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FORMAT OF THESIS 

 This thesis is presented in a combination of formats required for publishing 

in Soil Biology and Biochemistry or Applied Soil Ecology, and formats outlined by 

the Oklahoma State University graduate college style manual.  This allows the 

independent chapters to be suitable for submission to scientific journals.  Each 

main chapter is complete with an abstract, an introduction, materials and 

methods, results, discussion, and a reference section. 
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CHAPTER I 

 
 

INTRODUCTION 

 

Conservation of soil productivity and quality is crucial for continuing 

sufficient food production to meet the needs of increasing population and for 

maintaining environmental quality and sustainability for future generations 

(Schloter et al., 2006). It is long been recognized that cultivation and soil 

management practices could impact soil quality and productivity. History has 

taught us unforgettable lessons. In the Great Plains, cultivation for about 70 

years followed by severe drought conditions led to the “Dust Bowl” era in 1930s.  

Consequently, several soil and ecosystem conservation programs, such as 

Conservation Reserve Program (CRP), were established to reduce soil erosion 

and conserve ecosystem health and function.  For land enrolled in CRP, the 

producers receive an annual rental payment for the term of a multi-year contract 

to establish vegetative cover in the effort of conserving and restoring ecosystem 

health and function. As a result, much of the Great Plains was converted back to 

rangeland. One half of the 42 million acres available land in Oklahoma is 

currently rangeland. Ten million acres of these rangelands were once cropland, 

with only 1.02 million acres of these rangelands enrolled in CRP.  
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Although half of the once cultivated cropland is now abandoned from cultivation 

(these are also termed restored rangeland), much of this land is still not enrolled 

in any conservation programs.  

Although extensive research has been conducted to evaluate effect of 

management practices on soil ecosystem health and function, it is still not clear 

what the best practices are in continuing agricultural production while maintaining 

ecosystem function. Moreover, most research conducted has focused on the 

above-ground plant community with little known about the below-ground soil 

system. Understanding effects of different management practices on the below-

ground soil properties and function may assist the development of management 

strategies that maintain soil quality and conserve soil productivity for the future 

generations.   

Research data suggested that different management practices affect soil 

quality and functions differently. Management practice such as grazing, cropping 

systems, tillage, and fertilization can affect microbiological activity, biochemical 

properties, and nutrient cycling of soils (Dodor and Tabatabai, 2003; Green et al., 

2007; Klose et al., 1999, Mestelan., 2008). Minimum tillage not only reduced soil 

erosion and water evaporation and promoted storage of water and nutrient, but 

also increased the activities of enzymes involved in phosphorous (P) and sulfur 

(S) cycling in soils (Deng and Tabatabai, 1997).  

Grazing disturbs surface soils, affects biological soil crust, and impacts 

nutrient cycling. Su and coworkers (2005) showed that continuous grazing 

decreased ground cover which increased soil erosion leading to loss of soil 
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organic nitrogen (N) and carbon (C) when compared with exclusion of grazing. 

Grazing has been shown to increase the loss of soil nutrients to wind and water 

erosion.  Historical grazing through the 20th century led to a reduction of organic 

matter content (SOM) and 60-70% decline of surface C and N contents when 

compared with sites that were never grazed (Neff et al., 2005). On the other hand 

long-term exclusion from grazing (more than 50 years) resulted in significant 

reductions in microbial biomass and activity in the surface soil (Bardgett et al., 

1997). These findings imply that grazing could have a long lasting effect on the 

soil fertility and quality.  Based on evaluation of soil microbial activity, high 

intensity and short duration grazing had less effect than continuous grazing 

(Southorn, 2002).  

Similarly, many studies have demonstrated that long-term repeated 

cultivation reduced soil structural stability and decreased SOM (McArthur et al., 

2001, Caldwell et al., 1999; Warlrop et al., 2000). Cultivation led to reduction of 

extractable P, total C, organic C, total N, and microbial biomass C (Malo et al., 

2005; Parton et al., 2005; Acosta- Martinez et al., 2004; Saviozzi et al., 2001; 

Holt and Mayer, 1998).  Extended cultivation led to progressive soil degradation 

and decreased soil fertility and nutrients availability (Jaiyeoba, 2003). 

In general, microorganisms respond more rapidly than chemical and 

physical parameters to changes in land use (Burns et al., 2006). Enzymes are 

the driving force in nutrient cycling and have been suggested as indicators in 

detecting changes of the soil ecosystem (Naseby and Lynch, 2002). Amidase, 

arysulfatase, deaminase, invertase, cellulase, and urease activities were lower in 
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cultivated fields compared to grassland fields (Bandick and Dick, 1999). 

