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CHAPTER I 
 
 

INTRODUCTION 

 

Plants experience several abiotic and biotic stresses like drought, salinity, insects, and 

several potential pathogens which can drastically reduce crop productivity. Boyer’s 

research work demonstrated that the loss in crop productivity due to insects and diseases 

were only 2.6% and 4.1%, respectively, while 71.1% was due to unfavorable 

physicochemical environments (Boyer, 1982). Boyer’s classification also demonstrated 

that more than 25% of U.S soil area was affected by the drought. A study on effects of 

temperature and precipitation trends on U.S. drought indicated that that there has been an 

increase in precipitation since about 1980, without which the drought level in the U.S 

would have increased by 50% more in recent drought period (Easterling et al., 2007). 

Drought usually results in reduction in growth rate, stomatal aperture, leaf expansion, 

stem elongation, plant growth and productivity (Alexieva et al., 2001). 

Wheat is one of the most important cereal crops. It is cultivated worldwide and is 

the principal cereal grain grown in the United States. One of the major factors affecting 

wheat production is drought. 

Plants activate different physiological and biochemical defense systems upon 

exposure to stress. One of the strategies for surviving under water deficit stress is to 

accumulate osmolytes (Serraj and Sinclair, 2002). Osmolytes which have been detected 
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 so far include amino acids, sugars and sugar alcohols, quaternary ammonium 

compounds, and tertiary sulfonium compounds (Goddijn and van Dun, 1999; McCue and 

Hanson, 1990; Rhodes and Hanson, 1993; Shen et al., 1997). Many crops have limited 

ability to produce osmoprotectants needed for stress tolerance. Thus engineering plants 

for production and accumulation of these osmolytes by introducing novel genes from 

other organisms has become a common strategy of making stress tolerant plants. 

Plants genetically engineered for the production of mannitol, trehalose, 

glycinebetaine, and fructans might increase resistance to drought (Abebe et al., 2003; 

Bohnert and Jensen, 1996; Pilon-Smits et al., 1995; Rathinasabapathi et al., 1994; 

Romero et al., 1997; Rontein et al., 2002). Several mechanisms for osmolyte protection 

have been proposed but the most popular mechanism is through osmotic adjustment. 

Plants genetically engineered to increase osmolyte concentration may not 

accumulate the necessary amounts required for osmotic adjustment, but they still show 

stress tolerance (Serraj and Sinclair, 2002). Other mechanisms like hydroxyl radical 

scavenging and protection of proteins have also been reported (Rontein et al., 2002; 

Smirnoff, 1989). An accumulation of osmolytes in roots help in the root development and 

allows plants to reach water in deeper wet soils (Serraj and Sinclair, 2002). 

Spring wheat (cv. Bobwhite) was transformed with a bacterial mtlD gene 

encoding for mannitol-1-phosphate dehydrogenase causing accumulation of mannitol 

(Abebe et al., 2003). Two different gene constructs were used to target the mannitol 

accumulation in cytoplasm or chloroplast (Abebe et al., 2003). A negative control was 

generated containing only the selectable-marker bar gene. Improved tolerance to drought  
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and salinity was observed in calli and T2 generation transgenic plants (Abebe et al., 

2003). 

The study was continued with T4 generation transgenic plants. Transgenic wheat 

lines grown under well-watered and water-deficit stress conditions were characterized by 

conducting physiological and biochemical experiments. Physiological characterization on 

T4 generation plants included gas exchange measurements conducted with a LI-6400 (LI-

COR, Inc., Lincoln, NE) portable photosynthesis system. The LI-6400 system has a 

chamber which clamps on to the leaf. The machine allows the CO2 concentration, light 

intensity air flow rate, relative humidity (RH), and temperature in the chamber to be 

controlled.  Carbon dioxide and water vapor exchange rates of the leaf are measured with 

the aid of infrared gas analysis (IRGA) technology. 

Biochemical characterization included determination of activities of the 

antioxidant enzymes catalase, glutathione reductase, superoxide dismutase and ascorbate 

peroxidase and estimation of lipid peroxidation in transgenic and control lines under 

well-watered and water-deficit-stress conditions. 

Levels of sugars and sugar alcohols were determined with the help of high 

performance liquid chromatography. In this study, performance of the four transgenic 

lines and one empty vector line was evaluated under well watered and water-deficit stress 

conditions and compared with non transformed Bobwhite. 

A major problem faced by many scientists working on genetically modified plants 

is silencing of the transgene. Usually in monocots, the biolistic approach is used for 

transformation with foreign genes. Plants transformed with this particular approach have 

exhibited transgene silencing (Anand et al., 2003). 
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CHAPTER II 
 
 

REVIEW OF LITERATURE 

 

As mentioned above, various biotic and abiotic factors affect plant growth and 

productivity. Among the abiotic factors, water deficit stress is the major reason for loss of 

crop productivity worldwide. 

Effects of water stress on photosynthesis: Water stress severely reduces net 

photosynthesis in flag leaf, top internode and ear of wheat (Wardlaw, 1971). Under 

water-deficit conditions, stomatal closure and inhibition of chloroplast activity reduce 

photosynthesis (Matthews and Boyer, 1984), but the decrease in chloroplast activity 

contributes more to the loss in photosynthesis than the closure of stomata (Matthews and 

Boyer, 1984). Closed stomata and inhibition of chloroplast activity at low leaf water 

potential decrease the leaf capacity to fix available CO2 and the non-stomatal component 

can not be overcome by increase in concentration of CO2 (Matthews and Boyer, 1984).  

At room temperature, chlorophyll fluorescence is emitted exclusively by 

photosystem II. Fluorescence has been used to study injury to photosynthesis from 

drought (Araus et al., 1998). As an indicator of stress, fluorescence measurements are 
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appropriate because PSII is one of the most susceptible processes to stress. Also, 

chlorophyll fluorescence can be taken as an indicator of oxidative stress as free radicals 

are known to inhibit repair of photo damage to PSII (Yoshitaka et al., 2001).  Fv/Fm is a 

measure of the maximum quantum yield of photosystem II. The quantum yield has been 

shown to be very sensitive to photoinhibition caused to photosystem II mainly by reactive 

oxygen species. Such damage can be revealed by calculating the Fv/Fm ratios in 

chlorophyll fluorescence measurements (Souza et al., 2004). 

Approaches to protect plants from drought stress: Some plant modification efforts 

focus on manipulating plant genes which normally protect the plants from drought stress 

(Valliyodan and Nguyen, 2006). Another approach is to introduce foreign biosynthetic 

enzymes or genes for synthesizing osmoprotecting compounds inside the cell (Rontein et 

al., 2002). Different compounds like amino acids, polyols, and quaternary ammonium 

and tertiary sulfonium compounds are known to be good osmoprotectants (Goddijn and 

van Dun, 1999; Rhodes and Hanson, 1993; Rontein et al., 2002). A relatively new 

approach of creating transgenic plants by introducing novel genes that do not occur 

naturally in these plants has emerged as an effective method (Valliyodan and Nguyen, 

2006). 

 Role of osmoprotectants under stress: The osmoprotectants are small molecules that 

are not toxic to cells even at high concentration. 

Usually under water deficit conditions, osmolyte accumulation occurs inside the 

cell which decreases a cell’s osmotic potential and helps maintain cell turgor (Pathan et 

al., 2004). Maintenance of leaf turgor due to osmotic adjustment helps in reducing water 
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loss which in turn increases plant survival under stress (Serraj and Sinclair, 2002). This 

mechanism is popularly known as osmotic adjustment (OA). 

Osmoprotectants like sugars and sugar alcohols are known to protect plants from 

water deficit stress by stabilizing proteins and cell membranes (Valliyodan and Nguyen, 

2006). In an early attempt to create stress resistant transgenic tobacco plants, the bacterial 

enzyme choline oxidase, responsible for synthesizing the amino acid glycinebetaine, was 

used (Sakamoto and Murata, 2001). Another study conducted on tobacco plants showed 

that plants transformed with a trehalose synthase gene responsible for increased trehalose 

accumulation were tolerant to drought and salinity (Zhang et al., 2005). Another study 

done on transgenic tobacco plants showed that over expression of the inositol methyl 

transferase (IMT1) cDNA, increased the accumulation of D-ononitol inside the cell, 

which in turn conferred salt and drought tolerance to these plants (Sheveleva et al., 1997). 

Role of mannitol under stress: The sugar alcohol mannitol is found in many plants and 

is particularly abundant in algae (Loescher et al., 1992). It is naturally found in various 

higher plants as well, for example in celery. Several potential roles of mannitol under 

stress have been proposed like as an osmoprotectant, a ROS scavenger, and for the 

storage and recycling of reducing power (Loescher et al., 1992; Valliyodan and Nguyen, 

2006). 

A study conducted to understand the role of mannitol in stress protection 

demonstrated that the presence of mannitol in the chloroplasts of tobacco plants conferred 

protection from oxidative damage (Shen et al., 1997). Tobacco plants transformed with 

an E. coli gene, mtlD, responsible for producing an enzyme, mannitol-1-phosphate 

dehydrogenase, involved in mannitol biosynthesis, showed increased tolerance to high 
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salinity (Tarczynski et al., 1993). Another study on transgenic tobacco suggested the 

possible role of mannitol in stress tolerance other than as an osmolyte (Karakas et al., 

1997). 

The pathway for mannitol production in transgenic plants is still somewhat 

unknown. The key metabolites in the proposed pathway include fructose-6-phosphate and 

mannitol-1-phosphate where mannitol synthesis is catalyzed by mtlD and non specific 

phosphatases (Thomas et al., 1995). 

  Different mechanisms of mannitol protection have been proposed; in tobacco 

plants mannitol protected certain molecules such as glutathione and enzymes like 

thioredoxin, ferredoxin and phosphoribulokinase from the harmful effects of hydroxyl 

radicals (•OH) (Shen et al., 1997). In some higher plants and algae mannitol enhanced the 

tolerance to water deficit stress through osmotic adjustment (Loescher et al., 1992; 

Valliyodan and Nguyen, 2006). 

Oxidative stress and ROS accumulation: Oxidative stress occurs in plants due to 

excessive accumulation of reactive oxygen species (ROS) in the plant tissues during 

stress. Drought stress results in the inhibition of photosynthesis, thus leading to 

production of ROS (Smirnoff, 1993). 

