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CHAPTER I 

 

 

ABSTRACT 

 

Winter wheat (Triticum aestivum L.) is widely used in the southern Great Plains as a 

winter forage resource to supplement income from a wheat monocrop system. Depending 

on production and prevailing market conditions, some producers may allow cattle (Bos 

Taurus L.) to graze wheat until the first-hollow-stem stage or to graze entirely.  Thus, 

winter wheat offers dual benefits of grain and beef production in the form of three 

management systems: grain-only (GO, no grazing), forage only (full season grazing), or 

dual-purpose (DP, grazing and grain).  Although traditionally, winter wheat cultivars are 

developed in GO production systems, they are often deployed in DP systems. The 

incidence and severity of soil-borne and insect transmitted diseases, insect herbivory, and 

abiotic stress are increased in DP system and thus can reduce grain yield depending on 

the year or cultivar. We hypothesized that a grazing system can be used as a selection 

tool to create breeding populations enriched with genes that confer grazing tolerance, 

persistence, and ultimately, improved adaptation.  However, no clear evidence exists in 

wheat to refute or support this hypothesis. Thus, the main objective of this research was 

to determine selection responses in winter wheat induced by GO and DP management 

systems. Grain yield and associated traits for 24 sets of populations were measured in GO 

and DP systems, following natural selection in those systems for three consecutive 
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generations (F2 – F4). Research was conducted in Marshall, Oklahoma using the F5 bulk 

progeny from each population. Our analysis showed that grain yield in a DP system can 

be increased by early-generation selection in that system, without negative consequences 

to grain yield in a GO system. 
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CHAPTER II 

 

INTRODUCTION 

Winter wheat (Triticum aestivum L.) is widely used in the southern and central 

Great Plains as a winter forage resource to supplement income from a wheat monocrop 

system. Depending on production and prevailing market conditions some producers 

either allow cattle (Bos taurus L.) to graze wheat until the first-hollow-stem stage, 

defined as the growth stage when hollow stem can be observed between the crown and 

the developing spike (Redmon et al., 1996; Fieser et al., 2006), or to graze it entirely 

through reproductive development. Thus, winter wheat offers dual-purpose potential for 

grain and beef production. Traditionally, winter wheat cultivars have been developed in a 

grain-only (GO) management system, but they are often deployed in a dual-purpose (DP) 

management system. 

An estimated 3.2 million hectares of wheat will be grazed in any given year in the 

Great Plains (Pinchak et al., 1996). One Oklahoma survey showed almost two-thirds of 

the 1995-1996 wheat crop was intended for the dual purpose of forage plus grain (Epplin 

et al., 1998), though less area will be dedicated to grazing as grain prices increase relative 

to beef prices. Choice of a DP production system introduces different management tactics 

and input requirements compared with a GO system. Dual-purpose wheat is planted 

earlier and seeded more densely (Epplin et al., 2000; Hossain et al, 2003), and it requires 

additional N fertilizer to compensate for the removal of wheat forage (Krenzer, 1991; 
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Zhang et al., 1998). When wheat is grown for dual-purpose, additional N is required to 

replace N removed as beef in the amount of 0.74 kg N per unit kg beef removed (Zhang 

et al., 1998). 

Plant height is one of the best indicators of grazing response in grasses. It varies 

depending upon grazing intensity (Dỉaz et al., 2001), but plant height generally decreases 

in response to grazing (Noy-Meir et al., 1989; Landsberg et al., 1999). At the same time, 

in cereal species like triticale (x Triticosecale Witt) and wheat, there is a reduction in 

grain yield in response to forage removal by grazing (Garcỉa del Moral et al., 1995; 

Arzadủn et al., 2006). The grain yield reduction in a wheat dual-purpose system varied 

with cultivar from 30 to 70% in one year, with a mean of 49%, and from 4 to 35% in 

another year, averaging 22% (Khalil et al., 2002). Christiansen et al. (1989) found that 

when growth potential is such that removal of forage will prevent lodging, grazing could 

actually increase grain yield. Redmon et al. (1995) indicated that grazing will have 

minimal effect on grain yield if soil moisture is adequate throughout the growing season. 

In the same article, they reported that under adequate to excess soil fertility, the grazed 

system increased winter wheat grain yield due to reduced lodging.   

