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CHAPTER I 

 

INTRODUCTION 

 

Intensive confined livestock production has enlarged over the years due to 

importance of those animals for the food production. Thereby, number of confined 

animal feeding operations (CAFO) and poultry production operations have increased and 

resulted in localized concentration of animals in certain regions. Accumulation of animal 

manure can enhance crop production if properly managed, as a source of plant nutrients 

and organic matter. However, if mismanaged, manure applications may be detrimental to 

environment quality. A significant concern about manure application is the increase of 

soil phosphorus (P) as well as soluble P transport to surface waters that may also 

contributing to water eutrophication. 

Zhang et al. (2009) demonstrated that manure applied at rates designed to fulfill 

crop nitrogen (N) requirements, often result in a buildup of soil P. The increase of total 

soil phosphorus (TP) also increases P in soil solutions, which can be subsequently 

transported to waterways via erosion or runoff. The study with chicken manure and swine 

slurry conducted by vonWandrsuka (2006) shows that they are apt to provide readily 

mobile, water soluble phosphorus (WSP) to soil, likely to lead to runoff and 

eutrophication problems.
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Phosphorus containing compounds in manures vary greatly in solubility, 

availability for plant uptake, and absorption potential in soils (Wienhold and Miller, 

2004). Total P content in manures is an important tool for monitoring loading rates and 

long-term repeated applications. However, it is the amount of plant available P that is 

significant, because crop response is directly related to the inorganic P (Pi) forms in 

manure (Bromfield, 1960). According to Barnett (1994), P forms vary in their availability 

to plants and therefore it is important to evaluate their relative abundance when animal 

manure is used to fertilize crops. 

Generally, 10-20% of P applied is available for crop uptake in the year of 

application, whereas the remaining 80-90% soil P (residual P) is adsorbed on the soil 

constituents and builds up as the soil P capital. The residual P is partitioned into different 

fractions and pools (Gikonyo et al., 2008). 

Several fractionation schemes have been developed for analyzing the P 

composition of manure (Wienhold and Miller, 2004). Soil phosphorus fractionation 

procedure modified from Hedley et al. (1982) and Tiessen and Moir (1993) was used to 

determine the various P forms found in soil where several different types of animal 

manure were used. In this procedure, sequential extraction using H2O, NaHCO3, NaOH, 

HCl and concentrated HCl were combined to analyze total and inorganic P. Organic P is 

determined by the difference between total P and inorganic P in each extract. 

Most previous studies (Castilho et al., 1993; Charistie and Beattie, 1989; Gao and 

Chang, 1996; Sharpley et al., 1993; Sommerfeldt and Chang, 1987; Stadelmann and 

Furrer, 1985) on the long-term application of animal manure were conducted in higher 

effective precipitation regions. There is research gap in semiarid agroecosystems on long-
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term, repeated applications of animal manures in irrigated maize production systems. 

Therefore, the effects of long-term animal manure applications in low rainfall (<500mm) 

agricultural environment need to be evaluated. Research on types of animal manure used 

in the Oklahoma Panhandle, such as SE and BM applied on irrigated maize, was 

conducted to assess their environment benefits in relation to each other and to chemical 

fertilizers at different nitrogen rates (NR). 

 

Phosphorus 

History 

In 1669, a German merchant called Henning Brand obtained elementary 

phosphorus through the distillation of urine even though in the 12th century Arabian 

alchemists may have discovered it, the credit belongs to Brand (Savica et al., 2009). 

Phosphorus was the first element documented in a historical register. The name 

phosphorus was derived from the Greek words phôs meaning light and phoros meaning 

bearer due to its property of shining in the darkness when exposed to the air (Huminicki 

and Hawthorne, 2002). 

Further investigations revealed that addition of sand or coal to urine helped the 

freeing of phosphorus. About one century after its original work, researchers discovered 

that phosphorus is an important constituent of the bones, introducing a new method of 

industrial production of phosphorus. The first method of phosphorus commercial 

production was a reaction of the bone with nitric or sulfuric acid produces phosphoric 

acid that, when heated with coal, produces elemental phosphorus. The first effective 

phosphorus fertilizer was produced in 1808 in Ireland by converting phosphorus obtained 
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from bones to phosphate, which plants can absorb. Later, it was discovered that rock 

phosphate could be used in this same process. In 1851, John Jay Mapes of Long Island, 

New York, built the first phosphate manufacturing plant in the United States. Thus, he 

earned the title of “Father of the American Fertilizer Industry.” By 1889, America 

produced 90 percent of the world’s phosphate fertilizer and continues to produce 30 

percent of the fertilizer produced today (CFAITC, 2009). 

 

Plant Utilization 

Phosphorus is a macronutrient and, a component of certain enzymes and proteins; 

adenosine diphosphate (ADP), adenosine triphosphate (ATP), ribonucleic acids (RNA), 

deoxyribonucleic acids (DNA), phospholipids and phytin. Adenosine diphosphate and 

ATP provide the energy required for all biochemical processes such as uptake of 

nutrients and their movement through cell membranes, as well as their assimilation into 

different biomolecules. RNA directs protein synthesis in both plant and animals; DNA 

contains the genetic information. Phospholipids are a major and vital component of all 

biological membranes and play a key role in processes such as signal transduction, 

cytoskeletal rearrangement, and in membrane trafficking (Cowan, 2006). Playing an 

important role for the plant nutrition, phosphorus deficiency seriously affects plant 

development and yield.  

 

Deficiency of Phosphorus 

A major visual symptom of phosphorus deficiency in plants is dwarfed or stunted 

growth. Symptoms of P deficiency vary with the plant type, but generally leaves and 
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stems turn dark green with a purple tint, beginning with lower, older leaves. Phosphorus 

deficient plants develop very slowly in relation to other plants growing under similar 

environmental conditions. Phosphorus deficient plants are often mistaken for unstressed, 

much younger plants (Taiz and Zeiger, 2006). In older leaves under very severe 

deficiency conditions a brown netted veining of the leaves may develop (Taiz and Zeiger, 

2006). 

Under severe deficiency conditions there is also a tendency for leaves to develop a 

blue-gray luster. According to Alkema and Seager (1982), anthocyanins are responsible 

for most red, blue, and purple colors in higher plants. However, cold temperature can also 

induce purple pigmentation inhibiting P uptake. A phosphorus shortage may delay 

maturity of several crops, including corn, cotton, soybeans, and others.  

 

Forms of Phosphorus in Soil 

Phosphorus importance for plant development is well known. Therefore, 

maintenance of adequate amounts of soil P through application of inorganic and /or 

organic P sources is critical for the long-term sustainability of cropping systems 

(Sharpley et al., 1994). However, accumulated soil P in surface soils from long-term, 

continuous agricultural fertilization is a major source of soluble and particulate forms of 

P contained in runoff that is entering water resources and degrading water quality 

throughout the USA (Daniel et al., 1998). 

The relative distribution of soil inorganic and organic P pools may be influenced 

by initial soil chemical characteristics due to soil type (Tiessen et al., 1984), climate, and 

management practices (Montavalli et al., 2002). 
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Phosphorus is found in the soil in several forms that vary according to the 

chemical nature of the compounds and bound energy (Gatiboni et al., 2005). According 

to Reed et al. (2010) early in soil development, the majority of P is in primary mineral 

forms, mostly as apatite. As apatite is weathered, it releases biologically available forms 

of P (as PO4
-3). Some P is taken up by plants and microbes and is ultimately returned to 

inorganic P (Pi) pools in the soil via mineralization, or remains within the soil in organic 

forms (Po). However, during each turn of this cycle, some P may also be sorbed by 

secondary soil minerals, precipitated, or leached in organic or inorganic forms, slowly 

depleting the total and available P pools. Brady and Weil (2008) determined 

concentration of phosphorus in the soil solution is very low ranging from 0.001 mg/L in 

very infertile soils to about 1 mg/L in rich, heavily fertilized soils. 

Knowing the species of phosphorus determines its retention in the soil profile 

when animal manure is applied. Crouse et al. (2002) determined the orthophosphate 

content of the soil increases during mineralization, while organic phosphorus (Po) 

decreases. The sorption of Po (nucleotides and inositol hexaphosphate) is positively 

correlated with both organic matter, and Fe and Al content of the soil (Leytem et al., 

2002).  

Once applied, P has multiple reaction pathways; it may be taken up by the crop 

and incorporated into organic P (McLaughlin et al., 1988), may become weakly 

(physisorption) or strongly (chemisorption) adsorbed on to Al, Fe and Ca surfaces (Syers 

and Curtin, 1988). The increase in available soil P is a function of physical and chemical 

soil properties, including clay, organic C, Fe, Al and calcium carbonate (CaCO3) content 

(Sharpley and Rekolainen, 1997).  
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Understanding the environmental fate of manure phosphorus requires robust 

procedures for determining its composition and solubility (Turner and Leytem, 2004). 

Sequential fractionation involves extraction of phosphorus from manure with 

increasingly strong chemical solutions to quantify pools of phosphorus with varying 

degrees of solubility (Turner and Leytem, 2004). The technique is commonly used 

because it provides information on manure phosphorus using standard laboratory 

procedures, which is important given that most laboratories do not have access to the 

advanced analytical equipment required for detailed chemical speciation (Turner and 

Leytem, 2004). All those compounds are released by the sequential P fractionation 

procedure that, according to Huang et al. (2008) yield: a loosely bound fraction (also 

referred to as exchangeable); fractions associated with Al, Fe, and Mn oxides and 

hydroxides; the Ca- and Mg-bound fraction; and mineral and organic fractions resistant to 

previous extracts. The procedures often estimate organic as well inorganic. 

Phosphate can be unavailable for plant growth; phosphate being an insoluble form 

that is highly affected by soil pH where reactions can fix it to soil surfaces. Fixation 

prevents the leaching of phosphorus, but also changes it to a form that plants cannot use 

(CFAITC, 2009). Generally, in strong acidic soil (pH 3.5- 4.5) there is an insoluble iron 

phosphate form. Aluminum is the dominant ion that will react with phosphate between 

pH 4.0-6.5 (Busman et al., 2002). In these soils, the first products formed would be 

amorphous Al and Fe phosphates, as well as some Ca phosphates (Busman et al., 2002), 

only at high concentration of calcium. The amorphous Al and Fe phosphates gradually 

change into compounds that resemble crystalline variscite (Al phosphate) and strengite 

(Fe phosphate) (Busman et al., 2002). Each of these reactions will result in very insoluble 
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compounds of phosphate that are generally not available to plants (Busman et al., 2002). 

They also determined that maintaining soil pH between 6 and 7 will generally result in 

the most efficient use of phosphate; calcium phosphate occurs in alkaline soil (pH 7.0-

9.0), a general sequence of reactions is the formation of dibasic calcium phosphate 

dihydrate, octocalcium phosphate, and hydroxyapatite. 

Basically, phosphorus forms and amounts as well as manure’s residual effect are 

considerable important for the availability of P for crop uptake, environmental risk 

assessment and manure management strategies.  

 

Anhydrous Ammonia 

The most extensive use of anhydrous ammonia is in the field of agriculture, by 

means of fertilization. Anhydrous ammonia is quickly attracted to any form of moisture. 

Soil moisture absorbs the fertilizer as rapidly as human tissue; therefore when handling 

NH3 safety clothes and equipment are required. Under normal temperatures NH3 is a gas 

and to prevent its escape according to Tisdale et al. (1999), it is stored under pressure 

and/or refrigerated (-28°F).  