Arylsulfatase activity was lower in cotton fields than in uncultivated native 

grassland (Acosta-Martinez et al., 2003).  

Nutrient cycling is a key ecosystem function and essential for the 

conversion of nutrients to plant available forms. Cultivation and grazing affect C, 

N, P, and S cycling in soils differently (Green et al., 2007; Dodor and Tabatabai, 

2003; Doran and Parkin, 1994).  

Of the top four macronutrients required by plants, much of research effort 

have been devoted to examine the cycling of C, N, and P while relatively little 

attention has been paid to S (Barbosa et al., 1998). Sulfur deficiency in soils has 

been detected in different parts of the world. Availability of organic and inorganic 

soil S to plants and microbes can both be controlled through enzyme activities. 

Arylsulfatase and rhodanase are two commonly detected S-transforming 

enzymes in soil. Arylsulfatase catalyzes the mineralization of organic sulfur, 

which leads to the release of plant available inorganic S. Rhodanase is an 

enzyme that catalyzes the oxidation of inorganic S to SO4
2 -. These two enzymes 

play crucial roles in S cycling in soil.  

Therefore, the objectives of this study were to assess the impact of 

different management systems on microbial properties related to nutrient cycling 

in prairie soils. The specific objectives were (1) to evaluate impacts of grazing 

and cultivation on sulfur transformation and enzyme activities involved in sulfur 

cycling; and (2) to reveal drivers from the interrelationship between soil C, N, P 

and S in different ecosystems using multivariate analysis. 
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Sulfur transformation and activity of enzymes involved in S cycling under 

different management practices is discussed in chapter III. The regulation and 

relationship between C, N, P, and S cycling under different management 

practices is presented in chapter IV. 
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CHAPTER II 
 
 

REVIEW OF LITERATURE 

 

Soil Health and quality 

 

Soil health refers to the biological, chemical, and physical features of soil 

that are essential to long-term, sustainable agricultural productivity with minimal 

environmental impact. Thus, soil health provides an overall picture of soil 

functionality. Although it cannot be measured directly, soil health can be inferred 

by measuring specific soil properties (e.g. organic matter content) and by 

observing soil status (e.g. fertility) (Enriqueta Arias et al., 2005).  

Soil quality influences agricultural sustainability, environmental quality and 

consequently plant, animal and human health. Historically, chemical and physical 

properties have been used as a crude measure of soil productivity. The 

evaluation of soil quality is quite complex and requires the consideration of 

physical, chemical and biological variables (Monokrousos et al., 2006). 

Soil organic matter (SOM) was used as an indicator of soil health and 

quality. Measurements of certain characteristics of the active fraction of SOM and 

soil metabolic activities have been used to indicate changes in soil quality (Ajwa 

et al., 1998). However, SOM change very slow and therefore many years may be 

required to measure changes resulting from perturbations (Dick, 1994).  

  Soil microbiological and soil biochemical parameters for example pH, 

inorganic and organic P, N, C, S pools, microbial biomass, and enzyme activities; 
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now are used as indicators of soil quality. Soil microbial characteristics are 

attractive as potential soil quality indicators. They are considered as sensors and 

integrators for variety of stresses in soil as they respond to changes in land use, 

environmental conditions, and contaminations more rapidly than chemical and 

physical parameters (Doran and Parkin, 1994).  

Soil microbial activities lead to the liberation of nutrients available for 

plants, and are of crucial importance in biogeochemical cycling. Microorganisms 

can degrade pollutants and have an important role in stabilizing soil structure and 

conserving organic matter for sustainable agriculture and environmental quality 

(Dilly, 2005).  

Soil chemical, physical, and biological characteristics changed under 

different types of management, and this can affect the availability of nutrients 

from inorganic fertilizers (Navida et al., 2007).  Dick specified that enzyme 

activities are good early indicators of changes in soil properties because of their 

relationship to soil microflora, and their rapid response to changes in soil 

management (Dick, 1994).   In the last two decades, much has been published 

indicating the significance of soil microbial properties for agriculture ecosystem 

function and overall soil fertility in different intensive agriculture management 

systems.  Soil microbial biomass was decreased by intensive grazing in semiarid 

grassland soils (Holt and Mayer, 1998), while long term exclusion of grazing from 

grassland resulted in significant reduction in microbial biomass and activity in the 

surface soil (Bardgett et al. 1997). 
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Another study investigated the interrelationships between cropping, microbial 

biomass S, and S uptake by plant showed increases in the biomass S in the soil 

amended with cattle manure compost (CMC), while the addition of saw dust 

compost or rice husk compost resulted in sever sulfur deficiency in soil. This 

limitated plant growth due to a net loss of plant available S through microbial 

immobilization and transformation reactions (Chowdhury et al., 2000). 

