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CHAPTER I 

 

 

INTRODUCTION 

 

Switchgrass is a native perennial grass that is widely distributed in the North America 

continent. The Biofuels Feedstock Development Program (BFDP) and U.S. Department 

of Energy (DOE) selected switchgrass (Panicum virgatum L.) as the model herbaceous 

feedstock species in 1991. Biomass yield is the most important and economically viable 

trait of switchgrass (Casler 2010). The Energy Independence and Security Act (EISA) in 

2007 mandated 21billion gallons from advanced biofuel resources to meet the nation’s 

target of 36 billion gallons of ethanol by 2022. These mandates could be achieved by 

substantial advancement in plant breeding, crop management and conversion 

technologies (Ragauskas et al. 2006). 

 Evaluation of genetically advanced materials over the existing cultivars is 

essential for further enhancement of economically viable traits. The switchgrass plant 

breeding and genetics program at Oklahoma State University was initiated 1992 to 

develop new switchgrass cultivars with increased biomass. Recurrent selection for 

general combining ability (RSGCA) has been used in the breeding program. The 

selection of progeny is based on phenotypic and genotypic performance, with final 

selection based on genotypic performance measured by biomass yield in half-sib (HS)  
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progeny. The RSGCA procedure was used in four switchgrass breeding populations: 

Southern Lowland (SL), Northern Lowland (NL), Southern and Northern Late Maturing 

Upland (SNLMU), and Southern and Northern Early Maturing Uplands (SNEMU) 

(Taliaferro 2002). Studies were very limited for genetic evaluation of these breeding 

populations and no study has been conducted for morphological and physiological 

variation. 

Review of Literature 

Biomass and bioenergy 

Increasing concern of energy security, escalating oil prices, and climate change 

impacts are the prime considerations that led to the exploration of renewable energy 

sources to reduce the over dependence on conventional fossil fuels. The Biomass 

Research and Development Advisory Committee, a panel established by Congress, has 

set a vision to replace 30 percent of current United States (U.S.) petroleum consumption 

with biofuels by 2030. However, according to the U.S. Energy Information 

Administration (2009), currently only 8 percent of total energy consumption in the U.S. is 

from biobased renewable resources. To displace 30 percent of the country’s present 

petroleum consumption, 1 billion dry matter tons of biomass feedstock will be required 

each year (Perlack et al. 2005). Annual biomass potential of US from forestland and 

agricultural land, (the two largest biomass sources), is over 1.3 billion tons; 368 million 

tons from forestlands and 998 million tons from agricultural lands (Perlack et al. 2005). 

The Energy Independence and Security Act (EISA) in 2007 mandates 21 billion gallons 

from advanced biofuel resources, 16 billion gallons from cellulosic feedstocks, to meet 
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the nation’s target of 36 billion gallons of ethanol by 2022. Development of biomass 

based large scale biofuel industries requires an enhanced supply of cellulosic feedstock 

through advancement in plant breeding, crop management, and conversion technologies 

(Ragauskas et al. 2006). 

Switchgrass as a bioenergy feedstock 

After extensive evaluation of thirty four herbaceous species, in trials across thirty-

one sites in seven states, the Biofuels Feedstock Development Program (BFDP) and U.S. 

Department of Energy (DOE) selected switchgrass (Panicum virgatum L.) as the model 

feedstock species in 1991. Switchgrass has unique traits, including reliable productivity 

across a wide geographical range for approximately ten years, suitability for marginal 

lands, low water and fertilizer requirements, along with other beneficial environmental 

attributes (Fike et al. 2006; Wright and Turhollow 2010). Since the 1990’s, switchgrass 

has been extensively studied for its potential deployment for conversion to energy by 

fermentation, gasification, or combustion processes (Bouton et al. 1998). Switchgrass 

demonstrates important traits to be considered as an ideal herbaceous bioenergy crop 

defined by Gonzalez-Hernandez et al. (2009), including reliable yields, broad adaptation 

in marginal lands under limited inputs, perennial nature, potential to enhance the biomass 

yield through breeding, and it does not compete with food crops for land and resources. 

Switchgrass biology 

Switchgrass is perennial grass native to North America, adapted widely across the 

U.S., ranging from 20°N to 60°N latitude and east of 100°W longitude (Moser and Vogel 

1995). Switchgrass is a dominant component of the North American native grass prairie 
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system (Weaver 1954) and considered among the “big three” grasses along with 

indiangrass (Sorghastrum nutans (L.) Nash) and big blue stem (Andropogon gerardii 

Vitman). Switchgrass dominates native grass prairies and its wide adaptation led to 

switchgrass use on conservation reserve program (CRP) lands. In the past, switchgrass 

was grown and managed as a soil conservator, a fodder crop and an ornamental grass 

along with other tall-grasses (Mitchell et al. 1997) and is actively being evaluated as a 

potential bioenergy feedstock. 

Switchgrass stems are erect and smooth with an inflorescence on the top. 

Switchgrass inflorescence is a diffused panicle and produces spikelets at the end of long 

branches and its florets are staminate and fertile. Lemma and palea are firmly attached to 

the caryopsis (Bouton 2007). Switchgrass has a fibrous root system that can reach a depth 

of 2.7 to 3.3 m from the soil surface with huge below ground biomass (Weaver and 

Darland 1949). Switchgrass propagates reproductively through seeds and vegetatively 

through rhizomes (Moser and Vogel 1995). Switchgrass can be classified into lowland 

(L) and upland (U) based on morphology and habitat.  Lowland ecotypes are thick 

stemmed, large and more robust, commonly found in wet regions, whereas upland 

ecotypes are thin stemmed and found in moderately dry regions (Porter 1966). The two 

ecotypes can also be further classified into two cytotypes, U (upland) and L (lowland), 

based on chloroplast DNA (cpDNA) polymorphism in upland and lowland populations, 

respectively (Hultquist et al., 1996; Martinez-Reyna et al. 2001).  
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Switchgrass breeding 

Switchgrass breeding in the USA started in the 1930’s primarily to increase 

fodder production, seedling establishment, and digestibility (Moser 2004). High biomass 

and better digestibility with increasing neutral detergent fiber (NDF) and reducing acid 

detergent fiber (ADF) are the important breeding considerations  for using switchgrass as 

biofuel feedstock (Casler and Boe  2003). Breeding for increased biomass and quality 

have been achieved in newer cultivars (Burns et al. 2008; Vogel et al. 1996), however 

switchgrass has been relatively less studied and not yet removed from native germplasm 

(Joseph 2007) as released cultivars closely resemble natural populations (Casler et al. 

2007a).  

Switchgrass is a highly heterozygous, self-incompatible species with different 

ploidy levels ranging from 2n= 2x =18 to 2n=12x=108 (Burton 1942; Church 1940; 

Nielson 1944). Generally, lowland types are tetraploids and upland types are either 

tetraploid or, hexaploid or octaploids (Taliaferro et al. 1999). Due to the self 

incompatibility between the ecotypes, viable seed can be produced only from types 

within the same ploidy levels and by inter crossing between similar ecotypes within the 

same ploidy level (Martinez-Reyna and Vogel 2002). Heritability in switchgrass has been 

documented and heritability for biomass and digestibility facilitates breeders to improve 

targeted traits through the half-sib family selection method (Bhandari et al. 2011; 

Missaoui et al. 2005; Overend 1999; Talbert et al. 1983). Magnitude of heritability 

among the populations suggests that potential exits to increase biomass through breeding. 
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Molecular progress for switchgrass biomass and quality were reported. Transfer 

of maize Corngrass1 (Cg1) gene into switchgrass resulted in 250% more starch and 

complete inhibition of flowering (Chuck et al. 2011). Fu et al. (2011) reported that down-

regulation of the switchgrass caffeic acid O-methyltransferase gene reduced recalcitrance 

of switchgrass and increased the ethanol yield up to 38% with conventional biomass 

fermentation processes. 

Self incompatibility and pre and post-fertilization incompatibility issues impose 

restrictions for conventional selection and breeding among the ecotypes and to improve 

traits with lower heritability. However, restricted selection for general combining ability 

has been developed as a potential breeding method in improving switchgrass biomass 

yield (Taliaferro 2002). The RSGCA breeding method is commonly employed for 

complex quantitatively inherited traits like biomass, and especially for out crossing 

species like switchgrass (Taliaferro 2002). 

Genetic variation of switchgrass 

Genetic variation for biomass yield ranged from 1 Mg ha-1 to 39.1 Mg ha-1 and 

this variation was attributed to many factors, especially ecotype, temperature, 

precipitation and nitrogen management (Wullschleger et al. 2010). Therefore, selecting 

genotypes that have high biomass potential and greater response to best management 

practices is critical to optimize the switchgrass biomass production. Evaluation of 

different morphological traits among new breeding lines is important for breeders to 

identify the specific traits that can enhance biomass production. Moreover, an 

understanding of morphological development facilitates the adoption of the best 
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management practices (Sanderson and Moore 1999; Sanderson 1992). Switchgrass 

morphological development is influenced by both temperature and photoperiod, whereas 

vegetative growth is mostly influenced by temperature and reproductive growth is 

controlled by photoperiod (Sanderson and Wolf 1995). Strong photoperiodic response 

and cold hardiness differences between the ecotypes determine switchgrass adaptation. 

Lowland switchgrass populations moved north from their original adaptation areas are 

unable to survive winters. Similarly, reduced yields are reported in uplands when grown 

in southern latitudes and this is due to the early maturity induced by shorter photoperiods. 

Moreover, the latitudinal affect on biomass was greater in lowland compared to upland 

populations (Casler et al. 2004). 

Morphological traits including tiller number, leaf number, leaf appearance rate, 

and leaf elongation rate facilitate the understanding of the canopy development rate 

(VanEsbroeck et al.1997). Several studies have reported switchgrass morphological 

development under diverse climatic conditions (Madakadze et al. 1998b; Mitchell et al. 

1997; Redfearn et al. 1997; Sanderson and Wolf 1995). Relationships between 

switchgrass phenological traits and their relationship with biomass were also reported 

(Boe and Beck 2008; Casler et al. 2004; Das et al. 2004). Generally, lowland populations 

are taller compared to upland populations. Plant height is considered as the most 

important trait to estimate biomass (Schmer et al. 2010), is highly correlated with final 

biomass (Bhandari et al. 2011; Casler et al. 2004; Lemus et al. 2002a) and sensitive to 

latitude of origin (Casler et al. 2004). Tiller density is the major trait for switchgrass 

sward morphology. Tillers arise from the axil buds of the lower internodes of primary 

stem and later from other tillers. The perennial nature of grasses is explained by winter 
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survival of these axiliary buds (Moore and Moser 1995). Under field conditions, 

switchgrass biomass yield was positively correlated with tiller density in both spaced 

planting (Das et al. 2004) and swards (Boe 2007). A strong linear relationship was found 

between biomass yield and tiller components, tiller density per plant, and mass per tiller 

(Boe 2007). Similarly, Das et al. (2004) indicated that high tiller density per plant was an 

effective indirect selection trait to improve biomass in switchgrass breeding. However, 

yield predictors were not consistent over locations and ecotypes. A study on Cave-In-

Rock by Redfearn et al. (1997), found that tiller density was not a significant indicator of 

biomass, whereas leaf blade dry weight per tiller and mean stage dry weights were 

correlated with biomass. Selection studies on ryegrass (Lolium perenne L.) and Italian 

ryegrass (Lolium multiflorum Lam.) showed that selection based on large leaf size 

decreased the tillering rate and increased tiller weight, and the results were opposite when 

selected for high leaf appearance rate (Edwards and Cooper 1963). A study on reed 

canarygrass (Phalaris arundinacea L.) reported specific leaf weight was negatively 

correlated with tiller density (Toparkngarm et al. 1977). Switchgrass photoperiod studies 

reported that the total leaf number varied based on the growing season (VanEsbroeck et 

al. 1997), location and year (Madakadze et al. 1998a; Redfearn et al. 1997).  Biomass 

variations in the northern Great Plains of the United States were attributed to phenology 

and phytomer number. High yielding cultivars were late maturing and produced more 

phytomers than early maturing cultivars with lower phytomer number (Boe and Casler 

2005). 
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Variation in switchgrass for physiological traits 

High productivity of C4 plants is attributed to high water and nitrogen use 

efficiencies compared to C3 plants. Higher water use efficiency in C4 plants is explained 

by their unique carbon dioxide uptake mechanism that mitigates water losses through 

transpiration by regulating stomata operation (Stout et al. 1988). However, the 

biochemical mechanism of C4 photosynthesis is not always the same among C4 plants.  

Three biochemical photosynthesis mechanisms have been reported, including 

nicotinamide adenine dinucleotidemalic enzyme (NAD-ME), nicotinamide adenine 

dinucleotide phosphate -malic enzyme (NADP-ME) and phosphoenolpyruvate 

carboxykinase (PEP-CK). The three mechanisms are differentiated based on the mode of 

carbon dioxide (CO2) transportation from bundle sheath cells and regeneration of 

phosphorenol pyruvate (PEP). Switchgrass has NADP-ME type of C4 pathway (Taub and 

Lerdau 2000).  

Few studies have reported   physiology differences between and within each 

ecotype. Interpretations on switchgrass photosynthesis differed among locations and 

ecotypes. Among native switchgrass populations, photosynthetic rate, DNA 

concentration, soluble protein and chlorophyll concentrations were higher in octaploid 

switchgrass populations compared to tetraploid populations (Warner et al. 1987a).  Later, 

Wullschleger et al. (1996) demonstrated that photosynthesis of lowland and upland 

ecotypes were similar under common non-stressful greenhouse conditions, whereas 

lowland performed better than upland populations under field conditions. In contrast, 

genetic variations for major physiological traits in switchgrass were attributable to the 
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phenology and environmental stress rather than ploidy (McLaughlin and Adams Kszos 

2005).  