Sequential P extraction of long-term conventional agricultural systems receiving 

manufactured fertilizers also reveals changes in forms of inorganic and organic P which 

may contribute to P nutrition of crops and which are not measured by traditional tests for 

plant-available P (Richards et al., 1995). 

 

Urea 

When urea or ammonium sulphate is used as fertilizer on calcareous soils, N is 
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lost through the volatilization of ammonia because of the high pH and high calcium 

content of the soil (Fenn and Hossner, 1985).  

Nitrogen applied as urea or NH4
+ undergoes chemical transformation to produce 

either ammonia (NH3) or nitrate (NO3
−), depending on soil pH, moisture conditions, 

application methods (He et al., 2002) as well temperature. 

 

Calcareous Soil 

As defined by FAO (2000), calcareous soils are characterized by the presence of 

calcium carbonate in the parent material and by a calcic horizon, a layer of secondary 

accumulation of carbonates (usually Ca or Mg) in excess of 15% calcium carbonate 

equivalent and at least 5% more carbonate than an underlying layer. 

In acid soils available P is present in a large part as the H2PO4 ion while in 

alkaline soils HPO4 is the important phosphate ion (Samin, 1971). 

McGeorge and Breazeale (1931) believed that phosphate fixation in calcareous 

soils is due in many cases to formation of a compound more basic than tricalcium 

phosphate and additional calcium as calcium carbonate is a definite part of the calcium 

phosphate molecule. 

Manure is a good form of fertilizer on calcareous soil due to slow release of 

nutrients and chelating of ions (Mathers et al., 1980). Based on other studies, Sharpley et 

al. (2004) determined that the extent to which Ca in manure adds to the pool of 

exchangeable Ca in soil depends to a large degree on the nature of the bond between the 

organic molecule and Ca in added manure. As organic compounds in fresh manures are 

http://www.fao.org/ag/agl/agll/prosoil/horglos.htm#calcic�
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of low molecular weight, the added Ca can readily contribute to the pool of exchangeable 

soil Ca (Siddique and Robinson, 2003). 

  

Manure characteristics 

Animal manure as defined by the Oklahoma Concentrated Animal Feeding 

Operations Act (2007), paragraph 20-41 part 4 “means animal excrement, animal 

carcasses, feed wastes, process wastewaters or any other waste associated with the 

confinement of animals from an animal feeding operation.”  

Manure characteristics are based on dietary feed, animal performance, nutrient 

intake specific to an individual situation, and also external effects as weather conditions 

and manure storage. Equations have been developed for estimating manure excretion to 

facilitate its management by the farmer. They are all based on levels commonly observed 

in commercial production. 

According to Hue et al. (1986) and Iyamuremye (1996), the affinity constants and 

sorption capacities of soils for P are reduced by organic amendments, especially manure. 

This can be due to competition for P fixation sites by organic acids, and/or the 

complexing of exchangeable Al and Fe by components of manure. The latter may, at least 

partially, be ascribed to the release of sulfates and fluorides by the manure, both of which 

are strong complexing agents for Al and Fe (von Wandruszka, 2006). 

 

Problems of Manure 

Manure can be used as a source of fertilizer that benefits crops due to the 

beneficial amounts of nutrients, mainly nitrogen, potassium and phosphorus. However, it 
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can also cause environment problems if nutrients from manure are over applied becoming 

a source of water pollution. Furthermore, excess nutrients in surface waters causes 

eutrophication and algae blooms, which increases the biological oxygen demand (BOD) 

and turbidity of surface waters. Additionally, the generation then deposition of gaseous 

air pollutants and odors to surface waters may increase the deleterious effects to animals 

that live in the water.  

Excessive applications of manure to the soil increases the amount of phosphorus 

available for transport into surface waters increasing phosphate levels, even though 

manure is not high in P content. Adequate application of manure depends on the soil 

type, manure content and crop thus, the correct amount should not exceed nutrient needs 

of the crop.  

Not only do excess nutrients impact the environment but animal manure also 

contain pathogens. According to Gerba and Smith (2005), each year more than 300 

million tons of animal manure is spread in the United States, and more than 150 

pathogens have been found in manure. Thus, disease organisms are a problem in animal 

manure. However, incorporation of manure into the soil can dramatically reduce 

pathogens. 

On the other hand, according to Fuentes et al. (2008), an economic alternative to 

stabilize organic wastes through the action of microorganisms is aerobic degradation. 

During degradation of organic wastes, diverse changes take place in the characteristic 

physicochemical properties of the waste mixture and in the microbial populations (Smith 

and Collins, 2007). 
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Kahleel et al. (1980) have suggested that a high density of intensive animal 

rearing facilities could facilitate the contamination of surface water, resulting in large 

reservoirs for pathogenic bacteria. Johnson et al. (2003) suggest a management practice 

to minimize the risk of water contamination within the region: CAFOs should not have 

direct access to surface water. Moreover, the authors recommend valuable agricultural 

management practices to mitigate surface-water contamination within agricultural 

regions.  

However, as determined by Mohanty et al. (2006), organic sources of P are 

known to increase P availability more than inorganic P fertilizers, which may involve 

prevention of reactions converting available P to slowly soluble inorganic forms and 

enhance efficient use of applied P fertilizer.  

On the other hand, P availability is also affected by texture where most fine-

medium texture soils have larger capacity to adsorb phosphate than coarse textured soils. 

Likewise, calcareous soils fix substantial amounts of P due to their high content of 

sesquioxides and calcite (Wang and Tzou, 1994), which is a stable form of calcium 

carbonate. 

Land application of manure generated under livestock production can improve 

soil fertility and tilth, but can also resulting elevated concentrations of P in runoff 

(Sharpley et al., 1994). Water-extractable P in manure has been linked to dissolved P (< 

0.45µm) concentrations in runoff from manure-amended soils (Kleinman et al., 2005). 

Withers et al. (2001) found that concentrations of dissolved P in runoff from soils 

amended with mineral fertilizer, cattle manure, and biosolids were proportional to the 

concentration of water-extractable P (WEP). 
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Kleinman et al. (2005) determined that WEP in manure can also serve as a 

quantitative predictor of dissolved P in runoff when expressed as a concentration on a dry 

weight equivalent basis. 

 

Content of Manure 

According to Xavier et al. (2009) organic manures are a vital resource for 

supplying plant nutrients and replenishing organic matter content. Zhang (2009) found 

the approximate fertilizer nutrient content for different type of manures an that feedlot 

manure has a greater nutrient content than lagoon effluent.  

Manure composition depends on several factors, such as animal species, dietary 

options, animal genetics and performance. The manure composition also depends on 

management functions: collection, storage, treatment, transportation and utilization.  

Based on other studies, Motavalli et al. (2002) determined that factors influencing 

the magnitude of P availability are the composition of organic amendment, the rate of 

application, the soil type, climate, the method of application and incorporation, and the 

amount of reaction time with soil after application.  

 

Manure Nutrient Availability for Crops 

Based on other studies Hao et al. (2006) determine that most manure P is in 

inorganic form so availability following application to soil should be high. Dou et al. 

(2000) found that most (up to 84%) manure P was in available forms and consequently 

susceptible to runoff loss after land application. According to Xavier et al. (2009) 

mineralization of organic P is responsible for the most P plant supply. Additionally, 
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orthophosphate and calcium phosphate compounds are generally considered crop 

available during the first-year of application. 

The organic P fractions depend on organic matter inputs whereas inorganic forms 

are mainly related to soil chemical weathering stage, which is influenced by soil 

properties as mineralogical composition, pH and others (Xavier et al., 2009). The 

composition of manure varies widely due to external and internal factors as climate and 

feed composition.  

Long-term application of animal manures and other organic amendments, which 

is often a major component of sustainable agricultural systems, may have several effects 

on soil P availability and losses (Montavalli et al., 2002). In general, such applications 

have been shown to increase soil total, available, and soluble P levels in both the surface 

and subsurface horizons, to reduce soil P adsorption capacity, and to increase rates of 

biologically-mediated turnover of organic P due to stimulation of microbial and enzyme 

activities (Montavalli et al., 2002). 

Potassium is present in inorganic forms readily plant available. As plants can only 

acquire K+ from solution, its availability is dependent upon the nutrient dynamics as well 

as on total K content (Ashley et al., 2006). 

Basically, the manure application rate is based on crop fertilization requirements; 

crop availability of manure N, P and K, and adjusting estimates based on N volatilization 

and mineralization rates.  

 

Nutrient Losses from Manure 
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Nutrient loss continues after manure is spread in the field. Nitrogen is the nutrient 

that if not incorporated into the soil, can be highly lost due to ammonia volatilization as 

discussed before. The ammonium may be released as gaseous ammonia under favorable 

temperature, moisture, and pH conditions (Van Horn et al., 1996). 

Differently from nitrogen, phosphorus losses are due to the relationship between 

soil test P (STP) concentrations and dissolved P losses (DRP) in runoff which vary with 

soil type due to differences in soil properties (Penn et al., 2005). Decrease in availability 

of P is suggested to be a complex function of several factors such as: soil chemical 

composition, amount and reactivity of silicate clays, CaCO3, Fe oxides, P addition rates 

and time (Afif et al., 1993).
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CHAPTER II 

 

OBJECTIVES 

 

The southern Great Plains region is a semi-arid moisture regime receiving 250-

500mm of annual precipitation (Turner, 2004). Soils in low rainfall areas that are 

amended with animal manure require investigation, specifically in soil phosphorus 

accumulation and potential environmental problems associated with P source application 

based on N requirements.  

This study is based on following hypothesis; 

1. Beef manure amended soils have higher soil phosphorus concentration than the other 

nitrogen sources due to its composition varying significantly from the control. 

2.  Phosphorus concentrations are highest in the HCl extractable pool due to the 

calcareous clay loam. 

3. Risk of phosphorus leaching and runoff losses are minimized due to the type of soil 

and climate in Western Oklahoma. 

The objectives of this study were to assess phosphorus movement and fate among 

long-term established animal manure management plots in semiarid ecosystems, using 

sequential fractionation of bioavailable P and water soluble P (WSP) levels at multiple 

depths (0-120 cm) in the soil when different N sources (beef manure, swine effluent and 

anhydrous ammonia) are utilized as sources of plant nutrient.
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CHAPTER III 

 

SOIL PHOSPHORUS FRACTIONATION METHODS 

 

Organic Phosphorus 

Organic forms of P are found in humus and other organic material. Phosphorus in 

organic materials is released by a mineralization processes involving soil organisms. The 

activity of these microbes is highly influenced by soil moisture and temperature. 

The forms of organic P applied to soil in manure will depend on the nature of the 

animal manure (Hansen et al., 2004). According to the authors, manure from different 

animal species is known to contain different P forms and concentrations. In addition, the 

handling and storage of manure before land application can also affect P forms and 

concentrations due to differences in microbial species, oxygen, pH, and temperature. 

According to Stewart and Tiessen (1987) for an adequate description of the 

dynamics of Po in soils requires an understanding of the interactions of microbes, fauna 

and plants upon which the processes involved in the rapid cycling of P-compounds 

depend. 