Timely removal of cattle from wheat pasture is critical to maximum economics 

return from the DP management system, because beef gain and grains yield can be 

antagonistic if grazing termination occurs too late (Redmon et al., 1996). Cattle weight 

was shown to increase linearly with number of grazing days past FHS stage, whereas 

grain yield decreased by 10% when grazed for two weeks past FHS and an additional 

10% for each of two subsequent weeks (Fieser et al., 2006). Both components of the 
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dual-purpose enterprise are essential; thus optimal balance is best achieved by 

termination of grazing at the FHS stage (Fieser et al., 2006). 

Various reports of grazing or clipping of small grains has shown different effects 

on grain yield depending on varying growing conditions, management, or cultivars. The 

Leaf Area Index (LAI) at anthesis showed significant loss because of clipping with a 

decrease in the number of leaves per plant and in the green area per leaf in triticale 

(Garcỉa del Moral, 1992). In the same experiment, they reported that there was an inverse 

relationship between the percent leaf loss at anthesis and final grain yield, implying that 

grain yield depend largely on the ability of the crop to produce new leaf tissue rapidly 

between defoliation and anthesis (Garcỉa del Moral, 1992). However, there is smaller leaf 

area in grazed population which does not allow speedy recovery from defoliation (Winter 

et al., 1990). Also delayed forage defoliation reduced tiller survival and caused fewer 

seeds per head but had a small effect on the average weight per seed (Dunphy et al., 

1982). Grain yield was a function of total biomass at heading date in wheat (Winter and 

Thompson, 1987), implying that removal of forage late in the grazing season decreases 

grain yield (Swanson, 1995). The DP management system can add other potential risks 

which may reduce grain yield relative to a GO system.  The incidence and severity of 

soil-borne and insect-transmitted diseases (Hammon et al., 1996; Hunger et al., 2002; 

Piccinni et al., 2001), insect herbivory (Royer et al., 1997), and abiotic stresses are 

increased in a DP system, and thus can reduce grain yield depending on the year or 

cultivar (Epplin and Peeper, 1998; Carver et al., 2001).  

The unique stress factors which emerge when a grazing component is added to a 

winter wheat production system would imply that the appropriate field environment is 
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needed to allow breeders to identify genotypes with exceptional grazing tolerance and 

persistence and thus minimum grain yield loss following grazing. Turning to other grass 

species, selection imposed by grazing cattle strongly acts upon the individual plant, 

which leads to the development of ecotypes over time (Bradshaw, 1972). Moreover, 

natural selection adds beneficial effects in adaptation to the particular complex of 

climatic and edaphic conditions of a particular location (Allard, 1988).  Vaylay et al. 

(1999) showed population differentiation among grazed and ungrazed populations of tall 

fescue (Festuca arundinacea Schreb.) in their response to grazing, and primarily through 

an increase in tiller number in grazed survivors compared to ungrazed survivors. In 

another study by Brummer et al. (2000) with perennial cool-season grass species and 

legume cultivars, a prostrate canopy was formed among grazed survivors as an adaptation 

response to environmental stresses such as grazing. Formation of prostrate growth serves 

as a primary tolerance mechanism and reservoir of photosynthate in the perennial grass 

species, allowing tillers to recover from severe defoliation.   

Consistent with findings in those grass species, prostrate genotypes of wild wheat 

(Triticum dicoccoides) showed greater tolerance to intensive grazing compared with erect 

genotypes (Noy-Meir et al., 2002). Grazing resistance was associated with leaf size and 

high surface leaf area (SLA) according to Westoboy (1999). They proposed a scheme 

explaining how specific leaf area and plant height plays a vital role in response to 

disturbance, i.e., to grazing. According to their model, plants with high SLA should be 

favored under heavy and non-selective grazing. Grain yield was dependent on the plant’s 

potential to regenerate leaf area and also prevention of tiller senescence before anthesis 

(Dunphy et al., 1984). Several studies supported the importance of rapid regeneration of 
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leaf area after defoliation to establish photosynthetic capacity to establish maximum grain 

yield (Dunphy et al., 1984; Winter and Thompson 1987). Grazed survivors of tall fescue 

produced more tillers compared with non-grazed survivors (Vaylay et al., 1999), a 

finding corroborated by  Noy Meir (2002) in T.  dicoccoides.  This observation may be 

explained physiologically, as removal of the apex diminished the production of indole 

acetic acid, thus increasing the ratio of cytokinin to indole acetic acid, which induced the 

production of axillary buds (Murphy and Briske, 1992) and ultimately new tillers (Etter, 

1951). Environmental variables like light intensity in the canopy, day length and 

competition among the plants may also increase tiller numbers.  