Studies also reported switchgrass photosynthesis variations between the ecotypes 

under abiotic stress conditions. Photosynthesis was not significantly different among 

lowland and upland populations under different nitrogen and water treatments; however, 

lowland yields were higher than uplands (Stroup et al. 2003). Lowland photosynthesis 

was greater than upland populations across different moisture levels (Barney et al. 2009).  

Photosynthesis acclimation was not significant among the ecotypes with respect to 

temperature shift from near optimal (32/24°C) to suboptimal temperature (22/14°C) 

(Gesch and Johnson 2010). Stomatal conductance (gs) is an essential physiological trait in 

regulating plant–water relations. Lower gs mitigates transpiration water losses, which 

leads to better maintenance of high leaf water potential and high soil water content over 

the growing season, thereby, minimizing the drought affect on photosynthesis. 

Developing cultivars with such superior physiological traits provide tolerance to abiotic 

stresses. An understanding of the genetic variation among new breeding populations for 

important physiological traits such as net photosynthesis (Pn), stomatal conductance (gs), 

internal carbon dioxide concentration (Ci) and electron transport rate (ETR) would be 

beneficial to develop cultivars for enhanced stress adaptation. 

Leaf anatomy and morphology 

Stomata are directly and indirectly involved in controlling plant physiological 

mechanisms, but mainly in diffusion of CO2 for photosynthesis from the atmosphere to 

mesophyll cells and by regulating water lost through latent heat exchange. Stomatal 
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architecture is different in C3 and C4 plants. In grasses, stomata are distributed in parallel 

rows and each stoma is covered by a dumbbell shaped guard cell. Stomatal frequency 

between adaxial to abaxial surfaces is high in grasses; however, stomatal variations occur 

among species and within the same photosynthetic pathway (Anderson and Briske 1990). 

Stomatal response has been studied extensively for different abiotic stresses in both C3 

and C4 plants, but few studies have been documented on native grasses like switchgrass. 

Genetic Diversity and Genotype (G) x Environment (E) Interaction in Switchgrass 

Phenotypic expression of the genotype is unique to the growing environment. 

Biomass production has been and continues to be a viable economic trait for grasses 

(Casler 2010), especially for potential biofuel crops such as switchgrass. Evaluation of 

genotypes for biomass potential under different climatic and edaphic conditions within 

the targeted region is important for decision making about future breeding advancements. 

These evaluations could be possible through G x E interaction studies on the traits of 

interest. Understanding genetic diversity has relevance to conserve and characterize the 

desirable traits. The G x E interaction for biomass is very obvious in multi-location trial 

evaluations of switchgrass and varied across locations, including the southern United 

States (Table 1). Although, switchgrass occurs widely across the United States, the 

biomass and adaptation of switchgrass populations are affected by original adaptation 

between lowland and upland ecotypes. Genetic diversity has been reported in switchgrass 

(Casler 2005; Casler et al.  2007a; Hultquist et al. 1996; Missaoui et al. 2006; 

Narasimhamoorthy et al. 2008). The results from different trials showed significant effect 

of environment on dry matter yield, agronomic, and biofuel traits (Casler and Boe 2003; 

Casler et al. 2004; Cassida et al. 2005a; Hopkins et al. 1995b; Hopkins et al. 1995c; 
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Koshi et al. 1982). Switchgrass germplasm adaptation differed across locations, ranging 

from wider (Hopkins et al. 1995c) to specific adaptation (Sanderson et al. 1999). A 

switchgrass latitudinal adaptation study concluded that switchgrass was sensitive to the 

region of its origin and cultivar performance decreased if cultivars were planted more 

than 500 km (or) one USDA hardiness zone away from its origin (Casler et al. 2007b). 

Latitudinal affect on biomass was greater in lowland than upland populations. Southern 

lowland population yields increased with latitude within south central United States 

(Cassida et al. 2005a) , whereas SL biomass yields decreased with increasing latitudes 

from 36°N to 39°N latitude (Casler et al. 2004). These contradictory results indicate the 

importance of switchgrass adaptation when developing new cultivars for high biomass 

within the targeted region. Thus, breeding efforts and testing of new cultivars over the 

existing cultivars within the targeted region is critically important to attract emerging 

cellulosic based biofuel industries to the southern United States.   

Objectives 

The objective of this research were to  

1. To evaluate genetic variation for morphological and physiological traits 

among new switchgrass populations 

2. To study the genotype x environment (G x E) interactions among new 

switchgrass populations in Oklahoma 
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Table 1. Effect of genotype x environment interaction on biomass yield of switchgrass 

across the southern United States. 

 

 

Location  Biomass range ( Mg ha-1) Reference 
Haskell and Chickasha 
(OK) 

Chickasha-  
13.5 (Alamo+ Summer) -   
7.6 (Cave-In-Rock) 
Haskell- 
19.0 (Alamo+ Summer)  - 
 9.3 ( Summer) 

Fuentes and Taliaferro 2002  
 

 
Stillwater (OK)  

 
Stillwater- 
15.13(Southern Lowland) -
10.45(Northern Uplands) 

 
Casler et al. 2004  
 

 
Stephenville, Dallas and 
College Station (TX), 
Clinton (LA), Hope 
(AR) 

 
Stephenville- 
13.65(SL931) - 5.00(Caddo) 
Dallas-  
19.48 (Alamo) -  6.05 (Caddo) 
College Station – 
21.40 (SL 93) - 5.42(Caddo) 
Hope – 
19.96 (SL 931) - 7.41 (Caddo) 
Clinton- 
11.59(SL 941) - 1.12(Caddo) 
 
 

 
Cassida et al. 2005  
 

Beeville, Dallas,  
Temple, College Station, 
Stephenville(TX) 

Beeville- 
15.1 (Alamo) - 8.85(Cave-In-Rock) 
College Station- 
16.9 (Alamo) - 8.69 (Cave-In-
Rock) 
Dallas- 
8.1(Alamo) - 4.36 (Cave-In-Rock) 
Stephenville- 
15.2(Alamo) - 2.57 (Cave-In-Rock) 
Temple- 
14.3 (Alamo) - 3.8(Cave-In-Rock) 

Sanderson et al. 1999b  
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CHAPTER II 
 

 

Genotypic variability for morphological and physiological traits among new Switchgrass 

populations 

 

Abstract 

Developing cultivars for high biomass production is a principle goal for grass 

breeders. Evaluation of advanced breeding populations in transferring potential viable 

traits and understanding the effect of different morpho-physiological traits on biomass 

among the breeding populations is important.  Therefore, the objective of this research 

was to assess the biomass, morphological, and physiological variations among 19 new 

Switchgrass (Panicum virginatum L.) breeding lines and three check cultivars (Alamo, 

Kanlow, and Cave-In-Rock). Simultaneous experiments were established under both 

greenhouse and field conditions at Stillwater, OK. The principle component analysis 

(PCA) was carried out to screen the genotypes for morphological and physiological 

performance. Under greenhouse conditions, northern lowland (NL) genotype, NL 94 C2-

4 produced 40.2% more biomass plant-1 than the check (Alamo).The southern lowland 

(SL) genotype SL 93 C2-2 had 7% more photosynthesis capacity than Alamo and 

seasonal photosynthesis was higher in SL populations. The first two principle 

components (PRIN1 and PRIN2) accounted for 74% and 82% of total variability for 
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morphological traits under greenhouse and field conditions, respectively. Under 

greenhouse conditions PRIN1 and PRIN2 explained 64% of total variability for 

physiological traits. The PCA was able to discriminate lowland and upland populations 

for morphological traits, but was unclear for physiological traits. The results showed that 

the morphological traits including plant height, days to panicle initiation and tiller 

morphology (mass tiller-1 and phytomer weight) would be the potential selection traits to 

enhance biomass potential of switchgrass. 

 

Introduction 

Finite energy supplies, energy security, escalating oil prices and climate change 

impacts are accelerating the need for alternate renewable energy resources. A renewable 

biofuel economy is projected as a way to reduce reliance on fossil fuels, green house gas 

emissions, and enhance rural economies (Schmer et al. 2008). The United States of 

Department of Agriculture (USDA), Farm Service Agency (FSA) initiated the Biomass 

Crop Assistance Program (BCAP) to promote herbaceous bioenergy crops in Farm Bill 

2008. The USDA renewable energy program included Oklahoma and Kansas states in 

BCAP and expected planting of native grasses and herbaceous species such as 

switchgrass over 20,000 acres. High biomass producing switchgrass cultivars would be 

required in the southern US region to meet these mandates.  

Tiller density and tiller mass are important traits and correlate with final biomass 

within uplands (Boe 2007) and spaced planted lowland populations (Das et al. 2004). 

Path analysis of biomass yield and different morphological traits suggested that tiller 

density per plant is an effective indirect selection trait to improve biomass production 
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(Das et al. 2004). The Redfearn et al. (1997) biomass predictability study at Ames, IA 

and Mead, NE on Cave-In-Rock reported that leaf blade dry weight was more significant 

than tiller density to estimate the final biomass.  Studies at Wisconsin and South Dakota 

on four upland populations reported that high biomass of cultivars were attributable to 

late maturity and larger phytomers than low yielding cultivars (Boe and Casler 2005). In 

switchgrass study with spaced planted populations Smart el al. (2004) reported that 

selection for tiller weight resulted in 25% more biomass than tiller density. Similarly, 

selection for shoot yield resulted greater yields than number of shoots per plants in alfalfa 

(Medicago sativa L.) (Volenec et al.1987).  Switchgrass genetic variation for leaf 

morphology including final leaf number and leaf appearance rate are closely associated 

with maturity of the plant. High biomass producing cultivars are late maturing with slow 

leaf appearance rate (VanEsbroeck et al. 1997). Leaf developmental events in switchgrass 

were reported to be based on length of phyllochron (phyllochron is a growing degree 

days (GDD) between the appearance of two successive leafs). The phyllochron was less 

in early flowering cultivars such as Cave-in-Rock (79 GDD) compared to late flowering 

Alamo (152 GDD) (VanEsbroeck et al. 1997). Similar results were also reported in short-

growing season areas in southwestern Quebec (Madakadze et al. 1998). Biomass 

distribution among tillers and phytomer components were reported on switchgrass upland 

populations and other warm season grasses such as Cordgrass (Spartina pectinata Link.) 

(Boe and Casler 2005). Biomass variations in northern Great Plains of United States were 

attributed to phenology and phytomer number. High yielding cultivars were late maturing 

and produced more phytomers than early maturing cultivars with lower phytomer number 
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(Boe and Casler 2005). However, no study has reported tiller and phytomer morphology 

of lowland populations.  

An understanding of genetic diversity is important to characterize and improve 

desirable traits. Evaluation of potential breeding methods in transferring needed biomass 

traits into new genotypes is important. Only a few studies reported genetic variation 

among new breeding lines including southern lowland (SL) and northern lowland (NL) 

populations (Casler et al. 2004; Cassida et al. 2005; Fuentes and Taliaferro 2002; Kiniry 

et al. 2008), however most of these studies were limited to biomass potential. Therefore, 

the objectives of this research were to (1) evaluate genetic variability for morphological 

and physiological traits under both controlled and field environmental conditions and (2) 

identify morpho-physiological traits contributing to biomass production. 

 

Materials and Methods 

Plant material 

Seeds of twenty two switchgrass populations including three standard check 

cultivars and nineteen experimental lines (Table 1) were sown in small pots filled with 

Metro-Mix 250 (Scotts-Sierra Horticultural Products Co., Marysville, OH) growing 

medium. Pots were watered immediately after sowing and daily care was taken until the 

transplanting. Greenhouse grown seedlings were transplanted into the greenhouse and the 

agronomy research station facility of Oklahoma State University in June, 2010, in 

Stillwater, OK. 

Greenhouse facility at Oklahoma State University (36°08’N, 97°05’W), 

Oklahoma, USA, was used to evaluate morphological and physiological variations. 
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Healthy greenhouse grown seedlings of 22 switchgrass populations were transplanted 

into 12L pots (0.75m length and 0.15m width) filled with pure fine sand. Pots were 

arranged in rows, five pots for each genotype and each pot contained a single healthy 

seedling. Greenhouse temperature was set at 30/22°C (day/night) throughout the 

experiment. The light in greenhouse was 10% lower than ambient environment. Optimum 

growth conditions were maintained throughout the experiment. Experimental design was 

completely randomized design (CRD). Plants were irrigated three times a day at 800, 

1200 and 1700 with full- strength Hoagland’s nutrient solution through drip irrigation 

system.  Nutrients were provided through an automated timing device to ensure the 

favorable nutrient and water conditions throughout the experiment. 

Measurements 

Main stem was tagged in each pot immediately after transplanting to measure the 

growth events at three day intervals starting from 42 to 99 DAT (days after 

transplanting). Plant height (PH), leaf number (LN), tiller density (TD) and leaf length 

(LL) were measured at every three day interval. During harvest, plant height, tiller 

density, leaf number and leaf length were recorded. Leaf area was measured using LI-

3100 leaf area meter (LI-cor., Lincoln, NE, USA). Reproductive traits including days to 

panicle initiation, seed weight per plant, and panicle number per plant were also recorded. 

Plants were harvested at 10cm height from surface of sand and plant components were 

oven dried for three days at 70 °C. Total dry matter was recorded. Seed weight and 

panicle number among the genotypes were also evaluated.  

