvu uvd),(and dx(Gs) = ∑ ∈ sGvu uvuvdx),(with respect to the flow vector x.

 Lemma 4.6: Suppose the basis graph Gb contains a cycle W. Let e = (u, v) ∈ W and

xuv = λ (0 < λ < 1). Define the direction of e as the orientation of W. Then for any link e'

= (i, j), xij = λ if the direction of e' agrees with the orientation of W and xij = 1 – λ

otherwise (See Figure 4.3).

 Proof: This follows from the flow balance constraints and the fact the nonbasic

variables have value 0 or 1. ■

 Theorem 4.4: Given an optimal solution x to RELAX-TCSDP(k) with Gb as the

corresponding basis graph.

 (a) If Gb contains no cycle then Gb contains a set of k link disjoint s-t paths Pk with

d(Pk) < ∆, where ∆ is the delay constraint in the TCSDP(k) problem. These paths

constitute an optimal solution to the original CSDP(k) problem.

 (b) Suppose that Gb contains a cycle W and let G'(V', E') be obtained from G(V, E)

such that V' = V and E' = {(u, v) ∈ E | xuv > 0}. Then G' contains a set of k link disjoint

s-t paths Pk with d(Pk) < ∆, and a set of k link disjoint s-t paths Qk with d(Qk) > ∆, such

that c(Qk) ≤ OPT ≤ c(P*) ≤ c(Pk), where OPT is the optimal objective value of the

RELAX-TCSDP(k) problem, P* is the optimal integer solution to the TCSDP(k)

problem (equivalently, the optimal solution to the CSDP(k)) problem). Also

 98

)
)(
)(1(11

*)(
)(

k

kk

Pc
Qc

Pc
Pc

−
−

+≤
λ
λ and))(1(

1
1)(

∆
−

−
+≤

∆

kk PdQd
λ

λ ,

where λ is as defined in Lemma 4.6 with the orientation of the cycle W selected so that

d(W) < 0.

 Proof: (a) If there is no cycle in the optimal basis graph Gb, then all the link flows

will be integers and the flow vector can be decomposed into unit flows along k link-

disjoint s-t paths. The total delay of these paths will be even and hence less than ∆

(because ∆ is odd). These integral flows form an optimal integer solution to the

RELAX-TCSDP(k) problem and hence an optimal solution to the original TCSDP(k)

problem. By Theorem 4.3 this is also an optimal solution to the original CSDP(k)

problem.

 (b) Assume that the basic graph contains a cycle W. By Lemma 4.5, the flows on

links in W are nonzero and thus G' contains W. Obviously, OPT ≤ c(P*). Also note that

dx(G'), the total delay contributed by the flow vector equals ∆ (because the slack

variable is nonbasic and thus its value in the current basic solution is 0).

 Define the orientation of W such that d(W) < 0. Now push flow along the orientation

of W until some link’s flow reaches 0 or 1 (See Figure 4.4(b)). By Lemma 4.6, all the

resulting link flows will be either 0 or 1. Remove all the links with zero flow from G'

and let Gz denote the resulting network. Evidently, the flows on all links in Gz are 1 and

d(Gz) < dx(G') = ∆ (because d(W) < 0, the network delay is reduced when we push the

flow along the orientation of W). It can also be seen that c(W) ≥ 0 for otherwise, the

cost of the new flow will be less than the cost of the flow defined by G'.

 99

 Notice that the above operation does not change the amount of flow from s to t. Since

the total flow from s to t in Gz is k and all the flows on all links in Gz are equal to 1,

there must be k link disjoint s-t paths Pk and d(Pk) = d(Gz) < ∆.

 Similarly, we can obtain Qk
 (See Figure 4.4(c)). Here, the flow is pushed along W in

the reverse direction. Along this direction, d(W) > 0 and so d(Qk) > ∆.

 It can be seen then that c(W) < 0 and thus c(Qk) ≤ OPT ≤ c(P*) ≤ c(Pk).

 In the rest of the proof, we use Pk, Qk
 and W to denote the corresponding set of links.

Let WP = Pk ∩ W and WQ = Qk ∩ W, i.e., WP (resp. WQ) is the set of links on both the

cycle W and Pk (resp. Qk). Evidently, WP ∩ WQ = ∅ and Pk – WP = Qk – WQ (See Figure

4.4(b) and (c)). Then we have

 c(P*) ≥ OPT = c(Pk – WP) + λ c(WP) + (1 – λ) c(WQ)

 = λ c(Pk – WP) + (1 – λ) c(Qk – WQ) + λ c(WP) + (1 – λ)c(WQ)

 = λ (c(Pk – WP) + c(WP)) + (1 – λ) (c(Qk – WQ) + c(WQ))

 = λ c(Pk) + (1 – λ) c(Qk)

 The second equality holds because Pk – WP = Qk – WQ.

 Because c(P*) ≤ c(Pk),

)
)(
)(1(11

)(
)(11

*)(
)(11

*)(
)()1(*)(

*)(
)(

k

k

k

k

kkk

Pc
Qc

Pc
Qc

Pc
Qc

Pc
QcPc

Pc
Pc

−
−

+=
−

−≤

−
−=

⋅
⋅−−

≤

λ
λ

λ
λ

λ

λ
λ

λλ
λ

 Similarly, we can prove that))(1(
1

1)(
∆

−
−

+≤
∆

kk PdQd
λ

λ . ■

 100

Figure 4.4: Illustrations for the proof of Theorem 4.4

 All the individual paths in the above theorem can be obtained using flow

decomposition [1, 4].

s

λ

1 - λ
λ

1 - λ t 1

1

1

1

1

W

s

1

 0 1

0 t
1

1

1

1

1

W

s
t

0

 1 0

1 1

1

1

1

1

W

a) The optimal basic solution.

b) Push flow along the direction of the arrow to
obtain Pk. WP consists of the two solid links on
W. Pk – WP includes the remaining solid links.

c) Push flow along the direction of the arrow to
obtain Qk. WQ consists of the solid two links on
W. Qk – WQ includes the remaining solid links.

 101

4.6. Revised Simplex Method for the RELAX-CSDP(k) Problem

In this section, we first briefly present the different steps in the revised simplex method

for upper bounded linear programming problem. A detailed description of this method

may be found in Chapter 8 of [11]. Note that in [11] the revised simplex method is

presented for a maximization problem. We then derive formulas required to identify the

entering and the leaving variables that are needed to generate a new basic solution from

a given basic solution.

 Consider the following linear programming problem.

 Minimize c x

 subject to A x = b, l ≤ x ≤ u.

 For the RELAX-CSDP(k) problem A is an n × (m + 1) matrix with rank(A) = n, x =

(x1…, xm + 1)t, c = (c1, c2…, cm + 1), b = (b1, b2…, bn)t. Each feasible basic solution x* of

this linear program is partitioned into two sets, one set consisting of the n basic

variables and the other set consisting of the remaining m + 1 – n non-basic variables.

This partition induces a partition of A into B and AN, a partition of x into xB and xN and

a partition of c into cB and cN, corresponding to the set of basic variables and the set of

non-basic variables, respectively. The matrix B is the basis matrix and is nonsingular.

See Sections 4.4 and 4.5 for the form of the basis matrix and properties of basic

solutions for the RELAX-TCSDP(k) problem.

 Revised Simplex Method [11]

1. Solve the system Y • B = cB, where Y = (y1, y2 … yn).

 102

2. Choose an entering variable xj. This may be any nonbasic variable xj such that,

with a standing for the corresponding column of A, we have either Y a > cj, x*j <

uj or Y a < cj, x*j > lj. If there is no such variable then stop; the current solution

x* is optimal.

3. Solve the system B • V = a, where V = (v1, v2…, vn)t.

4. Define xj(t) = x*j + t and xB(t) = x*B – t V in case Y a < cj and xj(t) = x*j – t, xB(t)

= x*B + t V in case Y a > cj. If the constraints lj ≤ xj(t) ≤ uj, lB ≤ xB(t) ≤ uB are

satisfied for all positive t then the problem is unbounded. Otherwise set t as the

largest value allowed by these constraints. If the upper bound imposed on t by

the constraints lB ≤ xB(t) ≤ uB is stricter than the upper bound imposed by lj ≤ xj(t)

≤ uj, then determine the leaving variable. This may be any basic variable xi such

that the upper bound imposed on t by li ≤ xi(t) ≤ ui alone is as strict as the upper

bound imposed by all the constraints lB ≤ xB(t) ≤ uB.

5. Replace x*j by xj(t) and x*B by xB(t). If the value of the entering variable xj has

just switched from one of its bounds to the other, then proceed directly to step 2

of the next iteration. Otherwise, replace the leaving variable xj by the entering

variable xj in the basis heading, and replace the leaving column of B by the

entering column a.

 Steps 2-5 in the revised simplex method that generate a new basic solution from a

given basic solution are called a pivot.

 Notice that the revised simplex method for the upper bounded linear programming

problem is more complex than the one given in Chapter 3. However, the systems of

equations in Steps 1 and 3 can be solved using the formulas developed in Section 3.4.

 103

4.7. Initialization and Pivot Rules

4.7.1. Initialization

We first compute k minimum delay link-disjoint s-t paths using Suurballe’s algorithm

[54]. There is no feasible solution if the total delay of these paths is greater than ∆.

Assume that this is not the case. A tree T' (not necessarily a spanning tree) rooted at t

can be constructed from these paths by removing links incident with s to break cycles.

Note that in T' every path from a node in T' to t is a directed path. Such a tree is called a

directed tree rooted at node t [55]. We next obtain a directed spanning tree rooted at t

and having T' as a subtree. Then we proceed as follows.

 First condense or coalesce all the nodes in T' into a single node P. Then for the

resulting network determine a directed spanning tree rooted at P with all links

orientated away from P. Such a tree exists because of our assumption that there is a

directed path from node s to each node in the network and similarly there is a directed

path from each node to node t. The links of the directed tree selected as above and the

links in T' together constitute a directed spanning tree T of the network N.

 Assigning flow of 1 to all the links in the disjoint paths and flow of 0 to all other

links, we obtain a basic solution represented by T.

 Definition 4.2 ([1, 4, 11]): Given a feasible basic solution subgraph Gb, we say that

the link (u, v) ∈ Gb is oriented toward (resp. away from) the root if any of the paths in

Gb from the root to u (resp. v) passes through v (resp. u). A feasible basic solution Gb

with corresponding flow vector x is said to be strongly feasible if every link (u, v) of Gb

with xuv = 0 (resp. xuv = 1) is oriented away from (resp. toward) the root.

 104

 Note that the definition of strong feasibility given above is different from the one

defined in Chapter 3 due to the upper bounds on the flow variables.

 It can be easily verified that the initial spanning tree T selected as above is strongly

feasible.

4.7.2. Pivot Rules and an Anti Cycling Strategy

For an efficient implementation of the revised simplex method, we want to avoid

directed cycles in basic solutions. This can be achieved by the following pivot rule:

 P1: Slack variable w assumes the highest priority in choosing the entering variable

(Step 2 of the Revised Simplex Method).

 Lemma 4.7*: The slack variable w is eligible to enter the basis iff γ < 0.

 Lemma 4.8*: Suppose the Pivot rule P1 is followed. If a directed cycle W is created

in Gb during a pivot, then in the next pivot the slack variable w will enter the basis and a

link on W will leave the basis.

 Proof: Since W is a directed cycle, c(W) ≠ 0 and γ = – c(W)/d(W) < 0. It follows

that in the pivot after the directed cycle is created, w will enter the basis and the new

basis graph will be a spanning tree. ■

 A basic solution in which one or more basic variables assume zero values is called

degenerate [11]. Simplex pivots that do not alter the basic solution are called degenerate.

Furthermore, a basic solution generated at one pivot and reappearing at another will

lead to cycling (or infinite looping and non-convergence). Thus we need a strategy to

avoid cycling.

 105

 There are several anticylcing strategies for general linear programming problems.

Cunningham developed a strategy specifically designed for the network simplex method

used for solving minimum cost flow problems. Since RELAX-TCSDP(k) has almost the

same structure as the minimum cost flow problem except for the presence of one

additional constraint imposed by the delay requirement, we examine if Cunningham’s

strategy can be adopted for RELAX-TCSDP(k). We show next that the transformation

introduced on the CSDP(k) problem in Section 4.4 indeed makes Cunningham’s

strategy suitable for avoiding cycling in the case of RELAX-TCSDP(k).