Organic P (Po) usually represents between 20% and 80% of the total P in soils 

(Anderson, 1980). Transformation of P via the immobilization-mineralization process 

plays an important role in the cycling and bioavailability of P in soils. Phosphate ions 
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released by mineralization of Po can make a contribution (albeit a poorly defined 

contribution) to the supply of plant-available P (Sharpley 1985; Stewart and Sharpley 

1987). 

According to Williams and Steinbergs (1958) soils derived from basalt and basic 

igneous parent material contain higher amounts of organic phosphorus than those derived 

from granite, although a lower percentage of their total phosphorus is present as organic 

P.  

Walker and Adams (1958) showed that the P content of the organic matter 

decreased as the rainfall and mean temperature increased. Based on another study, Dalal 

(1977), found some other factors that affect the organic P; organic P content generally 

increases as the soil pH decreases; cultivation which decreases organic P content because 

of greater mineralization of organic matter; and sulfur content in areas of low 

atmospheric returns. In general, long-term studies have observed a decline in organic P 

pools with continuous cultivation and no fertility inputs (Montavalli et al., 2001). 

The low plant availability of organic phosphorus in soil may be due to the 

sorption as well as fixation of these compounds by soil colloids and, possibly, by 

formation of insoluble Fe and Al complexes (Anderson et al., 1974). Many studies have 

demonstrated the availability of organic P compounds. According to Dalal (1977) organic 

P in the soil solution may be important to P nutrition of plants; where phosphatase 

enzymes excreted by the plant roots could hydrolyze this fraction thus releasing inorganic 

P. 

 

Inorganic Phosphorus 
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In most agricultural soils, 50-75% of the P is inorganic, although this fraction can 

vary from 10 to 90% (Sharpley, 1995). Inorganic P forms are dominated by hydrous 

sesquioxides, amorphous and crystalline Al and Fe compounds in acidic, non-calcareous 

soils and by Ca compounds in alkaline and calcareous soils (Sharpley, 1995). Inorganic P 

occurs in the soil in two forms: “fixed” P and “labile” P (Eck and Stewart, 1995). Based 

on their studies, fixed P is tightly adsorbed on or within soil particles while labile P is 

loosely bound to soil particles. 

Total inorganic P is divided into active and inactive forms, the former consists of 

Fe-P, Al-P and Ca-P, occluded P, reductant soluble P and residual P (Chang and Jackson, 

1957). 

Other factor that can affect inorganic P availability is immobilization and 

mineralization. Immobilization of inorganic phosphorus in mineral soils affects the plant 

available P where inorganic P is converted biologically into organic P and is not readily 

available for plant uptake (von Wandruska, 2006).  

Immobilization of inorganic P is affected by microbial activity such as, 

temperature, moisture, aeration, soil pH, cultivation, presence of growing plants and 

fertilizer P additions (Stevenson and Cole, 1999). Net immobilization will occur when the 

C/organic P is 300 or more; net mineralization will result when the ratio is 200 or less 

(Stevenson and Cole, 1999). 

Application of manure and other organic wastes to the soil invariably lead to 

changes in available P, but not in a predictable manner (Stevenson and Cole, 1999). 

Following their study, an initial immobilization of P can occur, followed by 

mineralization of biomass P, which releases inorganic P. 
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According to Bhatti (1998), some organic P forms excreted in manure may 

displace sorbed inorganic P and increase inorganic P leaching and/or runoff in the soil 

which depends on rainfall intensity, soil type, topography, soil moisture content, crop 

cover, and the form, rate, timing, and method of P application. Conservation management 

can minimize the risks of erosion and surface runoff hence, reducing the risk of P loss 

from soil. 

 

Methods to Extract Phosphorus 

Phosphorus (P) fractionation is a method developed to estimate both the size of 

the readily phyto-available P pool and the soils ability to replenish it (Guppy et al., 

2000). The method has been used to examine the decline of soil P under cultivation; the 

effect of different management practices on the distribution of soil P; the influence of 

microbiological activity on soil P processes; and the pathways of P movement and 

transformation in soil (Guppy et al., 2000). Phosphorus forms found in the soil have 

different desorption capacities and soil supply due to both the P chemistry nature and 

energy bound.  

Organic and inorganic P fractions occur in the soil at different degrees of lability 

as follows: a labile fraction (promptly available to plant and microbial biomass), a 

moderate labile fraction (weakly adsorbed P), a restrict labile fraction (associated with Fe 

and Al hydrous oxide being medium term plant available) and a non labile fraction 

(stable Fe- and Al-associated inorganic P and stable organic P) (Tiessen and Moir, 1993), 

which is largely Ca bound P.  
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Tiessen and Moir (1993) developed a routine method for use by Canadian soil 

chemists adding a hot concentrated acid extraction, which removes Po that may be able to 

take part in short-term transformations. According to Tiessen and Moir (1993), the 

original fractionation introduced by Hedley et al. (1982), left between 20 to 60% of the P 

in the soil unextracted. This residue often contained significant amounts of Po that 

sometimes participated in relatively short-term transformations.  

On relatively young Ca-dominated soils, this residual Po can be extracted by 

NaOH, while on more weathered soils, hot HCl (Metha et al., 1954) extracts most of 

organic and inorganic residual P (Tiessen and Moir, 1993). The authors determined that 

hot HCl solution appears to work satisfactorily on most soils, and is presented below as 

part of an extensive soil P fractionation.  

This study used a sequential fractionation method based on Hedley et al. (1982), 

and Tiesen and Moir (1993) procedures modified by Warren (2007). The sequential 

fractionation of soil P into forms of differing availability allows further evaluation of the 

disposition of P in soils treated with manure, releasing P by basic and acidic extraction.  

The method determines total P content in manure, which is important for 

monitoring loading rates and long-term applications (Barnett, 1994). However, it is the 

amount of plant-available P that is significant, because crop response is directly related to 

the inorganic P forms in manure (Bromfield, 1960).Moreover, inorganic P is obtained by 

Murphy and Riley method in the soil extract based on the reduction of the ammonium 

molybdiphosphate complex by ascorbic acid in the presence of antimony.   
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The qualitative and quantitative information provided by the fractionation data is 

useful to investigations on the forms of native Pi and Po and their transformations, as well 

as of the P forms available to plants (Huang et al., 2008). 

While there is much work to be done to identify specific P compounds present in 

manure, fractionation is an inexpensive way to rapidly estimate P solubilities and 

labilities (Sharpley and Moyer, 2000).
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CHAPTER IV 

 

MATERIALS AND METHODS 

 

This study conducted on a Gruver clay loam from plots established in 1995 at the 

Oklahoma Panhandle Research and Extension Center (OPREC) located in Goodwell, 

Oklahoma (36º35 N, 101º37 W; elevation 992 m). Gruver soils are classified as very 

deep, well drained, moderately slowly permeable calcareous soils rich in calcium 

phosphate (Park et al., 2010). The calcareous nature of this soil increases risks associated 

with N losses due to ammonia volatilization that occurs under increased pH levels found 

in Gruver soils (Wu et al., 2003a, 2003b). Soil characteristics at the study site prior to 

initiation of the study are given in Table 1. 

Temperatures of 32° C or greater occur, on average, about 60-65 days per year in 

the Western panhandle and the average annual precipitation is about 432 mm (Source: 

Oklahoma Mesonet). A continuous wheat (Triticum spp.) routine test was conducted in 

the experimental area for several years before the implementation of the current study. 

Micronutrients (Mg, Ca, S, Fe, and Mn) and macronutrients (P and K) were found to 

meet or exceed plant requirements, so these nutrients were not added.  

Before the start of the experiment in 1995, soil P was sufficient, with an initial 

value of 73 kg ha-1, which exceeded the recommended P level of 32 kg ha-1, and 

remained above this level throughout the experiment (Zhang and Raun, 2006). Soil N
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Table 1. Initial soil characteristics of a continuously cropped, conventionally tilled corn system, measured prior to manure 
applications in 1995.  

                          
Study   Depth pH† NH4-N NO3-N P  K Mg Ca TN TC 

   cm  …..……………......…..…....  mg kgˉ¹  ……..……………………..…... …….....g kgˉ¹…….... 
Continuously cropped  0-15 7.18 10.7 55.4 34.3 634 747 2512 1.2 12.3 

conventionally tilled corn system 15-30 7.60 9.9 51.1 14.0 525 867 2628 1.0 8.7 
   30-45 7.76 6.7 24.6 25.2 534 867 2980 0.9 6.7 

   45-60 7.70 7.1 25.2 25.4 510 833 7938 0.6 12.1 

      60-120 8.14 5.2 34.6 22.9 394 720 16708 0.6 19.9 
             

† Soil pH using glass electrode with a 1:2 soil: H2O ratio; NH4-N and NO3-N from 2M KCl extracts; P, K, Mg, and Ca from Mehlich III extracts; 
Leco CN2000 dry-combustion analysis at 1350°; Soil electrical conductivity for forage cropping system used a 1:2 soil: H2O ratio; all others used 
a saturated paste extract. Adapted from Turner (2004). 
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levels were 141 kg ha-1 before the start of the experiment, which were about 50 kg ha-1 

below the recommended soil N level of 190 kgha-1 (Zhang and Raun, 2006). Soil pH 

levels were not adjusted because they would interfere with one of the long-term 

objectives of the experiment, which was to evaluate the cumulative effects of repeated 

nutrient applications on crop yields and soil properties (including pH) across different NS 

(Park et al., 2010). 

Soils samples were collected in 2008 using Giddings probe following 13 annual 

manure applications consisting of four equivalent N applications rates of beef manure, 

swine effluent and anhydrous ammonia (0, 56, 168 and 504 kg N ha-1) applied to the 

surface (0 cm) each year beginning in 1994 under continuously cropped corn with 

conventional tillage. 

Corn (Zea mays L.) planting date, cultivar selection, seeding rate, and other 

management information are presented in the study conducted by Park et al. (2010) for 

each year of the experiment. Study plots were irrigated under a center pivot system using 

the low-energy precision application system (Table 2). 

Nitrogen application levels were selected based on the maximum amount of swine 

effluent applied at 0.0205 ha-m yr-1 as part of the waste management system for swine 

confined animal feeding operation units in the region, which supplied approximately 504 

kg N ha-1 yr-1 (Park et al., 2010). Equivalent N rates of 504 kg N ha-1 yr-1 for AA and BM 

were also included in the experiment to maintain a balanced design, even though they are 

higher than recommended application rates (Park et al., 2010). The second highest N rate 

of 168 kg ha-1 yr-1 was included to be consistent with recommended N rates to satisfy 

yield goals in the region (Zhang and Raun, 2006) A low N rate of 56 kg N ha-1 yr-1 was 

included to provide additional NS comparisons (Park et al., 2010). 
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Table 2. Soil moisture additions from rainfall, irrigation, and swine effluent 
applications, 1995-2007. 

 Year 
Moisture event 1995 1996 1997 1998 1999 2000 2001 

 ………………… mm ha-1 ………………………..……………….. 
    

Precipitation (P) 419 343 342 489 400 473 336 

Irrigation (I) 413 318 413 413 413 191 445 
Total (P+I) 831 661 755 902 813 664 780 
Events, n 13 10 13 13 13 6 14 
SE x 56 5.6 5.6 5.6 5.6 8.4 6.1 8.4 

SE x 168 16.9 16.9 16.9 16.9 16.9 18.4 16.9 
SE x 504 50.6 50.6 50.6 50.6 50.6 55.2 50.6 

Adapted from Park et al. (2010). 
 

