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CHAPTER I 
 

 

ABSTRACT 

 

We have developed a novel paradigm to study and analyze how free-flying honey bees 

(Apis mellifera) react when presented with varying schedules of post-reinforcement 

delays of either 0s, 300s, or 600s.  We measured inter-visit-interval, response length, 

inter-response-time, and response rate in addition to monitoring temperature.  Honey bees 

exposed to these large intervals react in multiple patterns compared to groups not 

encountering delays.  Three patterns of inter-visit-intervals were observed, and in most 

cases, the experimental bees had larger inter-visit-intervals when encountering the post-

reinforcement delays.  Based on response length, we believe adjunctive responses were 

observed during the delay intervals.  We saw no group differences in inter-response time.  

Honey bees with larger response rates tended to not finish the experiment while the 

removal of the delay intervals increased subject response rates for those subjects that 

completed the trials.  Our findings and protocol lead us to consider we have in fact 

studied social pre-reinforcement delays. 
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CHAPTER II 
 

 

INTRODUCTION & LITERATURE REVIEW 

 

 We have developed a novel paradigm to study what we have defined as a delay of 

social reinforcement using honey bees (Apis mellifera).  We broadly define social-

reinforcement as a form of reinforcement being delivered to a subject via an interaction 

with another living entity.  Specifically for honey bees, social reinforcement could be 

provided by other hive mates after performing a variety of behaviors such as recruitment 

or trophallaxis.  We believe honey bees are an excellent candidate for investigations into 

social reinforcement, as honey bees are a social insect with a complex social structure 

wherein individuals can be observed working for a common goal.  Additionally, honey 

bees provide a unique opportunity to study novel reinforcement contingencies, for they 

shuttle their reinforcing sugar water or nectar to their hive and quickly return to a 

foraging location to fill their crops; only to return back to the hive once their crop is full.  

Our delay of reinforcement was introduced after the bee’s crop had been filled.  We did 

not allow her to return to the hive for an extensive interval; thus delaying any social 

reinforcement incurred during recruitment or when providing her consumed sugar water 

to the hive or individual bees (Abramson, Wells, Wenner, & Wells, 2011).  
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We offer our research hypothesis: if large post-reinforcement or social-

reinforcement delay intervals are administered, then honey bees will have longer inter-

visit-intervals and make more responses per visit/trial compared to bees not exposed to a 

post-reinforcement delay.  We wish to briefly survey the pre- and post-reinforcement 

literature to solidify our claim that we have developed a novel paradigm.    

Pre-Reinforcement Delays 

There is no question that contemporary investigations into the effects of delayed 

reinforcement on behavior have been extensive (Lattal, 2010).  An ample amount of 

literature has been produced on the subject; with far reaching empirical and theoretical 

developments such as delay-reduction theory, the correlation-based law of effect, and 

behavioral economics (Lattal, 2010).  A variety of species have been used to study the 

effects of reinforcement delays; including: rats, pigeons, Siamese fighting fish, chicks, 

rhesus monkeys, chimpanzees, humans, and honey bees (Wood, 1933; Riesen, 1940; 

Chung, 1965; Lee, & Bitterman, 1990; Beardsley, & Blaster, 1993; Critchfield, & Lattal, 

1993; Lattal, & Metzger, 1994; Mazur, 2000; Okouchi, 2009).  This literature review 

only focuses on delays in operant and instrumental conditioning, and does not consider 

classical conditioning. 

Pre-1950 

Early exploration into the effects of a delay of reinforcement (ranging from 30s - 

300s intervals) saw negligible effects on learning or errors (Hunter, 1913; Watson, 1917; 

Yarbrough, 1921; Warden, & Hass, 1927).  Our current understanding of a delay of 

reinforcement as having an effect on decreasing learning was not supported until 
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Hamilton (1929) found a 60s delay required more trials and increased the amount of time 

rats needed to complete a maze.  Hamilton’s results were obtained by a procedural 

modification which simply used different goal boxes to control for associations of 

secondary reinforcement and thus effectively delaying all obvious forms of reinforcement 

(Renner, 1964).  Roberts (1930) further expanded our early theoretical understanding of 

the effects of delays and of reinforcement by proposing that a delayed subject's increase 

in errors was due to a “recency” variable.  “Recency” may be defined as the interval 

between a behavior and its reinforcement. 

Renner (1964) outlines the theoretical development up until the early 1930’s with 

four concise points: 1) reinforcement delays increase errors and the criteria levels of time 

and trial scores; 2) associations of immediate rewards in goal boxes had to be avoided; 3) 

the behaviorist field was in disagreement as to how long of a delay was required to 

disrupt learning (though it was already apparent that longer delays impacted learning 

more than smaller intervals); and 4) no theoretical model explaining reinforcement delays 

had been postulated (Renner, 1964, pp 342).   

Hull (1932) was instrumental in producing a theoretical model explaining 

reinforcement delays with his coherent goal-gradient hypothesis: “[Behaviors become 

more weak] as they are more remote...from the goal reaction” (Hull, 1932, pp 25-26).  

This hypothesis did not just address the phenomenon of reinforcement delays, but also 

encompassed decades of previous research showing subjects prefer immediate rewards 

(Renner, 1964).  Hull’s goal-gradient hypothesis spurred an attempt by many researchers 

to creatively study and determine what intervals of delay of reinforcement impacted 

learning by designing stronger experiments which added multiple groups, subjects, and 
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conditions; this trend greatly solidified our modern understanding of reinforcement 

delays.  Wolfe (1934) explored multiple delay intervals (0s, 5s, 30s, 60s, 150s, 300s, 

600s, and 1,200s) and determined intervals less than 30s did not disrupt learning while 

delay intervals longer than a minute significantly decreased learning.   

Perin (1943a) was the first to minimize the effects of secondary reinforcement 

following a response while also developing a quantitative model to predict behavioral 

reactions to small delays of reinforcement intervals (0s, 2s, 5s, 10s, 30s, and 60s) using 

rats.  Perin (1943b) outlined a provocative point in regards to delay intervals (determined 

from reciprocal fitted equations for each group’s latency to respond): any interval greater 

than 17s does not allow responses to be learned; refining and roughly confirming Wolfe’s 

(1934) findings.  Perin (1943a) expanded this extremely precise interval to14s-21s to 

account for the variability of his subject’s response latencies.  The general equation he 

used to determine this interval is:  

response time = constant x 10^(-rate of decrease in response times x training trials) + 

presumptive asymptote of delay group.  

 As a delay increases, the constant, rate of decrease in response times, and presumptive 

asymptote also increase; thus increasing the response time (or response latency).  Perin 

(1943b) next studied small delays of reinforcement using delay intervals of 0s, 2s, 5s, 

10s, 20s, and 30s.  He found groups with 2s delays were able to perform as perfectly as 

0s delay groups and that 30s delays resulted in correct responses not being learned.   

Grice (1948) controlled for secondary reinforcement by creating a condition that 

reinforced subjects in a goal box of the same or different color as the S+.  He also studied 
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even smaller intervals of delay (0s, .5s, 1.2s, 2s, 5s, and 10s) than Perin (1943A).  Grice 

(1948) found learning began to be impaired at 10s of delay, and that allowing subjects to 

be immediately reinforced via secondary reinforcement greatly improved their learning 

even when exposed to delays of primary reinforcement.  The affects of different goal 

boxes on behavior was further explored years later by Lawrence and Hommel (1961) 

while using 10s, 20s, 30s, and 60s delay intervals in a psuedo-replication of Grice (1948).  

Three conditions of goal boxes were utilized: 1) a grey goal box, 2) a black goal box and 

a white goal box, and 3) a black and white goal box (Lawrence, & Hommel, 1961).  

Lawrence and Hommel (1961) found rats exposed to a black goal box and a white goal 

box were able to maintain their accuracy of choice at 10s intervals compared to rats 

exposed to identical goal boxes.  This team of researchers also note that the rats exposed 

to two different goal boxes were able to maintain their choice accuracy at all delay 

intervals; though once exposed to a 30s interval the rats began to hesitate before exiting 

the start box of the runway.                

Following the previously described findings, Hull (1949) combined a clear set of 

18 postulates and quantitative behavioral laws which have been invaluable for behavioral 

researchers since its publication.  For our purposes, his eighth postulate is the most 

important: “The greater the delay in reinforcement, the weaker will be the resulting 

reaction potential” (Hull, 1949, pp 176).  A reaction potential here is defined as the 

likelihood that a correct response will be made following a specific stimulus.  Hull (1949) 

defined this relationship quantitatively as:  

J = 10^(-jt) 
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Here, “j” is the incentive of reinforcement and “t” is time; this was reiterated years later 

with Chung’s (1965) finding of an inversely exponential relationship between response 

rates and reinforcement delays  (Hull, 1949, pp.176).     

1950’s 

Nearly every published paradigm described above essentially follows the same 

basic procedure: a subject elicits or emits a behavior and the reinforcement for this 

behavior is delayed.  There are of course alterations to this basic paradigm, and the 

1950’s saw a rise in diversity of reinforcement delay experimental designs; specifically 

explorations into how various schedules of reinforcement affect behavior when 

concurrently paired with reinforcement delays.      

The effects of variable delays of reinforcement on extinction resistance have been 

a recurring phenomenon of interest.  An occasional delay of reinforcement has been 

shown to produce a higher resistance to extinction than an immediately and consistently 

reinforced subject (Crum, Brown, & Bitterman, 1951).  Groups exposed to small 

percentages (25%) of variable reinforcement when paired with 30s delay intervals 

extinguish faster than higher percentages of variable reinforcement (Wike, & McNamara, 

1957).  Interestingly, Wike and McNamara (1957) observed no difference in extinction 

rates between groups scheduled at 50% and 75% partial reinforcement on 30s delay 

intervals.  Variable and partial variable delay schedules of reinforcement have been 

shown to decrease running speeds in rats as well as increase resistance to extinction 

(Petterson, 1956). Rats exposed to reinforcement delay intervals of 20s were shown to 
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have retarded learning and be more resistant to extinction than rats exposed to 0s 

intervals (Marx, McCoy, & Tombaugh, 1965).  