 Lemma 4.9: For any degenerate pivot, the out-arc is not on the cycle of the current

Gb.

 If the out-arc is not on the cycle in the current Gb, then the potentials can be updated

easily as described next (Chapter 5.1.2 of [4]). Let T be the current Gb and e = (u, v) and

e' = (u', v') be the out-arc and the in-arc, respectively. Let T' = T – e + e' be the

subgraph of the new basic variables. If e is not on the cycle in the current Gb , then the

new potential vector Y' associated with T' can be obtained as follows [4, 11].





∈
∈+

=
.

'
'

'''

vu

uvuu
u Tuify

Tuifry
y (4.18)

In (418), ru'v' = c(e u'v', γ) + yv' – yu' and Tu' (resp. Tv') is the component of T – e

containing u' (resp. v').

 The convergence part of the following theorem closely follows the proof of Theorem

19.1 in [11].

 106

 Theorem 4.5: If the subgraphs Gb’s of feasible basic solutions generated by the

simplex method are strongly feasible then the simplex method does not cycle and its

computational time complexity is pseudo-polynomial.

 Proof: First observe that in any sequence of degenerate pivots, the value of every

variable, in particular, the value of the slack variable will remain the same. Also if the

slack variable is a basic variable then its value is nonzero; otherwise its value is zero. So

during a given sequence of degenerate pivots, the slack variable will remain basic or

nonbasic during the entire sequence of degenerate pivots. So the leaving and entering

variables can only be the links in the network.

 Let Gb be a feasible basic solution subgraph and t be the root. We define two values

for Gb.

 C(Gb) = ∑
∈Evu

uvuv xc
),(

 and W(Gb) = ∑ −
∈Vu

ut yy)(.

 Consider two consecutive basic solutions Gb
i with Gb

i+1 = Gb
i + e – f, where e and f

are the in-arc and out-arc, respectively.

 We first show that either C(Gb
i+1) < C(Gb

i) or W (Gb
i+1) < W (Gb

i).

 Indeed if the pivot that generates Gb
i+1 from Gb

i is nondegenerate, then C(Gb
i+1) <

C(Gb
i). If it is degenerate, we have C(Gb

i+1) = C(Gb
i). In this case we need to show that

W (Gb
i+1) < W (Gb

i).

 Note that the in-arc e = (u, v) still has flow equal to 0 or 1 in Gb
i+1. By Lemma 4.9, f is

not a link on the cycle in Gb
i. So the value of γ does not change. Because Gb

i+1 is

strongly feasible, in Gb
i+1, link e must be oriented toward the root node t if xe = 1 and

oriented away from t if xe = 0, which implies that node t belongs to Gb
i(v) (the

 107

component of Gb
i – f containing v) if xe = 1 and node t belongs to Gb

i(u) if xe = 0. The

potentials with respect to Gb
i+1 can be calculated using equation (4.18).

 Then we have W(Gb
i +1) = W(Gb

i) – | Gb(u)| ruv < W (Gb
i), where ruv = c(euv, γ) + yv –

yu > 0 if xe = 1 or W(Gb
i +1) = W(Gb

i) + | Gb(u)| ruv < W (Gb
i), where ruv = c(euv, γ) + yv –

yu < 0 if xe = 0.

 If the simplex method cycles, then for some i < j, Gb
i = Gb

j. This implies that Gb
i = Gb

i

+ 1 ...= Gb
j
. But then W(Gb

i) > W(Gb
i + 1) >…> W(Gb

j) = W(Gb
i) contradicting that W(Gb

i)

= W(Gb
j).

 Thus we have proved that the simplex method when applied on RELAX-TCSDP(k)

does not cycle if all the basic feasible solutions are strongly feasible.

 We next establish the pseudo-polynomial time complexity of this method. We have

 W(Gb
i) – W(Gb

i +1) = | Gb(u)| |ruv| ≥ |ruv|

and

 |ruv| = | c(euv, γ) + yv – yu| = | cuv + γ duv + yv – yu| .

 We proceed to show that

 0 < |yu – yv – γ duv – cuv| = | γ d(W') + c(W')|

=




≠−
=

.0|,)(|/|)()'()()'(|
;0|,)'(|

γ
γ

WdWcWdWdWc
Wc

 (4.19)

 Since euv is an in-arc, |yu – yv – γ duv – cuv| ≠ 0. To establish the equalities on the right

hand side of (4.19) suppose that the new cycle W' in Gb is e1e2…ek where e1 = euv. Since

all the links on W' except euv are in Gb, the reduced costs on all these links are 0. So we

have |ruv| = |yu – yv – γ duv – cuv| = |γ d(W') + c(W')|. Recalling that γ = – c(W)/d(W) if

 108

there exists a cycle W in the basic solution or γ = 0 if no such cycle exists, we get the

equalities on the right side of (4.19).

 Since |ruv| ≠ 0, we get from (4.19) that |ruv| ≥ |1 / d(W)| ≥ 1 / (n dmax), where dmax is the

maximum link delay.

 Also, the inequality below follows from the fact that the potential of a node is the

sum of the active costs of the links on the path from that node to node t (See Section

3.2).

 W(Gi
b) = ∑ −

∈Vu
ut yy)(≤ n2(cmax + γ dmax), where cmax is the maximum link cost.

 If γ ≠ 0, then by Lemma 4.7, |γ| = |c(W) / d(W)| ≤ n cmax. Hence W(G ib) ≤ n2(cmax + n

cmax dmax).

 So the length of the sequence of degenerate pivots is bounded by a polynomial

function of cmax, dmax, and n. Similarly, we can prove that the total number of non-

degenerate pivots is also a polynomial function of m, n, cmax, and dmax. Pseudo

polynomial complexity of the revised simplex method when applied on RELAX-

TCSDP(k) follows since each pivot takes O(m) steps [11]. ■

4.7.3. Leaving Variable

Now, we investigate how to find a leaving variable (out-arc) using Theorem 3.2. As

before, let the cycle created by adding the in-arc be denoted by W' with its orientation

defined as that of the in-arc.

 109

 We note that the reduced cost of the in-arc may be positive or negative. In the

following we consider only the latter case. The former case can be treated in a similar

way.

 Case 1: Slack variable w is in the basic solution (the current Gb is a spanning tree and

so w > 0). This corresponds to Theorem 3.2(a) of Section 3.5.4. According to Step 4 of

the revised simplex method, we need to consider only the entries of V that are ±1 or

d(W') if d(W') ≠ 0. These entries correspond to the links of W' of the current Gb or the

slack variable w. The maximum value of t is constrained by x*B – t V ≥ 0, and the

corresponding constraining variables (links or w) are eligible to leave the basis. If

certain links are eligible to leave the basis then we select the one which keeps the new

basic solution strongly feasible (to be discussed next). In this case w will continue to be

in the basis. If w is eligible to leave the basis, we select it to leave the basis. In that case

the new basic subgraph G'b will have a cycle. The flow values (λ or 1 – λ) on the links

in the cycle can be determined by the equation dx(G'b) = ∆ because the slack variable w

is nonbasic and has zero value.

Figure 4.5: Basic solution structures in Case 2

t

in-arc W' W

 λ

 λ 1 4

7

3

1- λ

 1 - λ

Case 2.1: Case 2.2: Case 2.3:

4 3

6

1

5 λ 1 - λ

t

in-arc 7

 2 W

W'

5 3 4

t

9

2

7

6

8

in-arc

W’

W

 1 - λ

 λ

 110

 Case 2: The basic solution consists of n links, i.e., there is a cycle W in Gb. The slack

variable w is eligible to enter the basis if γ < 0. Then according to pivot rule P1, we let

w enter the basis and shall select one of the links on W to leave the basis. The choice

can be made according to the case (c) in Theorem 3.2.

 If γ ≥ 0, an entering link will create a new cycle W' when added to the current Gb. We

need to consider different subcases that capture all possibilities (See Figure 4.5). For

each one of these subcases we can select the leaving variable using Theorem 3.2(b) and

Step 4 in the Revised Simplex Method.

 Now, we need to consider how to preserve the strong feasibility of the basic solutions.

We define the join of a cycle in Gb as the node on the cycle that is closest to the node t

in terms of hops. Without loss of generality, assume that the current basic solution is

strongly feasible and consists of n links and that the leaving variable is a link f (other

cases are trivial). Let Ge = Gb + e be the network obtained by adding the in-arc e to Gb.

Evidently, f is on some cycle C ∈ {W, W'} in Ge. If C = W', the orientation of C is

chosen to agree (resp. disagree) with the orientation of e if xe = 0 (resp. xe = 1) in the

current flow. If C = W, the orientation of C is defined such that d(W') / d(W) < 0 (resp.

d(W') / d(W) > 0) if xe = 0 (resp. xe = 1), where the orientation of W' agrees with the

direction of e. Starting from the join of C and traversing along the orientation of C, we

choose the first link whose flow is 1 and whose direction agrees with the orientation of

C or whose flow is 0 and whose direction disagrees with the orientation of C. This

guarantees the strong feasibility of the resulting tree.

 111

4.8. Simulation

We denote our algorithm as DISJOINT-NBS and compare its performance with CPLEX

and G-LARAC(k). We use three classes of network topologies: regular graphs Hk, n (see

Chapter 8, [55]), power-law out-degree graphs [44] and Waxman’s random graphs [59].

For a network G(V, E), the nodes are labeled as 1, 2…, n = |V|. Nodes n / 2 and n are

chosen as the source and target nodes. The link costs and delays are randomly

independently generated even integers in the range from 1 to 200. The delay bound is

1.2 × k the delay of the minimum delay s-t paths in G. For regular graphs, k = 4. For

random graphs and power-law graphs, k = 2. The results are shown in Figure 4.6, where

the y-axis denotes the running time in seconds. In these figures, we use NBS to denote

the DISJOINT-NBS algorithm and NBS-REGULAR to denote the running time of

DISJOINT-NBS algorithm on regular graphs. Other labels can be interpreted in a

similar manner. Experiments show that DISJOINT-NBS algorithm is faster than

CPLEX and G-LARAC(k) on all the topologies. For the power-law out-degree graph

and Waxman’s random graph, the hop number of feasible s-t paths is usually very small

even when the network is very large. So the running times of DISJOINT-NBS, G-

LARAC(k), and CPLEX are close (but DISJOINT-NBS is still faster) for random

graphs and power-law out-degree graphs.

 Our simulation results in Tables 4.1-4.3 show that the delay of each path derived as

in Theorem 4.4 deviates from the individual delay bound by a small fraction. Note that

in these tables the second column specifies the delay bound on each path.

 112

The experiments comparing CPLEX and NBS algorithm were carried on Intel Pentium 4 with
Linux OS and the experiments comparing NBS and LARAC algorithm were carried out on IBM
Regatta p690 with AIX 5.1 OS and Power4 1.1 GHz CPU.

Figure 4.6: Comparison of DISJOINT-NBS, CPLEX, and G-LARAC(k)

Table 4.1. Paths obtained from the optimal solution to RELAX-TCSDP(2) applied on

random graphs

Size(#Nodes) Delay Bound Path-1(Cost, Delay) Path-2(Cost, Delay)
1000 1087 (1240, 1056) (1536, 1082)
2000 601 (1548, 560) (1344, 604)
3000 409 (1496, 368) (1328, 428)

Table 4.2. Paths obtained from the optimal solution to RELAX-TCSDP(2) applied on

power-law graphs

Graph Size(#Nodes) Delay Bound Path-1(Cost, Delay) Path-2(Cost, Delay)
1000 109 (426, 110) (372, 72)
2000 134 (352, 82) (190, 172)
3000 206 (380, 206) (254, 138)

0

0.2

0.4

0.6

0.8

1

1.2

0 1000 2000

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 1000 2000 3000 4000

R
un
ni
ng
 ti
m
e
in
 s
ec
on
ds

R
un
ni
ng
 ti
m
e
in
 s
ec
on
ds

NBS-RANDOM

NBS-POWER

CPLEX-REGULAR

CPLEX-RANDOM

CPLEX-POWER

NBS-REGULAR NBS-REGULAR

NBS-RANDOM

NBS-POWER

LARAC-REGULAR

LARAC-RANDOM

LARAC-POWER

Nodes Nodes
3000

 113

Table 4.3. Paths obtained from the optimal solution to RELAX-TCSDP(4) applied on

regular graphs

Graph Size Bound Path-1 Path-2 Path-3 Path-4
1000 736 (2208, 686) (2216, 686) (2054, 764) (1872, 782)
2000 1425 (3920,1412) (4168, 1424) (4014, 1454) (4198, 1406)
3000 2127 (6092, 2044) (6126, 2104) (5862, 2242) (5702, 2110)

4.9. Summary

In this chapter we studied the CSDP(k) problem which is NP-hard. So our goal has been

to design an efficient algorithm for constructing an approximate solution to this problem.