 Year 

Moisture event 2002 2003 2004 2005 2006 2007 Average 

 …………………………….. mm ha-1 ………………………………….. 
Precipitation (P) 494 376 535 380 482 306 414 

Irrigation (I) 413 381 381 381 413 413 383 
Total (P+I) 907 757 916 761 895 718 797 
Events, n 13 12 12 12 13 13 12 
SE x 56 8.4 5.6 8.4 8.4 8.4 8.4 7.2 

SE x 168 16.9 16.9 16.9 16.9 16.9 16.9 17.0 
SE x 504 50.6 48.6 50.6 50.6 50.6 50.6 50.8 

 

Manure samples were collected during plot applications and stored at 4°C before 

nutrient analysis. Swine effluent was obtained from a commercial nursery lagoon, 

whereas BM was obtained from a local feedlot. The quantities of BM and SE applied 

were adjusted each year to meet the target level of N so that all three sources applied 

equivalent rates of N.  

Anhydrous ammonia, with approximately 82% N content, was soil injected each 

year on dates that varied between 9 January and 19 April. Feedlot beef manure was 

broadcast followed by incorporation to the top 15 cm depth of soil in March each year 
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(approximately 1 month before planting). Swine effluent was surface applied by flood 

irrigation when corn was at six-leaf stage (approximately the 1st week of May). The 

entire experiment was irrigated after SE application to minimize the effect of additional 

soil moisture supplied by SE. 

The average chemical composition of some characteristics of beef manure and 

swine effluent (Table 3) was, respectively, as follows: total N (%), 2 and 0.1; total C (%) 

21 and 0.2; EC (dS m-1), 15 and 10, N-NH4 (mg l -1), 18 and 774. Table 3 also shows 

information about other nutrients found in the animal manure. Anhydrous ammonia was 

applied until 2005, since then fertilizer urea was used as a nitrogen source. 

Table 3. Selected characteristics of beef manure (BM) and swine effluent (SE) used 
over thirteen years on experiments located at OPREC, Goodwell, OK. † 

    BM(32)‡   SE(59)   
pH  7.84 ±0.53 8.00 ±0.44 
EC dS m-1 15.81 ±6.97 9.38 ±3 
Dry 

matter % 70 ±11.17 1 ±0.7 
Na mg L-1 3,776 ±2,340 270 ±74 
Ca mg L-1 47,418 ±31,561 97 ±46 
Mg mg L-1 7,832 ±4,428 27 ±20 
K mg L-1 19,818 ±10,478 970 ±385 

TN % 2 ±0.62 0.1 ±0.02 
TC % 21 ±8 0.2 ±0.05 
NH4 mg L-1 18 ±2.5 774 ±314 
Mn        mg L-1 194 ±70.5 0.4 ±0.23 
S         mg L-1 11,170 ±11,828 165 ±458 
B         mg L-1 86 ±58 2.5 ±1.25 
Fe        mg L-1 4,615 ±1,982 8.6 ±5 
Zn        mg L-1 290 ±391 23 ±36 
Cu        mg L-1 34 ±17 2.2 ±3 

†Numbers based on manure dry-weight 
‡Number of samples 
 

A total of 180 soil samples from soil cores were subdivided by depth into five 

segments (0-15 cm, 15-30 cm, 30-45 cm, 45-60 cm and 60-120 cm), composited, air-

dried, crushed, and sieved (2 mm) prior to sequential P extraction method modified by 
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Warren (2007).  Sequential extraction procedure provides relevant information to 

mobility, bioavailability and distribution of P in animal manure-amended soils (Houtin et 

al., 2000). This fractionation technique uses a series of extractants to identify labile 

inorganic (Pi) and organic (Po) fractions followed by the more stable forms (Houtin et al., 

2000). 

In the fractionation, 0.5g of air-dried soil was placed in a 50 ml centrifuge tube 

after shaking overnight (16h) at room temperature, was first extracted with 30 mL each of 

deionized water. After shaking overnight, the extraction solution was centrifuged at 

10,000 rpm for 15 min at room temperature. Then, the supernatant was vacuum-filtered 

through a 0.45 µm filter paper and the material retained on the filter was rinsed back into 

the centrifuge tube and extracted with the next extractant. The residues were then 

sequentially extracted by 0.5 M NaHCO3 (pH=8.5), 0.1 M NaOH, 1.0 M HCl and 11.3 M 

concentrated HCl.  

The NaHCO3 extraction was followed by 0.1 M NaOH to remove the Po 

associated with humic compounds (Bowman and Cole, 1978) and Pi more strongly bound 

to Fe and Al compounds. Sonication of NaOH extracts promotes extraction of inorganic 

and organic P physically protected in aggregates (Hedley et al., 1982). The HCl 

extractant dissolves P minerals and possible fertilizer reaction products (Okalebo et al., 

1993). The fractionation scheme involves a sequence of extractions that separates soil Po 

into labile, moderately labile, and nonlabile fractions. 

 Residual phosphorus which contains fairly insoluble Pi and Po forms was 

determined using microwave digestion (HNO3/HCl) (Warren, 2007). According to He et 

al. (2003) animal manure must contain a considerable amount of soluble chemicals, 

including P compounds, and lesser amounts of recalcitrant (residual) P. Extracted total P 
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(Pt) was determined using inductively coupled plasma atomic emission spectroscopy 

(ICP) (Warren, 2007). 

The concentration of inorganic phosphorus (Pi) in all extracts was determined 

colorimetrically by the molybdenum-blue method (Murphy and Riley, 1962) on a 

spectrophotometer at 880 nm using ascorbic acid as a reducing agent. Acid or alkali 

filtered extracts were neutralized prior to P determination. The organic P was represented 

by difference between total P and inorganic P in the extracts. 

All statistical analyses were performed using the Statistical Analysis System 

(SAS) software package. The 36 plots were arranged in a randomized, complete block 

design with three replications of each of the main treatments effects, NS and NR. 

Analysis of variance (ANOVA) using the PROC MIXED routine was used to evaluate 

the main effects of manure application rates and soil depth, and their interactions to 

determine differences in P concentrations for the various extraction methods. Fixed 

effects included in the ANOVA model were NS and NR. 

Type III least-square means obtained from the PROC MIXED routine were used 

for mean comparison tests using the PDIFF option (SAS Institute, 2002). Model 

parameters and treatment differences were considered significant at the p < 0.05 level. 

PROC GLM was implemented in order to analyze the effect of treatments on P 

concentration and means were separated using least significance difference (LSD). 

Regression analysis was also performed to demonstrate how WSP responded to the net 

phosphorus applied for both beef manure and swine effluent
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CHAPTER V 

 

RESULTS AND DISCUSSION 

 

Soil P Pools 

The pools of soil P were significantly affected by NS. Nitrogen rate and soil depth 

with an increase of soil P primarily in the top two depths sampled. Much of the difference 

in changes to the soil P pools can be explained by manure composition (Table 4). The 

distribution of P within each fraction provides an indication of the potential of P forms in 

the soil to be affected by various land management practices (Castillo and Wright, 2008). 

It has been reported that manure applications have a greater effect on the retention of Pi 

than the retention of Po (Lehman et al., 2005) as shown by this research where Pi 

represented greater differences for most of the treatments than Po.  The Po fraction most 

impacted by P additions was the NaOH extraction.  

After 13 years of organic fertilization of corn, the soil P pools were significantly 

affected by animal manure treatments when compared to the check (Table 5). At each 

depth in the soil profile, the WSP fraction was least for both beef manure (3.8%) and 

swine effluent (1.5%), whereas the largest soil P fraction was HCl-P for both beef manure 

(41.5%) and swine effluent (48.9%) when total P was summed within all depths and 

rates.
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Table 4. Summary of analysis of variance (significance of F values) to determine the effect of nitrogen rate, nitrogen source 
and soil layer depth and their interactions on the concentrations of inorganic and organic soil P fractions in a Gruver soil in 
maize production which had received animal manure for 13 consecutive years. 

   H2O  NaHCO3 (0.5 M)  NaOH (0.1 M)  HCl (1.0M   HCl (11.3 M)  Residual-P 
Source df  Pi‡ Po  Pi Po  Pi Po  Pi  Source df  Pi‡ 

NR 3  <0.0001 0.8657  <0.0001 0.2941  <0.0001 <0.0001  <0.0001  0.6141 0.8442  0.6670 
NS 3  <0.0001 0.9440  <0.0001 0.7505  <0.0001 0.1037  0.7828  0.2000 0.7092  0.0939 

Depth (D) 4  <0.0001 0.9354  <0.0001 0.0350  <0.0001 <0.0001  0.0001  0.7339 0.5980  <0.0001 
NRxNS 6  <0.0001 0.7616  <0.0001 0.8420  <0.0001 0.0031  0.5843  0.0135 0.0509  0.1889 
NRxD 12  <0.0001 0.9970  <0.0001 0.6026  <0.0001 <0.0001  0.0004  0.8213 0.7070  0.7043 
NSxD 8  <0.0001 0.6467  <0.0001 0.9895  0.0004 <0.0001  0.0464  0.9991 0.9542  0.8794 

NRxNSxD 24  <0.0001 0.9996  <0.0001 0.9997  <0.0001 0.0002  0.2270  0.9043 0.8445  0.9937 
‡ Pi=inorganic phosphorus and Po= organic phosphorus.
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Labile P 

The labile P pool consists of the summation of the WSP and NaHCO3 fractions, 

which evaluates portion of P that is most soluble. Water-soluble and NaOH P increases 

were greatest in the BM treatments and increased with increasing NR in the 0-15cm 

depth (Table 5). However the only SE at 504 was greater than the check for either 

extraction at the 0-15cm depth. This is attributed to greater quantity of P applied in with 

BM as an NS versus SE. In this study, plots receiving animal manure showed that 

inorganic phosphorus extracted with water was present in higher amount than organic P 

at the surface for beef manure (Table 5). Inorganic P increased from 5.50 mg P kg-1 

(control) to 124.60 mg P kg-1 (504 kg ha-1) for BM at the soil surface (0-15 cm depth) 

(Table 4). On the other hand, swine effluent showed a great amount of inorganic P at the 

surface (Table 5) and the 15-30 cm (Table 6) and 45-60 cm (Table 7). Control is 

significantly different from the highest rate for swine effluent at the surface only (Table 

5). 

Water-soluble P for the BM application decreased with depth and NR for BM 

treatments (Figure 1). For BM at 504, there as also a significant increase in WSP at the 

15-30cm depth relative to BM at 0 or the lower soil depths indicating translocation of 

WSP to subsequent depths in the soil profile. Water-soluble P has been associated with 

plant-available P and NaHCO3-extractable P with labile inorganic and organic P. Water-

soluble soil P has been studied in great detail because it represents the amount of P 

readily available to plants (Kuo 1996) and may be the most appropriate environmental 

estimator of P concentrations in runoff compared with other soil test methods developed 

for crop production (Pote et al. 1996). 
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Based on other studies, Wienhold and Miller (2004) reported that water-soluble P 

comprises the largest fraction of manure P and most extracted P is in inorganic form. 

Dormaar and Chang (1995) reported 15-46% of total P as water-extractable Pi+Po and 

resin-extractable Pi after 20 years of cattle manure addition. However, in this study WSP 

was the smallest fraction, on average 3% of total P for SE and the second smallest 

fraction for BM with 10%, considering all rates at the surface when compared with the 

total P for all fractions. MnKeni and MacKenzie (1985) suggested that this is due to an 

important cumulative effect of manure additions and a decrease in the soil P adsorption as 

fixation sites become saturated.  