 Also beginning in the early 1950’s was a focus on testing the upper limits of 

delay intervals on maintaining response rates.  Ferster (1953) was able to maintain 

baseline response rates in pigeons during reinforcement delays up to 60s with very 

gradual increases in the delay interval.  However, without this gradual increase, response 

rates almost declined to zero on a 60s delay (Ferster, 1953).  Dews (1960) was able to 

maintain response behaviors with delays in excess of 100s in pigeons; and strongly 

confirmed an inverse relationship between an increase in delay and pecking responses.  

Rats were found to perform similarly (and seemingly superiorly) to Ferster’s (1953) 

pigeons on 30s delays (Azzi, Fix, Keller, & Rocha e Silva, 1964).  These researchers 

added a signaled delay phase (complete darkness) at delays of 20s and 30s and found this 

signal served to increase response rates in nearly every case (Azzi, Fix, Keller, & Rocha e 

Silva, 1964).   

1960’s & 1970’s 

The 1960’s and 1970’s saw a focus on choice experiments utilizing concurrent 

situational paradigms and the analysis of pairing delays with various schedules of 

reinforcement. Researchers have shown pigeon’s exponential preference for no 

reinforcement delays (Chung, 1965).  This line of research was continued when pigeons 

were offered a choice between two varying levels of delay (Chung, & Herrnstein, 1967).  

Subject’s response rates were inversely proportional to the reinforcement delay (Chung, 

& Herrnstein, 1967).  These observations were confirmed decades later with choice 
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experiments investigating subject preference for delay, rate, and amount of reinforcement 

(e.g. Wogar, Bradshaw, & Szabadi, 1992; Mazur, 2000). Pigeons have been observed to 

show little preference between reinforcement on delay intervals compared to 

reinforcement provided on fixed-interval schedules (Neuringer, 1969).  Any observed 

preference for fixed intervals were diminished when the delay and fixed intervals were on 

different durations, and when the delay was unsignaled (Neuringer, 1969).   

Responses in rats on variable-interval schedules have been shown to decrease at 

greater delay intervals (Pierce, Hanford, & Zimmerman, 1972).  These researchers also 

found evidence of a clear difference in fixed-delay and fixed-interval schedules; higher 

response rates were observed for conditions required to terminate a delay period (Pierce, 

Hanford, & Zimmerman, 1972).  This finding coincides with Neuringer’s (1969) 

utilization of two-key situational paradigms.  Morgan (1972) found lever presses by rats 

were not affected by delays of .75s, 3s, and 12s on fixed ratio schedules requiring up to 

nine responses; post-reinforcement pauses increased with larger delay intervals.  Means 

of variable delay intervals affect behavior much in the same manner as a variable interval 

of reinforcement (Hursh, & Fantino, 1973).   Mixed/variable delays in reinforcement 

have been found to be preferred by pigeons compared to constant delays in reinforcement 

(Cicerone, 1976).  Sizemore & Lattal (1978) found delays of reinforcement on variable-

interval schedules presented in tandem with fixed-time schedules usually resulted in a 

decrease in response rates, but there were individual pigeons that did not conform to this 

trend.  Sizemore & Lattal (1978) also report that longer delays on these concurrent 

schedules resulted in decreases in response rates.  A return to baseline performance was 
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observed when the researchers returned subjects to a variable-interval schedule 

(Sizemore, & Lattal, 1978). 

Beginning in the mid 1970’s, a distinction between signaled and unsignaled 

delays of reinforcement became common-place; allowing for a more specified analyses 

of reinforcement delays.  As investigating variable-interval schedules was still a fruitful 

area of behavioral research, unsignaled delays were first paired with a variety of variable-

interval reinforcement schedules (e.g Williams, 1976; Sizemore, & Lattal, 1978).  

Williams (1967) had pigeons trained on a variable-interval schedule and found an 

unsignaled delay of reinforcement as little as 3s had a remarkable reduction in 

responding.  While he had no signaled delay group, Williams maintains the unsignaled 

delays were the primary factor for this change in response rates, yet previous literature 

had found no noticeable reduction in response rate for any delay less than 10s (Bower, 

1961).  Richards and Hittesdorf (1978) also found unsignaled delays of reinforcement 

produced lower response rates in pigeons when compared to various schedules of 

signaled reinforcement; indeed all subjects responded more slowly during unsignaled 

conditions.  This highly noticeable difference between signaled and unsignaled delays in-

part led to the development of the marking hypothesis which supposes learning can be 

unaffected by 60s delay intervals if the choice response is immediately followed by an 

intense signal such as light, noise, or handling (Lieberman, McIntosh, & Thomas, 1979).  

The marking hypothesis is supported by the finding that learning was not observed if 

handling of the rat subjects was delayed or omitted (Lieberman, McIntosh, & Thomas, 

1979).  Lieberman, McIntosh, and Thomas (1979) argue that a marker (e.g. a light being 

turned on) immediately following a response draws the subject’s attention to the response 
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and the schedule conditions; thus providing a more “memorable” stimulus.  This 

hypothesis has far reaching implications, for any additional stimulus “marking” the 

response (e.g. a lever-press clicking) could confound reinforcement delay research.    

1980’s, 1990’s, & 2000’s 

This interest in determining how unsignaled and signaled delays differ in their 

effects on behavior was continued into the early 1980’s; notable publications are 

summarized in Table I.   

Table I 

Author Subject Delay Findings 

Richards, 1981 

 

Pigeons Unsignaled 
and signaled 
delay intervals 
of 10s, 5s, 
2.5s, 1s, & .5s 

Higher response rates were observed 
when subjects were exposed to 
signaled delays versus unsignaled 
delays. 

Some subjects actually responded 
faster on unsignaled delay intervals of 
.5s and 1s than immediately 
reinforced subjects. 

Lattal, & Ziegler, 
1982 

 

Pigeons Signaled or an 
unsignaled 
delay of .5s 

Response rates decreased during the 
signaled blackout condition while 
unsignaled delays caused an increase 
in responses compared to an 
immediately reinforced condition. 

Lattal, 1984 

 

Pigeons Signaled or an 
unsignaled 
delay of 20s 

Blackout period during the 
reinforcement delay interval resulted 
in higher pecking responses in 
pigeons when compared to an 
unsignaled delay. 

Thomas, Lieberman, 
McIntosh, & 
Ronaldson, 1983 

 

Rats 120s Subjects have comparable 
discrimination abilities if a stimulus 
marker was displayed immediately 
after and before a response. Stimulus 
markers signaling the end of a delay 
interval did not improve learning. 
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Liberman, 
Davidson, & 
Thomas, 1985 

 

Pigeons 3s Immediate markers are slightly more 
effective at facilitating learning than 
delayed markers. 

Arbuckle, & Lattal, 
1988 

 

Pigeons Unsignaled 
delays of less 
than .5s 
compared to 
5s 

5s intervals increased reinforced inter-
response times.  Pigeons made 
multiple pecks on .5s unsignaled 
delays compared to single pecks on 0s 
delay intervals. 

 

A trend beginning in the late 1980’s was to have subjects acquire and learn 

behaviors while under delays of reinforcement.  This trend in determining the upper 

limits of delay intervals on response acquisition has continued into the 2000’s.  We have 

summarized notable publications in Table II.   

Table II  

Author Subjects Delay Findings 

Schaal, & 
Branch, 1988 

Unshaped rats Signaled .5s-
9s & 27s 

 

Maintain baseline response rates at 
9s using briefly signaled changes in 
key color.  At 27s intervals, briefly 
displayed signals did not maintain 
baseline pecking behavior, but 
continuous signals during the delay 
interval were able to maintain the 
desired behavior. 

Lattal, & 
Gleeson, 1990 

 

Unshaped rats 
& pigeons 

Unsignaled 
10s 

Successfully observed response in 
subjects exposed to unsignaled 10s 
delay intervals. 

Dickinson, 
Watt, Griffiths, 
& 1992 

 

Experimentally 
experienced 
rats 

0s-32s & 32s-
64s 

Acquisition was observed up to 32s 
of delay, while delays of 64s did 
not facilitate learning. 

vann Haaren, 
1992 

Rats Fixed and 
variable 

Fewer responses on fixed 30s 
resetting delay intervals compared 
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 resetting 
delays of 10s 
or 30s 

to subjects on variable resetting 
delays of 30s. 

 

Wilkenfield, 
Nickel, 
Blakely, & 
Poling, 1992 

 

 

Rats 

 

Used  4s, 8s, 
& 16s 
resetting 
delays, non-
resetting 
delays, & a 
“stacked” 
delay (which 
provided 
reinforcement 
for every 
response at 
the end of the 
delay interval) 

 

Resetting delay procedure saw the 
highest response acquisition while 
“stacked” delays produced the 
smallest about of response 
acquisition. 

Watt, & 
Griffiths, 1992 

 

Unshaped rats Up to 64s  Observed lever pressing behavioral 
acquisition in unshaped rats at 64s 
delay. 

Critchfield, & 
Lattal, 1993 

 

Experimentally 
naive rats 

30s Immediate response marking (via 
an auditory stimulus) assisted, but 
was not necessary, to train subjects 
to make the spatial response. 

Sutphin, 
Byrne, & 
Poling, 1998 

Rats 8s, 16s, 32s, 
and 64s with a 
no-
consequences 
procedure and 
a cancellation 
procedure 

Able to acquire the desired 
behavior for all intervals other than 
at the prolonged 64s delay. 

Byrne, 
Sutphin, 
Poling, & 1998 

Rats Up to 30s Successfully acquire, extinguish, 
and reacquire lever-pressing 
behavior with delay intervals up to 
30s. 

Snycerski, 
Laraway, 
Byrne, & 
Poling, 1999 

Rats 60s Acquisition during early sessions, 
but responding diminished over 
later exposures. 
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Vansickel, 
White, & 
Byrne, 2004 

Rats Resetting 
delays of 10s 
& 20s 

Behavior was acquired and 
maintained with resetting delays. 