  ROS production in plants originates mainly in three processes. First, photosystem 

I reduces molecular oxygen (O2) in the Mehler reaction to form the primary superoxide 

radical (•O2
-) that in turn is converted to hydrogen peroxide (H2O2) by superoxide 

dismutase (SOD) (Apel and Hirt, 2004; Smirnoff, 1993). Second, the hydrogen peroxide 

can be further reduced to a very harmful hydroxyl radicals (•OH) through Fenton and 

Haber-Weiss reactions (Hancock et al., 2001). Generation of singlet oxygen under high 
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light intensities is another known mechanism of ROS generation. Under high light 

intensities, chlorophyll molecules can transfer the excitation energy to oxygen molecules 

resulting in the formation of singlet oxygen which can rapidly oxidize amino acids, DNA 

and lipids (Yoshitaka et al., 2001)  Abiotic stress conditions are exacerbated by the effect 

of ROS accumulation. 

Biomembranes are the most susceptible targets of ROS attack due to their high 

content of polyunsaturated fatty acids in their membrane phospholipids (Grassmann et 

al., 2002). Lipid peroxidation caused mainly by the hydroxyl radical can lead to loss of 

membrane fluidity, membrane proteins are affected  which in turn disturbs the ion 

homeostasis and the membranes are finally completely disrupted (Grassmann et al., 

2002). Break down products of lipid peroxidation have been shown to increase under 

drought stress and they have been considered as a reliable indicators of oxidative stress 

(Moran et al., 1994) (Fig 1). 

The hydrogen peroxide formed under stress is broken down to water in the 

chloroplast by peroxidase (POX), monodehydroascorbate reductase (MDAR), 

dehydroascorbate reductase (DAR), and glutathione reductase (GR) and require access to 

reduced ascorbate and glutathione (Apel and Hirt, 2004). Hydrogen peroxide is broken 

down by catalase in peroxisomes. Antioxidant enzymes such as SOD, CAT, APOX, and 

GR prevent accumulation of hydroxyl radicals resulting from the overproduction of 

superoxide and hydrogen peroxide in stressed plants. 

Role of osmolytes against oxidative stress: In vitro studies have shown that 

accumulation of compatible solutes can stabilize membranes and protect enzymes against 

chemical denaturation (Yancey et al., 1982). In 1989 Smirnoff evaluated the hydroxyl 
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radical scavenging capacity of compatible solutes and confirmed that sorbitol, mannitol 

and myo-inositol were effective in free radical scavenging (Smirnoff, 1989). Glutathione 

and hydrogen peroxide are known to cross biological membranes and affect intracellular 

signaling which helps in achieving stress tolerance to biotic as well as abiotic stresses 

(Foyer et al., 1997). Several studies on accumulating osmolytes in plant cells point to 

their role as scavengers of ROS and stabilizers of membranes and proteins (Bohnert and 

Jensen, 1996; Papageorgiou and Murata, 1995). 

Role of mannitol against oxidative stress: Mannitol is known to possess free radical 

scavenging properties and was reported to scavenge hydroxyl radicals in vitro by 

chelating the iron necessary for the Fenton reaction (Franzini et al., 1994). Yet, the exact 

role of mannitol in scavenging ROS is unknown. One of the several potential roles 

include protection of thiol-regulated enzymes, thioredoxin, ferredoxin and glutathione 

from hydroxyl radicals (Shen et al., 1997). Direct scavenging of hydroxyl radical and 

prevention of formation of hydroxyl radicals by binding to transition metals necessary for 

the Fenton reaction have also been proposed (Smirnoff, 1989). 

Drought tolerance in wheat: Drought is the dominant abiotic factor limiting the 

productivity of wheat and other crops. Hence several different approaches have been used 

to make wheat more drought tolerant. This includes engineering the plants to accumulate 

different osmolytes such as sugar and sugar alcohols (Abebe et al., 2003; Sivamani et al., 

2000; Valliyodan and Nguyen, 2006), over-expressing certain plant proteins, such as, late 

embryogenesis abundant (LEA) proteins. LEA proteins accumulate during seed 

desiccation and in vegetative tissues under water deficit stress (Sivamani et al., 2000). 
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Spring wheat transformed with the barley gene HVA1, which is a member of 

group 3 LEA protein genes, showed improved biomass productivity and water use 

efficiency compared to wild type plants under water deficit conditions (Sivamani et al., 

2000). A gene for a regulatory enzyme in proline biosynthesis was introduced into wheat, 

which led to proline accumulation and in turn resulted in tolerance to water deficit stress 

after 15 days of drought (Vendruscolo, 2007). The amino acid proline protected wheat 

plants from oxidative damage caused by ROS under drought stress rather than by osmotic 

adjustment. 

Previous experiments in our laboratory: In an attempt to increase the drought tolerance 

by mannitol accumulation, the spring wheat cultivar Bobwhite was transformed with the 

E. coli gene, mtlD, mentioned above and the mannitol accumulation was targeted to 

cytosol or chloroplast in different lines (Abebe et al., 2003). Presence of a transit peptide 

sequence in pTA5 lines directs the mannitol-1-phosphate dehydrogenase to the 

chloroplast which helps in mannitol accumulation in this organelle (Abebe et al., 2003). 

Absence of the transit peptide sequence in pTA2 lines results in cytoplasmic mannitol 

accumulation. The T2 transgenic lines showed increased tolerance to drought and salinity 

compared with the wild type plants (Abebe et al., 2003). The amount of mannitol 

accumulated in transgenic lines was too low to account for osmotic adjustment. 

The study was continued with T3 and T4 generation transgenic plants (Elavarthi, 

2005). Various physiological, biochemical and molecular experiments were performed to 

evaluate drought tolerance in transgenic lines, but they failed to show the same responses 

that had been observed in T2 generation transgenic plants (Elavarthi, 2005). The apparent 

lack of phenotype in the later generations raises the possibility of gene silencing that 
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needs to be confirmed by determining the quantitative expression of transgenes in 

different generations of the transgenic lines. 

Gene silencing: Inheritance and stable expression of the transgene over generations is 

important in creating a drought tolerant crop for agricultural purposes. Wheat 

transformed using the biolistic method with the pathogenesis–related genes, chitinase and 

β-1,3-glucanase, under the control of the maize ubiquitin promoter showed gene silencing 

in T3 generation plants (Anand et al., 2003). 

Another study on transgene inheritance and segregation demonstrated that the 

transgene though inherited as a dominant trait in the T1 generation, did not segregate in a 

Mendelian fashion (Rooke et al., 2003). A study on transgene inheritance and silencing in 

spring wheat proposed that high copy number of a transgene could trigger DNA 

methylation and can cause gene silencing and distortion of segregation ratios (Demeke et 

al., 1999). In monocots, gene silencing can occur at transcriptional and post-

transcriptional levels (Iyer et al., 2000). The biolistic method more frequently results in 

multiple copies and complex rearranged transgenes as compared to Agrobacterium 

mediated transformation (Hiei et al., 1994).  High incidence of transgene silencing has 

been observed in cases of high copy number or a rearranged transgene (Iyer et al., 2000). 

Use of the biolistic method to transform the spring wheat cultivar Bobwhite 

(Abebe et al., 2003), presence of high copy number of transgene in T0, T3 and T4 

generation plants (Elavarthi, 2005), and lower mannitol concentrations in later 

generations (Elavarthi, 2005) suggest the presence of transcriptional or post-

transcriptional gene silencing in transgenic spring wheat. This needs to be confirmed by 
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quantifying the gene expression, transgene copy number and the mannitol content in 

different generations of transgenic wheat.  
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CHAPTER III 
 
 

METHODOLOGY 

 

Objectives 

1. To evaluate the effects of mannitol accumulation on leaf gas exchange and 

chlorophyll fluorescence in T4 generation plants transformed with the mtlD gene, 

under well watered and water-deficit stress conditions. 

2. To determine activities of antioxidant enzymes in T4 generation plants 

transformed with the mtlD gene, under well watered and water-deficit stress 

conditions. 

3. To quantify mannitol and major sugars like glucose, sucrose, and fructose in T4 

generation plants transformed with the mtlD gene, under well watered and water-

deficit-stress conditions. 

4. To estimate the lipid peroxidation in T4 generation plants transformed with the 

mtlD gene, under well watered and watered-deficit-stress conditions.   
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All experiments were conducted on T4 generation plants of two chloroplastic 

(pTA5-108, pTA5-104) and three cytoplasmic (pTA2-110, pTApTA2-115, pTA2-118) 

lines. The pAHC20 line, containing only the selectable bar marker gene, and the wild 

type Bobwhite were used as controls during the experiments. Experiments I and II 

included determinations of gas exchange properties, antioxidant enzyme activities, and 

soluble carbohydrate concentrations. Tissue samples for enzyme and soluble sugar assays 

were collected 0, 15 and 30 days after discontinuation of watering the plants in the stress 

treatment.  Gas exchange measurements were conducted in the week prior to imposition 

of stress and at weekly intervals during the following 30-day period. 

Seed treatment and growth conditions: Seeds were surface sterilized by washing with 

70% ethanol followed by 20% chlorine bleach for five minutes in each solution. The 

seeds were thoroughly rinsed with deionized water to remove any remaining chemicals. 

Seeds were distributed in Petri dishes containing filter paper saturated with antibiotic 

piperacillin (100 mg Kg-1) prepared in 1% dimethyl sulfoxide (DMSO). The Petri dishes 

were wrapped in aluminium foil and kept at room temperature for 24 h. Petri dishes were 

moved to 4oC for 24 h to overcome seed dormancy. Seeds were next allowed to 

germinate for a week in Petri dishes, adding water every 2-3 days. After a week, 

seedlings were planted in small containers in a growth chamber. At 2-3 leaf stage, plants 

were screened by polymerase chain reaction (PCR) for presence of the transgenes mtlD 

and bar. After 2 weeks, positive plants were transplanted into pots and transferred to a 

greenhouse. 

Screening for mtlD and bar genes: Polymerase chain reaction (PCR) was performed on 

leaf tissue collected from 2-3 weeks old plants to confirm the presence of mtlD and bar 
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genes in transgenic wheat lines. The DNA extraction and PCR analysis were performed 

using the REDExtract-N-Amp plant PCR kit (Sigma, St. Louis). DNA was extracted 

from approximately 50 mg of leaf tissue. One hundred microliters of extraction buffer 

was added to the leaf tissue followed by incubation at 95oC for 10 minutes. After cooling, 

100 µl of dilution buffer was added. This extract was used as a DNA template for PCR 

reactions. The amplified PCR products were subjected to gel electrophoresis using 1.2% 

agarose (Table 1, 2). 

