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Abstract 

We have studied certain combinatorial optimization problems that arise in the context of 

two important problems in computer communication networks: end-to-end Quality of 

Service (QoS) and fault tolerance. These problems can be modeled as constrained 

shortest path(s) selection problems on networks with each of their links associated with 

additive weights representing the cost, delay etc. 

     First we studied the QoS single route selection problem, i.e., the constrained shortest 

path (CSP) problem. The goal of the CSP problem is to identify a minimum cost route 

which incurs a delay less than a specified bound. It can be formulated as an integer 

linear programming (ILP) problem which is computationally intractable. The LARAC 

algorithm reported in the literature is based on the dual of the linear programming 

relaxation of the ILP formulation and gives an approximate solution. We proposed two 

new approximation algorithms solving the dual problem. Next, we studied the CSP 

problem using the primal simplex method and exploiting certain structural properties of 

networks. This led to a novel approximation algorithm.  

    The CSDP (k) problem requires the selection of a set of k > 1 link-disjoint paths with 

minimum total cost and with total delay bounded by a given upper bound. This problem 

arises in the context of provisioning paths in a network that could be used to provide 

resilience to link failures. Again we studied the LP relaxation of the ILP formulation of 

the problem from the primal perspective and proposed an approximation algorithm. 

    The problems considered above assume that the network status is known and accurate. 

However, in real networks, this assumption is not realistic. So we considered the QoS 

route selection problem under inaccurate state information. Here the goal is to find a 



 xi

path with the highest probability that satisfies a given delay upper bound. We proposed 

a pseudo-polynomial time approximation algorithm, a fully polynomial time 

approximation scheme, and a strongly polynomial time heuristic for this problem. 

Finally we studied the constrained shortest path problem with multiple additive 

constraints. Using the LARAC algorithm as a building block and combining ideas from 

mathematical programming, we proposed a new approximation algorithm.  
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Chapter 1. Introduction 

 
This dissertation is concerned with the design of algorithms for different classes of 

constrained shortest path problems. In these problems path are required to satisfy 

certain pre-specified constraints on the path weights. These problems arise in i) the 

selection of routes that satisfy certain quality of service (QoS) guarantees and ii) the 

provision of alternate paths that provide protection against failures of links on the path.      

    Routing is a fundamental problem in communication networks. In traditional data 

networks, routing is achieved by best effort routing. Best effort routing is primarily 

concerned with providing connectivity. FIFO provides best-effort service. Here, flows 

are not differentiated and are serviced on a first-come, first-served basis. In best effort 

routing the routing protocol usually characterizes the network with a single metric such 

as hop-count or delay and uses a shortest path algorithm for path computation. Whereas 

the best-effort routing paradigm is adequate to serve the needs for traditional 

applications such as FTP (File Transfer Protocol) it is quite inadequate in providing the 

stringent quality of service (QoS) guarantees demanded by popular multimedia 

applications such as real time digital video or audio transmission. To support a broad 

range of QoS requirements, routing protocols need to consider more complex models 

that incorporate multiple metrics such as cost, delay, delay variation, loss probability, 

and bandwidth. This has triggered efforts towards proposals for QoS based frameworks 

such as DiffServe and IntServ, QoS routing protocols that accommodate multiple QoS 

requirements such as Q-OSPF and PNNI, and QoS routing algorithms (See [12, 15, 46, 

52]). Despite these efforts, there is no standardized QoS routing protocol for the Internet. 
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To the best of our knowledge the only standardized QoS routing protocol is ATMF 

PNNI [46].  

    Two activities are involved in routing: i) capturing the network state information and 

disseminating the information throughout the network. This requires detection of 

significant changes, topology updates, distributed broadcasting (flooding) of the 

information to each node in the network etc. (ii) routing algorithms that compute the 

paths that satisfy certain performance guarantees. 

    In this dissertation we are concerned with the latter, namely, QoS routing algorithms. 

QoS measures can be classified into two types of metrics, non-additive (also called 

bottleneck, e.g., bandwidth) and additive constraints. Each measure is modeled by 

associating a weight with each link. For a non-additive measure QoS weight of a path is 

the minimum weight along the path. In the case of additive measures such as cost, delay, 

reliability, and delay-jitter, the QoS weight of a path is the sum of the QoS weights of 

the links on the path. Non-additive measures can be handled easily by simply removing 

from the network the links that do not satisfy the required QoS measure.  

    Fault tolerance is a topic of great interest in the study of communication networks. In 

the context of routing, a problem of importance is to select a set of disjoint paths 

between a source node and a destination node that provide path protection against one 

or more link failures. Here arises the problem of finding a set of disjoint path that 

satisfy certain QoS requirements. 

    The central theme of the dissertation is to study different classes of constrained 

shortest path problems that arise in the applications discussed above: QoS routing and 

path protection. 
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1.1. QoS Routing and Path Protection Problems 

In this dissertation we are concerned with finding paths that satisfy additive QoS 

metrics. In particular, we are interested in the following classes of constrained shortest 

path problem that arise in QoS routing and path protection.  

    Consider a directed network G(V, E) where V is the set of nodes and E is the set of 

links of the network. Each link (u, v) ∈ E is associated with two integer weights cuv > 0 

(cost) and duv > 0 (delay). Also given are two nodes s and t. The cost c(p) and delay d(p) 

of a directed s-t path are defined as follows: 

                                         c(p) = ∑(u, v) ∈ p cuv and d(p) = ∑(u, v) ∈ p duv. 

    Given an integer ∆ > 0, a directed s-t path p is said to be feasible if d(p) ≤ ∆. In the 

following a directed s-t path will simply be called an s-t path. 

    Constrained Shortest Path (CSP) problem: Find an s-t path popt = arg min{c(p)| p 

is a feasible s-t path}. This is illustrated with the example in Figure 1.1. 

Constrained k Shortest Disjoint-Paths (CSDP(k)) problem: Here the objective is 

to find a set of k link-disjoint paths between a source node and a destination node with 

minimum total cost and with the total delay satisfying certain pre-specified bound. This 

problem arises in the context of providing alternate QoS paths to achieve protection 

against link failures. 

Most Probable Delay Constrained Path selection under inaccurate information 

(MP-DCP): Objective here is to identify a path that has the highest probability of 

satisfying a delay bound. The delay of each link is a random variable. This problem is 
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of great importance since accurate state of a network (parameter information) is not 

often available.  

    Constrained Shortest Path Problem under Multiple Additive Constraints 

(CSP(k)): Suppose that each link (u, v) is associated with a set of k + 1 additive non-

negative integer weights Cuv = (cuv, w1
uv, w2

uv…, wk
uv). Here cuv is called the cost of link 

(u, v) and wi
uv is called the ith delay of (u, v). For an s-t path p define 

                             c(p) ≡ ∑
∈pvu

uvc
),(

 and di(p) ≡ kiw
pvu

i
uv ,...1, 

),(
=∑

∈
.  

    The value c(p) is called the cost of path p, and di(p) is called the ith  delay of path p. 

Given k positive integers r1, r2…, rk, an s-t path is called feasible (resp. strictly feasible) 

if di(p) ≤ ri (resp. di(p) < ri), for all i = 1, 2… k (ri is called the bound on the ith delay of 

a path). The CSP(k) problem is to find a minimum cost feasible s-t path. 

 

 
 

Figure 1.1: An example of the CSP problem 
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1.2. Overview of Literature 

In this section we give an overview of literature on the four problems defined in the 

previous section. 

 

1.2.1. The Constrained Shortest Path (CSP) Problem 

It has been shown in [13, 58] that the CSP problem is NP-hard even for acyclic 

networks. So, in the literature, heuristic approaches and approximate algorithms have 

been proposed. Heuristics, in general, do not provide performance guarantees on the 

quality of the solution produced, though they are usually fast in practice. On the other 

hand, ε-approximation algorithms deliver solutions with cost within (1 + ε) time the 

optimal cost, but are usually very slow in practice because they guarantee the quality of 

the solutions produced. 

1.2.1.1. Heuristics with Performance Guarantees 

As regards heuristics, several of them have appeared in the literature providing different 

levels of performance with regard to the quality of the solution as well as the 

computation time required. For instance, the LHWHM algorithm [37] is a simple 

heuristic which is very fast (requiring only two invocations of Dijkstra’s shortest path 

algorithm for a feasible problem). Reference [48] also discusses further enhancements 

of the LHWHM algorithm as well as a heuristic based on the Bellman-Ford-Moore 

(BFM) algorithm for the shortest path problem. It should be emphasized that in all these 

cases, only simulations are used to evaluate the performance of the algorithms. Usually, 
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theoretical analysis is not given as regards the quality of the solution. A comprehensive 

overview of a number of QoS routing algorithms may be found in [9, 31]. 

    There are heuristics that are based on sound theoretical foundations. These algorithms 

are based on solutions to the integer relaxation or the dual of the integer relaxation of 

the CSP problem. To the best of our knowledge, the first such algorithm was reported in 

[17] by Handler and Zang. This is based on the geometric approach (also called the hull 

approach [39, 69]). More recently, in an independent work, Jüttner etc. [23] developed 

the LARAC algorithm which solves the Lagrangian relaxation of the CSP problem 

(Here, the Lagrangian relaxation method is equivalent to the dual method). In contrast 

to the geometric method, they used an algebraic approach. They also presented several 

interesting results relating to the structure of the optimal solutions of the Lagrangian 

relaxation. In another independent work, Blokh and Gutin [6] defined a general class of 

combinatorial optimization problems (that are called the MCRT problems, namely, 

Minimum Cost Restricted Time Combinatorial Optimization problems) of which the 

CSP problem is a special case, and proposed an approximation algorithm to this 

problem. In recent work, Xiao etc. [60, 61] drew attention to the fact that the algorithms 

in [6] and [23] are equivalent. Mehlhorn and Ziegelmann [39] and Ziegelmann [69] 

have also observed this equivalence and have developed several insightful results. They 

arrived at these results using the hull (geometric) approach. In view of this equivalence, 

we shall refer to these algorithms as the LARAC algorithm. The work in [61] also 

establishes certain results using the algebraic approach. These results also hold true in 

the case of the general optimization problem considered in [6]. In another independent 

work, Xue [66] also arrived at the LARAC algorithm using the primal-dual method of 
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linear programming. A more recent variant of these approaches may be found in [30]. 

As regards computational complexity, in an unpublished work [25], Jüttner proves the 

strong polynomiality of the LARAC algorithm, both for the general case and for the 

CSP problem. He has used certain results from the general area of fractional 

combinatorial optimization. An application of the parametric search method to the 

general class of combinatorial optimization problems involving two additive parameters 

may be found in [24]. Radzik [47] gives an excellent exposition of approaches to 

fractional combinatorial optimization problems. Binary search based algorithms for the 

integer relaxation of the CSP problem are discussed in [30], [61] and [69]. They also 

establish the polynomial complexity of this approach using geometric and algebraic 

methodologies, respectively. Several interesting algorithms related to the CSP problem 

and motivated by applications have appeared in the literature. For examples, see [36] 

and [49]. 

  

1.2.1.2. ε-Approximation Algorithms:  

A Fully Polynomial Time Approximation Scheme (FPTAS) is a type of approximation 

algorithms for optimization problems (most often, NP-hard optimization problems). A 

FPTAS for a minimization problem is an algorithm which takes an instance of an 

optimization problem and a parameter ε > 0 and produces a solution of an optimization 

problem that is within ε factor of being optimal and the running time of the algorithm is 

a polynomial of the problem size and 1 / ε. We shall simply use ε-approximation 

algorithm to denote a FPTAS. 
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    For a graph / network optimization problem, a FPTAS is called a Strongly 

Polynomial Time Approximation Scheme (SPTAS) if its running time is a polynomial 

of the number of nodes / edges and 1 / ε. 

   Approximation algorithms for CSP problem are usually based on scaling and 

rounding of data. Certain fundamental techniques presented by Sahni [50] and Ibarra 

and Kim [20] have been used by later researchers for designing ε-approximation 

algorithms for the CSP problem. To the best of our knowledge, Warburton [57] was the 

first to develop a fully polynomial time approximation algorithm for the CSP problem 

on acyclic networks. Hassin [18] later improved upon this to derive two fully 

polynomial time approximation schemes. His methods are applicable for general 

networks. The first one is based on a combination of dynamic programming and 

scaling/rounding and has a complexity of O(log log(U/L)[mn ε-1 + log log(U/L)]), where 

m and n are, respectively, the number of nodes and links in the network, and U and L 

are, respectively,  an upper bound and a lower bound on the optimal cost. In a more 

recent work Lorenz and Raz [35] improved upon this result by giving a strongly 

polynomial time approximation scheme of complexity O(mn (log log n + ε-1)). This is 

also applicable to general networks. The second algorithm of Hassin is based on the 

interval partitioning technique developed by Sahni [50]. This is applicable only to 

acyclic networks. In [45], Philips proposed another strongly polynomial time 

approximation scheme applicable for general networks. In a subsequent work, Hong, 

Chung and Park [19] drew attention to certain flaws in the second algorithm of Hassin 

and the algorithm of Philip’s. Other related approximation schemes providing certain 

improvements to Hassin’s algorithm may be found in [36]. In another interesting paper 
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[14], the authors considered the problem of determining a delay sensitive path whose 

delay is at most (1 + ε) times the specified delay bound and whose cost is no greater 

than that of the minimum cost path of the CSP problem. 

 

1.2.2. The Constrained k Shortest Disjoint-Paths (CSDP(k)) Problem: 

Recall that the CSDP(k) problem is to select a set of k link-disjoint paths from s to t 

such that the total cost of these paths is minimum and that the total delay of these paths 

is not greater than a specified bound. This problem, being a generalized version of the 

CSP problem, is NP-hard. The CSDP(k) problem arises in the context of provisioning 

paths in a network that could be used to provide resilience to failures in one or more of 

these paths. Orda et al. [43] have studied the CSDP(2) problem extensively and have 

provided several approximation algorithms. A special case of the CSDP(k) problem 

which does not have the delay requirement has been studied in [54]. The algorithms in 

[6] and [54] can be integrated to provide an approximate solution to the CSDP(k) 

problem.  

 

1.2.3. Most Probable Delay Constrained Path Selection under Inaccurate 

Information (MP-DCP Problem) 

In the definition of the CSP problem it is assumed that the exact state of the network is 

known. However, in practice this is not the case. For several reasons [16, 28], full 

knowledge of the network state is not available. This has led researchers to study the 
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routing problem with uncertain parameters [16, 28, 34, 64]. The objective in these 

papers is to identify a path that is most likely to satisfy the delay requirement. This 

problem is referred to as the MP-DCP problem. In their pioneering works [16] and [34], 

the authors studied several aspects of this problem and related computational issues. 

Unlike the CSP problem that involves two deterministic metrics, namely, link cost and 

link delay, only one link metric, say delay, is considered in the MP-DCP problem. In 

[28], an approximate algorithm similar to the LARAC algorithm was proposed based on 

the assumption that the path delay is normally distributed. This assumption is fully 

justified by the central limit theorem and extensive numerical simulations. In [64], Xiao 

et al. proposed an exact algorithm, a FPTAS, and a strongly polynomial time 

approximation algorithm for the MP-DCP problem. 

1.2.4. Constrained Shortest Paths Problem under Multiple Additive Constraints 

(CSP (k) Problem) 

The CSP(k) problem is more general than the CSP problem in that it asks for a 

minimum cost path from a source node to a target node satisfying multiple constrains on 

the path weights. A variation of CSP(k) problem, called the Multi-Constrained Path 

(MCP) problem has also been a topic of extensive study. The difference between CSP(k) 

and MCP problems is that the MCP problem only asks for a path satisfying all the 

constraints simultaneously without the requirement of minimizing the cost. Several 

heuristics and approximation algorithms for the MCP problem can be found in [9, 22, 

29, 40, 41, 42, 65, 67, 68]. 
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    Two methods for the CSP(k) problem based on mathematical programming have 

been proposed by Beasley and Christofides [2], and Mehlhorn and Ziegelmann [39]. 

Reference [2] uses a subgradient procedure to compute the Lagrangian relaxation 

function of the ILP formulation. With the geometrical interpretation of the algorithm of 

[17], the authors of [39] proposed an algorithm which is a special case of cutting planes 

method [51].  

 

1.3. Scope of the Dissertation 

The main contributions of the dissertation are organized into five chapters as follows.   

    Chapter 2: In this chapter we first present the CSP problem and the general class 

of optimization problems, namely the MCRT problem [6]. We then present the LARAC 

algorithm of [23] for the CSP problem and the MCRT algorithm of [6] for the MCRT 

problem. We point out the equivalence of the LARAC algorithm and the MCRT 

algorithm. We present an algebraic study of the integer relaxation of the CSP problem. 

In view of the equivalence of the LARAC and the MCRT algorithms, one would expect 

the results in [23] (stated without proof), though originally intended for the CSP 

problem, to hold true for the MCRT problem too. We establish these results and certain 

new results for the general case without involving the properties of shortest paths. We 

present a binary search approach for the CSP problem and also show that both the 

LARAC algorithm and this algorithm can be embedded with a tuning parameter whose 

value can be specified in advance depending on the allowable deviation of the cost of 

the path produced from the optimal cost. Finally we develop a strongly polynomial time 
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algorithm for the integer relaxation of the CSP problem. This is based on the parametric 

approach developed by Megiddo [38] for fractional combinatorial optimization 

problems. We conclude the chapter showing how one can integrate the LARAC 

algorithm with ε-approximation techniques to achieve considerable speedup of 

approximation algorithms. Simulation results demonstrating the value of the integrated 

approach are also presented. 

    Chapter 3: In this chapter we present a novel approach to the QoS routing 

problem, making a departure from currently available approaches. We study the 

problem using the primal simplex method of Linear Programming (LP) and exploiting 

certain structural properties of networks. We start with the Integer Linear Programming 

(ILP) formulation of the CSP problem and its integer relaxation formulation. The 

relaxed problem is the same as the LP formulation of the minimum cost flow problem 

[1, 4, 5] except for an additional constraint due to the delay requirement. This additional 

constraint gives rise to several questions that need to be investigated to achieve an 

efficient implementation of the primal simplex method. This leads us to the definition of 

an equivalent problem on a transformed network, called the TCSP problem. We discuss 

several issues that arise in the application of the revised simplex method of linear 

programming on the TCSP problem and strategies to achieve an implementation of the 

revised simplex method. This results in an algorithm allowing degenerate pivots and 

using an anti-cycling strategy specifically designed for the TCSP problem. Another 

algorithm called NBS algorithm avoids degenerate pivots completely. Both these 

algorithms are of pseudo polynomial complexity. We also show how to extract an 

approximate solution to the original CSP problem from the optimum solution to the 
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RELAX-TCSP problem and derive bounds on the quality of this solution with respect to 

the optimum solution. Finally experimental results comparing the NBS algorithm with 

the LARAC algorithm [23], the LHWHM algorithm [37], and general purpose LP 

solvers are presented.  

    Chapter 4: In this chapter we study the CSDP(k) problem which is also NP-hard. So 

our goal is to design an efficient algorithm for constructing an approximate solution to 

this problem. Towards this end, we study the LP relaxation of CSDP(k) problem using 

the revised simplex method of linear programming. This relaxed problem is an upper 

bounded LP problem. We have discussed several issues relating to an efficient 

implementation of our approach. We have shown that an approximate solution to the 

CSDP(k) problem can be extracted from an optimal solution to the relaxed problem. We 

have derived bounds on the quality of this solution with respect to the optimal solution. 

Our work can be considered as the study of the CSDP(k) problem from a primal 

perspective in contrast to the dual perspective employed in the G-LARAC(k) algorithm 

which is based on the algorithms in [23] and [54]. Simulation results comparing our 

algorithm with the general LP solvers are also presented. 

    We denote a general version of CSDP(k) problem as GCSDP(k) problem which 

requires that the delay of each individual path satisfies a specified bound, in contrast to 

the CSDP(k) problem where the constraint is on the total delay of all the k link-disjoint 

paths. We have shown that the LP relaxations of the two problems have the same 

optimal objective value. Thus, if one is interested in obtaining the optimal objective 

values of RELAX-GCSDP(k) and RELAX-CSDP(k) problems, then starting with the 

RELAX-CSDP(k) does not result in any loss of generality. However, the paths 
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produced by the approximate solution derived from the optimal solution to RELAX-

CSDP(k) may not satisfy the individual path delay requirements of the GCSDP(k) 

problem. Our simulation results indicate that in most cases the individual delays of the 

paths produced starting from RELAX-CSDP(k) do not deviate in a significant way from 

the individual delay requirements of the GCSDP(k) problem. 

    Chapter 5: In this chapter we studied the stochastic shortest path problem aimed at 

identifying the most probable delay constrained path (MP-DCP problem). Our work is 

based on the formulation given in [28]. The work in [28] focused on developing 

approximate approaches using the Lagrangian relaxation or line search techniques. In 

contrast, our focus has been on developing polynomial time ε-approximation and 

heuristic algorithms. For the case (Case 1) when there is a path whose mean delay is 

less than or equal to the specified delay bound T, we presented an exact algorithm of 

pseudo polynomial time complexity, a FPTAS, and a strongly polynomial time heuristic 

algorithm. In the unlikely case (Case 2) when every path violates this assumption we 

have shown that the problem is NP-hard. We have also shown that for this case no 

pseudo polynomial time exact algorithm or fully polynomial time constant factor 

approximation algorithm is possible unless P = NP. The difficulty in this case arises 

because we need to find a path minimizing one path metric and maximizing another 

path metric simultaneously.  

    Chapter 6: In this chapter we present a new approach to the CSP(k) problem using 

Lagrangian relaxation. We first show that for k = 1, an approximation solution can be 

computed in O ((m + n log n) 2) time which is better than the complexity of the Hull 

approach and the LARAC algorithm. Because this algorithm and the LARAC algorithm 
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are both based on the same methodology and obtain the same solution, we also denote 

our algorithm as LARAC. For arbitrary k, we use the LARAC algorithm as a building 

block and combine it with ideas from mathematical programming to achieve 

progressively higher values of the Lagrangian function. We present the resulting GEN-

LARAC algorithm and prove its correctness and convergence properties. Simulation 

results comparing our algorithm with two other algorithms are presented. We conclude 

the chapter by pointing out that our approach is quite general and is applicable for the 

general class of combinatorial optimization problems studied in [6].  
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Chapter 2. The CSP Problem: Lagrangian Relaxation Based 

Algorithmic Approaches and an Algebraic Study 

 
2.1. Introduction 

Shortest path, minimum cost flow, and maximum flow computations are fundamental 

problems in operations research. Though interesting in their own right, algorithms for 

these problems also serve as building blocks in the design of algorithms for complex 

problems encountered in large scale industry applications. So, over the years there has 

been an extensive literature on various aspects of these two problems. Both these 

problems are solvable in polynomial time. But adding one or more additional additive 

constraints makes these problems intractable.  

    In this chapter, we focus on the constrained shortest path (CSP) problem. This 

problem requires determination of a minimum cost path from a source node to a 

destination node of a network subject to the condition that the total delay of the path be 

less than or equal to a specified value. The CSP problem has attracted considerable 

attention from different research communities: operations research, computer science, 

and telecommunications. The interest from the telecommunications community arises 

from the great deal of emphasis on the need to design communication protocols that 

deliver certain performance guarantees. This need, in turn, is the result of an explosive 

growth in high bandwidth real time applications that require stringent QoS guarantees. 

It is for this reason that the CSP problem has assumed great importance in 

telecommunication network applications. 
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    The chapter is organized as follows. In Section 2.2, we present the CSP problem and 

the general class of optimization problems, namely the MCRT problem [6]. We also 

present the LARAC algorithm of [23] for the CSP problem and MCRT algorithm of [6]. 

We point out the equivalence of the LARAC algorithm and the MCRT algorithm. In 

Section 2.3 we present an algebraic study of the integer relaxation of the CSP problem. 

In view of the equivalence of the LARAC and the MCRT algorithms, one would expect 

the results in [23] (stated without proof), though originally intended for the CSP 

problem, to hold true for the MCRT problem too. We establish these results and certain 

new results for the general case without involving the properties of shortest paths. These 

results provide the basis for other algorithms considered in later sections. In Section 2.4, 

we present a binary search based approach for the CSP problem and also show that both 

the LARAC algorithm and this algorithm can be embedded with a tuning parameter 

whose value can be specified in advance depending on the allowable deviation of the 

cost of the path produced from the optimal cost. In Section 2.5, we develop a strongly 

polynomial time algorithm for the integer relaxation of the CSP problem. This is based 

on the parametric search approach developed by Megiddo [38] for fractional 

combinatorial optimization problems. Finally in Section 2.6, we show how the LARAC 

algorithm can be integrated with ε-approximation techniques to achieve considerable 

speedup of ε-approximation algorithms. Simulation results demonstrating the value of 

the integrated approach are also presented.  

    The results in this chapter have been repeated in [61]. 
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2.2. The Constrained Shortest Path (CSP) Problem and Generality of 

the LARAC Algorithm 

 We first recall the definition of the CSP stated in Chapter 1.  

    Constrained Shortest Path Problem (CSP): Consider a network G(V, E). Each link 

(u, v) ∈ E is associated with two weights cuv > 0 (say, cost) and duv > 0 (say, delay). 

Also are given two distinguished nodes s and t and a real number ∆ > 0. Let Pst denote 

the set of all s-t paths and for any s-t path p, define 

                              ∑ ∑==
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    Let Pst(∆) be the set of all the s-t paths p such that d(p) ≤ ∆.  A path in the set Pst(∆) is 

called a feasible path. The CSP problem is to find a path p* = arg min{c(p)| p ∈ Pst(∆)}. 

In other words, the CSP problem is to find a minimum cost feasible s-t path. It can be 

formulated as the following integer linear program.   
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    The CSP problem is known to be NP-hard [13, 58]. The main difficulty lies with the 

integrality condition that requires that the variables xuv be 0 or 1. Removing or relaxing 

this requirement from the above integer linear program and letting xuv ≥ 0 leads to 

RELAX-CSP, the relaxed CSP problem. It is often convenient to solve the dual of the 

relaxed form of the CSP problem which we present below. 

    The dual involves s-t paths and a variable λ ≥ 0. For each link (u, v), let the 

aggregated cost cλ be defined as cuv + λ duv. For a given λ, let cλ(p) denote the aggregated 

cost of the path p. Finally define L(λ) as:  

L(λ) = min{cλ(p)| p ∈ Pst} – λ ∆.                                                          (2.1) 

    Note that in the above, min{cλ(p)| p ∈ Pst} is the same as the minimum aggregated 

cost of an s-t path with respect to a given value of λ. This can be easily obtained by 

applying Dijkstra’s algorithm using aggregated link costs. Let the s-t path which has 

minimum aggregated cost with respect to a given λ be denoted as pλ. Then L(λ)  =  cλ (pλ) 

– λ ∆ and the dual of the RELAX-CSP can be presented in the following form. 

            DUAL-RELAX-CSP: Find L* = max {L (λ) | λ ≥ 0}. 

    We note that the problem of maximizing L(λ) as above is also called the Lagrangian 

dual problem. The value of λ that achieves the maximum L(λ) in DUAL-RELAX-CSP 

will be denoted by λ*. Note that L*, the optimum value of DUAL-RELAX-CSP is a 

lower bound on the optimum cost of the path solving the corresponding CSP problem. 

The key issue in solving DUAL-RELAX-CSP is how to search for the optimal λ and 

determining the termination condition for the search. The LARAC algorithm of [23] 

presented in Figure 2.1 is one such efficient search procedure. 
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Figure 2.1: LARAC algorithm 

 
    Description of the algorithm: In the LARAC algorithm of Figure 2.1, Dijkstra(s, t, 

c), Dijkstra(s, t, d), and Dijkstra(s, t, cλ) denote, respectively, Dijkstra’s shortest path 

algorithm using link costs, link delays, and aggregated link costs with respect to the 

multiplier λ. 