Snycerski, 
Laraway, & 
Poling, 2005 

 

Rats Resetting 
delays 0s, 15s, 
30s, & 45 s 

3 subjects at 45s were able to reach 
immediate-reinforcement levels. 

Escobar, & 
Bruner, 2007 

 

Rats 32s Operant and non-operant pressings 
were consistent within, but not 
between subjects; indicating the 
reinforcement delay played a 
primary role in response induction. 

Anderson, & 
Elcoro, 2007 

 

Lewis and 
Fischer 344 
rats 

Non-resetting 
20s 

Lewis rats outperformed Fischer 
rats. 

 

 Most notable about Lattal and Gleeson (1990) was the researchers’ utilization of 

a 70% free-feeding weight which they speculated may have been a primary factor for the 

response acquisition.  Wilkenfield, Nickel, Blakely, and Poling (1992) were able to 

obtain response acquisition with 80% free-feeding weight; calling into question Lattal 

and Gleeson’s (1990) speculation as to their higher level of starvation contributing to 

their subject’s response acquisition.  However, pigeons maintained at 90% free-feeding 

weight have been observed to exhibit less response acquisition (Wogar, Bradshaw, & 

Szabadi, 1992; Ho, Wogar, Bradshaw, & Szabadi, 1997). 

Subject temporal discounting (or the subjective reward value from the subject’s 

perspective) when presented with varying adjusting-delay intervals has been a focus of 

research during the 1990’s and 2000’s.  We have summarized notable publications in 

Table III. 
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Table III 

Author Subjects Delays Findings 

Raineri, & Rachlin, 
1993 

Humans Imaginative 

1 month – 50 
years  

Subjects discount smaller 
delayed rewards more steeply 
than larger delayed rewards. 

Myerson, & Green, 
1995 

Humans Imaginative 

0 months-300 
months 

Subjects discount in a 
hyperbolic fashion as imagined 
delay increases. 

Green, Myerson, Holt, 
Slevin, & Estle, 2004 

Rats & 
Pigeons 

1s - 32s Subjects discount food rewards 
in a declining hyperbolic 
fashion as delay increases. 

Green, Myerson, & 
Macaux, 2005 

Humans Imaginative 

Present – 10 
years 

Hyperbolic relationships 
between discounting and choice 
behavior. 

Green, Myerson, Shah, 
Estle, & Holt, 2007 

Pigeons Adjusting 

3s or 10s 

Subjective value of delayed 
reinforcement fits a hyperbolic 
curve. 

Valencia Torres, da 
Costa Arújo, Olarte 
Sanchez, Body, 
Bradshaw, & Szabadi, 
2011 

Rats Adjusting  

20% of 
baseline 

Subject response follows a 
declining hyperbolic 
relationship as delay increases. 

 

 

We found only one study throughout this literature review of pre-reinforcement 

delays analyzing how a delay of reinforcement affects honey bee behavior (Lee, & 

Bitterman, 1990).  These researchers sought to determine if delays in providing honey 

bees targets (and thus reinforcement) affected subject performance of correct responses in 

extinction.  By carefully controlling various target elements and variables, the researchers 

concluded the delay of presentation of the targets had minimal to no effect on response 

selection in honey bees (Lee, & Bitterman, 1990). 



16 

 

Post-Reinforcement Delays 

The majority of the reviewed studies have been briefly described due to their lack 

of direct influence on our paradigm.  However, there are a few investigations concerning 

post-reinforcement delays that necessitate extensive explanations.  We have summarized 

the post-reinforcement literature in Table IV but have also provided detailed summaries 

of selected experiments below.   

Davis (1954) is arguably the first to publish a finding solely focusing on post-

reinforcement delays.  His design utilized a T maze with a goal box that was modified to 

immediately remove a rat subject after 60s of consuming a single reward 1/3g pellet.  

Essentially, Davis (1954) allowed both experimental and control subjects to eat the pellet 

without any manipulation, but would immediately remove the control subjects while 

leaving the experimental subjects in the goal-box for an additional 60s after the 

experimental subjects had consumed the pellet; thus creating a 60s post-reinforcement 

delay.  Davis hypothesized that the post-reinforcement delay groups would 1) show fewer 

successful choices, 2) would require more trials to reach criteria, 3) would display less of 

a tendency to directly repeat its previous choice, and 4) would have longer running times 

in the maze (David, 1954, pp 276).  Davis inappropriately ran a T-test on matched data 

between control and delay groups and did not come close to “approaching” significance 

levels as determined by a .05 alpha level.  However, much to his benefit, Davis admits 

that “it must be noted that these different approaches to the data are not independent 

measures” (Davis, 1954, pp 277).  Even so, Davis declared his data disagree with 

contiguity theory and supposes the reason he did not obtain significant data was because 

the reward was too small (1/3 gram) to terminate the behavioral sequence and because he 



17 

 

used too few subjects (n=21 per group).  Contiguity theory posits that learning is 

improved as the temporal distance between stimuli and reinforcement is reduced.  

Fehrer (1956) is the most cited publication on post-reinforcement delays we were 

able to find.  We are of the opinion that Fehrer (1956) is pointed to as the first exploration 

into post-reinforcement delays due to her “significant” findings.  For her first experiment, 

Fehrer had three groups of rats run a U maze and allowed the water-deprived subjects to 

drink for either 10s or 40s before they were immediately removed from the goal box.  

Fehrer’s third group (10-D) were allowed to drink for 10s but were left in the goal box 

for an additional 30s after the water had been removed from the goal box; creating a post-

reinforcement delay.  Fehrer’s extinction trials left all subjects in the goal box for 40s 

without reinforcement.  The learning trials saw no difference between groups; indicating 

post-reinforcement delays have no negative effect on learning.  There were no significant 

differences in correct responses between groups during extinction trials, but there were 

significant differences between run-times for the first day of extinction: 10-D subject 

behavior was extinguished slower than 10s and 40s rats (.87s versus 1.30s and 1.34s, 

respectively).  T-tests on non-independent data revealed significant differences (p<.01) in 

running time means when 10-D subjects were compared with 10s and 40s indicating that 

10-D subjects performed better than conspecifics.  Not surprisingly, these differences 

became less apparent as extinction trials continued.  Fehrer also reported how many trials 

subjects needed to reach a criterion of running the maze in 60s, 90s, 120s, and 180s 

during extinction trials.  She reported her averages between groups for each running-time 

criteria, but did not report a statistical analysis comparing means between groups.  All 

that was reported was: “group 10-D took reliably longer than others to reach [60s and 
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90s] criteria, and longer but not reliably to reach the [120s and 180s criteria]” (Fehrer, 

1956, pp 170).    

Fehrer’s (1956) second experiment compared pre- and post- reinforcement groups 

in a modified open-alley Dashiell maze.  This maze was essentially the same as the 

previously used U maze from experiment one, but half of the U was blocked; thereby 

creating a modified run-way.  Four groups were used: three of which (30s, 10s, and 10-D) 

were all similar to the previous experiment while the fourth (D-10) was a pre-

reinforcement delay group with a 10s interval.  Thus, for the group titles, the location of 

the D either in front of or behind the 10 signifies if group was a pre or post reinforcement 

delay.  No differences in mean running speeds was observed initially, but the final two 

days of testing saw significant differences (p=.02 for day 4 and p=.01 for day 5) from an 

analysis of variance between the D-10 (pre-reinforcement) and 10-D (post-reinforcement) 

groups.  The D-10 group ran faster for 66% of the extinction trials, while the 10-D group 

had shorter run times during the final 33% of trials.  Hence, there was slower learning for 

the D-10 group, while post-reinforcement delays did not affect learning.  Fehrer reports 

that the pre-reinforcement group was more resistant to extinction than post-reinforcement 

rats.   

We were pleased to find an exact replication of Fehrer’s (1956) second 

experiment (Cogan, 1966).  Cogan and Fehrer agree that there were no differences 

between post-reinforcement delay and no-delay groups during training.  Yet, Cogan 

found a decrease in resistance to extinction when the delay groups were compared to the 

control group; thus failing to replicate (and finding an opposite effect) of Fehrer (1956).  

This finding also contrasts with Capalidi’s (1958) prediction that delay groups would 
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increase their resistance to extinction due to the aftereffects of non-reinforcement; thus 

calling into question the validity of Cogan’s replication. 

Bowen (1966) changed Fehrer’s paradigm by running rats through a T-maze 

instead of a U-Maze.  Two groups were trained to run to opposite sides of the maze 

during the first phase of the study.  The beginning of the second phase forced all the rats 

to choose both arms for 50% of their trials (two out of four of the trials per day a subject 

could freely chose the maze arm, while the final two trials were forced choices).  Bowen 

reinforced one group of rats with a 10s reward if the subject chose the side it was 

originally trained to prefer during phase one of the study.  The other group was also 

reinforced with 10s of feeding for selecting the side it was originally trained to prefer 

during phase one of the study, while a 30s post-reinforcement delay was added for 

selecting the opposite side.  Bowen defined a correct response as selecting the originally 

trained arm, and found rats who were immediately removed from the goal box after 

having been reinforced for 10s performed significantly better than rats treated with a 30s 

post-reinforcement delay.  Bowen also reports that the post-reinforcement delay only 

accounted for 18% of the total variance of his study; a rather weak effect which could 

explain the difference between Cogan and Fehrer’s findings (Bowen, 1966). 

Mikulka, Vogel, and Spear (1967) added an additional independent variable to 

Fehrer’s (1956) paradigm: the size of the goal box.  Rats with either a 0s or 30s post-

reinforcement delay were allowed to run into either a small (12 in. x 3.5 in. x 3.5 in.) or 

large (12 in. x 12 in. x 12 in.) goal box (Mikulka, Vogel, & Spear, 1967, pp 381).  They 

found that the 30s post-reinforcement rats were more resistant to extinction than were rats 

exposed to the larger goal box at (p<.01).  However, the statistical test used was an 
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ANOVA on dependent measures, and thus an inappropriate statistical analysis was used 

for their data.    