Stress treatment: Experiment I was conducted in a greenhouse in the fall of 2006 and 

Experiment II in the spring of 2007. The plants were split into two groups, a control 

group and a group exposed to water-deficit stress. After Day 0, the plants in the stress 

treatment group received no water until the volumetric soil water content had decreased 

to 10-15%.  This occurred on Day 10 in Experiment I and on Day 8 in Experiment II.  

From those days until the end of the experiments on Day 30, the stress level of these 

plants was maintained by addition of 200 ml of water each time this threshold volumetric 

soil water content was reached.  The group of well watered control plants received 500 

ml of water on the same days.   

Relative water content (RWC): At three time points, leaf tissue was collected in plastic 

bags and immediately placed on ice and brought to the laboratory. Fresh weight (FW) of 

an approximately 3-4 cm leaf segment was recorded. Leaf tissue was then transferred to 

centrifuge tubes filled with 2 ml of cold deionized water. Tubes were kept at 4oC for 3-4 

hours to allow full   hydration while minimizing metabolic activity. Turgid weights 

(TFW) were recorded after 3-4 hours following removal of the leaf sections from the 
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tubes and blotting the excess water off. The samples were then dried in a hot air oven at 

60oC for 48 hours. Dry weights (DW) were recorded after the drying (Sharp et al., 1990). 

The RWC (%) was calculated by using the following formula: 

RWC= (FW-DW)/ (TFW-DW)*100 

Gas exchange measurements: The rates of CO2 assimilation (A), transpiration and the 

stomatal conductance were determined at an irradiance of 1500 µmol m-2 s-1 PAR, 360 

µL CO2 L-1 air, 70% relative humidity and 22oC chamber temperature. In addition to 

point measurements, CO2 response curves were generated by measuring CO2 assimilation 

rates at a range of CO2 concentrations. Similarly, light response curves were generated by 

measuring the rates of CO2 assimilation at a range of irradiances. These gas exchange 

measurements were conducted with a LI-6400 (LI-COR, Inc., Lincoln, NE) portable 

photosynthesis system adapted with a CO2 mixer and a LED light source. The LI-6400 

mixes CO2 with the air going into the chamber and maintains a particular CO2 

concentration inside the chamber.  It also measures the CO2 exhausted from the chamber 

and then calculates the A from the difference in the two CO2 concentrations, the air flow 

rate (Elavarthi, 2005), and the leaf area in the chamber. Gas exchange experiments were 

conducted five times starting at well watered condition and ending after 30 days of water-

deficit stress, taking measurements at weekly intervals. Different parameters such as net 

photosynthesis rate, stomatal conductance, and transpiration rate of experimental 

transgenic and control lines were recorded under well watered and water-deficit stress 

conditions. Light and CO2 response curve measurements were conducted only on one 

transgenic line (pTA2-118) and one control line (pAHC20). These measurements were 
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recorded only three times namely before the start of the stress, 15 days into the stress and 

30 days into the stress. 

Chlorophyll fluorescence: The ratio of variable to maximum fluorescence (Fv/Fm) of 

dark-adapted leaves was measured with the help of the LI-6400-4 leaf chamber 

fluorometer. Fluorescence measurements were collected along with light response curve 

measurements at three time points. 

 Antioxidant enzymes: Activities of antioxidant enzymes were determined at three time 

points namely before imposition of stress, 15 days into the stress and 30 days into the 

stress. Approximately 200 mg of leaf tissue was powdered in liquid nitrogen using a 

precooled mortar and pestle. The powder was then homogenized in extraction buffer and 

transferred into a precooled centrifuge tube. Phosphate buffer of 0.2 M and containing 2 

mM EDTA at a pH of 7.8 was used as an extraction buffer for all assays. Fifty millimolar 

concentration of the same buffer was used in SOD and GR assays, while 50 mM of the 

same buffer at pH 7 was used for CAT and APOX assays. The homogenate was then 

centrifuged at 10,000 g for 20 minutes at 4oC. The supernatant was used in assaying the 

antioxidant enzymes, APOX and GR. The supernatant was diluted 2X and 200X for SOD 

and CAT assays, respectively.  

Determination of superoxide dismutase (SOD) activity: Total SOD activity of tissue 

extract was determined from the nitro blue tetrazolium (NBT) to formazon conversion 

caused by the superoxide radical in the presence of light (Flohe and Otting, 1984). 

Formation of the blue formazon is inhibited by SOD as it catalyzes the decomposition of 

the superoxide radical. Formazon formation was followed spectrophotometrically at 560 

nm. Final SOD activity in samples was calculated using a standard curve. Final SOD 
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activity was expressed in units g-1 fresh weight. One unit of SOD activity is defined as 

the amount of enzyme required to cause 50% inhibition of the reduction of NBT as 

monitored at 560 nm (Beauchamp and Fridovich, 1971). 

Determination of catalase (CAT) activity: The catalase activity of leaf extracts was 

measured by following the decrease in absorbance of H2O2 at 240 nm caused by the 

decomposition of H2O2 catalyzed by catalase (Beers and Sizer, 1952). Enzyme activity 

was expressed as µmol of H2O2 oxidized min-1 g-1 fresh weight.    

Determination of ascorbate peroxidase (APOX) activity: Leaf extracts were assayed in 

the presence of H2O2 and ascorbic acid (Moran et al., 1994; Nakano and Asada, 1981). 

The APOX activity was determined spectrophotometrically by following the oxidation of 

ascorbic acid at 290 nm. Ascorbate oxidase activity in plant samples was not detected. 

Also, there was no significant oxidation of ascorbate by H2O2. Enzyme activity was 

expressed as µmol of ascorbate oxidized min-1 g-1 fresh weight.  

Determination of glutathione reductase (GR) activity: Leaf extracts were assayed in 

the presence of 5,5’-dithio-bis(2-nitrobenzoic acid) (DTNB). The GR activity was 

determined spectrophotometrically by following the change in absorbance at 412 nm due 

to the formation of thionitrobenzoic acid (TNB) (Smith et al., 1988). Enzyme activity was 

expressed as µmol of TNB formed min-1 g-1 fresh weight. 

Lipid peroxidation assay: The level of lipid peroxidation in leaf tissue was measured by 

quantifying malondialdehyde (MDA) content determined by the thiobarbituric acid 

reaction (Dhindsa et al., 1981). Approximately 100 mg of leaf tissue was homogenized in 

3 ml 0.1% trichloroacetic acid (TCA) and centrifuged at 10,000 g for 5 minutes. Six 

hundred microliters of the supernatant was transferred to a fresh tube containing 2.4 ml of 
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20% TCA containing 0.5% TBA (thiobarbutiric acid). The new mixture was heated at 

95oC for 30 minutes and quickly cooled on ice. The samples were centrifuged again at 

10,000 g for 10 minutes. Finally, the absorbance of the supernatant at 532 nm was read 

and the non-specific absorption at 600 nm was subtracted. The concentration of MDA 

was calculated using its extinction coefficient of 155 mM-1 cm-1. 

Soluble carbohydrate analyses: Sugar and sugar alcohol content of the leaf tissue was 

quantified using a high performance liquid chromatography (HPLC) system coupled with 

a pulsed amperometric detector (PAD). Pure carbohydrate reagents (sorbitol, mannitol, 

glucose, fructose, and sucrose) purchased from Sigma (St. Louis, MO) were used as 

standards. Leaf tissue for HPLC analysis was collected at three time points, before the 

start of the stress period, 15 days after stress imposition and 30 days after imposition of 

stress. 

Approximately 200 mg of leaf tissue was weighed and powdered using liquid nitrogen 

and mortar and pestle. The powdered sample was mixed and vortexed in 400 ml of an 

ethanol/chloroform/water (12:5:3) mixture. An equal volume of water was added and the 

mixture was centrifuged at 10,000 g for 5 minutes. The upper aqueous phase was 

transferred to a new tube and the pellet was re-extracted with water at 60oC for 30 

minutes followed by another centrifugation. The extracts were then pooled and dried in a 

speedvac for approximately 3-4 hours. The final pellet was suspended in 300 µl of water. 

To remove hydrophobic substances, the solution was passed through a preconditioned C18 

solid phase extraction column (Altech Associates, Inc., IL), following which, 700 µl of 

water was passed through the column to collect the whole sample. The samples were then 

diluted 10 times for carbohydrate analysis. A CarboPac PA1 ion exchange column 
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(Dionex Corporation, Sunnyvale, CA) was used for carbohydrate analysis. Fifty 

microliters of sample was injected into the sample loop connected to the ion exchange 

column. Samples were separated isocratically in 40 mM NaOH sparged with helium. The 

flow rate was set to 2.0 ml min-1. Peak areas of known concentrations of standards were 

used to calculate carbohydrate concentrations of unknown samples. 

Phenotypic measurements: All experimental plants were harvested 30 days after 

withholding water. Phenotypic measurements such as height and above-ground biomass 

were recorded for all the transgenic and control lines. 
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CHAPTER IV 
 
 

RESULTS 

 

PCR screening for the transgenes: Two cytoplasmic (pTApTA2-115, pTA2-118) and 

two chloroplastic (pTA5-104, pTA5-108) lines, the empty vector line pAHC20, and wild 

type Bobwhite were used in this study.  As the transgenic seed lots segregated for the 

transgenes mtlD and bar, seedlings were screened for presence of the transgenes. Only 

plants testing positive for transgenes were selected for experimentation (Fig 2).  

Volumetric soil water content (VWC): In both experiments, soil VWC of control group 

plants was maintained in the range of 40-60% while for the stress exposed group the 

VWC was maintained between 8-18% (Figure 3, 4). The figures indicate a clear 

difference in VWC between well watered and stressed plants in the two experiments.   

Leaf relative water content (RWC): In Experiment I, pTA2-118 and Bobwhite showed 

approximately 25% and 8% lower leaf RWC under stress treatment compared to the 

plants under control treatment. In Experiment II all lines except pAHC20 showed 

significantly lower RWC values. In both experiments, pTA2-118 showed the lowest 

RWC among the lines on Day 30 in the stress treatment (Table 3, 4). 

Phenotypic measurements: In both experiments, a general decrease in height and 

above-ground biomass was observed in all experimental lines in response to stress (Table 
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5, 6). The transgenic line pTA2-118 was the tallest line under well watered as well as 

stressed conditions. In Experiment I, Bobwhite accumulated the greatest biomass under 

well watered conditions, but under stress, transgenic line pTA2-118 showed slightly 

greater biomass than the nontransformed Bobwhite. In Experiment II, transgenic line 

pTA2-118 showed slightly greater biomass than Bobwhite under well watered condition 

and almost equal amount of biomass under the stress treatment (Table 5, 6). 