1. In the first step, the algorithm calculates the shortest path on link costs. If the 

path found meets the delay constraint, this is surely the optimal path. Otherwise, 

the algorithm stores the path as the latest infeasible path, simply called the pc 

path. Then it determines the shortest path on link delays denoted as pd. If pd is 

infeasible, there is no solution to this instance. 

2. Set λ = (c(pc) – c(pd))/(d(pd)  – d(pc)). With this value of λ, we can find a new cλ-

minimal path r. If cλ(r) = cλ(pc) (= cλ(pd)), we have obtained the optimal λ 

according to Claim 2.5 to be proved in Section 2.3. Otherwise, set r as the new 

pc or pd according to whether r is infeasible or feasible. 

Procedure LARAC(s, t, d, ∆)  
  ),,(: ctsDijkstrapc =  
  if ∆≤)( cpd  then return pc 
  ),,(: dtsDijkstrapd =  
  if ∆>)( dpd  then return “there is no solution” 
  repeat 

         
)()(
)()(

:
cd

dc

pdpd
pcpc

−
−

=λ  

         ),,(: λctsDijkstrar =  
         if )()( cpcrc λλ =  then return dp  
         else if ∆≤)(rd  then rpd =:  else rpc =:  
   end repeat 
end procedure
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    We next define the Minimum Cost Restricted Time Combinatorial Optimization 

(MCRT) Problem studied in [6]. 

 

 

Figure 2.2: MCRT algorithm 

 

    Minimum Cost Restricted Time Combinatorial Optimization (MCRT) Problem: 

Given a finite set P, finite family set S of subsets of P, non-negative threshold h, and 

two non-negative real-valued functions y: P→ R+ (say, cost) and x: P → R+ (say, delay). 

The MCRT problem is to seek a solution F* = arg min{y(F)| F ∈ S, x(F) ≤ h}, where 

z(G) = ∑ ∈Gg
gz )(  for z ∈ {x, y} and G ∈ S.  

    Evidently, the CSP problem is a special case of the MCRT problem and so the 

MCRT problem is also NP hard. Therefore, we consider solving the integer relaxation 

of the MCRT problem. This is achieved by the MCRT algorithm given in [6] and 

Procedure MCRT (h) 
      F := A(0, 1) 
      if x(F) ≤ h then return F. 
     H := A(1, 0) 
     if x(H) > h then return “no solution” 
     repeat  
       a := y (H) – y(F) 
       b := x(F) – x(H) 
       c := x(F)y(H) – x(H)y(F)                                   (a) 
      G := A(a, b) 
       if c = ax(G) + by(G) then                                  (b) 
             if x(G) ≤ h then return G  else return H  
       if c > ax(G) + by(G) then                                  (c) 
             if x(G) ≤ h then H := G  else F := G. 
    end repeat  
end procedure 
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presented in Figure 2.2. In this algorithm, it is assumed that there is an effective 

algorithm A(a, b) for the corresponding minimum cost problem with respect to a x(p) + 

b y(p), p ∈ S, where a, b are the multipliers. For instance, in the case of the CSP 

problem, Dijkstra’s algorithm for the minimum cost path problem can play the role of 

algorithm A. In Figure 2.2, algorithm A(a, b) returns p = arg min{ax(r) + by(r)| r ∈ S}.  

 

    Equivalence of LARAC and MCRT Algorithms: Following the definition of the 

variables in Figure 2.1 and Figure 2.2, it can be seen that H corresponds to pd while F 

corresponds to pc and λ corresponds to a/b because  

                                         .
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    If the expressions (a), (b) and (c) in procedure MCRT are scaled by b, the MCRT 

algorithm reduces to the LARAC algorithm. In view of the equivalence of the LARAC 

algorithm and the MCRT algorithm, in the rest of the chapter we shall refer to both 

these algorithms as simply LARAC. 

    To conclude this section, to the best of our knowledge, the LARAC algorithm was 

first presented in [17]. More recently, Xue [66] presented another variant of this 

algorithm. Mehlhorn and Ziegelmann [39] and Ziegelmann [69] point out that the 

algorithm as presented in [6] can be derived from what they call the hull approach. 

Blokh and Gutin [6] also use geometric ideas in developing the MCRT algorithm. On 
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the other hand, Jüttner et al. [23] developed this algorithm using a purely algebraic 

approach. 

 

2.3. An Algebraic Study of the Relax-CSP Problem and its 

Generalization 

The LARAC algorithm as developed in [23] was originally intended for the CSP 

problem. In view of its generality as discussed in the previous section, one would expect 

that the claims in [23] (stated without proof) on which the LARAC algorithm is based 

do not depend on the properties of shortest paths. In other words, we would like to 

establish these claims without invoking properties of shortest paths. This is indeed true. 

In this section, we will present proofs of some of these claims for the sake of 

completeness. Furthermore, in the following section we also establish certain other new 

results that throw much insight into the structure of the solutions of the DUAL-

RELAX-CSP problem. Though our proofs below do not involve shortest paths or their 

properties, we have decided to retain the terms such as “minimal path” whose 

interpretation in the general context should be obvious. 

    Claim 2.1[23]: Let L(λ) = min{cλ(p)| p ∈ Pst} – λ ∆. Then L(λ) is a lower bound to 

the optimum objective of the CSP problem for any λ ≥ 0. 

    Claim 2.2[23]: L is a concave piecewise linear function, namely, the minimum of the 

linear functions c(p) + λ(d(p) – ∆) for all p ∈ Pst.  

    Claim 2.3[23]: For any λ ≥ 0 and cλ-minimal path pλ, d(pλ) is a supgradient of L in 

the point λ.  
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    Claim 2.4[23]: If λ < λ*, then d(pλ) ≥ ∆ and if λ > λ*, then d(pλ) ≤ ∆ for each cλ-

minimal path pλ. 

        Proof: Let p and p* denote a cλ-minimal path and cλ* -minimal path respectively 

    L(λ*) = c(p*) + λ* d(p*) – λ* ∆ ≤ c(p) + λ* d(p) – λ*∆ = L(λ) + (λ* – λ)(d(p) – ∆). 

    Since L(λ*) ≥ L(λ), (λ* – λ)(d(p) – ∆) ≥ 0.  

    Therefore, if λ < λ* then d(pλ) ≥ ∆ and if λ > λ* then d(pλ) ≤ ∆ for each cλ-minimal 

path pλ.                                                                                                                               ■ 

    Claim 2.5[23]: A value λ > 0 maximizes the function L(λ) if and only if there are 

paths pc and pd which are both cλ-minimal and for which d(pc) ≥ ∆ and d(pd) ≤ ∆ (pc and 

pd can be the same, in this case d(pd) = d(pc) = ∆).  

        Proof: a) Proof of only if part: Suppose λ is the optimal value that maximizes L(λ). 

Let p be the corresponding cλ-minimal path and thus L(λ) = c(p) + λ(d(p) – ∆). Without 

loss of generality, we only consider the case d(p) > ∆. If the λ is slightly increased to λ' 

(> λ), c(p) + λ (d(p) – ∆) is also increased. Since L(λ) is optimal, p cannot be the cλ'-

minimal path any more; otherwise L(λ') > L(λ). Let p' be the new cλ'-minimal path. If | λ 

– λ'| is small enough, p' is also the cλ-minimal path because there are only a finite 

number of paths. It follows that c(p') + λ'(d(p') – ∆) = L(λ') ≤ L(λ) = c(p') + λ (d(p') – ∆).  

    Hence λ' (d(p') – ∆) ≤ λ (d(p') – ∆) ⇒ d(p') ≤ T since λ' > λ. 

    Let pc = p and pd = p' completing the proof of the only if part.  

    b) Proof of if part: Let pc and pd be two cλ-minimal paths and d(pc) ≥ ∆ and d(pd) ≤ ∆. 

Without loss of generality, assume λ* maximizes the function L(λ*) and λ* > λ.  

    Since λ < λ*, d(pc) ≥ ∆ and d(pd) ≤ ∆, it follows that d(pd) = ∆.  
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    Let p* denote the cλ*-minimal path. Then, 
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    Therefore, L(λ) = L(λ*), which proves that λ maximizes L(λ).                                     ■ 

    Claim 2.6[23]: Let 0 ≤ λ1 < λ2, and stPpp ∈
21

, λλ be 
1λ

c -minimal and
2λ

c -minimal 

paths. Then )()()()(
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        Proof: Note that cλ(p) = c(p) + λ d(p).  

    Because stPpp ∈
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, λλ are 
1λ

c -minimal and
2λ

c -minimal paths 
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    Hence the claim holds.                                                                                                  ■ 

    The convergence of the LARAC algorithm is guaranteed by the following result. 

    Claim 2.7[23]: Let ,...,, 321
ccc ppp  and ,...,, 321

ddd ppp  denote the sequences of paths 

generated by the LARAC algorithm. Then  

           ∆>>>> ...)()()( 321
ccc pdpdpd  and ∆≤<<< ...)()()( 321

ddd pdpdpd . 

        Proof: Suppose pc and pd are the current paths in the LARAC algorithm with λc 

and λd as the corresponding λ values. Suppose that neither of these two λ values is the 

maximizing value.  

    Let λ = 
)()(
)()(

cd

dc

pdpd
pcpc

−
−  and pλ be the corresponding cλ-minimal path.  
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    Evidently, cλ(pc) = cλ(pd) (recalling that cλ(p) = c(p) + λ d(p)). 

    Suppose λ is not the maximizing value either; otherwise, the algorithm stops 

immediately. We also have 

                       c(pc) + λc d(pc) ≤ c(pd) + λc d(pd), 

                       c(pc) + λd d(pc) ≥ c(pd) + λd d(pd). 

    In fact, the equality cannot hold because neither λc nor λd is the maximizing multiplier. 

    So           d
cd

dc
c pdpd

pcpc λλλ <=
−
−

<
)()(
)()( . 

Consider 2 cases: 

    1) d(pλ) ≤ ∆: In this case, because d(pλ) ≥ d(pd) by Claim 2.6, it suffices to show that 

d(pλ) ≠ d(pd). 

    Assume d(pλ) = d(pd). Consider the following inequalities  

        c(pλ) + λ d(pλ) ≤ c(pd) + λ d(pd)  and c(pλ) + λd  d(pλ) ≥ c(pd) + λd  d(pd). 

    Because d(pλ) = d(pd), it follows that c(pλ) = c(pd). Hence cλ(pc) = cλ(pd) = cλ(p), 

which implies that λ is the maximizing value. This contradiction establishes the theorem. 

    2) d(pλ) > ∆: Proof in this case follows along the same lines as above.                       ■ 

    Theorem 2.1: Consider the problem: 

Minimize  y c(pd) + (1 – y) c(pc)                                                                      (2.2) 

subjects to      y d(pd) + (1 – y) d(pc) = ∆ and 0 ≤ y ≤ 1,                                  (2.3)   

where pc and pd are two s-t paths such that d(pd) > ∆  and  d(pc) < ∆. 

    Let
)()(
)()(

dc

cd

pdpd
pcpc

−
−

=λ  and suppose that for all s-t path p, d(p) ≠ ∆.  

    Then pd and pc minimize (2.2) if and only if they both are cλ-minimal. 
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        Proof:  First, we prove that  

y c(pd) + (1 – y) c(pc) ≥ +∈ RL ξξ ),( .                                                        (2.4) 

    In fact, 
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    Using (2.3), (2.2) can be rewritten as: 

y c(pd) + (1 – y) c(pc) = c(pc) + λ (d(pc) – ∆) =  c(pd) + λ (d(pd) – ∆).         (2.5) 

    Evidently, d(pc) ≠ ∆ and d(pd) ≠ ∆. 

 

a) Proof of the if part: Suppose pd and pc are cλ-minimal paths. Then  

               L(λ) = c(pc) + λ (d(pc) – ∆) = y c(pd) + (1 – y) c(pc), 

where y d(pd) + (1 – y) d(pc) = ∆, 0 ≤ y ≤ 1. So (2.2) is minimized. 

 

b) Proof of the only if part: Suppose pd and pc minimize (2.2) or rather (2.5). Assume p 

is a cλ-minimal path and pd and pc are not cλ-minimal. Consider the case when p is 

infeasible (if p is feasible, the theorem can be proven similarly). We have 

c(p) + λd(p) < c(pd) + λd(pd).                                                               (2.6) 

    Then  

                               λλ >
−
−

=
)()(
)()('

d

d

pdpd
pcpc .   

    Thus 
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    The contradiction above proves that pc and pd are cλ-minimal paths.                           ■ 

    From the above proof, it can be shown that the value of λ defined by the optimal 

solution pc and pd of (2.2) is equal to the maximizing λ searched by LARAC algorithm. 

Also the optimum value of RELAX-CSP is equal to the optimum value L(λ*) of 

DUAL-RELAX-CSP. 

    There may be more than one maximizing λ. Assume that there is some multiplier λ 

such that the delay of the corresponding path pλ is equal to the delay bound. In this case, 

an interval will serve as the maximizing multiplier and we can find the actual optimal 

path for the original CSP problem with that λ, recalling that c(pλ) = L(λ) which is the 

lower bound on the cost of the actual optimal path.  

    Theorem 2.2: If ∃ λ and the corresponding path pλ such that d(pλ) = ∆, the 

maximizing λ is one unique interval (maybe just one point); Otherwise, the maximizing 

λ* is unique.  

        Proof: This is a direct consequence of the concavity of the function L(λ) as stated 

in Claim 2.2.                                                                                                                      ■ 

    Theorem 2.3: Given λ1 and λ2, such that d(pλ1) > ∆ ≥ d(pλ2). If we start the LARAC 

algorithm by initializing pc and pd as pλ1 and pλ2, respectively, then the LARAC 

algorithm finds a maximizing multiplier λ* satisfying λ1 < λ* ≤ λ2.   
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2.4. LARAC-BIN: A Binary Search Based Approach to the DUAL-

RELAX-CSP Problem 

In this section we present a new algorithm called LARAC-BIN that uses the binary 

search technique to find the maximizing multiplier. LARAC-BIN as presented in Figure 

2.3 stops when L(λ*) – L(λ) < τ. The parameter τ serves as a tuning parameter and can 

be specified in advance depending on the allowable deviation of the cost of the 

produced solution from the optimum value. We also establish an optimality condition. 

This criterion can be used to terminate the algorithm and at termination the optimum 

value of L(λ) will be obtained.  

 

 

Figure 2.3: LARAC-BIN algorithm 

 

Procedure LARAC-BIN ),,,( τ∆ts  
  ),,(: ctsDijkstrapc =  
  if ∆≤)( cpd  then return cp  
  ),,(: dtsDijkstrapd =  
  if ∆>)( dpd  then return “there is no solution” 
  if ∆=)( dpd  or )()( cd pcpc = then return dp  
  ))(/())()((:,0: dcdendbegin pdpcpc −∆−== λλ  
   while τλλ >−∆− ))()(( dbeginend pd   
         2/)(: endbegin λλλ +=  
         ),,(: λctsDijkstrar =  
         if ∆=)(rd  then return r 
         else if ∆<)(rd  then λλ =:end  else λλ =:begin                
   end while 
   return ),,(:

end
ctsDijkstrar λ=  

end procedure
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    In effect, the goal of the LARAC-BIN is to find the minimum λ with which we can 

obtain a feasible path because the smaller the λ, the smaller the cost of the path obtained. 

This goal is compatible with that of the LARAC algorithm searching for the 

maximizing λ* and L(λ*). To put it formally, we have the following theorem. 

    Theorem 2.4: Let λ* denote the smallest maximizing value for L(λ) and pλ denote a 

path corresponding to λ. Then c(pλ*) ≤ c(pλ) for all λ such that d(pλ) ≤ ∆. 

        Proof: According to Claim 2.6, if λ* ≤ λ, c(pλ*) ≤ c(pλ). So assume λ* > λ. 

    In this case, d(pλ) ≤ ∆ implies d(pλ) = T by Claim 2.4. Hence L(λ) = L(λ*) according 

to Claim 2.5, which is impossible because λ* is the smallest maximizing value for L(λ). 

    The above contradiction proves the theorem.                                                               ■ 

 

    The initial values of λbegin and λend in Figure 2.3 are to be selected such that pbegin is 

infeasible and pend is feasible. We can initialize λend as in the following theorem. 

    Theorem 2.5: If
)(

)()(

d

cd

pd
pcpc

−∆
−

=λ , d(pd) < ∆ and c(pd) > c(pc), then the cλ-minimal 

path is feasible, where pc and pd are the minimal cost and minimal delay path, 

respectively. 

        Proof: Assume that p is a cλ-minimal path and d(p) > ∆. It follows that 

                        c(pd) + λ d(pd) ≥ c(p) + λ d(p). 

    Then  

        0 ≤ c(pd) – c(p) – 
)(

)()(

d

cd

pd
pcpc

−∆
−

(d(p) – d(pd)) 

          < c(pd) – c(p) – (c(pd) –c(pc)) =  c(pc) – c(p) ≤ 0. 
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    The above contradiction proves the theorem.                                                               ■ 

    Theorem 2.6: Let λ* denote the smallest maximizing Lagrangian multiplier of L(λ) 

and p* be the resulting path. Let pbegin and pend be the minimal aggregated cost paths 

with respect to λbegin and λend, where λbegin and λend are as defined in the LARAC-BIN 

algorithm in Figure 2.3. Here pbegin is infeasible and pend is feasible. Then 

                    ))()(()(*)(0 endbeginendend pdLL −∆−≤−≤ λλλλ . 

        Proof: The left inequality holds because L(λ*) is the maximum value. 

    Evidently, d(pend) ≤ ∆, endbegin λλλ ≤≤ * , and  

                         ).(*)(*)(**)( endend pdpcpdpc λλ +≤+  

    It follows that 

     ])()([**)(**)()(*)( ∆−+−∆−+=− endendendendend pdpcpdpcLL λλλλλλ  
∆−+−−+−+= *)()(*)()]}(*)([*)(**)({ λλλλλλ endendendendend pdpdpcpdpc  

         )).()(())(*)(( endbeginendendend pdpd −∆−≤−∆−≤ λλλλ                                            ■ 
 

    Note that we have used the result of the above theorem in the termination of the 

LARAC-BIN algorithm (Figure 2.3). 

    Since a number of optimization problems only involve integer values (integer 

problems) or can be converted to integer problems, we now derive a termination 

condition for the LARAC-BIN algorithm when all the link costs and delays are integers. 

If terminated according to this condition, the algorithm computes the maximizing λ* 

with polynomial time complexity. 

    Consider the set of rational numbers Q(D) = {p / q | GCD(p, q) = 1, q ≤ D, and p, q, 

D ∈ N+}. Define the density of Q(D) as DENS(Q(D)) = min{|x1 – x2|: x1, x2 ∈ Q(D) and 
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x1 ≠  x2}. It is easy to show that DENS(Q(D)) =1/D2 and that for x, y ∈ Q(D), x = y if |x – 

y| < DENS(Q(D)). 

    Suppose that we modify LARAC-BIN so that it terminates when | λbegin – λend| < 1 / 

D2 and that the paths at termination are pend and pbegin, where D = |d(pbegin) – d(pend)|. Let  

                                 
)()(
)()(

'
endbegin

beginend

pdpd
pcpc

−

−
== λλ . 

    Theorem 2.7: λ' defined as above is a maximizing multiplier.  

        Proof: Consider Q(D), where D = |d(pbegin) – d(pend)|. Because  

             
),()()()(

and )()()()(

endendendbebinendbegin

endbeginendbebinbeginbegin

pdpcpdpc
pdpcpdpc

λλ

λλ

+≥+

+≤+
 

             end
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begin pdpd

pcpc
λλλ ≤
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−
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' .     

    Suppose that λbegin ≤ λ* ≤ λend, where λ* is the maximizing Lagrangian multiplier 

obtained by LARAC algorithm initialized with pc = pbegin and pd = pend. 

     Clearly λ* = (c(pλ1) – c(pλ2)) / (d(pλ2) – d(pλ1)) for some paths pλ1 and pλ2 w.r.t. the 

Lagrangian multipliers λ1 and λ2. It can be seen that λ1 and λ2 ∈ [λbegin, λend] following 

the similar argument above. Hence | d(pλ2) – d(pλ1)| ≤ D according to Claim 2.6, i.e., λ* 

∈ Q(D). 

    Evidently |d(pbegin) – d(pend)| = D ≤ D and thus λ ∈ Q(D). 

    Because | λ' – λ*| < |λbegin – λend| < 1 / D2 = DENS (Q(D)), the only possibility is that 

λ' = λ*.                                                                                                                               ■ 
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    For the CSP problem, the size of D is bounded as D ≤ n max {dij | (i, j) ∈ E}, where n 

is the number of nodes in the network. If the LARAC-BIN algorithm is terminated 

using the condition given above, then we have the following complexity result. 

    Theorem 2.8: LARAC-BIN terminates in O((m + n log n)(log (COST × DELAY 2))) 

time where COST is the cost of the minimum delay path and DELAY is the delay of the 

minimum cost path in the network.  

 

2.5. Strong Polynomiality of DUAL-RELAX-CSP: A Parametric 

Search Based Algorithm 

In an unpublished work, Jüttner [25] has shown that the LARAC algorithm for DUAL-

RELAX-CSP is strongly polynomial. We wish to recall that the time complexity of an 

algorithm for a graph/network problem is strongly polynomial if the computational time 

is a polynomial of only m and n, where m and n are respectively the number of links and 

the number of nodes in the graph/network. In this section, we present another strongly 

polynomial time algorithm, namely the PSCSP (Parametric Search based Constrained 

Shortest Path) algorithm (Figure 2.4), for solving DUAL-RELAX-CSP. This method is 

based on a methodology first proposed by Megiddo [38] to solve fractional 

combinatorial optimization problems. In this section, we only handle the shortest path 

problem without generalization due to the nature of the parametric search. The 

algorithm PSCSP in Figure 2.4 is based on the BFM algorithm. 

    Let λ* ≥ 0 denote the maximizing Lagrangian multiplier for the L(λ) function. 

Assume node 1 is the source node and node n is the sink node. Each node v of the 
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network is associated with a pair Mv = (xv, yv), where xv and yv keep track of the cost and 

delay of some 1-v path during the execution of the PSCSP algorithm. M is initialized as 

M1 = (0, 0) and Mv = (∞, ∞) for v ≠ 1. The algorithm computes the cλ*-minimal 1 – n 

path. This algorithm does not guarantee the feasibility of the obtained path. In order to 

get a feasible cλ*-minimal 1 – n path, we can revise the BFM algorithm using 

lexicographic ordering on the combined link costs and link delays [30, 53]. We shall 

give the details of the algorithm to compute a feasible cλ*-minimal path in Chapter 6. 
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Figure 2.4: PSCSP Algorithm (λ* is unknown) 

 
    In the algorithm in Figure 2.4, we need extra steps to decide whether the Boolean 

expression (2.7) (it is called oracle test) is true or false since λ* is unknown.  

    If xv = ∞, yv = ∞, then the inequality holds. Assume xv and yv are finite non-negative 

values. Then it suffices to evaluate the following Boolean expression.  

 (xu + cuv – xv)+ λ*(yu + duv – yv) = p + q λ* ≤ 0,                                         (2.8) 

where p = xu + cuv – xv and q = (yu + duv – yv).                                
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    If p · q ≥ 0, then it is trivial to tell whether (2.8) holds or not. Suppose p · q < 0, i.e., – 

p/q > 0. 

    Let λ = – p/q and let r = Dijkstra(s, t, cλ), where Dijkstra computes a cλ-minimal path.  

    Now consider three cases: 

a) d(r) > ∆:  By Claim 2.4 of Section 2.3, λ ≤ λ* and thus (2.8) can be decided 

according to whether q is positive or negative. 

b) d(r) < ∆:  By Claim 2.4, λ ≥ λ* and (2.8) can be evaluated similarly. 

c) d(r) = ∆:   Return the path  r as the optimal path (by Claim 2.5). 

    If PSCSP is based on Dijkstra’s algorithm, instead of the BFM algorithm, the 

complexity of the resultant algorithm is reduced to O((m + n log n)2). Thus we have the 

following result. 

 

    Theorem 2.9: The parametric search algorithm PSCSP for DUAL-RELAX-CSP is 

strongly polynomial with time complexity O((m + n log n)2).                                         ■ 

 

    In the implementation of the PSCSP algorithm, the number of invocations of 

Dijkstra’s algorithm is reduced by maintaining an interval [a, b] containing λ*, where a 

is the maximum known value of – p/q < λ* and b is the minimum known value of – p/q 

> λ* during the execution of the algorithm. We only need to call Dijkstra algorithm for 

λ within the interval [a, b] and update the interval accordingly. A discussion of the 

application of the parametric approach to the general class of optimization problems 

involving two additive parameters may be found in [24]. 
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2.6. Closing the Gap: An Integrated Approach to ε-Approximation 

Algorithm Design for the CSP Problem 

In this section, we show how the LARAC algorithm can be used to considerably speed 

up an ε-approximation scheme. A few definitions are now in order. 

    An approximation algorithm for a minimization problem obtains a solution whose 

cost is within a specified multiple of the optimum cost. This idea is formally stated as 

follows [50]. 

    An approximation scheme for a problem P is an algorithm that, given an instance I 

and a desired degree of accuracy ε > 0, constructs a problem solution with value F̂ (I), 

such that, if F*(I) > 0 is the value of an optimal solution to I, then 

                                            ε≤−
)(*

|)(ˆ)(*|
IF

IFIF .  

    A fully polynomial time approximation scheme for a graph/network optimization 

problem is an approximation scheme whose computing time is a polynomial function of 

the input size and 1/ε. A strongly polynomial time approximation scheme for a 

graph/network optimization problem is an approximation scheme whose computing 

time is a polynomial function of the number of nodes and 1/ε.  

    In the literature, there has been an extensive discussion of approximation algorithms 

for the CSP problem. Of particular interest to us are Hassin’s algorithm [18] and the 

more recent algorithm due to Lorenz and Raz [35]. Hassin presents a fully polynomial 

time ε-approximation and Lorenz and Raz present a strongly polynomial time 
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approximation scheme (denoted as SEA algorithm). There are two phases in the design 

of approximation algorithms: 

 

Phase1: 

Start with an interval [LB, UB] where LB and UB are lower and upper bounds to the 

objective value of the optimum solution to the CSP problem, and  iteratively shrink 

the interval until the ratio of the upper bound and the lower bound is below some 

constant (say, 2). This is achieved using a combination of a dynamic programming 

algorithm and a test procedure to determine whether the optimum is greater than or 

equal to a specified value.  

Phase 2: 

Determine an ε-approximate solution using the dynamic programming algorithm with 

the lower and upper bounds obtained in the phase 1.  

     

    Since LARAC/LARAC-BIN is very fast, we can use them to construct Phase 1. This 

considerably improves the computational time over the original ε-approximation 

algorithm which does not use LARAC for the first phase. The details of this integration 

are given below. 

    LARAC algorithm terminates with two paths pc and pd one of which is feasible, 

denoted by pd, and the other is infeasible, denoted by pc. It is easy to see that the cost of 

the infeasible path is the lower bound and the cost of the feasible path is the upper 
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bound on the optimal cost. The cost of pc at termination of LARAC is also a lower 

bound on the cost of the optimal path to the CSP problem. Given a parameter ε, if the 

cost of pd at termination is less than (1 + ε) c(pc), then pd is an ε-approximation to the 

CSP problem. If this is not the case, then the paths pc and pd can be used to get the initial 

lower and upper bounds required by ε-approximation algorithms. The integrated 

algorithm incorporating the above ideas is presented in Figure 2.5. Here we have used 

the SEA algorithm presented in [35] for Phase 2. 