Similar to the research question of Mikulka, Vogel, and Spear (1967) is William’s 

(1967) investigation as to the effects of a “confining” goal box at the end of a run-way 

apparatus on pre and post reinforcement 30s delays.  The restrictive goal box was 6 in. x 

6 in. x 6 in. while the unrestricting goal box was 6 in. x 18 in. x 12 in.  Pre-reinforcement 

delayed rats were significantly slower in running-speeds than other groups, and no 

difference between the post-reinforcement delayed rats and immediately reinforced rats 

was observed (p<.001).  Contrary to the observation made by Mikulka, Vogel, and Spear 

(1967) regarding a larger goal box’s correlation with higher resistance to extinction, 

William found no difference between his confining and non-confining goal boxes; though 

this could be attributed to the larger confining goal box utilized by William (1967).     

McCain and Bowen (1967) attempted to determine how a small number of 

acquisition trials could produce a difference in rat behavior by using three groups: 

immediately reinforced subjects, subjects exposed to a pre-reinforcement delay, or 

subjects exposed to a post-reinforcement delay.  This paradigm differed from Fehrer’s 

(1956) by using only five training trails followed by 13 extinction trails.  Both delay 

groups were more resistant to extinction compared to the immediately reinforced group 

(confirming Fehrer’s observations), but no significant differences between the delay 

groups were observed (contrasting with Fehrer’s findings) (McCain, & Bowen, 1967).  

Rosen and Tessel (1968) reiterated these results by showing no difference between post-

reinforcement delay and no delay groups’ run times on a runway (they did not analyze 

post-reinforcement affects on extinction as Fehrer [1956] had).  Rosen and Tessel utilized 



21 

 

an incentive-shift paradigm with four groups; half of which were left in the goal box for 

20s.  As the size of the reinforcement was moved from 12 food pellets to one food pellet, 

there was a clear down-shift in run times for all groups following a change in conditions, 

but there were no differences between groups during this down-shift (Rosen, & Tessel, 

1968).      

The affects of post-reinforcement delay intervals of 20s were analyzed utilizing 

an interesting paradigm (Capaldi, Godbout, & Ksir, 1968).  This team divided their 

subjects (rats) into three groups: continuous reinforcement, partial reinforcement, and no 

reward.  After 16 test trials, the procedure was altered to include a 20s post-reinforcement 

delay for the continuous and partial reinforcement groups.  The researchers found a 

“marginal” level of significance between conditions (F = 1.82, df=8/144, p<.10), though 

an ANOVA yielded a p<.05 (Capaldi, Godbout, & Ksir, 1968, pp 282). 

Researchers found an effect on training patterning between no post-reinforcement 

delay rats and subjects who were post-reinforcement delayed for 15s in a straight-alley 

runway (Posey, & Cogan, 1970).  Post-reinforcement delay rats had no observable 

patterning effects for start, run, and goal times compared to control rats, and in fact a 

“tendency toward reverse patterning” was observed for the delay group (Posey, & Cogan, 

1970, pp 46).  This team also confirmed that post reinforcement delay subjects are less 

resistant to extinction, confirming Cogan’s (1966) previous findings (Posey, & Cogan, 

1970).  A related-measures ANOVA was used to analyze this data as well, but a more 

informative analysis was their combination of medians with a one-tailed sign test; we 

highly commend utilizing medians in this manner.   
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All previously reported post-reinforcement experiments have utilized rats as 

subjects.  Rabinowitz and Paynter (1969) analyzed differences in learning, relearning, 

and forgetting in 3rd grade students (n=156) by utilizing 6s, 12s, or 18s of post 

reinforcement delays.  These researchers reported the possibility that children exposed to 

varying post reinforcement intervals were faster at learning (for both genders), relearning 

(for only boys), and especially forgetting.  On average for this sample, an increase of a 

post reinforcement interval was associated with faster forgetting compared to pre-

reinforcement delays (Rabinowitx, & Paynter, 1969).  Rabinowitx, and Paynter (1969) 

used covariance analyses for their data and found consistently reliable data with 

seemingly impressive results (p<.001); however assumptions as to the linearity of the 

relationship between the delay interval and the reaction (especially when later studies 

have found delays of reinforcement match hyperbolic relationships) lend us to question 

the appropriateness of an ANCOVA. 

Table IV 

Author Subject Apparatus 
/ Method 

Post-
Reinforcement 

Delay 

Statistical 
Test 

Findings 

Davis, 1954 Rats T maze 0s, 60s T-test No difference 
between control 
and delayed 
subjects. 

Fehrer I, 
1956 

Rats U maze 

 

0s, 30s T-test Learning trials 
saw no 
difference 
between groups; 
indicating post-
reinforcement 
delays have no 
negative effect 
on learning.  No 
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significant 
differences in 
correct responses 
between groups 
during extinction 
trials, but there 
were significant 
differences 
between run-
times for the first 
day of 
extinction. 

Fehrer II, 
1956 

Rats Modified 
Dashiell 
maze 

0s, 30s, & a 
30s pre-
reinforcement 
group 

ANOVA Post-
reinforcement 
delays did not 
affect learning. 

The pre-
reinforcement 
group was more 
resistant to 
extinction than 
post-
reinforcement 
rats. 

Cogan, 1966 Rats Modified 
Dashiell 
maze 

0s, 30s, & a 
30s pre-
reinforcement 
group 

ANOVA No differences 
between post-
reinforcement 
delay and no-
delay groups. 
Decrease in 
resistance to 
extinction when 
the delay groups 
were compared 
to the control 
groups. 

Bowen, 
1966 

Rats T-maze 0s or 30s ANOVA Subjects 
immediately 
removed from 
the goal box 
after having been 
reinforced for 
10s performed 



24 

 

significantly 
better than rats 
treated with a 
30s post-
reinforcement 
delay. 

Mikulka, 
Vogel, & 
Spear, 1967 

Rats Run-way 
apparatus 
with either 
a small or 
large goal 
box 

0s or 30s ANOVA 30s post-
reinforcement 
rats were more 
resistant to 
extinction than 
were rats 
exposed to the 
larger goal box. 

Williams, 
1967 

Rats Run-way 
apparatus 
with either 
a small or 
large goal 
box 

 

30s post- or 
30s pre- 
reinforcement 

ANOVA Pre-
reinforcement 
delayed rats 
were 
significantly 
slower in 
running-speeds 
than other 
groups, and no 
difference 
between the 
post-
reinforcement 
delayed rats and 
immediately 
reinforced rats 
was observed. 

No difference 
between his 
confining and 
non-confining 
goal boxes. 

McCain, & 
Bowen, 
1967 

Rats Run-way 
apparatus 

20s post- or 
20s pre- 
reinforcement 
or 0s 

ANOVA 
& T-tests 

Delay groups 
were more 
resistant to 
extinction 
compared to the 
immediately 
reinforced group. 
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But no 
significant 
differences 
between the 
delay groups 
were observed. 

Capaldi, 
Godbout, & 
Ksir, 1968 

Rats Run-way 
apparatus 

20s ANOVA Found a 
“marginal” level 
of significance 
between 
conditions when 
subjects were 
immediately 
reinforced and 
then delayed for 
20s. 

Posey, & 
Cogan, 1970 

Rats Straight-
alley 
runway 

15s Related-
measures 
ANOVA 

Post-
reinforcement 
delay rats had no 
observable 
patterning effects 
for start, run, and 
goal times 
compared to 
control rats.  
Also confirmed 
that post- 
reinforcement 
delay subjects 
are less resistant 
to extinction. 

Rabinowitz, 
& Paynter, 
1969 

3rd grade 
human 
children 

difference 
in 
learning, 
relearning, 
and 
forgetting 

Post- or Pre- 
reinforcement 
of 6s, 12s, or 
18s 

ANCOVA Varying post 
reinforcement 
intervals were 
faster at learning 
(for both sexes), 
relearning (for 
only boys), and 
especially 
forgetting.  On 
average for this 
sample, an 
increase of a post 
reinforcement 
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interval was 
associated with 
faster forgetting 
compared to pre-
reinforcement 
delays. 

 

We were disappointed with the statistical methods used by the majority of the 

research on post-reinforcement delays, and we believe these methods may have 

contributed to the inconsistency in findings as pointed-out by Cogan (1966).  Many 

ANOVAs, ANCOVAs, or T-tests have been used inappropriately on matched conditions 

which were clearly not independent of one another; thus invalidating all significance in 

the findings (Davis 1954; Fehrer, 1956; Bowen, 1966; Cogan, 1966; McCain, & Bowen, 

1967; Mikulka, Vogel, & Spear 1967; Capaldi, Godbout, & Ksir, 1968; Rabinowitz, & 

Paynter, 1969).  Some researchers attempted to run matched analyses, but still 

assumptions as to normalcy and linear relationships were made, and we do not feel 

comfortable with this practice.  The assumption of linearity is especially disconcerting, 

for hyperbolic and exponential relationships between delay and response have been found 

in previous literature (e.g. Chung, 1965; Estle, & Holt, 2007).  In our opinion, these 

statistical methods were utilized to show differences in sample conditions (or were 

requested by peer-reviewers) when in reality an abstract population parameter was being 

reported.  We have attempted to analyze our data in a more statistically sound manner as 

we have no desire to report about the population of honey bees as a whole, but instead 

simply analyze our sample of 50 bees. 
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Detainment: 

 In an attempt to thoroughly search for similar paradigms, one final direction of 

behavioral research deserves discussion.  Weinberger (1965) detained rats for 0s, 2.5s, 5s, 

10s, 15s, and 20s in a Miller-Mowrer shuttle box.  The Miller-Mowrer shuttle box 

contains two areas divided by an aluminum “guillotine gate” which detains the subject in 

one of the two areas.  The floor of both detainment areas could be electrocuted.  A light 

served as a CS predicting a shock, and the gate would be lowered from 0-20s prior to the 

CS being displayed.  Learning acquisition was not related to subject detention time; 

however, extinction rates increased with longer detainment intervals; similar to post-

reinforcement effects. 