 

SOIL ENZYMES 

 

A living system controls its activity through enzymes. Enzymes are 

proteins that serve as catalysts for biological reactions; the basic function of 

enzymes is to increase the rate of a reaction by combining with their specific 

substrate. Most cellular reactions occur about a million times faster than they 

would in the absence of an enzyme. Much of the information about enzymes has 

been made possible because they can be isolated from cells and made to work 

in a test tube environment. Since enzymes are extremely selective for their 

substrates and speed up only a few reactions from among many possibilities, the 

set of enzymes made in a cell determines which metabolic pathways occur in 

that cell (Tabatabai and Singh1979).  

One of the most difficult problems facing soil biologist and biochemists is 

the separation of the extracellular enzymatic activities (were enzymes are found 

and remain in an active state outside the living organism) from intercellular 

enzymes (those associated with the living organisms) (Tabatabai, 1994).  
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In addition, enzymes can be classified based on their ecological function 

into six functional classes by the international Union of biochemists (I.U.B); 

oxidases or dehydrogenases (enzymes that catalyze oxidation-reduction 

reactions), transferases (enzymes that catalyze transfer of molecular substituents 

among molecules), hydrolysis, lyases, isomerases, and ligases.(Webb, 1992) 

Soil enzymes (intracellular and extracellular) are important mediators and 

catalysts for biochemical processes such as mineralization and nutrient cycling 

(C, N, and S). Enzymes play key roles in the biochemical functioning of soils, 

including organic matter formation and degradation, and decomposition of 

xenobiotics. Knowledge of enzyme activities can be used to describe changes in 

soil quality due to land use management (Acosta- Martines et al., 2007), and 

have been suggested as indicators in detecting changes of the soil ecosystem 

(Naseby and Lynch., 2002). Enzyme activities in the soil can be affected by 

different management. Deng and Tabatabai studied enzyme activity affected by 

trace element, including β-glucosidase, urase, phosphatase, arylsulfatase and 

nitrate reductase. The trace elements were added to soils as fertilizers. The 

result showed that most of the trace elements studied inhibited cellulase activity. 

Among the trace elements (Ag) was the most effective inhibitor of cellulase 

activity (Deng and Tabatabai, 1995). A study to investigate the activity of different 

enzymes involve in C, N, P, and S cycling as affected by soil order and land use 

within a watershed in north central Puerto Rico, showed significant effects of soil 

order and land use on the soil enzyme activities  in the tropical watershed 

studies. (Acosta- Martines et al., 2007). Different studies assessed the impact of 
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tillage on soil enzymes activities. Deng and Tabatabai (1996) studied effect of 

three tillage system and four residue placements on the activities of four 

amidohydrolases (amidase, L-asparaginase, L-glutaminase,and urease), 

phosphotases (acid phosphatase, alkaline phosphatase, phosphodiesterase, and 

inorganic pyrophosphatase) and arylsulfatase in soils. The results showed that 

the effect of mulching on enzyme activity was more significant than the effect of 

tillage management with normal placement of plant residue. The activities of 

phosphatase and arylsulfatase decreased markedly with increasing depth of 

tillage. The highest arylsulfatast activity was found in no-till/double mulch, these 

results suggest that minimum tillage not only reduces soil erosion and water 

evaporation, and promotes storage of water and nutrient, but also increased the 

activities of phosphatase and arylsulfatase, thereby increasing the P and S 

cycling in soils (Deng and Tabatabai, 1997). While another study to assess the 

impact of tillage on soil enzymes activities showed that no till system increases 

up to 46% for acid phosphatase 68% for amylase, 90% for cellulose, 219% for 

arylsulfatase. These result showed that soil enzyme activity is a sensitive 

indicator of soil quality by management (Balota et al., 2003). A study to assess 

the effect of cultivation on the activity and kinetic of arylsulfatase reported that 

cultivation of the native grassland and forest soils decreased natural enzymatic 

activity. Clearly the decease in arylsulfatase activity reflects the reduction in 

organic matter content and microbial biomass and activity with the soil 

associated with land management (Farrell et al., 1994). The activity of α-and ß-

glucosidase, α- and ß-galactosidase, amidase, arylsulfatase, deminase, 



 14 

invertase, cellulose and urease were generally higher in continuous grass fields 

than in cultivated fields (Bandick and Dick, 1999). 