 

Figure 2.5: An integrated approximation algorithm: LARAC + SEA 

 

 

Figure 2.6: Hk, n graphs 

         (a) H6, 8                                             (b) H7, 9 

Phase 2 
SEA Algorithm 

Phase 1: LARAC  
Generates  
LB and UB

LB UB

ε CSP 
Problem 

ε-Approximation 
Solution OPT* 

 
ε≤−

OPT
OPTOPT |*|

OPT*: the solution obtained by SEA.  
OPT: the actual optimal cost  
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    We next discuss results of our simulation of the integrated approach. In our 

experiments we have used regular graphs Hk,n (See Figure 2.6) proposed by Harary (See 

[55]), where k is the degree and n is the number of nodes, respectively. The link costs 

are randomly generated integers in the range 2 to 198 and delays are assigned values as 

follows: dij = 200 – cij, where cij and dij are the cost and delay of link (i, j), respectively. 

For each pair of vertex and degree, 10 experiments are carried out and the average value 

is given in Table 2.1. 

    As we can see from column six in the table, the ratio of the cost of pd and the cost of 

pc returned by LARAC is very close to 1. This is much better than the ratio of 2 which 

Phase 1 tries to achieve. Column seven shows that the total time for Phase 1 (when 

LARAC is used) is only about 5% of the total running time. We also note that Phase 1 

when LARAC is used takes only 0.1% of the time for Phase 1 when the dynamic 

programming approach is used. Furthermore, we can also see from the last column in 

the table that the integrated approach achieves a speedup of 6.  

Table 2.1. Simulation results 
 
                   R   = the ratio of the cost of pd and the cost of pc returned by LARAC  
                   LT = the ratio of the time used by LARAC and the total running time (LARAC + SEA) 
                   T   = the ratio of the time used by LARAC+SEA and the time used by pure SEA algorithm 
 

SEA LARAC+SEA 
LARAC NODE DEG ε 

Cost 
Cost R LT 

Cost T 

1000 6 .05 13290 13290 1.1 .005 13388 .16 
1000 16 .05 9696 9748 1.1 .002 9696 .27 
1000 32 .05 5946 6196 1.2 .004 5966 .14 
2000 6 .05 28002 29888 1.1 .002 28000 .14 
2000 16 .05 19704 20222 1.1 .003 19704 .10 
2000 32 .05 11634 11778 1.1 .002 11636 .12 
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2.7. Summary 

In this chapter, we have studied several aspects of the constrained shortest path (CSP) 

problem. This is an NP-complete problem and so in the literature, the focus has been on 

solving the integer relaxation of the problem called RELAX-CSP. We first pointed out 

the equivalence of the algorithms presented in [6], [17] and [23]. In view of this 

equivalence, we call these algorithms simply as the LARAC algorithm. Whereas the 

algorithms in [17] and [23] were intended for the CSP problem, the one in [6] was 

intended for a general class of combinatorial optimization problems (MCRT problem) 

involving two additive parameters. Using an algebraic approach, we have shown in 

Section 2.3 that all the claims in [23] also hold for the MCRT problem. We have also 

established certain new results on the properties of the solutions obtained by the 

LARAC algorithm. In particular, we have shown that the paths pc and pd that result at 

the termination of LARAC have an interesting property and, in fact, solve another 

optimization problem (Theorem 2.1).  In Section 2.4, we presented a heuristic called 

LARAC-BIN based on binary search. The new heuristic involves a tuning parameter 

whose value can be specified in advance depending on the allowable deviation of the 

cost of the path produced by the heuristic from the optimum value. Whereas binary 

search is a commonly employed technique for algorithm design, incorporation of the 

tuning parameter as in LARAC-BIN enhances the value of the binary search based 

approaches.   

    In Section 2.5, we presented a strongly polynomial time algorithm for DUAL-

RELAX-CSP. This algorithm is based on Megiddo’s parametric search method [38] and 
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certain techniques from fractional combinatorial optimization [47]. To the best of our 

knowledge, this algorithm has the best time complexity to date for DUAL-RELAX-CSP.  

    In Section 2.6, we pointed out how LARAC and LARAC-BIN can be used in 

conjunction with ε-approximation techniques to generate paths whose costs are 

guaranteed to be within certain factor of the optimum. The value of L(λ) at termination 

of these algorithms is a lower bound on the cost of the optimum solution to the CSP 

problem. Given a parameter ε, if the cost of the path pd at termination is less than (1 + ε) 

c(pc), then pd is an ε-approximation to the CSP problem. If this is not the case, then the 

paths pc and pd can be used to generate lower and upper bounds needed for an ε-

approximation algorithm. An integrated approach to the design of ε-approximation 

algorithms based on these ideas has been presented in Section 2.6. Effectiveness of this 

integrated approach has been illustrated through simulation.  
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Chapter 3. The CSP Problem: Approximation Algorithms 

Based on the Primal Simplex Method of Linear Programming 

 
The approaches discussed in Chapter 2 including the LARAC algorithm for the CSP 

problem are based on the dual of the integer relaxation of the ILP formulation of the 

CSP problem. In this chapter, we present a novel approach to the CSP problem, making 

a departure from these currently available approaches. We study the problem using the 

primal simplex method of linear programming and exploiting certain structural 

properties of networks.  

    The chapter is organized as follows. In Section 3.1, we define the CSP problem and 

present its integer linear programming (ILP) formulation as well as its linear 

programming (LP) relaxation. This formulation is the same as the LP formulation of the 

minimum cost flow problem [1] except for an additional constraint due to the delay 

requirement. This additional constraint gives rise to several questions that need to be 

investigated to achieve an efficient implementation of the primal simplex method. This 

leads us to the definition in Section 3.2 of an equivalent problem on a transformed 

network, called the TCSP problem. Section 3.3 deals with the structure of the basic 

solutions of the RELAX-TCSP problem, the relaxed form of the TCSP problem. 

Section 3.4 discusses the revised simplex method of linear programming, its application 

on RELAX-TCSP, and several strategies to achieve an efficient implementation. This 

results in an algorithm allowing degenerate pivots and using an anti-cycling strategy 

developed in Section 3.4.6. Another algorithm called NBS algorithm presented in 

Section 3.5 avoids degenerate pivots completely. Both these algorithms are of pseudo 
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polynomial complexity. In Section 3.5.3.2, we show how to extract an approximate 

solution to the original CSP problem from the optimum solution to the RELAX-TCSP 

problem and derive bounds on the quality of this solution with respect to the optimum 

solution. In Section 3.6, experimental results comparing the NBS algorithm with the 

LARAC algorithm [23], the LHWHM algorithm [37], and the general purpose LP 

solvers are presented. Section 3.7 concludes with a summary of the main contributions.  

    The results in this chapter have been repeated in [63]. 

 

3.1. The CSP Problem: LP Formulation and Integer Relaxation  

We first recall the definition of the CSP problem and its ILP formulation.  

    Definition 3.1: Consider a directed network G(V, E) where V is the set of nodes and 

E is the set of links of the network. Each link (u, v) ∈ E is associated with two integer 

weights cuv > 0 (representing cost, the expense imposed by using or installing the link) 

and duv > 0 (transmission delay along the link). For any path p (or cycle with a given 

orientation) define the cost c(p) and delay d(p) of p as  

∑ ∑−∑=∑−=
+ −+−∈ ∈∈∈pvu Pvu

uv
Pvu

uv
pvu

uvuv ddpdccpc
),( ),(),(),(

)( and )( , 

where p+ (p-) is the set of forward (backward) links on p as we traverse p from the start 

node to the end node of p.  

    Notice that our assumption that  link weights are integers does not involve any loss of 

generality because, in digital systems, all numbers are represented discretely and can be 

scaled and rounded to integers. In order to simplify our presentation, we assume all the 

values to be integers. We also assume that only links impose costs and delays. If the 
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nodes impose costs and delays, we can use the node splitting technique to transform 

node costs and delays into link costs and delays (See Chapter 2.4 of [1]).                                                   

    We use the terms “link” and “arc” interchangeably. Without loss of generality, we 

assume that for every node i, there is a directed path from i to the destination node t. In 

the rest of the chapter, m = |E| and n = |V|.  

   A path is called a directed path (cycle) if there are no backward links in the path 

(cycle). Given two nodes s, t and an integer ∆ > 0, a directed s-t path p is said to be 

feasible if d(p) ≤ ∆.  

 

 
 

Figure 3.1: An example of CSP problem 

 
 

    Constrained Shortest Path (CSP) problem: Find an s-t path popt = arg min{c(p)| p 

is a feasible s-t path}. This is illustrated with the example in Figure 3.1. 

 

    The CSP problem can be formulated as an ILP problem as follows. 
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CSP: Minimize ∑
∈
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,                                                     (3.3)                           

                     ∀ (u, v) ∈ E, xuv = 0 or 1.                                                        (3.4) 

    In (3.3), w is the slack variable for the delay constraint.  

    The main difficulty with the CSP problem lies with the integrality condition that 

requires that the variables xuv be 0 or 1. Removing or relaxing this requirement from the 

above integer linear program leads to RELAX-CSP, the relaxed CSP problem. 

       RELAX-CSP:   
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                                                                                 (3.5) 
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  ∀ (u, v) ∈ E, xuv ≥ 0.                                                                                 (3.8) 
 

   We will show later that by using a transformation and applying certain pivot rules we 

can enforce xuv ≤ 1 (the discussion after Theorem 3.3, Section 3.5.5). 

    LARAC algorithm considered in Chapter 2 solves the dual of RELAX-CSP. In the 

rest of the chapter we study this problem using the primal simplex method. 
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3.2. A Transformed Problem and Basic Concepts 

 In order to achieve an efficient implementation of our approach we transform the 

problem to an equivalent one on a transformed network defined below.     

• The graph of the transformed network is the same as that of the original 

problem, i.e., G(V, E),  

• For (u, v) ∈ E, d'uv and c'uv in the transformed problem are given by d'uv = 2 duv 

and c'uv = cuv, and   

• The new upper bound in the transformed problem is ∆' = 2 ∆ + 1.          (3.9) 

    The transformed problem will be referred to as the TCSP problem. 

    Theorem 3.1: An s-t path p* is a feasible solution (resp. an optimal solution) to the 

CSP problem iff it is a feasible solution (resp. an optimal solution) to the TCSP 

problem. 

        Proof: Please see the proof to Theorem 4.3 which is a general version of this 

theorem.                                                                                                                             ■ 

    In view of the above result, we consider in the rest of the chapter only the relaxed 

form of the TCSP problem, namely, RELAX-TCSP (same as RELAX-CSP except that 

the network is the transformed one as defined above). Also we use ∆ (being odd) and 

duv (being even) to denote the delay bound and link delay in the transformed problem, 

respectively. Notice that the transformation does not change the cost of any path in the 

network.  

     In the rest of the section we shall define certain terminology leading to a matrix 

representation of RELAX-TCSP. Let the links be labeled as e1, e 2 …, em and the nodes 
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be labeled as 1, 2 …., n. We shall denote the delay of edge ei as di and the cost of ei as ci. 

The incidence matrix of G has m columns, one for each link and n rows, one for each 

node [55]. The rank of this matrix is (n – 1), and removing any row of this matrix will 

result in a matrix of rank (n – 1). We denote this resulting matrix as H. We also assume 

that the row removed from the incidence matrix corresponds to node n. Also we assume 

that the column of H corresponding to link ek will be denoted by the vector hk. For ek = 

(i, j), we have hk = (h1,k…, hi,k …, hj,k …, hn-1,k )t with all its components being 0 except 

for hi, k  = 1 and hj, k  = –1. Let  
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    Also, let x be the column vector of the m flow variables xuv and the slack variable w, 

and c be the row vector of the costs (c1…, cm, 0). Note that the cost of the slack variable 

is 0. Let b = (b1…, bn-1, – ∆)t with bs = 1, bt = –1, and bi = 0 for i ≠ s, t. The LP 

formulation of the RELAX-TCSP problem can now be written in matrix form as 

follows. 
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   RELAX-TCSP 

            Minimize c x                                                                                                                            

subject to   A x = b                                                                                      (3.14) 

                           x ≥ 0 for ∀(u, v) ∈ E 

    The rest of the chapter deals with the primal simplex based solution of RELAX-

TCSP. 

 

3.3. Simplex Method: Basic Solutions of RELAX-TCSP  

Simplex method of linear programming starts with a basic solution and proceeds by 

constructing one basic solution from another. A basic solution consists of two sets of 

variables, basic and non-basic. For the RELAX-TCSP problem under consideration, all 

the non-basic variables in a basic solution will have zero values. Given a basic solution, 

we shall denote by Gb the subgraph of G corresponding to the basic variables (except 

the slack variable if it is in the basic solution) in this solution. Note that there is no link 

associated with the slack variable. The subgraph Gb will be called the subgraph of the 

basic solution or simply the basis graph. The non-singular submatrix of A defined by 

the basic variables is called a basis matrix or simply, a basis. In this section we present 

certain important properties of the basic solutions of the RELAX-TCSP problem. 

    Lemma 3.1 [55]: Let G(V, E) be a directed network with at least one cycle W (not 

necessarily directed). Assigning an arbitrary orientation to W, let U(W) = (u1…, um)t, 

where 
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    Then, H • U (W) = 0.                                                                                           

    We shall denote by d(W) the signed algebraic sum of the delays of the links in a cycle 

W as we traverse around the cycle along the given orientation. 

    Lemma 3.2: The subgraph Gb of a basic solution contains at most one cycle.  

        Proof: Assume that there is more than one cycle, say W1 and W2, in Gb. Suppose 

W1 has k links and W2 has l links. According to Lemma 3.1, there exist λ1…, λk and u1…, 

ul such that  

                 ∑ =⋅
∈ 1

0
We

ii
i

hλ  and ∑ =⋅
∈ 2

0
We

ii
i

hu . 

    So       







−

=∑ ⋅
∈ )(

0

11 Wd
a

We
ii

i

λ  and ∑ 







−

=⋅
∈ 2 )(

0

2We
ii

i Wd
au . 

    Without loss of generality, assume that d(W1) ≠ 0 and d(W2) ≠ 0 (Otherwise, rank(Gb) 

< n). Then 
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    Since W1 ≠ W2, the above implies rank(Gb) < n which is the desired contradiction.    ■  

    Lemma 3.3: If there is a cycle W in Gb, then d(W) ≠ 0.   

    Proof: Let 







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nn
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,1 be a basis matrix (submatrix of A), where H n - 1, n is a (n – 1) 

× n submatrix of H and D1, n is the vector of n components (corresponding to the basic 

variables) of the last row of A. Then En - 1, n U(W) = 0 by Lemma 3.1.  

On the other hand, D1, n  U(W) = – d(W). 
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    Since rank (B) = n, we have 
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    Thus the lemma follows.                                                                                               ■ 

    Lemma 3.4: If the basis subgraph Gb contains no cycle that is not a directed cycle, 

there are exactly two s-t paths in Gb.   

        Proof: The proof follows from the flow balance constraints and the transformation.  

■ 

 

Figure 3.2: Structure of basis graph 
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    Thus it follows from the above lemma that the transformation we introduced 

guarantees that the structure of the basis subgraph will be one of the three forms shown 

in Figure 3.2 (a spanning tree or a spanning tree plus an extra link). In a later section we 

shall introduce a pivot rule which will ensure that the basis subgraph will not contain 

any directed cycle, thereby eliminating the structure in Figure 3.2(c). 

 
3.4. Revised Simplex Method on the RELAX-TCSP Problem 

In this section, we first briefly present the different steps in the revised simplex method 

of linear programming that is described in detail in [11]. We then derive formulas 

required to identify the entering and the leaving variables.  

3.4.1. Revised Simplex Method 

Consider an arbitrary linear programming (LP) problem in the standard form. 

         Minimize c x 

         subject to A x = b, x ≥ 0. 

    Here A is an n × (m + 1) matrix with rank (A) = n, x = (x1…, xm +  1)t, c = (c1…, cm + 1), 

and b = (b1…, bn)t. Each feasible basic solution x* is partitioned into two sets, one set 

consisting of the n basic variables and the other set consisting of the remaining m + 1 – 

n non-basic variables. This partition induces a partition of A into B and AN, a partition 

of x into xB and xN, and a partition of c into cB and cN, corresponding to the set of basic 

variables and the set of non-basic variables, respectively. The basis matrix B is 

nonsingular.  
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Revised Simplex Method [11]: 

    Step 1: Solve the system Y B = cB, where Y = (y1, y2…, yn). 

    Step 2: Choose an entering column. It may be any column ai of AN such that Y ai is 

greater than the corresponding component of cN. The current solution is optimal if there 

is no such column.  

    Step 3: Solve the system B V = ai, where V = (v1, v2…, vn)t. 

    Step 4: Find the largest t such that x*B – t V  ≥ 0. If there is no such t, then the 

problem is unbounded; otherwise, at least one component of x*B – t V is equal to 0 and 

the corresponding variable leaves the basis. 

    Step 5: Set the value of the entering variable as t and replace the values x*B of the 

basic variables by x*B – t • V. Replace the leaving column of B by the entering column 

and in the basis heading, replace the leaving variable by the entering variable. Then go 

to Step 1. 

    In the following we solve the systems of equations in Steps 1 and 3 and derive 

explicit formulas for Y and V. If a link flow variable is chosen as the entering variable 

then the corresponding link is called the in-arc. Out-arcs are similarly defined. 

3.4.2. Initialization 

To construct an initial basic feasible solution we first determine a spanning tree 

containing a feasible s-t path. This can be done by applying Dijkstra’s algorithm to 

compute the shortest path tree with respect to the delay from all nodes to the destination 

node t. If the resulting s-t path in the tree is infeasible, then no feasible path exists and 
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the algorithm terminates. Without loss of generality we assume that the s-t path is 

feasible. 

    Clearly in the basic solution corresponding to the spanning tree selected as above, the 

flows in all the links in the s-t path in the spanning tree will be equal to one, and flows 

in all other links will be zero. Since the delay of every link in the TCSP problem is even 

and the upper bound ∆ on path delay is odd, the slack variable w > 0 and so it is in the 

initial basic feasible solution. 

3.4.3. Solving the System Y B = cB  

Let Y = (y1…, yn – 1, γ). Here y1…, yn – 1, γ are called potentials (or dual variables) and Y 

is called the potential vector. Each yi, i = 1, 2…, n – 1 is the potential associated with 

node i (or the row i) and γ is the potential associated with the last row (delay constraint 

row) of A.  

    Now consider                                     

 Y B = cB                                                                   (3.15) 

    This system of equations has n equations in n variables. We get the following from 

(3.15). 

    For each link ek = (i, j) in Gb, (y1…, yn-1,γ) hk = cij. That is,  

                                        yi – yj – γ dij = cij, if i ≠ n and j ≠ n, 

yi – γ din = cin, if j = n, and                                               (3.16) 

                                      – yj – γ dnj = cnj , if i = n. 

    From the above, we can see that we can set the potential of node n at any constant. In 

all computations that follow, we shall set the potential of node n equal to zero.  
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    Definition 3.2: 

      1) For link ek = (i, j), c(ek, γ ) = γ dij + cij is called the active cost of link (i, j),  

      2) r(i, j) = yj – yi + γ dij + cij is called the reduced cost of link (i, j), 

      3) The reduced cost of w is given by r(w) = γ , and 

      4) The reduced cost of a path p is defined as  

                       ∑−∑=
−+ ∈∈ pjipji

jirjirpr
),(),(

),(),()( . 

    It can be seen from (3.16) that for any link (i, j) in Gb 

      r(i, j) = yj – yi + γ dij + cij  = 0.                                                             (3.17) 

    From (3.17) we also have that for any path p from i to j and any cycle W in Gb  

     r(p) = yj – yi + γ d(p) + c(p) = 0 and  r(W) = γ d(W) + c(W) = 0.                 (3.18) 

    Lemma 3.5: If Gb contains a cycle W, then γ  = – c(W) / d(W); Otherwise, γ  = 0.     

        Proof: If there is no cycle in Gb then the slack variable w is a basic variable and the 

corresponding column [0, 0…, 0, -1]t will be a column of B. Since the cost of the slack 

variable is zero, we get from (3.15) that γ  = 0. Suppose that Gb contains a cycle W. By 

(3.18), we get  

γ d(W) + c(W) = 0. By Lemma 3.3, d(W) ≠ 0. So γ  = – c(W) / d(W).                     ■ 

    Lemma 3.6: A link is eligible to enter the basis if its reduced cost is negative and the 

slack variable is eligible to enter the basis if γ  < 0. 

        Proof: The proof follows from Step 2 of the revised simplex method.                    ■                

    Once we have computed the value of γ as in Lemma 3.5, the other potentials yi’s can 

be calculated using equation (3.18) and selecting the path in Gb from node n to node i. 
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Summarizing the above, we have the following procedure for solving Y B = cB and 

calculating the potentials.     

(1) Set the potential of node n to zero.   

(2) Compute γ as in Lemma 3.5. 

(3) For each node i, let pi be a simple path in Gb from node n to node i. If there are 

two paths in Gb due to the cycle, we will get the same results no matter which path is 

selected.  

(4) Set ∑ ∑−∑=∑−=
+ −+−∈ ∈∈∈pvu Pvu

uv
Pvu

uv
pvu

uvuv ddpdccpc
),( ),(),(),(

)(and )( ,  

where pi
+ and pi

- are the sets of forward and backward links on pi, respectively, as we 

traverse the path from node n to node i.  

    Once the potentials are determined, an entering variable, if it exists, can be selected 

as in Step 2 of the revised simplex method. 

3.4.4. Solving the System B V = ak 

We next show how to solve the system of equations B V = ak. We consider three cases: 

    Case a): Gb contains no cycle, that is, G contains only n – 1 links and the slack 

variable w is a basic variable. The link ek   = (i, j) is the entering variable.  

    Case b): Gb contains a cycle (that is, Gb has n links) and the entering variable is ek   = 

(i, j). 

    Case c): Gb contains a cycle (Gb has n links) and the entering variable is the slack 

variable. 

    Solutions in all the three cases are summarized in the following theorem. 

    Theorem 3.2: a) If Gb contains no cycle and the entering variable is an in-arc ek = (i, 
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j), then the vector V defined below is the desired solution to B • V = ak, where W' is the 

new cycle formed by adding the in-arc ek and the orientation of W' is chosen to agree 

with the direction of ek. The vector V = (v1…, vn)t is defined as: 
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    b) If Gb contains a cycle W and link ek = (i, j) enters the basis, then V = – V'p + 

(d(W')/d(W)) • V0 is the solution of B • V = ak, where d(W') and d(W) are the delays of 

cycle W' and W, respectively and V'p and V0 are vectors defined by the cycles W' and W 

as in Lemma 3.1. 

    c) If Gb contains a cycle W and the entering variable is the slack variable w, then V = 

(1/d(W)) V0 is the solution to B • V = ak, where V0 is defined by cycle W.              

Proof: Case a): Gb contains no cycle, that is, G contains only n – 1 links and the slack 

variable w is a basic variable. The link ek   = (i, j) is the entering variable. In this case, 
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where Hn - 1, n - 1 is associated with the n – 1 links and the n – 1 nodes in Gb, and D1,n - 1 is 

the vector of n – 1 components (corresponding to the delays of the n – 1 links in the 

basis subgraph) of the last row of A. 

    Let W' denote the new cycle formed by adding the in-arc ek = (i, j) and let the 

orientation of W' be chosen to be the same as the direction of the in-arc. Using Lemma 
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3.2 and the cycle W', it is easy to verify that the vector V = (v1…, vn)t defined in (3.19) 

solves the system B • V = ak. 

    Case b): Gb contains a cycle (that is, Gb has n links) and the entering variable is ek   = 

(i, j).  Note that the slack variable w is not a basic variable. Hence,  
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where Hn - 1, n corresponds to n links and n – 1 nodes, D1, n is the vector of n components 

(corresponding to the basic variables) of the last row of A and 
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    First, let us consider           

Hn - 1, n  V = hk.                                                                       (3.21)  

    Because there are n links in Gb, there is exactly one cycle, denoted by W.  

    Therefore according to Lemma 3.1,  

               ∃V0, Hn -1, n  V0 = 0.                                                                 (3.22)              

    After adding link ek = (i, j), we get a new cycle W' and let us choose the orientation of 

this cycle to be the same as that of ek. Then by Lemma 3.1, 
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(Note: V'p can be derived using Lemma 3.1 and the cycle W'). So 
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    Hn - 1, n ( – V'p ) = hk.                                                              (3.24) 

    Because rank (Hn - 1, n) = n – 1, – V'p + u • V0, u ∈ R is the solution space of (3.21).  

    Using the equation D1, n • V = – dij, we can compute u as follows. 

D1, n • (– V'p + u  V0) = – dij.                                                   (3.25) 

    Since D1, n V0 = – d(W) and D1, n (– V'p ) + dij = d(W'), we get from (3.25) 

             d(W') – u d(W) = 0 and thus u = d(W') / d(W). Note: d(W) ≠ 0, by Lemma 3.3.  

    Hence V = – V'p + (d(W') / d(W))V0 is the desired solution to B V = ak.  

    Case c): Gb contains a cycle W and the entering variable is the slack variable w. 

    Following the arguments in Case 2, we can show that  

V = (1 / d(W)) V0.                                                                   (3.26) 

is the desired solution of the equation system B V = ak. Here V0 is defined by W.           ■ 

3.4.5. A Pivot Rule and Structure of Basic Feasible Solutions 

In this subsection we present a pivot rule and study the structure of subgraphs of basic 

solutions generated by the simplex method. The subgraph Gb of the initial basic feasible 

solution has n – 1 links and the nth variable in this basic solution is the slack variable w 

> 0. At this initial step, γ = 0 (Lemma 3.5). Define d(Gb) = .),(∑ ∈ bGvu uvuv dx  By (3.7), 

d(Gb) = ∆ – w. Now one of the following two possibilities occurs in the next pivot.  

    1. The simplex method constructs a new spanning tree solution with the slack 

variable w remaining nonzero in the new solution. 

    2. The simplex method constructs a Gb that contains one cycle W (formed by adding 

the in-arc) and w becomes non-basic with respect to this solution. The cycle W cannot 

be a directed cycle. If it were a directed cycle, then the reduced cost of the entering link 



 59

will be equal to the sum of the costs of the links in W. This sum is a positive number 

contradicting the requirement that the reduced cost of the entering link must be negative 

(Step 2 of the revised simplex method). By Lemma 3.4, there will be exactly two s-t 

paths in Gb. Also, the flow values on all the links in W must be nonzero, for otherwise 

all the link flows will be either 0 or 1 making w nonzero and hence basic. 

    Summarizing, when the first time a Gb with a cycle is encountered, it will be 

necessarily of the form shown in Figure 3.2(b). Flows on the links in the cycle will be λ 

or 1 – λ. The simplex method will select the value of λ > 0 in such a way that d(Gb) = ∆. 

    Though the cycle in the Gb encountered the first time after initialization will not be a 

directed cycle, in a subsequent step, a Gb with a directed cycle may be created. To 

achieve an efficient implementation of the simplex method, we would like to avoid 

generating any Gb containing a directed cycle. This can be achieved by the pivot rule P1 

given next. 

    Pivot Rule P1:  Select the slack variable w as the entering variable if it is eligible to 

enter. 

    Theorem 3.3: If the pivot rule P1 is followed and the simplex method on the 

RELAX-TCSP problem is initialized as in Section 3.4.2, then no basic solution 

subgraph Gb will contain a directed cycle. 

        Proof: Assume that a Gb with a directed cycle W' is created and let eij = (i, j) be the 

in-arc with which this cycle is created.  

    Suppose W' = ijjjjjij k
eeee ...,

211
 and pji is the directed path from j to i in W'. 

    Since eij is an in-arc and Y = (y1, y2…, yn - 1, γ) is the potential vector, we have  

            r(i, j) = y j – yi + γ dij + cij < 0 and r(pji) = yi – yj + γ d(pji) + c(pji) = 0. 
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    Summing the above, we obtain γ d(W') + c(W') < 0 . 