 Having reviewed the available literature, we feel confident that the study of post-

reinforcement delays has ceased prematurely and with much disagreement of its 

mechanisms.  We believe that we have developed a novel paradigm to study 

reinforcement delays utilizing uniquely species-specific behaviors in honey bees (Apis 

mellifera).  In addition to this post-reinforcement delay, our study differs from tradition 

in multiple other manners.  Most notably, our subjects were “wild” and could freely 

choose if they wanted to begin, continue, or stop working with our apparatus.  Secondly, 

counter to the majority of reinforcement procedures, our subjects were not food-deprived.  

Thirdly, our subjects were allowed to eat as much as they wanted, for our subjects were 

in a non-resetting interval condition, and there was no limit to the reinforcement they 

could receive.
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CHAPTER III 
 

 

METHODS 

 

Subjects 

 Subjects were Apis mellifera (n=50) located outside Stillwater, Oklahoma from 

two different hives (located roughly a half meter from each other).  All subjects were 

experimentally naive prior to shaping.  Subjects were randomly assigned to one of five 

groups receiving varying amounts of post-reinforcement delays. We decided to have 10 

subjects per group to remain consistent with previous (soon to be published) studies from 

our laboratory.  All previous studies investigating post-reinforcement delays other than 

Rabinowitz and Paynter (1969) have utilized fewer subjects than we have opted to use, 

but modern journal requirements demand higher N’s and thus we have compromised.  

We have no intentions of averaging our data within groups or running standardized 

statistics, and thus running a power analysis was not an option to determine an 

appropriate N.  We followed a pseudo-ABA design so as to be able to compare each 

subject with itself as we moved across conditions.  We followed this type of ABA design 

in a previous study from our laboratory assessing how ethanol affects honey bee foraging 

behavior (Sokolowski, Abramson, & Craig, 2012).  This study saw numerous differences 

between individual  subjects; thus comparing each subject to itself will yield more 
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reliable data than simply averaging group data (Sokolowski, Abramson, & Craig, 2012).   

A baseline of a 0s delay was administered for the first and last six visits for each 

bee for every group while the middle 12 visits varied per group depending on the amount 

of post-reinforcement (expressed in minutes).  The groups were as follows: 0-0-0-0, 0-5-

5-0, 0-10-10-0, 0-5-10-0, and 0-10-5-0 with each number representing the delay interval 

encountered by the group for each phase of six visits.  Two subjects from different groups 

were run concurrently in two separate yet attached Skinner boxes so as to control for 

weather conditions and other unforeseen biases associated with one Skinner box being 

slightly closer to the hive than the other.  Subjects were trapped and terminated as soon as 

the experiment was concluded so as to control for recruiting and other unforeseen 

confounds such as pheromone release.   

Apparatus 

 We concurrently utilized two automated computer-controlled Skinner boxes 

providing 50% sucrose solution which was located approximately 3 meters from a 

feeding station containing 10% sucrose solution.  Data was recorded automatically via a 

computer program.  Subject responses were made when the subject enters a hole in the 

Skinner box with an infrared sensor which, when triggered, released a prescribed 5µl of 

sugar water directly in front of the subject’s head.  Due to the infrared sensor’s sensitivity 

and disruption of functionality brought about by direct exposure to sunlight, we utilized a 

tarp which was placed in a consistent location every morning before beginning the 

experiment.  A full description of the apparatus can be found in Sokolowski and 

Abramson (2010).  Figure 1 shows the apparatus under the tarp, figure 2 shows the inside 
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of the Skinner box and offers a clear view of the response hole, figure 3 shows two honey 

bees in the process of shaping prior to being tagged, figure 4 shows the automatic syringe 

controls, and figure 5 indicates the Skinner boxes’ distances from the bee feeder and 

hives. 

Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 

 

We also used a data-logger which can record a minute-by-minute reading of 

temperature, humidity, and due-point to control for weather variability.  The data-logger 

was never left in direct sunlight and was placed in the Skinner box to better measure 

weather variables for the subjects.  

Training 

Subjects were randomly collected from the nearby feeder station equipped with 

10-12% sucrose solution and shaped to use the apparatus described above.  The feeding 

station was never without sucrose solution during the experiment to control for recruiting 

confounds.  Training took no more than 10 visits.  We typically focused on shaping two 

bees by first placing drops of sugar water near the response hole and then in the response 
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hole.  Sometimes we were obliged to hand-shape a subject into the response hole while 

other subjects were able to auto-shape themselves.  After these bees had been trained to 

make the response, the newly trained bees were able to recruit additional potential 

subjects; exponentially increasing the number of trained bees in a matter of minutes.   

Once the bee-in-training consistently returned to the Skinner box, we tagged her 

so as to be sure we were working with the intended subject.  We used a Plunger Marker 

to securely keep the subject immobilized and attached a colored and numbered bee tag by 

using a safe, non-toxic adhesive.  These materials were purchased from Betterbee® 

(Greenwich, NY).  We attempted to minimize the time the subject was in the Plunger 

Marker to reduce what we assume to be a punishing aspect of our procedure.  Once the 

subject was tagged, we provided her with three drops of 50% sugar water to combat this 

assumed tagging punishment before allowing her to return to the hive. We normally 

tagged numerous bees in one day and returned over the following days to administer our 

experiment until we needed to spend another day shaping and tagging our future subjects.  

Frequently, one of the bees would finish her experimental trials before the other 

concurrently run bee, in which case we shaped and trained more bees whilst finishing the 

experiment with the remaining bee.  We recorded the date that each bee was tagged.    

Procedure 

 We worked with whichever two bees first came to the apparatus consistently each 

morning after we set up the apparatus.  Two bees were run each day for 24 visits/trials 

apiece.  Six baseline trials of a 0s post-reinforcement delay were administered; allowing 

each bee to serve as her own control.  During this time, subjects were allowed to freely 
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exit the Skinner box once their crops filled.  Beginning with the 7th and ending with the 

12th visit, a bee was confined in the box for either 0, 5, or 10 minutes depending on her 

group assignment.  Conditions and delay intervals changed again at the 13th visit and 

were held consistent until the 18th visit.  Beginning with the 19th visit, we allowed the 

subjects to once again freely exit the Skinner box; returning to a 0 post-reinforcement 

delay.   

We started the delay interval after the subject had finished feeding and attempted 

to fly out of the blocked Skinner box.  During the delay periods, subjects were free to 

continue making responses, but these responses did not reset the delay interval.  

Sometimes a subject would not leave the box after the post-reinforcement delay and in 

these cases we forced her to exit by gently removing her from the Skinner box with a 

small fish aquarium net.  A session was terminated if the subject failed to return to the 

apparatus after one hour, or if we saw her return to the 10-12% sucrose solution feeder 

which we monitored through-out the experiment.  In the event of a terminated session, we 

checked the nearby bee feeder the following day to document the possibility of predation 

or death as the reason for their lack of return to the apparatus.  
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CHAPTER IV 
 

 

RESULTS 

 

 We recorded inter-visit-intervals, response length, inter-response-time, the 

number of reinforcers per visit, visit length, and the response rate per visit as our primary 

dependent variables.  We also recorded the temperature inside the apparatus every minute 

throughout each trial, as well as the date the subjects were tagged.   

 Data collection commenced June, 3, 2011 and finished July, 2, 2011.  While 

analyzing our data, we discovered the data out-puts from two of our bees were corrupted. 

We returned to the field nearly 3 months after the other 48 bees’ data had been collected 

to recollect data from two final subjects on September, 25, 2011 and October, 2, 2011.  

 Every control 0-0-0-0 bee finished the 24 visits, but only four of the ten 0-10-10-0 

bees, five of the ten 0-5-5-0 bees, six of the ten 0-5-10-0 bees, and five of the ten 0-10-5-

0 bees finished the experiment by completing 24 visits.  All but one of these “drop-out” 

bees did not return to the Skinner box after a 3600s inter-visit-interval, and this bee was 

spotted returning to the nearby feeder instead of continuing to work in the Skinner box.  

Every bee that did not return to the Skinner box was observed the following morning at 

the bee feeder; ruling out the possibilities of predation or death affecting our data.  We 
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observed one bee fall victim to predation, but we re-ran another subject in her place as 

this attrition was clearly due to a cause other than the delay intervals.  We accidently 

killed two subjects mid-session by closing the door of the apparatus on her; though both 

of these bees were control 0-0-0-0 bees and were performing on par with the rest of their 

group at the time of their attrition.  We collected data from two more 0-0-0-0 bees to 

replace the prematurely terminated subjects.    

 Our paradigm makes data analysis by conventional standards rather tricky.  

Firstly, our data does not meet the homogeneity assumptions made by traditional mean 

comparisons (Levene’s F = 13.193, p < .01).  The control 0-0-0-0 group’s inter-visit-

interval standard deviations are radically different from each of the experimental groups, 

for the delay intervals affected most (but not all) of the subjects; hence the greater 

variability for the experimental groups.  Secondly, we utilized a repeated measures 

experimental design, yet many of our bees “dropped out” and thus a split-plot ANOVA 

would suffer from catastrophic attrition due to missing data. Moreover, the bees did not 

really “drop out,” they simply did not return to the Skinner box after an hour, and hence 

their obtained responses should be included in the analysis. Thirdly, the difference 

between group baseline response rates indicate our sample and group assignment may not 

have been random, further compromising the validity of any p-value obtained from an 

ANOVA.  Due to these complications, we eschewed traditional methods of data analysis 

and instead utilized a different method that is relatively free of assumptions and 

incorporates techniques for accommodating the “drop out” non-responses. Specifically, 

we used Observation Oriented Modeling (Grice, 2011) which is a novel data analysis 

technique that permitted us to compare our observed results to expected patterns of 
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outcomes and then to evaluate the differences with an accuracy index and a 

randomization or binomial test. Finally, while not reported for this thesis defense, we are 

planning an exact replication of this study to hopefully confirm our findings before 

publication.   