Based on other studies, Qian and Schoenau (2000) determined that long-term 

manure addition has been known to increase the Pi forms in the labile and moderately 

labile fractions and also to increase to total P content.  

According to Houtin et al. (2000) the potential environmental P hazard of swine 

manure depends on many factors among which are the application rate and the mobility 

of bioavailable P. The bioavailability of P is controlled by its chemical pools indicating 

that it is desirable to determine the amount of P pools in a soil profile rather than in a 

surface layer because P form may move downward along with the effluent moisture. 

A reduction in water-extractable P compared to previous study for SE has been 

reported to be highly correlated with total and inorganic P leached down from manure 

(Sharpley and Moyer, 2000). Application of P into the soil may lead to surface adsorption 

and precipitation of P, which depresses the availability of applied P (Samadi and Gikes, 

1999). 
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The two highest rates of animal manure application over 13 years resulted in an 

inorganic P concentration almost 10 and 23 times greater for soils amended with swine 

effluent (Figure 2), and beef manure (Figure 1) respectively, than for control soils at the 

surface. The P concentration in the surface increased significantly with manure 

application rates, only for the inorganic P form (Table 5). 

Similar trends were also observed the NaHCO3 P pool where P content increased 

with NR for the BM for both Pi and Po. This is slightly different from the WSP which did 

not exhibit an increase in Po with increasing NR (Table 5). Applications of SE did not 

significantly alter the NaHCO3 P pool at the 0-15cm depth in this study. 

The NaHCO3 was the second smallest fraction for both animal manure sources 

considering all depths and rates when compared with the total P for all fractions. The 

NaHCO3-Pi was influenced by animal manure source, rate of N fertilization, and depth, 

whereas NaHCO3-Po was only significantly influenced by rate at the 15-30 cm depth. 

About half of the Po in the H2O fraction is enzymatically hydrolysable – mainly as 

phytate in pig manure (He and Honeycutt, 2001). In contrast, a major portion of Po in the 

NaHCO3 fraction is not hydrolysable by either wheat phytase, alkaline phosphatase, 

nuclease P1, or nucleotide pyrophosphatase. This indicates that Po extracted from manure 

with NaHCO3 is not especially labile (von Wandruszka, 2006).  

After 13 years, the moderate available P forms concentration (NaHCO3) increased 

to 28.69 mg kg-1 at the lowest manuring rate (56 kg ha-1) and reached up to 254.86 mg kg-

1 at the highest manuring rate (504 kg ha-1) for beef manure compared with roughly 11 

mg kg-1 at the control for inorganic P form, which was significantly different among  
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Table 5. Soil phosphorus fractionation (mg kg-1) for thirteen years amended with commercial fertilizer, beef manure and swine 
effluent at 0-15 cm. 

   H2O  NaHCO3 (0.5 M)  NaOH (0.1 M)  HCl (1.0M)  HCl (11.3 M)  Residual-P 
Source† Rate  Pi‡ Po  Pi     Po  Pi         Po     Pi  Pi        Po   

 
N fertilizer 

kg haˉ¹ …………………..………………….………………......  mg kg-1  …..……….…..…..…………………………………………. 
0   1.68d   5.50a    9.19c 9.54a    12.56de 37.22b 152.19b 17.93a   9.86ab   93.60ab 

56   6.51d        0a    7.47c 6.43a    12.45de 34.60abc 150.11b 20.16a   8.70ab   92.70ab 
168   2.84d   5.94a  14.85c 14.44a    20.21bcd 20.84cd 155.30b 15.19a 11.12ab 110.98ab 
504   3.40d   6.15a  10.90c 22.83a    21.53bcd 20.18cd 252.31a 19.10a   2.92ab 113.34ab 

Beef 
manure 

0   5.50d        0a  10.39c 6.24a    14.83cde 55.20a 176.79b 27.14a       0b   98.56ab 
56   40.46c        0a    28.69bc 6.86a    21.51bcd 37.22b 153.13b 23.57a   5.38ab   93.60ab 

168    76.81b        0a  55.04b 15.36a    28.48b 40.99ab 159.21b 21.51a 10.05ab 104.06ab 
504   124.60a   3.69a    254.86a 46.72a      6.31a 37.54b 276.02a 19.78a  20.24a 107.94ab 

Swine 
effluent 

0   3.26d   0.73a    4.83c   4.53a      8.58e 39.25ab 149.59b 13.72a 14.74ab 82.00b 
56        0d     4.70a    8.78c 10.70a    14.98cde 12.81d 163.62b 30.42a       0b 120.12ab 

168        0d   5.72a    8.78c 10.38a    15.20cde 15.79d 159.55b 19.95a   4.69ab   99.10ab 
504 32.26c   11.08a    0.09c 17.30a    24.55bc   8.22d 179.90b 14.05a 10.82ab     127.90a 

†Treatments are control (0), commercial fertilizer, beef manure and swine effluent 
‡ Pi=inorganic phosphorus and Po= organic phosphorus. 
§Means followed by the same letters are not significantly different at the 0.05 alpha level among treatments. 
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Table 6. Soil phosphorus fractionation (mg kg-1) for thirteen years amended with commercial fertilizer, beef manure and 
swine effluent at 15-30 cm depth. 

   H2O  NaHCO3 (0.5 M)  NaOH (0.1 M)  HCl (1.0M)  HCl (11.3 M)  Residual-P 
Source† Rate  Pi‡ Po  Pi     Po  Pi         Po     Pi  Pi        Po   

 
N fertilizer 

kg ha-1 …………………..………………….………………........mg kgˉ¹………..……….…..…..…………………………………………. 
0   0.82c 2.23b 5.05cd 6.26abc     8.90de 32.61b 152.19b 15.40a   10.75a  105.58ab 
56   2.09c 2.40b     4.25d    5.86bc     8.32de 33.75b 138.10b 22.57a 3.33a    99.88ab 

168   0.90c 5.47b   10.09cd  10.74abc   17.12bcde 15.11c 140.17b 15.25a 8.39a    99.22ab 
504 30.88b      0c   19.84b  13.48ab   19.13bcd 34.29b 132.48b 14.77a 9.82a    113.48a 

Beef 
manure 

0 11.56c       0bc     6.94cd  12.73abc   19.32bc 52.96a 152.56b  21.62a 0.74a    93.60ab 
56    0c 3.94b   11.21cd  17.83a   17.27bcde  8.19c  162.91ab 14.68a 9.03a  104.40ab 

168   0.95c 5.44b   12.73bc    0.89c 20.063b 17.03c 157.42b 24.14a      0a    96.20ab 
504 44.67a  28.06a   32.78a  13.34ab   46.05a 17.83c 209.56a 18.22a 8.82a    95.42ab 

Swine 
effluent 

0     0.9c 1.40b     3.59d 6.10abc     7.21e 33.15b 147.09b 20.87a 5.26a      82.24b 
56    0c 3.90b     5.64cd  10.19abc 14.98bcde 15.37c 154.86b 15.13a 6.15a    119.46a 

168    0c 4.52b     5.74cd  10.49abc   12.41cde 16.09c 144.33b 14.51a 8.38a  106.16ab 
504   6.60c 0.13b     6.74cd 8.18abc 14.10bcde 31.17b 156.51b 14.51a   10.83a  101.22ab 

†Treatments are control (0), commercial fertilizer, beef manure and swine effluent. 
‡ Pi=inorganic phosphorus and Po= organic phosphorus. 
§Means followed by the same letters are not significantly different at the 0.05 alpha level among treatments.
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Table 7. Soil phosphorus fractionation (mg kg-1) after thirteen years amended with commercial fertilizer, beef manure and 
swine effluent at 45-60 cm depth. 

   H2O  NaHCO3 (0.5 M)  NaOH (0.1 M)  HCl (1.0M)  HCl (11.3 M)  Residual-P 
Source† Rate  Pi‡ Po  Pi     Po  Pi         Po     Pi  Pi        Po   

 
N fertilizer 

kg haˉ¹ …………………..………………….………………........mg kgˉ¹………..……….…..…..…………………………………………. 
0 0.56ab 3.36ab 5.23b 5.30a   16.02b 18.19a 197.43a 12.81a   9.53ab    93.14ab 

56    0b 3.20ab 3.01b 2.56a 11.60bcd 13.15a 211.85a 17.63a   7.27ab    90.60ab 
168 0.47ab  2.38abc 5.75b 8.29a 12.85bcd 12.06a 166.98a 15.64a   5.93ab  107.84ab 
504 1.66ab 0.71bc 3.74b 6.38a     5.25d 20.93a 187.45a 21.19a   6.98ab    130.86a 

Beef 
manure 

0 3.27ab  2.68abc 10.51ab  10.16a   25.97a 23.04a 210.85a 26.18a   14.38a  84.88b 
56    5.54b     0bc   7.23ab 3.94a   16.16b 21.59a 151.98a 14.67a   9.55ab    93.26ab 

168 0.28ab    3.42ab 4.42b 2.51a   13.44bc 11.26a 185.12a 17.91a   6.05ab  83.98b 
504 1.97ab    5.46a     19.92a 2.90a   18.22b 15.69a 169.47a 17.57a   6.03ab    88.22ab 

Swine 
effluent 

0 0.80ab  2.03abc 3.37b 4.86a 7.21cd 24.47a 195.25a 16.18a  11.64ab    95.06ab 
56    0b  2.40abc 1.80b 2.77a 10.93bcd 14.50a 194.95a 16.55a   6.80ab    91.82ab 

168    0b  2.68abc 6.35b 9.33a 11.37bcd 10.76a 176.81a 14.85a   6.96ab    99.88ab 
504    6.80a  2.87abc  7.32ab 3.57a 11.51bcd 20.79a 142.10a 27.87a      0b      83.52b 

†Treatments are control (0), commercial fertilizer, beef manure and swine effluent. 
‡ Pi=inorganic phosphorus and Po= organic phosphorus. 
§Means followed by the same letters are not significantly different at the 0.05 alpha level among treatments.
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Figure 1. Distribution of water-soluble phosphorus (inorganic) with depth in 
Gruver clay loam soil amended with beef manure at 0, 56, 168 and 504 kg ha-1 rates over 
13 years. Horizontal bars indicate standard error. 
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Figure 2. Distribution of water-soluble phosphorus (inorganic) with depth in 
Gruver clay loam soil amended with swine effluent at 0, 56, 168 and 504 kg ha-1 rates 
over 13 years. Horizontal bars indicate standard error. 
.
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Table 8. Soil phosphorus fractionation (mg kg-1) for thirteen years amended with commercial fertilizer, beef manure and swine 
effluent at 30-45 cm depth. 