Photosynthesis, stomatal index and pigment concentration assessment  



19 

 

Forty days after transplanting, important physiological traits including net 

photosynthesis (Pn), electron transport rate (ETR), stomatal conductance (gs) and internal 

carbon dioxide (Ci)  were measured between 1000 to1500 on clear sunny days from 

uppermost fully expanded leaves using an infrared gas analyzer built into a leaf cuvette in 

an open gas exchange system (LICOR-6400).The carbon dioxide (CO2) cylinder was 

used in CO2 Injection System for constant supply of CO2 (400 µL L -1) in the chamber 

throughout the measurements. The 6400-02 LED light source was used for 

photosynthetically active radiation (PAR) of 1500 µmol m−2 s−1 and the temperature 

inside the leaf cuvette chamber was set to 30°C. The flow rate of 500 µmol m−2 s−1 was 

fixed and relative humidity was adjusted to ambient level.  

Methods described by Kakani et al. (2003) were adapted to estimate stomatal 

index (SI) and pigment concentrations among the populations. A thin layer of colorless 

nail polish was coated on both leaf surfaces of uppermost leaves of three plants from each 

genotype, than allowed to dry for 30 minutes to obtain clear impressions from both 

adaxial and abaxial surfaces.  Leaf peels were carefully removed with forceps and placed 

under the light microscope at 400x magnification to measure stomata number and 

epidermal cell numbers from three random fields. Epidermal cells and stomatal density 

was calculated per unit leaf area (mm2). Final epidermal cells and stomatal density per 

unit area is represented by Stomata Index.  

Leaf discs from fully expanded leafs were collected for pigment analysis. Five 

leaf discs (35mm2) were punched randomly from upper most leafs and placed in 4ml vial 

of dimethyl sulfoxide (DMSO). The vials were placed at room temperature in dark 

immediately after sampling for 24 h to allow for complete extraction of chlorophyll 
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pigments. The absorbance of chlorophyll extracts was measured using Spectrophotometer 

(Spectronic Genesys 10 Bio) at 470, 648 and 664nm.The absorbance values from three 

different wavelengths were used to calculate the Chlorophyll a (Chl a), Chlorophyll b 

(Chl b) and carotenoid (Car) concentrations (Gitelson and Merzlyak 1994). 

Field study 

Field study was established at Agronomy Research Station facility of Oklahoma 

State University (36°07’N, 97°05’W), Stillwater, Oklahoma, USA in 2010. Experimental 

design was randomized complete block design with four replications. Each replication 

consisted of 21 test plots including 19 experimental lines and two check cultivars, Alamo 

and Cave-In-Rock. All test plots were bordered with check cultivar, Kanlow. Each plot 

was divided into six columns (south to north direction), and spacing between two 

neighboring columns was 03 m. Ten plants were included in each column (10 rows). 

Spacing between two neighboring plants in a column was 0.3 m. Border rows and border 

columns were not included in measurements. Each plot was 3.0 x 1.8 m area.  

Greenhouse grown seedlings from each container were transplanted into a 

prepared seedbed. Field was irrigated with sprinklers immediately after transplanting. 

Soil type was port silt loam and soil samples were collected before transplanting to 

estimate fertility status. During establishment year, no fertilizer was applied to avoid 

weed competition and 85 kg ha-1 of urea was applied early in the growing season of the 

post establishment year (2011). During post establishment year in 2011, five random 

tillers were sampled to evaluate ten traits including tiller height, phytomer number, leaf 

blade length, internode length, leaf blade width, leaf sheath length, phytomer weight and 

tiller weight among 21 switchgrass populations. Pruning tool was used to separate the 
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phytomers, and all the phytomers were oven dried separately for three days at 70°C. Dry 

weights were recorded for all phytomers and tillers. Seasonal leaf photosynthesis trend 

was measured using LI-6400 photosynthesis system during post establishment year 

starting from May to August in 2011 among 21 switchgrass populations. The LI6400 XT 

settings were similar to the greenhouse measurements. 

Statistical analysis 

Raw data were subjected to one way ANOVA with PROC GLM statistical 

procedure of SAS statistical software program (SAS Institute) to identify the significance 

differences among the 21 switchgrass populations for different traits.  Pearson 

correlations coefficients were developed separately from morphological and 

physiological traits using PROCCORR procedure of SAS. Further, data were analyzed 

with principle component analysis to discriminate different genotypes for morphological 

traits and physiological traits both under greenhouse and field conditions.   

Principle Component Analysis (PCA)  

The PCA is an exploratory multivariate technique extensively used to understand 

the relationships among different quantitative variables.  Data were analyzed with 

PRINCOMP procedure of SAS statistical software program. The standardized principle 

components scores (PRIN’s) that represent high percentage of variation were used to 

group the genotypes for different morphological and physiological traits. Eigenvectors 

generated by PCA were used to identify variables that can best describe the performance 

of differentiated genotypes for different traits. Generally genotypes grouped for +PC1 

and +PC2 scores were classified as best performing genotypes followed by +PC1 and –

PC2 scores, –PC1 and +PC2, and finally –PC1 and –PC2. This standardized technique 
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was commonly used in genotype screening for temperature stress (Kakani et al. 2002; 

Kakani et al. 2005) and agronomic traits of switchgrass (Casler 2005; Casler et al. 2004). 

 

Results and Discussion 

Greenhouse study 

Genotypic variation for biomass and morphological traits 

The ANOVA was significantly (P< 0.01) different among the genotypes for 

biomass. Fig. 1 shows the mean biomass differences among 22 switchgrass populations. 

Lowland populations mean biomass was 67% greater than upland populations. Among 

lowland populations genotype NL 94 C2-2 and SL 93 C2-3 produced 50.4 g (40.2%) and 

38.0 g plant-1(30.3%), more biomass than Alamo (125.10 g plant-1), respectively. Longer 

vegetative growth and greater stem elongation rates of lowland populations resulted in 

more biomass compared to upland populations (Table 3 and Fig. 2). Moreover, other 

morphological traits including plant height, leaf traits (leaf number and leaf length), and 

days to panicle initiation were significantly correlated with biomass. These traits were 

higher in lowland populations and these findings also agreed with PCA analysis and 

vectors magnitude was greater for these two traits (Table 3 and Fig. 3). Selection for 

these traits may be a potential option to increase biomass through breeding and selection. 

Under common greenhouse controlled environmental conditions the biomass variations 

were attributable to the genetic potential of the genotypes. However, the relative 

performance of the genotypes for biomass and other traits were comparable to field 

conditions. In field trials on similar ecotypes at five locations in the southern US 

including Texas, Arkansas, and Louisiana, higher biomass recorded for NL and SL 
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ecotypes compared to the check Alamo, but the yields were not consistent across 

locations and years (Cassida et al. 2005). However, under field conditions biomass was 

determined by edaphic, environmental (Sanderson et al. 1999) and other agronomic traits 

such as stand density and row spacing (Muir et al. 2001).  

The morphological traits such as tiller density, plant height, leaf number were 

highly correlated (data not shown) between main stem and tillers. Therefore, the main 

stem traits were presented for morphological variations among the populations. Table 3 

shows mean variations of different morphological traits among 22 switchgrass 

populations. The ANOVA for plant height, leaf length and days to panicle initiation were 

highly significant at P<0.001, leaf number, seed weight and panicle number at P<0.01 

and tiller density at P<0.05. Mean plant height for lowland populations was greater 

(139.4 cm) than upland populations (79.4cm). Plant height ranged from 143.6 (NL 94 

C2-3) to 75.3 (SNU 98 EMBP C1-1) (Table 3). Results agreed with previous findings for 

plant height and correlation with biomass (Bhandari et al. 2011; Casler et al. 2004; 

Lemus et al. 2002b). Mean leaf number plant-1 was higher in lowland than in upland 

populations, and ranged from 10.8 (NSL 2009-3) to 6.8 leaves plant-1 (SNU 98 EMBP 

C1-1) (Table 3). Higher leaf appearance rate and lower number of leaves are more 

common in early maturing cultivars than late maturing cultivars (VanEsbroeck et al. 

1997). Mean leaf blade lengths were greater in lowland populations compared to upland 

populations. Leaf lengths ranged from 58.8cm (NSL 2009-3) to 40.3cm (SNU 98 EMBP 

C1-1) (Table 3). Mean tiller density per plant ranged from 70 (SNU 98 EMBP C1-1) to 

29 (SL 93 C2-2) (Table 3). Upland populations produced more thin and short tillers (56 

tillers plant-1) than lowland populations (45 tillers plant-1). Barney and Mann (2009) 
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reported similar results with uplands populations (Cave-In-Rock and Caddo). Tiller 

density was greater in upland than in lowland populations (Alamo and Kanlow) at field 

capacity moisture levels under greenhouse conditions.  

Pearson’s correlation coefficients between biomass and seven morphological 

traits are presented (Table 4). Biomass was positively correlated with plant height, leaf 

number, leaf length, seed weight plant-1, panicle number plant-1 and days to panicle 

initiation, but not with tiller density (Table 4). Biomass was highly significant with plant 

height at P<0.001, leaf length and days to panicle initiation at P< 0.01, and leaf number 

at P<0.05. These findings demonstrate the importance of plant height, leaf length, and 

days to panicle initiation among the evaluated traits (Fig. 4). The results of correlations 

were consistent with previous findings for plant height (Casler et al. 2004; Bhandari et al.  

2011; Lemus et al. 2002) and days to panicle initiation (Bhandari et al. 2011). Most of the 

previous studies on tiller morphology were limited to either lowland or upland 

populations and interpretation were also varied based on growing environment and 

cultivars. The correlation between biomass and tiller density among 22 populations does 

not concur with previous findings, but data pooled by ecotype showed strong correlations 

for lowland (0.67) and upland populations (0.94) (data not shown) and these correlations 

were similar to previous findings for upland (Boe and Casler 2005) and lowland 

populations (Das et al. 2004). Under greenhouse conditions upland populations tend to 

produce more thin tillers than lowland populations, but there elongations were less than 

lowland populations, which led to negative correlations between biomass and tiller 

density. Since upland populations originated from cooler and drier regions, the 
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temperature regime of 30/22°C in the greenhouse may have inhibited the vegetative 

growth of upland populations.  

The biomass and seven morphological traits including plant height, tiller density, 

leaf number, leaf length, days to panicle initiation, seed weight and panicle number of 22 

switchgrass populations were subjected to PCA analysis. First three principle components 

(PRIN1, PRIN2, and PRIN3) accounted for 85% of total variability, with most 

contributed by PRIN1 (53%) and PRIN2 (20%) (Table 5). Therefore, the PRIN1 and 

PRIN2 were used for genotype discrimination for morphological traits. The eigenvectors 

from PRIN1 contrasted genotypes towards the right side of biplot for five variables 

including biomass, plant height, leaf number, leaf length and days to panicle initiation. 

Among the five variables, high positive loading was reported for plant height and days to 

panicle initiation (Table 5). The PRIN2 vector magnitude was greater for seed weight, 

biomass, panicle number, and tiller density (Table 5). The eigenvectors of PRIN1 and 

PRIN2 from eight variables classified the performance of 22 genotypes (Fig. 3). First 

principle component was positive for 14 populations including two check cultivars. 

However, six new genotypes were weighted for greater morphological performance with 

+PRIN1 and +PRIN2. First two principle components were able to segregate lowland and 

upland populations and these findings were similar with Casler et al (2004) under field 

conditions at Stillwater.  

Physiological variations 

Table 6 shows mean variations of different physiological traits including 

photosynthesis (Pn), stomatal conductance (gs), electron transport rate (ETR), internal 

carbon dioxide (Ci), leaf area (LA), stomatal index (abaxial (SIL) and adaxial (SIU) 
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surfaces), and pigment concentrations of chlorophyll a (Chl a), chlorophyll b (Chl b), and 

carotenoids(car) among 22 switchgrass populations. The ANOVA was significantly 

different for Pn ,gs, Ci, ETR, Chl a at P<0.001, and Chl b and SIU  at P<0.01, and car  at 

P<0.05 among the populations. The SIL was not significant among the populations. 

Except for leaf area, most of the physiological traits were quite similar between lowland 

and upland populations. However, mean pigment concentrations and stomatal index were 

greater in lowland compared to upland populations, thus explaining the higher 

photosynthesis of lowland over upland populations. Mean photosynthesis ranged from 

30.4 to 23.4 µ mol/m2 sec-1 with mean of 26.2 µ mol/m2 sec-1(Table 6). Therefore, the 

photosynthesis results were not correlated with biomass. Results for photosynthesis were 

in congruence with finding by Wullschleger et al. (1996) and they also reported 

significant variations under field conditions rather than in greenhouse conditions. Pearson 

correlation coefficients between photosynthesis and nine physiological traits were 

positively correlated for eight traits and negatively correlated with leaf area (Table 7). 

Significant correlations were reported for stomatal conductance (P<0.001), internal 

carbon dioxide and electron transport rate (P<0.05). Since the measurements were at leaf 

level, the photosynthesis mostly related to amount of photosynthesis apparatus per unit 

area, rather than leaf area. Therefore, most of the correlations were reported for gs, Ci, 

and ETR. The PCA was able to classify the 22 populations for physiological traits. The 

first three principle components (PRIN1, PRIN2, and PRIN3) accounted for 77.8% of 

total variability (Table 8). First two principle components (PRIN1 and PRIN2) explained 

almost 65% of total variation. The positive eigenvectors of PRIN1and PRIN2 mostly 

weighted for Pn and pigment concentrations (Chl a, Chl b, and Car) for four genotypes 
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including three lowlands (SL 93 C2-2, NL 94 C2-4, and SWG 2009-2) and one upland 

population(SNU 98 LMBP C1-2).The segregation between lowland and upland 

populations for physiological traits were not clear (Fig. 4). However, the results from 

PCA showed that Pn and pigment concentrations were most appropriate to screen 

switchgrass genotypes for physiological traits. Earlier studies also reported the 

importance of Chl concentration in the plants and they also noted that Chl concentrations 

were accurate and indirect indicators for nutrient levels in the plants (Moran et al. 2000).  