Gas exchange measurements: In Experiment I, all experimental lines except pTA2-118 

and pAHC20 showed significant reduction in net photosynthesis rate (A) 10 days after 

discontinuation of watering. On Day 24, all lines showed significant reduction in net 

photosynthesis rate (Table 7). A similar response was not observed in Experiment II 

(Table 8). Among the lines, there were no significant differences in net photosynthesis 

rates in Experiment I, but in Experiment II pTA5-104 showed higher net photosynthesis 

rate than pTA5-108 and Bobwhite on Day 24 of the stress treatment (Table 7, 8).  

 In Experiment I, stomatal conductance was lowered on Day 10 and 24 in all lines 

(Table 9). This response was observed only in Bobwhite in Experiment II (Table 10).  

This suggests that the transgenic lines were no more able to restrict water loss under 

stress conditions than were the controls (Table 9, 10). 

Antioxidant enzyme assays:  

Ascorbate peroxidase (APOX) - In Experiment I, the APOX activity of line pTA2-115 

on Day 30 was significantly higher in the stress treatment than in the control treatment, 

but it was significantly lower in pTA2-118 (Table 11).  In Experiment II, pTA5-104 

showed lower APOX activity on Day 30 in the stress treatment as compared to the 

control treatment (Table 12).  There were no significant differences among the lines in 
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Experiment I, but in Experiment II, pTA5-104 under well watered condition and 

pAHC20 after 30 days of stress showed significantly higher APOX activity (Table 11, 

12) than the other experimental materials.  

 

Catalase (CAT) - There was no significant change in CAT activity in any of the 

materials after 15 and 30 days of stress treatment (Table 13, 14). In both experiments, 

pAHC20 had the highest CAT activity under well watered as well as water-deficit stress 

conditions.  

 

Glutathione reductase (GR) – In Experiment I on Day 30, the GR activity was 

significantly lower in stress exposed pTA2-118 plants than in well-watered plants of the 

same line (Table 15). In Experiment II, only Bobwhite showed significantly lower GR 

activity on Day 30 in the stressed treatment than in the well-watered treatment (Table 

16). The pAHC20 line showed the highest GR activity among the lines on Days 15 and 

30 in both water treatments. 

 

Superoxide dismutase (SOD) - In Experiment I on Day 15, the SOD activity was 

significantly lower in stress-exposed pTA5-104 plants than in well-watered plants of the 

same line (Table 17). In Experiment II, imposition of stress caused no significant change 

in SOD activity in all experimental lines. In both experiments, there were no significant 

differences among the lines in stress and control treatments (Table 17, 18). 
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Lipid peroxidation assay – In both the experiments, there was a significant increase in 

MDA content after 15 and 30 days of stress treatment. This increase was significantly 

lower in chloroplastic lines compared to cytoplasmic lines. The transgenic line pTA2-118 

showed the highest MDA content among the lines after 15 and 30 days of stress treatment 

in both the experiments (Table 19, 20).     

 

 Light response curves - In Experiment I, quantum efficiency (AQE) and maximum 

photosynthesis rate (Amax) were lower in the transgenic line pTA2-118 than in the 

control pAHC20 line 30 days into the stress treatment. The control line showed a 

significant reduction in light compensation point (LCP), after 15 days of stress treatment. 

In experiment II, the transgenic line showed significantly lower quantum efficiency than 

the control line after 30 days of stress treatment (Table 21, 22).  

 

CO2 response curves- In Experiment I, a significant difference in CO2 compensation 

point (CCP) between transgenic and control line was observed on Day 15 of the control 

treatment (Table 21). In Experiment II on Day 0, the transgenic line showed significantly 

lower carboxylation efficiency (CE) and CO2 compensation point (CCP) under control 

treatment. On Day zero, the control line showed significant differences in CCP from the 

transgenic line under both treatments (Table 23, 24). 

 

Soluble carbohydrate analyses: In Experiment I, as well as II, there were no significant 

differences in mannitol concentration between control and stress treatment. Also, there 

were no significant differences in mannitol concentration among the lines under both the 
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treatments. On Day 30, lines pTA2-115, pTA2-118, pTA5-104 and non-transformed 

Bobwhite in Experiment I, and pTA2-115, pTA5-104 and Bobwhite in Experiment II, 

showed a significant increase in total soluble sugars (TSS) in the stress treatment 

compared to the control treatment (Table 25, 26). In Experiments I and II, among lines, 

pTA2-118 and Bobwhite, respectively, showed the highest TSS concentration after 30 

days of stress treatment. In Experiment I, there were no significant differences in TSS 

concentration after 15 days of stress treatment but in Experiment II, pTA5-104 showed a 

significantly higher TSS concentration compared to other lines under both the treatments. 
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CHAPTER V 

 
 

DISCUSSION 

 

Previous experiments conducted on calli and T2 generation plants in our lab have shown 

that wheat plants transformed with the bacterial mtlD gene accumulated mannitol under 

water deficit stress and showed increased tolerance to drought and salinity. When the 

study here was extended to T4 generation plants, substantially lower concentrations of 

mannitol were observed, and little effect on drought tolerance was noted. 

In T2 generation plants exposed to drought stress, mannitol accumulated to 

between 0.6 and 2.0 µmol g-1 fresh weight in the mature fifth leaf (Abebe et al., 2003). In 

our Experiments I and II, mannitol accumulation ranged from 0.17 to 0.64 and 0.09 to 

0.63 µmol g-1 fresh weight, respectively. There was no significant increase in mannitol 

concentration upon stress. Thus, the mannitol concentration under stress in our 

experiments on T4 wheat was far lower than in T2 generation wheat (Abebe et al., 2003), 

tobacco (Tarczynski et al., 1993) and Arabidopsis (Thomas et al., 1995). The difference 

in mannitol concentrations between T2 and T4 generation transgenic plants may explain 

the differences in drought tolerance observed in our experiments and in the previous 
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ones.  The cause of the lower mannitol concentration in T4 plants remains unanswered 

though. 

A slightly different method of stress imposition was followed in our experiments 

compared to that used previously for T2 generation plants. The T2 generation transgenic 

plants in the earlier stress treatment received 1/3 of the amount of water given to plants in 

the control treatment, while in our experiments T4 plants in the stress treatment received 

40% of the amount given to plants in the control treatment. Although the soil volumetric 

water content was measured only for the T4 plants, the difference in watering protocols 

suggests that the T4 plants may not have experienced the same magnitude of stress as the 

T2 plants. 

Yet, our data on soil volumetric water content (VWC) show a clear difference in 

the amount of water available to T4 plants in the control and the stress treatments. Also, 

the leaf relative water content (RWC) was reduced under stress in pTA2-118 and 

Bobwhite in Experiment I, which indicates the presence of stress. The rest of the 

transgenic lines did not show a reduction in RWC under stress, however, which shows 

that these lines were able to maintain their RWC even with less water available than in 

the control treatment. However, a similar response was not observed in Experiment II, 

where all the experimental lines except pAHC20 showed significant reduction in RWC 

after 30 days of stress treatment. The above results suggest that the plants in Experiment 

II were stressed to a greater magnitude than those in Experiment I.  Our soil water data 

show that the stress exposed group in both experiments was maintained between 10-15% 

VWC, which was much lower than the control group. 
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The above data show that with our method of stress imposition, and for the 

transgenic lines used in our experiments, it took approximately 30 days for a significant 

reduction in RWC to appear and for stress to develop. 

Studies on wheat (Abebe et al., 2003; Kerepesi and Galiba, 2000) and tobacco 

(Karakas et al., 1997) transformed with the mtlD gene have shown an increase in total 

soluble sugars upon stress imposition. Our data is in agreement with these findings. A 

significant increase in total soluble sugars was observed in transgenic as well as control 

lines, but first after 30 days of stress treatment. The presence of mannitol did not affect 

the stress-induced accumulation of other soluble sugars. The fact that the increase in total 

soluble sugar content was observed first after 30 days of water stress supports the above 

conclusion, based on RWC and VWC, that the experimental plants were significantly 

stressed first toward the end of the 30 days of stress treatment. 

It should also be mentioned that pTA2-118 developed and senesced faster than the 

other experimental materials. This could have contributed to its low RWC. In 

Experiments I and II, the transgenic line pTA2-118 was the tallest line under well-

watered, as well as stressed conditions. Also, it accumulated slightly greater biomass than 

Bobwhite under stress in Experiment I and an almost equal amount of biomass in 

Experiment II. These results show that under stress the transgenic line pTA2-118 

performed better than the Bobwhite in terms of height and biomass. The possible role of 

mannitol in better performance of the transgenic line pTA2-118 is not clear. 

 The different physiological experiments conducted to evaluate drought tolerance 

in the transgenic wheat plants included measurements of net photosynthesis rate, 

transpiration rate, and stomatal conductance. Light and CO2 response curves were also 
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generated. Similar measurements have been previously used in wheat for studying the 

effects of water stress on gas exchange and chlorophyll fluorescence (Hassan, 2006). 

In Experiment I, the transpiration rate, net photosynthesis rate and the stomatal 

conductance were lowered in all experimental materials in the stress treatment, which 

suggests closure of stomata. In Experiment II, a significant reduction in the transpiration 

rate and the stomatal conductance was observed only in Bobwhite after 24 days of stress 

treatment. These results suggest that the presence of the mtlD transgene did not alter the 

pattern of restricting water loss by the leaves, i.e. the presence of the levels of mannitol 

observed in the transgenic lines did not give an added advantage to these plants under 

water deficit stress. 

Photosynthetic quantum efficiency (AQE) is calculated as the ratio between the 

number of CO2 molecules assimilated (or O2 molecules evolved) and the number of 

photons absorbed by the photosynthetic system (Zeinalov and Maslenkova, 1999). 

Environmental stresses like temperature and drought can alter the photosynthetic 

quantum efficiency (Zobayed et al., 2005). A study conducted on wheat showed about 

17% reduction in AQE under drought stress and 12% under heat stress (Hassan, 2006). 