 Inter-Visit-Interval 

 For descriptive purposes only, we report simple statistics in Appendix 1 for each 

group when accounting for every inter-visit-interval.  The tabled means and standard 

deviations clearly reveal differences between the groups.  Cumulative curves of the inter-

visit-intervals were also plotted and fitted with linear regressions to determine slope 

differences across each condition and between groups.  Graph 1 shows the cumulative 

curve controlling for attrition for each group while Appendix 2 displays slope values for 

each condition and group.  Every experimental bee’s final baseline had a smaller beta-

weight than the second delay condition.  

 Cumulative curve graphs of individual bees were initially analyzed via linear 

regressions.  We observed three types of cumulative curve patterns for individual 

subjects; linear, exponential, and “S” (see Appendix 3).  “Drop out” bees never saw the 

removal of the delay intervals, and thus never returned to baseline; thereby resembling an 

exponential “J” curve.  Experimental bees which did encounter a return to baseline 

resembled an “S” curve.  Every control 0-0-0-0 bee followed a simple linear pattern.  

Nine of the ten 0-10-10-0 bees differed from every control subject; seven of the ten 0-5-

5-0 bees differed from every control; eight of the ten 0-5-10-0 bees differed from every 

control; nine of the ten 0-10-5-0 bees differed from every control.   
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Graph 1 

 

 Using Observation Oriented Modeling, an ordinal pattern analysis was conducted 

for each group to assess if the inter-visit-intervals increased once the delays were initiated 

and in turn decreased once the delays were removed.  For bees in the experimental 

groups, we predicted the intervals would decrease during the baseline trials as the bees 

learned to work with the apparatus, and that the inter-visit-intervals would monotonically 

increase once the delays were initiated, but would instantly decrease and nearly but not 

fully return to baseline after the delays were removed.  This prediction was also echoed 

by the slope differences obtained from our multiple regression reported in Appendix 2.  

For each bee, the analysis compares the differences between pairs of intervals to the 

hypothesized differences, and the percentage of responses that fit the predicted ordinal 

pattern is determined.  Each interval is compared with every other interval for an 

individual bee (e.g. interval one vs. interval two, interval one vs. interval three…interval 
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one vs. interval twenty-three, etc.); consequently, the number of responses that fit the 

ordinal pattern can range from 0 to kC2, where k equals the number of visits.  For 

example, a bee completing 23 visits has 253 interval comparisons while a bee completing 

18 visits has 153 comparisons to the expected ordinal pattern.  The percentage of 

comparisons matching the expected patterns is computed for each bee, and a binomial 

probability is also computed.  

 Table 1 displays individual results of the ordinal analysis and contains proportions 

of combinations that matched the predicted pattern and the binomial p-values. As can be 

seen, consistent with expectation, seven of the ten control (0-0-0-0) bees did not fit the 

predicted experimental pattern.  However, nine of the ten 0-10-10-0 bees, eight of the 0-

5-5-0 bees, eight of the 0-5-10-0 bees, and all of the 0-10-5-0 bees followed the predicted 

pattern in improbable proximity compared to an arbitrarily selected cut-point of .05 for 

the binomial p-value. 

Table 1: Inter-Visit-Interval Individual Results of Ordinal Analysis. 

Group Total Bee1 Bee2 Bee3 Bee4 Bee5 Bee6 Bee7 Bee8 Bee9 Bee10 

0-0-0-0 50% 41% 

p<1.00 

55% 

p<.08 

69% 

p<.00 

66% 

p<.00 

47% 

p<.87 

42% 

p<.99 

55% 

p<.05 

36% 

p<1.00 

47% 

p<.84 

45% 

p<.93 

0-10-10-

0 

74% 55% 

p<.08 

83% 

p<.00 

84% 

p<.00 

66% 

p<.00 

75% 

p<.00 

69% 

p<.01 

86% 

p<.00 

71% 

p<.00 

79% 

p<.00 

80% 

p<.00 

0-5-5-5 61% 80% 

p<.00 

65% 

p<.00 

65% 

p<.00 

34% 

p<1.00 

69% 

p<.01 

33% 

p<1.00 

84% 

p<.00 

83% 

p<.00 

78% 

p<.00 

74% 

p<.00 

0-5-10-0 62% 82% 

p<.00 

62% 

p<.02 

39% 

p<1.00 

62% 

p<.02 

56% 

p<.03 

67% 

p<.00 

64% 

p<.00 

67% 

p<.00 

51% 

p<.35 

86% 

p<.00 

0-10-5-0 74% 82% 

p<.00 

78% 

p<.00 

77% 

p<.00 

78% 

p<.00 

63% 

p<.00 

68% 

p<.00 

83% 

p<.00 

80% 

p<.00 

81% 

p<.00 

61% 

p< .05 
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Response Length 

An ordinal analysis of response length in Observational Oriented Modeling was 

conducted to test if response duration was smaller after the subject’s crop had filled and 

the delay interval had been initiated.  Every response prior to the delay interval being 

initiated was compared to every response after the delay interval was initiated, and a 

randomization test was performed to determine if the differences indicated consistently 

shorter durations.  The 0-0-0-0 control group bees were not considered for this analysis.  

Individual and group percentages are displayed in Table 2, and most were over 90%. All 

chance values from the randomization tests were less than .01.   

Table 2: Percentage of Adjunctive Responses Which Are Smaller Than Crop-Filling 
Responses 

Group Total Bee1 Bee2 Bee3 Bee4 Bee5 Bee6 Bee7 Bee8 Bee9 Bee10 

0-10-10-0 91% 79% 94% 83% 93% 93% 96% 97% * 84% 98% 

0-5-5-0 92% 65% 91% 98% 91% * 99% 100% 74% * 96% 

0-5-10-0 89% * * 98% 86% 89% 98% 85% 99% 95% 62% 

0-10-5-0 92% * 97% 97% 97% 89% 98% 100% 95% 96% 91% 

*subjects did not make additional responses 

We also used an ordinal analysis in Observational Oriented Modeling to 

determine if the first response of a visit just after a visit containing the above mentioned 

seemingly adjunctive responses was longer than trials not coming after an additional or 

adjunctive response.  We did not analyze bees that did not make adjunctive responses, 

nor did we analyze bees that did not return after a single adjunctive response as these 

subjects had no data to make an ordinal comparison.  Table 3 contains group and 
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individual percentages of the first response following a series of adjunctive responses 

being larger than first responses of a visit not following an adjunctive response (all c 

values < .01). 

Table 3: Percentage of Larger First Responses Following an Adjunctive Response 

Group Total Bee1 Bee2 Bee3 Bee4 Bee5 Bee6 Bee7 Bee8 Bee9 Bee10 

0-10-10-0 92% 98% 95% 89% 77% 99% * 97% * 64% 100% 

0-5-5-0 83% 100% 67% 84% 86% * 100% 100% 80% * 81% 

0-5-10-0 83% * * 91% 8% 98% 82% 41% 86% 98% 64% 

0-10-5-0 83% * 78% 82% 95% 76% 87% 100% 100% 66% 44% 

*subjects either did not make an additional response or did not return after an additional 
response 

 

Inter-Response-Time: 

 A graphical representation of the collected IRT data did not show any apparent 

differences between groups; though a slight decrease in IRT group averages per condition 

could be interpreted (Graph 2).  To test if there were indeed no differences between 

groups, we conducted an ordinal analysis in Observational Oriented Modeling.  We 

predicted a decrease between conditions, but not within conditions, and no difference 

between groups.  An analysis similar to our investigation of the Inter-Visit-Intervals 

found highly similar results between groups, but not within groups.  However, variability 

in IRTs within groups was observed; Table 4 contains individual binomial p-values and 

percentages of responses following the predicted pattern of the ordinal analysis.  Overall, 

the similar group pattern matched percentages led us to disregard group differences in 

IRT.  After adjusting the predicted patterns within condition, we determined these lower 
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percentages of matches were due to variability within condition and within bees; 

however, the similarities between groups were still observed.   

Graph 2

  

  

Table 4: IRT Pattern Matching 

Group Total Bee1 Bee2 Bee3 Bee4 Bee5 Bee6 Bee7 Bee8 Bee9 Bee10 

0-0-0-0 47% 56% 

p<.02 

57% 

p<.02 

42% 

p<1.00 

55% 

p<.05 

27% 

p<1.00 

44% 

p<.98 

46% 

p<.90 

54% 

p<.10 

54% 

p<.10 

37% 

p<1.00 

0-10-10-0 44% 42% 

p<1.00 

23% 

p<1.00 

38% 

p<1.00 

47% 

p<.82 

59% 

p<.00 

28% 

p<1.00 

50% 

p<.56 

44% 

p<.89 

50% 

p<.58 

27% 

p<1.00 

0-5-5-0 33% 31% 

p<1.00 

22% 

p<1.00 

31% 

p<1.00 

36% 

p<1.00 

0% 

p<1.00 

48% 

p<.78 

38% 

p<1.00 

50% 

p<.54 

16% 

p<1.00 

29% 

p<1.00 

0-5-10-0 42% 41% 

p<.99 

33% 

p<1.00 

25% 

p<1.00 

42% 

p<.95 

41% 

p<.99 

50% 

p<.58 

21% 

p<1.00 

34% 

p<1.00 

65% 

p<.00 

65% 

p<.00 

0-10-5-0 44% 22% 

p<1.00 

50% 

p<.48 

20% 

p<1.00 

50% 

p<.57 

65% 

p<.00 

59% 

p<.00 

39% 

p<.93 

27% 

p<1.00 

26% 

p<1.00 

50% 

p< .55 
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Response Rate: 

 We predicted an increase within and between conditions, for if learning were 

present, then response rates could be expected to increase.  This prediction was post hoc 

and was based on the control 0-0-0-0 group’s increase in response rates; visible in Graph 

3.   