    Since d(W') > 0 and c(W') > 0, γ < 0. This implies that the slack variable is eligible to 

enter the basis but was not selected. This is a contradiction.                                            ■ 

    Theorem 3.3 implies that pivot rule P1 along with the transformation introduced in 

Section 3.2 guarantees that Gb  will take only the structures shown in Figure 3.2(a) and 

Figure 3.2(b). Under these conditions we are also guaranteed that the values of the 

variables xuv will be restricted to the range 0 ≤ xuv ≤ 1.  

3.4.6. An Anti-Cycling Strategy 

A basic solution in which one or more basic variables assume zero values is called 

degenerate. A degenerate basic solution may result in a pivot that does not alter the 

basic solution. Such pivots are called degenerate. Furthermore, a basic solution 

generated at one pivot and reappearing at another will lead to cycling. Since degenerate 

pivots do not result in any improvement of the solutions, they are also a cause of 

inefficiency. We present two strategies to handle degeneracy. The first one to be 

presented in this subsection is the anti-cycling strategy which is a variation and 

extension of Cunningham’s anti-cycling strategy in [1], [4], and [11]. The second 

strategy to be presented in Section 3.5 is designed to avoid degenerate pivots 

completely.  

    Definition 3.3: Given a feasible basic solution subgraph Gb and a node called the 

root, we say that the link (u, v) ∈ Gb is oriented toward (resp. away from) the root if any 

path in Gb from the root to u (resp. v) passes through v (resp. u). A feasible basic 
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solution Gb with corresponding flow vector x is strongly feasible if every link (u, v) of 

Gb with xuv = 0 is oriented toward the root.  

    If the out-arc (u, v) is not a link of the cycle in the basic solution, then Gb – (u, v) 

contains exactly two components Gb(u) and Gb(v) such that u ∈ Gb(u) and v ∈ Gb(v). If 

the root is in Gb(v), link (u, v) is oriented toward the root; otherwise it is oriented away 

from the root.  See Figure 3.3(a), (b) for examples of a strongly feasible Gb. We shall 

select node t as the root node. 

    Lemma 3.7: For any degenerate pivot, the out-arc is not on the cycle of the current 

Gb. 

        Proof: A degenerate pivot does not alter the basic solution. This means that each 

variable has the same value in the current basic solution as well as in the basic solution 

resulting from the degenerate pivot. The flow on each link in a cycle is non-zero. If a 

link on a cycle were to leave the basis, then after the degenerate pivot it would become 

non-basic with flow 0. But that would contradict that the current pivot is degenerate.   ■ 

    If the out-arc is not on the cycle in the current Gb, then the potentials can be updated 

easily as described next (See Chapter 5.1.2 of [4]). Let T be the current Gb and e = (u, v) 

and e' = (u', v') be the out-arc and the in-arc, respectively. Let T' = T – e + e' be the 

subgraph of the new basic variables. If e is not on the cycle in the current Gb, the new 

potential vector Y' associated with T' can be obtained as follows (notice that γ does not 

change in this case): 

      




∈
∈+

=
'

''''
vu

uvuu
u Tuify

Tuifry
y ,                                                               (3.27) 

where ru'v' = c(e u'v',γ) + yv' – yu' and Tu' (Tv') is the component of T – e containing u' (v').  
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    Theorem 3.4: If the subgraphs Gb’s of feasible basic solutions generated by the 

simplex method are strongly feasible, then the simplex method does not cycle.            

        Proof: First observe that in any sequence of degenerate pivots, the value of the 

slack variable will remain the same. So the leaving and entering variables can only be 

the links in the network. Let Gb be a feasible basic solution subgraph and t be the root. 

We define two unique values for Gb: C(Gb) = ∑
∈Evu

uvuv xc
),(

 and W(Gb) = ∑ −
∈Vu

ut yy )( . 

Notice that for a given Gb, the value of W(Gb) is unique even though the values of the 

potentials Y may not be unique.  

Consider two consecutive basic solutions Gb
i = Gb and Gb

i + 1 = Gb
i + e – f, where e 

and f are the in-arc and out-arc, respectively.  

We first show that either C(Gb
i +1) < C(Gb

i) or W (Gb
i +1) > W (Gb

i). 

    Indeed if the pivot that generates Gb
i +1 from Gb

i is nondegenerate, then C(Gb
i +1) < 

C(Gb
i). If it is degenerate, we have C(Gb

i +1) = C(Gb
i). In this case we shall prove W 

(Gb
i+1) > W (Gb

i). 

    Here the in-arc e = (u, v) still has zero flow in Gb
i +1. By Lemma 3.7, f is not a link on 

the cycle in Gb
i, so the value of γ does not change. Because Gb

i+1 is strongly feasible, in 

Gb
i+1, link e must be oriented toward the root node t, which implies that node t belongs 

to Gb(v) (the component of Gb
i – f containing v). Now we can obtain the potentials using 

equation (3.27).  

    Since ruv = c(euv, γ) + yv – yu < 0, W(Gb
i +1) = W(Gb

i) – |Gb(u)| ruv > W (Gb
i).  
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    If the simplex method cycles, then for some i < j, Gb
i = Gb

j. This means Gb
i = Gb

i + 1... 

= Gb
j
. But then W(Gb

i) > W(Gb
i + 1) > … > W(Gb

j) = W(Gb
i) contradicting that W(Gb

i) = 

W(Gb
j).                                                                                                                               ■ 

 

3.5. A Strategy for Avoiding Degenerate Pivots and the Network 

Simplex   Based (NBS) Algorithm 

In this section we first present in Section 3.5.1 a strategy for avoiding degenerate pivots. 

We then show in Section 3.5.2 how to select a leaving variable. In Section 3.5.3 we 

present a complete description of the new Network Based Simplex (NBS) algorithm and 

its complexity analysis. We also show how to extract an approximate solution to the 

TCSP (hence the original CSP) problem and performance bounds on the approximate 

solution. 

3.5.1. Avoiding Degenerate Pivots  

In this section we shall develop a strategy which avoids performing degenerate pivots 

which is based on the following pivot rule. 

    Enhanced Pivot Rule P2: If there is a choice for selecting the entering variables, 

then select an entering variable in the following order of preference: 

    a) The slack variable if it is eligible to enter. 

    b) Eligible links whose tail nodes are on the directed s-t path(s) in the current Gb. 

    As we discussed in Section 3.4, rule a) above guarantees that every Gb is of one of 

the two forms in Figure 3.2 (a), (b). Both these subgraphs of basic solutions are strongly 
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feasible. Consider next rule b). Suppose we can find an in-arc e = (u, v) according to 

rule b). Let W' denote the new cycle in Gb + e with its orientation defined as the 

direction of e. It can be seen that the flows on all links in W' whose directions disagree 

with that of W' are nonzero and thus we can push positive amount of flow along the 

cycle until the flows on some links of the s-t path (whose directions disagree with the 

orientation of W') reach zero. By removing one such link with zero flow, we obtain a 

new Gb. In fact, we can select the out-arc in such a way that the resulting Gb is also 

strongly feasible (see next subsection). This pivot will not lead to degeneracy. On the 

other hand, if no such link is eligible to enter the basis (note: in this case γ is 

nonnegative), then we have no option but to perform a degenerate pivot. To avoid 

performing degenerate pivots we proceed as follows. 

    Let P be the set of nodes on the s-t path(s) in the current basis subgraph Gb. Assign 

costs to links in the network as follows: Link cost cuv with u ∉ P and v ∈ P is set as 

c(euv, γ) + yv > 0; Otherwise cuv is set as c(euv, γ). 

 

Figure 3.3: Link costs for the transformed graph 

    Now condense all the nodes in P into a single node, say, R, and reverse the directions 

of all the links. Let the resulting network be called N'. Note that none of the links with 

both its ends in P will be in N'. Now use Dijkstra’s algorithm on N' and obtain the 

c(euv, γ) + yv 

c(exy, γ)  

P Node potentials 
in P do not 

v

u

x
y



 65

shortest path tree with node R as the start node. The links of G corresponding to the 

links of the shortest path tree of N' and the links with their both end nodes in P will be a 

new basis subgraph G'b (Notice that this operation preserves the strongly feasibility of 

Gb and will not change the value of γ). Let the shortest distance value of the node u 

computed by the algorithm be d(u). Then we set the potentials of the nodes with respect 

to G'b: For each node u ∉ P, yu = d(u), and for all other nodes (all the nodes in P) the 

potentials are the same as in the previous Gb. 

Now, ∀ (u, v), u ∉ P, yu = d(u) ≤ d(v) + c(euv, γ) = y v + c(euv, γ) , which implies that 

for all such links, r(u, v) = yv – yu + γ duv  + cuv ≥ 0 and those links whose tails are not in 

P are not eligible for choice as in-arc. Since the above operation does not affect the 

value of γ, w is not eligible either. Thus we can only consider arcs whose tails are in P 

(part (b) of enhanced rule P2). If we still cannot find an in-arc according to enhanced 

rule P2 after the above operation, it implies that we have got the optimal basic solution 

since no entering variable is available. 

    We will show in the following section how to choose a leaving variable using 

Theorem 3.2. 

3.5.2. Finding a Leaving Arc (Out-Arc) 

Suppose the current feasible basic solution Gb is strongly feasible and link e = (u, v) is 

the in-arc. If Gb contains a cycle W, then the flow can be decomposed into exactly two 

s-t paths. We define the branching point as the first node on W as we traverse the paths 

from node s to t (see Figure 3.2(b)). In this subsection, e and e' always denote the in-arc 

and out-arc, respectively. 
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    Claim 3.1: If the current basic solution Gb is strongly feasible and is not optimal, 

then one of the arcs e' incident to the branching node or the tail node of the in-arc e is 

eligible for choice as out-arc and Gb + e – e' is still strongly feasible. 

    We prove the claim by enumerating all possible cases and determining the leaving 

variable in each case using Theorem 3.2 and Step 4 of the revised simplex method. Let 

the cycle created by adding the in-arc be denoted by W' with its orientation defined as 

that of the in-arc.  

    Case 1: Slack variable w is in the basic solution (the current Gb is a tree, γ = 0 and w 

> 0). This corresponds to Theorem 3.2 (a). According to Step 4 of the revised simplex 

method, we need to consider only the entries of V that are 1 or d(W') if d(W') > 0. 

Without loss of generality, assume d(W') > 0. These entries correspond to the links of 

W' that lie on the s-t path of the current Gb or the slack variable w. The corresponding 

entries in the current basic solution x*B are 1 for the links and its current value for w. 

The minimum value of t satisfying the constraint x*B – t • V ≥ 0 will be determined by 

the inequalities 1 – t ≥ 0 and w – t d(W') ≥ 0. Thus the maximum value of t will be 

min{1, w / d(W')}. Since w = ∆ – d(Gb) is odd and d(W') is even, w / d(W') ≠ 1. So, if w 

< d(W'), w will leave the basis. Otherwise, the links in W' that lie on some s-t path in the 

current Gb are eligible to leave the basis. We shall select the unique link e' on the s-t 

path in Gb that is incident to the tail node of the in-arc. This guarantees that the new Gb, 

denoted as G'b, is strongly feasible.  

    Notice that if w leaves the basis, w = 0 in G'b. This means that d(G'b) = ∆. In this case, 

G'b contains two s-t paths p1 and p2 with flow λ and 1 – λ, respectively (see Figure 3.2). 

    The value of λ can be calculated from the equation: λ d(p1) + (1 – λ) d(p2) = ∆. 
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    Case 2: The basic solution consists of n links, i.e., there is a cycle W with branching 

point a in the basic solution. The slack variable w is eligible to enter the basis if γ  < 0. 

Then according to part a) of pivot rule P2, we let w enter the basis and shall select one 

of the two links in the current Gb that are incident on the branching point a to leave the 

basis. The choice can be made using Theorem 3.2 (c) of Section 3.4.4. 

Suppose γ > 0. An in-arc will create a new cycle W'. This corresponds to Theorem 

3.2(b) in Section 3.4.4. We need to consider three sub-cases that capture all possibilities. 

Without loss of generality, we assume that the orientation of W is clockwise and the 

orientation of W' agrees with the direction of the in-arc.  

 
Figure 3.4: Find leaving variable: sub-cases of Case 2 

    Case 2.1 (Figure 3.4(a)): Possible out-arcs: (1, 2), (3, 5) and (3, 4). Here, (x12, x35, 

x34) = (1, λ, 1 – λ) and thus the out-arc corresponds to the first zero component in the 

following formula as t increases from 0. 

           (1, λ, 1 – λ) – t (1, d(W') / d(W), – d(W') / d(W))  

              = (1 – t, λ – t d(W') / d(W), 1 – λ + t d(W') / d(W)). 

    Case 2.2 (Figure 3.4(b)): Possible out-arcs: (1, 2), (2, 7) and (2, 3). Link (7, 6) is not 

eligible for out-arc because otherwise w ≠ 0 in the next basic solution due to the 

property of the transformed network. The out-arc is decided by the following formula as 

in Case 2.1. 
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 1               2     3                4      

6                       5 

 λ 
s 

t

5 

9 

2

3 4 

7 

6 

8 

in-arc 

W' 

W

   1 - λ  

 λ 6 

4 

s 

3 
1

5

t 

in-arc 7 

  2 
W 

W'

1 - λ 

λ 

a)Sub-case 2.1                   b) Sub-case 2.2                             c) Sub-case 2.3 
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                (x12, x27, x23) - t (1, 1 + d(W') / d(W), - d(W')/d(W))   

                   = (1, λ, 1 – λ) – t (1, 1 + d(W')/d(W), - d(W')/d(W)). 

    Case 2.3 (Figure 3.4(c)): Possible out-arcs: (2, 3), (2, 9) and (4, 5). The out-arc 

corresponds to the first zero component in the following formula when t increases. 

            (x23, x29, x45) – t (– d(W') / d(W), d(W') / d(W), 1 – d(W') / d(W)). 

3.5.3. NBS Algorithm, Complexity Analysis, and an Approximate Solution 

We now present a complete description of the Network Based Simplex (NBS) algorithm 

that uses the strategies developed in Section 3.5.1 and 3.5.2 for the RELAX-TCSP 

problem. We show in Section 3.5.3.1 that the algorithm is of pseudo-polynomial time 

complexity. In Section 3.5.3.2 we show how to extract from an optimum solution to the 

RELAX-TCSP problem a feasible solution to the TCSP problem and hence to the 

original CSP problem and derive bounds on the deviation of this solution from the cost 

of the optimum solution. 

Procedure NBS 
  Transform the original network as in Section 3.2 
  Find an initial feasible basic solution as in Section 3.4.2 
  loop {  
    if (γ < 0) then  

    Let slack variable w be the entering variable (rule (a) of Pivot rule P2) 
else if an in-arc satisfying rule (b) of Pivot Rule P2 is available then 
            Choose one of them as the entering variable 
        else { 
                 Invoke Dijkstra’s algorithm on the active costs to update the potentials. 
                 if an in-arc satisfying rule (b) of Pivot Rule P2 is available then  
                       Choose one of them as the entering variable 
                 else stop /*has reached the optimal condition*/ 
      } 
} 
Determine a leaving variable as in Section 3.5.2 
Update the flows and the potentials as in steps of Section 3.4.3 
 

Figure 3.5: Network based simplex algorithm 
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3.5.3.1. Complexity Analysis  

Fact 1: If there is no cycle in the basic solution subgraph, then for each link euv, the link 

flow xuv is either 1 or 0. If there is a cycle W in Gb, xij is 0 or at least 1 / |d(W)|. 

        Proof:  If there is no cycle, the proof is trivial. Assume there is a cycle W. It can be 

seen that the flow on links not on the two paths are 0 and the flows on the paths but not 

on the cycle is 1. Since there is a cycle, the flow can be decomposed into two paths p1 

and p2. Consider flows on the cycle W. Suppose the flow on p1 and p2 are λ and 1 – λ 

with 0 < λ < 1. 

    Assume d(p1) ≥ d(p2). Since d(p1) and d(p2) are both even and ∆ is odd, d(p1) ≠ ∆ and 

d(p2) ≠ ∆. Also by Lemma 3.3, d(W) ≠ 0.  

    So d(p1) ≠ d(p2) because d(W) = d(p1) – d(p2).  

    We also have λ d(p1) + (1 – λ) d(p2) = λ(d(p1) – d(p2)) + d(p2) = ∆. So, 

             min{d(p1), d(p2)}≤ ∆ ≤ max{d(p1), d(p2)} and λ = (∆ – d(p2)) / ( d(p1) – d(p2)). 

    Hence λ ≥ 1 / d(W) because ∆ – d(p2) ≥ 1 and d(W) = d(p1) – d(p2)> 0. 

    Similarly, we can prove that 1 – λ ≥ 1 / d(W).                                                              ■ 

    Fact 2: If euv is the in-arc and W' and W are the newly created cycle and the old cycle 

(if it exists), respectively, we have  

       0 < |yu – yv – γ duv – cuv| = | γ d(W') + c(W')| =  

                 




≠−
=

.0|,)(|/|)()'()()'(|
;0|,)'(|

γ
γ

WdWcWdWdWc
Wc

 

    Proof: Suppose the cycle W' is e1e2…ek where e1 = euv. Since all the links but euv 

on W' are in the basic solution, the reduced costs on all these links but euv are 0. So |yu – 
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yv – γ duv – cuv| = |γ d(W') + c(W')|. Recalling that γ = – c(W) / d(W), if there exists a 

cycle W in the basic solution or γ = 0 if no such cycle exists, we get the rightmost 

equality.  

Since euv is an in-arc, |yu – yv – γ  duv – cuv| > 0.                                                            ■ 

    Fact 3: Let t be the maximal flow that can be pushed on the new cycle W'. Suppose 

that euv and xuv are a link and its flow in the basic solution, respectively. Then the 

strictest constraint on t is given by xuv – t (1 + |d(W') / d(W)|) ≥ 0, t ≥ 0 and t ≤ 1. Hence 

max t ≥ min{1, 1 / (|d(W)| + |d(W')|)} = 1 / (|d(W)| + |d(W')|). 

        Proof: First assume there is a cycle W in the current basic solution. If we push 

flow t on the new cycle W', according to Theorem 3.2 and Step 4 of the revised simplex 

method, in the worse case, the flow on all links will be decreased by at most 

t(1+|d(W')/d(W)|). Proof follows if we recall that xuv ≥ 1 / d(W). The proof is similar if 

there is no cycle in the basic solution.                                                                              ■ 

    Fact 4: Let T and T' be two consecutive feasible basic solutions in the simplex 

method and c(T) denote the cost of the flow associated with the basic solution T. If c(T') 

< c(T) and D is the maximal link delay, then |c(T') – c(T)| = t |yu – yv – γ duv – cuv| ≥ 1 / 

(2n2D2).   

        Proof: Follows from |c(T') – c(T)| = t |yu – yv – γ duv – cuv| and Facts 2 and 3.         ■ 

 

    Theorem 3.5: NBS algorithm terminates within 2n3D2C pivots, where n = |V| and D 

(resp. C) is the maximum link delay (resp. cost) and hence its complexity is pseudo-

polynomial. 
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        Proof:  Let T0, T1… Tl be the sequence of consecutive feasible basic solutions. It 

suffices to show that l ≤ 2(n D) 3. According to Fact 4, c(T0) – c(Tl) ≥ l /(2 (n D) 2) and 

c(T0) ≤ n C.  

    This implies that l ≤ 2 n3 D2 C. Since each pivot requires O(m) operations, the NBS 

algorithm is of pseudo-polynomial complexity.                                                               ■ 

    Using similar arguments, the revised simplex method that allows degenerate pivots 

but only uses the anti-cycling strategy of Section 3.4.6 can also be shown to be of 

pseudo-polynomial time complexity. 

3.5.3.2. An Approximate Solution to the TCSP / CSP Problem and Performance 

Bounds 

If the optimal basic solution subgraph for the RELAX-TCSP problem contains no cycle, 

then clearly the s-t path in this subgraph is also the optimum solution to the original 

CSP problem. On the other hand, if the optimal basic solution graph contains a cycle, 

then the optimum flow can be decomposed into flows along two directed s-t paths p1 

and p2 with positive flow along each path. 

    Lemma 3.8: If c(p2) ≤ c(p1), then either c(p2) ≤ c(p*) ≤ c(p1) and d(p2) ≥ ∆ ≥ d(p1), 

where p* is the optimal path of the original CSP problem or one of the two paths p1 and 

p2 is optimal. 

        Proof: Let 0 < λ < 1 and 1 – λ be the flows on p1 and p2, respectively. We have  

           λ d(p1) + (1 – λ) d(p2) = ∆, and                                                                 (3.28) 

       λ c(p1) + (1 – λ) c(p2) ≤ c(p*).                                                                  (3.29) 

    It follows from (3.28) that  
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min{d(p1), d(p2)} ≤ ∆ ≤ max{d(p1), d(p2)}.                               (3.30) 

    By (3.29), c(p1) and c(p2) cannot both be greater than c(p*). So c(p2) ≤ c(p*). 

    If c(p2) = c(p*) then by (3.29), c(p1) ≤ c(p*) which implies p1 or p2 is optimal. 

    Assume c(p2) < c(p*). Now min(d(p1), d(p2)) = d(p1) ≤ ∆, for otherwise p2 will be a 

feasible solution to the CSP problem with cost smaller than c(p*). 

    So we have the required inequality d(p2) ≥ ∆ ≥ d(p1). 

    Also path p1 is feasible for the original CSP problem by Theorem 3.1. So c(p1) ≥ 

c(p*). Thus we have the required inequality c(p2) ≤ c(p*) ≤ c(p1).                                  ■ 

    It follows from the above lemma that the path p1 is a feasible solution to the TCSP 

problem. We may use this as an approximate solution to the original CSP problem. We 

next evaluate the quality of this approximate solution. 

    Theorem 3.6: Let p1 and p2 be the two paths derived from the optimal solution to the 

RELAX-TCSP problem with c(p1) ≥ c(p2), then 
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    Using a special example below, we can show that no constant factor approximation 

solution based on relaxation approach (including NBS and LARAC algorithm) is 

possible (However, simulations show that the approximate solution is very close to the 

optimum). For closing the gap between the optimum value and the approximate value 

see Section 2.6.   

 
Figure 3.6: An example showing that the gap can be arbitrarily large 

    Let OPT, OPTS, and ∆ denote the optimal cost, the cost of the path returned by 

relaxation method, and the delay upper bound. In Figure 3.6, the solid links correspond 

to the basic variables in the optimal basis. Thus OPTS = ∆ – 4. Since OPT = 4, |OPTS – 

OPT| / OPT = (∆ – 8) / 4, where ∆ can be specified arbitrarily.  

 

3.6. Simulation and Comparative Performance Evaluation 

We compared our NBS algorithm with the general purpose LP solvers, LARAC 

algorithm [23], parametric search based LARAC algorithm [61] (denoted as PARA), 

and the LHWHM algorithm [37]. The LARAC algorithm has time complexity of O(m2 

log4m) [25] while the parametric search based LARAC algorithm has better complexity, 

namely, O((m + n log n)2) [65]. However, the complexity results are derived using the 

worst scenario and thus they may not be an accurate indicator of the performance of 

algorithms on average basis. So we compared the four methods using simulations.  

     

s 
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Figure 3.7: Simulation on regular graphs 

    We use three classes of network topologies: regular graphs Hk, n (see [55]), Power-

Law Out-Degree graph [44], and Waxman’s random graph [59]. For a network G(V, E), 

the nodes are labeled as 1, 2…, n = |V|. Nodes n / 2 and n are chosen as the source and 

target nodes. For the Power-Law Out-Degree graph and Waxman’s random graph, the 

hop number of feasible s-t paths is usually very small even when the network is very 

large. This will bias the results in favor of the LHWHM algorithm. So, for Waxman’s 

random graphs, a link joining node u and v is added if |u – v| < |V| / 50 besides other 

rules for generating random graphs. We keep the original version of Power-Law Out-

Degree graph as in [44]. Even though this kind of graphs favors the LHWHM algorithm, 

the comparison of the performance of the LARAC and NBS algorithms is still an 

indicator of the merits of NBS. The link costs and delays are randomly independently 
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generated even integers in the range from 1 to 200. The delay bound is 1.2 times the 

delay of the minimum delay s-t paths in G.  

    The results are shown in Figure 3.7-3.10. Experiments show that NBS algorithm can 

usually find better solutions than the LARAC algorithm by selecting the best feasible 

path encountered during the execution instead of the optimum path to the RELAX-

TCSP problem. We also find that for sparse graphs (Figure 3.7(c)), NBS takes more 

time than the LARAC algorithm. However, when the network is dense (large out-degree, 

See Figure 3.7(d)), NBS beats LARAC. Basically, NBS algorithm is a neighbor search 

algorithm in which a better solution is derived from the current solution. At each pivot, 

the NBS algorithm tries all the nodes in the s-t path in the current basic graph in order to 

find an in-arc emanating from a node in the path. When the graph is dense, it is more 

likely that an eligible in-arc can be found in fewer tries. On the other hand, the LARAC 

algorithm invokes a series of Dijkstra’s shortest path algorithm. When the graph is 

denser, each step in Dijkstra’s algorithm takes more time since Dijkstra’s algorithm 

checks all the neighbors of the currently processed node. 

 

Figure 3.8: Waxman’s random graphs 
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    We also compared the NBS algorithm with general purpose LP solvers: CPLEX 8.0 

(www.ilog.com/products/cplex), QSopt (www2.isye.gatech.edu/~wcook/qsopt), and 

CLP (www.coin-or.org). Among all the three solvers, CPLEX is always the fastest (this 

is not surprising because CPLEX is recognized as one of the best LP solvers). So we 

only report the experiments with CPLEX. In our experiments with CPLEX, we have 

used the same graphs as above. Using CPLEX package, we may choose different 

optimizers such as the primal dual method, network simplex etc. Our experiments show 

that the CPLEX using the primal dual uses the least time and so our comparison is with 

respect to this optimizer. Notice that CPLEX can also retrieve the network structure 

underlying the CSP problem. But we found that this does not help decrease the running 

time. Actually, it takes longer time to find the optimal solution if CPLEX is directed to 

use the special structure of the networks. The numerical simulation results in Figure 

3.10 show that the NBS algorithm is faster.  

 

Figure 3.9: Power-Law Out-Degree graphs 
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Figure 3.10: NBS and CPLEX comparison 

 

3.7. Summary 
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simplex method on the primal form of the RELAX-TCSP problem. Several strategies 

are employed to achieve efficient implementation of the revised simplex method. These 

strategies include: explicit formulas to solve the systems of equations needed to find 

entering and leaving variables, an anti-cycling strategy, and a strategy to avoid 

degenerate pivots. These result in two algorithms. One of these allows degenerate pivots 

and uses an anti-cycling strategy developed in this chapter. The other algorithm called 

NBS algorithm avoids degenerate pivots. We show that both algorithms are of pseudo-
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problem and derive bounds on the quality of this solution with respect to the optimum 

solution. Extensive simulation results are presented to demonstrate that our approach 

compares favorably with the LARAC algorithm and is faster on dense graphs. Also, our 

algorithm is faster than the general purpose LP solvers.  
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Chapter 4. Constrained Shortest Link-Disjoint Paths 

Selection (CSDP(k)): A Network Programming Based 

Approach 

 
4.1. Introduction 

In this chapter we are interested in selecting a set of paths satisfying certain constraints. 

This problem is a fundamental one and arises in several applications. Specifically the 

problem, denoted as the CSDP(k) problem, is to select a set of k link-disjoint paths from 

s to t such that the total cost of these paths is minimum and that the total delay of these 

paths is not greater than a specified bound. The CSDP(k) problem arises in the context 

of provisioning paths in a network that could be used to provide resilience to failures in 

one or more of these paths. Note that this is a generalized version of the CSP problem 

considered in Chapter 3 and so it is NP-hard. This has led researchers to propose 

heuristics and approximation algorithms for these problems.  