Field study 

Tiller morphology 

Means for tiller weight, tiller height, internodal length, leaf number, leaf width, 

leaf length, leaf area, phytomer number, phytomer weight and leaf sheath lengths of 22 

switchgrass populations are presented in Table 9. The mean tiller height was highly 

significantly (P<0.001) different among the populations. Lowland populations were taller 

(111.5cm) than upland populations (84.8cm), ranging from 136.5 (NL 94 C2-3) to 76cm 

(SWG 2007-3). Internode length among the populations was highly significant (P<0.001) 

and longer internodes were reported in lowland (17.3cm) than in upland populations 

(11.3cm) ranging from 23.3 (NL 94 C2-4) to 8.4cm (SWG 2007-4). Total leaf number/ 

tiller was highly significant (P<0.001) ranging from 9 (NL 94 C2-3) to 5 leaves/ tiller 

(SWG 2007-3). Leaf sheath lengths were greater in lowland (19cm) than in upland 

(15.2cm) populations and significantly (P<0.05) different among the populations. Among 

the populations mean leaf sheath lengths ranged from 27.6 (NL 94 C2-4) to 12.5cm (SNU 

98 LMBP C1-2).Although the phytomer number/ tiller ranged from 5 to 7, it was 

significantly different among the populations (P<0.01). Mean phytomer weight was 
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highly significant (P<0.001) among the populations. Phytomer weight of lowland (1.3g) 

was almost twice than that of upland (0.7g) populations. Highest phytomer weights were 

recorded for genotypes NSL 2009-3 (1.82g) followed by NL 94 C2-3 (1.78g). Leaf 

lengths and leaf area were significant (P<0.01) among the populations. Highest leaf 

lengths were recorded in NL 94 C2-3 and least in SNU 98 EMBP C1-1. Leaf width 

among the populations was significant (P<0.001), ranging from 1.67 (NSL 2009-3) to 

1.15cm (SWG 2007-3). Tiller weight was highly significant (P<0.001) among the 

genotypes. High tiller weights were recorded for NSL 2009-3(9.1g) followed by NL 94 

C2-3(8.9g). Overall, lowland populations performed better than upland populations for 

most of the evaluated morphological traits. Within lowland populations, the NL 

populations, NL 94 C2-3 and NL 94 C2-4 were superior for the majority of these traits. 

Mean tiller weight was highly correlated with phytomer weight, leaf traits (width, length, 

and area) and tiller height (Table 10). Earlier study reported that mass tiller-1 was better 

linear predictor of final biomass yield compared to tiller density m-2(Boe. 2007). 

Variations in tiller morphological traits including height and leaf area determine the 

number and size of phytomers (Briske and Derner 1998).  Phytomer morphology is also 

suggested as a potential trait to increase biomass in Alamo (Van Esbroeck et al. 1998).   

The PCA analysis of ten tiller morphological traits discriminated 22 switchgrass 

populations (Fig. 5). First two principle components, PRIN1 and PRIN2 accounted for 

82.2% of total variability. Phytomer number, tiller height and leaf number were reported 

as the traits that led to high performance for six lowland populations. Except for genotype 

SWG 2007-1, all lowland populations were reported on the right side of biplot, thus 

explaining the exceptional performance of lowland populations for morphological traits.   
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Seasonal photosynthesis 

Temporal variation of photosynthesis was observed among the populations     

(Fig. 6). However, photosynthesis variations among the genotypes within each ecotype 

were not significantly different, which allowed to group the genotypes for six 

ecopopulations and two check culativars (Alamo and Cave-In-Rock). Significant 

differences were recorded among the ecotypes and for different months (P<0.001). 

Across the populations, mean net photosynthesis gradually decreased from May (23.3) to 

August (10.4 µ mol/m2 sec-1) across the ecotypes.  Over the months, net photosynthesis 

was higher in SL populations followed by Alamo.  Net photosynthesis was significant 

(P<0.001) among the populations during May, June and July, and was not significant at 

August. Severe drought conditions and variations in crop maturity among the populations 

might be the reason for photosynthesis variations.  During May, high photosynthesis was 

recorded for SWG upland group followed by Alamo. The southern lowland (SL) group 

had the highest photosynthesis capacity during June and July months. Alamo and SL 

populations had high photosynthesis during August. Check cultivar, Cave-in-Rock had 

the least net photosynthesis across the months. Physiological expression of switchgrass 

depends on growing environment and crop phenology (McLaughlin and Adams Kszos 

2005). Due to exceptional drought conditions, results were different than expected. 

However, the temporal trend among the ecotypes showed that SL populations had higher 

photosynthesis than other populations. This might be attributable to high water use 

efficiency, and which was also reported at southern US locations (Kiniry et al. 2008).  

In conclusion, ample genetic variations were evident among the new breeding 

populations. Results from greenhouse and the field study indicated that selection for 
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morphological traits would be more beneficial than physiological traits to enhance 

biomass. Our results for physiological evaluations showed that southern lowland 

populations have more photosynthesis capacity than other cultivars. However, research 

for multiple abiotic stresses will be required for a better understanding of different 

physiological responses among the populations. The PCA demonstrated that plant height, 

phytomer weight and days to panicle initiation would be the best traits among different 

morphological traits to enhance biomass. Northern lowland populations, especially NL 94 

C2-4 performed best for biomass, morphological and physiological traits. The SL 

populations had high photosynthesis both under greenhouse and field conditions. 

Evaluation of these lines for different environments would be recommended for further 

understanding of genotype x environment interactions.  
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Table 2. Genetic basis of 19 breeding populations and three check cultivars.  

SL- southern lowland, NL- northern lowland, NSL- northern southern lowland, SWGL-
swg lowland type, SWGU-swg upland type, SNU-southern nortern upland, C1- cycle 1 
and C1-2 cycle1 synthesize 2 

Entry No Genotype ECOTYPE Genetic basis 
1 NSL 2009-1 L Advanced from  SL and NL 
2 NSL 2009-2 L Advanced from  SL and NL 
3 NSL 2009-3 L Advanced from  SL and NL 
4 NSL 2009-4 L Advanced from  SL and NL 
5 SL 93 C2-1 L Synthesized from Alamo and PMT 

279  
6 SL 93 C2-2 L Synthesized from Alamo and PMT 

279 
7 SL 93 C2-3 L Synthesized from Alamo and PMT 

279 
8 SL 93 C2-4 L Synthesized from Alamo and PMT 

279 
9 NL 94 C2-1 L Synthesized from Kanlow and 

Pangburn 
10 NL 94 C2-2 L Synthesized from Kanlow and  

Pangburn 
11 NL 94 C2-3 L Synthesized from Kanlow and  

Pangburn 
12 NL 94 C2-4 L Synthesized from Kanlow and  

Pangburn 
13 SNU 98 LMBP C1-

1 
U Synthesized from late maturing SU 

and NU 
14 SNU 98 LMBP C1-

2 
U Synthesized from  late maturing SU 

and NU 
15 SNU 98 EMBP C1-

1 
U Synthesized from  early maturing 

SU and NU 
16 SWG 2007-1 L Selection from SL 93 C2 and NL 94 

C2(HYE) 
17 SWG 2007-2 L Selection from NL 94 C2(LYE) 
18 SWG 2007-3 U Selection from 98 EMBP and 

SNU98LMBP 
19 SWG 2007-4 U Selection from SNU 98EMBP and 

SNU98LMBP 
20 Alamo L Collected in south Texas and 

released by Natural Resource 
Conservation Service (NRCS), 
Texas 

21 Kanlow L Collected in central Oklahoma and 
released by NRCS, Kansas  

22 Cave-In-Rock U Collected from southern Illinois 
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Table 3. Morphological traits including plant height (PH), tiller density (TD), leaf number (LN), leaf length (LL), days to 
panicle initiation (DP), seed weight (SW) and panicle number (PN) among 22 switchgrass populations. 

 
***, **, and * are significant at probability of 0.001, 0.01, and 0.05, respectively.

Genotype Plant 
height 
(cm) 

T iller 
density 
plant-1 

Leaf 
number 
plant-1 

Leaf 
length 
(cm)  

Days to 
panic le 
init iation 
(DAT) 

Seed 
weight 
(g plant-1) 

Panicle 
number 
plant-1  

Alamo 121.9 45 9 45.4 83 6.5 24 
Cave-In-Rock 77.6 50 8 47.1 59 4.7 22 
Kanlow 137.1 45 9 52.0 82 7.9 16 
NL 94 C2-1 122.3 41 9 55.1 80 5.1 16 
NL 94 C2-2 135.1 34 9.5 50.3 82 2.6 13 
NL 94 C2-3 143.6 44 9 57.4 79 6.7 18 
NL 94 C2-4 136.0 48 9 54.6 81 7.6 20 
NSL 2009-1 137.8 39 10 51.8 81 4.5 13 
NSL 2009-2 138.4 58 9 58.8 82 6.7 18 
NSL 2009-3 142.5 36 11 52.0 84 2.2 11 
NSL 2009-4 135.6 49 9 52.0 81 3.2 18 
SL 93 C2-1 131.8 49 10 49.9 82 3.0 20 
SL 93 C2-2 113.8 29 10 47.4 80 3.2 14 
SL 93 C2-3 130.6 50 9 48.4 84 4.1 22 
SL 93 C2-4 142.1 54 9 52.0 86 3.2 13 
SNU 98 EMBP C1-1 75.3 70 9 40.3 47 6.1 26 
SNU 98 LMBP C1-1 85.5 64 8 42.4 62 2.2 17 
SNU 98 LMBP C1-2 79.0 51 7 46.2 53 10.6 20 
SW G 2007-1 112.1 47 8 43.4 84 3.4 17 
SW G 2007-2 131.5 50 10 49.8 85 5.4 26 
SW G 2007-3 78.9 59 8 44.8 69 5.9 24 
SW G 2007-4 80.5 43 7 42.7 63 3.0 19 
        
Mean 117.7***  48.0*  8.9**  49.3***  75.9***  4.9**  18.4**  
LSD (5%) 19.4 18.9 1.5 4.7 4.8 3.9 8.6 
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Table 4. Correlation coefficients between biomass and seven morphological traits of 22 

switchgrass populations. 

***, **, and * are significant at probability of 0.001, 0.01, and 0.05, respectively. 

 

  

Traits Biomass Plant 
height 

Tiller 
density 

Leaf 
number 

Leaf 
lengths 

Days to 
panicle 
initiation 

Seed 
weight 

Panicle 
number 

BM - 0.76***  -0.02 0.46* 0.62**  0.66**  0.09 0.02 
PH 0.76***  - -0.45* 0.75***  0.79***  0.89***  -0.12 -0.49* 
TD -0.02 -0.45* - -0.41 -0.33 -0.52* 0.24 0.58* 
LN 0.46* 0.75***  -0.41 - 0.45* 0.71**  -0.39 -0.37 
LL 0.62**  0.79***  -0.33 0.45* - 0.61**  0.18 -0.42 
DP 0.66**  0.89***  -0.52* 0.71**  0.61**  - -0.27 -0.43 
SW 0.09 -0.12 0.24 -0.39 0.18 -0.27 - 0.42 
PN 0.02 -0.49* 0.58* -0.37 -0.42 -0.43 0.42 - 
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Table 5. Firth three principle component analysis (PCA) eigenvectors (PRIN1, PRIN2 

and PRIN3) of 22 switchgrass populations for biomass and seven morphological traits 

and variation accounted for each principle component vector.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Trait 

Principle component eigenvectors 

 PRIN1 PRIN2 PRIN3 
Biomass 0.32 0.48 0.27 
Plant height 0.47 0.15 0.01 
Tiller density -0.29 0.37 0.43 
Leaf number 0.39 -0.09 0.36 
Leaf length 0.37 0.28 -0.37 
Days to panicle initiation 0.45 0.03 0.13 
Seed weight -0.13 0.57 -0.57 
Panicle number -0.29 0.44 0.37 

 
Variation (%) 53.0 20.7 11.7 
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Table 6. Means of ten physiological traits including net photosynthesis (Pn), stomatal conductance (gs), electron transport rate 

(ETR), internal carbon dioxide concentration (Ci), pigment concentrations chlorophyll a (chl a), chlorophyll b, (chl b) and 

carotenoids (car), leaf area and stomatal index (lower (SIL) and upper (SIU) surfaces) among 22switchgrass populations. 