In Experiment I, the transgenic line pTA2-118 showed lower maximum 

photosynthesis rate (Amax) and quantum efficiency (AQE) compared to that of the 

control line pAHC20 after 30 days of stress treatment while only AQE was lowered in 

Experiment II. The presence of mannitol did not show any effect on Amax and AQE 

under stress condition in the transgenic line. Also, presence of mannitol in the transgenic 

line did not show any effect on carboxylation efficiency (CE) under stress conditions. 
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The biochemical characterization included determination of activities of the 

antioxidant enzymes catalase, ascorbate peroxidase, glutathione reductase and superoxide 

dismutase and estimation of lipid peroxidation in transgenic and control lines under well-

watered and water-deficit-stress conditions. There was no consistent difference in 

antioxidant enzyme activities between stressed and control transgenic and nontransgenic 

lines. The presence of mannitol, which is also a scavenger of reactive oxygen species, did 

not affect the activities of the antioxidant enzymes in the transgenic plants under both 

well-watered and water-deficit-stress conditions. This suggests that the regular 

antioxidant system of nontransgenic plants might have been able by itself to adequately 

scavenge stress-induced reactive oxygen species. The lipid peroxidation measured in 

terms of malondialdehyde (MDA) concentration was significantly higher in pTA2-118 

compared to the chloroplastic lines after 15 and 30 days of stress treatment. Our data on 

RWC supports the above finding that pTA2-118 was the most stressed lines as it showed 

the lowest RWC among the experimental lines in Experiments I and II.  

Although there was an increase in lipid peroxidation upon imposition of stress in 

all the experimental lines, this increase was significantly smaller in chloroplastic lines 

compared to cytoplasmic lines. This suggests that the mannitol accumulation in 

chloroplasts provides better protection to plants from oxidative damage by hydroxyl 

radicals compared to cytoplasmic accumulation. These results are in agreement with a 

study conducted on tobacco which showed that mannitol accumulation in chloroplasts 

protects the plant from oxidation by hydroxyl radicals (Shen et al., 1997). The initial 

stress-induced reactive oxygen species, the superoxide radical, is formed in the 

chloroplast and is there converted to the very damaging hydroxyl radical.  Thus presence 
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of mannitol at the site of hydroxyl radical formation would be expected to be more 

effective in the elimination of this radical. 

In conclusion, transgenic lines performed better than control lines under stress 

treatment in terms of height and biomass. The transgenic line pTA2-118 was the tallest 

and fastest growing line. It also accumulated greater biomass than the wildtype under 

stress.  Presence of mannitol did not show any effect on antioxidant enzyme activities of 

transgenic lines under both the treatments. Physiological experiments showed that 

presence of mannitol did not give an added advantage to the transgenic lines as they did 

not perform better under stress. The mannitol concentration did not increase in transgenic 

lines after 15 and 30 days of stress treatment, but there was a significant increase in total 

soluble sugar content in some of the transgenic lines and control lines after 30 days of 

stress treatment. The accumulation of mannitol in the chloroplasts of the transgenic lines 

provided better protection to the cell membranes from harmful hydroxyl radicals 

compared to accumulation of mannitol in the cytoplasm.  

FUTURE STUDY: The decrease in mannitol concentration over the generations, use of 

the biolistic method to transform the spring wheat cultivar Bobwhite (Abebe et al., 2003), 

and presence of high transgene copy numbers in the transgenic lines (Elavarthi, 2005) 

suggest the presence of transcriptional or post-transcriptional gene silencing. This needs 

to be confirmed by quantifying transgene copy number, gene expression, and mannitol 

content in different generations of transgenic wheat. 
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APPENDICES 

                     H2O + 1/2 O2 

 

 

Mehler      reaction  

O2 

Figure 1: Role of antioxidant enzymes under oxidative stress: Superoxide radicals 

(.O2
-) are produced in chloroplasts in the Mehler’s reaction.  The superoxide dismutase 

enzyme, which is an important enzyme of plant’s antioxidant system, converts this 

superoxide radical into hydrogen peroxide which can be degraded by the enzyme 

catalase. An alternative path is through the ascorbate-glutathione cycle consisting of 

various antioxidant enzymes, where it finally gets converted to water. The hydrogen 

peroxide formed can form harmful hydroxyl radicals in the Fenton reaction (Arora et al., 

2002). 

 

 

 
 
 
 

Catalase 

Fe
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Figure 2: PCR screening for the presence of transgenes mtlD and bar. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 L    2    3     4     5    N    P    8    9  10   11  12    N    P        

L- 1 Kb ladder 
 
2-5- 600bp band for the mtlD gene in the transgenic line 

pTA2-115 
 
N. Negative control for the mtlD gene 
 
P. Positive control for the mtlD gene 
 
8. 1 Kb ladder 
 
9-12. 300bp band for the bar gene in the transgenic line 

pTA2-115 
 
13. Negative control for the bar gene 
  
14. Positive control for the bar gene 
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Figure 3: Soil volumetric water content (%) of the experimental pots in the 
Experiment I (Fall 2006) measured using Time Domain Reflectometry (bars are ± 
SE, n= 4).  Days 0, 15 and 30 refer to withholding of water in the stress treatment.  S 
and US following line names refer to the stressed and unstressed treatments 
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Figure 4: Soil volumetric water content (%) of the experimental pots in the 
Experiment II (Spring 2007) measured using Time Domain Reflectometry (bars are 
± SE, n= 4).  Days 0, 15 and 30 refer to withholding of water in the stress treatment.  
S and US following line names refer to the stressed and unstressed treatments 
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Table 1: Nucleotide primer sequences and amplicon size of the target genes mtlD and bar used for  

screening transgenic wheat plants. 

Target Gene  Primer Sequence (5’-3’) Amplicon Size (bp) 

mtlD Forward Primer 

 

Reverse Primer 

5’-CGG GTA TCC AAC TGA CGT 

TT-3’ 

5’-CCG TGT TCA GGG TGA AGA 

GT-3’ 

600 

bar Forward Primer 

 

Reverse Primer 

5’-CAT CGA GAC AAG CAC GGT 

CAA CTT C-3’ 

5’-CTC TTG AAG CCC TGT GCC 

TCC AG-3’ 

300 
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          Table 2: PCR parameters used for screening transgenic wheat plants 

Step Temperature  Time/ Duration Cycles 

Initial Denaturation  95oC 3 min 1 

Denaturation 

Annealing 

Extension  

95oC 

52oC 

72oC 

1 min 

1 min 

1 min 

30 

Final Extension 72oC 5 min 1 

Hold  4oC   
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   Table 3: Relative water content (%) of leaf tissue in Experiment I (Fall 2006) 
 

Stress level  Days  pTA2-115 pTA2-118 pTA5-104 pTA5-108 BW pAHC20 

Control 
Treatment 

0 92.6± 1.70a 92.5± 1.70 90.7± 2.70 90.5± 2.00 91.3± 1.30 91.3± 2.10 

 15 93.2± 0.40 93.2± 1.00 91.4± 2.50 92.5± 1.00 92.6± 0.50 91.6± 1.60 

 30 94.2± 0.70 96.3± 0.40a 92.3± 3.90 94.4± 0.65 93.8± 3.00a 94.4± 1.03 

Stress 
Treatment 

0 86.7± 2.30b 93.4± 0.60 87.7± 1.70 93.8± 0.80 90.8± 1.30 87.9± 2.90 

 15 91.0± 1.50 89.8± 0.64 89.0± 2.30 91.4± 0.60 91.6± 0.80 91.3± 1.20 

  30 89.6± 0.80 1 77.0± 3.09b2 88.7± 0.80 1 91.0± 0.80 1 86.6± 3.90b1 90.8± 0.92 1 

                         
                                          Values are means ± SE of four replications. Means followed by different letters in a column are significantly 
                                          different at P < 0.05 between the two treatments, and means followed by different numbers in a row are  
                                          significantly different at P < 0.05 among the lines 

 
 

                                   



 47

 

                       Table 4: Relative water content (%) of leaf tissue in Experiment II (Spring 2007) 
 

Stress 
level 

Days  pTA2-115 2-118 pTA5-104 pTA5-108 BW pAHC20 

Control 
Treatment 

0 94.68±0.44 92.85±1.51 94.10±0.98 96.56±3.63 94.14±1.68 95.58±1.28 

 15 97.22±0.51 95.75±0.58 96.81±1.27 93.81±1.18 95.39±0.40 94.14±1.34 

 30 93.08±1.08 a 92.27±1.10 a 92.96±0.95 a 92.74±1.39 a 94.18±0.95 a 91.25±0.31 

Stress 
Treatment 

0 94.50±0.48 93.91±1.15 94.28±0.87 94.90±1.35 97.09±1.53 94.30±1.21 

 15 96.40±0.95 95.45±0.87 97.01±0.64 95.26±0.86 94.63±0.49 93.98±0.65 

 30 87.48±1.78 b 12 80.15±3.33 b 3 84.93±2.66 b 2 84.64±1.26 b 2 89.62±2.31 b 1 87.45±2.81 12 

 
                           Values are means ± SE of four replications. Means followed by different letters in a column are significantly 
                                       different at P < 0.05 between the two treatments, and means followed by different numbers in a row are 
                                       significantly different at P < 0.05 among the lines. 
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   Table 5: Plant height and dry weight of the above ground biomass, recorded at  
   the end of the 30 days of stress period in Experiment I (Fall 2006) 

 
Stress level  Plant ID  Height (cm)  Biomass (Dry wt in grams)  

Control treatment pTA2-115 56.00± 0.41 5  16.55± 2.20 2 

 pTA2-118 75.50± 2.10 a 1 14.40± 1.72 2 

 pTA5-104 61.00± 1.73 a 4  16.68± 2.08 a2 

 pTA5-108 68.50 ±2.50 a 2 17.39± 0.39 2 

 BW 68.00± 0.71 23 22.14 ±1.30 a 1 

 pAHC20 65.75± 4.09 234  15.12 ±1.85 2 

Stress treatment pTA2-115 51.50± 2.72 2 12.42± 0.35 

 pTA2-118 63.25± 2.59 b 1 15.19± 0.57 

 pTA5-104 51.50± 1.55 b 2 12.47± 0.41 b 

 pTA5-108 61.50± 1.44 b 1 14.31± 0.59 

 BW 62.75± 2.25 1 13.67± 1.10 b 

  pAHC20 59.50 ±1.92 1 11.95± 0.79 

 
   Values are means ± SE of four replications. Means followed by different letters in  
   a column are significantly different at P < 0.05 between the two treatments, and  
   means followed by different numbers in a column in each treatment are significantly  
   different at P < 0.05 among the lines. 
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Table 6: Plant height and dry weight of the above ground biomass, recorded at the 
 end of the 30 days of stress period in Experiment II (Spring 2007) 

 
Stress level  Plant ID  Height (cm)  Biomass (Dry weight in grams)  