   H2O  NaHCO3 (0.5 M)  NaOH (0.1 M)  HCl (1.0M)  HCl (11.3 M)  Residual-P 
Source† Rate  Pi‡ Po  Pi     Po  Pi         Po     Pi  Pi        Po   

 
N fertilizer 

kg haˉ¹ …………………..………………….………………......  mg kg-1  …..……….…..…..…………………………………………. 
0 0.75a 3.31abc 6.87ab 5.57a    15.44bc   19.56bc 180.79b 15.27ab   6.49ab 109.46a 

56      0a   2.72bc     1.60b 4.34a    11.23bc 16.783cd 156.27b 16.10ab   8.22ab   93.72a 
168 0.13a 4.12abc     6.85ab    7.30a    14.69bc 14.447cd 154.15b 15.02ab   7.98ab 113.68a 
504 1.63a   5.37ab     1.30b  11.51a      8.73c  17.85cd 239.99a 18.48ab   3.84ab 119.26a 

Beef 
manure 

0 4.79a  0c     8.86ab  10.85a    13.51bc   56.46a 150.70b 34.85a      0b 170.44a 
56     0a   4.28abc   11.11a  14.19a    18.74ab     5.90d 154.68b 14.40ab   7.72ab 105.72a 

168     0a   3.76abc     4.32ab 4.13a    15.21bc   15.13cd 155.30b 15.31ab   6.05ab   87.78a 
504    4.04a   8.35a     7.76ab 8.29a    26.98a  10.65cd 160.26b 17.63ab   5.19ab   86.52a 

Swine 
effluent 

0    1.41a   1.74bc 2.88ab 6.08a      5.56c   31.61b 144.08b 14.82ab 1.76a   89.86a 
56     0a   2.66bc 2.80ab 9.49a 9.90bc   15.82cd 154.59b 15.47ab   6.11ab 109.32a 

168     0a   3.12abc 4.94ab    9.27a    11.08bc   14.85cd 139.64b 28.27ab        0ab   93.26a 
504    1.63a   5.97ab     1.80b  12.57a 8.88bc   15.20cd 275.05a 9.50b 11.44a   91.22a 

†Treatments are control (0), commercial fertilizer, beef manure and swine effluent. 
‡ Pi=inorganic phosphorus and Po= organic phosphorus. 
§Means followed by the same letters are not significantly different at the 0.05 alpha level among treatments.
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amendment rates (Table 5), showing a great similarity with WSP due to swine effluent 

and WSP solubility. 

Swine effluent does not show significantly differences for that fraction within 

treatments. On average, bicarbonate fraction was 14% for BM and 5% for SE of the total 

P at the surface, occurring mainly in the inorganic form. 

Sharpley and Moyer (2000) found that organic and inorganic P in NaHCO3 

extracts were correlated with P leached from manure, but the correlation was weaker than 

that for water-extractable P. On the other hand, this study showed a greater difference for 

NaHCO3 than for WSP for N-fertilizer and BM, which only had a significant difference 

at the two highest rates for the surface (Table 5). Siddique and Robinson (2003) 

suggested that soluble organic compounds of low molecular weight form complexes with 

Al, Fe, and Ca that increase soil P sorption capacity and, thus, decrease water 

extractability of soil P. 

When summed together, the WSP and NaHCO3 P pools clearly indicate in 

increase in the labile pools of soil P relative to the control plots as a result of applications 

of BM for all rates following 13 years of application.  However, SE application resulted 

in an increase of labile P only for the 504 NR. On average, the amount of total labile Pi 

forms (WSP and NaHCO3) was larger than the amount of labile Po forms and represented 

an important fraction of the total labile P pools when compared to the control of both 

animal manures.  

 

Moderately Labile Fraction 

The NaOH-Pi fraction varied significantly with N source, rate and depth 

(p=0.0001) for both inorganic and organic P (Table 4). On average, the amount of NaOH-
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Pi was the highest in BM (86 mg P kg-1) and lower in SE and N-fertilizer (24 mg P kg-1 

each) at the 0-15 cm depth for the highest rate (Table 5). Control is only significantly 

different from the other rates at 60-120 cm for beef manure (Table 9). 

The concentration of Po extracted by the two basic pools (NaHCO3 and NaOH) 

was smaller than Pi at the highest rate for both animal manure sources (Table 5). This 

could be a result of hydrolysis of soil organic matter and organic molecules added as a 

result of BM and SE as NS. Even though, NaOH-Po for beef manure is higher than Pi at 

the other rates, they are not significantly different. A review by Hao et al. (2006) also 

shows greater increases in Pi than in Po in soils that have received long-term applications 

(>10 year) of different types of manure. The Po levels may be less important in soils with 

a long history of high manure applications than following medium- and short-term 

manure applications (Lehmann et al., 2005).  

The moderately labile pool constituted on average, 14% for both animal manure 

sources at the surface, considering all rates, implying that most of the P was not 

associated with either Al or Fe, which are high in acid soils. At low soil pH, i.e. <4.5–5.0 

additions, of P to soils can result in precipitation of Al and Fe phosphates, whilst at high 

pH (>6.0–6.5) insoluble calcium phosphates can form (Haynes, 1984). According to 

Haynes and Mokolobate (2001) highly weathered acid soils contain large quantities of Al 

and Fe hydrous oxides which have the ability to adsorb P onto their surfaces.  

Hydroxide-extractable Pi and Po represent the moderately labile pool (Sattel and 

Morris, 1992). According to Wienhold and Miller (2004), concentrations of NaOH and 

HCl represent more recalcitrant forms of P. In extracts of the swine manure and poultry 

litter this was almost all phytic acid (Turner and Leytem, 2004). Phytic acid is immobile 
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Table 9. Soil phosphorus fractionation (mg kg-1) after thirteen years amended with commercial fertilizer, beef manure and 
swine effluent at 60-120 cm depth. 

   H2O  NaHCO3 (0.5 M)  NaOH (0.1 M)  HCl (1.0M)  HCl (11.3 M)  Residual-P 
Source†  Rate  Pi‡ Po  Pi     Po  Pi         Po     Pi  Pi        Po   

 
N fertilizer 

kg haˉ¹ …………………..………………….………………........mg kgˉ¹………..……….…..…..…………………………………………. 
0     0c 2.59ab    12.27a 3.97a     12.41b   6.78abc 155.13a  9.53b 6.48a   103.38a 
56     0c 2.19ab    10.29a 1.97a 9.20b   2.46c 153.54a  19.55ab   1.50ab 83.10a 

168     0c 2.56ab 6.85a 5.28a 9.76b   4.60c 128.40a   12.41b 7.42a 78.26a 
504 0.42bc  1.19abc 7.25a 4.74a 5.99b 12.24bc 146.21a  21.66ab   0.55ab 75.50a 

Beef 
manure 

0 1.46bc     2.87a    13.74a 3.05a      38.02a   0d 108.55a   35.39a      0b 86.28a 
56     0c 2.40ab 6.65a 5.66a      14.03b   1.03c 112.65a  8.90b 7.85a 74.00a 

168     0c 2.12ab 7.86a 1.19a 8.88b   3.40c 142.03a 17.46b   4.00ab 76.42a 
504 5.44a    0c 9.88a 3.52a 6.26b 12.58a 148.60a 12.93b 7.56a 70.00a 

Swine 
effluent 

0  2.19bc 0.05bc 9.52a 3.55a 5.75b 12.95a 166.33a 14.99b 7.24a 75.06a 
56    0c   1.40abc 8.17a 4.14a 9.54b   4.14c 170.61a 12.81b 7.06a 78.44a 

168    0c     1.96ab 7.66a 4.13a 9.02b   3.55c 149.20a  21.76ab       0ab 68.34a 
504  3.31ab    0c 6.59a 4.61a 6.74b 12.30ab 146.11a 11.02b 8.17a 65.88a 

†Treatments are control (0), commercial fertilizer, beef manure and swine effluent. 
‡ Pi=inorganic phosphorus and Po= organic phosphorus. 
§Means followed by the same letters within a column are not significantly different at the 0.05 alpha level among treatments.
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in soils, because it sorbs strongly to clays and reacts with metals to form insoluble 

precipitates (Turner et al., 2002; Celi and Barbaris, 2004). It is also difficult for 

organisms to access phytic acid once it is stabilized in soil (Turner et al., 2002). Organic 

phosphorus in the NaOH and HCl fractions can therefore be considered stable in the 

environment (Turner and Leytem, 2004).  

Total and inorganic P concentrations in NaOH as well as NaHCO3 extracts were 

higher for BM than SE at the surface. Tiessen and Moir (1993) reported that NaOH-

extractable Pi is thought to be associated with amorphous and some crystalline Al and Fe 

phosphates while NaHCO3-extractable Pi is thought to consist of Pi adsorbed on surfaces 

of more crystalline P compounds, sesquioxides and carbonates. 

The NaOH-Pi forms in the manured plots were almost six times and three times 

higher than in the control for beef manure and swine effluent, respectively. Increases 

were significantly related to the rate of manure P application (Table 4), leading to 

increase contributions for that extract. Results for organic P were not significantly 

different.  

 

Relatively Insoluble Fraction 

This fraction represents 1M HCl and 11.3M HCl. The hot HCl was included 

because; according to (Tiessen and Moir, 1993) that fraction extracts most of the organic 

and inorganic residual P. The HCl-P fraction is associated with the primary minerals such 

as apatite (Tiessen et al., 1994) and with calcium-bound P, which is high in less 

weathered soils. Because organic phosphorus extracted by NaOH and HCl is considered 

poorly soluble, HCl fraction did not account for that form of P. In the current study, HCl-

P varied significantly with depth x rate and depth x source (Table 4). Highest P 
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concentration for all N-sources was found in the HCl fraction due to the type of soil that 

has high carbonate content.  

The hot HCl fraction only varied significantly with the interaction of rate and 

source only for inorganic P. Concentrated HCl does not show any significant difference 

within treatments along depth. Control-Pi was only significantly different for BM at the 

last depth (Table 9). Phosphorus concentration for the HCl was greater than concentrated 

HCl.  

Unlike HCl, concentrated HCl constituted roughly 7% total P for both animal 

manure sources considering all depths and rates when compared with the total P for all 

fractions. 

Manure application increased HCl-P substantially, especially at the highest rate 

(Figure 3). On average, SE had the lowest HCl-P (180 mg P kg-1) when compared with 

the other two N sources for the highest rate at the surface (≈250 mg P kg-1 each) (Table 

5). At the highest rate, BM and N-fertilizer were significantly different from the other 

rates at the surface, whereas SE and N-fertilizer were significantly different at the 30-45 

cm depth (Table 8). 

When compared to the control treatment at the HCl fraction, the highest (504 kg 

ha-1) application rate over 13 years increased: 100 mg Pi kg-1 soil for beef manure and 30 

mg Pi kg-1 soil at the surface for swine effluent (Table 5) due to the higher amount of P in 

the beef manure content. Moreover, high concentration of Ca for beef manure at the same 

fraction influences the formation of Ca-phosphate and carbonate, increasing the Pi 

removed. 
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Figure 3. Distribution of 1M hydrochloric acid (HCl)-Pi with depth in Gruver 

clay loam soil amended with beef manure at 0, 56, 168 and 504 kg ha-1 rates over 13 
years. Horizontal bars indicate standard error. 

 
The high levels of HCl-P content imply that most of P in the manured soil is 

associated with Ca. Carreira et al. (2006) and Harrel and Wang (2006) showed that HCl-P 

was the largest extractable P fraction in arid and carbonate-rich soils. Also, Yu et al. 

(2006) reported that HCl-P accounted for 45-60% of total soil P in neutral and alkaline 

soils. The relatively insoluble pool constituted about 41% total P for BM and about 50% 

for SE considering all depths and rates when compared with the total P for all fractions. 

Sharpley et al. (1991), studying the impact of long-term swine manure application 

on soil and water resources in Eastern Oklahoma, reported that only small amounts of 

HCl-Pi accumulated in the soil profile. Unlike that study, the insoluble fraction 
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concentration of the study presented here was higher than the other fractions because the 

research was conducted in Western Oklahoma, which has a different soil type. 