Towards this end, we studied the LP relaxation of CSDP(k) problem using the revised

simplex method of linear programming. This relaxed problem is an upper bounded LP

problem. We have discussed several issues relating to an efficient implementation of

our approach. We have shown that an approximate solution to the CSDP(k) problem can

be extracted from an optimal solution to the relaxed problem. We have derived bounds

on the quality of this solution with respect to the optimal solution. Our work can be

considered as the study of the CSDP(k) problem from a primal perspective in contrast to

the dual perspective employed in the G-LARAC(k) algorithm which is based on the

algorithms in [23] and [54]. Simulation results demonstrate that our algorithm is slightly

faster than both the G-LARAC(k) algorithm and the commercial quality CPLEX

package in the case of random graphs and power-law out-degree graphs. On the other

hand, for regular graphs our algorithm is much faster.

 The GCSDP(k) problem defined in Section 4.2 requires that the delay of each

individual path satisfies a specified bound, in contrast to the CSDP(k) problem where

 114

the constraint is on the total delay of all the k link-disjoint paths. We have shown in

Theorem 4.2 that the LP relaxations of the two problems have the same optimal

objective value. Thus, if one is interested in obtaining the optimal objective values of

RELAX-GCSDP(k) and RELAX-CSDP(k) problems, then starting with the RELAX-

CSDP(k) does not result in any loss of generality. However, the paths produced by the

approximate solution derived from the optimal solution to RELAX-CSDP(k) may not

satisfy the individual path delay requirements of the GCSDP(k) problem. Fortunately,

our simulation results in Table 4.1-4.3 indicate that in most cases the individual delays

of the paths produced starting from RELAX-CSDP(k) do not deviate in a significant

way from the individual delay requirements of the GCSDP(k) problem.

 If one were interested in studying the GCSDP(k) problem then the issue of finding

feasible solutions to this problem will arise. This problem itself is NP-hard and no

efficient algorithms are known. However techniques such as branch and bound and

Tabu search can be used to find the feasible solutions. The algorithm in the present

chapter can be used as a subroutine in a branch and bound scheme.

 One direction of further research is to develop approximation schemes for the

CSDP(k) problem along the lines of the approximation algorithms given in [43] for the

CSDP(2) problem. Since the link-disjoint shortest paths problem is a special case of the

minimum cost flow problem, it will be interesting to investigate if the ideas developed

in this chapter could be used to design efficient algorithms for the constrained minimum

cost flow problem.

 115

Chapter 5. Delay Constrained Path Selection under

Inaccurate State Information

In this chapter we study the MP-DCP problem that requires determination of the most

probable delay constrained path (MP-DCP problem). Our work is based on the

formulation given in [28]. The work in [28] focused on developing approximate

approaches using the Lagrangian relaxation or line search techniques. In contrast, our

focus has been on developing polynomial time ε-approximation and heuristic algorithms.

 The rest of this chapter is organized as follows. In Section 5.1, we give the definition

and formulation of the MP-DCP problem. In Section 5.2 we present an exact algorithm,

a FPTAS, and a strongly polynomial approximation algorithm for Case 1. In Section 5.3

we study the MCP-DCP problem for Case 2.

 The results in this chapter have been presented in [64].

5.1. The MP-DCP Problem and a Formulation

Consider a network represented by a graph G(V, E), with n = |V|, and m = |E|. Given a

maximum delay requirement D for a flow between a given source node s and a

destination node t ≠ s, and probability density function (pdf) pl(d) for all l = (i, j) ∈ E,

where pl(d) is the probability that the link l will introduce a delay of at most d units, i.e.,

dl < d. Let d(i, j) be the random variable (RV) associated with the delay of the link (i, j).

For a path p, define

 πD(p) = Pr[d(p) ≤ D].

 116

 The MP-DCP problem is to find an s-t path popt such that ∀p ∈ Pst, πD(popt) ≥ πD(p).

 To simplify this problem and following Korkmaz and Krunz [28], we assume that d(i,

j)’s are nonnegative RV’s with mean µ(i, j) > 0 and variance δ2(i, j) > 0, and that for all

links (i, j) ∈ E, d(i, j)’s are mutually independent. Without loss of generality, assume

µ(i, j)’s and δ2(i, j)’s are integers (this is because all numbers are represented by finite

digits in computers and other digital devices). Furthermore, we assume that the pdf of

d(i, j) is continuous and differentiable on some interval (a, b). Under this assumption

and according to the central limit theorem, the path delay is approximately normally

distributed. Without loss of generality, we assume each s-t path is long enough that d(p)

is a normally distributed RV with mean µ(p) > 0 and variance δ2(p) > 0. (Note: The sum

of as small as three RVs tends to a normal distribution [28]). µ(p) > 0 and variance δ2(p)

> 0 are given by:

µ(p) =∑ ∈ pji ji),(),(µ and δ2(p) =∑ ∈ pji ji),(
2),(δ .

 With the above assumption,

 πD(p) ≈ Ф(
)(

)(
p

pD
δ
µ−), where Ф(x) = (1/2π)1/2

∫ ∞−
−x y dye 2/2

 Since Ф(x) is an increasing function, we can reduce the MP-DCP problem to one of

identifying the path p that maximizes

χD(p) = (D – µ(p)) / δ(p), where δ(p) ≡ 2/1
),(

2)),((∑ ∈ pji jiδ .

 We call µ(p) and δ2(p) as the mean delay and delay variance of path p. The difficulty

with this problem arises from the nonseperable square root (√) function. As in [28], we

distinguish two cases:

 Case 1: There exists a path with mean delay less than or equal to the specified delay

 117

bound D.

 Case 2: The mean delay of each path is greater than D.

 It can be easily verified that in Case 1(resp. Case 2), χD(popt) ≥ 0 and µ(popt) ≤ D

(resp. χD(popt) < 0, µ(popt) > D).

5.2. Algorithms for CASE 1

5.2.1. An Exact Algorithm

In the next three subsections, we first assume that there always exists some path p such

that µ(p) ≤ D. In fact, if this assumption does not hold, the value of D may not be a

realistic delay bound because in this case, ∀p ∈ Pst, πD(p) < Ф(0) = 0.5, i.e., any path p

meets the delay bound with probability less than 0.5.

 Since δ(p) is nonadditive, Procedure exact-mp-dcp in Figure 5.1 enumerates all the

possible values of δ2(p) that lie in [1, U] with U = min{δ2(p*) | p* ∈ P}, where P = {p*

| µ(p*) = min {µ(p) | p is an s-t path}}.

 For the sake of completeness we also present next the main algorithm for computing

argmin {µ(p)| δ2(p) ≤ Ti} in Procedure exact-mp-dcp. When we compute argmin {µ(p) |

δ2(p) ≤ Ti} for the first time, we call the Algorithm CSP adopted from the exact

algorithm (See Figure 5.2) of [18] for the constrained shortest path problem with two

metrics on deterministic networks. This is a dynamic programming algorithm with time

complexity O(m T), where T is upper bound of the delay. We only need to call the

Algorithm CSP once and then we can directly use the table fl(d) (defined in the

Algorithm CSP below) created by its first invocation. For a given Ti and p* = arg

 118

min{µ(p) | δ2(p) ≤ Ti}, it can be seen that µ(p*) = ft(Ti) and δ2(p*) = T*, where T* is the

least value such that ft(T*) = ft(Ti). In fact, the value of δ2(p*) can be computed in

constant time using extra data structures.

Figure 5.1: The exact algorithm for Case 1

 We keep the formulation of exact-mp-dcp as above to make the algorithm

conceptually simple.

Figure 5.2: CSP algorithm

 Theorem 5.1. Procedure exact-mp-dcp finds an optimal solution in O(U m) steps if

Let fj(d) be the minimum mean delay among
 all 1- j paths with delay variance ≤ d.

/* T is the delay variance upper bound*/
Algorithm CSP (T):
 /*1 is the source node, n is the target node*/
 f1(d) = 0, d = 0, …, T,
 fj(0) = ∞, j = 2, …, n,
 fj(d) = min {fj(d -1),

djkk ≤),(| 2
min

δ
{fk(d – δ2(k, j)) + µ(k, j)}}

 , j = 2…, n, d = 1…, T

Procedure exact-mp-dcp
 1 T0 ← U
 2 i ← 0
 3 χopt ← - ∞
 4 while (Ti > 0)
 /*The following is computed using
 CSP algorithm to be discussed*/
 5 p* ← argmin{µ(p) | δ2(p) ≤ Ti}
 6 χopt ← max{χopt, (D – µ(p*)) / δ(p*)}
 7 i ← i + 1
 8 Ti ← δ2(p*) – 1
 9 end while
10 return χopt and the corresponding path p*
 end procedure

 119

for all links (i, j), δ2(i, j) ≠ 0.

 Proof: The computation of arg min{µ(p) | δ2(p) ≤ T} for the first time is done by

the constrained shortest path algorithm which takes O(T m) steps if there are no 0 delay

variance links.

Obviously, the computation time of Algorithm CSP dominates all the other

computations and so the complexity of the whole algorithm is O(U m).

Let popt be one of the optimal solutions with the least delay variance and p* be the

path such that U = δ2(p*). We first show that U = δ2(p*) ≥ δ(popt). By the definition of

popt and p*,

 (D – µ(popt)) / δ(popt) ≥ (D – µ(p*)) / δ(p*) and D ≥ µ(popt) ≥ µ(p*).

If D – µ(popt) > 0, we have

 δ(p*) / δ(popt) ≥ (D – µ(p*)) / (D – µ(popt)) ≥ 1 or δ(p*) ≥ δ(popt).

If D – µ(popt) = 0, then χD(p*) = χD(popt) = 0 and D = µ(popt) = µ(p*).

Hence δ(p*) ≥ δ(popt) because popt is the optimal path with the least delay variance and

p* is one of the optimal paths.

We next show that Procedure exact-mp-dcp will find one of the optimal solutions at

termination. Suppose in iteration i, pi = arg min{µ(p)|δ2(p) ≤ Ti}. To prove the

correctness of the algorithm, it suffices to show that if δ2(popt) ≤ Ti and pi is not optimal,

then δ2(popt) < δ2(pi) = Ti+1 + 1. Then we can see that the algorithm has enumerated all

possible values of δ2(popt) at termination.

If this were not true, then Ti ≥ δ2(popt) ≥ δ2(pi). Obviously, D ≥ µ(popt) ≥ µ(pi) by the

definition of pi and δ2(popt) ≤ Ti. We obtain

 (D – µ(popt)) / δ(popt) ≤ (D – µ(pi)) / δ(pi).

 120

 Since pi is not optimal by the assumption, this is the desired contradiction. ■

 In the next section, based on Procedure exact-mp-dcp, we shall design a fully

polynomial time approximation algorithm.

5.2.2. A Fully Polynomial Time Approximation Scheme: Case 1

To design a fully polynomial time approximation algorithm, we use scaling and

rounding described in [35]. Without loss of generality, assume U >> n and ε < 1.

 Lemma 5.1: Let G(N, E, µ, δ, D) denote a network with two metrics µ and δ on the

link set E. Let Gτ(N, E, µ, δ', τ) be the network transformed from G such that

∀(i, j) ∈ E, δ' 2(i, j) =  τ δ2(i, j) / upper + 1,

where τ (= O(n)) is some integer (to be discussed later) and lower < upper ≤ U.

 Proof: We have

 δ2(i, j)(τ /upper) ≤ δ' 2(i, j) ≤ δ2(i, j)(τ /upper) + 1. So

)(')/(

)(
)(')/(

)(
)(

)(
2/12/1

opt

opt

pupper
pD

pupper
pD

p
pD

δτ
µ

δτ
µ

δ
µ

τ

τ

τ

τ
−

≥
−

≥
−

)(

)(
)

)(
1(

)(
)(

)
)(

)(
1(2/12/1

2
opt

optopt

opt

optopt

opt p
pDpL

lower
upper

p
pDpL

p
upper

δ
µ

τδ
µ

τδ
−

+≥
−

+≥ −− . ■

 Let popt be the optimal solution to the MP-DCP problem on G, and pτ be any path

such that

 (D – µ(pτ)) / δ'(pτ) ≥ (D – µ(popt)) / δ'(popt).