We hypothesized that a grazing system can be used as a selection tool to create 

breeding populations enriched with genes that confer grazing tolerance, persistence, and 

ultimately, improved adaptation. However, no clear evidence exists in wheat to refute or 

support this hypothesis. Thus, this study is focused on the selection responses in grain 

yield and associated traits in winter wheat induced by GO and DP management systems. 
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CHAPTER III 

 

METHODOLOGY 

Development of Experimental Materials 

 The experimental materials contained 24 sets of breeding populations derived 

from and representative of the winter wheat cultivar development program of Oklahoma 

State University (Table 1). Also included were three check cultivars, ‘2174’ (PI 602595; 

USDA-ARS, 2008), ‘Jagger’ (Sears et al., 1997), and ‘Custer’, which continue to occupy 

nearly 40% of the wheat acreage in Oklahoma (2007-2008 crop season; National 

Agricultural Statistics Service, 2008).  

We report here only the most essential components of the development phase for 

the experimental materials. Grain-only and dual-purpose management systems were 

imposed at the Expanded Wheat Pasture Unit (EWPU) near Marshall, OK. This 

experiment station, located 56 km west of Stillwater, OK, is operated by Oklahoma State 

University through lease agreements with two farmer cooperators. Hence, management 

practices used at the station and incorporated into this study were precisely those which 

typify farmer-rancher practices in the southern Great Plains. General features of GO and 

DP management practices were described by Hossain et al. (2004). 

Derivation of and selection within the breeding populations was described in an 

independent study that focused on the selection response in fall forage (MacKown and 

Carver, 2005).The F2 seed of each population was divided into sublots and planted in 

each system for three consecutive years: 1998 (F2), 1999 (F3), and 2000 (F4). Each 



 

9 

 

9 

generation was advanced following bulk breeding procedures, with no additional 

artificial selection beyond the environmental conditions inherent to, and natural selection 

associated with, each system. Seeds were harvested from the middle three rows of five-

row plots, 3 m long by 1.2 m wide, and planted in the same system the following year. In 

addition to the selected populations (designated GO and DP according to the system in 

which they were selected), seed from each original F2 population (designated Base) were 

planted in a seed-increase nursery at the Agronomy Research Station in Stillwater, OK. 

This single-generation seed increase balanced the need to produce sufficient seed for later 

field testing while limiting natural selection in a field environment to one year. 

Completion of the development and selection phase produced 24 triplicate sets of 

populations, with final plant generation of inbreeding as follows: Base, F2; GO, F4; and 

DP, F4. Each component population will be referred to as selections in the treatment 

structure, and selections derived from the same population will be referred to as genetic 

backgrounds. 

 

Experimental Design and Data Collection 

Using only the seed produced during the final selfing generation, the bulk 

progenies were evaluated for three subsequent years without further advancement in 

generation of inbreeding. Hence the GO- and DP-derived populations were repeatedly 

evaluated in the F5 generation while the base populations were evaluated in the F3 

generation. Experiments were established on a fine, mixed, thermic Udertic Paleustoll 

soil (Kirkland silt loam) at the EWPU, Marshall, OK. Fertilizer N was applied as 

anhydrous ammonia, adjusting for residual mineral N, in amounts considered adequate 
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for grain yield of 3000 kg ha
-1

 and a dry forage yield of 3500 kg ha
-1

.  Soil pH was 

maintained above the minimum level of 5.5 throughout the selection and evaluation 

phases.  

Two experiments were established each year at the EWPU to accommodate 

independent but proximate positioning of DP and GO systems in a 10-ha pasture. The 

plot area representing the GO system was protected from grazing by an electrical fence. 