 

Residual P 

The residual pool constituted about 30% total P for both BM and SE considering 

all depths and rates when compared with the total P for all fractions, which is the second 

highest P concentration pool. 

According to Adeli et al. (2005) residual P is considered to be a resistant mixture 

of occluded inorganic P covered with sesquioxides and nonextracted stable organic P 

(Sharpley et al., 2004). The residual fraction did not vary with any of the variables, thus 

manure application had no significant effect. At the surface, SE had the highest residual P 

(127 mg P kg-1), whereas BM had the lowest (107 mg P kg-1) (Table 5). Any of the 

sources had significantly differences through the profile. 

 

Effects of 13 Years of Animal Manure and N-Fertilizer to the Soil 

After 13 years of organic fertilization of corn (Zea mays L.), the increase in soil P 

was strongly correlated to the annual application of both animal manures treatments for 

all fractions. The average soil P pool contents in the various depths showed that both 

inorganic and organic P forms concentrations were higher in the manured soil than in the 

check and N-fertilizer plot. This is in agreement with the result of Dormaar and Chang 

(1995), where after 20 years of cattle feedlot manure (CFM) loading, the amounts of all 

labile Pi and Po forms in the Ap horizon of a Lethbridge loam soil generally increased 

with all CFM applications compared with the check. 
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The interactions among NS, NR and depth were significantly for labile and 

moderately pools. These relationships are in agreement with the known fact that available 

soil P pools are constantly replenished through reactions of dissolution or desorption of 

more stable inorganic P through the mineralization of organic P (Tiessen and Moir, 

1993). Both animal manure sources had their total phosphorus for labile fraction 

increased as rate increased, whereas relatively insoluble fraction was decreased at the 

surface as shown on figures 4 and 5. Moderately and residual fraction did not have a 

great change as the other two pools. 
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Figure 4. Relatively phosphorus distribution of soil phosphorus pools amended 
with beef manure at the surface according to each rate. 
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Figure 5. Relatively phosphorus distribution of soil phosphorus pools amended 
with swine effluent at the surface according to each rate. 

 

Changes in the distribution of Pi and Po due to addition of P into the soil through 

either P fertilizer or P-containing organic by-products, are likely to occur over a long-

time rather than a short time (Richards et al., 1995). 

Hao et al. (2006) determined that a low rate of manure application over a longer 

period of time (30 years) will lead to a higher soil P than the same amount of manure 

applied at a higher rate over a shorter time (14 years manuring followed by 16 years no 

manuring). As they showed, if the purpose of manure application is to maximize the P for 

crop production, the manure should be applied at a lower rate over a longer period of 

time. However, if the purpose of manure application is to dispose of it, then the higher 

application over a shorter period of time should result in lower P content since the 

manure has a longer time to react with soil matrices. 
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Soil total P, as expected, was increased by the addition of manure, but not by the 

addition of fertilizer. Total phosphorus extracted, which includes all fractions at all 

depths, increased following thirteen cumulative annual animal manure applications as the 

net total phosphorus applied increased (Figure 6) and the P that is not taken up by plants 

is lost to the environment. However, addition of manure and fertilizer to the soil 

influenced P fractions differently. In general, there was no large effect of N-fertilizer 

addition on each of the fractions in either inorganic or organic forms. On the other hand, 

at the highest rate of that fertilizer, a significant change in P concentration was observed 

in the inorganic P fraction. 

 

Figure 6. Total phosphorus extracted as a function of net phosphorus applications 
of N-fertilizer (NF), beef manure (BM), and swine effluent (SE) in a continuously 
cropped, conventionally tilled corn production system. 
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Differences in inorganic P concentrations observed in this study are consistent 

with those reported previously. Graetz and Nair (1995) found that the total P 

concentration of the surface (0-20 cm) of three Spodosols (Myakka, Immokalee, and 

Pomellofine sands) receiving dairy manure for 8 to 32 years (1680 mg kg-1), was about 

50 times greater than untreated soils (34 mg kg-1). This total P increase was concomitant 

with a general shift from Al- and Fe-P to Ca-P forms (Graetz and Nair, 1995).  

According to Zhang and Raun (2006) although BM and SE had higher P soil 

values throughout the experiment than N-fertilizer, sufficient P levels above 32 kg ha-1 

remained on all of the N-fertilizer plots. 

Agronomic conditions favor the build-up of P because Gruver soils are rich in 

calcium phosphate (Park et al., 2010). Calcareous soils typical from the experimental site, 

is consider an alkaline soil with high levels of calcium and magnesium carbonate. 

Alkaline soils subjected to long-term manure amendments have been shown to 

accumulate substantial quantities of P, with 50–66% in plant available forms (Whalen 

and Chang, 2001). Both calcareous soil and also type of manure affect the amount and 

specie of phosphorus present in the soil. Table 10 shows the animal manure composition 

for beef manure and swine effluent for each N rate and amount of manure applied to 

reach the rates.  

As expected, the effect of lagoon effluent application rates on extractable soil P 

was generally in the order: high rate > medium rate > low rate (Liu et al, 1997). The 

initial soil characteristics (Table 1) show that the calcium concentration is very high and 

the P concentration decreases from the surface to the subsurface. 

Irrigated plots receiving high (>60 Mg ha-1) annual manure applications are 

considered to pose a risk of ground water contamination, as the total P 
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Table 10. Annually applied animal manures to a conventionally tilled, continuously 
cropped corn production system. 

Source    Na  Ca  Mg  K  P  pH 
kg ha-1       ………………….……  kg ha-1  …..…..……………………   

            BM                                 Mg ha-1        
56 4 10 83 13 46 15 7.38 

168 12 30 253 40 137 44 7.34 
504 37 90 756 119 422 134 7.36 
SE   m3 ha-1         
56 73 16 8 3 64 5 7.51 

168 176 38 19 6 155 11 7.53 
504 527 115 56 19 464 34 7.09 

 

concentration increases with soil depth (von Wandruszka, 2006). Although irrigation is 

able to reduce the more significant sources of risk in the region, such as low rainfall and 

frequent drought, other external factors beyond experimental control were present. In 

some years hail damage was reported, whereas in other years pest damage was also 

encountered (Park et al., 2010). 

The pH range for all the soil samples varied from 5.94 to 7.84, depending on 

treatment and soil depth. The lowest pH value is due to the high amount of anhydrous 

ammonia that was applied to the soil, generating more soluble calcium phosphate.  

Continuous application of N-fertilizer would have an acidifying effect due to nitrification 

within the soil, resulting in a long-term decline in soil pH (Park et al., 2010). This 

phenomenon has been well documented by Lindsay (1979), where phosphate solubility 

increases with decreasing pH as calcium phosphate minerals dissolve and release P into 

the soil.  

Continuous application of animal waste (BM and SE) has also been shown to 

result in improved soil pH management, particularly compared with N-fertilizer, which 

can lead to acidification and resultant losses in productivity (Zhang and Raun, 2006). On 

average, and throughout the experiment, the BM and SE plots maintained higher soil pH 
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levels than the corresponding N-fertilizer plots. Zhang and Raun (2006) report that, at pH 

6.8, soil acidity becomes a limiting factor to plant growth, with subsequent yield declines 

as pH is lowered. All of the BM and SE treatments remained above pH 6.8, as did N-

fertilizer for all N-rates. At the highest N rate of 504 kg N ha-1, however, continuous 

application of N-fertilizer lowered soil pH below 6.8 in 13 year, including a pH of 4.8 in 

2000, according to Park et al. (2010). 

The effects of manure on P availability in various soils have been widely studied, 

and the general conclusion has been that it is a source of P; interacts with soil 

components in a manner that increases P recovery by crops; and enhances the 

effectiveness of inorganic P fertilizer (von Wandruska, 2006).  

A major portion of soluble P in manure is determined in weak extracts such as 

H2O and NaHCO3, while much of the soil P requires more aggressive extract such as 

NaOH and HCl. This is related to the fact that soils contain ca 15 times as much Al, and 

10 times as much Fe as manure, while manure tends to have higher Ca and Mg contents 

(von Wandruszka, 2006). Subramaniam and Singh (1997) showed that only Ca-P and Al-

P were the major contributors for the plant available P fraction in their soils. Both animal 

manure sources had a larger proportion of total P in inorganic forms compared with the 

N-fertilizer plots, especially in the HCl extract.  

Turner and Leytem (2004) caution that the presence of organic P in the HCl 

extract of the Hedley fractionation procedure is commonly overlooked, resulting in 

under-reporting. They found phytic acid to be present in HCl extracts of broiler litter and 

swine manure, indicating that this relatively immobile compound enters the environment 

from these sources. More mobile Po species in manure, such as phospholipids and simple 
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phosphate monoesters, can, despite their relatively low abundance, become a major P 

component in runoff (Toor et al., 2003). 
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CHAPTER VI 

 

CONCLUSION 

 

The results showed that 13 years of animal manure application has increased soil 

P pools in the soil profile Gruver clay loam. The soil P fractionation results suggest that 

continuous application of beef manure on the basis of crop N requirements significantly 

increased all P fractions. The study demonstrated risk to ground water from P movement 

through calcareous fine-textured (clay) soils that have received annual feedlot manure 

applications. A possible solution to this problem is applying animal manure based on 

crop P rather than N requirements. However, due to the region where the experiment was 

located those losses are not considered a problem. 

The greatest increases were observed in relatively insoluble pools of inorganic P 

at the surface by application of all N sources, suggesting that greatest rate and source 

were the major contributing factors. Application of manure at the 504 kg ha-1 rate also 

increased HCl-P fraction at lower soil depths. Manure application at the highest N rate 

maintained soil pH close to neutral at the subsurface compared to the N fertilizer 

treatments. 

The order of total P distribution in all fractions at the surface for beef manure was 

on average: HCl>Residual P>NaHCO3> NaOH > H2O >CHCl, but HCl>Residual P> 

NaOH>CHCl> NaHCO3>H2O for swine effluent. Water-soluble P levels increases due to
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 the volume of animal manure applied. Moreover, WSP increases more significantly for 

BM than for SE, which only had significantly increased at the surface for the highest rate. 

These findings suggest that continuous application of manure on the basis of crop 

N needs would increase the bioavailable P at the soil surface and increase the potential 

for P losses from surface runoff and leaching. Thus, animal waste management practices 

are an important nutrient source that can be a viable alternative to a commercial fertilizer. 

However, soil and weather condition as well as animal manure composition should be 

considered for a sustainable model in the agricultural production.
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Table 11. Results of pH and phosphorus concentration after thirteen years application of beef manure from a continuously 
cropped, conventionally tilled corn production system. 
 

        H2O    NaHCO3  NaOH                  HCl Residual-P 
       0.5 M  0.1 M      1.0 M                     11.3 M    

Source Nrate Depth pH Pi Po  Pi Po  Pi Po  Pi  Pi  Po  

Beef 
Manure 

kg ha-1 cm  …………………………………………....…….  mg kg-1  ……………....………...…………..……………………... 