 If lower ≤ δ 2(popt) ≤ upper, then

 121

)(
)(

)
)(

1(
)(

)(2/1

opt

optopt

p
pDpL

lower
upper

p
pD

δ
µ

τδ
µ

τ

τ −
⋅+≥

− − ,

where L(p) is the number of links of path p. ■

 We next present an approximation algorithm Procedure approx-mp-dcp for the MP-

DCP problem. In each iteration of Procedure approx-mp-dcp, the algorithm computes a

path whose objective is no less than the optimum values among all the paths whose

delay variance lies between given values of lower and upper. This is achieved by

calling approx-max-mp-dcp(lower, upper, τ, χopt) which applies Procedure exact-mp-dcp

on an appropriately scaled network.

Figure 5.3: FPTAS for Case 1

Procedure approx-mp-dcp
 1 τ ← 2 n / ε, upper ← U, lower ← U / 2

 2 χopt ← -∞
 3 while lower ≥ 1
 4 p*← approx-max-mp-dcp(lower, upper, τ, χopt }
 5 χopt ← max{χopt, (D – µ(p*)) / δ(p*)}
 6 upper ← lower – 1
 7 lower ← upper / 2
 8 end while
 9 return χopt and the corresponding path
 end procedure

Procedure approx-max-mp-dcp(lower, upper, τ, χopt)
 1 δ 2(i, j) =  τ δ2(i, j) / upper + 1 for all link (i, j)
 2 L = (lower / upper) τ, ∆ ← τ + n
 3 while (∆ ≥ L)
 /* Using CSP Algorithm on δ' */
 4 p∆ ← argmin{µ(p) | δ' 2 (p) ≤ ∆}
 /* Using δ(p∆) not δ'(p∆) */
 5 χopt ← max{χopt, (D – µ(p∆)) / δ(p∆)}
 6 ∆ ← δ' 2(p∆) – 1
 7 end while
 8 return χopt and the corresponding path
end procedure

 122

 Lemma 5.2: If popt is the optimal solution to the MP-DCP problem and lower ≤

δ2(popt) ≤ upper, where lower = upper / 2, τ = 2 n / ε, approx-max-mp-dcp finds a

solution p∆ such that χD(p∆) ≥ χD(popt)/(1 + ε)1/2
 in time O(m n / ε)).

 Proof: The complexity is easy to show (See Theorem 5.1). ■

We next prove the first part of this lemma.

Observe that for any path p in G with lower ≤ δ2(p) ≤ upper, τ / 2 ≤ δ' 2(p) ≤ τ + n,

where δ' is the metric defined in the line 1 of algorithm approx-max-mp-dcp.

Let pτ = arg max{(D – µ(p)) / δ' (p) | τ / 2 ≤ δ' 2(p) ≤ τ + n }. We have

 (D – µ(p∆)) / δ(p∆) ≥ (D – µ(pτ)) / δ(pτ) and,

 (D – µ(pτ)) / δ'(pτ) ≥ (D – µ(popt)) / δ'(popt)

This first inequality holds because pτ is among all the paths delivered by the CSP

algorithm invoked in line 4 of approx-max-mp-dcp and at termination, pτ must have

been compared with p∆ (p∆ is the winner at termination) in updating χopt (line 5 in

Procedure approx-max-mp-dcp).

By the first inequality and Lemma 5.1, we obtain

 χD(p∆) = (D - µ(p∆))/ δ(p∆) ≥ (D - µ(pτ))/ δ(pτ)

 ≥ (1 + L(popt) upper/(τ lower))-1/2 (D - µ(popt))/δ(popt)

 ≥ (1 + ε)-1/2(D - µ(popt))/δ(popt) = χD(popt)/(1 + ε)1/2. ■

 Theorem 5.2: Procedure approx-mp-dcp finds in time O((m n / ε) log U) a path p*

 123

such that χD(p*) ≥ χD(popt) (1 + ε)-1/2, where popt is the optimal path for the MP-DCP

problem.

 Proof: Obviously, the procedure terminates in O(log U) iterations of Procedure

approx-max-mp-dcp. Next, we can see that approx-mp-dcp must have searched the

interval containing the optimal path before termination as shown in Lemma 5.2 and thus

the theorem is proven. ■

 Our algorithm is an FPTAS. An interesting question is whether we can adopt the

techniques in [18] and [35] to derive a strongly polynomial algorithm (the time

complexity does not depend on U). Unfortunately, (due to the nonseparable nature of

objective function), optimality conditions for the MP-DCP problem are not known. So,

we are not able to design the test or ε-test procedures which are critical for the methods

in [18, 35].

5.2.3. A Strongly Polynomial Approximation Algorithm: Case 1

In this section, using parametric search we design a strongly polynomial approximation

algorithm for the MP-DCP problem.

 We notice that the objective function of the MP-DCP problem is close to the form of

fractional optimization problems that can be solved by Newton method [47] or

parametric search [38]. For the MP-DCP problem, the only difficulty is the nonadditive

nature of δ(p). In order to remove this barrier, we change the objective function and

consider the following modified problem.

 124

 H-MP-DCP

 Maximize HχD(p) = (D – µ(p)) / δ2(p), where δ(p) ≡ 2/1
),(

2)),((∑ ∈ pji
jiδ .

 Let pH be the optimal path to the H-MP-DCP problem. Assume HχD(pH) = OPT. In

parametric search, for any given λ, we need an oracle test to determine whether OPT is

greater or less than λ. Even though the value of OPT is unknown, this can still be

achieved by applying Dijkstra’s shorts path algorithm on the weights µ(i, j) + λ δ2(i, j)

for all links (i, j) ∈ E. Let pλ denote the shortest path with respect to Wλ(i, j) = µ(i, j) + λ

δ2(i, j). For the sake of brevity, we present our algorithm h-mp-dcp(G, s, t) using

Bellman-Ford-Moore shortest path algorithm instead of Dijkstra’s shortest path

algorithm. For node u, define N(u) = {v | (u, v) ∈ E}. Each node v of the network is

associated with a pair Mv = (xv, yv), where xv and yv keep track of the mean delay and

delay variance of some s-v path during the execution of the h-mp-dcp algorithm. M is

initialized as Ms = (0, 0) and Mv = (∞, ∞) for v ≠ s. The algorithm computes the path pH

without knowing OPT. By the assumption that there always exists a path such that µ(p)

≤ D, it can be seen that OPT ≥ 0.

Figure 5.4: The approximation algorithm

 In h-mp-dcp, extra steps are required to implement the following oracle test with

Algorithm h-mp-dcp(G, s, t)
1 Mv = (xv, yv) = (∞, ∞) for all nodes
2 Ms = (0, 0)
3 for i ← 1 to n – 1 do
4 for each node u in the network
5 for each v such that v ∈ N(u)
 /*oracle test*/
6 [if (xv + OPT yv
 ≥ xu + OPT yu + µ(u,v) + OPT δ2(u,v))]
 Mv ← (xu + µ(u, v), yu + δ2(u, v))

 125

unknown OPT.

xv + OPT yv ≥ xu + OPT yu + µ(u, v) + OPT δ2(u, v).

 If xv = ∞, yv = ∞, then the inequality holds. Assume xv and yv are finite (non-negative)

values. Then it suffices to evaluate the following Boolean expression.

xu + µ(u, v) – xv)+OPT (yu + δ2 (u, v) – yv) = p + q OPT ≤ 0,

where p = xu + µ(u, v) – xv and q = (yu + δ2(u, v) – yv).

 We then only need to determine the sign of p + q OPT (> 0, < 0, and = 0). If p · q ≥ 0,

the sign of p + q OPT is the same as that of p or q recalling that OPT ≥ 0. In this case

implementing the oracle test is obvious.

 Consider p · q < 0, i.e., – p / q > 0. Let λ = – p / q and let pλ = Dijkstra(s, t, Wλ),

where Dijkstra(s, t, Wλ) computes the minimal s-t path with respect to Wλ. Now three

cases arise.

1. µ(pλ) + λ δ2(pλ) < D: This implies that λ < (D – µ(pλ)) / δ2(pλ) ≤ OPT.

2. µ(pλ) + λ δ2(pλ) = D: This implies that µ(pλ) + λ δ2(pλ) = D ≤ µ(pH) + λ δ2(pH). Thus

(D – µ(pλ)) / δ2(pλ) = λ ≥ (D – µ(pH)) / δ2(pH) = OPT which implies λ = OPT.

3. µ(pλ) + λ δ2(pλ) > D: Then µ(pH) + λ δ2(pH) > D and λ > (D – µ(pH)) / δ2(pH) = OPT.

 With the path pλ, we can easily decide the sign of p + q OPT by the above three cases.

 Theorem 5.3: (a). The time complexity of algorithm h-mp-dcp is O((m + n log n)2).

(b) Let popt be the optimal solution to the MP-DCP problem (the original problem).

Then

 (i) χD(pH) ≥ (δ(popt) / δ(pH))-1/2 χD(popt), and

 (ii) µ(popt) ≤ µ(pH), δ(popt) ≥ δ(pH).

 If pH does not meet the requirements of the applications, we may need to close or

 126

reduce the gap between the approximate solution and the optimal solution by applying

the approximation algorithm with proper approximation factor or the exact algorithm if

necessary. On the other hand, the solution obtained by the heuristic algorithm can be

used to reduce the computational time of the approximation and exact algorithms.

According to (b) in Theorem 5.3 we know that δ2(pH) ≤ δ2(popt) ≤ U. So the Procedure

approx-mp-dcp (resp. Procedure exact-mp-dcp) can terminate safely once upper <

δ2(pH) (resp. Ti < δ2(pH)). Note that using h-mp-dcp as an initial pruning step does not

affect the polynomial time complexity of these algorithms. The number of invocations

of Dijkstra’s shortest path algorithm in the parametric search can also be greatly

reduced using techniques described in [47].

Table 5.1. Numeric simulation results on two classes of graph topologies

| V | OPT Ф(OPT) H-OPT Ф(H-OPT) Error (%)
1000 0.835 0.7981 0.826 0.7956 0.313
1500 1.043 0.8515 1.036 0.8499 0.188
2000 1.209 0.8867 1.196 0.8842 0.282
2500 1.341 0.9100 1.327 0.9077 0.253
3000 1.456 0.9273 1.437 0.9246 0.291

(a) Regular graph (out degree = 6)

|V | OPT Ф(OPT) H-OPT Ф(H-OPT) Error (%)
1000 0.643 0.7399 0.628 0.7350 0.662
1500 0.526 0.7006 0.515 0.6967 0.557
2000 0.505 0.6932 0.492 0.6886 0.664
2500 0.418 0.6620 0.413 0.6602 0.274
3000 0.459 0.6769 0.459 0.6769 0.000

(b) Waxman’s random graph

|V|, OPT, Ф(OPT), H-OPT and Ф(H-OPT) denote the number of nodes of the
network, the optimal χD(p), the optimal πD(p), the solution for χD(p) obtained by
Algorithm h-mp-dcp and the corresponding πD(p). The Error column is computed
as 100 (Ф (OPT) – Ф (H-OPT)) / Ф (OPT).

 127

We present in Table 5.1 numerical simulation results for this heuristic. The experiments

are carried out on two different classes of graphs: regular graph [55] and Waxman’s

random graph [59]. In these classes of graphs, for each link (i, j), µ(i, j) is randomly

independently generated integers uniformly distributed in [1, 20] and δ2(i, j) is

randomly independently generated integers uniformly distributed in [1, 200]. The value

of D is 115% of µ(p*) where p* is the s-t path with minimum mean delay. (Now, MP-

DCP problem can be seen as defined on a deterministic network with two independent

metrics: mean delay µ and delay variance δ2). It can be seen that the optimal values and

the approximate values of πD(p) are very close.

5.3. MP-DCP Problem: Case 2

In this section we consider the MP-DCP problem in the case when ∀p, µ(p) > D.

 Theorem 5.4: If ∀p ∈ P(s, t), µ(p) > D, the MP-DCP problem is NP-hard.

 Proof: Let us consider an instance of the longest path problem on graph G(V, E). It

is known that finding the longest simple path in terms of the number of links is NP-hard

and it can also be seen that finding the longest simple path from a given node s to a

node t is also NP-hard [26].