Control treatment pTA2-115 54.00±3.87 3 11.05±1.37 23 

 pTA2-118 71.75±2.32 1 16.53±0.93 a 1 

 pTA5-104 61.25±4.05 23 11.01±1.84 23 

 pTA5-108 63.00±2.48 2 13.23±1.81 123 

 BW 65.50±1.50 12 13.49±2.01 12 

 pAHC20 58.00±3.08 23 9.97±0.55 3 

Stress treatment 2-115 49.75±3.71 3 9.23±1.32 12 

 pTA2-118 67.50±3.50 1 11.74±1.66 b 12 

 pTA5-104 59.00±1.35 23 10.07±0.27 12 

 pTA5-108 57.25±2.63 23 10.57±0.83 12 

 BW 64.75±1.44 12 12.43±0.50 1 

 pAHC20 53.25±1.25 3 8.72±0.40 2 

 
Values are means ± SE of four replications. Means followed by different letters in a  
column are significantly different at P < 0.05 between the two treatments, and means  
followed by different numbers among in a column in each treatment are significantly  
different at P < 0.05 among the lines. 
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Table 7: Net photosynthesis rate (µmol m-2 s-1) measured five times in Experiment I (Fall 2006) 
 

Stress 
level 

Days  pTA2-115 pTA2-118 pTA5-104 pTA5-108 BW pAHC20 

Control 
Treatment 

0 25.28± 0.62 19.18± 2.20 23.03± 2.10 28.33± 1.00  a 20.80± 1.50 14.35± 2.10 

 3 22.78 ±1.50 26 70± 4.20 26.85± 2.40  26.80± 1.20  25.10 ±4.00 23.80± 2.00 

 10 29.32± 0.90 a 27.15± 2.30 28.08± 1.56 a 24.07± 2.11 a 26.55± 0.42 a 28.50 ±1.59 

 17 22.55± 1.99 22.12± 2.40 a 21.23± 1.96 21.65± 1.54 23.55± 1.05 24.12± 1.55 

 24 23.53± 2.60 a 24.82± 0.69 a 23.55± 2.50 a 23.62± 3.17 a 21.75± 0.27 a 26.35± 1.48 a 

Stress 
Treatment 

0 27.58 ±1.80 23.68± 1.80 22.60± 0.24 21.60± 4.00 b 21.78± 3.30 20.05 ±2.40 

 3 22.68± 1.45 27.18± 3.10 28.32± 1.60 24.10 ±3.01 27.00± 4.40 24.97± 2.80 

 10 16.34± 2.72 b 22.50± 3.20 17.83± 3.80 b 15.40± 1.03 b 19.80± 2.60 b 23.35± 1.74 

 17 16.92± 2.80 15.40± 2.60 b 19.55 ±1.01  17.80± 1.74 18.62± 0.75 20.67± 1.29 

  24 12.13 ±1.90 b 6.24± 0.90 b 9.98± 1.31 b 12.90 ±2.40 b 9.31± 1.61 b 15.49± 2.10 b 

 
Values are means ± SE of four replications. Means followed by different letters in a column are  
significantly different at P < 0.05 between the two treatments. 
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Table 8: Net photosynthesis rate (µmol m-2 s-1) measured five times in Experiment II (Spring 2007) 
 

Stress level  Days  pTA2-115 pTA2-118 pTA5-104 pTA5-108 BW pAHC20 

Control 
Treatment 

0 20.80±3.30 19.63±1.72 22.45±2.18 14.62±2.42 18.38±2.58 20.20±1.87 

  3 22.33±1.08 26.55±1.62 25.45±1.22 21.68±2.89 28.10±2.85 24.50±0.92 

  10 20.5±0.66 21.08±1.55 20.30±1.71 20.93±0.68 18.50±0.90 19.60±1.33 

  17 24.80±1.50 25.23±2.88 26.70±1.21 23.15±0.88 27 .03±2.08 27.80±0.98 

  24 22.85±2.35 21.95±2.54 21.05±2.53 19.08±0.81 20 .36±1.19 17.15±2.29 

Stress 
Treatment 

0 16.48±0.81 19.50±1.19 20.03±2.43 19.08±2.08 19.20±1.45 15.93±4.08 

  3 22.35±0.77 23.18±2.19 22.78±0.39 24.48±0.57 25.75±2.17 22.33±1.31 

  10 17.68±1.67 17.78±1.99 18.15±2.26 19.65±0.98 18 .28±1.71 21.40±2.07 

  17 19.54±4.48 23.38±3.28 22.00±3.46 21.88±2.43 21 .80±2.99 26.43±1.51 

  24 20.25±1.09 12 20.35±1.99 12 23.83±1.59 1 16.10±2.00 2 15.72±2.39 2 20.07±2.91 12 

 
Values are means ± SE of four replications. Means followed by different numbers in a row are 

  significantly different at P < 0.05 among the lines. 
 
 
 
 



 52

 
 
 
 
 
 
 

    Table 9: Stomatal conductance (mmol m-2 s-1) measured five times in Experiment I (Fall 2006) 
 

Stress level  Days  pTA2-115 pTA2-118 pTA5-104 pTA5-108 BW pAHC20 

Control Treatment -4 0.49± 0.02 0.35± 0.09 0.45± 0.06 0.54± 0.05 0.31± 0.02 0.36± 0.05 

 3 0.24± 0.03 0.39± 0.11 0.36± 0.05 0.34± 0.02 0.34± 0.09 0.32± 0.10 

 10 0.63± 0.13a 0.65± 0.07a 0.58± 0.07a 0.54± 0.11a 0.57± 0.04a 0.69± 0.10a 

 17 0.43± 0.06a 0.42± 0.09a 0.39± 0.06 0.41± 0.06a 0.45± 0.04a 0.57± 0.30a 

 24 0.32± 0.05a 0.54± 0.03a 0.42± 0.11a 0.35± 0.08a 0.32± 0.05a 0.42± 0.05a 

Stress Treatment -4 0.52± 0.07 0.34± 0.03 0.49± 0.04 0.42± 0.12 0.44± 0.08 0.32± 0.05 

 3 0.20± 0.03 0.29± 0.07 0.39± 0.07 0.24± 0.03 0.33± 0.08 0.29± 0.09 

 10 0.20± 0.05b 0.29± 0.04b 0.26± 0.06b 0.20± 0.04b 0.23± 0.05b 0.31± 0.06b 

 17 0.22± 0.07b 0.15± 0.04b 0.26± 0.04 0.21± 0.04b 0.19± 0.01b 0.32± 0.05b 

  24 0.09± 0.02b 0.05± 0.01b 0.07± 0.01b 0.11± 0.03b 0.07± 0.02b 0.16± 0.04b 

                
               Values are means ± SE of four replications. Means followed by different letters in a column are  
               significantly different at P < 0.05 between the two treatments. 
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 Table 10: Stomatal conductance (mmol m-2 s-1) measured five times in Experiment II (Spring 2007) 
  

Stress level  Days  pTA2-115 pTA2-118 pTA5-104 pTA5-108 BW pAHC20 

Control Treatment -4 0.42±0.09 0.35±0.06 0.30±0.01 0.21±0.04 0.25±0.07 0.30±0.03 

  3 0.62±0.04 0.63±0.10 0.59±0.04 0.49±0.08 0.72±0. 10 0.59±0.10 

  10 0.75±0.04 0.67±0.03 0.68±0.03 0.68±0.11 0.75±0 .04 a 0.64±0.10 

  17 0.85±0.02 a 0.78±0.03 0.84±0.05 0.79±0.08 0.85±0.04 a 0.86±0.03 

  24 0.64±0.09 0.53±0.08 0.63±0.06 0.57±0.01 a 0.61±0.10 a 0.55±0.12 

Stress Treatment -4 0.37±0.04 0.38±0.02 0.27±0.02 0.32±0.04 0.31±0.04 0.23±0.6 

  3 0.62±0.11 0.56±0.13 0.56±0.07 0.59±0.05 0.55±0. 06 0.47±0.07 

  10 0.66±0.10 0.56±0.13 0.72±0.03 0.63±0.05 0.52±0 .30 b 0.55±0.10 

  17 0.65±0.18 b 0.69±0.11 0.73±0.09 0.72±0.06 0.57±0.06  b 0.74±0.07 

  24 0.63±0.12 1 0.57±0.08 1 0.68±0.09 1 0.36±0.08 b 2 0.35±0.05 b 2 0.60±0.11 1 

 
Values are means ± SE of four replications. Means followed by different letters in a column are  
significantly different at P < 0.05 between the two treatments, and means followed by different  
numbers in a row are significantly different at P < 0.05 among the lines. 
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              Table 11: Ascorbate peroxidase activity (µmol min-1 g-1 fwt) recorded at three time points in Experiment I  
              (Fall 2006) 
 

Stress level  Days  2-115 pTA2-118 pTA5-104 pTA5-108 BW pAHC20 

 
 
 
Control Treatment 

0 16.00±3.29 16.94±0.69 17.14±1.26 15.73±1.38 21.60±2.15 18.61±1.22 

15 17.02±0.60 22.18±3.62 20.71±2.38 23.85±2.62 20.2 1±1.79 23.93±1.28 

30 21.76±2.29 a 33.54±2.91 a 25.45±2.21 23.99±2.17 28.50±3.65 28.11±6.45 

 
 
Stress Treatment 

0 17.37±1.36 20.20±2.35 15.37±2.11 19.02±1.98 19.94±2.25 16.20±1.22 

15 19.33±1.53 23.24±2.0 17.98±1.03 22.72±2.33 24.08±1.37 21.49±2.26 

30 32.50±8.36 b 25.57±4.79 b 22.82±1.20 26.30±4.04 27.23±2.46 25.57±2.33 

 
             Values are means ± SE of four replications. Means followed by different letters in a column are  
             significantly different at P < 0.05 between the two treatments.  
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        Table 12: Ascorbate peroxidase activity (µmol min-1 g-1 fwt) recorded at three time points in Experiment II  
        (Spring 2007) 
 

Stress 
level 

Days  2-115 pTA2-118 pTA5-104 pTA5-108 BW pAHC20 

Control 
Treatment 

0 14.45±1.29 16.10±3.16 15.37±1.63 16.38±0.29 17.09±2.07 15.27±1.04 

15 14.47±1.94 11.80±0.36 14.20±2.23 15.91±1.48 13.6 6±0.83 16.81±0.97 

30 20.48±2.29 23 21.08±0.90 23 31.39±7.13 a 1 24.66±4.10 23 22.98±4.14 23 26.86±2.04 12 