Long term cultivation can provide important information about the effect of 

soil management practices on soil enzyme activities. Cultivation for 1500 years in 

Colca Vally of Peru has maintained similar or higher organic matter, nitrogen, 

phosphorous and enzyme activities than the uncultivated /native soils. These 

results suggested that cultivation of soil for 1500 years did not deplete soil fertility 

or soil biological activity (Dick et al., 1994). Long term grazing could have a long 

lasting effect on the soil fertility and quality, as it reduces the organic matter 

content compared to sites that never grazed (Neff et al., 2005). These findings 

imply that grazing based on evaluation of soil microbial activity, high intensity and 

short duration grazing had less effect than continuous grazing (Southorn, 2002). 

 

Sulfur cycling 

 

Sulfur is an essential element needed for plant growth and all biological 

systems. Together with nitrogen it is necessary for the synthesis of amino acids, 

proteins and various other components. Under normal conditions sulfate is taken 

up by the roots and transported to the shoot where it has to be reduced before it 

can be incorporated into various essential organic sulfur compounds. Reduced 

inorganic S compounds that are found or produced in the biosphere include 

sulfides (S²-) elemental S (Sº), thiosulfate (S2O3²
-) and sulfite. Biotic and a biotic 

oxidation of these compounds are important in S cycling (Deng and Dick, 1990). 
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Chemical and spectroscopic studies have shown that in agriculture soils most of 

the soil S is present as sulfate eaters or as carbon-bonded sulfur (amino acid 

sulfur), rather than inorganic sulfate (Kertesz and Mirleau, 2004). Many studies 

showed that most (95%) of the total soil S in intensively managed grazed 

grassland  present as organic S and the reminder is in readily soluble and 

adsorbed S. Soil organic S that has been accumulated with time in grazed 

grassland receiving regular S fertilizers application can provide a significant 

amount of S for plant S nutrition. The storage of sulfur in the various 

compartment of earth and its biosphere, and the transfer’s processes occurring 

among them, is referred to as the sulfur cycle.   

Grazing animals have a major effect on the amount and rate of S cycling 

as most (87-90 %) of S ingested by grazing animals is returned to soils as 

excrete (Nguyen and Goh, 1994). The amount of inorganic sulfate (SO4
2- ) and 

organic S held within soil microorganisms at any time is referred to as soil 

microbial biomass S. This normally accounts for only .04-2.6% of total soil S in 

intensively managed grassland and is influenced by the seasonal variation, 

temperature, and soil moisture (Saggar et al., 1981).  

The increase in S deficiency in soils of several parts of the world has led 

to the use of fertilizer S to enhance production and quality of crops. Previous 

studies showed large differences in S availability among applied organic 

residues. For example, cruciferous crop like rape provides a large and rapid 

release of available S, but cereal residues release only minimal amounts of 

available S (Chowdhury et al., 2000). In the past few decades, continuous use of 
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the primary fertilizer nutrient, NPK has resulted in depletion of secondary and 

micro nutrients. In many instances fertilizers have boosted crop yield to a point 

where S is now the limiting factor to future crop production (Jaggi et al., 1999). 

Therefore, S mineralization rates and potentials are essential parameters in 

predicting plant nutritional needs and the amount of S fertilizer needed for 

optimum crop yields.  

Knowledge of the S mineralization rates also important for modeling the 

cycling of this element in the environment (Pierla and Tabatabai, 1988). Gypsum 

and elemental S are both effective and efficient sources of S. Gypsum resulted in 

a greater yield than did the elemental S for winter wheat in Oklahoma (Girma et 

al., 2005).Gypsum contains 12-16% of plant available S so it is often not 

economical to use (Navida et al., 2007).  Plants are not able to directly use 

elemental sulfur. Instead, they rely on the ability of certain types of bacteria to 

convert elemental sulfur to another form. 