To prove the NP hardness of MP-DCP problem in Case 2, it suffices to show that the

longest path problem is a subclass of the MP-DCP problem.

Define an MP-DCP problem instance on G with given bound D = 1 as follows:

Let δ2(i, j) = 1 for each link (i, j) ∈ E (now δ2(p) is equal to the number of hops of

path p).

 128

Let M = n / ((1 + 1/n)1/2 – 1) = O(n2).

Assign the µ(i, j) on each link (i, j) ∈ E as follows:



 =+

=
otherwise,1

,1
),(

tjM
jiµ

We next show that the optimal path for the above MP-DCP problem is the longest s-t

path in G.

Let popt and pl denote the optimal MP-DCP s-t path and a longest s-t path,

respectively.

We obtain (1 – µ(pl)) / δ(pl) ≤ (1 – µ (popt)) / δ(popt).

Assume that δ2(popt) < δ2(pl) (< n).

Then we have the following contradiction.

 1 + 1 / n < δ2(pl)/δ2(popt) ≤ ((µ(pl) – 1)/(µ(popt) – 1))2 < ((n + M)/M)2 = 1 + 1 / n. ■

 Theorem 5.5: No pseudo polynomial exact algorithm or fully polynomial constant

factor approximation algorithm can be obtained for Case 2 of the MP-DCP problem

unless P = NP.

 Proof: According to Theorem 5.4, the longest path problem is a subclass of the

MP-DCP problem with D = 1 (Case 2) and thus a pseudo polynomial exact algorithm

for this problem, which involves only numbers bounded by polynomial function of n, is

also applicable to the longest path problem. This would then contradict the fact that

there is no pseudo polynomial algorithm for the longest path problem unless P = NP.

If there exists a fully polynomial constant factor approximation algorithm for the MP-

DCP problem for Case 2, then let ε < 1 be the approximation factor, and let pε and pl be

 129

the approximate solution to MP-DCP problem and the longest s-t path, respectively. By

the definition of approximation factor for maximum problem, we have

 | (χD(popt) - χD(pε) | / χD(popt) ≤ ε.

Hence

 χD(pε) ≥ (1 – ε) χD(popt)

So, (1 - u(pε)) / δ(pε) ≥ (1 - ε)(1 - u(pl)) / δ(pl).

Hence δ2(pl) / δ2(pε) ≤ ((1 - ε) (u(pl) – 1) / (u(pε) – 1))2

 ≤ (1 - ε)2
 (1 + 1 / n) ≤ 2 (1 - ε)2.

So, pε is a constant factor approximate solution to the longest path problem. This

leads to the contradiction of the fact that no constant factor polynomial time

approximation algorithm exists for the longest path problem [26]. ■

 The barrier to extend the heuristic algorithm of Section 5.2.3 is that the optimum

value OPT is negative under the assumption that ∀p, µ(p) > D. Dijkstra’s shortest path

algorithm is not applicable due to the likely presence of negative link weights. So we

need to use the BFM algorithm. Even this algorithm will fail if there is a negative

weighted cycle in the network.

5.4. Summary

In this chapter, we studied the MP-DCP problem. For the case (Case 1) when there is a

path whose mean delay is less than or equal to the specified delay bound D, we

presented an exact algorithm of pseudo polynomial time complexity, an FPTAS, and a

 130

strongly polynomial time heuristic algorithm. In the unlikely case (Case 2) when every

path violates this assumption we have shown that the problem is NP-hard. We have also

shown that for this case no pseudo polynomial time exact algorithm or fully polynomial

time constant factor approximation algorithm is possible unless P = NP. The difficulty

in this case arises because we need to find a path minimizing one path metric and

maximizing another path metric simultaneously.

 131

Chapter 6. GEN-LARAC: A Generalized Approach to the

Constrained Shortest Path Problem under Multiple Additive

Constraints

In this chapter we study the CSP(k) problem that requires determination of s-t paths that

satisfy k >1 additive constraints. We develop a new approach using Lagrangian

relaxation. We use the LARAC algorithm discussed in Chapter 2 as a building block in

the design of our algorithm.

 The results in this chapter have been repeated in [65].

6.1. Formulation of the CSP(k) Problem and Its Relaxation

Consider a directed graph G(V, E) where V is the set of nodes and E is the set of links in

G. Each link (u, v) is associated with a set of k + 1 additive non-negative integer

weights Cuv = (cuv, w1
uv, w2

uv…, wk
uv). Here cuv is called the cost of link (u, v) and wi

uv is

called the ith delay of (u, v). Given two nodes s and t, an s-t path in G is a directed

simple path from s to t. Let Pst denote the set of all s-t paths in G. For an s-t path p

define

 c(p) ≡ ∑
∈pvu

uvc
),(

 and di(p) ≡ kiw
pvu

i
uv ,...1,

),(
=∑

∈
.

 The value c(p) is called the cost of path p, and di(p) is called the ith delay of path p.

Given k positive integers r1, r2…, rk, an s-t path is called feasible (resp. strictly feasible)

 132

if di(p) ≤ ri (resp. di(p) < ri), for all i = 1, 2… k (ri is called the bound on the ith delay of

a path).

 The CSP(k) problem is to find a minimum cost feasible s-t path. An instance of the

CSP(k) problem is strictly feasible if all the feasible paths are strictly feasible. Without

loss of generality, we assume that the problem under consideration is always feasible. In

order to guarantee strict feasibility, we do the following transformation.

 For i = 1, 2…, k, transform the ith delay of each link (u, v) such that the new weight

vector C'uv is given by

 C'uv = (cuv, 2 w1
uv, 2 w2

uv…, 2 wk
uv).

 Also transform the bounds ri’s so that the new vector of bounds R' is given by

 R' = (2 r1 + 1, 2 r2 + 1…, 2 rk + 1).

 In the rest of the chapter, we only consider the transformed problem. Thus all link

delays are even integers, and delay bounds are odd integers. We will use symbols with

capital or bold letters to represent vectors. Also, for a matrix A, AT denotes its transpose.

For simplicity of presentation, we will use Cuv and R instead of C'uv and R' to denote

the transformed weight vector and the vector of bounds.

 Two immediate consequences of this transformation are stated below.

 Lemma 6.1: ∀ p ∈ Pst, ∀i ∈ {1, 2…, k}, di(p) ≠ ri in the transformed problem.

 Lemma 6.2: An s-t path in the original problem is feasible (resp. optimal) iff it is

strictly feasible (resp. optimal) in the transformed problem.

 Starting with an ILP formulation of the CSP(k) problem and relaxing the integrality

constraints we get the RELAX-CSP(k) problem below. In this formulation, for each s-t

path p, we introduce a variable xp.

 133

 RELAX-CSP(k)

Minimize ∑
p

pxpc)((6.1)

subject to ∑
p

px = 1 (6.2)

∑
p

pi xpd)(≤ ri i = 1, …, k (6.3)

 xp ≥ 0, ∀ p ∈ Pst (6.4)

 The Lagrangian dual of RELAX-CSP(k) is given below.

 DUAL-RELAX-CSP(k):

Maximize w – λ1 r1 … – λk rk (6.5)

subject to w – d1(p) λ1 … – dk(p) λk ≤ c(p) , ∀ p ∈ Pst (6.6)

 λi ≥ 0, i = 1, …, k (6.7)

 In the above dual problem λ1, λ2…, λk and w are the dual variables, with w

corresponding to (6.2) and each λi corresponding to the ith constraint in (6.3).

 It follows from (6.6) that w ≤ c(p) + d1(p) λ1… + dk(p) λk ∀ p ∈ Pst. Since we want to

maximize (6.5), the value of w should be as large as possible, i.e.

 w = min p ∈ Pst {c(p) + d1(p) λ1 + … + dk(p) λk}.

 With the vector Λ defined as Λ = (λ1,λ2…, λk), define

 L(Λ) = min p ∈ Pst{c(p) + λ1 (d1(p) – r1) … + λ k (dk(p) – rk)}. (6.8)

 Notice that L(Λ) is called the Lagrangian function in literature and is a concave

continuous function of Λ [7].

 Then DUAL-RELAX-CSP(k) can be written as follows.

 134

 DUAL-RELAX-CSP(k):

Maximize L(Λ) (6.9)

 subject to Λ ≥ 0

 The Λ* that maximizes (6.9) is called the maximizing multiplier and is defined as

 Λ * = arg max Λ ≥ 0 L(Λ) (6.10)

 Claim 6.1: If an instance of the CSP(k) problem is feasible and a path popt is an

optimal path, then ∀ Λ ≥ 0, L(Λ) ≤ c(popt).

 We shall use L(Λ) as an lower bound of c(popt) to evaluate the quality of the

approximate solution obtained by our algorithm. Given p ∈ Pst and Λ, define

 C(p) ≡ (c(p), d1(p), d2(p) …, dk(p)) , D(p) ≡ (d1(p), d2(p) …, dk(p)),

 R ≡ (r1, r2…, rk), cΛ(p) ≡ c(p) + d1(p) λ1… + dk(p) λk, and

 dΛ(p) ≡ d1(p) λ1… + dk(p) λk .

 Here cΛ(p) and dΛ(p) are called the aggregated cost and the aggregated delay of path

p, respectively. We shall use PΛ to denote the set of s-t paths attaining the minimum

aggregated cost w.r.t. to Λ. A path pΛ ∈ PΛ is called a Λ-minimal path.

6.2. A Strongly Polynomial Time Approximation Algorithm for CSP(1)

Problem

The key issue now is to search for the maximizing multiplier and termination conditions.

If there is only one delay constraint, i.e., k = 1, we have the following claim from [23]

also proved in Chapter 2.

 135

 Claim 6.2[23]: A value λ > 0 maximizes the function L(λ) if and only if there are

paths pc and pd which are both cλ-minimal and for which d(pc) ≥ r and d(pd) ≤ r. (pc and

pd can be the same. In this case d(pd) = d(pc) = r).

 Theorem 6.1: DUAL-RELAX-CSP(1) is solvable in O ((m + n log n) 2) time.

 Proof: We prove this theorem by presenting an algorithm with O((m + n log n) 2)

time complexity.

 Assume node 1 is the source and node n is the target. In Figure 6.1, we present an

algorithm for computing a shortest path using lexicographic order on a pair of link

weights (luv, cuv) ∀ (u, v) ∈ E based on parametric search, where luv = cuv + λ* duv and

λ* is unknown. The algorithm is the same as BFM algorithm except for Step 4 which

needs special care (We use BFM algorithm here because it is easy to explain. Actually

we use Dijkstra’s algorithm for better time complexity).

Figure 6.1: Parametric search based algorithm for CSP(1) problem

 In Figure 6.1, we need extra steps (Oracle test) to evaluate the Boolean expression in

the if statement in Step 4 since λ* ≥ 0 is unknown. If xv = ∞, yv = ∞, then the inequality

holds. Assume xv and yv are finite (non-negative) values. Then it suffices to evaluate the

following Boolean expression.

Step 1. Mv = (xv, yv) = (+ ∞, + ∞) for v = 2, 3…, n and M1 = (0, 0)
Step 2. i ← 1
Step 3. u ← 1
Step 4*. ∀ v, (u, v) ∈ E, if (xv + λ* yv > xu + λ* yu + cuv + λ* duv) or
 (xv + λ* yv = xu + λ* yu + cuv + λ* duv) and (xv > xu + cuv))
 Mv ← (xu + cuv, yu + duv)

Step 5. u ← u + 1 and if u ≤ n, go to Step 4.
Step 6. i ← i + 1 and if i < n , go to Step 3.

 136

 p + q λ* ≤ 0 ?, where p = xu + cuv – xv and q = (yu + duv – yv).

 If p · q ≥ 0, then it is trivial to evaluate the Boolean expression. WLOG, assume p · q

< 0, i.e., – p / q > 0. The Oracle test algorithm is presented in Figure 6.2.

 The time complexity of the Oracle test is O (m + n log n). On the other hand, we can

revise the algorithm in Figure 6.1 using Dijkstra’s algorithm and the resulting algorithm

will have time complexity O ((m + n log n)2).