The stocking rate in the DP system varied slightly within and between seasons depending 

on forage availability but was approximately two steers per hectare. Other management 

practices during the testing phase were similar to those used during the bulk selection 

stage, as described previously by MacKown and Carver (2005). Seeding occurred in the 

DP system on 10 Oct. 2000, 10 Sept. 2001, and 24 Sept. 2002 at a rate of 77 kg ha
-1

; 

seeding occurred in the GO system on 11 Oct. 2000, 2 Oct. 2001, and 16 Oct. 2002 at a 

rate of 58 kg ha
-1

. Respective dates of grazing initiation and termination in the DP system 

were 18 Dec. 2000 and 3 Mar. 2001; 15 Nov. 2001 and 12 Mar. 2002; 13 Nov. 2002 and 

7 Mar. 2003. Grazing termination occurred at the time of FHS stage, determined in a 

given year by the appearance of hollow stem in non-grazed plots of an early-maturing 

cultivar planted on the same day as the DP experiment (Redmon et al., 1996). 

For each management system (DP, GO) × year combination (2001-2003), the 24 

triplicate sets of populations were arbitrarily divided in the field into two separate but 

contiguous nurseries of 12 sets each. This division allowed for smaller field experiments 

with smaller block size. In the first year, the base populations were not tested. The overall 

design structure was a split-split-plot in a completely randomized design, with 

management systems replicated across years. The field replicates (four in 2001, three in 
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2002 and 2003) within each system × year provided a subsample for system and the 

blocking factor for genetic background × selection combinations, which appeared within 

blocks in a split-plot arrangement (selections randomized within genetic backgrounds). 

The treatment structure was a 2 × 24 × 3 factorial, representing management systems, 

genetic backgrounds (pooled across nurseries), and selections, respectively.  The three 

check cultivars were incorporated into the same design structure as the populations, but to 

maintain balance, each check cultivar was repeated among the three split-plots (two split-

plots in 2001); hence differences among them were considered strictly environmental. 

All five rows per plot were combine-harvested, and grain yield was measured as 

the weight of threshed, cleaned grain. Test weight was measured from a 0.96-L container 

according to standard procedures and expressed in units of kg m
-3

. A random 200-kernel 

sample was drawn from each plot to measure 1000-kernel weight (TKW). Heading date 

was determined as the day of year in which 50% of the spikes in a plot had emerged 

completely from the boot. Wheat protein content was determined by near-infrared 

reflectance spectroscopy using a 15-g ground-wheat sample from each plot and expressed 

on a 120 g kg
-1

 moisture basis. Yield components were determined by collecting 15 

random spikes from the middle three rows per plot. Mean kernel weight and mean 

number of kernels per spike were determined among that sample, from which the number 

of spikes per meter squared was estimated as g m
-2

 × (seed spike
-1

 × g seed
-1

). A visual 

score for growth habit was recorded on two dates generally at grazing initiation and 

grazing termination during the last two years of the study (2002, 2003). A 1-to-3 scale 

was used in the DP system only, in which an erect, semi-erect, and prostrate growth habit 
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received scores of 1, 2, and 3, respectively. All attributes were measured in all replicates 

of each experiment. 

Statistical Analyses 

 Data for bulk populations and check cultivars were analyzed separately. The 

analysis for both sets of materials was pooled across years, systems, and nurseries by 

means of a mixed model. For the bulk populations, all effects were considered random 

except for selections (Base, GO, and DP) and systems (GO and DP). Though the Base 

populations were not tested in the first year, mixed model methodology accommodates 

the unequal sample sizes for treatment combinations. REML estimates of variance 

components were computed using the MIXED procedure of SAS (SAS Institute, 2002). 

Type 3 tests of fixed effects for system, selection, and their interaction were also 

conducted by the MIXED procedure. Main-effect tests for selections were interpreted 

only in the absence of significant system x selection interactions. In either case, the 

selection effect was orthogonally partitioned into two single-df contrasts representing i) 

DP versus GO means comparisons and ii) Base versus (DP+GO)/2 means comparisons. 

Least-squares estimates were obtained by the MIXED procedure. The first contrast 

represented the selection response (i.e., a significant difference indicated a significant 

selection response between bulk populations selected in GO vs. DP systems), while the 

second contrast indicated asymmetry of the selection response. Asymmetry could be 

caused by unidirectional changes in the GO and DP selections relative to the base 

population.  