 
         ***, **, * and NS are significant at probability of 0.001, 0.01, 0.05 and non significant, respectively

Entry Pn gs Ci ETR  Chla  SI(L ) LA Chlb Car SI(U) 
A lam o 28.4 0.169 100.8 139.8 21.5 19.7 41.8 1.42 6.73 25.3 
Cave-In-Rock  24.8 0.155 113.9 151.0 20.7 17.6 44.1 1.31 6.76 21.0 
K anlow 28.9 0.182 111.9 148.7 25.2 18.4 52.0 2.42 7.18 25.1 
NL 94 C2-1 27.0 0.148 82.9 154.9 25.5 20.7 57.8 5.47 6.38 26.3 
NL 94 C2-2 25.0 0.133 75.3 142.0 23.7 17.6 49.3 4.43 5.56 21.5 
NL 94 C2-3 25.0 0.133 73.8 134.9 25.4 18.8 62.5 5.82 6.33 26.7 
NL 94 C2-4 27.0 0.165 104.0 152.8 29.7 18.0 56.9 8.39 7.94 25.6 
NSL 2009 -4  24.6 0.129 66.0 125.1 20.2 20.8 51.8 5.30 6.41 25.4 
NSL 2009-1  25.2 0.132 65.2 117.4 21.5 22.3 65.6 4.22 5.64 24.6 
NSL 2009-2  23.4 0.115 49.1 118.3 23.5 17.8 52.2 4.91 6.43 24.9 
NSL 2009-3  28.6 0.146 58.5 127.1 23.2 22.1 52.0 5.27 7.08 20.9 
SL 93 C2-1 23.5 0.147 112.6 114.3 24.5 19.2 48.5 5.65 6.32 23.6 
SL 93 C2-2 30.4 0.219 137.7 142.3 29.8 23.5 44.6 8.49 7.59 30.0 
SL 93 C2-3 24.3 0.123 61.8 132.2 26.8 21.4 46.1 7.04 7.08 27.5 
SL 93 C2-4 24.7 0.141 89.9 136.9 26.1 20.0 52.1 6.93 7.14 24.3 
SNU 98 EMBP C1-1 27.5 0.176 118.0 139.4 24.4 18.5 35.0 6.24 6.19 21.2 
SNU 98 LMBP C1-1 24.5 0.149 109.0 131.4 27.1 17.1 37.6 5.80 7.44 21.7 
SNU 98 LMBP C1-2 26.6 0.180 128.2 130.4 29.0 18.3 42.9 7.80 8.11 21.6 
SWG 2007-1 26.1 0.139 71.2 137.9 25.4 20.9 39.0 5.28 6.55 26.1 
SWG 2007-2 26.2 0.166 107.6 149.2 27.8 22.2 48.4 5.53 7.29 20.4 
SWG 2007-3 28.2 0.209 152.3 148.4 19.5 18.2 40.9 5.84 4.38 19.0 
SWG 2007-4 26.7 0.169 112.0 147.2 22.8 19.8 38.1 2.87 7.12 20.9 
           
Mean  26.2***  0.156***  95.5***  137.3***  24.7***  19.7**  48.15***  5.29**  6.71*  23.8NS 
LSD (5 %)  3.15 0.040 41.4 18.5 4.54 3.34 7.49 3.51 1.74 7.17 
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Table 7. Pearson’s correlation coefficients between net photosynthesis (Pn) and nine physiological traits including stomatal 

conductance (gs), electron transport rate (ETR), internal carbon dioxide concentration, pigment concentrations chlorophyll a 

(chl a), chlorophyll b, (chl b) and carotenoids (car), leaf area and stomatal index ( lower (SIL) and upper (SIU) surfaces) 

among 22 switchgrass populations. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

***, **, and * are significant at probability of 0.001, 0.01, and 0.05, respectively

Traits Pn gs Ci ETR Chla SIL LA Chlb Car SIU 
Pn - 0.80***  0.49* 0.51* 0.14 0.31 -0.20 0.03 0.14 0.07 
gs 0.80***  - 0.90***  0.51* 0.19 0.05 -0.43 0.13 0.11 -0.15 

Ci 0.49* 0.90***  - 0.46* 0.16 -0.22 -0.52* 0.10 0.08 -0.31 
ETR 0.51* 0.51* 0.46* - 0.16 -0.12 -0.19 -0.12 0.11 -0.10 
Chla 0.14 0.19 0.16 0.16 - 0.13 0.02 0.69**  0.73**  0.37 
SIL 0.31 0.05 -0.22 -0.12 0.13 - 0.22 0.20 0.12 0.40 
LA -0.20 -0.43 -0.52* -0.19 0.02 0.22 - 0.08 -0.09 0.38 
Chlb 0.03 0.13 0.10 -0.12 0.69**  0.20 0.08 - 0.27 0.27 
Car 0.14 0.11 0.08 0.11 0.73**  0.12 -0.09 0.27 - 0.25 
SIU 0.07 -0.15 -0.31 -0.10 0.37 0.40 0.38 0.27 0.25 - 
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Table 8. Principle component analysis eigenvectors (PRIN1, PRIN2 and PRIN3) of 22 

switchgrass populations for photosynthesis (Pn) and nine physiological traits and percent 

of variation accounted by each principle component vector of 22 switchgrass populations. 

 

                                                            
  Physiological trait                                   Principle Component eigenvectors 
 PRIN1 PRIN2 PRIN3 
Photosynthesis 0.38 -0.26 -0.02 
Stomatal conductance 0.36 0.06 0.45 
Internal CO2 concentration 0.45 0.06 0.23 
Electron transport rate 0.44 0.00 -0.04 
Chlorophyll a concentration 0.38 -0.03 0.14 
Stomatal index (lower surface) -0.17 0.31 0.54 
Leaf area -0.15 0.40 0.45 
Chlorophyll b concentration 0.21 0.51 -0.29 
Carotenoids concentration -0.05 0.56 -0.28 
Stomatal index (upper surface) 0.31 0.31 -0.28 
 
Variation (%) 39.7 25.2 12.8 
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Table 9. Means of tiller morphological traits among 21 switchgrass populations. 

 
   ***, **, and * are significant at probability of 0.001, 0.01, and 0.05, respectively.

Genotype Tiller 

height 

(cm) 

Internode 

length 

(cm) 

Leaf 

number 

tiller
- 1

 

Leaf 

sheath 

length 

(cm) 

Phytomer 

number 

tiller
-1
 

Phytomer 

weight (g) 

Leaf 

length 

(cm) 

Leaf 

width 

(cm) 

Leaf 

area 

(cm
2
) 

Tiller 

weight 

(g) 

NSL 2009-1 107.8 14.2 8 18.3 6 1.332 47.4 1.54 48.9 6.66 

NSL 2009-2 129.3 16.3 8 17.8 6 1.077 46.2 1.55 49.7 5.39 

NSL 2009-3 117.5 15.0 8 16.7 6 1.821 50.3 1.67 47.6 9.11 

NSL 2009-4 109.5 19.5 8 18.8 5 1.525 50.9 1.54 53.8 7.63 

SL 93 C2-1 113.8 13.1 8 14.8 6 1.512 44.4 1.64 43.1 7.56 

SL 93 C2-2 120.4 13.5 8 15.6 6 1.063 46.4 1.55 45.4 5.31 

SL 93 C2-3 102.1 14.7 7 19.0 5 1.113 45.5 1.63 44.9 5.56 

SL 93 C2-4 117.9 17.5 7 18.1 6 0.870 45.0 1.48 45.6 4.35 

NL 94 C2-1 100.2 16.8 7 19.0 5 1.322 47.8 1.60 47.5 6.61 

NL 94 C2-2 115.7 15.7 8 17.5 6 1.394 50.3 1.54 48.5 6.97 

NL 94 C2-3 136.5 16.1 9 20.0 7 1.788 52.5 1.62 54.8 8.94 

NL 94 C2-4 109.3 23.3 8 27.6 5 1.652 47.7 1.59 45.7 8.26 

SNU 98 LMBP C1-1 81.6 11.1 7 14.2 5 0.694 46.8 1.27 37.4 3.47 

SNU 98 LMBP C1-2 99.8 10.7 7 12.5 6 0.790 39.1 1.31 37.3 3.95 

SNU 98 EMBP C1-1 78.8 13.5 7 18.7 5 0.849 38.9 1.25 34.0 4.25 

SWG 2007-1 100.8 21.1 7 21.0 5 0.848 44.9 1.35 39.4 4.24 

SWG 2007-2 91.7 21.2 6 21.3 5 1.108 51.1 1.64 53.7 5.54 

SWG 2007-3 76.0 14.7 5 19.4 5 0.778 40.8 1.15 35.1 3.89 

SWG 2007-4 89.4 8.4 7 12.7 6 0.362 40.5 1.21 36.0 1.81 

Alamo 100.3 21.7 7 18.9 5 1.435 45.6 1.54 42.0 7.17 

Cave-In-Rock 83.2 9.3 7 13.7 6 0.581 41.3 1.40 40.2 2.91 

           

Mean  103.9
***

 15.6
***

 7
***

 17.9
*
 6

**
 1.139

***
 45.9

**
 1.5

***
 44.3

**
 5.7

***
 

LSD (5%) 14.6 2.3 1 2.5 1 0.191 7.8 0.19 11.8 0.196 
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Table 10. Correlations coefficients of 21 switchgrass populations for ten morphological traits and their significant levels  

among the traits.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
***, **, and * are significant at probability of 0.001, 0.01, and 0.05, respectively.

Trait Tiller 
weight 

Tiller 
height  

Internode 
length  

Leaf 
number 
Tiller-1 

Leaf 
sheath 
length 

Phytomer 
number 
tiller-1 

Phytomer 
weight 

Leaf 
length 

Leaf 
width 

Leaf 
area 

Tiller 
weight 

- 0.65**  0.54* 0.55* 0.49* 0.20 0.99***  0.75***  0.80***  0.70***  

Tiller 
height 

0.65**  - 0.28 0.75***  0.16 0.65**  0.65**  0.60**  0.70***  0.72***  

Internode 
length 

0.54* 0.28 - -0.08 0.86***  -0.41 0.54* 0.53* 0.46* 0.48* 

Leaf 
number 

0.55* 0.75***  -0.08 - -0.06 0.75***  0.55* 0.40 0.54* 0.46* 

Leaf sheath 
length 

0.49* 0.16 0.86***  -0.06 - -0.35 0.49* 0.42 0.35 0.38 

Phytomer 
number 

0.20 0.65**  -0.41 0.75***  -0.35 - 0.20 0.14 0.21 0.21 

Phytomer 
weight 

0.99***  0.65**  0.54* 0.55* 0.49* 0.20 - 0.75***  0.80***  0.70***  

Leaf length 0.75***  0.60**  0.53* 0.40 0.42 0.14 0.75***  - 0.75***  0.89***  

Leaf width 0.80***  0.70***  0.46* 0.54* 0.35 0.21 0.80***  0.75***  - 0.83***  

Leaf area 0.70***  0.72***  0.48* 0.46* 0.38 0.21 0.70***  0.89***  0.83***  - 
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Table 11. Principle component analysis (PCA) eigenvectors (PRIN1, PRIN2 and PRIN3) 
of 21 switchgrass populations for tiller and phytomer morphological traits and percent of 
variation accounted for each principle component vector. 

 

 

 

 

 

 

 

 

  

Trait Principle component eigenvector  

 PRIN1 PRIN2 PRIN3 
Tiller height 0.34 0.26 0.12 
Internide length 0.24 -0.47 0.21 
Leaf number 0.26 0.42 0.30 
Leaf sheath length 0.21 -0.46 0.46 
Phytomer number 0.13 0.56 0.24 
Phytomer weight 0.38 -0.04 0.19 
Leaf length 0.36 -0.07 -0.45 
Leaf width 0.37 0.01 -0.26 
Leaf area 0.37 -0.01 -0.50 
Tiller weight 0.38 -0.04 0.19 
    
Variation (%) 57.9 24.4 5.9 
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Fig.1 Mean biomass of 22 switchgrass populations grown in greenhouse. The error bars 
are standard errors. 
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Fig.2 Growth events including leaf addition rate (LR), tillering rate (TR), and stem 

elongation rate (SER) among  six parental  populations including northern lowland (NL), 

southern lowland(SL), northern southern lowland (NSL), SWG lowland(SWGL), upland 

(SWGU) and southern northern upland (SNU)  and three check cultivars (Alamo, Kanlow 

and Cave-In-Rock) 
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Fig.3 The PCA analysis of biomass (BM), plant height(PH), tiller density (TD), leaf length(LL), 

leaf number (LN), panicle number (PN), seed weight (SW) and days to panicle initiation(DP) of 

22 switchgrass populations and actual eigenvectors are magnified for better illustration. Below is 

the list of twenty two populations and the respective ID’s from the figure  

 

ID Genotype ID Genotype ID Genotype 
1 NSL 2009-1 8 SL 93 C2-4 15 SNU 98 EMBP C1-1 
2 NSL 2009-2 9 NL 94 C2-1 16 SWG 2007-1 
3 NSL 2009-3 10 NL 94 C2-2 17 SWG 2007-2 
4 NSL 2009-4 11 NL 94 C2-3 18 SWG 2007-3 
5 SL 93 C2-1 12 NL 94 C2-4 19 SWG 2007-4 
6 SL 93 C2-2 13 SNU 98 LMBP C1-1 20 ALAMO 
7 SL 93 C2-3 14 SNU 98 LMBP C1-2 21 KANLOW 
    22 CAVE-IN-ROCK 
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Fig.4 The PCA analysis of net photosynthesis (Pn), stomatal conductance (gs), electron transport 

rate (ETR), internal carbon dioxide (Ci), leaf area, stomatal index on both leaf surfaces 

(abaxial(SIL) and adaxial (SIU)) and pigment concentrations of 22 switchgrass populations. The 

eigenvectors for ten traits are magnified for better illustration. Below is the list of twenty two 

populations and the respective ID’s from the figure 

 

ID Genotype ID Genotype ID Genotype 
1 NSL 2009-1 8 SL 93 C2-4 15 SNU 98 EMBP C1-1 
2 NSL 2009-2 9 NL 94 C2-1 16 SWG 2007-1 
3 NSL 2009-3 10 NL 94 C2-2 17 SWG 2007-2 
4 NSL 2009-4 11 NL 94 C2-3 18 SWG 2007-3 
5 SL 93 C2-1 12 NL 94 C2-4 19 SWG 2007-4 
6 SL 93 C2-2 13 SNU 98 LMBP C1-1 20 ALAMO 
7 SL 93 C2-3 14 SNU 98 LMBP C1-2 21 KANLOW 
    22 CAVE-IN-ROCK 
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Fig.5 The principle component analysis (PCA) of tiller weight (TW), tiller height(TH), internodal 

length(IL), leaf number(LN), leaf width(LW), leaf length(LL), leaf area(LA), phytomer 

number(PN), phytomer weight(PW) and leaf sheath length(LSL) among the populations. 