 Next, we show how to compute the value of λ* and L(λ*). The algorithm in Figure

6.1 computes a λ*-minimal path p with minimal cost. Similarly, we can compute a λ*-

minimal path q with minimal delay. Then the value of λ* is given by the following

equation: c(p) + λ* d(p) = c(q) + λ* d(q) and L(λ*) = c(p) + λ*(d(p) – T), where T is the

path delay constrain (here k = 1). Notice that d(q) ≠ d(p) is guaranteed by our

transformation in Section 6.1. ■

Figure 6.2: Oracle test algorithm

 Because our algorithm and LARAC are based on the same methodology and obtain

the same solution, we shall also call our algorithm LARAC. In the rest of the chapter,

T: The path delay constraint

Step 1. Let λ = – p/q > 0 for each link (u, v) ∈ E,
 define its length luv = cuv + λ duv.
Step 2. Compute two shortest paths pc and pd using the lexicographic order on
 (luv, cuv) and (luv, duv), respectively [53].
Step 3. Obviously, d(pc) ≥ d(pd). Only four cases are possible:

a) d(pc) > T and d(pd) > T: By Claim 6.2, λ < λ*
 and thus p + q λ* < 0 if q < 0 and p + q λ* > 0 otherwise.
b) d(pc) < T and d(pd) < T: By Claim 6.2, λ > λ*
 and thus p + q λ* > 0 if q < 0 and p + q λ* < 0 otherwise.
c) d(pc) > T and d(pd) < T: By Claim 6.2, λ = λ* and p + q λ* = 0.
d) d(pc) = T or d(pd) = T: By Lemma 6.1, this is impossible.

 137

we shall discuss how to extend it for k > 1. In particular we develop an approach that

combines the LARAC algorithm as a building block with certain techniques in

mathematical programming. We shall call this new approach as GEN-LARAC.

6.3. GEN-LARAC for the CSP(k) Problem

6.3.1. Optimality Conditions

Theorem 6.2: Given an instance of a feasible CSP(k) problem, a vector Λ ≥ 0

maximizes L(Λ) iff the following problem in the variables uj is feasible.

0,,)(>∀=⋅∑
Λ∈ iijiPp j irpdu

j
λ (6.11)

0,,)(=∀≤⋅∑
Λ∈ iijiPp j irpdu

j
λ (6.12)

1=∑
Λ∈Pp jj
u (6.13)

Λ∈∀≥ Ppu jj ,0 (6.14)

 Proof: Sufficiency: Let x = (u1…, ur, 0, 0…) be a vector of size |Pst|, where r = |PΛ|.

Obviously, x is a feasible solution to RELAX-CSP(k). It suffices to show that x and Λ

satisfy the complementary slackness conditions.

 According to (6.6), ∀p ∈ Pst, w ≤ c(p) + d1(p) λ1… + dk(p) λk. Since we need to

maximize (6.5), the optimal w = c(pΛ) + d1(pΛ) λ1… + dk(pΛ) λk ∀ pΛ ∈ PΛ. For all other

paths p, w – c(p) + d1(p) λ1… + dk(p) λk.< 0. So x satisfies the complementary slackness

conditions. By (6.11) and (6.12), Λ also satisfies complementary slackness conditions.

 138

 Necessary: Let x* and (w, Λ) be the optimal solution to RELAX-CSP(k) and DUAL-

RELAX-CSP(k), respectively. It suffices to show that we can obtain a feasible solution

to (6.11)-(6.14) from x*.

 We know that all the constraints in (6.6) corresponding to paths in Pst – PΛ are strict

inequalities, and w = c(pΛ) + d1(pΛ) λ1… + dk(pΛ)λk ∀pΛ ∈ PΛ. So, from complementary

slackness conditions we get xp = 0, ∀ p ∈ Pst – PΛ.

 Now let us set uj corresponding to path p in PΛ equal to xp, and set all other uj’s

corresponding to paths not in PΛ equal to zero. The ui’s so elected will satisfy (6.11) and

(6.12) since these are complementary conditions satisfied by (w, Λ). Since xi’s satisfy

(6.2), uj’s satisfy (6.13). Thus we have identified a solution satisfying (6.11)-(6.14). ■

6.3.2. GEN-LARAC: A Coordinate Ascent Method

Our approach is based on the coordinate ascent method and proceeds as follows. Given

a multiplier Λ, in each iteration we try to improve the value of L(Λ) by updating one

component of the multiplier vector. If the objective function is not differentiable, the

coordinate ascent method may get stuck at a corner Λs not being able to make progress

by only changing one component. We call Λs pseudo optimal point which requires

updates of at least two components to achieve improvement in the solution. We shall

discuss in Section 6.3.3 how to jump to a better solution from a pseudo optimal point.

Our simulations show that the objective value attained at pseudo optimal points is

usually very close to the maximum value of L(Λ).

 139

Figure 6.3: GEN-LARAC: A coordinate ascent algorithm

6.3.3. Verification of Optimality of Λ

In Step 3 we need to verify if a given Λ is optimal. We show that this can be

accomplished by solving the following LP problem, where PΛ = {p1, p2…, pr} is the set

of Λ-minimal paths.

Maximize 0 (6.15)

subject to 0,,)(>∀=⋅∑
Λ∈ iijiPp j irpdu

j
λ (6.16)

0,,)(=∀≤⋅∑
Λ∈ iijiPp j irpdu

j
λ (6.17)

 1=∑
Λ∈Pp jj
u (6.18)

Λ∈∀≥ Ppu jj ,0 6.19)

Step 1: Λ0 ← (0, 0…, 0); t ← 0; flag ← true; B ←0
Step 2: (Coordinate Ascent Steps)
 while (flag)
 flag ← false
 for i = 1 to k
 γ ← arg 0max ≥ξ L(λt

1…, λt
i – 1, ξ , λt

i+1…, λt
k).

 if (γ ≠ λt
i) then

 flag ← true







≠

=
=+

.

,
1

ij

ij
t
j

t
j λ

γ
λ , j = 1, 2…, k

 t ← t + 1
 end if
 end for
 end while
Step 3: If Λt is optimal then return Λt.
Step 4: B ← B + 1 and go to Step 5 if B < Bmax (Bmax is the maximum
number of iteration allowed); Otherwise, stop.
Step 5: Compute a new vector Λ+ such that L(Λ+) > L(Λt).
Step 6: t ← t + 1, Λt ← Λ+, and go to Step 2.

 140

 By Theorem 6.2, if the above linear program is feasible then the multiplier Λ is a

maximizing multiplier.

 Let (y1…, yk, δ) be the dual variables corresponding to the above problem. Let Y = (y1,

y2…, yk). The dual of (6.15)-(6.19) is as follows

 Minimize R Y T + δ (6.20)

subject to D(pi) Y T + δ ≥ 0, i = 1, 2..., r (6.21)

 yi ≥ 0, ∀ i, λi > 0 (6.22)

Evidently the LP problem (6.20)-(6.22) is feasible. From the relationship between

primal and dual problems, it follows that if the linear program (6.15)-(6.19) is infeasible,

then the objective of (6.20) is unbounded (– ∞). Thus, if the optimum objective of

(6.20)-(6.22) is 0, then the linear program (6.15)-(6.19) is feasible and by Theorem 6.2

the corresponding multiplier Λ is optimal. In summary, we have the following lemma.

Lemma 6.3: If (6.15)-(6.19) is infeasible, then ∃ Y = (y1, y2…, yk) and δ satisfy

(6.21)-(6.22) and R Y T + δ < 0.

 The Y in Lemma 6.3 can be identified by applying any LP solver on (6.20)-(6.22) and

terminating it once the current objective value becomes negative.

 Let Λ be a non-optimal Lagrangian multiplier and Λ(s, Y) = Λ + Y / s for s > 0.

 Theorem 6.3: If a multiplier Λ ≥ 0 is not optimal, then

 ∃ M > 0, ∀ s > M, L(Λ(s, Y)) > L(Λ).

 Proof: If M is big enough, PΛ ∩ PΛ(s, Y) ≠ ∅. Let pJ ∈ PΛ ∩ PΛ(s, V).

 141

 L(Λ(s, Y)) = c(pJ) + (D(pJ) – R) (Λ + Y / s)T

 = c(pJ) + (D(pJ) – R) ΛT + (D(pJ) – R) (Y / s)T

 = L(Λ) + (D(pJ)Y T – R Y T) / s.

 Since D(pJ)Y T + δ ≥ 0 and R Y T + δ < 0, D(pJ)Y T – R Y T > 0.

 Hence L(Λ(s, Y)) > L(Λ). ■

 We can find the proper value of M by binary search after computing Y. The last issue

is to compute PΛ. It can be expected that the size of PΛ is usually very small. In our

experiments, |PΛ| never exceeded 4 even for large and dense networks. The k-shortest

path algorithm can be adapted easily to computing PΛ.

6.3.4. Analysis of the Algorithm

In this section, we shall discuss the convergence properties of GEN-LARAC.

 Lemma 6.4: If there is a strictly feasible path, then for any givenτ, the set Sτ = {Λ |

L(Λ) ≥ τ} ⊂ Rk is bounded.

 Proof: Let p* be a strictly feasible path. For any Λ = (λ1…, λk) ∈ Sτ , we have

 c(p*) + λ 1(d1(p*) – r1) … + λ k(dk(p*) – rk) ≥ L(Λ) ≥ τ .

 Since di(p*) – ri < 0 and λi ≥ 0 for i = 1, 2..., k, Λ must be bounded. ■

 By Claim 6.2, we have the following lemma.

 Lemma 6.5: A multiplier Λ ≥ 0 is pseudo optimal iff ∀i ∃ pi
c, pi

d ∈ PΛ, di(pi
c) ≥ ri

and di(pi
d) ≤ ri ■

 For an n-vector V = (v1, v2…, vn), let |V|1 = |v1| + |v2| …+ |vn| denote the L1-norm.

 142

 Lemma 6.6: Let Λ and Η be two multipliers obtained in the same while-loop in Step

2 in Figure 6.3. Then |L(Η) – L(Λ)| ≥ |Η – Λ|1.

 Proof: Let Λ = Λ1, Λ2…, Λj = Η be the consecutive sequence of multipliers obtained

in Step 2. We first show that | L(Λi+1) – L(Λi) | ≥ |Λi+ 1 – Λi|1.

 Consider two cases.

 Case 1: λb
i+1 > λb

i. By Claim 6.2 and Lemma 6.1, ∃ pΛi+1 and db(pΛi+1) > rb.

 By definition, we have:

 c(pΛi+1) + Λi+1DT(pΛi+1) ≤ c(pΛi) + Λi+1 DT(pΛi), and

 c(pΛi+1) + Λi DT(pΛi+1) ≥ c(pΛi) + Λi DT(pΛi)

 Then

 L(Λi+1) – L(Λi) = c(pΛi+1) + Λi+1 (D(pΛi+1) – R) T – [c(pΛi) + Λi (D(pΛi) – R) T]

 = c(pΛi+1) + Λi (D(pΛi+1) – R)T + (Λi+1 – Λi) (D(pΛi+1) – R)T

 – [c(pΛi) + Λi (D(pΛi) – R)T]

 ≥ c(pΛi) + Λi (D(pΛi) – R)T + (Λi+1 – Λi) (D(pΛi+1) – R)T

 – [c(pΛi) + Λi (D(pΛi) – R)T]

 = (Λi+1 – Λi) (D(pΛi+1) – R)T = (λb
i+1 – λb

i) (db(pΛi+1) – rb)

 ≥ |λb
i+1 – λb

i |.

 Case 2: λb
i+1 < λb

i. By Claim 6.2 and Lemma 6.1, ∃ pΛi+1 and db(pΛi+1) < rb. The rest

of the proof is similar to Case 1.

 Hence

 |L(Λ j) – L(Λ1)| = | L(Λ2) – L(Λ1) + L(Λ3) – L(Λ2) … + L(Λ j) – L(Λj - 1)| .

 = | L(Λ2) – L(Λ1)| + |L(Λ3) – L(Λ2)| … + |L(Λ j) – L(Λj - 1)|

 143

 ≥ |Λ2 – Λ1|1 + |Λ3 – Λ2|1 … + |Λ j – Λj - 1|1 ≥ |Λ j – Λ1 |1.

 The second equality holds because L(Λ1) < L(Λ2) … < L(Λj). ■

 Obviously, if the while-loop in Step 2 in Figure 6.3 terminates in a finite number of

steps, the multiplier is pseudo optimal by definition. If the while loop does not terminate

in a finite number of steps (this occurs only when infinite machine precision is assumed,

in practice, GEN-LARAC terminates in finite steps), we have the following theorem.