    Orda et al. [43] have studied the CSDP(2) problem extensively and have provided 

several approximation algorithms. A special case of the CSDP(k) problem which does 

not have the delay requirement has been studied in [54]. The algorithms in [23] and [54] 

can be integrated to provide an approximate solution to the CSDP(k) problem. We call 

this the G-LARAC(k) algorithm.  

     The rest of the chapter is organized as follows. In Section 4.2 we define the CSDP(k) 

problem and a generalized version of this problem called the GCSDP(k) problem. The 

GCSDP(k) problem requires that the delay of each path in the set of link-disjoint paths 
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be bounded by a specified value. This is in contrast to the CSDP(k) problem wherein the 

delay constraint is with respect to the total delay of the paths. However, even finding 

two delay constrained link-disjoint paths is NP-hard and is not approximable within a 

factor of 2 – ε for any ε > 0 [32]. We first show that the optimal objective values of the 

LP relaxations of these two problems have equal value. Hence we focus our study on 

the relaxed version of the CSDP(k) problem, namely, the RELAX-CSDP(k) problem. In 

Section 4.3 we review the G-LARAC(k) algorithm which is a dual based approach to 

solving RELAX-CSDP(k). In Section 4.4 we introduce a transformation on the CSDP(k) 

problem. The transformed problem will be called the TCSDP(k) problem. We show that 

the CSDP(k) problem and the TCSDP(k) are equivalent. As we show later in the chapter 

the transformed problem has several properties that enable us to achieve an efficient 

implementation of our approach. In the remainder of the chapter we study the LP 

relaxation of the TCSDP(k) problem, namely, RELAX-TCSDP(k), using the revised 

simplex method of linear programming. In Section 4.5, several properties of basic 

solutions of RELAX-TCSDP(k) are established. We also show how to extract an 

approximate solution to the CSDP(k) problem starting from an optimal solution to 

RELAX-TCSDP(k). In Sections 4.6-4.7, the revised simplex method and several issues 

relating to an efficient implementation are discussed. We also develop an anti-cycling 

strategy and establish the pseudo-polynomial time complexity of the revised simplex 

method when applied on RELAX-TCSDP(k). Simulation results comparing our 

approach with the G-LARAC(k) algorithm and the commercially available CPLEX 

package are presented in Section 4.8. These results demonstrate that our algorithm is 

faster than currently available approaches. They also indicate that in most cases the 
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individual delays of the paths produced starting from RELAX-CSDP(k) do not deviate 

in a significant way from the individual delay requirements of the GCSDP(k) problem, 

thereby demonstrating that there is not much loss of generality in focusing on RELAX-

CSDP(k) rather than on the relaxed version of the more complex GCSDP(k) problem. 

We conclude in Section 4.9 with a summary of our work and pointing to certain 

directions for future research.  

    The results in this chapter have been repeated in [62]. 

 

4.2. Constrained Shortest Link-Disjoint Paths Selection Problems: 

Formulations, Relaxations and Their Equivalence 

We first define two classes of link-disjoint paths selection problems. One is a special 

case of the other. They both admit integer linear programming (ILP) formulations. They 

are computationally intractable because of the integrality constraints. For networks 

involving small numbers of nodes and links, these problems can be solved using any 

general purpose ILP package. For larger networks, faster algorithms that exploit the 

special network structure of the problems are desired. So, we are interested in solving 

these problems after relaxing the integrality requirement. The relaxed versions of these 

problems are upper bounded LP problems. The main result in this section is that the 

relaxed versions of both these problems are equivalent in the sense they have the same 

optimal objective value.  

    General Constrained Shortest k-Disjoint Paths Problem (GCSDP(k)): Given two 

nodes s and t and a positive integer T, the GCSDP(k) problem is to find a set of k (k ≥ 2) 
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link-disjoint s-t paths p1, p2…, pk such that the delay of each path pi is at most T and the 

total cost of the k paths is minimum.                                                                                                       

    Constrained Shortest k-Disjoint Paths Problem (CSDP(k)): Given two nodes s 

and t, and a positive integer T, the CSDP(k) problem is to find a set of k link disjoint s-t 

paths p1, p2…, pk such that the total delay of these paths is at most k T and that the total 

cost of the k paths is minimum.                                                                                                                     

    Both the above problems can be formulated as ILP problems. Relaxing the integrality 

constraints we get the following relaxed versions of these problems. 

 

    RELAX-GCSDP(k)  

Minimize: ∑ ∑
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∑
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i
uvx

1
 ≤ 1 and i

uvx  ≥ 0 for all (u, v) ∈ E                                      (4.4) 

 

    The solutions to the above problem may not, in general, be integral. However, every 

integer solution defines a set of k link-disjoint s-t paths. In other words, an integer 

solution X i = {xi
uv}(u, v) ∈ E for i = 1, 2…, k is the flow vector corresponding to the ith 

path pi, i.e., link (u, v) is in path pi iff xi
uv = 1.  
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    RELAX-CSDP(k)  

 

Minimize: ∑ ⋅
∈Evu

uvuv xc
),(
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              subject to 

∀ u ∈V, 







=−
=

=∑−∑
∈∈

.0
}),|({}),|({

otherwise
tuifk
suifk

xx
Euvv
vu

Evuv
uv                                           (4.6) 

∑ ⋅
∈Evu

uvuv xd
),(

 ≤  k T and                                                                            (4.7) 

                      0 ≤ xuv ≤ 1, for all (u, v) ∈ E  

      

    We now proceed to show that the RELAX-GCSDP(k) and RELAX-CSDP(k) are 

equivalent in the sense that they both have optimal solutions with the same value for the 

objective. Let Λ = (λ1, λ2 …, λk) ≥ 0 and define 

               LG(k, Λ) = Minimize { ∑ ∑
∈ =Evu
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i Evu
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)(λ }.  

    Then the Lagrangian dual of RELAX-GCSDP(k) is as follows. 

    LAGRANGIAN-GCSDP(k) 

               Maximize  LG(k, Λ) among all Λ ≥ 0 

               subject to  

                    For i = 1, 2 …, k, ∀ u ∈V, 
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    The vector Λ is called the Lagrangian multiplier. The above problem can be solved 

by finding the Lagrangian multiplier vector Λ that maximizes LG(k, Λ). 
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    Property 4.1: Given any Lagrangian multiplier Λ = (λ1…, λk), let Λ' be obtained by 

permuting the components of Λ. Then LG(k, Λ) = LG(k, Λ').   

    Property 4.2 ([7]): LG(k, Λ) is a concave function of Λ.        

    Property 4.3: There exists Λ with all components equal that maximizes LG(k, Λ).          

        Proof: Let Λ* = (λ1…, λk) be a maximizing multiplier. 

    Let S(Λ*) denote the set of vectors whose elements are permutations of the elements 

of Λ*.   

    Let C = |S(Λ*)| = k! and θ  = 1 / C.  

    By Property 4.1, ∀H ∈ S(Λ*), LG(k, Λ*) = LG(k, H). 

    By the concavity of LG(k, Λ*),  

LG(k, Λ*) = θ  C L(k, Λ*) = ∑
Λ∈ )(

),(
SH

HkLθ  ≤ ∑
Λ∈ )(

),(
SH

HkL θ  ≤ L(k, Λ*). 

    So, Γ  = ∑
Λ∈ )(SH

Hθ  is also a maximizing multiplier and Γ  has identical components. ■                        

    By Property 4.3, LG(k, Λ) can be reformulated with respect to some Λ = (λ, λ …, λ) ≥ 

0 as follows: 

LG(k, Λ) = Minimum{ ∑ ∑
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 for all (u, v) ∈ E.                                                                  (4.11) 

    We now define UNIFORM-LAGRANGIAN-GCSDP(k) as follows. 

    First let L(k, λ) = min { ∑
∈Evu

uvuv xc
),(

 + λ ( ∑
∈Evu

uvuv xd
),(

– k T)}. 

    UNIFORM-LAGRANGIAN-GCSDP(k): 
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Maximize   L(k, λ) among all scalars λ ≥ 0                                             (4.12)                           

               subject to 
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               0 ≤ uvx ≤ 1, for all (u, v) ∈ E                                                        (4.14)  

 

    Note that (4.13) is obtained by summing up the k flow balance constraints in (4.8) 

and that λ is a scalar. 

    Theorem 4.1: UNIFORM-LAGRANGIAN-GCSDP(k) and LAGRANGIAN-

GCSDP(k) have the same optimal value for the objective.  

        Proof: Let Λ = (λ, λ…, λ) ≥ 0. We first show LG(k, Λ) ≥ L(k, λ).  

    Let {xi
uv}(u, v) ∈ E, i = 1 …, k minimize LG(k, Λ). Then we have  

      LG(k, Λ) = ∑ ∑
∈ =Evu
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 + λ ( ∑
∈Evu

uvuv xd
),(

– k T) ≥ L(k, λ), 

where uvx  is defined as in (4.11). 

   It follows from the unimodularity [1] of the constraints (4.13)-(4.14) that for a given λ, 

there exists an optimal integer solution to UNIFORM-LAGRANGIAN-CSDP(k) 

problem. Also an integer solution Y = {yuv}(u,v) ∈ E of UNIFORM-LAGRANGIAN-

CSDP(k) that achieves the minimum in L(k, λ) defines a set of k link-disjoint s-t paths 

Pk = (p1, p2, … pk). Let X i = {xi
uv}(u,v) ∈ E be the flow vector for path pi, i.e., xi

uv = 1 iff (u, 

v) ∈ pi; otherwise, xi
uv = 0.   
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    Observe that yuv = ∑
=
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uvx

1
. Then  

           L(k, λ) = ∑
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uvuv yc
),(

 + λ ( ∑
∈Evu

uvuv yd
),(

– k T)  

                       = ∑ ∑
∈ =Evu

k

i

i
uvuv xc

),( 1
 + ∑ −∑ ⋅

= ∈

k

i Evu

i
uvuv Txd

1 ),(
)(λ  ≥ LG(k, Λ). 

    Hence, L(k, λ) ≥ LG(k, Λ). So L(k, λ) = LG(k, Λ). 

    By Property 4.3, there exists a vector Λ* = (λ*, λ*…, λ*) that maximizes LG(k, Λ). 

Let η* be a maximizing multiplier for L(k, λ) and denote H* = (η* …, η*). 

    By definition of Λ* and η*, we have  

                   LG(k, Λ*) = L(k, λ*) ≤ L(k, η*) = LG (k, H*) ≤ LG(k, Λ*). 

    Hence LG(k, Λ*) = L(k, η*).                                                                                          ■ 

    The above theorem has an important implication. It shows that the optimal objective 

to RELAX-GCSDP(k) can be obtained by solving UNIFORM-LAGRANGIAN-

GCSDP(k). But UNIFORM-LAGRANGIAN-GCSDP(k) is the general linear 

programming dual of the RELAX-CSDP(k) problem (See page. 183 of [5]). Thus we 

have the following result by the strong duality theorem [5]. 

    Theorem 4.2: RELAX-GCSDP(k) and RELAX-CSDP(k) have the same optimal 

objective value.         

    The intuition behind the above result is as follows. The indistinguishability of the k 

path constraints represented by (4.3) guarantees that if P is a set of feasible paths 

constituting a solution to RELAX-GCSDP(k) problem then any permutation of these 

paths is also a solution (Property 4.1). Also in the optimum solution there is no reason 
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for paths to be weighted differently (Property 4.3). As formally proved, these two 

properties lead to Theorem 4.2. 

     Theorem 4.2 implies that if we are interested only in obtaining the optimal objective 

value of the RELAX-GCSDP(k), then starting with the RELAX-CSDP(k) does not 

result in any loss of generality. In view of this, we shall focus on RELAX-CSDP(k) in 

the rest of the chapter.  

 

4.3. G-LARAC(k) Algorithm: A Dual Based Approach to RELAX-

CSDP(k) 

The G-LARAC(k) algorithm [6] is a generalization of the LARAC algorithm [23] that 

was specifically designed for the CSP problem. The G-LARAC(k) algorithm may be 

viewed as an algorithm for solving RELAX-CSDP(k) problem using its Lagrangian 

dual which is the same as UNIFORM-LAGRANGIAN-GCSDP(k) repeated below. 

    In the following we use ∆ in place of k T. 
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    Given λ, L(k, λ) = Minimum{ ∑
∈Evu

uvuv xc
),(

 +λ ( ∑
∈Evu

uvuv xd
),(

– ∆)} is achieved by a set of k 

link-disjoint paths with minimum total weight, where the weight associated with link (u, 

v) is given by cuv + λ duv. The key issue is how to search for the optimal λ that 

maximizes L(k, λ) and determining the termination condition for the search. The G-

LARAC(k) algorithm presented in Figure 4.1 is one such efficient search procedure. In 

this procedure cλ cost of a path (also called minimum aggregate cost) refers to the cost 

of the path computed using cuv + λ duv as the cost of link (u, v). 

 

 
Figure 4.1: G-LARAC(k) algorithm 

    Basically G-LARAC(k) performs the following steps. 

1. In the first step, the algorithm calculates the minimum cost of a set of k link-

disjoint s-t paths using link costs. This can be done by the algorithm in [54]. 

If the total delay of these paths is at most ∆, this is surely the required set of 

paths. Otherwise, the algorithm stores this set as the latest infeasible set, 

simply called the Pc set. Then it determines the minimum delay of a set of k 

Procedure G-LARAC (s, t, ∆, k) 
  Pc :=Disjoint (s, t, c, k) /*Compute minimum cost of a set of k link-disjoint s-t paths*/ 
  if d(Pc) ≤ ∆ then return Pc 
  Pd := Disjoint (s, t, d, k) /*Compute minimum delay of a set of k link-disjoint s-t paths*/ 
  if d(Pd) > ∆ then return “no solution” 
  repeat 
         λ = (c(Pc) – c(Pd)) / (d(Pd) – d(Pc)) 
         R = Disjoint(s, t, cλ, k) /*Compute minimum aggregate cost cλ of s-t path*/ 
         if cλ (R) = cλ (Pc) then return Pd 
           else if  d(R) ≤ ∆ then  Pd := R else  Pc := R 
   end repeat 
end procedure 
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link disjoint s-t paths, called the Pd set. If Pd is infeasible, there is no solution 

to this instance. 

2. Set λ = (c(Pc) – c(Pd)) / (d(Pd) – d(Pc)). With this value of λ, we can find a 

set of k link-disjoint paths with minimum cλ-cost. Let this set be denoted as 

R. If cλ(R) = cλ(Pc) (= cλ(Pd)), we have obtained the optimal λ. Otherwise, set 

R as the new Pc or Pd according to whether R is infeasible or feasible. 

    A detailed discussion of several issues relating to G-LARAC(k) and properties of 

solutions produced by G-LARAC(k) were presented in Chapter 2. 

    In contrast to the dual approach taken by the G-LARAC(k) algorithm our interest in 

the remainder of the chapter is to design an approach to obtain an approximate solution 

to the CSDP(k) problem using the primal simplex method of linear programming.  

 

4.4. Transformation of the RELAX-CSDP(k) problem 

To achieve an efficient implementation of our approach to the RELAX-CSDP(k) 

problem we consider problem TCSDP(k) on a transformed network defined as follows. 

• The graph of the transformed problem is the same as that of the original problem, 

that is, G(V, E). 

• For all (u, v) ∈ E, d'uv and c'uv in the transformed problem are given by d'uv = 2 

duv and c'uv = cuv.   

• The new upper bound ∆' in the transformed problem is given by ∆' = 2 ∆ + 1. 

    Note that the transformation above is the same as the transformation for the CSP 

problem presented in Chapter 3. 
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    Let Pk
 denote a set of k link-disjoint s-t paths. Let c(Pk) and d(Pk) denote the total cost 

and the total delay of the k paths in Pk. The TCSDP(k) problem asks for a set of k link-

disjoint s-t paths with minimum total cost and with total delay at most ∆'. 

    Theorem 4.3: Pk is a feasible solution (resp. an optimal solution) to the CSDP(k) 

problem iff it is a feasible solution (resp. an optimal solution) to the TCSDP(k) problem.                           

        Proof: Given the set of paths Pk, let Tc(Pk) and Td(Pk) denote the total cost and the 

total delay of the paths in Pk in the TCSDP(k) problem, respectively. Evidently, Tc(Pk) 

= c(Pk) and Td(Pk) = 2 d(Pk). It suffices to show that Pk is feasible in the CSDP(k) 

problem iff it is feasible in the TCSDP(k) problem. 

    If Pk is feasible in the CSDP(k) problem, then d(Pk) ≤ ∆ and Td(Pk) = 2 d(Pk) ≤ 2 ∆ < 

2 ∆ + 1. So Pk is also feasible in the TCSDP(k) problem.  

    If Pk is feasible in the TCSDP(k) problem, then 2 d(Pk) = Td(Pk)  ≤  ∆' = 2 ∆ + 1. 

From the assumption that delays have integer values it follows that d(Pk) ≤ ∆. So Pk is 

also feasible in the CSDP(k) problem.                                                                              ■ 

    In view of this equivalence we only consider, in the rest of the chapter, the RELAX-

TCSDP(k) problem. Also we use ∆ (being odd) and duv (being even) to denote the delay 

bound and link delay in the TCSDP(k) problem. Notice that the transformation does not 

change the costs of paths.  

    We conclude this section by recalling some terminology defined in Section 3.3 and 

presenting the RELAX-TCSDP(k) problem in matrix form. 

    Let the links be labeled as e1, e2 …, em and the nodes be labeled as 1, 2 …., n. We 

shall denote the delay of each edge ei as di and the cost of ei as ci. The incidence matrix 

of G has m columns, one for each link and n rows, one for each node [55]. The rank of 
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this matrix is n – 1, and removing any row of this matrix will result in a matrix of rank n 

– 1. We denote this resulting matrix of rank n – 1 as H. We also assume that the row 

removed from the incidence matrix corresponds to node n. We denote the column of H 

corresponding to ek by the vector hk. For ek = (i, j), i, j ≠ n we have hk = (h1,k…, hi, k ,… 

hj, k ,… hn-1, k )t with all its components being 0 except for hi, k = 1 and hj, k = – 1. Also for 

ek = (i, n), hi, k = 1, and for ek = (n, j), hj, k = – 1. Let  
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    Let x be the column vector of the m flow variables xuv and the slack variable w 

corresponding to the delay constraint (4.7), and c be the row vector (c1, c2 …, cm, 0) of 

the costs. Note that the cost of the slack variable is 0. Then the RELAX-TCSDP(k) 

problem (see (4.5)-(4.7)) can be written in matrix form as follows. Note that to conform 

to the standard form for a minimization problem we have used “≥“ form of (4.7) and 

added a slack variable w, i.e., ∑ ⋅−
∈Evu

uvuv xd
),(

 – w  = – ∆. 

     RELAX-TCSDP (k) 

          Minimize   c x                                                                                                                            

subject to    A x = b                                                                                     (4.17) 

                             0 ≤ x ≤1, for ∀(u, v) ∈ E  

                             w ≥ 0,  
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where w is the slack variable added to (4.7) and b = (b1, b2…, bn-1, – ∆)t with bs = k, bt = 

- k and bi = 0 for i ≠ s, t. 

    We note that the above problem is almost the same as the minimum cost flow 

problem except for the additional delay constraint. 

    The rest of the chapter is concerned with the simplex method based solution of 

RELAX-TCSDP(k) and several issues relating to its efficient implementation. We want 

to emphasize that most of these properties hold only with the transformation and we 

shall use “*” to denote those properties that also hold without the transformation. The 

cost of the optimal solution to RELAX-TCSDP(k) will be a lower bound to the optimal 

cost of the original CSDP(k) problem. We will show in the next section how to extract 

an approximate solution to TCSDP(k) (hence the CSDP(k)) problem from an optimal 

solution to the RELAX-TCSDP(k) problem. 

 

4.5. Properties of Basic Solutions of RELAX-TCSDP(k) and 

Generation of an Approximate Solution to the CSDP(k) Problem 

Simplex method of linear programming starts with a basic solution and proceeds by 

constructing one basic solution from another. A basic solution consists of two sets of 

variables, basic and nonbasic. For the RELAX-TCSDP(k) problem under consideration, 

all the nonbasic variables in a basic solution will be 0 or 1 [11]. Note that the value of 

the slack variable, when it is nonbasic, must be equal to 0 because it does not have an 

upper bound. Given a basic solution, we shall denote the subgraph of G corresponding 

to the basic variables (except the slack variable if it is in the basic solution) in this 
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solution by Gb. The subgraph Gb will be called the subgraph of the basic solution or 

simply the basis graph. The nonsingular submatrix of A defined by the basic variables is 

called a basis matrix or simply, a basis and is denoted as B. The rest of the matrix 

corresponding to the nonbasic variables is called the nonbasic matrix. In this section we 

present certain important properties of the basic solutions of the RELAX-TCSDP(k) 

problem. For the sake of continuity some of the lemmas proved in Chapter 3 will be 

stated here without proof. 

    Lemma 4.1* [55]: Let G (V, E) be a directed network with at least one cycle W (not 

necessarily directed). Assigning an arbitrary orientation to W, let U = (u1, u2, u3…, um)t, 

where 

         








∈−

∈

=

.,0

,1

,1

otherwise

WofnorientatiothewithdisagreeseofnorientatiotheandWeif

WofnorientatiothewithagreeseofnorientatiotheandWeif

u jj

jj

j  

Then, H U = 0.             

    We shall use U(W) to denote the vector derived from cycle W as in the above lemma. 

We shall denote by d(W) the signed algebraic sum of the delays of the links in a cycle W 

as we traverse around the cycle. 

 

Figure 4.2: Structure of basic solutions 
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    Lemma 4.2*: Every basis matrix contains the last row of A.                          

    Lemma 4.3*: The subgraph Gb of a basic solution contains at most one cycle (See 

Figure 4.2).  

    Lemma 4.4*: If there is a cycle W in a basic solution, then d(W) ≠ 0.             

    Lemma 4.5: If there is no cycle in a basic solution, then for ∀(u, v) ∈ E, xuv = 0 or 1. 

If there is a cycle W in a basic solution, then for ∀(u, v) ∈ W, 0 < xuv < 1 and for ∀(u, v) 

∈ E – W, xuv = 0 or 1.    

        Proof: Let B = (b1, b2 …, bn), AN, xB, and xN denote the basis matrix, nonbasic 

matrix, column vector of basic variables, and column vector of nonbasic variables in the 

basic solution, respectively.  

    Let b' = b – AN  xN, Then we have B xB = b'. 

    Since all the components in AN xN and b are integers, so are all the components in b'. 

    By Cramer’s rule, we have 

                          xi = det (Bi) / det (B), where Bi = (b1…, bi – 1, b', bi + 1…, bn). 

    We first show xi is an integer if the corresponding link is not in the cycle. We 

consider two cases: 

    Case 1: There is no cycle in the basic solution. Thus the slack variable is a basic 

variable. Also Gb is a spanning tree. Let the nth column in the basis B correspond to the 

slack variable.   

    Then bn = (0 …, 0, – 1)t and so B has the following form. 

             







−

=
1'
0'

D
H

B , where H' is the incidence matrix of Gb and D' is the 

corresponding delay vector. 
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    Since H' is the incidence matrix of a spanning tree it follows that |det(H')| = 1. So 

|det(B)| = 1. Also, det(Bi) is an integer because all the components of Bi are integers. So 

xi is also an integer for all i. 

    Case 2: There is a cycle W in the basic solution. That is, the slack variable is not in 

the basis. 

    Let l = |W|, i.e., l is the number of links in W. 

    In this case, we first show that the flow on any link i not on the cycle is an integer. 

Without loss of generality, let 

              







=

'
'

DD
HH

B
W

W  and 







=

iW

iW
i DD

HH
B

'
'

, 

where the columns of HW = (h1, h2…, hl) correspond to the links on the cycle W and the 

components of DW are the delays of these links. Note that H'i contains the column 

vector b'. 

    Let H'W = (h2…, hl) and D'W = (d2…, dl). Defining the direction of the link h1 as the 

orientation of the cycle W we get by Lemma 4.1 that HW U(W) = 0.  

    Using elementary column operations, det(B) and det(Bi) can be written as: 

           det(B) = ( ) ))(()''det()1(
'')(
''0

det 1 WUDHH
DDWUD
HH

WW
n

WW

W ×•−=




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
×

+ ,  

and 

           det(Bi) = ( ) ))(()''det()1(
'')(
''0

det 1 WUDHH
DDWUD
HH

WiW
n

iWW

iW ×•−=
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
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+  

    Hence xi = det((H'W H'i)) / det((H'W H')).  

    Since all the components in matrix (H'W H'i) are integers, det((H'W H'i)) is also an 

integer. 
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    The denominator is equal to ±1 because (H'W H') is the incidence matrix of the 

spanning tree obtained by removing link i from Gb. So it is follows that xi is an integer. 

Hence xuv = 0 or 1 because 0 ≤ xuv ≤ 1.  

    We next show that if the basis graph contains a cycle, then the flow on each link on 

the cycle W is less than 1 and greater than 0. Assuming the contrary we establish a 

contradiction. First recall that the flow on each link that is not in Gb (that is, each 

nonbasic variable) is either 0 or 1. If the flow on any link on W is an integer (0 or 1) 

then it follows from the flow balance constraints that all the flows on the links on W 

will be integers. But this would mean that in the current basic solution the total delay of 

all the links is an even integer. This violates the requirement that the total delay must be 

equal to ∆ which is odd.                                                                                                ■

  

 

Figure 4.3: Branching and merging nodes 

 

Definition 4.1:  

    (a) In a directed cycle, a node is called a branching (resp. merging) node if it is the 

tail (resp. head) of two links in the cycle (See Figure 4.3). A segment of the cycle is the 
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set of all the links on the cycle between two consecutive branching and merging nodes. 

A segment consists of consecutive links with the same direction and the direction of a 

segment is defined as the direction of its links.     

    (b) For a subgraph Gs of G, let 

          d(Gs) = ∑ ∈ sGvu uvd),(  and dx(Gs) = ∑ ∈ sGvu uvuvdx),(  with respect to the flow vector x.                            

    Lemma 4.6: Suppose the basis graph Gb contains a cycle W. Let e = (u, v) ∈ W and 

xuv = λ (0 < λ < 1). Define the direction of e as the orientation of W. Then for any link e' 

= (i, j), xij = λ if the direction of e' agrees with the orientation of W and xij = 1 – λ 

otherwise (See Figure 4.3).         

        Proof: This follows from the flow balance constraints and the fact the nonbasic 

variables have value 0 or 1.                                                                                               ■ 

    Theorem 4.4: Given an optimal solution x to RELAX-TCSDP(k) with Gb as the 

corresponding basis graph.  

    (a) If Gb contains no cycle then Gb contains a set of k link disjoint s-t paths Pk with 

d(Pk) < ∆, where ∆ is the delay constraint in the TCSDP(k) problem. These paths 

constitute an optimal solution to the original CSDP(k) problem.  

    (b) Suppose that Gb contains a cycle W and let G'(V', E') be obtained from G(V, E) 

such that V' = V and E' = {(u, v) ∈ E | xuv > 0}. Then G' contains a set of k link disjoint 

s-t paths Pk with d(Pk) < ∆, and a set of k link disjoint s-t paths Qk with d(Qk) > ∆, such 

that c(Qk) ≤ OPT ≤ c(P*) ≤ c(Pk), where OPT is the optimal objective value of the 

RELAX-TCSDP(k) problem, P* is the optimal integer solution to the TCSDP(k) 

problem (equivalently, the optimal solution to the CSDP(k)) problem). Also 
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where λ is as defined in Lemma 4.6 with the orientation of the cycle W selected so that 

d(W) < 0. 