Stress 
Treatment 

0 16.06±1.19 14.83±1.40 15.92±1.15 15.30±0.66 17.06±0.90 16.83±2.20 

15 12.37±0.95 13.18±1.21 13.26±1.03 12.19±0.68 17.4 6±1.45 13.50±0.47 

30 18.47±2.72 2 25.93±5.78 1 21.20±3.00 b 12 22.27±2.19 12 18.47±1.74 2 26.19±3.04 1 

 
       Values are means ± SE of four replications. Means followed by different letters in a column are  
       significantly different at P < 0.05 between the two treatments, and means followed by different 
       numbers in a row are significantly different at P < 0.05 among the lines. 
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                Table 13: Catalase activity (mmol m-1 g-1 fwt) recorded at three time points in Experiment I (Fall 2006) 
 
 

Stress 
level 

Days  2-115 pTA2-118 pTA5-104 pTA5-108 BW pAHC20 

Control 
Treatment 

0 5.58± 0.60 2 5.53 ±0.21 2 5.95± 0.33 2 5.00± 0.71 2 6.33 ±0.36 2 8.11± 0.26 1 

 15 5.15± 0.29 6.73 ±0.19 7.00± 0.30 7.04 ±0.88 6.20± 0.17 7.10± 0.77 

 30 6.30 ±0.32 23 6.80± 0.90 23 7.30 ±0.97 23 7.01± 0.49 23 7.80± 0.90 12 9.01± 1.05 1 

Stress 
Treatment 

0 5.90± 0.50 6.51± 0.71 5.81± 0.46 6.20 ±0.69 6.80±  0.80 7.40 ±0.65 

 15 5.46 ±0.51 6.28± 0.44 6.21 ±0.77 6.50 ±0.52 6.10± 0.43 7.80± 0.32 

  30 6.80± 0.42 2 5.82± 0.80 2 6.95± 0.31 2 6.83 ±0.30 2 6.60 ±0.14 2 9.70± 0.61 1 

 
                Values are means ± SE of four replications. Means followed by different numbers in a row are  
                significantly different at P < 0.05 among the lines. 
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          Table 14: Catalase activity (µmol m-1 g-1 fwt) recorded at three time points in Experiment II (Spring 2007) 
 

Stress level  Days  2-115 pTA2-118 pTA5-104 pTA5-108 BW pAHC20 

Control Treatment 0 4.35±0.33 23 4.82±0.35 12 5.09±0.51 12 5.81±0.31 1 4.62±0.22 2 5.87±0.38 1 

  15 3.90±0.39 23 3.82±0.30 23 4.31±0.79 23 4.91±0.41 2 3.48±0.27 a 3 6.37±0.32 1 

  30 4.53±0.53 2 4.13±0.55 2 4.81±0.73 2 4.90±0.53 2 4.20±0.71 2 6.98±0.68 1 

Stress Treatment 0 4.67±0.26 2 4.47±0.25 2 5.00±0.20 2 5.22±0.28 2 5.18±0.45 2 6.75±0.43 1 

  15 3.35±0.28 3 3.12±0.30 3 4.23±0.36 23 3.88±0.09 23 4.86±0.17 b 12 5.46±0.26 1 

  30 3.93±0.89 2 3.60±0.58 2 4.01±0.41 2 4.16±0.68 2 3.69±0.33 2 6.87±0.40 1 

 
         Values are means ± SE of four replications. Means followed by different letters in a column are  
         significantly different at P < 0.05 between the two treatments, and means followed by different  
         numbers in a row are significantly different at P < 0.05 among the lines. 
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        Table 15: Glutathione reductase (mmoles min-1 g-1 fwt) activity recorded at three time points in Experiment I 

 (Fall 2006) 
 
 

Stress level  Days  2-115 pTA2-118 pTA5-104 pTA5-108 BW pAHC20 

Control 
Treatment 

0 3.59± 0.74 3.97± 0.61 4.32 ±1.30 4.07± 0.90 4.74±  0.45 5.38 ±0.25 

 15 4.68± 0.12 6.13± 0.34 6.03± 0.45 5.83± 1.05 5.02± 0.23 5.84± 0.97 

 30 4.47 ±0.40 6.35± 0.26 a 4.96± 0.55 4.77± 0.52 4.60± 0.28 5.16± 0.52 

Stress 
Treatment 

0 4.28± 0.59 4.92± 1.02 4.28± 1.05 3.91± 1.22 5.24±  0.95 5.38 ±0.90 

 15 4.27 ±0.69 3 5.10± 0.62 123 5.62± 0.94 12 5.22± 0.83 123 4.80± 0.47 23 6.37 ±1.20 1 

  30 4.79± 0.85 4.70± 0.82 b 4.67± 0.35 4.75± 0.73 4.65± 0.40 5.41± 0.48 

 
         Values are means ± SE of four replications. Means followed by different letters in a column are  
         significantly different at P < 0.05 between the two treatments, and means followed by different  
         numbers in a row are significantly different at P < 0.05 among the lines. 
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         Table 16: Glutathione reductase (mmoles min-1 g-1 fwt) activity recorded at three time points in  
         Experiment II (Spring 2006) 
 

Stress level  Days  2-115 pTA2-118 pTA5-104 pTA5-108 BW pAHC20 

Control Treatment 0 1.42±0.16 1.90±0.19 1.87±0.05 1.88±0.36 1.89±0.13 2.08±0.16 

 15 3.55±0.27 3.57±0.28 3.37±0.48 4.23±0.37 3.44±0. 32 4.72±0.32 

 30 3.83±0.36 2 4.66±0.69 2 4.30±0.68 2 4.51±0.59 2 4.82±1.44 a 2 6.78±0.45 1 

Stress Treatment 0 1.80±0.08 1.82±0.06 1.72±0.12 1.98±0.15 1.99±0.13 2.34±0.06 

 15 3.11±0.21 3.39±0.24 3.71±0.17 3.34±0.25 4.29±0. 19 4.03±0.52 

  30 3.41±0.45 3 4.96±1.13 2 4.33±0.56 23 3.86±0.49 23 3.46±0.35 b 3 6.21±0.62 1 

 
        Values are means ± SE of four replications. Means followed by different letters in a column are  
        significantly different at P < 0.05 between the two treatments, and means followed by different  
        numbers in a row are significantly different at P < 0.05 among the lines. 
. 
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Table 17: Superoxide dismutase activity (units g-1 fwt) recorded at three time points in Experiment I 
  (Fall 2006) 
 

Stress level  Days  2-115 pTA2-118 pTA5-104 pTA5-108 BW pAHC20 

Control Treatment 0 1106 ±239 972 ±95 1083 ±94 943 ±126 985 ±100 1003 ±198 

 15 537 ±60 916 ±95 1134 ±185 a 896 ±114 830 ±28 782 ±105 

 30 981 ±39 1537 ±141 1338 ±103 1131 ±153 1070 ±162  1205 ±228 

Stress Treatment 0 1038 ±42 841 ±67 929 ±112 1257 ±198 1011 ±242 1220 ±196 

 15 511 ±62 667 ±125 639 ±162 b 785 ±149 818 ±49 935 ±112 

  30 1078 ±266 1117 ±352  1049 ±148 1258 ±187 1187 ±113 1151 ±210 

 
  Values are means ± SE of four replications. Means followed by different letters in a column are  
            significantly different at P < 0.05 between the two treatments.  
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Table 18: Superoxide dismutase activity (units g-1 fwt) recorded at three time points in Experiment II  
(Spring 2007) 

 
 

Stress level  Days  2-115 pTA2-118 pTA5-104 pTA5-108 BW pAHC20 

Control Treatment 0 858±89.13 1050±131.18 749±110.89 909±64.93 1026±139.65 888±124.76 

 15 957±124.34 905±107.01 958±112.58 1066±121.59 1038±254.83 1115±96.76 

 30 1219±136.02 1435±201.50 1756±464.98 1328±55.89 1670±326.19 1204±141.08 

Stress Treatment 0 1057±70.34 1016±203.74 994±50.50 1109±132.40 992±89.06 927±50.46 

 15 794±47.11 776±99.28 827±102.62 1005±48.37 660±2 84.62 1045±104.95 

  30 1643±520.35 1753±516.91 1358±341.84 1620±267.48 1378±337.12 1515±104.17 
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        Table 19: Lipid peroxidation estimated by malondialdehyde (MDA) concentration (nmol g-1 fwt) in  
        Experiment I (Fall 2006) 
 

Stress level  Days  2-115 pTA2-118 pTA5-104 pTA5-108 BW pAHC20 

Control 
treatment 

15  28.5± 4.5 30.9± 4.2 24.0± 1.5 22.1± 3.5 26.6± 2 .5 22.3± 4.8 

 30  36.7± 5.0 44.0± 6.5 40.2± 3.4 34.5± 4.2 40.2± 3.3 32.5± 6.2 

Stress 
treatment 

15  72.1± 8.4 12 85.1± 7.4 1 61.4± 6.0 2 55.6± 7.4 2 70.6± 11.2 12 65.6± 10.5 12 

  30  148.4± 12.2 12 165.0± 14.5 1 126.4± 10.9 23 118.7± 9.0 3 154.0± 14.5 12 132.3± 16.7 123 

 
        Values are means ± SE from four replications followed by numbers. The means followed by  
        different numbers in a row are significantly different at P < 0.05 among the lines. 
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            Table 20: Lipid peroxidation estimated by malondialdehyde (MDA) concentration (nmol g-1 fwt) in  
            Experiment I (Spring 2007) 
  
 
 
 
 
 
 
 
 
 
 
 
            Values are means ± SE from four replications followed by numbers. The means followed by different 
  numbers in a row are significantly different at P < 0.05 among the lines. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Stress level  Days  2-115 pTA2-118 pTA5-104 pTA5-108 BW pAHC20 

Control 
treatment 

15  23.1± 4.3 21.4± 5.6 26.9± 3.4 22.4± 4.0 20.1± 3 .5 25.9± 4.1 

 30  30.7± 5.6 34.5± 7.2 30.1± 6.2 26.3± 6.2 28.5± 5.5 32.0± 6.6 

Stress 
treatment 

15  54.0± 9.2 12 72.3± 11.5 1 58.5± 8.5 12 48.3± 7.5 2 55.4± 9.0 12 60.1± 10.2 12 

  30  118.4± 20.2 12 148.3± 18.0 1 94.5± 12.8 23 87.5± 10.8 3 122.5± 14.5 12 99.7± 13.5 23 
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 Table 21: Light response curve measurements were recorded at two time points in Experiment I (Fall 2006) 
 

Stress level  Lines  AQE Amax (µmol m -2 s-1) LCP (µmol m -2 s-1) 

  Days  Days  Days  

  15 30 15 30 15 30 

Control treatment pAHC20 0.060± 0.004 0.061± 0.005 31.5 ±2.37 27.3 ±0.57 33.7 ±1.0 1 22.2± 6.6 

 pTA2-118 0.062 ±0.002 0.055± 0.004 28.9 ±1.42 16.2 ±3.41 26.5± 5.6 25.3± 1.4 

Stress treatment pAHC20 0.054± 0.003 0.063± 0.002 1 29.8 ±1.27 25.2 ±0.92 1 19.3± 4.3 2 18.1± 2.1 

  pTA2-118 0.052± 0.004 0.047± 0.001 2 30.7 ±3.19 14.6 ±1.55 2 21.9± 4.8 18.6± 2.4 

 
             Values are means ± SE of four replications. Means followed by different numbers in a column are  
            significantly different at P < 0.05 among the lines.  