 Theorem 6.4: Let {Λi} be a consecutive sequence of multipliers generated in the

same while-loop in Step 2 in Figure 6.3. Then the limit point of {L(Λi)} is pseudo

optimal.

 Proof: Since L(Λ1) < L(Λ2) < … and {Λi} is bounded from above, lims→∞ L(Λs)

exists and is denoted as L*. We next show the vector lims→∞ Λs also exists.

 By Lemma 6.6, ∀ s, j > 0,

 |Λs + j – Λs |1 ≤ |L(Λs + j) – L(Λs)|

 By Cauchy criterion, lims→∞ Λs exists. We denote it as Λ*.

 We label all the paths in Pst as p1, p2…, pN such that cΛ*(p1) ≤ cΛ*(p2) … ≤ cΛ*(pN).

Obviously p1 is a Λ*-minimal path.

 Let

 θ = min {cΛ*(pj) – cΛ*(pi) | ∀ pi, pj ∈ Pst, cΛ*(pj) – cΛ*(pi) > 0},

and

 π = max {dw(pj) – dw(pi) | ∀ pi, pj ∈ Pst, w = 1, 2…, k }.

 Let M be a large number, such that ∀ t ≥ M, |Λ* – Λt|1 < θ / (2 π).

 144

 Consider any component j ∈ {1, 2…, k}, of the multiplier after computing

 arg 0max ≥ξ L(λ1…, λj – 1, ξ, λj+1…, λk) in iteration t ≥ M.

 By Claim 6.2, ∃ pc
 t and pd

 t ∈ PΛ
t and dj(pc

 t) ≥ lj ≥ dj(pd
 t).

 It suffices to show PΛ
t ⊆ PΛ

*. Given pΛt ∈ PΛ
t, we shall show cΛ*(pΛt) = cΛ*(p1).

 We have

 0 ≤ cΛt(p1) – cΛt(pΛt) = [c(p1) + dΛt(p1)] – [c(pΛt) + dΛt (pΛt)]

 = c(p1) + dΛ* (p1) – [c(pΛt) + dΛ* (pΛt)] + (Λt – Λ*) (D(p1) – D(pΛt))T

 = cΛ*(p1) – cΛ*(pΛt) + (Λt – Λ*) (D(p1) – D(pΛt))T

 Since |(Λt – Λ*) (D(pi) – D(pj))T| ≤ π |(Λt – Λ*)|1 ≤ θ / 2,

 0 ≤ cΛt(p1) – cΛt(pΛt) ≤ cΛ*(p1) – cΛ*(pΛt) + θ / 2.

 Then

 cΛ*(pΛt) – cΛ*(p1) ≤ θ / 2, which implies that cΛ*(pΛt) = cΛ*(p1).

 Hence, ∀ j ∈ {1, 2..., k}, ∃ p c*, pd* ∈ PΛ*, dj(pc*) ≥ lj ≥ dj(pd*) ■

6.4. Simulation

We use COPT, OPT, and POPT to denote the cost of the optimal path to the CSP(k)

problem, the optimal value, and the pseudo optimal value of the Lagrangian function,

respectively. In our simulation, we first verify that the objectives at pseudo optimal

points are very close to the optimal objectives. We use 3 types of graphs: Power-law

out-degree graph (PLO) [44], Waxman’s random graph (RAN) [59], and regular graph

(REG) [55]. The number of weights chosen are 4, 8 and 12, i.e., k = 4, 8, and 12. Link

weights are random even integers uniformly distributed between 2 and 200. To decide

 145

proper delay bounds, we randomly choose an s-t path pran and set ri = (1 + ε) di(pran)

where ε is a random variable evenly distributed in interval [– 0.25, 0.25]. For each type

of topology, 10 different graphs with valid delay bounds and random source and target

nodes are generated. The results reported are averaged over the 10 instances.

We use the following two metrics to measure the quality of path p in Table 6.1.

 g(p) = c(p) / POPT and f(p) = maxi = 1, 2…, k di(p)/ri

 By Claim 6.1, g(p) is the upper bound of the gap between the cost of p and COPT.

The f(p) indicates the degree of violation of p to the constraints on its delays.

Table 6.1: Quality of pseudo-optimal paths

 Error: (OPT – POPT) / OPT #SP: Number of computation of shortest path

Type k OPT POPT Error g(p) f(p) #SP Time(s)
REG 4 1116.8 1109.9 0.006 1.01 1.07 15.2 0.14
REG 8 1078.3 1069.0 0.032 1.00 1.09 20.7 0.21
REG 12 1066.2 1057.8 0.008 1.00 1.08 28.2 0.32
PLO 4 401.75 382.71 0.047 1.00 1.25 9.6 0.07
PLO 8 328.95 320.77 0.025 1.01 1.15 7.2 0.04
PLO 12 368.43 342.43 0.071 1.02 1.24 18.3 0.21
RAN 4 1543.6 1531.5 0.008 1.01 1.08 13.4 0.13
RAN 8 1473.3 1456.5 0.011 1.00 1.09 20.0 0.25
RAN 12 1438.6 1423.7 0.010 1.00 1.01 17.9 0.45

 In Figure 6.4, the label LARAC-REG means the results obtained by running GEN-

LARAC algorithm on regular graphs. Other labels can be interpreted similarly. We only

report the results on regular graphs and random graphs for better visibility.

 146

0

5

10

15

20

25

30

35

40

45

0 2 4 6 8 10 12 14

k-number of weights

#s
ho

rt
es

t p
at

h
co

m
pu

ta
tio

n
LARAC-REG
Hull-REG
Subgradient-REG
LARAC-RAN
Hull-RAN
Subgradient-RAN

The comparison of the number of shortest path computation among GEN-LARAC, Hull
approach, and subgradient method. All algorithms terminate when have reached 99% of the
OPT.

Figure 6.4: Comparison of GEN-LARAC, Hull approach, and subgradient method

 We conducted extensive experiments to compare our algorithm with the Hull

approach [39], the subgradient method [2], and the general-purpose LP solver CPLEX.

Because the four approaches share the same objective, i.e., maximizing the Lagrangian

function, they always obtain similar results. We only report the number of shortest path

computations which dominate the running time of all the first three algorithms.

Generally, GEN-LARAC algorithm and Hull approach are faster than the subgradient

methods and CPLEX (See [69] for the comparison of Hull approach and CPLEX). But

GEN-LARAC and Hull approach beat each other on different graphs. Figure 6.4 shows

that on the regular graph, GEN-LARAC is the fastest. But for the random and Power-

law out degree graphs, the Hull approach is the fastest. The probable reason is that the

number of s-t paths is relatively small in these two types of graphs because the length

(number of hops) of s-t paths is short even when the number of nodes is large. This will

 147

bias the results in favor of Hull approach which adds one s-t path into the linear system

in each iteration [39]. We choose the regular graph because we have a better control of

the length of s-t paths.

6.5. Summary and Conclusion

In this chapter we developed a new approach to the constrained shortest path problem

involving multiple additive constraints. Our approach uses the LARAC algorithm as a

building block and combines it with certain ideas from mathematical programming to

design a method that progressively improves the value of the Lagrangian function until

optimum is reached. The algorithm is analyzed and its convergence property has been

established. Simulation results comparing our approach with two other approaches

show that the new approach is quite competitive.

 Since the LARAC algorithm is applicable for the general class of optimization

problems (involving one additive delay constraint) studied in [6] our approach can also

be extended for this class of problems whenever an algorithm for the underlying

optimization problem (such as Dijkstra’s algorithm for the shortest path problem) is

available.

 148

Chapter 7. Summary

In this dissertation, we have studied the end-to-end Quality of Service (QoS) and fault

tolerance issues in computer communication networks. Many problems that fall under

this theme can be modeled as constrained shortest path(s) selection problems on

networks with each of their links associated with two or more weights representing the

cost, delay, reliability, delay-jitter, and others additive parameters. We considered four

fundamental problems that are encountered in this area.

 In Chapters 2 and 3, we studied the QoS single route selection problem, i.e., the

constrained shortest path (CSP) problem. The goal of the CSP problem is to identify a

minimum cost route which incurs a delay less than a specified bound. The CSP problem

can be formulated as an integer linear programming (ILP) problem which is

computationally intractable. A class of approximation algorithms has been proposed in

the literature based on the linear programming relaxation of the ILP formulation.

 In Chapter 2, we reviewed several algorithms solving the dual problem of the relaxed

problem and showed their equivalence. We then proposed two new approximation

algorithms solving the dual problem using binary search and parametric search,

respectively. We also pointed out how to integrate these algorithms to speed up ε-

approximation algorithms.

 In Chapter 3, we proposed a novel approximation algorithm which is also based on

the relaxed ILP formulation. However, we studied the problem using the primal simplex

method of linear programming and exploiting certain structural properties of networks.

 149

Our simulation shows that our algorithm is faster than the dual based algorithms on

dense networks.

 In Chapter 4, we generalized the algorithms in Chapters 2 and 3 for constrained

shortest link-disjoint paths selection problem which requires a set of, say k > 1, link-

disjoint paths with minimum total cost and with total delay bounded by a given upper

bound. This problem, referred as the CSDP(k) problem, arises in the context of

provisioning paths in a network that could be used to provide resilience to failures in

one or more of these paths.

 All the algorithms and methods in Chapters 2, 3, and 4 assume that the network

status/parameters are known and accurate. However, in real networks, this assumption

is not realistic. In Chapter 5, we considered the QoS route selection problem under

inaccurate state information. In this problem, the link delays are random variables. This

problem is also called stochastic shortest path selection problem. The goal of this

problem is to find a path that has the highest probability to satisfy a given upper bound

on delay. This problem is denoted as the MP-DCP problem. Base on central limit

theorem, we proposed a pseudo polynomial time approximation algorithm, a fully

polynomial time approximation scheme (FPTAS), and a strongly polynomial time

heuristic.

 In Chapter 6, we studied the constrained shortest path problem with multiple additive

constrains. Using the dual algorithms discussed in Chapter 2 and combining ideas from

mathematical programming, we proposed a new approximation algorithm. Simulation

shows that our algorithm beats previously known algorithms such as the subgradient

algorithm and the hull approach.

 150

References

[1] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Networks Flows, Prentice-Hall, NJ,

USA, 1993.

[2] J. Beasley and N. Christofides, “An algorithm for the Resource Constrained Shortest

Path Problem,” Networks, 19:379-394, 1989.

[3] Y. Bejerano, Y. Breitbart, A. Orda, R. Rastogi, and A. Sprintson, "Algorithms for

computing QoS paths with restoration," IEEE Trans. of Networking, vol. 13, no. 3,

2005, pp. 648-661.

[4] D. P. Bertsekas, Network optimization: continuous and discrete models, Athena

Scientific, Belmont, Massachusetts, 1998.

[5] D. P. Bertsekas and J. N. Tsitsiklis, Introduction to linear optimization, Athena

Scientific, Belmont, Massachusetts, USA, 1997.

[6] D. Blokh and G. Gutin, “An approximation algorithm for combinatorial

optimization problems with two parameters,” Australasian Journal of

Combinatorics, vol. 14, 1996, pp.157-164.

[7] Stephen Boyd and Lieven Vandenberghe, Convex Optimization, Cambridge

University Press, Cambridge, UK, 2003.

[8] A. Chakrabarti and G. Manimaran, "Reliability constrained routing in QoS

networks," IEEE Trans. of Networking, vol. 13, no. 3, 2005, pp. 662-675.

[9] S. Chen and K. Nahrstedt, “On finding multi-constrained path,” in Proc. ICC, 1998,

pp. 874-879.

 151

[10] S. Chen and K. Nahrstedt, “An overview of Quality-of-Service routing for the next

generation high-speed networks: problems and solutions,” IEEE Network Magazine,

12(6), pp. 64-79, Nov. / Dec, 1998.

[11] Chvάtal, Linear programming, W. H. Freeman and Company, New York, USA

1983.

[12] E. Crawley, R. Nair, B. Rajagopalan, and H. Sandick, “A Framework for QoS Based

Routing in the Internet”, Internet Draft, fttp://fttp.ietf.org/internet-drafts/draft-ietf-

qosr-framework-02.txt, November 1997.

[13] M.R. Garey and D.S. Johnson, Computers and Intractability, Freeman, San

Francisco, CA, USA, 1979.