        Proof: (a) If there is no cycle in the optimal basis graph Gb, then all the link flows 

will be integers and the flow vector can be decomposed into unit flows along k link-

disjoint s-t paths. The total delay of these paths will be even and hence less than ∆ 

(because ∆ is odd). These integral flows form an optimal integer solution to the 

RELAX-TCSDP(k) problem and hence an optimal solution to the original TCSDP(k) 

problem. By Theorem 4.3 this is also an optimal solution to the original CSDP(k) 

problem.  

    (b) Assume that the basic graph contains a cycle W. By Lemma 4.5, the flows on 

links in W are nonzero and thus G' contains W. Obviously, OPT ≤ c(P*). Also note that 

dx(G'), the total delay contributed by the flow vector equals ∆ (because the slack 

variable is nonbasic and thus its value in the current basic solution is 0).  

    Define the orientation of W such that d(W) < 0. Now push flow along the orientation 

of W until some link’s flow reaches 0 or 1 (See Figure 4.4(b)). By Lemma 4.6, all the 

resulting link flows will be either 0 or 1. Remove all the links with zero flow from G' 

and let Gz denote the resulting network. Evidently, the flows on all links in Gz are 1 and 

d(Gz) < dx(G') = ∆ (because d(W) < 0, the network delay is reduced when we push the 

flow along the orientation of W). It can also be seen that c(W) ≥ 0 for otherwise, the  

cost of the new flow will be less than the cost of the flow defined by G'. 
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    Notice that the above operation does not change the amount of flow from s to t. Since 

the total flow from s to t in Gz is k and all the flows on all links in Gz are equal to 1, 

there must be k link disjoint s-t paths Pk and d(Pk) = d(Gz) < ∆.                                                                    

    Similarly, we can obtain Qk
 (See Figure 4.4(c)). Here, the flow is pushed along W in 

the reverse direction. Along this direction, d(W) > 0 and so d(Qk) > ∆. 

    It can be seen then that c(W) < 0 and thus c(Qk) ≤ OPT ≤ c(P*) ≤ c(Pk).  

    In the rest of the proof, we use Pk, Qk
 and W to denote the corresponding set of links. 

Let WP = Pk ∩ W and WQ = Qk ∩ W, i.e., WP (resp. WQ) is the set of links on both the 

cycle W and Pk (resp. Qk). Evidently, WP ∩ WQ = ∅ and Pk – WP = Qk – WQ (See Figure 

4.4(b) and (c)). Then we have  

           c(P*) ≥ OPT = c(Pk – WP) + λ c(WP) + (1 – λ) c(WQ)  

              =  λ c(Pk – WP) + (1 – λ) c(Qk – WQ) + λ c(WP) + (1 – λ)c(WQ) 

              =  λ (c(Pk – WP) + c(WP)) + (1 – λ) (c(Qk – WQ) + c(WQ))  

              = λ c(Pk) +  (1 – λ) c(Qk) 

    The second equality holds because Pk – WP  = Qk – WQ. 

    Because c(P*) ≤ c(Pk),           
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Figure 4.4: Illustrations for the proof of Theorem 4.4 

 

        All the individual paths in the above theorem can be obtained using flow 

decomposition [1, 4]. 
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4.6. Revised Simplex Method for the RELAX-CSDP(k) Problem 

In this section, we first briefly present the different steps in the revised simplex method 

for upper bounded linear programming problem. A detailed description of this method 

may be found in Chapter 8 of [11]. Note that in [11] the revised simplex method is 

presented for a maximization problem. We then derive formulas required to identify the 

entering and the leaving variables that are needed to generate a new basic solution from 

a given basic solution.  

    Consider the following linear programming problem. 

         Minimize    c x 

         subject to    A x = b, l ≤ x ≤ u. 

    For the RELAX-CSDP(k) problem A is an n × (m + 1) matrix with rank(A) = n, x = 

(x1…, xm + 1)t, c = (c1, c2…, cm + 1), b = (b1, b2…, bn)t. Each feasible basic solution x* of 

this linear program is partitioned into two sets, one set consisting of the n basic 

variables and the other set consisting of the remaining m + 1 – n non-basic variables. 

This partition induces a partition of A into B and AN, a partition of x into xB and xN and 

a partition of c into cB and cN, corresponding to the set of basic variables and the set of 

non-basic variables, respectively. The matrix B is the basis matrix and is nonsingular. 

See Sections 4.4 and 4.5 for the form of the basis matrix and properties of basic 

solutions for the RELAX-TCSDP(k) problem.  

 

    Revised Simplex Method [11] 

1. Solve the system Y • B = cB, where Y = (y1, y2 … yn). 
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2. Choose an entering variable xj. This may be any nonbasic variable xj such that, 

with a standing for the corresponding column of A, we have either Y a > cj, x*j < 

uj or Y a < cj, x*j > lj. If there is no such variable then stop; the current solution 

x* is optimal. 

3. Solve the system B • V = a, where V = (v1, v2…, vn)t. 

4. Define xj(t) = x*j + t and xB(t) = x*B – t V in case Y a < cj and xj(t) = x*j – t, xB(t) 

= x*B + t V in case Y a > cj. If the constraints lj ≤ xj(t) ≤ uj, lB ≤ xB(t) ≤ uB are 

satisfied for all positive t then the problem is unbounded. Otherwise set t as the 

largest value allowed by these constraints. If the upper bound imposed on t by 

the constraints lB ≤ xB(t) ≤ uB is stricter than the upper bound imposed by lj ≤ xj(t) 

≤ uj, then determine the leaving variable. This may be any basic variable xi such 

that the upper bound imposed on t by li ≤ xi(t) ≤ ui alone is as strict as the upper 

bound imposed by all the constraints lB ≤ xB(t) ≤ uB. 

5. Replace x*j by xj(t) and x*B by xB(t). If the value of the entering variable xj has 

just switched from one of its bounds to the other, then proceed directly to step 2 

of the next iteration. Otherwise, replace the leaving variable xj by the entering 

variable xj in the basis heading, and replace the leaving column of B by the 

entering column a. 

    Steps 2-5 in the revised simplex method that generate a new basic solution from a 

given basic solution are called a pivot. 

    Notice that the revised simplex method for the upper bounded linear programming 

problem is more complex than the one given in Chapter 3. However, the systems of 

equations in Steps 1 and 3 can be solved using the formulas developed in Section 3.4.  
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4.7. Initialization and Pivot Rules 

4.7.1. Initialization 

We first compute k minimum delay link-disjoint s-t paths using Suurballe’s algorithm 

[54]. There is no feasible solution if the total delay of these paths is greater than ∆. 

Assume that this is not the case. A tree T' (not necessarily a spanning tree) rooted at t 

can be constructed from these paths by removing links incident with s to break cycles. 

Note that in T' every path from a node in T' to t is a directed path. Such a tree is called a 

directed tree rooted at node t [55]. We next obtain a directed spanning tree rooted at t 

and having T' as a subtree. Then we proceed as follows.  

    First condense or coalesce all the nodes in T' into a single node P. Then for the 

resulting network determine a directed spanning tree rooted at P with all links 

orientated away from P. Such a tree exists because of our assumption that there is a 

directed path from node s to each node in the network and similarly there is a directed 

path from each node to node t. The links of the directed tree selected as above and the 

links in T' together constitute a directed spanning tree T of the network N. 

    Assigning flow of 1 to all the links in the disjoint paths and flow of 0 to all other 

links, we obtain a basic solution represented by T. 

    Definition 4.2 ([1, 4, 11]): Given a feasible basic solution subgraph Gb, we say that 

the link (u, v) ∈ Gb is oriented toward (resp. away from) the root if any of the paths in 

Gb from the root to u (resp. v) passes through v (resp. u). A feasible basic solution Gb 

with corresponding flow vector x is said to be strongly feasible if every link (u, v) of Gb 

with xuv = 0 (resp. xuv = 1) is oriented away from (resp. toward) the root.  
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    Note that the definition of strong feasibility given above is different from the one 

defined in Chapter 3 due to the upper bounds on the flow variables. 

    It can be easily verified that the initial spanning tree T selected as above is strongly 

feasible. 

 

4.7.2. Pivot Rules and an Anti Cycling Strategy 

For an efficient implementation of the revised simplex method, we want to avoid 

directed cycles in basic solutions. This can be achieved by the following pivot rule: 

    P1: Slack variable w assumes the highest priority in choosing the entering variable 

(Step 2 of the Revised Simplex Method). 

    Lemma 4.7*: The slack variable w is eligible to enter the basis iff γ < 0.                                      

    Lemma 4.8*: Suppose the Pivot rule P1 is followed. If a directed cycle W is created 

in Gb during a pivot, then in the next pivot the slack variable w will enter the basis and a 

link on W will leave the basis.     

        Proof: Since W is a directed cycle, c(W) ≠ 0 and γ = – c(W)/d(W) < 0. It follows 

that in the pivot after the directed cycle is created, w will enter the basis and the new 

basis graph will be a spanning tree.                                                                                  ■ 

    A basic solution in which one or more basic variables assume zero values is called 

degenerate [11]. Simplex pivots that do not alter the basic solution are called degenerate. 

Furthermore, a basic solution generated at one pivot and reappearing at another will 

lead to cycling (or infinite looping and non-convergence). Thus we need a strategy to 

avoid cycling. 
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   There are several anticylcing strategies for general linear programming problems. 

Cunningham developed a strategy specifically designed for the network simplex method 

used for solving minimum cost flow problems. Since RELAX-TCSDP(k) has almost the 

same structure as the minimum cost flow problem except for the presence of one 

additional constraint imposed by the delay requirement, we examine if Cunningham’s 

strategy can be adopted for RELAX-TCSDP(k). We show next that the transformation 

introduced on the CSDP(k) problem in Section 4.4 indeed makes Cunningham’s 

strategy suitable for avoiding cycling in the case of RELAX-TCSDP(k).  

    Lemma 4.9: For any degenerate pivot, the out-arc is not on the cycle of the current 

Gb. 

    If the out-arc is not on the cycle in the current Gb, then the potentials can be updated 

easily as described next (Chapter 5.1.2 of [4]). Let T be the current Gb and e = (u, v) and 

e' = (u', v') be the out-arc and the in-arc, respectively. Let T' = T – e + e' be the 

subgraph of the new basic variables. If e is not on the cycle in the current Gb , then the 

new potential vector Y' associated with T' can be obtained as follows [4, 11]. 
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In (418), ru'v' = c(e u'v', γ) + yv' – yu' and Tu' (resp. Tv') is the component of T – e 

containing u' (resp. v').  

    The convergence part of the following theorem closely follows the proof of Theorem 

19.1 in [11]. 
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    Theorem 4.5: If the subgraphs Gb’s of feasible basic solutions generated by the 

simplex method are strongly feasible then the simplex method does not cycle and its 

computational time complexity is pseudo-polynomial.           

        Proof: First observe that in any sequence of degenerate pivots, the value of every 

variable, in particular, the value of the slack variable will remain the same. Also if the 

slack variable is a basic variable then its value is nonzero; otherwise its value is zero. So 

during a given sequence of degenerate pivots, the slack variable will remain basic or 

nonbasic during the entire sequence of degenerate pivots. So the leaving and entering 

variables can only be the links in the network.  

    Let Gb be a feasible basic solution subgraph and t be the root. We define two values 

for Gb. 

                                C(Gb) = ∑
∈Evu

uvuv xc
),(

 and W(Gb) = ∑ −
∈Vu

ut yy )( . 

 

    Consider two consecutive basic solutions Gb
i with Gb

i+1 = Gb
i + e – f, where e and f 

are the in-arc and out-arc, respectively. 

    We first show that either C(Gb
i+1) < C(Gb

i) or W (Gb
i+1) < W (Gb

i). 

    Indeed if the pivot that generates Gb
i+1 from Gb

i is nondegenerate, then C(Gb
i+1) < 

C(Gb
i). If it is degenerate, we have C(Gb

i+1) = C(Gb
i). In this case we need to show that 

W (Gb
i+1) < W (Gb

i). 

   Note that the in-arc e = (u, v) still has flow equal to 0 or 1 in Gb
i+1. By Lemma 4.9, f is 

not a link on the cycle in Gb
i. So the value of γ does not change. Because Gb

i+1 is 

strongly feasible, in Gb
i+1, link e must be oriented toward the root node t if xe = 1 and 

oriented away from t if xe = 0, which implies that node t belongs to Gb
i(v)  (the 
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component of Gb
i – f containing v) if xe = 1 and node t belongs to Gb

i(u) if xe = 0. The 

potentials with respect to Gb
i+1 can be calculated using equation (4.18).  

    Then we have W(Gb
i +1) = W(Gb

i) – | Gb(u)| ruv < W (Gb
i), where ruv = c(euv, γ) + yv – 

yu > 0 if xe = 1 or W(Gb
i +1) = W(Gb

i) + | Gb(u)| ruv < W (Gb
i), where ruv = c(euv, γ) + yv – 

yu < 0 if xe = 0.  

    If the simplex method cycles, then for some i < j, Gb
i = Gb

j. This implies that Gb
i = Gb

i 

+ 1 ...= Gb
j
. But then W(Gb

i)  > W(Gb
i + 1 ) >…> W(Gb

j) = W(Gb
i) contradicting that W(Gb

i) 

= W(Gb
j).    

    Thus we have proved that the simplex method when applied on RELAX-TCSDP(k) 

does not cycle if all the basic feasible solutions are strongly feasible.  

    We next establish the pseudo-polynomial time complexity of this method. We have 

         W(Gb
i) – W(Gb

i +1) = | Gb(u)| |ruv| ≥ |ruv|   

and   

         |ruv| = | c(euv, γ) + yv – yu| = | cuv + γ duv + yv – yu| . 

    We proceed to show that  

        0 < |yu – yv – γ duv – cuv| = | γ d(W') + c(W')|  

= 




≠−
=

.0|,)(|/|)()'()()'(|
;0|,)'(|

γ
γ

WdWcWdWdWc
Wc

               (4.19) 

 

    Since euv is an in-arc, |yu – yv – γ  duv – cuv| ≠ 0. To establish the equalities on the right 

hand side of (4.19) suppose that the new cycle W' in Gb is e1e2…ek where e1 = euv. Since 

all the links on W' except euv are in Gb, the reduced costs on all these links are 0. So we 

have |ruv| = |yu – yv – γ duv – cuv| = |γ d(W') + c(W')|. Recalling that γ = – c(W)/d(W) if 
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there exists a cycle W in the basic solution or γ = 0 if no such cycle exists, we get the 

equalities on the right side of (4.19).                              

    Since |ruv| ≠ 0, we get from (4.19) that |ruv| ≥ |1 / d(W)| ≥ 1 / (n dmax), where dmax is the 

maximum link delay.  

    Also, the inequality below follows from the fact that the potential of a node is the 

sum of the active costs of the links on the path from that node to node t (See Section 

3.2). 

           W(Gi
b) = ∑ −

∈Vu
ut yy )(  ≤ n2(cmax + γ dmax), where cmax is the maximum link cost. 

 

    If γ ≠ 0, then by Lemma 4.7, |γ| = |c(W) / d(W)| ≤ n cmax. Hence W(G ib) ≤  n2(cmax + n 

cmax dmax). 

    So the length of the sequence of degenerate pivots is bounded by a polynomial 

function of cmax, dmax, and n. Similarly, we can prove that the total number of non-

degenerate pivots is also a polynomial function of m, n, cmax, and dmax. Pseudo 

polynomial complexity of the revised simplex method when applied on RELAX-

TCSDP(k) follows since each pivot takes O(m) steps [11].                                              ■ 

 

4.7.3. Leaving Variable 

Now, we investigate how to find a leaving variable (out-arc) using Theorem 3.2. As 

before, let the cycle created by adding the in-arc be denoted by W' with its orientation 

defined as that of the in-arc.  
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    We note that the reduced cost of the in-arc may be positive or negative. In the 

following we consider only the latter case. The former case can be treated in a similar 

way. 

    Case 1: Slack variable w is in the basic solution (the current Gb is a spanning tree and 

so w > 0). This corresponds to Theorem 3.2(a) of Section 3.5.4. According to Step 4 of 

the revised simplex method, we need to consider only the entries of V that are ±1 or 

d(W') if d(W') ≠ 0. These entries correspond to the links of W' of the current Gb or the 

slack variable w. The maximum value of t is constrained by x*B – t V ≥ 0, and the 

corresponding constraining variables (links or w) are eligible to leave the basis. If 

certain links are eligible to leave the basis then we select the one which keeps the new 

basic solution strongly feasible (to be discussed next). In this case w will continue to be 

in the basis. If w is eligible to leave the basis, we select it to leave the basis. In that case 

the new basic subgraph G'b will have a cycle. The flow values (λ or 1 – λ) on the links 

in the cycle can be determined by the equation dx(G'b) = ∆ because the slack variable w 

is nonbasic and has zero value.  

 

 

Figure 4.5: Basic solution structures in Case 2 
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    Case 2: The basic solution consists of n links, i.e., there is a cycle W in Gb. The slack 

variable w is eligible to enter the basis if γ < 0. Then according to pivot rule P1, we let 

w enter the basis and shall select one of the links on W to leave the basis. The choice 

can be made according to the case (c) in Theorem 3.2. 

    If γ ≥ 0, an entering link will create a new cycle W' when added to the current Gb. We 

need to consider different subcases that capture all possibilities (See Figure 4.5). For 

each one of these subcases we can select the leaving variable using Theorem 3.2(b) and 

Step 4 in the Revised Simplex Method. 

    Now, we need to consider how to preserve the strong feasibility of the basic solutions. 

We define the join of a cycle in Gb as the node on the cycle that is closest to the node t 

in terms of hops. Without loss of generality, assume that the current basic solution is 

strongly feasible and consists of n links and that the leaving variable is a link f (other 

cases are trivial). Let Ge = Gb + e be the network obtained by adding the in-arc e to Gb. 

Evidently, f is on some cycle C ∈ {W, W'} in Ge. If C = W', the orientation of C is 

chosen to agree (resp. disagree) with the orientation of e if xe = 0 (resp. xe = 1) in the 

current flow. If C = W, the orientation of C is defined such that d(W') / d(W) < 0 (resp. 

d(W') / d(W) > 0) if xe = 0 (resp. xe = 1),  where the orientation of W' agrees with the 

direction of e. Starting from the join of C and traversing along the orientation of C, we 

choose the first link whose flow is 1 and whose direction agrees with the orientation of 

C or whose flow is 0 and whose direction disagrees with the orientation of C. This 

guarantees the strong feasibility of the resulting tree. 
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4.8. Simulation 

We denote our algorithm as DISJOINT-NBS and compare its performance with CPLEX 

and G-LARAC(k). We use three classes of network topologies: regular graphs Hk, n (see 

Chapter 8, [55]), power-law out-degree graphs [44] and Waxman’s random graphs [59]. 

For a network G(V, E), the nodes are labeled as 1, 2…, n = |V|. Nodes n / 2 and n are 

chosen as the source and target nodes. The link costs and delays are randomly 

independently generated even integers in the range from 1 to 200. The delay bound is 

1.2 × k the delay of the minimum delay s-t paths in G. For regular graphs, k = 4. For 

random graphs and power-law graphs, k = 2. The results are shown in Figure 4.6, where 

the y-axis denotes the running time in seconds. In these figures, we use NBS to denote 

the DISJOINT-NBS algorithm and NBS-REGULAR to denote the running time of 

DISJOINT-NBS algorithm on regular graphs. Other labels can be interpreted in a 

similar manner. Experiments show that DISJOINT-NBS algorithm is faster than 

CPLEX and G-LARAC(k) on all the topologies. For the power-law out-degree graph 

and Waxman’s random graph, the hop number of feasible s-t paths is usually very small 

even when the network is very large. So the running times of DISJOINT-NBS, G-

LARAC(k), and CPLEX are close (but DISJOINT-NBS is still faster) for random 

graphs and power-law out-degree graphs. 

    Our simulation results in Tables 4.1-4.3 show that the delay of each path derived as 

in Theorem 4.4 deviates from the individual delay bound by a small fraction. Note that 

in these tables the second column specifies the delay bound on each path.  
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The experiments comparing CPLEX and NBS algorithm were carried on Intel Pentium 4 with 
Linux OS and the experiments comparing NBS and LARAC algorithm were carried out on IBM 
Regatta p690 with AIX 5.1 OS and Power4 1.1 GHz CPU.  
 
Figure 4.6: Comparison of DISJOINT-NBS, CPLEX, and G-LARAC(k) 

Table 4.1. Paths obtained from the optimal solution to RELAX-TCSDP(2) applied on 

random graphs 

Size(#Nodes) Delay Bound Path-1(Cost, Delay) Path-2(Cost, Delay) 
1000 1087 (1240, 1056) (1536, 1082) 
2000 601 (1548, 560) (1344, 604) 
3000 409 (1496, 368) (1328, 428) 

       

Table 4.2. Paths obtained from the optimal solution to RELAX-TCSDP(2) applied on 

power-law graphs 

Graph Size(#Nodes) Delay Bound Path-1(Cost, Delay) Path-2(Cost, Delay) 
1000 109 (426, 110) (372, 72) 
2000 134 (352, 82) (190, 172) 
3000 206 (380, 206) (254, 138) 
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Table 4.3. Paths obtained from the optimal solution to RELAX-TCSDP(4) applied on 

regular graphs 

Graph Size Bound Path-1 Path-2 Path-3 Path-4 
1000 736 (2208, 686) (2216, 686) (2054, 764) (1872, 782) 
2000 1425 (3920,1412) (4168, 1424) (4014, 1454) (4198, 1406) 
3000 2127 (6092, 2044) (6126, 2104) (5862, 2242) (5702, 2110) 

 
 
4.9. Summary 

In this chapter we studied the CSDP(k) problem which is NP-hard. So our goal has been 

to design an efficient algorithm for constructing an approximate solution to this problem. 

Towards this end, we studied the LP relaxation of CSDP(k) problem using the revised 

simplex method of linear programming. This relaxed problem is an upper bounded LP 

problem. We have discussed several issues relating to an efficient implementation of 

our approach. We have shown that an approximate solution to the CSDP(k) problem can 

be extracted from an optimal solution to the relaxed problem. We have derived bounds 

on the quality of this solution with respect to the optimal solution. Our work can be 

considered as the study of the CSDP(k) problem from a primal perspective in contrast to 

the dual perspective employed in the G-LARAC(k) algorithm which is based on the 

algorithms in [23] and [54]. Simulation results demonstrate that our algorithm is slightly 

faster than both the G-LARAC(k) algorithm and the commercial quality CPLEX 

package in the case of random graphs and power-law out-degree graphs. On the other 

hand, for regular graphs our algorithm is much faster. 

    The GCSDP(k) problem defined in Section 4.2 requires that the delay of each 

individual path satisfies a specified bound, in contrast to the CSDP(k) problem where 
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the constraint is on the total delay of all the k link-disjoint paths. We have shown in 

Theorem 4.2 that the LP relaxations of the two problems have the same optimal 

objective value. Thus, if one is interested in obtaining the optimal objective values of 

RELAX-GCSDP(k) and RELAX-CSDP(k) problems, then starting with the RELAX-

CSDP(k) does not result in any loss of generality. However, the paths produced by the 

approximate solution derived from the optimal solution to RELAX-CSDP(k) may not 

satisfy the individual path delay requirements of the GCSDP(k) problem. Fortunately, 

our simulation results in Table 4.1-4.3 indicate that in most cases the individual delays 

of the paths produced starting from RELAX-CSDP(k) do not deviate in a significant 

way from the individual delay requirements of the GCSDP(k) problem. 

    If one were interested in studying the GCSDP(k) problem then the issue of finding 

feasible solutions to this problem will arise. This problem itself is NP-hard and no 

efficient algorithms are known. However techniques such as branch and bound and 

Tabu search can be used to find the feasible solutions. The algorithm in the present 

chapter can be used as a subroutine in a branch and bound scheme.  

    One direction of further research is to develop approximation schemes for the 

CSDP(k) problem along the lines of the approximation algorithms given in [43] for the 

CSDP(2) problem. Since the link-disjoint shortest paths problem is a special case of the 

minimum cost flow problem, it will be interesting to investigate if the ideas developed 

in this chapter could be used to design efficient algorithms for the constrained minimum 

cost flow problem. 
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Chapter 5. Delay Constrained Path Selection under 

Inaccurate State Information 

 
In this chapter we study the MP-DCP problem that requires determination of the most 

probable delay constrained path (MP-DCP problem). Our work is based on the 

formulation given in [28]. The work in [28] focused on developing approximate 

approaches using the Lagrangian relaxation or line search techniques. In contrast, our 

focus has been on developing polynomial time ε-approximation and heuristic algorithms. 

    The rest of this chapter is organized as follows. In Section 5.1, we give the definition 

and formulation of the MP-DCP problem. In Section 5.2 we present an exact algorithm, 

a FPTAS, and a strongly polynomial approximation algorithm for Case 1. In Section 5.3 

we study the MCP-DCP problem for Case 2.  

    The results in this chapter have been presented in [64]. 

 

5.1. The MP-DCP Problem and a Formulation  

Consider a network represented by a graph G(V, E), with n = |V|, and m = |E|. Given a 

maximum delay requirement D for a flow between a given source node s and a 

destination node t ≠ s, and probability density function (pdf) pl(d) for all l = (i, j) ∈ E, 

where pl(d) is the probability that the link l will introduce a delay of at most d units, i.e., 

dl < d. Let d(i, j) be the random variable (RV) associated with the delay of the link (i, j). 

For a path p, define 

                          πD(p) = Pr[d(p) ≤ D]. 
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    The MP-DCP problem is to find an s-t path popt such that ∀p ∈ Pst, πD(popt) ≥ πD(p). 

    To simplify this problem and following Korkmaz and Krunz [28], we assume that d(i, 

j)’s are nonnegative RV’s with mean µ(i, j) > 0 and variance δ2(i, j) > 0, and that for all 

links (i, j) ∈ E, d(i, j)’s are mutually independent. Without loss of generality, assume 

µ(i, j)’s and δ2(i, j)’s are integers (this is because all numbers are represented by finite 

digits in computers and other digital devices). Furthermore, we assume that the pdf of 

d(i, j) is continuous and differentiable on some interval (a, b). Under this assumption 

and according to the central limit theorem, the path delay is approximately normally 

distributed. Without loss of generality, we assume each s-t path is long enough that d(p) 

is a normally distributed RV with mean µ(p) > 0 and variance δ2(p) > 0. (Note: The sum 

of as small as three RVs tends to a normal distribution [28]). µ(p) > 0 and variance δ2(p) 

> 0 are given by: 

µ(p) =∑ ∈ pji ji),( ),(µ  and δ2(p) =∑ ∈ pji ji),(
2 ),(δ . 

    With the above assumption,  

             πD(p) ≈ Ф(
)(

)(
p

pD
δ
µ− ), where Ф(x) = (1/2π)1/2

∫ ∞−
−x y dye 2/2

 

    Since Ф(x) is an increasing function, we can reduce the MP-DCP problem to one of 

identifying the path p that maximizes 

χD(p) = (D – µ(p)) / δ(p), where δ(p) ≡ 2/1
),(

2 )),((∑ ∈ pji jiδ . 

    We call µ(p) and δ2(p) as the mean delay and delay variance of path p. The difficulty 

with this problem arises from the nonseperable square root (√ ) function. As in [28], we 

distinguish two cases: 

    Case 1: There exists a path with mean delay less than or equal to the specified delay 
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bound D. 

    Case 2: The mean delay of each path is greater than D. 

    It can be easily verified that in Case 1(resp. Case 2), χD(popt) ≥ 0 and µ(popt) ≤ D 

(resp. χD(popt) < 0, µ(popt) > D).  

     

5.2. Algorithms for CASE 1 

5.2.1. An Exact Algorithm 

In the next three subsections, we first assume that there always exists some path p such 

that µ(p) ≤ D. In fact, if this assumption does not hold, the value of D may not be a 

realistic delay bound because in this case, ∀p ∈ Pst, πD(p) < Ф(0) = 0.5, i.e., any path p 

meets the delay bound with probability less than 0.5.  