 

13 

 

13 

 For the analysis of check cultivars, all effects were considered random except for 

cultivars and systems.  Least-squares estimates of the system and system x cultivar means 

were computed by the MIXED procedure of SAS (SAS Institute, 2002).  

 The qualitative scores of 1, 2, and 3 for growth habit were analyzed using a chi-

squared test for independence of selection (DP, GO, NS) vs. growth habit score (1, 2, and 

3), pooled across years. 
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CHAPTER IV 

 

RESULTS AND DISCUSSIONS 

Check Responses 

 

The average system mean for grain yield for dual-purpose management system 

was 15.3% less compared to grain-only management system (Table 2). Within the GO 

system, Custer was significantly lower from 2174 and Jagger (Table 2). However, while 

comparing the average mean test weight and average mean thousand-kernel weight 

among systems, DP system had 1.3% and 3.7% higher test weight and thousand-kernel 

weight, respectively, compared to the GO system (Table 2). For test weight in each 

system, each of the varieties differed significantly. For thousand-kernel weight, in each 

system, Jagger was significantly different than 2174 and Custer (Table 2). For the DP 

system, Jagger showed 11.5% higher thousand-kernel weight than in GO system. 

Similarly, DP system showed 7.9% later heading date than GO system (Table 2). Jagger 

showed 11.5 % later heading date in DP system than in GO system (Table 2). However, 

there was 3.8% less wheat protein in DP system than in GO system (Table 2) and each of 

the varieties were significantly different in each system. This might be due to reduction 

of leaf area which reduces delivery of photosynthate and redistribution of accumulated N 

to the grain (MacKown and Rao, 1998).  
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Bulk Responses 

 

From the analysis of variance across years and systems, genetic effects associated 

with genetic backgrounds or genotypes were highly significant (p<0.01) for grain yield, 

test weight, thousand-kernel weight, heading date and wheat protein (Table 3). The three-

way interaction of Genotype x Selection x System was significant for grain yield, but not 

for test weight, thousand-kernel weight, heading date, and wheat protein (Table 3). There 

was no difference in among the systems except for heading date (Table 4). However, 

there were significant differences in all related traits except for wheat protein (Table 4). 

A correlation coefficient (r
2
) of 0.08 and 0.03 in DP and GO system, respectively, 

indicated that there was no or minimal linear relationship existed between selection 

response and base population (Fig.1). The selection response was the difference of total 

yield in DP and GO selection environments. The base populations consisted of the typical 

parents with a phenotypic value of interest. The DP system showed a wide distribution 

suggesting a large range of values (Fig.1). In the DP system, with an increase in selection 

response there was no significant increase in grain yield in the base population (Fig.1), 

while the GO system showed an increase in grain yield in the base population with an 

increase in selection response (Fig.1).  Although the same 24 genotypes from three 

different selection environments were used in both DP and GO system, they reacted 

differently in response to two systems. 

Averaged over three years, the bulk populations selected from a DP selection 

environment had higher mean grain yields than the GO and base populations ( Table 5) in 

both the DP and GO systems.  When comparing DP vs. GO management systems, grain 

yield was higher in the GO than in the DP management system (Table 5), which was due 
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to the system effect of DP vs. GO system. Similarly, Ud-Din et al (1993) showed that 

forage removal by chipping reduced grain yield by about 30% in DP system compared to 

grain-only system. In the same study, they reported that forage removal could depress 

grain yield, but genetic potential to produce forage was not correlated with grain yield 

potential. Moreover, Arzadun et al (2003) stated that grain yield was reduced from low to 

high level of grazing pressure. Dunphy et al (1984) suggested that grain yield was 

dependent on plant’s ability to regenerate leaf area after defoliation.  

When genotypes were treated as qualitative factors, a non-significant genotype x 

system interaction was obtained (Table 3). This result was also supported by Khalil et al. 

(2002) who found a non-significant genotype x system interaction, and also showed that a 

management system had no significant effect on separation of cultivars. However, the 

significant genotype x system x selection interaction in Table 3 would imply that 

selection environment had significant effect on separation of genotypes or populations. 

Contrasts of GO vs. DP and Base vs. DP and GO means indicating selection response and 

asymmetry of the systems, respectively, were highly significant due to low yields from 

DP and Base respectively (Table 5). 