0 0-15 7.33 5.50 0.00  10.39 6.24  21.13 55.20  176.79  27.14 0.00  95.56 
   15-30 7.41 11.57 0.00  6.94 12.73  19.34 52.96  152.56  21.62 0.74  93.60 
   30-45 7.51 4.79 0.00  8.60 10.85  13.52 56.46  150.70  34.85 0.00  170.44 
   45-60 7.56 3.27 2.68  10.51 10.16  25.97 23.04  210.85  26.18 14.38  84.88 
    60-120 7.59 1.46 2.87  13.74 3.05  38.03 0.00  108.55  35.29 0.00  86.28 
  56 0-15 7.38 40.46 0.00  28.69 6.86  21.51 37.22  153.13  23.57 5.38  93.60 
   15-30 7.41 0.00 3.94  11.21 17.83  17.27 8.19  162.91  14.69 9.03  104.40 
   30-45 7.53 0.00 4.28  11.11 14.19  18.74 5.90  154.68  14.40 7.72  105.72 
   45-60 7.57 5.54 0.00  7.23 3.94  16.16 21.59  151.98  14.67 9.55  93.26 
    60-120 7.64 0.00 2.40  6.65 5.67  14.03 1.03  112.65  8.91 7.85  74.00 
  168 0-15 7.34 76.81 0.00  55.04 15.36  20.48 40.99  159.21  21.51 10.05  104.06 
   15-30 7.39 0.96 5.44  12.73 0.89  20.06 17.04  157.42  24.14 0.00  96.20 
   30-45 7.50 0.00 3.76  4.32 4.13  15.21 15.13  155.30  15.31 6.05  87.78 
   45-60 7.48 0.28 3.42  4.43 2.51  13.44 11.26  185.12  17.91 6.05  83.98 
    60-120 7.59 0.00 2.12  7.87 1.19  8.88 3.40  142.03  17.46 4.00  76.42 
  504 0-15 7.36 124.60 3.69  254.86 46.72  86.31 37.54  276.02  19.78 20.24  107.94 
   15-30 7.49 44.68 28.06  32.78 13.34  46.05 17.83  209.56  18.22 8.82  95.42 
   30-45 7.55 4.04 8.36  7.77 8.29  26.99 10.65  160.26  17.63 5.19  86.52 
   45-60 7.60 1.98 5.46  19.92 2.90  18.22 15.70  169.47  17.57 6.03  88.22 
    60-120 7.63 5.45 0.00  9.89 3.52  6.26 12.58  148.60  12.93 7.57  91.64 
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Table 12. Results of pH and phosphorus concentration after thirteen years application of swine effluent from a continuously 
cropped, conventionally tilled corn production system. 

        H2O    NaHCO3  NaOH                  HCl Residual-P 
       0.5 M  0.1 M      1.0 M                     11.3 M    

Source Nrate Depth pH Pi Po  Pi Po  Pi Po  Pi  Pi  Po  

Swine 
Effluent 

kg haˉ¹ cm  …………………………………………....……....mg kgˉ¹……………....………...…………..……………………... 

0 0-15 7.37 3.26 0.73 4.83 4.53 8.58 39.25 149.59 13.72 14.74 82.00 
   15-30 7.41 0.90 1.40 3.59 6.11 7.21 33.15 147.09 20.87 5.26 82.24 
   30-45 7.45 1.42 1.74 2.88 6.09 5.57 31.61 144.08 14.82 1.76 86.86 
   45-60 7.58 0.80 2.04 3.37 4.87 7.21 24.47 195.25 16.18 11.64 95.06 
    60-120 7.66 2.19 0.05 9.52 3.55 5.75 12.95 166.33 14.99 7.25 75.06 
  56 0-15 7.51 0.00 4.70 8.78 10.70 14.98 12.81 163.62 30.42 0.00 120.12 
   15-30 7.56 0.00 3.90 5.65 10.20 14.98 15.38 154.86 15.13 6.15 119.46 
   30-45 7.63 0.00 2.66 2.80 9.50 9.91 15.82 154.59 15.47 6.11 109.32 
   45-60 7.68 0.00 2.40 1.80 2.78 10.94 14.50 194.95 16.55 6.81 91.82 
    60-120 7.70 0.00 1.40 8.17 4.15 9.54 4.14 170.61 12.81 7.07 78.44 
  168 0-15 7.53 0.00 5.72 8.78 10.38 15.20 15.79 159.55 19.95 4.69 99.10 
   15-30 7.54 0.00 4.52 5.74 10.50 12.41 16.09 144.33 14.52 8.38 106.16 
   30-45 7.57 0.00 3.12 4.94 9.28 11.09 14.85 139.64 28.27 0.00 93.26 
   45-60 7.65 0.00 2.68 6.35 9.33 11.38 10.76 176.81 14.85 6.97 99.88 
    60-120 7.70 0.00 1.96 7.67 4.13 9.02 3.56 149.20 21.76 0.00 68.34 
  504 0-15 7.09 32.26 11.08 10.09 17.30 24.55 18.22 179.90 14.05 10.82 127.90 
   15-30 7.19 6.61 0.13 6.74 8.18 14.10 31.17 156.51 14.51 10.83 101.22 
   30-45 7.35 1.63 5.97 1.80 12.58 8.88 15.20 275.05 9.50 11.44 91.22 
   45-60 7.37 6.80 2.87 7.33 3.57 11.51 20.79 142.10 27.88 0.00 83.52 
    60-120 7.39 3.31 0.00 6.59 4.62 6.74 12.30 146.11 11.03 8.17 65.88 
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Table 13. Results of pH and phosphorus concentration after thirteen years application of N-fertilizer from a continuously 
cropped, conventionally tilled corn production system. 

        H2O    NaHCO3  NaOH                  HCl Residual-P 
       0.5 M  0.1 M      1.0 M                     11.3 M    

Source Nrate Depth pH Pi Po  Pi Po  Pi Po  Pi  Pi  Po  

N fertilizer 
kg haˉ¹ cm  …………………………………………....……....mg kgˉ¹……………....………...…………..……………………... 

0 0-15 7.58 1.68 0.00 9.19 9.54 12.56 37.22 152.19 17.93 9.86 93.60 
   15-30 7.59 0.82 2.24 5.06 6.26 8.91 32.61 152.19 15.41 10.75 105.58 
   30-45 7.67 0.76 3.31 6.87 5.57 15.44 19.56 180.79 15.27 6.49 109.46 
   45-60 7.70 0.56 3.36 5.23 5.30 16.02 18.20 197.43 12.81 9.53 93.14 
    60-120 7.73 0.00 2.60 12.28 3.98 12.41 6.78 155.13 9.53 6.48 103.38 
  56 0-15 7.44 6.51 0.00 10.90 6.43 12.45 34.60 150.11 20.16 8.70 92.70 
   15-30 7.50 2.09 2.41 4.25 5.86 8.32 33.76 138.10 22.57 3.33 99.88 
   30-45 7.52 0.00 2.72 1.60 4.34 11.23 16.78 156.27 16.10 8.22 93.72 
   45-60 7.56 0.00 3.20 3.02 2.56 11.60 13.16 211.85 17.63 7.27 90.60 

    60-120 7.57 0.00 2.19 10.30 1.98 9.21 2.47 153.54 19.55 1.51 83.10 
  168 0-15 7.29 2.84 5.94 14.85 14.44 20.21 20.84 155.30 15.19 11.12 110.98 
   15-30 7.31 0.91 5.47 10.10 10.74 17.12 15.12 140.17 15.25 8.39 99.22 
   30-45 7.37 0.13 4.13 6.86 7.30 14.69 14.45 154.15 15.02 7.98 113.68 
   45-60 7.50 0.48 2.38 5.75 8.29 12.85 12.07 166.98 15.65 5.93 107.84 
    60-120 7.57 0.00 2.56 6.86 5.28 9.76 4.60 128.40 12.42 7.42 78.26 
  504 0-15 6.91 3.40 6.15 7.47 22.83 21.53 20.18 252.31 19.10 2.92 113.34 
   15-30 5.98 30.89 0.00 19.84 13.48 19.13 34.29 132.48 14.78 9.82 113.48 
   30-45 6.62 1.63 5.37 1.31 11.51 8.73 17.85 239.99 18.48 3.84 119.26 
   45-60 7.05 1.67 0.71 3.74 6.39 5.25 20.93 187.45 21.19 6.99 130.86 
    60-120 7.14 0.43 1.19 7.25 4.75 5.99 12.25 146.21 21.67 0.55 75.50 
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Figure 7. Distribution of water-soluble phosphorus (WSP)- Pi with depth in 
Gruver clay loam soil amended with N-fertilizer at 0, 56, 168 and 504 kg ha-1 rates over 
13 years. Horizontal bars indicate standard error.
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Figure 8. Distribution of sodium bicarbonate (NaHCO3)-Pi with depth in Gruver 
clay loam soil amended with N-fertilizer at 0, 56, 168 and 504 kg ha-1 rates over 13 years. 
Horizontal bars indicate standard error.
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Figure 9. Distribution of sodium bicarbonate (NaHCO3)-Pi with depth in Gruver 
clay loam soil amended with beef manure at 0, 56, 168 and 504 kg ha-1 rates over 13 
years. Horizontal bars indicate standard error.
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Figure 10. Distribution of sodium bicarbonate (NaHCO3)-Pi with depth in Gruver 
clay loam soil amended with swine effluent at 0, 56, 168 and 504 kg ha-1 rates over 13 
years. Horizontal bars indicate standard error.
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Figure 11. Distribution of sodium hydroxide (NaOH)-Pi with depth in Gruver 
clay loam soil amended with N-fertilizer at 0, 56, 168 and 504 kg ha-1 rates over 13 years. 
Horizontal bars indicate standard error.
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Figure 12. Distribution of sodium hydroxide (NaOH)-Pi with depth in Gruver 
clay loam soil amended with beef manure at 0, 56, 168 and 504 kg ha-1 rates over 13 
years. Horizontal bars indicate standard error.
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Figure 13. Distribution of sodium hydroxide (NaOH)-Pi with depth in Gruver 
clay loam soil amended with swine effluent at 0, 56, 168 and 504 kg ha-1 rates over 13 
years. Horizontal bars indicate standard error.
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Figure 14. Distribution of 1M hydrochloric acid (HCl)-Pi with depth in Gruver 
clay loam soil amended with N-fertilizer at 0, 56, 168 and 504 kg ha-1 rates over 13 years. 
Horizontal bars indicate standard error.
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Figure 15. Distribution of 1M hydrochloric acid (HCl)-Pi with depth in Gruver 
clay loam soil amended with swine effluent at 0, 56, 168 and 504 kg ha-1 rates over 13 
years. Horizontal bars indicate standard error.
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Figure 16. Distribution of 11.3M hydrochloric acid (CHCl)-Pi with depth in 
Gruver clay loam soil amended with N-fertilizer at 0, 56, 168 and 504 kg ha-1 rates over 
13 years. Horizontal bars indicate standard error.



 

  
 

85 

 

Figure 17. Distribution of 11.3M hydrochloric acid-Pi with depth in Gruver clay 
loam soil amended with beef manure at 0, 56, 168 and 504 kg ha-1 rates over 13 years. 
Horizontal bars indicate standard error.
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Figure 18. Distribution of 11.3M hydrochloric acid (CHCl)-Pi with depth in 
Gruver clay loam soil amended with swine effluent at 0, 56, 168 and 504 kg ha-1 rates 
over 13 years. Horizontal bars indicate standard error.
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Figure 19. Relatively phosphorus distribution of soil phosphorus pools amended 
with N fertilizer at the surface for each rate.
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