    Since δ(p) is nonadditive, Procedure exact-mp-dcp in Figure 5.1 enumerates all the 

possible values of δ2(p) that lie in [1, U] with U = min{δ2(p*) | p* ∈ P}, where P = {p* 

| µ(p*) = min {µ(p) | p is an s-t path}}. 

    For the sake of completeness we also present next the main algorithm for computing 

argmin {µ(p)| δ2(p) ≤ Ti} in Procedure exact-mp-dcp. When we compute argmin {µ(p) | 

δ2(p) ≤ Ti} for the first time, we call the Algorithm CSP adopted from the exact 

algorithm  (See Figure 5.2) of [18] for the constrained shortest path problem with two 

metrics on deterministic networks. This is a dynamic programming algorithm with time 

complexity O(m T), where T is upper bound of the delay. We only need to call the 

Algorithm CSP once and then we can directly use the table fl(d) (defined in the 

Algorithm CSP below) created by its first invocation. For a given Ti and p* = arg 
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min{µ(p) | δ2(p) ≤ Ti}, it can be seen that µ(p*) = ft(Ti) and δ2(p*) = T*,  where T* is the 

least value such that ft(T*) = ft(Ti). In fact, the value of δ2(p*) can be computed in 

constant time using extra data structures. 

 

Figure 5.1: The exact algorithm for Case 1 

 

        We keep the formulation of exact-mp-dcp as above to make the algorithm 

conceptually simple.  

 

Figure 5.2: CSP algorithm 

 

    Theorem 5.1. Procedure exact-mp-dcp finds an optimal solution in O(U  m) steps if 

Let fj(d) be the minimum mean delay among  
     all 1- j paths with delay variance ≤ d.  
 
/* T is the delay variance upper bound*/ 
Algorithm CSP (T):   
 /*1 is the source node, n is the target node*/ 
  f1(d) = 0,  d = 0, …, T,  
  fj(0) = ∞,  j = 2, …, n, 
  fj(d) = min {fj(d -1), 

djkk ≤),(| 2
min

δ
{fk(d – δ2(k, j)) + µ(k, j)}} 

                                     , j = 2…, n, d = 1…, T

Procedure exact-mp-dcp 
 1       T0 ← U  
 2        i ← 0 
 3        χopt ← - ∞ 
 4        while (Ti > 0) 
              /*The following is computed using  
                 CSP algorithm to be discussed*/ 
 5           p* ← argmin{µ(p) | δ2(p) ≤ Ti}  
 6           χopt ← max{χopt, (D – µ(p*)) / δ(p*)} 
 7            i ← i + 1 
 8            Ti ← δ2(p*) – 1 
 9        end while 
10       return χopt and the corresponding path p* 
 end procedure           
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for all links (i, j), δ2(i, j) ≠ 0.                                                                                                      

    Proof: The computation of arg min{µ(p) | δ2(p) ≤ T} for the first time is done by 

the constrained shortest path algorithm which takes O(T m) steps if there are no 0 delay 

variance links.  

Obviously, the computation time of Algorithm CSP dominates all the other 

computations and so the complexity of the whole algorithm is O(U  m). 

Let popt be one of the optimal solutions with the least delay variance and p* be the 

path such that U = δ2(p*). We first show that U = δ2(p*) ≥ δ(popt). By the definition of 

popt and p*, 

    (D – µ(popt)) / δ(popt) ≥ (D – µ(p*)) / δ(p*) and D ≥ µ(popt) ≥ µ(p*). 

If D – µ(popt) > 0, we have  

        δ(p*) / δ(popt) ≥ (D – µ(p*)) / (D – µ(popt)) ≥ 1 or δ(p*) ≥ δ(popt). 

If D – µ(popt) = 0, then χD(p*) = χD(popt) = 0 and D = µ(popt) = µ(p*).  

Hence δ(p*) ≥ δ(popt) because popt is the optimal path with the least delay variance and 

p* is one of the optimal paths.  

We next show that Procedure exact-mp-dcp will find one of the optimal solutions at 

termination. Suppose in iteration i, pi = arg min{µ(p)|δ2(p) ≤ Ti}. To prove the 

correctness of the algorithm, it suffices to show that if δ2(popt) ≤ Ti and pi is not optimal, 

then δ2(popt) < δ2(pi) = Ti+1 + 1. Then we can see that the algorithm has enumerated all 

possible values of δ2(popt) at termination. 

If this were not true, then Ti ≥ δ2(popt) ≥ δ2(pi). Obviously, D ≥ µ(popt) ≥ µ(pi) by the 

definition of pi and δ2(popt) ≤ Ti. We obtain  

          (D – µ(popt)) / δ(popt) ≤ (D – µ(pi)) / δ(pi). 
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    Since pi is not optimal by the assumption, this is the desired contradiction.                ■ 

 

    In the next section, based on Procedure exact-mp-dcp, we shall design a fully 

polynomial time approximation algorithm. 

 

5.2.2. A Fully Polynomial Time Approximation Scheme: Case 1 

To design a fully polynomial time approximation algorithm, we use scaling and 

rounding described in [35]. Without loss of generality, assume U >> n and ε < 1. 

    Lemma 5.1: Let G(N, E, µ, δ, D) denote a network with two metrics µ and δ on the 

link set E. Let Gτ(N, E, µ, δ', τ) be the network transformed from G such that  

∀(i, j) ∈ E, δ' 2(i, j) =  τ δ2(i, j) / upper + 1, 

where τ (= O(n)) is some integer (to be discussed later) and lower < upper ≤ U.  

    Proof: We have 

          δ2(i, j)(τ /upper) ≤ δ' 2(i, j)  ≤ δ2(i, j)(τ /upper) + 1. So 
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    Let popt be the optimal solution to the MP-DCP problem on G, and pτ be any path 

such that  

                (D – µ(pτ)) / δ'(pτ) ≥ (D – µ(popt)) / δ'(popt). 

    If lower ≤ δ 2(popt) ≤ upper, then  
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where L(p) is the number of links of path p.                                                                     ■ 

 

    We next present an approximation algorithm Procedure approx-mp-dcp for the MP-

DCP problem. In each iteration of Procedure approx-mp-dcp, the algorithm computes a 

path whose objective is no less than the optimum values among all the paths whose 

delay variance lies between given values of lower and upper. This is achieved by 

calling approx-max-mp-dcp(lower, upper, τ, χopt) which applies Procedure exact-mp-dcp 

on an appropriately scaled network.  

 

Figure 5.3: FPTAS for Case 1 

Procedure approx-mp-dcp 
 1     τ ←  2 n / ε, upper ← U, lower ← U / 2 

  2       χopt ← -∞ 
  3       while lower ≥ 1 
 4       p*← approx-max-mp-dcp(lower, upper, τ, χopt }  
 5       χopt ← max{χopt, (D – µ(p*)) / δ(p*)} 
 6       upper ← lower – 1 
 7       lower ← upper / 2 
  8       end while 
 9     return χopt and the corresponding path 
   end procedure     
 
Procedure approx-max-mp-dcp(lower, upper, τ, χopt) 
 1  δ 2(i, j) =  τ δ2(i, j) / upper + 1 for all link (i, j) 
 2  L = (lower / upper) τ, ∆ ← τ + n  
 3  while (∆ ≥ L) 
        /* Using CSP Algorithm on δ' */ 
 4     p∆ ← argmin{µ(p) | δ' 2 (p) ≤ ∆}  
        /* Using δ(p∆) not δ'(p∆) */ 
 5     χopt ← max{χopt, (D – µ(p∆)) / δ(p∆)}  
 6     ∆ ← δ' 2(p∆) – 1 
 7   end while 
 8   return χopt and the corresponding path 
end procedure 
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    Lemma 5.2: If popt is the optimal solution to the MP-DCP problem and lower ≤ 

δ2(popt) ≤ upper, where lower = upper / 2, τ = 2 n / ε, approx-max-mp-dcp finds a 

solution p∆ such that χD(p∆) ≥ χD(popt)/(1 + ε)1/2
 in time O(m n / ε )).  

    Proof: The complexity is easy to show (See Theorem 5.1).                                     ■ 

We next prove the first part of this lemma. 

Observe that for any path p in G with lower ≤ δ2(p) ≤ upper, τ / 2 ≤ δ' 2(p) ≤ τ + n, 

where δ' is the metric defined in the line 1 of algorithm approx-max-mp-dcp.  

Let pτ = arg max{(D – µ(p)) / δ' (p) | τ / 2  ≤ δ' 2(p) ≤ τ + n }. We have 

 

     (D – µ(p∆)) / δ(p∆) ≥ (D – µ(pτ)) / δ(pτ) and, 

     (D – µ(pτ)) / δ'(pτ) ≥ (D – µ(popt)) / δ'(popt) 

 

This first inequality holds because pτ is among all the paths delivered by the CSP 

algorithm invoked in line 4 of approx-max-mp-dcp and at termination, pτ must have 

been compared with p∆ (p∆ is the winner at termination) in updating χopt (line 5 in 

Procedure approx-max-mp-dcp). 

By the first inequality and Lemma 5.1, we obtain 

 

       χD(p∆) = (D - µ(p∆))/ δ(p∆) ≥ (D - µ(pτ))/ δ(pτ) 

                  ≥ (1 + L(popt) upper/(τ lower))-1/2 (D - µ(popt))/δ(popt)  

                  ≥ (1 + ε)-1/2(D - µ(popt))/δ(popt) = χD(popt)/(1 + ε )1/2.                                        ■ 

 

    Theorem 5.2: Procedure approx-mp-dcp finds in time O((m n / ε ) log U)  a path p* 
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such that χD(p*) ≥ χD(popt) (1 + ε)-1/2, where popt is the optimal path for the MP-DCP 

problem.                                                                                                                                

        Proof: Obviously, the procedure terminates in O(log U) iterations of Procedure 

approx-max-mp-dcp. Next, we can see that approx-mp-dcp must have searched the 

interval containing the optimal path before termination as shown in Lemma 5.2 and thus 

the theorem is proven.                                                                                                       ■ 

    Our algorithm is an FPTAS. An interesting question is whether we can adopt the 

techniques in [18] and [35] to derive a strongly polynomial algorithm (the time 

complexity does not depend on U). Unfortunately, (due to the nonseparable nature of 

objective function), optimality conditions for the MP-DCP problem are not known. So, 

we are not able to design the test or ε-test procedures which are critical for the methods 

in [18, 35].  

 

5.2.3. A Strongly Polynomial Approximation Algorithm: Case 1 

In this section, using parametric search we design a strongly polynomial approximation 

algorithm for the MP-DCP problem.  

    We notice that the objective function of the MP-DCP problem is close to the form of 

fractional optimization problems that can be solved by Newton method [47] or 

parametric search [38]. For the MP-DCP problem, the only difficulty is the nonadditive 

nature of δ(p). In order to remove this barrier, we change the objective function and 

consider the following modified problem. 
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   H-MP-DCP 

         Maximize HχD(p) = (D – µ(p)) / δ2(p), where δ(p) ≡ 2/1
),(

2 )),((∑ ∈ pji
jiδ . 

    Let pH be the optimal path to the H-MP-DCP problem. Assume HχD(pH) = OPT. In 

parametric search, for any given λ, we need an oracle test to determine whether OPT is 

greater or less than λ. Even though the value of OPT is unknown, this can still be 

achieved by applying Dijkstra’s shorts path algorithm on the weights µ(i, j) + λ δ2(i, j) 

for all links (i, j) ∈ E. Let pλ denote the shortest path with respect to Wλ(i, j) = µ(i, j) + λ 

δ2(i, j). For the sake of brevity, we present our algorithm h-mp-dcp(G, s, t) using 

Bellman-Ford-Moore shortest path algorithm instead of Dijkstra’s shortest path 

algorithm. For node u, define N(u) = {v | (u, v) ∈ E}. Each node v of the network is 

associated with a pair Mv = (xv, yv), where xv and yv keep track of the mean delay and 

delay variance of some s-v path during the execution of the h-mp-dcp algorithm. M is 

initialized as Ms = (0, 0) and Mv = (∞, ∞) for v ≠ s. The algorithm computes the path pH 

without knowing OPT. By the assumption that there always exists a path such that µ(p) 

≤ D, it can be seen that OPT ≥ 0.  

 

Figure 5.4: The approximation algorithm 

    In h-mp-dcp, extra steps are required to implement the following oracle test with 

Algorithm h-mp-dcp(G, s, t) 
1    Mv = (xv, yv) = (∞, ∞) for all nodes 
2    Ms = (0, 0) 
3    for i ← 1 to n – 1 do 
4      for each node u in the network 
5        for each v such that v ∈ N(u) 
           /*oracle test*/  
6         [ if (xv + OPT yv  
                 ≥ xu + OPT yu + µ(u,v) + OPT δ2(u,v) ) ] 
                     Mv ← (xu + µ(u, v), yu + δ2(u, v)) 
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unknown OPT. 

xv + OPT yv ≥ xu + OPT yu + µ(u, v) + OPT δ2(u, v). 

    If xv = ∞, yv = ∞, then the inequality holds. Assume xv and yv are finite (non-negative) 

values. Then it suffices to evaluate the following Boolean expression.  

xu + µ(u, v) – xv)+OPT (yu + δ2 (u, v) – yv) = p + q OPT ≤ 0, 

where p = xu + µ(u, v) – xv and q = (yu + δ2(u, v) – yv).     

    We then only need to determine the sign of p + q OPT (> 0, < 0, and = 0). If p · q ≥ 0, 

the sign of p + q OPT is the same as that of p or q recalling that OPT ≥ 0. In this case 

implementing the oracle test is obvious.  

    Consider p · q < 0, i.e., – p / q > 0. Let λ = – p / q and let pλ = Dijkstra(s, t, Wλ), 

where Dijkstra(s, t, Wλ) computes the minimal s-t path with respect to Wλ. Now three 

cases arise. 

1. µ(pλ) + λ δ2(pλ) < D: This implies that λ < (D – µ(pλ)) / δ2(pλ) ≤ OPT. 

2. µ(pλ) + λ δ2(pλ) = D: This implies that µ(pλ) + λ δ2(pλ) = D ≤ µ(pH) + λ δ2(pH). Thus 

(D – µ(pλ)) / δ2(pλ) = λ ≥ (D – µ(pH)) / δ2(pH) = OPT which implies λ = OPT. 

3. µ(pλ) + λ δ2(pλ) > D: Then µ(pH) + λ δ2(pH) > D and λ > (D – µ(pH)) / δ2(pH) = OPT. 

    With the path pλ, we can easily decide the sign of p + q OPT by the above three cases. 

    Theorem 5.3: (a). The time complexity of algorithm h-mp-dcp is O((m + n log n)2).  

(b)  Let popt be the optimal solution to the MP-DCP problem (the original problem).    

Then 

   (i)      χD(pH) ≥ (δ(popt) / δ(pH))-1/2 χD(popt), and               

   (ii)     µ(popt) ≤ µ(pH), δ(popt) ≥ δ(pH).                                                                     

    If pH does not meet the requirements of the applications, we may need to close or 
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reduce the gap between the approximate solution and the optimal solution by applying 

the approximation algorithm with proper approximation factor or the exact algorithm if 

necessary. On the other hand, the solution obtained by the heuristic algorithm can be 

used to reduce the computational time of the approximation and exact algorithms. 

According to (b) in Theorem 5.3 we know that δ2(pH) ≤ δ2(popt) ≤ U. So the Procedure 

approx-mp-dcp (resp. Procedure exact-mp-dcp) can terminate safely once upper < 

δ2(pH) (resp. Ti < δ2(pH)). Note that using h-mp-dcp as an initial pruning step does not 

affect the polynomial time complexity of these algorithms. The number of invocations 

of Dijkstra’s shortest path algorithm in the parametric search can also be greatly 

reduced using techniques described in [47].  

Table 5.1. Numeric simulation results on two classes of graph topologies 

 

 
| V | OPT Ф(OPT) H-OPT Ф(H-OPT) Error (%) 
1000 0.835 0.7981 0.826 0.7956 0.313 
1500 1.043 0.8515 1.036 0.8499 0.188 
2000 1.209 0.8867 1.196 0.8842 0.282 
2500 1.341 0.9100 1.327 0.9077 0.253 
3000 1.456 0.9273 1.437 0.9246 0.291 

 
(a) Regular graph (out degree = 6) 

 
|V | OPT Ф(OPT) H-OPT Ф(H-OPT) Error (%) 
1000 0.643 0.7399 0.628 0.7350 0.662 
1500 0.526 0.7006 0.515 0.6967 0.557 
2000 0.505 0.6932 0.492 0.6886 0.664 
2500 0.418 0.6620 0.413 0.6602 0.274 
3000 0.459 0.6769 0.459 0.6769 0.000 

 
(b) Waxman’s random graph 

 
|V|, OPT, Ф(OPT), H-OPT and Ф(H-OPT) denote the number of nodes of the 
network, the optimal χD(p), the optimal πD(p), the solution for χD(p) obtained by 
Algorithm h-mp-dcp and the corresponding πD(p). The Error column is computed 
as 100 (Ф (OPT) – Ф (H-OPT)) / Ф (OPT).  
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We present in Table 5.1 numerical simulation results for this heuristic. The experiments 

are carried out on two different classes of graphs: regular graph [55] and Waxman’s 

random graph [59]. In these classes of graphs, for each link (i, j), µ(i, j) is randomly 

independently generated integers uniformly distributed in [1, 20] and δ2(i, j) is 

randomly independently generated integers uniformly distributed in [1, 200]. The value 

of D is 115% of µ(p*) where p* is the s-t path with minimum mean delay. (Now, MP-

DCP problem can be seen as defined on a deterministic network with two independent 

metrics: mean delay µ and delay variance δ2). It can be seen that the optimal values and 

the approximate values of πD(p) are very close.    

 

5.3. MP-DCP Problem: Case 2 

In this section we consider the MP-DCP problem in the case when ∀p, µ(p) > D.  

    Theorem 5.4: If ∀p ∈ P(s, t), µ(p) > D, the MP-DCP problem is NP-hard.   

    Proof: Let us consider an instance of the longest path problem on graph G(V, E). It 

is known that finding the longest simple path in terms of the number of links is NP-hard 

and it can also be seen that finding the longest simple path from a given node s to a 

node t is also NP-hard [26].  

To prove the NP hardness of MP-DCP problem in Case 2, it suffices to show that the 

longest path problem is a subclass of the MP-DCP problem. 

Define an MP-DCP problem instance on G with given bound D = 1 as follows: 

Let δ2(i, j) = 1 for each link (i, j) ∈ E (now δ2(p) is equal to the number of hops of 

path p). 
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Let M = n / ((1 + 1/n)1/2 – 1) = O(n2).  

Assign the µ(i, j) on each link (i, j) ∈ E as follows: 

                   


 =+

=
otherwise,1

,1
),(

tjM
jiµ  

We next show that the optimal path for the above MP-DCP problem is the longest s-t 

path in G.  

Let popt and pl denote the optimal MP-DCP s-t path and a longest s-t path, 

respectively. 

We obtain (1 – µ(pl)) / δ(pl) ≤ (1 – µ (popt)) / δ(popt).           

Assume that δ2(popt) < δ2(pl) (< n).  

Then we have the following contradiction.  

   1 + 1 / n < δ2(pl)/δ2(popt) ≤ ((µ(pl) – 1)/(µ(popt) – 1))2 < ((n + M)/M)2 = 1 + 1 / n.      ■ 

 

    Theorem 5.5: No pseudo polynomial exact algorithm or fully polynomial constant 

factor approximation algorithm can be obtained for Case 2 of the MP-DCP problem 

unless P = NP. 

    Proof: According to Theorem 5.4, the longest path problem is a subclass of the 

MP-DCP problem with D = 1 (Case 2) and thus a pseudo polynomial exact algorithm 

for this problem, which involves only numbers bounded by polynomial function of n, is 

also applicable to the longest path problem. This would then contradict the fact that 

there is no pseudo polynomial algorithm for the longest path problem unless P = NP.  

If there exists a fully polynomial constant factor approximation algorithm for the MP-

DCP problem for Case 2, then let ε < 1 be the approximation factor, and let pε and pl be 
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the approximate solution to MP-DCP problem and the longest s-t path, respectively. By 

the definition of approximation factor for maximum problem, we have  

               | (χD(popt) - χD(pε) | / χD(popt) ≤  ε. 

Hence 

               χD(pε) ≥ (1 – ε) χD(popt)   

So, (1 - u(pε)) / δ(pε) ≥ (1 - ε)(1 - u(pl)) / δ(pl). 

Hence δ2(pl) / δ2(pε) ≤ ((1 - ε) (u(pl) – 1) / (u(pε) – 1))2  

                              ≤ (1 - ε)2
 (1 + 1 / n) ≤ 2 (1 - ε)2.      

So, pε is a constant factor approximate solution to the longest path problem. This 

leads to the contradiction of the fact that no constant factor polynomial time 

approximation algorithm exists for the longest path problem [26].                                  ■ 

 

    The barrier to extend the heuristic algorithm of Section 5.2.3 is that the optimum 

value OPT is negative under the assumption that ∀p, µ(p) > D. Dijkstra’s shortest path 

algorithm is not applicable due to the likely presence of negative link weights. So we 

need to use the BFM algorithm. Even this algorithm will fail if there is a negative 

weighted cycle in the network. 

 

5.4. Summary 

In this chapter, we studied the MP-DCP problem. For the case (Case 1) when there is a 

path whose mean delay is less than or equal to the specified delay bound D, we 

presented an exact algorithm of pseudo polynomial time complexity, an FPTAS, and a 
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strongly polynomial time heuristic algorithm. In the unlikely case (Case 2) when every 

path violates this assumption we have shown that the problem is NP-hard. We have also 

shown that for this case no pseudo polynomial time exact algorithm or fully polynomial 

time constant factor approximation algorithm is possible unless P = NP. The difficulty 

in this case arises because we need to find a path minimizing one path metric and 

maximizing another path metric simultaneously.  
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Chapter 6. GEN-LARAC: A Generalized Approach to the 

Constrained Shortest Path Problem under Multiple Additive 

Constraints 

 
In this chapter we study the CSP(k) problem that requires determination of s-t paths that 

satisfy k >1 additive constraints. We develop a new approach using Lagrangian 

relaxation. We use the LARAC algorithm discussed in Chapter 2 as a building block in 

the design of our algorithm. 

    The results in this chapter have been repeated in [65]. 

 

6.1. Formulation of the CSP(k) Problem and Its Relaxation 

Consider a directed graph G(V, E) where V is the set of nodes and E is the set of links in 

G. Each link (u, v) is associated with a set of k + 1 additive non-negative integer 

weights Cuv = (cuv, w1
uv, w2

uv…, wk
uv). Here cuv is called the cost of link (u, v) and wi

uv is 

called the ith delay of (u, v). Given two nodes s and t, an s-t path in G is a directed 

simple path from s to t. Let Pst denote the set of all s-t paths in G. For an s-t path p 

define 

                c(p) ≡ ∑
∈pvu

uvc
),(

 and di(p) ≡ kiw
pvu

i
uv ,...1, 

),(
=∑

∈
.  

 

    The value c(p) is called the cost of path p, and di(p) is called the ith  delay of path p. 

Given k positive integers r1, r2…, rk, an s-t path is called feasible (resp. strictly feasible) 
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if di(p) ≤ ri (resp. di(p) < ri), for all i = 1, 2… k (ri is called the bound on the ith delay of 

a path).  

    The CSP(k) problem is to find a minimum cost feasible s-t path. An instance of the 

CSP(k) problem is strictly feasible if all the feasible paths are strictly feasible. Without 

loss of generality, we assume that the problem under consideration is always feasible. In 

order to guarantee strict feasibility, we do the following transformation. 

    For i = 1, 2…, k, transform the ith delay of each link (u, v) such that the new weight 

vector C'uv is given by  

                    C'uv = (cuv, 2 w1
uv, 2 w2

uv…, 2 wk
uv). 

    Also transform the bounds ri’s so that the new vector of bounds R' is given by 

                    R' = (2 r1 + 1, 2 r2 + 1…, 2 rk + 1). 

    In the rest of the chapter, we only consider the transformed problem. Thus all link 

delays are even integers, and delay bounds are odd integers. We will use symbols with 

capital or bold letters to represent vectors. Also, for a matrix A, AT denotes its transpose. 

For simplicity of presentation, we will use Cuv and R instead of C'uv and R' to denote 

the transformed weight vector and the vector of bounds. 

    Two immediate consequences of this transformation are stated below. 

     Lemma 6.1: ∀ p ∈ Pst, ∀i ∈ {1, 2…, k}, di(p) ≠ ri in the transformed problem.        

     Lemma 6.2: An s-t path in the original problem is feasible (resp. optimal) iff it is 

strictly feasible (resp. optimal) in the transformed problem.                                                   

    Starting with an ILP formulation of the CSP(k) problem and relaxing the integrality 

constraints we get the RELAX-CSP(k) problem below. In this formulation, for each s-t 

path p, we introduce a variable xp. 
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         RELAX-CSP(k)     

Minimize ∑
p

pxpc )(                                                                                       (6.1)                           

subject to ∑
p

px  = 1                                                                                      (6.2) 

∑
p

pi xpd )( ≤ ri  i = 1, …, k                                                            (6.3) 

        xp ≥ 0, ∀ p ∈ Pst                                                                         (6.4) 

   The Lagrangian dual of RELAX-CSP(k) is given below. 

         DUAL-RELAX-CSP(k): 

Maximize   w – λ1 r1 … – λk rk                                                                (6.5)   

subject to    w – d1(p) λ1 … – dk(p) λk ≤ c(p) ,  ∀ p ∈ Pst                        (6.6)  

    λi ≥ 0, i = 1, …, k                                                                  (6.7) 

 

    In the above dual problem λ1, λ2…, λk and w are the dual variables, with w 

corresponding to (6.2) and each λi corresponding to the ith constraint in (6.3). 

    It follows from (6.6) that w ≤ c(p) + d1(p) λ1… + dk(p) λk ∀ p ∈ Pst. Since we want to 

maximize (6.5), the value of w should be as large as possible, i.e.  

             w = min p ∈ Pst {c(p) + d1(p) λ1 + … + dk(p) λk}. 

    With the vector Λ defined as Λ = (λ1,λ2…, λk ), define 

 L(Λ) = min p ∈ Pst{c(p) + λ1 (d1(p) – r1) … + λ k (dk(p) – rk)}.                      (6.8) 

    Notice that L(Λ) is called the Lagrangian function in literature and is a concave 

continuous function of Λ [7].  

    Then DUAL-RELAX-CSP(k) can be written as follows. 
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       DUAL-RELAX-CSP(k): 

Maximize  L(Λ)                                                                                        (6.9) 

                     subject to   Λ ≥ 0       

    The Λ* that maximizes (6.9) is called the maximizing multiplier and is defined as 

            Λ * = arg max Λ ≥ 0 L(Λ)                                                                        (6.10) 

    Claim 6.1: If an instance of the CSP(k) problem is feasible and a path popt is an 

optimal path, then ∀ Λ ≥ 0, L(Λ) ≤ c(popt).                                                                   

    We shall use L(Λ) as an lower bound of c(popt) to evaluate the quality of the 

approximate solution obtained by our algorithm. Given p ∈ Pst and Λ, define  

              C(p) ≡ (c(p), d1(p), d2(p) …, dk(p)) , D(p) ≡ (d1(p), d2(p) …, dk(p)), 

              R ≡ (r1, r2…, rk), cΛ(p) ≡ c(p) + d1(p) λ1… + dk(p) λk, and  

              dΛ(p) ≡ d1(p) λ1… + dk(p) λk . 