Respective ID’s and genotypes of 21 populations are listed in the table 

 

ID Genotype ID Genotype ID Genotype 
1 NSL 2009-1 8 SL 93 C2-4 15 SNU 98 EMBP C1-1 
2 NSL 2009-2 9 NL 94 C2-1 16 SWG 2007-1 
3 NSL 2009-3 10 NL 94 C2-2 17 SWG 2007-2 
4 NSL 2009-4 11 NL 94 C2-3 18 SWG 2007-3 
5 SL 93 C2-1 12 NL 94 C2-4 19 SWG 2007-4 
6 SL 93 C2-2 13 SNU 98 LMBP C1-1 20 ALAMO 
7 SL 93 C2-3 14 SNU 98 LMBP C1-2 22 CAVE-IN-ROCK 
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Fig.6 Mean photosynthesis variations among northern lowland (NL), southern 

lowland(SL), northern southern lowland (NSL), southern norther upland (SNU), SWG 

populations for upland(SWGU) and lowlands(SWGL) and check cultivars (Alamo and 

Cave-In-Rock(CIR)) 
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CHAPTER III 
 

 

Genotype x Environment (G X E) Interactions among new Switchgrass Populations in 

Oklahoma 

 

Abstract 

Evaluation of advanced breeding populations in transferring economically viable 

traits within the targeted region is important to develop high biomass Switchgrass 

(Panicum virginatum L.) cultivars. The objective of this study was to evaluate genotype x 

environment (G x E) interaction for agronomic and biofuel traits among 19 new 

switchgrass populations and two check cultivars (Alamo and Cave-In-Rock) at four 

strategically selected locations (Chickasha, Lane, Stillwater and Woodward) in 

Oklahoma. Genotypes were evaluated for biomass, plant height and tiller density in 2010 

and 2011. Significant G x E interaction was found for biomass and plant height. The 

Northern Southern Lowland (NSL) genotype, NSL 2009-1 produced significantly more 

biomass (15.2 Mg ha-1) than the check cultivars in 2011. The Northern lowland (NL) and 

NSL populations were taller, but not significantly different from Alamo. The Southern 

Lowland (SL) and SWG lowland type populations tiller density was very similar to 

Alamo. Stability analysis demonstrated higher stability of lowland populations for dry   
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biomass with greater slopes compared to upland populations. The genotypes, NL 94 C2-3 

(b=1.37) and NSL 2009-2 (b=1.32) ranked highest for biomass with greater stability 

compared to Alamo (b=1.25). Due to G x E interactions, the correlations between 

biomass, plant height and tiller number were different from establishment to post 

establishment year. However, multi-year evaluations would be required to assess the 

biomass stability of these new breeding populations.  

 

Introduction 

Biomass has been and continues to be an economically viable trait for the grasses, 

especially those deployed as potential biofuel feedstocks like switchgrass. Though 

switchgrass is a native species, adaptation between ecotypes varies widely (Hopkins et 

al., 1995c; Sanderson et al., 1999). Therefore, switchgrass biomass production varied due 

to original adaptation, strong photoperiodic nature, and cold hardiness between ecotypes. 

Switchgrass population trials were reported across the USA, mostly in the midwest 

(Vogel et al. 2002; Lemus et al. 2002; Casler and Boe 2003) the southern (Sanderson et 

al. 1999; Cassida et al.2005; Fuentes and Taliaferro 2002; Das et al. 2004; Fike et al. 

2006; Bhandari et al. 2011) and the northern Great Plains of USA (Lee and Boe 2005; 

Lee et al.2009). The genotype x environment (G x E) interactions for biomass is very 

obvious in multi-location trial evaluations of switchgrass and the results showed 

significant effect of environment on dry matter yield (Casler and Boe, 2003; Casler et al., 

2004; Cassida et al., 2005a; Hopkins et al., 1995b; Hopkins et al., 1995c; Koshi et al., 

1982) and magnitude of G x E interactions for biomass was greater than other traits 
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(Hopkins et al., 1995b; Hopkins et al., 1995c). However, results and interpretations were 

different among different geographic regions. In southern USA trials, lowland 

populations produced higher biomass than upland populations (Table 1), but upland 

populations were superior in northern USA. Results in Midwestern states such as Iowa 

also showed high biomass potential of lowland populations (Lemus et al. 2002). Specific 

biomass yield responses were also found between ecotypes and new breeding eco-

populations under different latitudes ranging from southern (36°N) to northern (46°N) 

latitudes of the United States. Lowland population biomass decreased with increasing 

latitude, whereas upland biomass increased from southern to northern US environments. 

However, lowland populations are more sensitive to latitudinal change than upland 

populations (Casler et al. 2004). Switchgrass latitudinal adaptation study concluded that 

switchgrass was sensitive to the region of its origin, and cultivar performance decreased 

if cultivars were planted more than 500 km or one USDA hardiness zone away from its 

origin (Casler et al. 2004). These findings indicate the importance of growing 

environment to achieve high biomass potentials of switchgrass. 

A understanding of genetic diversity has relevance in order to conserve the 

germplasm resources and characterize desirable traits through conventional breeding 

methods. Phenotypic expression of the plant is unique to the growing environment. 

Though biomass is primary goal for grass breeders, understanding and evaluation of 

biomass influencing traits is important. Plant height was highly correlated with final 

biomass (Schmer et al. 2010 Bhandari et al. 2011; Casler et al. 2004; Lemus et al. 2002b) 

and the results also infer that plant height is a potential trait for selection to increase 

biomass. Similarly, tiller density is an important trait and correlated positively with final 
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biomass (Das et al. 2004; Bhandari et al. 2011). Results for tiller density varied among 

the populations and across the locations. However, lowland populations had higher tiller 

density than upland populations (Cassida et al. 2005). Tiller density is also influenced by 

row spacing (Muir et al. 2001). However, under field conditions biomass variations were 

attributable to variations in soil, environment (Sanderson et al. 1999) and other 

agronomic traits such as stand density and row spacing (Muir et al. 2001).  

Breeding for switchgrass biomass was reported in new breeding populations. 

Biomass evaluations of switchgrass breeding lines at Texas, Arkansas and Louisiana 

demonstrated high biomass potential of southern lowland populations (Cassida et al., 

2005). Similarly, high biomass yields of SL populations were also reported in Oklahoma 

(Fuentes and Taliaferro 2002; Casler et al., 2004). However, the performance of these 

new populations was not consistent SL population yields were greater at Stillwater, OK 

(36°N), whereas northern lowland populations produced higher biomass at Manhattan, 

KS (42°N). Similarly, mixed results were also reported in a multi-state evaluation study 

by Cassida et al. (2005). These contradictory results demonstrate the importance of 

switchgrass adaptation when developing new cultivars for high biomass yield within the 

southern USA. 

Phenotypic expression of the genotype is unique to the growing environment. 

Evaluation of advanced breeding populations for biomass potential under different 

climatic and edaphic conditions within the targeted region is critical for decision making 

especially for future breeding deployment. Breeding efforts and testing of new cultivars 

against existing cultivars will be critically important to attract emerging cellulose-based 

biofuel industries in the southern US region. However, yield responses of new breeding 
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populations under diverse climatic conditions in southern US is limited, especially in 

Oklahoma. These evaluations could be possible through G x E interaction studies. Thus, 

the objective of this study was to evaluate the effect of genotype x environment 

interaction on biomass production of new breeding populations in Oklahoma. 

 

Materials and Methods 

Multi-location description  

Multi-location trials were established at five locations in Oklahoma, including 

Stillwater, Lane, Woodward, Chickasha and Tipton in 2010. At Tipton during post 

establishment year, all plants were killed due to exceptional drought and restricted root 

growth caused by hard plough pan. Therefore, present study was restricted to four 

locations. Table 12 shows the weather data of four locations including mean rainfall year-

1, solar radiation, and average temperature of past 15 years (1994-2010) obtained from 

Oklahoma Climatological Survey (Table 12). Soil samples were collected prior to 

transplanting to assay the soil fertility status. However, no fertilizers were applied during 

the establishment year to minimize the weed competition.  Urea (85 kg ha-1) was applied 

during early growing season of post establishment year.  

Plant material and stand establishment  

Nineteen advanced breeding populations derived from recurrent selection for 

general combining ability (RSGCA) procedure and two check cultivars (Alamo and 

Cave-In-Rock) were included in this study. Seed material was developed and obtained 
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from Oklahoma State University Switchgrass Breeding and Genetics program. Seeds of 

22 switchgrass populations were sown in small pots filled with Metro-Mix 250 growing 

medium (Scotts-Sierra Horticultural Products Co., Marysville, OH). Seeds were placed 

on the top of growing medium, and then covered with thin layer (0.5cm). Healthy 

seedlings were transplanted into 10cm deep containers and then filled with growth 

medium.  Adequate water was given immediately after transplanting and optimum 

conditions were maintained until seedlings were transplanted into field plots. 

The experimental design was a randomized complete block (RCB) with four 

replications and each replication consisting of 19 experimental lines and two check 

cultivars, Alamo and Cave-In-Rock. All the test plots were bordered with Kanlow. The 

test plot was divided into six (6) columns (south to north direction), and spacing between 

two neighboring columns was 30 cm. Ten (10) plants were included in each column (10 

rows). Spacing between two neighboring plants in a column was 30 cm. Greenhouse 

grown seedlings from container were transplanted manually into field plots across the 

five locations. Fields were irrigated using sprinkler system immediately after 

transplanting at Stillwater, Lane, and Woodward. At Tipton, plots were manually 

irrigated by-plant. Chickasha had enough moisture during transplanting and no irrigation 

was provided.  

Biomass, plant height, and tiller density were evaluated after killing frosts in years 

2010 and 2011. Plant height was taken from base to topmost node of leaf. Five random 

representative plants from each plot were harvested approximately at 10cm above soil 

surface for biomass estimation. Tiller density (tiller number plant-1) of each plant was 

measured from harvested plants. All samples were dried at 60°C in a forced-air oven for 
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three days. Data were analyzed using ANOVA procedure of SAS statistical analysis 

(SAS 9.2). Data were arranged as split-plot in time as described by Steel and Torrie 

(1980). Appropriate error terms were used to account for genotype, year, and location 

interactions. Fisher’s protected least significant difference (LSD) procedure was used for 

mean separations at 5% level. Biomass yield stability was calculated and regression 

equations were developed between biomass and environment index (location biomass 

mean- grand biomass mean) described by Eberhart and Russell (1966).  

 

Results and Discussion 

Dry biomass 

Exceptional drought conditions and hardpan within the uppermost soil surface at 

Tipton restricted the growth of root growth, and subsequent drought conditions affected 

the biomass of all plots resulting in a total stand loss. Therefore, Tipton was not included 

in the data analysis. The ANOVA for dry biomass was significantly different for main 

factors (genotype, location, and year), interaction effects (genotype x environment, year x 

environment, year x genotype) and genotype x environment x year (Table 13). However, 

most of these significant variations were due to variations in date of stand establishment 

and severe drought conditions during the post establishment year. Therefore, locations 

and years were presented separately for dry biomass. 

Mean biomass yields in 2010 varied across the locations. Stillwater location had 

dry biomass of 5.4 Mg ha-1 and was significantly (P<0.05) greater than biomass at 

Woodward (3.6 Mg ha-1), Chickasha (3.8 Mg ha-1) and Lane (1.1 Mg ha-1) (Table 14). 
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Most of these yield variations were associated with time of transplanting. The highest and 

lowest yields were reported at early and late translating locations. However, the very low 

yields at Lane were possibly due to highly acidic soils (PH = 4.8). Significant yield 

reductions in non-limed (PH=4.9) and limed soils (PH=5.9) were also reported for 

switchgrass by Bona and Belesky (1992). Stillwater had 4% higher rainfall compared to a 

mean rainfall of the past 15 years (Fig. 7) and it allowed the production of more biomass 

compared to the other locations. Though Lane had 2% more rainfall compared to past 

15years, late planting and soil acidity lowered biomass yields (Fig. 7). Biomass variations 

with translating date also demonstrates the importance of proper date of stand 

establishment for biomass production. Across the locations, lowland population’s dry 

biomass (4.13 Mg ha-1) was significantly higher than that of upland (1.17 Mg ha-1) 

population’s (Table 14).  

Northern lowland genotypes, NL 94 C2-4 and NL 94 C2-3 produced the highest 

biomass at Lane and Woodward. Alamo had high biomass both at Stillwater and 

Chickasha. Phenotypic expression of genotypes within common environment is unique, 

from vegetative growth to seed maturity. Different dates of translating might have 

inhibited complete phenotypic expression of the genotypes within each location. 

Therefore, there was no significant difference were found among the lowland populations 

for dry biomass. This also extended to genotype groups within each population and 

across the locations, NL type biomass (4.3 Mg ha-1) produced high biomass among the 

new populations, but it was not significantly different from the check cultivar, Alamo 

(4.7 Mg ha-1).  High biomass of Alamo in south most locations including Chickasha and 

Lane during an establishment year may be due to broader and well established adaptation 
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within the southern US environments. Northern lowland population, NL 94 C2-3 

produced high biomass at Woodward. Casler et al. (2004) reported variations in biomass 

ranking from 36°N to 39°N from SL to NL populations. Our results did not follow any 

trend with latitude during the establishment year.  