Graph 3 

 

 

 An ordinal analysis similar to our investigation of the Inter-Visit-Intervals and 

IRT found highly similar results between groups, but not within groups.  Variability in 

response rates within groups was observed; Table 5 contains individual binomial p-values 

and percentages of responses following the predicted pattern of the ordinal analysis.  
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Overall, experimental conditions all differed from the control group, and while 

differences between experimental groups were observed, these differences were not 

substantively important.   

Table 5: Individual data presenting percentage of observations matching predicted 
response rate  

Group Total Bee1 Bee2 Bee3 Bee4 Bee5 Bee6 Bee7 Bee8 Bee9 Bee10 

0-0-0-0 66% 69% 

p<.00 

69% 

p<.00 

64% 

p<.00 

55% 

p<.05 

71% 

p<.00 

60% 

p<.00 

58% 

p<.01 

72% 

p<.00 

72% 

p<.00 

67% 

p<.00 

0-10-10-0 49% 45% 

p<.95 

29% 

p<.100 

34% 

p<1.00 

43% 

p<.92 

71% 

p<.00 

67% 

p<.03 

58% 

p<..03 

54% 

p<.29 

60% 

p<.03 

44% 

p<.81 

0-5-5-5 55% 56% 

p<.02 

49% 

p<.62 

66% 

p<.00 

52% 

p<.26 

31% 

p<1.00 

72% 

p<.00 

33% 

p<1.00 

60% 

p<.02 

24% 

p<1.00 

41% 

p<.95 

0-5-10-0 57% 71% 

p<.00 

55% 

p<.05 

63% 

p<.00 

43% 

p<.93 

41% 

p<1.00 

47% 

p<.78 

43% 

p<.94 

52% 

p<.29 

67% 

p<.00 

68% 

p<.00 

0-10-5-0 59% 39% 

p<.99 

58% 

p<.01 

55% 

p<.05 

45% 

p<.95 

83% 

p<.00 

78% 

p<.00 

58% 

p<.20 

42% 

p<.91 

26% 

p<1.00 

79% 

p< .00 

 

The averages plotted in Graph 3 suggest the 0-10-10-0 group has a far different 

baseline compared to the other groups when in reality only one bee differed from the 

other nine.  This bee dropped out during the second condition, and thus the group 

response rate averages were affected by this “outlier.” Consequently, we investigated if 

there were differences in response rates within groups when comparing bees that finished 

the experiment with bees that did not finish the experiment.  Thus, we predicted bees that 

dropped out had a higher response-rate per visit and tested this prediction with an ordinal 

analysis in Observational Oriented Modeling similar to how we previously analyzed 

response length.  This analysis compared each response rate from the bees that did not 

finish the experiment with the response rates from the bees that did finish the 24 trials.  

As every bee in the control 0-0-0-0 group finished all 24 trials, we did not analyze the 
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control group’s response rates.  Table 6 displays percentages of drop-out bee’s response 

rates that are larger than response rates from bees that finished the experiment.  While a 

difference between drop-out bees and bees that finished the experiment can be observed 

when comparing all 24 responses, we do not choose to interpret a predictive quality of 

response rates as gauged from baseline trials.  Phrased differently, we do not believe 

larger baseline response rates appropriately predict if a subject will not complete the 24 

trials. 

Table 6: Percentage of response rates of drop-out > completion bees with c-values. 

Group Baseline All Visits 
0-10-10-0 60% 

c<.00 
60% 
c<.00 

0-5-5-0 37% 
c<.10 

45% 
c<.00 

0-5-10-0 14% 
c<1.00 

81% 
c<.00 

0-10-5-0 60% 
c<.00 

52% 
c<.00 

 

Weather Variability: 

 As temperature has been shown to affect honey bee behavior (Heinrich, 1979), we 

recorded temperature at single-minute intervals during the experiment to assess 

temperature effects on our various DVs.  Our data logger did not record temperature data 

for two out of 50 subjects.  Of these 48 subjects, 18 subjects did not complete the 24 

trials.  Heinrich (1979) reports honey bees are capable of foraging at temperatures as high 

as 46C without over-heating.  The maximum temperature of the 18 subjects that did not 

finish the experiment ranged from 36.5C – 45.5C while the temperature range for the 30 
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subjects that did finish the experiment ranged from 26C – 40C.  Appendix 4 contains a 

scatter plot of the temperature associated with each bee’s longest inter-visit interval.    

 An ordinal analysis in Observational Oriented Modeling comparing temperature 

for bees that finished the trials versus those that did not return to the apparatus within 

3,600s was performed.  The analysis was run under the prediction that drop-out bees 

would have higher temperatures compared to the temperature paired with the longest 

inter-visit-interval for each bee that did finish the trials.  Drop-out bees had higher 

maximum temperatures for 90% of the matches in the ordinal analysis (c < .01).  We then 

separated by group to determine if drop-out bees had higher maximum temperatures 

within groups in addition to between groups.  As the control 0-0-0-0 group had no “drop-

outs,” we only analyzed the four experimental groups.  Within every experimental group, 

every “drop-out” bee had a higher maximum temperature than the temperature paired 

with the longest inter-visit-interval for bees that finished the experiment. 

Shaping: 

 We documented the latency between shaping/tagging a bee and initiating the 

experiment for each bee.  On occasion, we shaped and ran a subject on the same day; 

however, we also frequently tagged bees days (up to nine) prior to running a subject.  A 

regression of this latency on to whether the subject finished 24 trials found a R2 value of 

.30.  An ordinal analysis in Observational Oriented Modeling found negligible effects 

between bees that finished and did not finish the experiment; 30% prediction match, c < 

.17.  Latency between tagging and data collection was regressed on to the number of 

additional responses made after the delay intervals were initiated found a R2 value of .16.  
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CHAPTER V 
 

 

DISCUSSION 

 

Inter-Visit-Interval & Temperature Effects: 

 The main problematic finding for our purposes is the covariance between 

temperature and inter-visit-interval.  Prior to beginning any data collection, we made a 

schedule for 50 bees and counter-balanced subject order in an attempt to control for 

weather variability.  Data collection would start for each bee usually around 10:00, but 

control 0-0-0-0 bees would oftentimes finish before 12:00 while experimental groups 

often finished around 16:00.  Thus, temperatures were far higher for the experimental 

bees and usually during the end of the experiment; thus exacerbating the temperature 

difference between groups.  Regardless, Appendix 4 clearly shows bees did not finish the 

experiment if the temperature reached above 40.5C; we believe investigating this 

temperature effect is crucial, but at this time we are unsure of how temperature in 

combination with our delay intervals may function to dissuade subjects from returning to 

the Skinner box.  Most notably, while temperature certainly affected and accounts for at 

least some variability in the inter-visit-intervals for groups and individuals, the very clear 

decrease of the inter-visit-interval cumulative curve’s beta-weights (for individuals and 

groups) once the delay intervals were removed demonstrates the impact of the delay 
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and functions to show how the delay impact is more salient than that of temperature.  

Further demonstrating that temperature did not “contaminate” our data would be the 

control groups’ decrease in inter-visit-intervals across individual bee’s trials, for even 

though the temperature increased across conditions, a decrease was observed in inter-

visit-interval for the 0-0-0-0 control group (as seen in Appendix 2).  However, the effect 

of temperature on the experimental bees is undeniable; thus we propose temperature 

moderates the inter-visit-intervals.  Based on human literature, “frustration” or 

“aggression” at encountering the delays could easily be exacerbated if faced with 

dauntingly high temperatures as observed in field studies (Anderson, 1989).   

A criticism to be raised against our method of analysis of the inter-visit-intervals 

would be the relatively low percentage of our observations matching our proposed model.  

However, our pattern yielded far more correct responses for the first three conditions for 

each bee, yet the return to baseline typically drastically reduced our percentage match as 

many of the responses fully returned to or out-performed baseline (differing from our 

pattern analysis).  Also, our criteria are far more strict than any traditional statistical 

analysis; indeed, any data deemed “significant” in Observational Oriented Modeling will 

also be significant in any traditional statistical test.  Most importantly, in addition to 

predicting a difference between groups, we also predicted the direction and the order of 

these differences.  No other analytical method we know of is capable of testing such a 

complicated ordinal prediction while not making numerous assumptions.  Regardless, our 

prediction was incorrect (based on an arbitrary value of p < .05) for only five out of 40 

experimental group bees.  Thus, we feel confident stating that the delays increase inter-

visit-intervals.  Subjects first encountering a 600s delay performed more poorly than 
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subjects first encountering a 300s delay.  We did not show a difference in inter-visit-

intervals between the 0-5-5-0 and 0-5-10-0 groups, nor did we show a difference in inter-

visit-intervals between the 0-10-10-0 and 0-10-5-0 groups. 

Response Length: 

Our analysis of response length yielded two major findings.  Firstly, a difference 

(an increase) in response length was clearly observed for nearly every response made 

after the delay had been initiated. Only two out of 34 bees did not match this prediction 

based on an arbitrary value of more than 66% matching.  After comparing the length of 

the adjunctive responses to the normal crop-filling responses, we do not believe the 

subjects were receiving reinforcement during their post-delay responses, for the response 

lengths are usually impossibly small for a subject to make the response and consume the 

reinforcement.  Indeed, we observed sugar water dripping within the apparatus following 

a string of these adjunctive responses; validating the possibility of this hypothesis.  Our 

second analysis of response length, which found that the first response of a new visit 

following a string of adjunctive responses was larger than responses not following an 

adjunctive response, is related to our first response length analysis.  We believe the 

subjects were not consuming some or most of the reinforcement during the responses 

during the delay interval, and thus when the subjects returned to the Skinner box for the 

next trial we observed longer response lengths for the first response as the subjects 

consume the previous visit’s left-over reinforcement; hence our utilization of the term 

“adjunctive response.”  Thus, a very clear difference between the normal crop-filling 

responses prior to the initiation of the post-reinforcement delay and the responses during 

the delay can be observed and inferred from two response length analyses.  We believe 
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these additional responses were not made to receive reinforcement, but were adjunctive 

or “emotional” responses at being unable to leave the Skinner box. 