An average grain yield difference among DP and GO management system across 

genotypes or as an estimate of genetic improvement could not be attributed to physical 

removal of reproductive tissues by grazing, expressed as reduced spike density.  Grazing 

was terminated before the appearance of the first hollow stem above the crown (Redmon 

et al., 1996). Despite the differences among the management systems, DP system had 9.5 

% more spike density compared with the GO system (Table 6). This result contradicted 

the study done by Christiansen et al (1989) where they reported grazing decreased spike 
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density.  Likewise, comparing among the selection environments, DP selection had 7.3% 

more spike density compared with GO selections (Table 6).  While Kernel number per 

spike and seed weight were not significantly different among selection environments 

across the systems (Table 6).  Similar results were reported by Christiansen et al. (1989) 

in wheat, i.e. kernel number per spike was not reduced or increased by grazing. However, 

in the same study they reported that seed weight was not affected the first year, but was 

affected in the second and third year due to grazing. Selection response for spike density 

was significant (p<0.05) but not for kernel number and seed weight as shown by the 

contrasts (Table 6). However, asymmetry contrasts were significant (p<0.05) for all yield 

components (Table 6).  

Grain harvested from fields managed for grazing and grain production is often 

considered to have poor grain quality. However, our evaluation on 24 genotypes refuted 

this argument showing no significant difference (p<0.05) in test weight among genotypes 

from DP and GO system (Table 5). Khalil et al. (2002) also found no difference between 

system means averaged across years. Across systems, test weight averaged 737.7 kg m 
-1

 

for the bulk populations. Genotype differences were observed for test weight but these 

differences varied depending on the selection environments (Table 3). Genetic 

improvement in test weight among three selection environments (S) was significant 

(Table 4). Also, asymmetry contrast was significant (P≤0.01) indicating a difference in 

the base and DP and GO selection environments (Table 5). 

 The thousand-kernel weight for DP was1.77% lower compared with GO selection 

(Table 5). The significant selection response (P<0.04) was observed for the bulk 

populations (Table 5) indicating a difference among the two systems.  The asymmetry 
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contrast was also significant (P<0.01) for the bulk populations indicating a difference 

among the base and the mean of DP and GO selection environments, respectively. 

Heading date for the DP management system was later than for the GO 

management system (Table 5). It might be due to time that plant takes to recover from 

defoliation. This was further supported by Edwards et al (2007) that a cultivar with later 

heading has later occurrence of first hollow stem in the same given environment.  The 

late first hollow stem is a desirable characteristic for a DP system, as it allows later 

grazing in the spring. Within the GO management system (Table 5), heading date was 

longer for DP selections compared with GO selections. However, this refuted the report 

presented by van Santen et al (1999) in tall fescue where they mentioned that populations 

derived from pastures under grazing matured early. On the other hand, there was not 

significant difference between heading date among DP and GO selections within the DP 

management system (Table 5). The selection response was significant for GO but not for 

DP system (Table 5).  

For wheat protein, no significant difference resulted between the two management 

systems (Table 4) or three selection environments (Table 5) for the bulk populations. For 

each system, grain protein averaged 129.69 g kg 
-1

. Our analyses for grain yield indicated 

higher grain yield for GO compared with DP management system (Table 5). Thus, we 

should have seen higher grain protein in genotypes from DP selection environment 

according to Campbell et al. (1981), who stated increases in protein content in spring 

wheat under moisture stress and reduced total grain yield. The two-way interaction of 

genotype and selection environment was highly significant (Table 3), as protein content 

of cereals is known to be influenced by genotype and environment. The variance 
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component of the genetic background or genotypes was significant (Table 3) suggesting 

genetic improvement among the genotypes. The selection response and asymmetry 

contrast were not significant for the DP, GO, and base selection environments (Table 5).  

The bulk populations from DP selection environment showed prostrate growth 

habit (Fig. 2) for both growth habit (GH) 1 and 2. The selection and rating were strongly 

related for GH1 and GH2 with the chi-square values of 175.5 (p <0.001) and 105.5 (p 

<0.001) respectively (data not shown). Positive relationships were found for prostrate 

growth habit for DP, erect for GO and semi-erect for base selection environments. 