Mean dry biomass across locations during the post establishment year was almost 

three times greater than in the establishment year. Since switchgrass is a perennial grass, 

the increase in biomass compared to the establishment year is obvious. The biomass 

increase varied across the locations, ranging from 7.2 (Lane) to 0.3 (Woodward) times 

greater compared to the establishment year. Across the locations, highest yield 

improvements were observed at Lane and Stillwater, which were 7.2 and 3.1 times 

greater than in the establishment year. At Chickasha and Woodward yields were 1.5 and 

0.36 times higher than in the establishment year. Mean biomass yields for locations were 

significantly different, ranging from 22.3 Mg ha-1 (Stillwater) to 4.9 Mg ha-1 (Woodward) 

(Table 15). Chickasha and Lane biomass yields were very  similar, 9.8 and 9.3 Mg ha-

1(Table 15). These biomass variations were mostly attributable to environment 

conditions, fertility status, and especially the amount and distribution of precipitation 

across the locations. Sanderson et al. (1999) reported that rainfall during the early 

growing season increases biomass production. Exceptional drought conditions, especially 

at Woodward, severely affected biomass yield compared to the other locations. Season 

rainfall was well below normal compared with mean seasonal rainfall of the past 15 years 

at these locations (Fig. 7 and Fig. 8). The 2011 seasonal rainfall was 51.9%, 47.75%, 

62.4% and 59.11% less than mean rainfall of the past 15 years at Chickasha, Lane, 

Stillwater, and Woodward, respectively. Even though the quantity of precipitation was 
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low in 2011 at Stillwater, the rainfall was well distributed with more than 3cm 

precipitation during early growing season (Fig. 7). Switchgrass germplasm evaluation by 

Sanderson et al. (1999) also noted that early rainfall is critical for high biomass. 

Chickasha and Lane had high rainfall during early season but the distribution was poor, 

whereas rainfall distribution was good at Woodward but the quantity of rainfall was very 

limited (Fig. 8). Since fertilization was applied during early growing season (last week of 

May), Stillwater, Lane and Chickasha locations used subsequent rainfall and nutrients 

effectively compared to that of Woodward.       

Across the locations, biomass yields for genotypes, NSL 2009-1(15.2 Mg ha-1) 

and NSL 2009-2 (15.0 Mg ha-1) were significantly higher than Alamo (13.4 Mg ha-1) 

(Table 15). The NSL populations NSL 2009-1 and NSL 2009-2, NL populations NL 94 

C2-3 ranked among first five high biomass producing genotypes across the locations. 

Among these three populations NL 94 C2-3 had high stability followed by NSL 2009-2 

(Table 24). High stability for dry biomass of these three breeding populations over the 

check cultivar was mostly attributable to their genetic advancement. Three NL 

populations reported high biomass in north most location at Woodward, this possibly due 

to the specific adaptation of NL types towards north western region of Oklahoma. 

However, present results did not show any significant trend with latitude. Switchgrass 

latitudinal evaluations by Casler et.al (2004) also found that SL populations were best at 

south most location (36°7’ N) and with increasing latitude, at 39°25’ N the NL 

populations yields were greater than SL populations. Multiyear evaluations possibly 

could reveal the specific adaptation of these new breeding populations. 
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Tiller density    

Tiller density was significantly different for main effects, but was not significant 

for interaction effect and this allowed to present tiller density across the locations and 

years (Table 16). Tiller density among the genotypes within each population was not 

significantly different during 2010 and 2011. Therefore, genotypes within each 

population were grouped. Among the locations, tiller density was significantly different 

and ranged from 21tillers plant-1(Stillwater) to 10 tillers plant-1 (Lane) (Table 18). 

Lowland populations had greater tiller density than upland populations and within 

lowland populations, Alamo and SL populations produced more tillers. Subsequent 

significant variations among the populations were also evident only at Lane. Alamo 

produced more tillers at Chickasha and Stillwater. The SWG lowland type populations 

produced more tillers at Lane and Woodward.  

Over the locations, biomass was significantly (P<0.01) correlated with tiller 

density with a correlation coefficient of 0.72 and significant correlations were also 

reported at each location. High correlation coefficients were reported at Lane (r= 0.81), 

followed by Chickasha (r=0.63), Woodward (r= 0.43), and Stillwater (r= 0.42) (Table 

17). Correlations for upland and lowland populations were also different across locations 

(Table 18). However, except at Stillwater, lowland populations tiller density was highly 

and significantly correlated with biomass. Generally in grasses, tiller ontogeny can be 

divided into four phases: vegetative, elongation, reproductive and seed maturity (Moore 

et al. 1991). Environmental factors including temperature, photoperiod and radiation have 

the most impact on elongation phase compared to the developmental phase in grasses 

(Moore et al. 1991). The significant correlations between biomass and tiller density 
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during establishment year were mostly due to variations in date of transplanting. Late 

transplanting locations possibly had limited elongation phase compared to early 

transplanting locations. Therefore, the tiller density was highly correlated at most of the 

late transplanting locations compared to early transplanting location, Stillwater. With 

long growing season at Stillwater, the plants interacted with the environment for long 

duration; therefore, biomass was probably less dependent on tiller density.      

Tiller density across locations in 2011 was 55% greater than in  2010 and ranged 

from 35plant-1 (Stillwater) to 23 plant-1 (Lane) (Table 19). At Stillwater, tiller density was 

significantly different (P<0.05) among the populations. Across the locations, SL and 

SWG populations had more tiller density, but not significantly different from  Alamo 

(Table 20). During post-establishment year, correlations coefficients between biomass 

and tiller density were non-significant or less significant compared to establishment year. 

These variations were attributable to environment interactions across the locations and 

populations within locations.  Significant correlations between biomass and tiller density 

in lowland populations were observed at high yielding and low yielding environments, 

Stillwater and Woodward, respectively. Previous studies also reported the importance of 

tiller mass compared to tiller density (Boe 2007). Under high yielding environments, 

tiller elongation was relatively less influenced by environment compared to low yielding 

environments. Mean plant height was high at Stillwater (140.5cm) compared to 

Woodward (62.2cm) (Table 23).  Therefore, based on the present results we interpret that 

under both high yielding and low yielding environmental conditions selection for tiller 

density would be a potential option to increase biomass. However, further research on 
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tiller morphology across a wide geographic region might be required to prove this 

interpretation.  

Plant height 

Plant height was significantly different for main effects and interactions effects. 

Most of these significant differences were due to lowland and upland height variations, 

establishment and post establishment and location x year (Table 23). However, there was 

no significant difference among the genotypes within each population, which allowed for 

general comparison among the populations. During the establishment year, height was 

significantly different among the populations (Table 22). Across the locations and 

populations, the NL populations were taller, but were not significantly different from the 

check cultivar Alamo. Plant height was significantly correlated with biomass across the 

locations. Highest correlations coefficients were reported at Stillwater (r=0.75), followed 

by Chickasha (r=0.73), Woodward (r=0.68) and Lane (r=0.59) (Table 17). Highest 

correlations during post establishment were reported for Stillwater (r=0.56), Chickasha 

(r=0.54), Lane (r=0.49) and least at Woodward (r=0.34). Correlations among the 

biomass, tiller density, and plant height were mostly significant with high positive 

correlations, whereas weak correlations during post establishment are more likely 

attributable to environmental conditions (exceptional drought in Oklahoma).  

Stability analysis 

Regression slopes between environmental index (location mean biomass- grand 

mean biomass) were greater for lowland compared to upland populations. This implies 

that higher biomass production potential of lowland populations across the environments 
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compared to upland populations. During establishment and post establishment years, 

lowland population slopes were significantly higher than upland populations (Table 24). 

Similar results were also reported in multi-location and multi-year study by Sanderson et 

al. (1999). Highest slope was recorded for Alamo during the establishment year. During 

post establishment year, high stability was reported for SL 93 C2-4, NL 94 C2-3, SL 93 

C2-2, and NSL 2009-2, which were higher than Alamo. Among the high stability 

populations, NL 94 C2-3 and NSL 2009-2 were high yielding genotypes. Selecting 

genotypes that can produce high biomass with greater stability across the targeted regions 

is an important consideration in developing cultivars. 

In conclusion, genotypic variations and genotype by environment interactions 

were evident for dry biomass. Tiller density variations were not significantly different 

between the populations under different environment conditions. High biomass and 

stability were reported for NSL 2009-2 and NL 94 C2-3 populations. Correlations 

analysis showed that biomass under low yielding environments was explained by tiller 

density due to limited stem elongations caused by high temperatures in these 

environments (Kandel and Kakani 2010). Whereas under high yielding environmental 

conditions plant height and tiller density were major potential traits for selection to 

enhance biomass. However, multiyear evaluations would be needed to assess the stability 

of different genotypes for the biomass potential.
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Table 12. Experiment sites description on soil series and weather parameters including mean annual rainfall (cm), temperature 
(°C) (minimum, maximum and average) and solar radiation of past 15 years data from Oklahoma Climatological Survey, OK. 

 

 

 Location  Coordinates  Transplan
ting date 
(2010) 

Soil series Mean daily  
temperature(°C) 

 

Mean 
rainfall 
(cm/year) 

Daily 
Avg 
solar 
radiation 
(MJ/m2) 

Max Min Avg 

Stillwater 36°07’N 
97°05’W 

25th June  Port silt loam 22 
 

9 16 93 16.1 

Lane 34°17’ N 
95°59’ W 

26th July  Bernow 
fine-loam 

23 
 

11 17 110 16.1 

Chickasha 35°1’ N 
97°54’ W 

10th July  Mc clain silt 
loam 

23 
 

9 
 

16 81 16.7 

Woodward 36°25’ N 
99°24’ W 

12th July  Woodward 
loam 

22 
 

8 15 64 17.4 
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Table 13. The ANOVA across the two years and four locations of 21 switchgrass 
populations for dry biomass and plant height. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

***, ** and NS are significant at the probability levels of 0.001, 0.01 and  
non significant at p=0.05  
 
  

Source of variation df Mean squares 
 
Biomass Plant height 
  

Location (L) 3 2710.80***  64962.26***  
Reps/Location (R/L) 12 46.12***  308.64***  
Genotype (G) 20 85.67***  4918.06***  
L x G 60 11.29***  340.79***  
Error A 232 4.90NS 87.50* 
Year (Y) 1 9574.95***  390638.61***  
Y x L 3 1564.81***  39999.19***  
Y x G 20 17.0***  174.68**  
Error B 12 25.64***  277.38***  
G x Y x L 60 7.32***  132.85**  
Error C 216 4.6**  67.4***  
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Table 14. Mean dry biomass of 21 switchgrass populations at four locations and grand 
mean across the four locations in 2010. Dry biomass mean and least significant difference 
at 5% levels for each location and across the locations.  
 

*** Significant at the 0.001 probability level 
 

  

Dry biomass (Mg ha-1) 
Genotype Chickasha Lane Stillwater Woodward Grand 

mean 
NSL 2009-1 4.88 1.21 5.50 3.68 3.82 
NSL 2009-2 4.24 1.65 5.39 3.85 3.78 
NSL 2009-3 4.65 1.64 7.18 4.11 4.40 
NSL 2009-4 5.12 1.26 6.54 4.10 4.26 
SL 93 C2-1 4.31 1.31 6.30 3.90 3.96 
SL 93 C2-2 4.50 1.02 6.68 3.97 4.04 
SL 93 C2-3 4.63 1.17 5.55 4.47 3.96 
SL 93 C2-4 4.65 1.48 6.46 4.84 4.36 
NL 94 C2-1 4.33 1.59 7.54 4.23 4.42 
NL 94 C2-2 4.38 1.38 6.47 3.59 3.96 
NL 94 C2-3 4.13 1.32 6.82 5.53 4.45 
NL 94 C2-4 4.71 1.70 7.91 3.72 4.51 
SNU 98 LMBP C1-1 2.28 0.60 2.02 2.98 1.97 
SNU 98 LMBP C1-2 2.22 0.26 1.63 1.66 1.44 
SNU 98 EMBP C1-1 1.93 0.54 2.10 1.97 1.64 
SWG 2007-1 3.64 1.34 4.97 4.63 3.65 
SWG 2007-2 4.30 1.24 5.67 3.03 3.56 
SWG 2007-3 2.16 0.28 2.61 2.06 1.78 
SWG 2007-4 2.96 0.34 2.83 2.15 2.07 
ALAMO 5.27 1.70 8.58 4.20 4.94 
CAVE-IN-ROCK 1.68 0.40 2.76 2.18 1.76 
      
Location Mean  3.86***  1.12***  5.31***  3.56***  3.46***  
LSD  (P<0.05) 2.78 0.66 2.46 1.52 0.94 
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Table 15. Mean dry biomass of 21 switchgrass populations at four locations and grand 
mean across the four locations in 2011. Dry biomass mean and least significant difference 
at 5% levels for each location and across the locations.  