Inter-Response-Time: 

The benefit of our focus on individual observations instead of focusing on 

aggregate data is best exemplified when interpreting IRT data.  When considering Graph 

2, a slight monotonic decrease in group averages across conditions can clearly be 

observed for every group other than the 0-5-5-0 experimental condition.  However, when 

considering individual bees, only five of 50 bees (only 10%) followed this aggregate-

based prediction as determined by our binomial p-value < .05.  Only one 0-0-0-0 control 

bee followed the predicted pattern, indicating the experimental groups’ 36 bees which 

departed from our expected pattern did not do so due to the post-reinforcement delays.  

However, the similarity between the groups’ percent matching dissuades us from 

claiming IRT is affected by our post-reinforcement delays.  Consistent with our findings, 

pigeons with long delays have previously been observed to have a monotonically inverse 

relationship between pre-reinforcement delay length and IRT (e.g. Chung, 1965; Chung 

and Herrnstein, 1967; Sizemore, & Lattal, 1978).   

Response Rate: 

Our initial analysis of response rate tested if, as observed in the control 0-0-0-0 

group, experimental groups’ response rates monotonically increased across visits.  Every 

control 0-0-0-0 bee was found to follow the predicted response rate increase, while only 

18/40 experimental bees followed the predicted response rate increase.  Experimental 

group’s matched the predicted pattern approximately equally, though clearly differed 
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from the control 0-0-0-0 group.  When considering Table 5, a very clear dichotomy can 

be observed in the bi-nominal p-values for individuals in the experimental groups.  

However, the 0-10-10-0 group differed furthest from the control 0-0-0-0 predicted 

pattern, for this experimental group had powerful “outliers” affecting the mean of the 

group’s response rate (as seen in the baseline of Graph 3).   

We decided to investigate these differences in baseline and found, for the 0-10-

10-0 and 0-10-5-0 groups, that bees with higher response rates tend to drop out more than 

bees with smaller response rates.  Interestingly, these differences in baseline performance 

for future drop-outs were not observed for the 0-5-5-0 or 0-5-10-0 groups.  Because of 

this inconsistency, we do not believe higher baseline response rates can predict longer 

inter-visit-intervals when the subjects encounter the delays.  However, we decided to 

compare every visit’s response rate for bees that dropped out of the experiment with bees 

that completed all 24 trials for each group, and found an apparent difference between 

bees that dropped out and completed the trials for all experimental groups’ response rates.     

The most obvious finding regarding response rate is the immediate response rate 

increase once the delays have been removed for group (Graph 3) and individual bees.  

Clearly, our delays were affecting response rate as the delay removal created a sudden 

increase in response rate across all groups.  Thus, we posit that extensive post-

reinforcement delays impair response rate increases traditionally seen in non-delayed 

subjects, or at the very least serve to increase response rates once the delay has been 

removed. 
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Shaping: 

The latency between tagging and beginning data collection for individual bees 

clearly had a negligible impact on the reported effect.  Thus, we believe the interval 

between shaping and beginning data collection have little impact on our positive findings.  

Discussion: 

There are many other differences between our experiment and those presented in 

Fehrer (1956) as well as those following her research questions and protocol.  Most 

importantly is Fehrer’s focus on extinction trials, for we did not analyze extinction but 

instead solely studied training/learning.  We also used a small amount of acquisition trials 

(six) before presenting our subjects with reinforcement delays.  One of the most crucial 

differences is the species we worked with.  All but one study (Rabinowitz, & Paynter, 

1969) we found on post-reinforcement delay literature used rats (Davis, 1934; Fehrer, 

1956; Bowen, 1966; Cogan, 1966; Mikulka, Vogel, & Spear, 1967; Williams, 1967; 

Capaldi, Godbout, & Ksir, 1968); we used honey bees Apis mellifera.  Thus, any of our 

observation’s inconsistencies with the literature may be attributed to species differences.  

Another major difference between these paradigms are our delay times.  The literature 

typically reports either 20s or 30s of post-reinforcement delay with the exception of 

Davis’ (1954) analysis of a 60s interval.  We used 300s and 600s intervals (a 100x and 

200x increase compared to the literature).  Our decision to use these large delays follows 

the tendency of typical extinction trials to last 10 minutes, for we believe any actual 

behavioral effects caused by post-reinforcement delays would be best observed this way.  

Finally, our subjects were still able to, and at times did, feed after the “post-
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reinforcement” delay had been initiated; no other study allows reinforcement to be 

provided during the delays.   

Due to these major differences and as our paradigm has never been reported in the 

literature, no theoretical hypothesis could be posed a priori.  We now offer our research 

hypothesis post hoc: if large post-reinforcement delay intervals are administered, than 

honey bees will have longer inter-visit intervals and make “frustration responses” during 

the delay intervals compared to bees not exposed to a post-reinforcement delay.  Honey 

bees with comparatively higher response rates tend to be exacerbated by the delay 

intervals.  IRT remains mostly unaffected by the delays of reinforcement.  The removal 

of the delay intervals increases subject response rates.     

After the conducted literature review, we were unsure how to best label and 

define the phenomenon we wanted to study.  We are hesitant to describe our protocol as 

an investigation into post-reinforcement delays as our post-reinforcement delays are (or 

are nearly) as long as a typical extinction trial, but have done so until this point to remain 

consistent with the available literature.  The ability for our subjects to continue feeding 

once the interval was initiated also leads us to believe we are in fact not using a post-

reinforcement paradigm.  Our best explanation for these behavioral changes is that 

subjects were reacting to a delay in social-reinforcement.  Our subjects were unable to 

recruit bees after having immediately fed.  The bees were also unable to return to the hive 

to receive social reinforcement via trophallaxis (Abramson, Wells, Wenner, & Wells, 

2011). They were also delayed the social-reinforcement incurred when they regurgitate 

what is left in their social crop for the hive.  We also delayed their ability to recruit bees 

to a foraging location (our Skinner box) after they departed from the hive.  Thus, we feel 
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comfortable claiming we have delayed social reinforcement; though we have investigated 

this phenomenom via a post-reinforcement delay perspective.  

Notably, in a paradigm similar to the present study, Wainselboim, Roces, and 

Farin (2003) investigated how the flow of trophallaxis may be affected by perceived 

value of a food source.  Most importantly for our purposes, this team predicted and found 

that induced longer visit lengths resulted in slower rates of trophallaxis (Wainselboim, 

Roces, & Farin, 2003).  We were unable to observe if our subjects were engaging in 

trophallaxis; though if this were the case, a slower rate of trophallaxis may account in 

part for the longer inter-visit-intervals and also communicate the temporal value of the 

Skinner box with delays as less of a reinforcer than the Skinner box without the delays.  

We were unable to determine if the bees were digesting the sugar solution during 

their confinement; thus our claim the subjects make “frustration” responses may be 

incorrect.  We also were unable to observe our subjects’ behavior once they returned to 

and enter their hive.  We cannot account for various social behaviors such as recruitment, 

nor can we speculate as to how these factors could affect our findings.  Due to our 

training procedure, we were unable to observe precisely how many visits were made prior 

to tagging and the initiation of data-collection for each individual bee, and this could very 

well be a confound for our findings.  However, these faults aside, we feel we uncovered a 

very interesting phenomenon which deserves more attention.  

 Future studies should first attempt to replicate our observations.  We also suggest 

varying the delay times more than we have done; perhaps a 150s delay and a 75s delay 

will yield equally interesting findings.  Delaying groups for 30s is also highly 
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recommended to remain consistent with previous literature, and also test the early 

literature findings of pre- and post-reinforcement delays with a different species.  

Determining honey bee sensitivity and reactions to these types of delays is crucial before 

conducting further studies into their sensitivity of various operant paradigms.  We also 

recommend offering utilizing a choice paradigm to investigate if honey bees favor 

smaller delay intervals.  Using an observational hive for future studies is also highly 

recommended so as to be able to continue to observe the subjects once they leave the 

Skinner box.  Diversifying the honey bee species used to study post or social 

reinforcement delays is also critical.  We also recommend comparing our findings with 

other hive insects such as ants or termites, and also examine if the reported paradigm 

could influence the foraging and feeding behaviors of avian and mammalian parents.  The 

applicability of this paradigm on various human behaviors, such as incarceration, seems 

appropriate; though more comparative research should precede this speculation.
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APPPENDICES 
 

 

 

Appendix 1: Inter-Visit-Interval Descriptive Statistics For Each Group 

Group Mean Median  Mode  Range SD 

0-0-0-0 234s 190s 129s 50s-1377s 183s 

0-10-10-0 481s 237s 3600s 60s-3600s 721s 

0-5-5-0 441s 197s 3600s 85s-3600s 667s 

0-5-10-0 358s 202s 200s 50s-7200s* 561s 

0-10-5-0 475s 268.5s 225s 102s-3600s 650s 

*the first bee we ran was a 0-5-10-0 bee that did not return after two hours of waiting, we 
decided to change our protocol after collecting data from this first bee so as to only wait 
3600s before terminating the session.  We have reported this 7200s interval only in the 
range; all other computations substituted this interval for 3600s. 
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Appendix 2: Slope of Cumulative Curves of Each Condition Per Group 

 1 2 3 4 

0-0-0-0 264.11 249.8 220.23 192.22 

0-10-10-0 198.47 586.34 1039.9 208.6 

0-5-5-0 198.28 680.49 835.22 196.19 

0-5-10-0 192.47 250.05 876.6 238.8 

0-10-5-0 205.31 674.44 882.51 269.04 
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Appendix 3: examples of the three observed inter-visit-interval cumulative curve 
patterns.  Bee 1 exemplifies a linear curve; Bee 2 exemplifies a “J” curve; Bee 3 
exemplifies an “S” curve.
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Appendix 4 
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