    Here cΛ(p) and dΛ(p) are called the aggregated cost and the aggregated delay of path 

p, respectively. We shall use PΛ to denote the set of s-t paths attaining the minimum 

aggregated cost w.r.t. to Λ. A path pΛ ∈ PΛ is called a Λ-minimal path.  

 

6.2. A Strongly Polynomial Time Approximation Algorithm for CSP(1) 

Problem 

The key issue now is to search for the maximizing multiplier and termination conditions. 

If there is only one delay constraint, i.e., k = 1, we have the following claim from [23] 

also proved in Chapter 2. 
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    Claim 6.2[23]: A value λ > 0 maximizes the function L(λ) if and only if there are 

paths pc and pd which are both cλ-minimal and for which d(pc) ≥ r and d(pd) ≤ r. (pc and 

pd can be the same. In this case d(pd) = d(pc) = r).             

    Theorem 6.1: DUAL-RELAX-CSP(1) is solvable in O ((m + n log n) 2) time.             

        Proof:  We prove this theorem by presenting an algorithm with O((m + n log n) 2) 

time complexity. 

    Assume node 1 is the source and node n is the target. In Figure 6.1, we present an 

algorithm for computing a shortest path using lexicographic order on a pair of link 

weights (luv, cuv) ∀ (u, v) ∈ E based on parametric search, where luv = cuv + λ* duv and 

λ* is unknown. The algorithm is the same as BFM algorithm except for Step 4 which 

needs special care (We use BFM algorithm here because it is easy to explain. Actually 

we use Dijkstra’s algorithm for better time complexity).    

 

 
 
 

Figure 6.1: Parametric search based algorithm for CSP(1) problem 

 
    In Figure 6.1, we need extra steps (Oracle test) to evaluate the Boolean expression in 

the if statement in Step 4 since λ* ≥ 0 is unknown. If xv = ∞, yv = ∞, then the inequality 

holds. Assume xv and yv are finite (non-negative) values. Then it suffices to evaluate the 

following Boolean expression.  

Step 1.  Mv = (xv, yv) = (+ ∞, + ∞) for v = 2, 3…, n and M1 = (0, 0) 
Step 2.  i ← 1 
Step 3.  u ← 1 
Step 4*. ∀ v, (u, v) ∈ E, if (xv + λ* yv > xu + λ* yu + cuv + λ* duv) or 
                         (xv + λ* yv = xu + λ* yu + cuv + λ* duv) and (xv > xu + cuv))     
                                        Mv ← (xu + cuv, yu + duv)   
 
Step 5. u ← u + 1 and if u ≤ n, go to Step 4. 
Step 6. i ← i + 1 and if i < n , go to Step 3. 
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                            p + q λ* ≤ 0 ?, where p = xu + cuv – xv and q = (yu + duv – yv).     

    If p · q ≥ 0, then it is trivial to evaluate the Boolean expression. WLOG, assume p · q 

< 0, i.e., – p / q > 0. The Oracle test algorithm is presented in Figure 6.2. 

    The time complexity of the Oracle test is O (m + n log n). On the other hand, we can 

revise the algorithm in Figure 6.1 using Dijkstra’s algorithm and the resulting algorithm 

will have time complexity O ((m + n log n)2). 

    Next, we show how to compute the value of λ* and L(λ*). The algorithm in Figure 

6.1 computes a λ*-minimal path p with minimal cost. Similarly, we can compute a λ*-

minimal path q with minimal delay. Then the value of λ* is given by the following 

equation: c(p) + λ* d(p) = c(q) + λ* d(q) and L(λ*) = c(p) + λ*(d(p) – T), where T is the 

path delay constrain (here k = 1). Notice that d(q) ≠ d(p) is guaranteed by our 

transformation in Section 6.1.                                                                                           ■ 

 

 
 

Figure 6.2: Oracle test algorithm 

 
    Because our algorithm and LARAC are based on the same methodology and obtain 

the same solution, we shall also call our algorithm LARAC. In the rest of the chapter, 

T: The path delay constraint 
 
Step 1. Let λ = – p/q > 0 for each link (u, v) ∈ E,  
                define its length luv = cuv + λ duv.  
Step 2. Compute two shortest paths pc and pd using the lexicographic order on 
                (luv, cuv) and (luv, duv), respectively [53].      
Step 3. Obviously, d(pc) ≥ d(pd). Only four cases are possible: 

a) d(pc) > T and d(pd) > T: By Claim 6.2, λ < λ*  
          and thus p + q λ* < 0 if q < 0 and p + q λ* > 0 otherwise. 
b) d(pc) < T and d(pd) < T: By Claim 6.2, λ > λ*  
          and thus p + q λ* > 0 if q < 0 and p + q λ* < 0 otherwise. 
c) d(pc) > T and d(pd) < T: By Claim 6.2, λ = λ* and p + q λ* = 0. 
d) d(pc) = T or d(pd) = T: By Lemma 6.1, this is impossible. 
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we shall discuss how to extend it for k > 1. In particular we develop an approach that 

combines the LARAC algorithm as a building block with certain techniques in 

mathematical programming. We shall call this new approach as GEN-LARAC. 

 

6.3. GEN-LARAC for the CSP(k) Problem 

6.3.1. Optimality Conditions 

Theorem 6.2: Given an instance of a feasible CSP(k) problem, a vector Λ ≥ 0 

maximizes L(Λ) iff the following problem in the variables uj is feasible.  

0,,)( >∀=⋅∑
Λ∈ iijiPp j irpdu

j
λ                                                 (6.11) 

0,,)( =∀≤⋅∑
Λ∈ iijiPp j irpdu

j
λ                                                 (6.12) 

1=∑
Λ∈Pp jj
u                                                                                (6.13) 

Λ∈∀≥ Ppu jj ,0                                                                         (6.14) 

        Proof: Sufficiency: Let x = (u1…, ur, 0, 0…) be a vector of size |Pst|, where r = |PΛ|. 

Obviously, x is a feasible solution to RELAX-CSP(k). It suffices to show that x and Λ 

satisfy the complementary slackness conditions. 

    According to (6.6), ∀p ∈ Pst, w ≤ c(p) + d1(p) λ1… + dk(p) λk. Since we need to 

maximize (6.5), the optimal w = c(pΛ) + d1(pΛ) λ1… + dk(pΛ) λk ∀ pΛ ∈ PΛ. For all other 

paths p, w – c(p) + d1(p) λ1… + dk(p) λk.< 0. So x satisfies the complementary slackness 

conditions. By (6.11) and (6.12), Λ also satisfies complementary slackness conditions.  
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    Necessary: Let x* and (w, Λ) be the optimal solution to RELAX-CSP(k) and DUAL-

RELAX-CSP(k), respectively. It suffices to show that we can obtain a feasible solution 

to (6.11)-(6.14) from x*.  

    We know that all the constraints in (6.6) corresponding to paths in Pst – PΛ are strict 

inequalities, and w = c(pΛ) + d1(pΛ) λ1… + dk(pΛ)λk ∀pΛ ∈ PΛ. So, from complementary 

slackness conditions we get xp = 0, ∀ p ∈ Pst – PΛ.   

    Now let us set uj corresponding to path p in PΛ equal to xp, and set all other uj’s 

corresponding to paths not in PΛ equal to zero. The ui’s so elected will satisfy (6.11) and 

(6.12) since these are complementary conditions satisfied by (w, Λ). Since xi’s satisfy 

(6.2), uj’s satisfy (6.13). Thus we have identified a solution satisfying (6.11)-(6.14).     ■               

6.3.2. GEN-LARAC: A Coordinate Ascent Method 

Our approach is based on the coordinate ascent method and proceeds as follows. Given 

a multiplier Λ, in each iteration we try to improve the value of L(Λ) by updating one 

component of the multiplier vector. If the objective function is not differentiable, the 

coordinate ascent method may get stuck at a corner Λs not being able to make progress 

by only changing one component. We call Λs pseudo optimal point which requires 

updates of at least two components to achieve improvement in the solution. We shall 

discuss in Section 6.3.3 how to jump to a better solution from a pseudo optimal point. 

Our simulations show that the objective value attained at pseudo optimal points is 

usually very close to the maximum value of L(Λ).  
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Figure 6.3: GEN-LARAC: A coordinate ascent algorithm 

 

6.3.3. Verification of Optimality of Λ 

In Step 3 we need to verify if a given Λ is optimal. We show that this can be 

accomplished by solving the following LP problem, where PΛ = {p1, p2…, pr} is the set 

of Λ-minimal paths. 

Maximize   0                                                                                     (6.15) 

subject to   0,,)( >∀=⋅∑
Λ∈ iijiPp j irpdu

j
λ                                      (6.16) 

0,,)( =∀≤⋅∑
Λ∈ iijiPp j irpdu

j
λ                                      (6.17) 

      1=∑
Λ∈Pp jj
u                                                                     (6.18) 

Λ∈∀≥ Ppu jj ,0                                                               6.19) 

Step 1: Λ0 ← (0, 0…, 0); t ← 0; flag ← true; B ←0 
Step 2:  (Coordinate Ascent Steps) 
             while (flag)  
                  flag ← false 
                 for i = 1 to k 
                     γ  ← arg 0max ≥ξ L(λt

1…, λt
i – 1, ξ , λt

i+1…, λt
k). 

                     if (γ ≠ λt
i) then   

                          flag ← true 

                         






≠

=
=+

.            

,              
1

ij

ij
t
j

t
j λ

γ
λ , j = 1, 2…, k 

                          t ← t + 1 
                     end if 
                  end for 
              end while 
Step 3: If Λt is optimal then return Λt. 
Step 4: B ← B + 1 and go to Step 5 if B < Bmax (Bmax is the maximum 
number of iteration allowed); Otherwise, stop.  
Step 5: Compute a new vector Λ+ such that L(Λ+) > L(Λt).  
Step 6: t ← t + 1, Λt ← Λ+, and go to Step 2. 
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    By Theorem 6.2, if the above linear program is feasible then the multiplier Λ is a 

maximizing multiplier. 

    Let (y1…, yk, δ) be the dual variables corresponding to the above problem. Let Y = (y1, 

y2…, yk). The dual of (6.15)-(6.19) is as follows  

     Minimize R Y T + δ                                                                         (6.20) 

subject to   D(pi) Y T + δ ≥ 0, i = 1, 2..., r                                       (6.21) 

                yi ≥ 0, ∀ i, λi > 0                                                           (6.22) 

Evidently the LP problem (6.20)-(6.22) is feasible. From the relationship between 

primal and dual problems, it follows that if the linear program (6.15)-(6.19) is infeasible, 

then the objective of (6.20) is unbounded (– ∞). Thus, if the optimum objective of 

(6.20)-(6.22) is 0, then the linear program (6.15)-(6.19) is feasible and by Theorem 6.2 

the corresponding multiplier Λ is optimal. In summary, we have the following lemma. 

 

Lemma 6.3: If (6.15)-(6.19) is infeasible, then ∃ Y = (y1, y2…, yk) and δ satisfy 

(6.21)-(6.22) and R Y T + δ < 0.                

                                                                                                                                             

    The Y in Lemma 6.3 can be identified by applying any LP solver on (6.20)-(6.22) and 

terminating it once the current objective value becomes negative. 

    Let Λ be a non-optimal Lagrangian multiplier and Λ(s, Y) = Λ + Y / s for s > 0. 

    Theorem 6.3: If a multiplier Λ ≥ 0 is not optimal, then  

                       ∃ M > 0, ∀ s > M, L(Λ(s, Y)) > L(Λ).   

        Proof: If M is big enough, PΛ ∩ PΛ(s, Y) ≠ ∅. Let pJ ∈ PΛ ∩ PΛ(s, V). 
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             L(Λ(s, Y)) = c(pJ) + (D(pJ) – R) (Λ  + Y / s)T  

                              = c(pJ) + (D(pJ) – R) ΛT  + (D(pJ) – R) (Y / s)T 

                                             =  L(Λ) + (D(pJ)Y T – R Y T) / s. 

    Since D(pJ)Y T + δ ≥ 0 and R Y T + δ < 0, D(pJ)Y T – R Y T > 0. 

    Hence L(Λ(s, Y)) > L(Λ).                                                                                              ■ 

    We can find the proper value of M by binary search after computing Y. The last issue 

is to compute PΛ. It can be expected that the size of PΛ is usually very small. In our 

experiments, |PΛ| never exceeded 4 even for large and dense networks. The k-shortest 

path algorithm can be adapted easily to computing PΛ.  

6.3.4. Analysis of the Algorithm 

In this section, we shall discuss the convergence properties of GEN-LARAC. 

    Lemma 6.4: If there is a strictly feasible path, then for any givenτ, the set Sτ = {Λ | 

L(Λ) ≥ τ} ⊂ Rk is bounded.                                                                                              

        Proof: Let p* be a strictly feasible path. For any Λ = (λ1…, λk) ∈ Sτ , we have  

                  c(p*) + λ 1(d1(p*) – r1) … + λ k(dk(p*) – rk) ≥ L(Λ) ≥ τ . 

    Since di(p*) – ri < 0 and λi ≥ 0 for i = 1, 2..., k, Λ must be bounded.                            ■                         

    By Claim 6.2, we have the following lemma. 

    Lemma 6.5: A multiplier Λ ≥ 0 is pseudo optimal iff ∀i ∃ pi
c, pi

d ∈ PΛ, di(pi
c) ≥ ri 

and di(pi
d) ≤ ri                                                                                                                    ■ 

    For an n-vector V = (v1, v2…, vn), let |V|1 = |v1| + |v2| …+ |vn| denote the L1-norm.   
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    Lemma 6.6: Let Λ and Η be two multipliers obtained in the same while-loop in Step 

2 in Figure 6.3. Then |L(Η) – L(Λ)| ≥ |Η  – Λ|1.                                                            

    Proof: Let Λ = Λ1, Λ2…, Λj = Η  be the consecutive sequence of multipliers obtained 

in Step 2. We first show that | L(Λi+1) – L(Λi) | ≥ |Λi+ 1 – Λi|1.    

    Consider two cases.  

    Case 1: λb
i+1 > λb

i. By Claim 6.2 and Lemma 6.1, ∃ pΛi+1 and db(pΛi+1) > rb. 

    By definition, we have: 

                c(pΛi+1) + Λi+1DT(pΛi+1) ≤ c(pΛi) + Λi+1 DT(pΛi), and 

                c(pΛi+1) + Λi  DT(pΛi+1)  ≥ c(pΛi) + Λi   DT(pΛi) 

    Then 

        L(Λi+1) – L(Λi) = c(pΛi+1) + Λi+1 (D(pΛi+1) – R) T – [c(pΛi) + Λi (D(pΛi) – R) T] 

                                 = c(pΛi+1) + Λi (D(pΛi+1) – R)T + (Λi+1 – Λi) (D(pΛi+1) – R)T  

                                                 – [c(pΛi) + Λi (D(pΛi) – R)T] 

                                 ≥ c(pΛi) + Λi (D(pΛi) – R)T + (Λi+1 – Λi) (D(pΛi+1) – R)T  

                                                – [c(pΛi) + Λi (D(pΛi) – R)T] 

                                 = (Λi+1 – Λi) (D(pΛi+1) – R)T = (λb
i+1 – λb

i) (db(pΛi+1) – rb)  

                                 ≥ |λb
i+1 – λb

i |. 

    Case 2: λb
i+1 < λb

i. By Claim 6.2 and Lemma 6.1, ∃ pΛi+1 and db(pΛi+1) < rb. The rest 

of the proof is similar to Case 1.  

    Hence 

       |L(Λ j) – L(Λ1)| = | L(Λ2) – L(Λ1) + L(Λ3) – L(Λ2) … + L(Λ j) – L(Λj - 1)| .   

         = | L(Λ2) – L(Λ1)| + |L(Λ3) – L(Λ2)| … + |L(Λ j) – L(Λj - 1)| 
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         ≥ |Λ2 – Λ1|1 + |Λ3 – Λ2|1 … + |Λ j – Λj - 1|1 ≥ |Λ j – Λ1 |1.                                         

    The second equality holds because L(Λ1) < L(Λ2) … < L(Λj).                                     ■ 

    Obviously, if the while-loop in Step 2 in Figure 6.3 terminates in a finite number of 

steps, the multiplier is pseudo optimal by definition. If the while loop does not terminate 

in a finite number of steps (this occurs only when infinite machine precision is assumed, 

in practice, GEN-LARAC terminates in finite steps), we have the following theorem.  

    Theorem 6.4: Let {Λi} be a consecutive sequence of multipliers generated in the 

same while-loop in Step 2 in Figure 6.3. Then the limit point of {L(Λi)} is pseudo 

optimal. 

        Proof: Since L(Λ1) < L(Λ2) < … and {Λi} is bounded from above, lims→∞ L(Λs) 

exists and is denoted as L*. We next show the vector lims→∞ Λs also exists. 

    By Lemma 6.6, ∀ s, j > 0,  

                              |Λs +  j – Λs |1 ≤ |L(Λs +  j) – L(Λs)|  

    By Cauchy criterion, lims→∞ Λs exists. We denote it as Λ*. 

    We label all the paths in Pst as p1, p2…, pN such that cΛ*(p1) ≤ cΛ*(p2) … ≤ cΛ*(pN). 

Obviously p1 is a Λ*-minimal path. 

    Let  

                   θ = min {cΛ*(pj) – cΛ*(pi) | ∀ pi, pj ∈ Pst, cΛ*(pj) – cΛ*(pi) > 0},  

and 

                   π = max {dw(pj) – dw(pi) | ∀ pi, pj ∈ Pst, w = 1, 2…, k }. 

 

    Let M be a large number, such that ∀ t ≥ M, |Λ* – Λt|1 < θ / (2 π).  
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    Consider any component j ∈ {1, 2…, k}, of the multiplier after computing  

                arg 0max ≥ξ L(λ1…, λj – 1, ξ, λj+1…, λk) in iteration t ≥ M. 

    By Claim 6.2, ∃ pc
 t and pd

 t ∈ PΛ
t and dj(pc

 t) ≥ lj ≥ dj(pd
 t).  

    It suffices to show PΛ
t ⊆ PΛ

*. Given pΛt ∈ PΛ
t, we shall show cΛ*(pΛt) = cΛ*(p1).   

    We have 

          0 ≤ cΛt(p1) – cΛt(pΛt) = [c(p1) + dΛt(p1)] – [c(pΛt) + dΛt (pΛt)]   

             = c(p1) + dΛ* (p1) – [c(pΛt) + dΛ* (pΛt )] + (Λt – Λ*) (D(p1) – D(pΛt))T 

             = cΛ*(p1) – cΛ*(pΛt) + (Λt – Λ*) (D(p1) – D(pΛt))T 

    Since |(Λt – Λ*) (D(pi) – D(pj))T| ≤ π |(Λt – Λ*)|1 ≤ θ / 2, 

                 0 ≤ cΛt(p1) – cΛt(pΛt) ≤ cΛ*(p1) – cΛ*(pΛt) + θ / 2. 

    Then   

                 cΛ*(pΛt) – cΛ*(p1)  ≤  θ / 2, which implies that cΛ*(pΛt) = cΛ*(p1).             

    Hence, ∀ j ∈ {1, 2..., k}, ∃ p c*, pd* ∈ PΛ*, dj(pc* ) ≥ lj ≥ dj(pd*)                                ■ 

 

6.4. Simulation 

We use COPT, OPT, and POPT to denote the cost of the optimal path to the CSP(k) 

problem, the optimal value, and the pseudo optimal value of the Lagrangian function, 

respectively. In our simulation, we first verify that the objectives at pseudo optimal 

points are very close to the optimal objectives. We use 3 types of graphs: Power-law 

out-degree graph (PLO) [44], Waxman’s random graph (RAN) [59], and regular graph 

(REG) [55]. The number of weights chosen are 4, 8 and 12, i.e., k = 4, 8, and 12. Link 

weights are random even integers uniformly distributed between 2 and 200. To decide 
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proper delay bounds, we randomly choose an s-t path pran and set ri = (1 + ε) di(pran) 

where ε is a random variable evenly distributed in interval [– 0.25, 0.25]. For each type 

of topology, 10 different graphs with valid delay bounds and random source and target 

nodes are generated. The results reported are averaged over the 10 instances.  

We use the following two metrics to measure the quality of path p in Table 6.1. 

 

                                 g(p) = c(p) / POPT and  f(p) = maxi = 1, 2…, k di(p)/ri 

 

    By Claim 6.1, g(p) is the upper bound of the gap between the cost of p and COPT. 

The f(p) indicates the degree of violation of p to the constraints on its delays.  

Table 6.1: Quality of pseudo-optimal paths 
 

    Error: (OPT – POPT) / OPT                        #SP: Number of computation of shortest path 

Type k OPT POPT Error g(p) f(p) #SP Time(s) 
REG 4 1116.8 1109.9 0.006 1.01 1.07 15.2 0.14 
REG 8 1078.3 1069.0 0.032 1.00 1.09 20.7 0.21 
REG 12 1066.2 1057.8 0.008 1.00 1.08 28.2 0.32 
PLO 4 401.75 382.71 0.047 1.00 1.25 9.6 0.07 
PLO 8 328.95 320.77 0.025 1.01 1.15 7.2 0.04 
PLO 12 368.43 342.43 0.071 1.02 1.24 18.3 0.21 
RAN 4 1543.6 1531.5 0.008 1.01 1.08 13.4 0.13 
RAN 8 1473.3 1456.5 0.011 1.00 1.09 20.0 0.25 
RAN 12 1438.6 1423.7 0.010 1.00 1.01 17.9 0.45 

 

    In Figure 6.4, the label LARAC-REG means the results obtained by running GEN-

LARAC algorithm on regular graphs. Other labels can be interpreted similarly. We only 

report the results on regular graphs and random graphs for better visibility.  
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The comparison of the number of shortest path computation among GEN-LARAC, Hull 
approach, and subgradient method. All algorithms terminate when have reached 99% of the 
OPT. 
 
Figure 6.4: Comparison of GEN-LARAC, Hull approach, and subgradient method 

 

    We conducted extensive experiments to compare our algorithm with the Hull 

approach [39], the subgradient method [2], and the general-purpose LP solver CPLEX. 

Because the four approaches share the same objective, i.e., maximizing the Lagrangian 

function, they always obtain similar results. We only report the number of shortest path 

computations which dominate the running time of all the first three algorithms. 

Generally, GEN-LARAC algorithm and Hull approach are faster than the subgradient 

methods and CPLEX (See [69] for the comparison of Hull approach and CPLEX). But 

GEN-LARAC and Hull approach beat each other on different graphs. Figure 6.4 shows 

that on the regular graph, GEN-LARAC is the fastest. But for the random and Power-

law out degree graphs, the Hull approach is the fastest. The probable reason is that the 

number of s-t paths is relatively small in these two types of graphs because the length 

(number of hops) of s-t paths is short even when the number of nodes is large. This will 
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bias the results in favor of Hull approach which adds one s-t path into the linear system 

in each iteration [39]. We choose the regular graph because we have a better control of 

the length of s-t paths.  

 

6.5. Summary and Conclusion  

In this chapter we developed a new approach to the constrained shortest path problem 

involving multiple additive constraints. Our approach uses the LARAC algorithm as a 

building block and combines it with certain ideas from mathematical programming to 

design a method that progressively improves the value of the Lagrangian function until 

optimum is reached. The algorithm is analyzed and its convergence property has been 

established. Simulation results comparing our approach with two other approaches 

show that the new approach is quite competitive.  

    Since the LARAC algorithm is applicable for the general class of optimization 

problems (involving one additive delay constraint) studied in [6] our approach can also 

be extended for this class of problems whenever an algorithm for the underlying 

optimization problem (such as Dijkstra’s algorithm for the shortest path problem) is 

available. 
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Chapter 7. Summary 

 
In this dissertation, we have studied the end-to-end Quality of Service (QoS) and fault 

tolerance issues in computer communication networks. Many problems that fall under 

this theme can be modeled as constrained shortest path(s) selection problems on 

networks with each of their links associated with two or more weights representing the 

cost, delay, reliability, delay-jitter, and others additive parameters. We considered four 

fundamental problems that are encountered in this area. 

    In Chapters 2 and 3, we studied the QoS single route selection problem, i.e., the 

constrained shortest path (CSP) problem. The goal of the CSP problem is to identify a 

minimum cost route which incurs a delay less than a specified bound. The CSP problem 

can be formulated as an integer linear programming (ILP) problem which is 

computationally intractable. A class of approximation algorithms has been proposed in 

the literature based on the linear programming relaxation of the ILP formulation.  

    In Chapter 2, we reviewed several algorithms solving the dual problem of the relaxed 

problem and showed their equivalence. We then proposed two new approximation 

algorithms solving the dual problem using binary search and parametric search, 

respectively. We also pointed out how to integrate these algorithms to speed up ε-

approximation algorithms. 

   In Chapter 3, we proposed a novel approximation algorithm which is also based on 

the relaxed ILP formulation. However, we studied the problem using the primal simplex 

method of linear programming and exploiting certain structural properties of networks. 
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Our simulation shows that our algorithm is faster than the dual based algorithms on 

dense networks. 

    In Chapter 4, we generalized the algorithms in Chapters 2 and 3 for constrained 

shortest link-disjoint paths selection problem which requires a set of, say k > 1, link-

disjoint paths with minimum total cost and with total delay bounded by a given upper 

bound. This problem, referred as the CSDP(k) problem, arises in the context of 

provisioning paths in a network that could be used to provide resilience to failures in 

one or more of these paths. 

    All the algorithms and methods in Chapters 2, 3, and 4 assume that the network 

status/parameters are known and accurate. However, in real networks, this assumption 

is not realistic. In Chapter 5, we considered the QoS route selection problem under 

inaccurate state information. In this problem, the link delays are random variables. This 

problem is also called stochastic shortest path selection problem. The goal of this 

problem is to find a path that has the highest probability to satisfy a given upper bound 

on delay. This problem is denoted as the MP-DCP problem. Base on central limit 

theorem, we proposed a pseudo polynomial time approximation algorithm, a fully 

polynomial time approximation scheme (FPTAS), and a strongly polynomial time 

heuristic. 

    In Chapter 6, we studied the constrained shortest path problem with multiple additive 

constrains. Using the dual algorithms discussed in Chapter 2 and combining ideas from 

mathematical programming, we proposed a new approximation algorithm. Simulation 

shows that our algorithm beats previously known algorithms such as the subgradient 

algorithm and the hull approach. 
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Appendix A. Waxman’s Random Graphs 

Waxman’s random graphs have some of the characteristics of actual networks. There 

are two types of random graphs defined in [59]. In our simulation, we have adopted the 

second type of graphs generated as follows: 

1) Given a node set, for each pair of nodes, a distance is chosen in (0, L > 0) from a 

uniform random distribution. 

2) An edge is introduced between any pair of nodes u, v with a probability given as         

Pr({u, v}) = β exp {
αL

vud ),(− }, where α and β are parameters in the range (0, 1). 

3) The cost and delay of each link are chosen in [1, C > 1] and [1, D > 1] from a 

uniform random distribution. 

 
To guarantee that the generated networks are connected, we first link all the nodes as a 

ring and then proceed with the above procedure to add more edges. The same rule is 

also applied to the generation of power law graphs to be defined next. 
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Appendix B. Power Law Graphs 

Power law graphs used in our simulation are generated as follows [44]: 

1) Randomly assign to each node a number of out-degree credits. Here credits are 

attained using a random number generator that generates numbers that follow 

the exponential distribution β x-α, where α and β are parameters. 

2) Place edges in the adjacency matrix for the graph such that every node obtains 

the assigned out-degree. The edge placement loop picks a random pair of nodes 

and assigns an edge without violating the out degree constraints. When an edge 

is placed between a pair of nodes, decrease the out-degree credits of the head 

node in the pair. 

3) The cost and delay of each link are chosen in [1, C > 0] and [1, D > 0] from a 

uniform random distribution. 

 