Selections were significantly more prostrate (65.3 %) for DP selection, erect (47.2%) and 

semi-erect (48.6%) for GO selection and semi-erect (50%) for base selection for GH1. 

Growth habit patterns shown by GH1 were as expected. This result supported the 

findings of Landsberg et al, (1999) where they mentioned that prostrate growth habit was 

shown by plant communities in response to grazing. However, GH2 data were slightly 

different as the data was taken at the end of the grazing period. There were significantly 

more semi-erect (60%) for DP selection, erect (53.34%) for GO selection and semi-erect 

(65%) for base selection. The differences in the growth habit pattern might be due to 

genetic response of the genotypes for adaptation and change in the environment. Genetic 

variability allows any population to undergo changes required for better adaptation to 

new environments such as grazing.  
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CHAPTER V 

 

CONCLUSION 

Results of this study indicated that grain yield in dual-purpose system was lower 

compared with grain-only system due to the system effect of the DP system. However, 

among each system, grain yield was higher for dual-purpose selection environment 

compared to grain-only selection environment. Progress in test weight and wheat protein 

were observed in this genetic sample. Test weight and wheat protein were almost the 

same for both systems, indicating no compromise in quality due to grazing. Heading date 

was later for DP system than GO system. This might be the reason for later maturity in 

DP system allowing longer grazing period. However, there was no difference in heading 

date among the selection environment in each system.  The genetic progress continued 

for the grain quality as the spike density was higher for the DP selection environment 

than GO selection environment in each of the system. Similarly, kernel number and 

kernel weight were not significantly different among selection environments in each of 

the system.  Genotypes from DP selection environment showed more prostrate growth 

habit than GO and base selection environments. On the other hand, genotypes from GO 

selection environment showed more erect and semi-erect growth habit. 
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Table 1. Genetic background of 24 winter wheat populations in which bulk 

selection was applied in the F2, F3, and F4 generations in grain-only and dual-

purpose management systems. 

Population Genetic background 

1 2180//Crr*2/CtyA-/3/Ogallala  

2 Tkw//Karl 92*2/CtyA-/3/Hickok 

3 Platte//KS137-337/Wakefield  

4 Plainsman V/OK79256 seln//FL302/3/Jagger 

5 Custer/FL302//TAM 302 

6 KS92P0363-134/FL302//Ogallala 

7 Jagger*2/FL302 

8 2137/SW76-117C-4 

9 OK95G702/OK91P648 

10 OK95G703/2137 

11 OK95G703/OK92403 

12 OK95G704/OK91P648 

13 Oro Blanco/Custer 

14 Betty/TAM 302 

15 OK9691E8/OK97G605 

16 Oro Blanco/KS85W663-11-6 

17 KS94WGRC32/OK93P735 

18 KS94WGRC33/TAM 302 

19 OK93P735/OK94P512 

20 OK91P648/2137 

21 OK93617/OK94519 

22 OK93P634/TAM 302 

23 N44/OK94P455 

24 2174  
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Table 2. Least-squares means for three check cultivars evaluated in two management systems and 3 yr at the Expanded Wheat 

Pasture Unit, Marshall, OK. 

  Grain yield  Test wt.  

Thousand- 

kernel wt..   

Heading 

date   Wheat protein 

Cultivar GO DP   GO DP   GO DP   GO DP   GO DP 

 kg ha
-1

 kg m
-3

  g  DOY  g kg
-1

 

2174 3530a 3150a  756a 761a  27.4a 28.0a  27a 28a  136a 130a 

Jagger 3620a 2750b  723b 741b  23.3b 26.6b
*
  23b 26b

*
  133b 127b 

Custer 3070b 2760b  743c 751c  28.8a 28.3a  24c 25c  126c 124c 

               

System mean 3400 2880  741 751  26.5 27.6  24 26  132 127 
*
 Significantly different between systems mean at 0.01 probability level.    

System means within a column with the same letter are not significantly different (P> 0.05). 
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Table 3. Variance-component (VC) estimates and significance values for random effects from the ANOVA of F5 selected progenies 

from 24 winter wheat populations or genetic backgrounds evaluated in two management systems for 3 yr at the Expanded Wheat 

Pasture Unit, Marshall, OK. 