*** Significant at the 0.001 probability level 
 
  

 Dry biomass yield  (Mg ha-1) in 2011 
Genotype Chickasha Lane Stillwater Woodward Grand 

mean 
NSL 2009-1 14.2 11.2 27.8 7.6 15.2 
NSL 2009-2 12.4 11.9 28.8 6.2 14.8 
NSL 2009-3 11.5 9.6 21.7 4.7 11.8 
NSL 2009-4 11.0 12.7 20.5 5.1 12.3 
SL 93 C2-1 11.7 11.7 23.7 4.5 12.9 
SL 93 C2-2 9.8 8.3 26.8 4.1 12.2 
SL 93 C2-3 7.8 10.1 21.7 4.6 11.0 
SL 93 C2-4 11.2 9.2 29.8 3.8 13.5 
NL 94 C2-1 9.8 10.8 23.0 6.4 12.5 
NL 94 C2-2 9.6 12.2 22.4 6.2 12.6 
NL 94 C2-3 11.7 10.3 29.2 6.5 14.4 
NL 94 C2-4 9.9 10.5 21.9 5.8 12.0 
SNU 98 LMBP C1-1 7.6 6.7 14.2 3.4 8.0 
SNU 98 LMBP C1-2 6.2 4.4 16.9 3.6 7.8 
SNU 98 EMBP C1-1 7.5 7.0 15.9 3.2 8.4 
SWG 2007-1 10.5 7.9 21.9 5.4 11.4 
SWG 2007-2 10.8 10.0 20.8 5.8 11.9 
SWG 2007-3 8.4 6.6 18.6 3.3 9.2 
SWG 2007-4 7.2 6.4 17.0 3.4 8.5 
ALAMO 11.3 10.8 26.5 5.0 13.4 
CAVE-IN-ROCK 5.9 5.2 12.8 4.0 6.9 

 
Location mean  9.8***  9.2***  22.0***  4.9***  11.5***  
LSD  (P<0.05) 2.73 5.19 8.50 2.49 2.42 
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Table 16. The ANOVA across the two years and four locations of 21 switchgrass 
populations for dry biomass and plant height. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

***, ** and NS are significant at the probability levels of 0.001, 0.01 and non significant 
at p=0.05  
 

 

  

Source of variation df Mean square 

Location (L) 3 3487.0***  

Reps/Location (R/L) 8 96.5***  

Genotype (G) 20 95.3***  

L x G 60 31.5NS 

Error A 160 37.2**  

Year (Y) 1 11856.9***  

Y x L 3 355.9***  

Y x G 20 50.9***  

Error B 12 41.5NS 

G x Y x L 60 21.5NS 

Error C 154 24.1***  
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Table 17. Correlation coefficients between biomass and tiller density and plant height 
across the genotypes for four locations in 2010 and 2011 

 ***, ** and NS are significant at the probability levels of 0.001, 0.01 and non significant 
at p=0.05  
 

  

 Tiller density Plant height 
Location  2010 2011 2010 2011 
     
Chickasha  0.63***  NS 0.73***  0.54***  
Lane 0.81***  NS 0.59***  0.49***  
Stillwater 0.42***  0.27* 0.75***  0.56***  
Woodward 0.43***  NS 0.68***  NS 
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Table 18. Tiller density among six breeding population groups and two check cultivars 
(Alamo and Cave-In-Rock) in 2010. Location and grand mean across the locations and 
least significant difference at 5%. 

 

**, NS significant at the probability levels of 0.01 and non significant at p=0.05  
  

Population group Chickasha Lane Stillwater Woodward Grand 
mean  

ALAMO 21.9 11.6 28.8 21.1 20.9 

CIR 14.9 5.9 20.9 18.9 15.2 

Northern Lowland 18.9 11.9 24.2 21.9 19.2 

Northern Southern Lowland 19.7 11.4 22.7 19.9 18.4 

Southern Lowland 19.8 12.9 25.4 22.1 20.1 

Southern Northern Upland 17.7 6.9 22.9 21.8 17.3 

SWG- Lowland 19.5 13.8 23.8 24.2 20.3 

SWG-Upland 16.5 4.9 23.7 21.4 16.6 

       

Mean  18.6NS 9.9**  24.0NS 21.4NS 18.4**  

LSD  4.1 3.7 6.1 5.2 2.3 



68 

 

Table 19. Tiller density among six breeding population groups and two check cultivars 
(Alamo and Cave-In-Rock) in 2011. Location and grand mean across the locations and 
least significant difference at 5%. 

**, *, and NS are significant at the probability levels of 0.01,0.05 and non significant at 
p=0.05  
 

 

Populations group Chickasha Lane Stillwater Woodward 
Grand 
mean 

ALAMO 33.6 25.0 36.0 28.0 30.6 

Cave-In-Rock 24.7 18.7 29.7 27.0 25.0 

Northern Lowland 27.6 20.9 29.2 25.5 25.8 

Northern Southern Lowland 29.5 20.6 33.8 25.6 27.3 

Southern Lowland 32.4 25.6 37.3 25.2 30.1 

Southern Northern Upland 30.6 21.8 34.8 31.8 29.7 

SWG- Lowland 32.3 25.0 39.8 28.5 31.4 

SWG-Upland 28.5 23.3 43.5 24.8 30.0 

     
 

Mean 29.9NS 22.6NS 35.5* 27.0NS 28.7**  

LSD 6.6 8.5 8.7 8.3 3.84 



69 

 

Table 20. Pearson’s correlation coefficients between biomass and tiller density of 
different switchgrass population groups at four locations in 2010.  

***,** ,* and NS are significant at the probability levels of 0.001, 0.01, 0.05 and non 
significant at p=0.05  
 

  

Population Chickasha Lane Stillwater Woodward 

Lowlands 0.58***  0.70**  0.36* 0.77**  

Uplands 0.58* 0.95**  0.61* 0.76**  

Northern Southern 
Lowland(NSL) 

0.68* 0.85***  0.56* 0.64* 

Southern Lowland (SL) 0.64* 0.81***  NS 0.66* 

Northern Lowland(NL) 0.78**  0.83***  NS 0.80***  

Southern Northern 
Upland(SNU) 

0.75* 0.97***  NS 0.81* 

SWG lowland type(SWGL) NS NS NS 0.90* 

SWG upland type (SWGU) NS NS NS NS 

Alamo NS NS NS NS 

Cave-In-Rock NS NS NS 0.99* 
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Table 21. Pearson correlation coefficients between biomass and tiller density of different 
switchgrass population groups at four locations in 2011.  

***, **,* and NS are significant at the probability levels of 0.001, 0.01, 0.05 and non 
significant at p=0.05  
 

 

 

  

Population 
 

Chickasha Lane Stillwater Woodward 

Lowlands NS NS 0.42**  0.42**  

Uplands 0.58* NS 0.57* NS 

Northern Southern Lowland(NSL) NS NS 0.78**  0.81**  

Southern Lowland (SL) NS NS 0.64* NS 

Northern Lowland(NL) NS NS NS NS 

Southern Northern Upland(SNU) NS NS NS NS 

SWG lowland type(SWGL) NS NS NS NS 

SWG upland type (SWGU) NS NS NS NS 

Alamo NS NS NS NS 

Cave-In-Rock NS NS NS NS 
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Table 22. Plant height among six breeding population groups and two check cultivars 
(Alamo and Cave-In-Rock) in 2010. Location and grand mean across the locations and 
least significant difference at 5%. 

*** Significant at 0.001 probability level  
 

 

  

Populations Chickasha Lane Stillwater Woodward Grand  
mean 

Alamo 85.3 45.0 79.7 57.3 66.8 
Cave-In-Rock 48.7 36.0 49.7 37.5 43.0 
Northern Lowland(NL) 85.8 49.4 85.2 59.2 69.9 
Northern Southern 
Lowland(NSL) 

82.2 43.4 85.6 57.3 67.1 

Southern Lowland (SL) 81.2 43.7 80.6 58.1 65.9 
Southern Northern 
Upland(SNU) 

52.7 30.5 42.6 40.6 41.6 

SWG lowland type(SWGL) 79.8 40.2 64.8 56.1 60.2 
SWG upland type (SWGU) 56.1 29.5 40.5 44.2 42.6 
      
Mean  71.5***  39.7***  66.1***  51.3***  57.1***  
LSD (5%) 5.6 8.0 9.4 5.6 8.2 
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Table 23. Plant height among six breeding population groups and two check cultivars 
(Alamo and Cave-In-Rock) in 2011. Location and grand mean across the locations and 
least significant difference at 5%. 

 *** Significant at 0.001 probability level 

  

Populations Chickasha Lane Stillwater Woodward Grand 
 mean 

Alamo 123.3 132.0 146.7 64.7 116.7 
Cave-In-Rock 70.3 101.3 107.3 46.3 81.3 
Northern Lowland(NL) 118.0 129.3 156.7 75.4 119.8 
Northern Southern Lowland(NSL) 119.0 128.9 164.8 74.5 121.8 
Southern Lowland (SL) 109.7 121.4 163.6 68.3 115.7 
Southern Northern Upland(SNU) 84.6 93.6 114.6 48.8 85.4 
SWG lowland type(SWGL) 113.7 112.2 145.0 72.3 110.8 
SWG upland type (SWGU) 95.0 94.8 125.0 47.3 90.5 
      
Mean  104.2***  114.2***  140.5***  62.2***  105.3***  
LSD (5%) 16.6 14.4 15.8 14.7 16.5 
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Table 24.  Regression equation slopes of stability analysis of 21 switchgrass populations 
across the four locations during 2010 and 2011 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

***, **,* and NS are significant at the probability levels of 0.001, 0.01, 0.05 and non 
significant at p=0.05  
 

 

 

 

 

 

 Slope of  regression equation 

Genotype  Year 2010 Year 2011 
NSL 2009-1 1.06* 1.19**  
NSL 2009-2 0.90**  1.32***  
NSL 2009-3 1.29* 0.97**  
NSL 2009-4 1.27**  0.83* 
SL 93 C2-1 1.17**  1.07* 
SL 93 C2-2 1.33**  1.36**  
SL 93 C2-3 1.08* 1.00* 
SL 93 C2-4 1.19**  1.54**  
NL 94 C2-1 1.36* 0.98**  
NL 94 C2-2 1.19* 0.93* 
NL 94 C2-3 1.29* 1.37**  
NL 94 C2-4 1.41* 0.94**  
SNU 98 LMBP C1-1 0.39 NS 0.62**  
SNU 98 LMBP C1-2 0.38 NS 0.83* 
SNU 98 EMBP C1-1 0.40  NS 0.73**  
SWG 2007-1 0.87 NS 0.98**  
SWG 2007-2 1.05* 0.86**  
SWG 2007-3 0.57* 0.89**  
SWG 2007-4 0.64NS 0.80***  
Alamo 1.58* 1.25***  
Cave-In-Rock 0.55* 0.53**  
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Fig.7 Rainfall distribution from March to September in Lane and Stillwater 
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Fig.8 Rainfall distribution from March to September in Chickasha and Woodward 
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CHAPTER IV 

 

 

CONCLUSION 

The objective of this research project was to investigate genetic variations among 

advanced breeding populations developed by the Switchgrass Breeding and Genetic 

Program at Oklahoma State University. Simultaneous experiments of controlled and 

multiple environmental conditions were conducted to assess the genetic variations and 

genotype by environment (G x E) interactions of new breeding populations. Greenhouse 

facility at Oklahoma State University was used to study morpho-physiological variations 

and mutli-location trial study was to assess the genotype x environment (G x E) 

interaction and stability of dry biomass. 

Greenhouse and field experiments at Stillwater showed morphological and 

physiological variations among the populations. Under greenhouse conditions, Northern 

lowland (NL) and Northern Southern Lowland (NSL) populations were superior for most 

of the morphological traits. The SL genotype, SL 93 C2-2 had the highest photosynthesis. 

Genotype NL 94 C2-4 produced higher biomass than check cultivars. The eigenvectors 

from Principle Component Analysis (PCA) on different morphological traits among 22 

switchgrass populations weighted most for biomass, plant height and days to panicle to 

describe the superior performance of most NSL and NL populations. The eigenvalues 

from two principle components (PRIN1 and PRIN2) were able to separate lowland and.  
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upland populations clearly. Highest eigenvalue from PRIN1 was reported for genotype 

NL 94 C2-3. The PCA separation between lowland and upland populations for ten 

physiological traits were not clear under greenhouse conditions. However, eigenvectors 

from first two principle components (PRIN1 and PRIN2) reported high values for 

photosynthesis and pigment concentrations. Genotype SL 93 C2-2 had highest 

eigenvalues from PRIN1 and PRIN2 for physiological traits.  Under field conditions at 

post establishment year, the NSL and NL populations were superior for most of the 

morphological traits. The PCA analysis of ten measured traits among the 21 switchgrass 

populations was able to separate lowland and upland populations. High eigenvectors were 

reported for tiller height, phytomer number and leaf number. Genotype NL 94 C2-3 had 

the highest eigenvalue from PRIN1. The SL populations had higher photosynthesis under 

field conditions from May to August. Both under greenhouse and field conditions, PCA 

analysis was evident for high biomass and superior morphological traits of genotype NL 

93 C2-3. 

Multilocation trial study showed genotypic variations and genotype by 

environment interactions for dry biomass. Tiller density variations were not significantly 

different between the populations. Across the locations Alamo biomass was greater 

during the establishment year. Post establishment year, higher biomass yields were 

reported for NSL and NL populations. Two NSL genotypes, NSL 2009-1 and NSL 2009-

2 populations produced significantly higher biomass than check cultivar Alamo. High 

biomass and stability were also reported for NSL 2009-2 and NL 94 C2-3 populations. 

Results from correlations showed biomass under low yielding environments was 

explained by tiller density due to limited stem elongations by severe environmental 
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interactions. Whereas under high yielding environmental conditions, plant height and 

tiller density were the major traits for selection to enhance biomass. However, multiyear 

evaluations would be needed to assess the stability of different genotypes for the biomass 

potential. 
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