 
AQE= quantum efficiency 

            Amax= maximum photosynthesis rate 
            LCP= light compensation point 
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            Table 22: Light response curve measurements were recorded at two time points in Experiment II  
            (Spring 2007) 
 

Stress level  Lines  AQE  Amax (µmol m -2 s-1) LCP (µmol m -2 s-1) 

  Days  Days  Days  

  15 30 15 30 15 30 

Control 
treatment 

pAHC20 0.065± 0.001 0.066± 0.007 32.8± 0.90 27.8± 0 .4 23.7± 1.6 19.2± 1.3 

 pTA2-118 0.064± 0.003 0.068± 0.003 28.7± 0.65 27.2± 2.2 21.9± 3.4 24.0± 1.4 

Stress 
treatment 

pAHC20 0.062± 0.003 0.075± 0.004 1 29.9± 2.3 25.4± 2.5 21.4± 0.79 24.9± 1.7 

  pTA2-118 0.056± 0.005 0.057± 0.007 2 27.4± 3.3 23.5± 6.1 22.8± 7.3 16.6± 3.2 

 
             Values are means ± SE of four replications. Means followed by different numbers in a row are 
             significantly different at P < 0.05 among the lines. 
            AQE= quantum efficiency 
            Amax= maximum photosynthesis rate 
            LCP= light compensation point 
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                 Table 23: CO2 response curves measurements were recorded at three time points in Experiment I (Fall 2006) 
 
 

Stress level  Lines  Carboxylation efficiency (µmol m -2 s-1) CO2 compensation point (µmol m -2 s-1) 

  Days  Days  

  0 15 30 0 15 30 

Control treatment pAHC20 1.42± 0.02 1.20± 0.15 1.13± 0.05 47.4± 9.6 46.5± 9.2 1 46.3± 8.3 

 pTA2-118 1.21± 0.09 1.07± 0.10 1.27± 0.13 46.9± 10 .1 38.1± 7.2 2 46.5± 9.3 

Stress treatment pAHC20 1.36± 0.03 1.26± 0.04 1.28± 0.05 48.8± 9.7 37.5± 5.4 47.4± 8.7 

  pTA2-118 1.29± 0.05 1.19± 0.02 1.35± 0.12 45.1± 9 .4 42.5± 6.7 54.4± 9.9 

 
                Values are means ± SE of four replications. Means followed by different numbers in a column are 

    significantly different at P < 0.05 between the two treatments.  
.  
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                Table 24: CO2 response curves measurements were recorded at three time points in Experiment II 
      (Spring 2007 
 
 

Stress level  Lines  Carboxylation efficiency (µmol m -2 s-1) CO2 compensation point (µmol m -2 s-1) 

  Days  Days  

  0 15 30 0 15 30 

Control 
treatment 

pAHC20 1.20± 0.13 1.41± 0.06 1.00± 0.04 37.4± 041 b 44.3± 1.9 36.8± 6.5 

 pTA2-118 1.27± 0.10 1.27± 0.10 0.97± 0.15 39.9± 009 42.0± 3.8 35.7± 5.8 

Stress 
treatment 

pAHC20 1.05± 0.15 2 1.21± 0.03 1.08± 0.07 50.0± 054 a1 42.3± 2.8 45.2± 1.9 

  pTA2-118 1.38± 0.15 1 1.29± 0.09 1.09± 0.19 38.3± 041 2 45.9± 2.1 46.8± 3.8 

 
                Values are means ± SE of four replications. Means followed by different letters in a column are  
                significantly different at P < 0.05 between the two treatments, and means followed by different  
                numbers in a column are significantly different at P < 0.05 among the lines. 
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Table 25: Carbohydrate concentrations (µmol g-1 fwt) recorded at three time points in Experiment I (Fall 2006) 

 
Stress 
Level 

Lines  Time Points  

  Days  

  0 15 30 

  Mannitol Total soluble 
sugar 

Mannitol Total soluble 
sugar 

Mannitol Total soluble sugar 

Control 
treatment 

pTA2-115 0.15 ±0.07 22.79 ±2.73 0.37 ±0.22 29.75 ±3 .81 0.48 ±0.25 31.21 ±3.26 a 

 pTA2-118 0.09 ±0.05 17.49 ±4.22 0.22 ±0.15 33.68 ±18.55 0.42 ±0.25 43.53 ±6.04 a 

 pTA5-104 0.06 ±0.05 18.26 ±1.90 0.34 ±0.14 31.46 ±3.40 0.52 ±0.28 32.40 ±11.59 a 

 pTA5-108 0.07 ±0.04 14.97 ±2.24 0.11 ±0.06 27.80 ±3.27 0.27 ±0.17 65.82 ±19.40 

 BW 0 19.34 ±1.82 0 23.73 ±2.46 0 23.29 ±4.44 a 

 pAHC20 0 22.42 ±4.37 0 23.95 ±4.52 0 29.17 ±2.46 

Stress 
treatment 

2-115 0.12 ±0.06 20.19 ±3.27 0.35 ±0.22 29.43 ±2.28  0.47 ±0.22 77.63 ±24.70 b 23 

 pTA2-118 0.09 ±0.06 18.22 ±2.15 0.36 ±0.17 36.76 ±6.43 0.64 ±0.23 110.06 ±40.05 b 1 

 pTA5-104 0.12 ±0.06 18.86 ±3.63 0.17 ±0.12 23.29 ±3.15 0.45 ±0.22 86.80 ±8.38 b 12 

 pTA5-108 0.07± 0.04 14.33 ±2.91 0.23 ±0.10 41.03 ±6.67 0.34 ±0.20 42.43 ±14.58 4 

 BW 0 13.30 ±2.31 0 26.80 ±3.05 0 87.57 ±22.01 b 12 

  pAHC20 0 14.27 ±3.18 0 22.11 ±5.86 0 50.42 ±17.88 34 

 

                     
                                       Values are means ± SE of four replications. Means followed by different letters in a column are significantly 

               different at P < 0.05 between the two treatments, and means followed by different numbers in a column within 
                     each treatment are significantly different at P < 0.05 among the lines. 



 69

 
 
 

Table 26: Carbohydrate concentrations (µmol g-1 fwt) recorded at three time points in Experiment II 
   (Spring 2007) 
 
 

Stress 
Level 

Lines  Time Points  

  Days  

  0 15 30 

  Mannitol Total soluble 
sugar 

Mannitol Total soluble 
sugar 

Mannitol Total soluble 
sugar 

Control 
treatment 

pTA2-115 0.38 ±0.14 33.78 ±5.26 0.17 ±0.16 12.23 ±2 .97 2 0.32 ±0.22 39.55 ±3.42 b 

 pTA2-118 0.47 ±0.24 26.55 ±3.30 0.28 ±0.10 18.00 ±5.24 2 0.52 ±0.25 42.14 ±7.18 

 pTA5-104 0.16 ±0.06 40.87 ±9.58 0.21 ±0.12 46.03 ±9.37 1 0.39 ±0.23 37.65 ±4.42 b 

 pTA5-108 0.22 ±0.08 28.49 ±7.14 0.13 ±0.09 18.83 ±5.14 2 0.18 ±0.11 26.45 ±2.61 

 BW 0 35.87 ±13.44 0 12.84 ±1.32 2 0 51.33 ±15.03 b 

 pAHC20 0 24.53 ±2.61 0 11.22 ±1.97 2 0 41.65 ±8.06 b 

Stress 
treatment 

2-115 0.59 ±0.21 27.86 ±2.45 0.21 ±0.13 9.78 ±2.22 2 0.52 ±0.22 100.25 ±23.92 a 
1 

 pTA2-118 0.15 ±0.08 20.36 ±6.88 0.21 ±0.07 17.57 ±5.24 2 0.63 ±0.29 50.63 ±7.23 23 

 pTA5-104 0.44 ±0.27 21.10 ±3.63 0.08 ±0.07 48.25 ±13.53 1 0.35 ±0.21 65.33 ±10.02 a 2 

 pTA5-108 0.25 ±0.12 28.40 ±3.54 0.09 ±0.08 17.23 ±4.77 2 0.19 ±0.11 41.27 ±6.10 3 

 BW 0 27.85 ±5.81 0 15.42 ±3.96 2 0 105.81 ±5.13 a 1 

  pAHC20 0 21.78 ±3.80 0 9.62 ±2.74 2 0 85.42 ±20.24 a 2 

 
Values are means ± SE of four replications. Means followed by different letters in a column are significantly different  
at P < 0.05 between the two treatments, and means followed by different numbers in a column within each treatment  
are significantly different at P < 0.05 among the lines. 
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Findings and Conclusions:  
 

Wheat is an important crop grown worldwide, and it is severely affected by the 
drought stress. Sugars and sugar alcohols are known for protecting plants from 
drought stress. Among these, the sugar alcohol mannitol that is not normally 
found in wheat is known to scavenge free radicals. In this study, the mannitol 
accumulating transgenic T4 generation of wheat was characterized by measuring 
different properties such as biomass, height, net photosynthesis rate, stomatal 
conductance, light and CO2 response curves, and antioxidant enzyme activities. 
The T4 generation wheat lines did not show the drought and salt tolerance 
previously observed in the T1 generation. The mannitol concentration found in 
the T4 generation was also far lower than in the T1 generation, and it did not 
increase under stress. The transgenic lines performed better than the wild type 
Bobwhite in terms of only height and biomass. Accumulation of mannitol in the 
chloroplasts of the transgenic lines provided better protection from membrane 
lipid peroxidation caused by harmful hydroxyl radicals compared to accumulation 
of mannitol in the cytoplasm. 

 
 
 
 
 
 
 
 
 
 
 
 
 