[14] A. Goel, K. G. Ramakrishnan, D. Kataria and D. Logothetis, “Efficient computation

of delay-sensitive routes from one source to all destinations,” IEEE INFOCOM,

2001, pp. 854-858.

[15] R. Guerin, S. Kamat, A. Orda and T. Przygienda, “QoS Routing Mechanisms and

OSPF Extensions”, Internet Draft, March, 1997.

[16] R. Guerin and A. Orda, “QoS routing in networks with inaccurate information:

theory and algorithms,” IEEE/ACM Trans. on Networking, vol. 7, pp. 350-364, June

1999.

[17] G. Handler and I. Zang, “A dual algorithm for the constrained shortest path

problem,” Networks 10, 1980, pp. 293-310.

[18] R. Hassin, “Approximation schemes for the restricted shortest path problem,” Math.

Of Oper. Res., 17(1), 1992, pp.36-42.

 152

[19] Sung-Pi Hong, Sung-Jin Chung and Bum Hwan Park, “On ‘Strongly’ and Fully

Approximation Schemes for Restricted Shortest Path Problem,” Technical Report,

Seoul National University (csj@optima.sun.ac.kr).

[20] O. Ibarra and C. Kim, “Fast Approximation Algorithms for the Knapsack and Sum

of Subsets Problems,” Journal of the Association for Computing Machinery, vol. 22,

463-468, October, 1975.

[21] A. Iwata, R. Izmailov, D.-S. Lee, B. Sengupta, G. Ramamurthy, and H. Suzuki,

“ATM routing algorithms with multiple QoS requirements for multimedia

internetworking,” in IEICE Trans. Commun. E79-B, vol. 8, 1996, pp. 999–1006.

[22] J. M. Jaffe, “Algorithms for finding paths with multiple constraints,” Networks, vol.

14, 1984, pp. 95–116.

[23] A. Jüttner, B. Szviatovszki, I. Mécs and Z. Rajkó, “Lagrange relaxation based

method for the QoS routing problem,” in Proc. IEEE INFOCOM-2001, pp. 859-868.

[24] Alpár Jüttner, “On Budgeted Optimization Problems,” under review for SIAM Journal

on Discrete Mathematics.

[25] A. Jüttner, “On resource constrained optimization problems,” 4th Japanese-Hungarian

Symposium on Discrete Mathematics and Its Applications, June 3-6, 2005, Budapest,

Hungary.

[26] D. Karger, R. Motwani and G. D. S. Ramkumar, “On approximating the longest

path in a graph”, Algorithmica 18, pp. 82-98, 1997.

[27] T. Korkmaz and M. Krunz, “A randomized algorithm for finding a path subject to

multiple QoS requirements,” Comput. Networks, vol. 36, 2001, pp. 251–268.

 153

[28] T. Korkmaz and M. Krunz, “Bandwidth-delay constrained path selection under

inaccurate state information,” IEEE/ACM Trans. on Networking, June 2003, pp.

384-398.

[29] T. Korkmaz and M. Krunz, “Multi-constrained optimal path selection,” in Proc.

IEEE INFOCOM 2001, vol. 2, pp. 834-843

[30] Turgay Korkmaz, Marwan Krunz and Spyros Tragoudas, “An Efficient Algorithm

for Finding a Path Subject to Two Additive Constraints,” Computer

Communications Journal 25(3):225-238, 2002.

[31] F. A. Kuipers, T. Korkmaz, M. Krunz, and P. Van Mieghem, “An overview of

constraint-based path selection algorithms for QoS routing,” IEEE Commun. Mag.,

vol. 40, pp. 50–55, Dec. 2002.

[32] C.-L. Li, S. T. McCormick, and D. Simchi-Levi, “The complexity of finding two

disjoint paths with min-max objective function,” Discrete Applied Math. 26, 1990,

pp. 105-115.

[33] G. Liu and K. G. Ramakrishnan, “A*Prune: An algorithm for finding K shortest

paths subject to multiple constraints,” in Proc. IEEE INFOCOM, vol. 2, 2001, pp.

743–749.

[34] D. H. Lorenz and A. Orda, “QoS routing in networks with uncertain parameters,”

IEEE/ACM Trans. Networking, vol. 6, Dec. 1998, pp. 768-778.

[35] D. Lorenz and D. Raz, “A simple efficient approximation scheme for the restricted

shortest paths problem,” Oper. Res. Letters, vol. 28, 2001, pp. 213–219.

[36] Dean H. Lorenz, Ariel Orda, Danny Raz and Yuvait Shavitt, “Efficient QoS

Partition and Routing of Unicast and Mulicast,” in IWQOS, June 2000.

 154

[37] G. Luo, K. Huang, J. Wang, C. Hobbs and E. Munter, “Multi-QoS constraints based

routing for IP and ATM networks,” in Proc. IEEE Workshop on QoS Support for

Real-Time Internet Applications, Vancouver Canada, June 1, 1999.

[38] N. Megiddo, “Combinatorial optimization with rational objective functions,” Math.

of Oper. Res., vol. 4, no. 4, Nov. 1979, pp. 1-12.

[39] K. Mehlhorn and M. Ziegelmann, “Resource constrained shortest path,” in Proc. 8th

European Symposium on Algorithms (ESA2000), pp 326–337.

[40] P. Van Mieghem, H. De Neve, and F. Kuipers, “Hop-by-hop quality of service

routing,” Comput. Networks, vol. 37, no. 3–4, 2001, pp. 407–423.

[41] P. Van Mieghem and F. Kuipers, “Concepts of Exact QoS Routing Algorithms,”

IEEE/ACM Trans. On Networking, vol. 12, Oct. 2004, pp. 851-864.

[42] H. De Neve and P. Van Mieghem, “TAMCRA: A tunable accuracy multiple

constraints routing algorithm,” Comput. Commun, vol. 23, 2000, pp.667–679.

[43] A. Orda and A. Sprintson, “Efficient algorithms for computing disjoint QoS paths,”

in Proc. IEEE INFOCOM, 2004, pp. 727–738.

[44] C. R. Palmer and J. G. Steffan, “Generating network topologies that obey power

laws,” in Proc. IEEE GLOBECOM, 2000, pp.434–438.

[45] C. Phillips, “The network inhibition problem,” in Proc. of the 25th Annual ACM

Symposium on the Theory of Computing, May, 1993, pp. 776–785.

[46] Private Network-Network Interface Specification Version 1.0 (PNNI 1.0) ATM

Forum Technical Committee, 1996.

 155

[47] T. Radzik, Fractional combinatorial optimization, in handbook of combinatorial

optimization, Editors DingZhu Du and Panos Pardalos, vol. 1, Kluwer Academic

Publishes, Dec. 1998.

[48] R. Ravindran, K. Thulasiraman, A. Das, K. Huang, G. Luo and G. Xue, “Quality of

services routing: heuristics and approximation schemes with a comparative

evaluation,” ISCAS, 2002, pp. 775–778.

[49] Douglas S. Reeves and Hussein F. Salama, “A Distributed Algorithm for Delay-

Constrained Unicast Routing,” IEEE/ACM Trans. on Networking, vol. 8, no 2, April

2000, pp. 239-250.

[50] Sartaj Sahni, General Techniques for Combinatorial Approximation, Oper. Res. 25,

1977, pp. 920-936.

[51] A. Schrijver, Theory of linear and integer programming, John Wiley, New York,

1986.

[52] S. Shenkar, C. Patridge and R. Guering, “Specification of Guaranteed Quality of

Service”, INTERNET-RFC 2212, IETF, September 1997.

[53] J. L. Sobrinho, “Algebra and Algorithms for QoS Path Computation and Hop-by-

Hop Routing in the Internet,” IEEE/ACM Trans. on Networking, vol. 10, no. 4, Aug.

2002, pp. 541-550.

[54] J. W. Suurballe and R. E. Tarjan, “A quick method for finding shortest pairs of

disjoint paths,” Networks, vol. 14, 1984, pp. 325-336.

[55] K. Thulasiraman and M. N. Swamy, Graphs: Theory and algorithms, Wiley

Interscience, New York, 1992.

 156

[56] K. Thulasiraman, Y. Xiao, G. Xue, “Advances in QoS path(s) Selection problem”,

in Proc. ISCAS 2005.

[57] A. Warburton, Approximation of pareto optima in multiple-objective shortest path

problems, Operations Research, 35:70-79,1987

[58] Z. Wang and J. Crowcroft, “Quality-of-Service routing for supporting multimedia

applications,” IEEE JSACs, vol.14, no.7, Sept. 1996, pp.1228–1234.

[59] B. M. Waxman, “Routing of multipoint connections,” IEEE J. Selected Areas in

Comm. 6(9), Dec. 1988, 1617–1622

[60] Y. Xiao, K. Thulasiraman and G. Xue, “Equivalence, unification and generality of

two approaches to the constrained shortest path problem with extension,” in Proc.

Allerton Conference on Control, Communication and Computing, University of

Illinois, Urbana-Champaign, Oct., 2003

[61] Y. Xiao, K. Thulasiraman and G. Xue, “The constrained shortest path problem:

algorithmic approaches and an algebra study with generalization,” to appear in

AKCE International Journal of Graphs and Combinatorics.

[62] Y. Xiao, K. Thulasiraman and G. Xue, “Constrained Shortest Link-Disjoint Paths

Selection: A Network Programming Based Approach,” accepted for publication in

IEEE Transactions on Circuits & Systems I: Regular Papers. A preliminary version

appeared in Proc. Allerton Conference on Control, Communication and Computing,

University of Illinois, Urbana-Champaign, Oct. 2004.

[63] Y. Xiao, K. Thulasiraman and G. Xue, “QoS Routing in Communication Networks:

Approximation Algorithms Based on the Primal Simplex Method of Linear

 157

Programming,” Submitted to IEEE transactions on computers, revised version under

review. A preliminary version appeared in Proc. QShine 2004, pp. 120–129.

[64] Y. Xiao, K. Thulasiraman and G. Xue, “Approximation and Heuristic Algorithms

for Delay Constrained Path Selection under Inaccurate State Information,” QShine

2004, pp. 130-137.

[65] Y. Xiao, K. Thulasiraman and G. Xue, "GEN-LARAC: A Generalized Approach to

the Constrained Shortest Path Problem under Multiple Additive Constraints,"

Accepted by 16th Annual International Symposium on Algorithms and

Computation, Dec., 2005, Sanya, Hainan, China.

[66] G. Xue, “Minimum-cost QoS multicast and unicast routing in communication

networks,” IEEE Trans. On Commun. Vol. 51, May 2003, pp. 817-827

[67] G. Xue, A. Sen and R. Banka, “Routing with many additive QoS constraints,” In

Proc. ICC’ 03, pp. 223–227.

[68] X. Yuan, “Heuristic algorithms for multiconstrained quality-of-service routing,”

IEEE/ACM Trans. Networking, vol. 10, pp. 244–256, Apr. 2003

[69] M. Ziegelmann, “Constrained shortest paths and related problems,” PhD thesis,

Max-Planck-Institut für Informatik, 2001.

 158

Appendix A. Waxman’s Random Graphs

Waxman’s random graphs have some of the characteristics of actual networks. There

are two types of random graphs defined in [59]. In our simulation, we have adopted the

second type of graphs generated as follows:

1) Given a node set, for each pair of nodes, a distance is chosen in (0, L > 0) from a

uniform random distribution.

2) An edge is introduced between any pair of nodes u, v with a probability given as

Pr({u, v}) = β exp {
αL

vud),(− }, where α and β are parameters in the range (0, 1).

3) The cost and delay of each link are chosen in [1, C > 1] and [1, D > 1] from a

uniform random distribution.

To guarantee that the generated networks are connected, we first link all the nodes as a

ring and then proceed with the above procedure to add more edges. The same rule is

also applied to the generation of power law graphs to be defined next.

 159

Appendix B. Power Law Graphs

Power law graphs used in our simulation are generated as follows [44]:

1) Randomly assign to each node a number of out-degree credits. Here credits are

attained using a random number generator that generates numbers that follow

the exponential distribution β x-α, where α and β are parameters.

2) Place edges in the adjacency matrix for the graph such that every node obtains

the assigned out-degree. The edge placement loop picks a random pair of nodes

and assigns an edge without violating the out degree constraints. When an edge

is placed between a pair of nodes, decrease the out-degree credits of the head

node in the pair.

3) The cost and delay of each link are chosen in [1, C > 0] and [1, D > 0] from a

uniform random distribution.