There are two categories of sulfur bacteria; sulfur oxidizer and sulfur 

reducer. Sulfur oxidizer bacteria can convert sulfide into sulfate, producing a dark 

slime that can clog plumbing. Sulfate may be oxidized to elemental sulfur 

aerobically by species of Thiothrix and Beggiatoa (morphologically conspicuous 

sulfur oxidizers), and anaerobically by the purple sulfur bacteria. In the soil the 

predominant microbes involved in the oxidation of sulfide to element sulfur 

belong to the genus Thiobacillus. Several genera of soil bacteria oxidize sulfides 

(H2S or metal sulfides), Sº, or S2O3²
-. Complete oxidation of these substrates 
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yields SO4²
-, the form of S that is most commonly used as a nutrient by plants 

and soil microbes. (Konopka et al.,1986). 

 S reducing bacteria are the more common such as Desulfovibrio and 

Desulfomicrobium (Michel et al., 2001). They live in an oxygen-deficient 

environment; break down S compounds, producing H2S gas in the process. 

Bacteria can participate in the reduction of S, in which S compounds are acting 

as electron receptors, or in the oxidation of S in which an electron is removed 

from S compounds. S Reducing Bacteria perform dissimilatory reduction of S 

compounds such as SO4²
-, SO3, S2O3²

- and S itself to sulfide. D.acetotoxidans, a 

true sulfur bacterium, is strictly anaerobic, gram negative, flagellated, and rod 

shaped. It acquires its energy from sulfur respiration and completely oxidizes 

acetate with sulfur to carbon dioxide via the citric acid cycle.  

Cycling of S in the soil environment is often governed by activities of 

microorganisms and S-transforming enzymes, including arylsulfatase and 

rhodanese which are two commonly detected S-transforming enzymes in soil. 

Arylsulfatase, also known as arylsulfate sulfohydrolase EC (3. 1. 6. 1) is the 

enzyme that catalyzes the hydrolysis of an arylsulfate anion by fission of the O-S 

bond.  It, therefore, participates in the soil processes where organic sulfur is 

mineralized and plant available inorganic S is released. The reaction involved is 

as follows: 

 

R.O.SO3
- + H2O→ R.OH + H++ SO4

2-   
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Arylsulfatase activities of soils have been assayed by quantifying the rates of 

hydrolysis of p-nitrophenyl sulfate to release p-nitrophenol and sulfate in buffered 

soil suspensions in the presences of toluene (Tabatabai and Bremner, 1970). 

Many studies have investigated the impact of different management practices 

such as tillage, crop rotations, or fertilization on the activity of this enzyme (Deng 

and Tabatabai, 1997; Farrell et al., 1994; Klose and Tabatabai, 1999).These 

Studies showed that cultivation of native North America grassland (Bradwell) and 

forest (Loon Lake; Waitville) soils decreased soil enzymatic activity including 

arylsulfatase activity (Farrell et al., 1994).  Tillage and residue management also 

have significant effect on arylsulfatase activity in soils (Deng and Tabatabai, 

1997).  Although increasing levels of applied S reduced soil arylsulfatase 

activities, the highest level of applied S in fact stimulated higher enzyme activities 

(Baligar et al., 2005). Rhodanese, EC (2. 8. 1. 1) Is another S-transforming 

enzyme that has been commonly detected in soil (Tabatabai and Singh, 1976) 

and its possible importance in the S cycle was demonstrated by numerous 

studies.  Rhodanese, also known as thiosulfate-cyanide sulfurtransferase, is the 

enzyme that catalyses the formation of thiocyanate (SCN-) from S2O3
2- and 

cyanide.  

 

S2O3
2- + CN- → SCN- + SO3

2- 

 

 Sulfite is an intermediate S compound produced during oxidation of So in 

soil (Nor and Tabatabai, 1999). Activity of rhodanse is correlated with organic C 
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in soil and is affected by inorganic salts and trace elements (Tabatabai and 

Singh, 1979). The relationship between Sº oxidation and rhodanese activity was 

not consistent among soils tested (Deng and Dick, 1990). Rhodanse activity was 

related to S-oxidation in aerobic soils, but not in a simulated oxidized surface 

layer in a flooded soil (Ramesh et al., 1985).  Singh and Tabatabai (1978) 

showed that storage at -20° or 5º did not affect rhodanese activity significantly, 

but air-drying of field moist soils resulted in a marked decrease of rhodanese 

activity.  They also found that preincubation of six soils for 24 h and 48 h with 

glucose resulted in an increase of average rhodanese activity by 9-23%.  When 

the buffer was made to contain 1 mM with respect to inorganic compounds 

tested, NaNO2, NaN3, NaCl, NaF, and Na2SO4 activated rhodanese activity in 

soils, while NaNO3, Na2SO3, Na2S, KH2PO4 and NaHCO3 inhibited its activity 

(Singh and Tabatabai, 1978).  