 Grain yield Test wt. Thousand-kernel wt. Heading date Wheat protein 

Source of variation VC Test VC Test VC Test VC Test VC Test 

 (kg ha
-1

)
2
 

P > 

Z (kg m
-3

)
2
 P > Z g

2
 P > Z d

2
 P > Z (g kg

-1
)
2
 P > Z 

Year 0 - 142 0.25 2.23 0.18 1.60 0.17 39.8 0.17 

Year × System 111 219 0.09 111 0.16 0.32 0.18 0.12 0.19 5.0 0.18 

Genetic background 

(G) 21 934 0.01 133 <0.01 3.38 <0.01 1.43 <0.01 11.0 <0.01 

G × System  8 333 0.07 NS NS 0.04 0.26 0.17 0.02 0.4 0.19 

G × Selection (S) 751 0.36 15 <0.01 0.39 <0.01 0.16 <0.01 0.5 <0.01 

G × S x System 5 694 0.02 3 0.10 0.02 0.30 <0.01 0.43 0.0  - 

 *, ** Significant at P ≤ 0.05 and 0.01, respectively; NS, not significant. 
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Table 4. Significance values for fixed effects from the ANOVA of  F5 selected progenies from 24 winter wheat populations or genetic 

backgrounds evaluated in two management systems for 3 yr at the Expanded Wheat Pasture Unit, Marshall, OK. 

Source of variation df 

Grain 

yield   Test wt.    

Thousand 

kernel 

wt.   

Heading 

date   

Wheat 

protein 

  -------------------------------P > F------------------------------------- 

System 1 0.46  0.46  0.17  0.01  0.17 

Selection 2 <0.01  <0.01  <0.01  <0.01  0.77 

System × Selection 2 0.01  0.23  0.90  <0.01  0.49 

* Significant at P ≤ 0.05 and 0.01, respectively. 
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Table 5. Least-squares means and orthogonal contrasts for F5 bulk progenies derived from either a GO or DP selection environment, 

compared with the base F3 progeny with minimal selection, when evaluated in DP and GO management systems for 3 yr at the 

Expanded Wheat Pasture Unit, Marshall, OK. 

Grain yield  Test wt.  

Thousand-

kernel wt.  Heading date   Wheat protein 

Environment of selection GO DP   

Across 

systems   

Across 

systems   GO DP   

Across 

systems 

 ---------kg ha
-1

-------  kg m
-3

  g  --------DOY--------  g kg
-1

 

Least-squares means            

GO 3180 2870  742  28.3  114.8 117.0  129.6 

Base 3080 2880  731  27.3  115.4 117.3  129.8 

DP 3260 3090  740  27.8  115.3 116.9  129.7 

Contrasts ------------------------------------------------------P>F---------------------------------------------------------- 

DP vs. GO 0.01 <0.01  0.15  0.04  <0.01 0.50  NS 

Base vs. DP, GO mean <0.01 <0.01  <0.01  <0.01  <0.01 <0.01  NS 

* Significant at P ≤ 0.05 and 0.01, respectively; NS, not significant. 
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Table 6. Least-square means for yield components of F5 bulk progenies derived from either a GO or DP selection environment, 

compared with the base F3 progeny with minimal selection, when evaluated in DP and GO management systems for 3 yr at the 

Expanded Wheat Pasture Unitr, Marshall, OK. 

Spike 

density  

Seed no. 

per spike   Seed wt. 

Environment of selection 
Across 

systems   

Across 

systems   

Across 

systems 

 spikes m
-2

  no.  mg 

Least-squares means      

GO 343  29  30.9 

Base 334  31  29.7 

DP 370  29  30.4 

Contrasts ----------------------P>F----------------------- 

DP vs. GO <0.01  0.12  0.05 

Base vs. DP, GO mean <0.01  <0.01  <0.01 

** Significant at P≤0.01 probability level. 
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Figure 1. Relationships of the grain yield difference between DP and GO selections 

(selection response) versus mean yield of the corresponding base population in the GO 

(A) or DP (B) management system. 
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Figure 2. Growth habit frequency distributions of F5 selected progenies and non-selected 

base progenies 24 winter wheat populations or genetic backgrounds ratings recorded in 

dual-purpose management system for 2 yr at the Expanded Wheat Pasture Unit, Marshall, 

OK at the beginning (A) and at the end (B) of the grazing period. 
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