Given the fact that environmental conditions are constantly changes and 

ecosystem functions and soil processes are regulated by multiple variables with 

considerable temporal variation measuring S content and the activity of S-

transforming enzymes in this study will enhance our understanding to S cycling in 

prairie soil as affected by different management practices. Multivariate analysis 

of selected variables involved in the N, C, P, and S, cycling will provide 

information on the drivers of soil processes and functions in different 

management practices which may help developed management practices that 

can maintain soil sustainability. 
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CHAPTER III 
 

 

SULFUR AND ACTIVITIES OF ITS TRANSFORMING ENZYEMES IN PRAIRIE 

SOIL ECOSYSTEMS  

 

Abstract 

 

Understanding sulfur (S) dynamics in the soil environment is important in 

assessing ecosystem functions related to land use and management practices. 

The main objective was to evaluate the impacts of grazing and cultivation on 

sulfur pools and enzyme activities involved in sulfur cycling. Soils from five 

different management systems, including undisturbed, set-aside from cultivation 

(was cultivated but returned to grassland >30 yr ago), moderately grazed, heavily 

grazed, and cultivated with continuous winter wheat (Triticum aestivum L.) were 

evaluated. Total S, soluble S, and activities of arylsulfatase,  rhodanese were 

determined. Principle component analysis of the tested variables revealed that 

organic carbon, total nitrogen, microbial biomass carbon and nitrogen and 

arylsulfatase activity were drivers in the soil ecosystems. Of the two S 

transforming processes evaluated, mineralization of organic S contributed more 

to S cycling than S oxidation processes. Total and soluble S contents were 

affected significantly by cultivation and to certain degree by grazing.
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When compared to the undisturbed systems, total sulfur was significantly lower 

and the soluble S was significantly higher in the cultivated soils. Grazing promote 

or maintained S pools and the capacity of the soils to transform S to a degree 

similar to those in the undisturbed soils. Systems set aside from cultivation for 

more than 30 years allowed the soil to regain its capacity to cycle S and to evolve 

towards native system. However, activity of S transforming enzymes showed that 

30 years of conservation did not completely erase the impact of cultivation. 

 

 

1. Introduction 

 

Sulfur is a highly reactive element for which an elaborate biogeochemical 

cycle has evolved with intermediate exchanges between atmospheric, aquatic 

and terrestrial phases of the environment. As a major macronutrient essential in 

all biotic components for the formation of amino acids, enzymes, vitamins and 

other biomolecules, sulfur plays a vital role in functions of terrestrial ecosystems 

(Wang et al., 2006). It has been suggested that mineralization of soil organic S 

involves two distinct biological pathways: oxidative or hydrolytical processes, 

both lead to the ultimate release of sulfate (Kinghts et al., 2001). Two enzymes; 

arylsulfatase and rhodanese, play crucial roles in the two respective S 

mineralization processes. Arylsulfatase catalyzes the hydrolysis of an anion by 

fission of the O-S bond and release plant available inorganic S as (SO4
2-).  

Rhodanese catalyses the formation of thiocyanate (SCN-) from thiosulfate and 
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cyanide that eventually also lead to the release of SO4 (Tabatabai and Singh, 

1976). Conversion of organic S to inorganic S is important for plant and microbial 

growth in a given environment because about 95% of the total soil sulfur in 

intensively managed grazed grassland presents as organic S (Pierla and 

Tabatabai, 1988). 

Arylsulfatase activities are affected by different management practices 

such as tillage, crop rotations (Deng and Tabatabai, 1997; Klose et al., 1999), 

cultivation (Farrell et al., 1994), and grazing (Acosta-Martinez et al., 2003).  The 

levels of applied sulfur fertilizers (Baligar et al., 2005), and trace elements (Al-

Khafaji and Tabatabai, 1979) also affected arylsulfase activities in soil. Activities 

of both arylsulfatase and rhodanese were affected by continuous cropping 

systems (Szajdak, 1996), moisture content, and pre-incubation with glucose 

(Singh and Tabatabai, 1978).  

Converting native grassland to long-term cropping systems reduced 

organic S in the soil (Wang et al., 2006).The availability and the adsorption of 

inorganic S compounds are affected mainly by organic mineralization rate which 

affected by enzyme activities (Appiah and Ahenkorah, 1989) and the 

concentration of metal ions (Ajwa and Tabatabai, 1995). Limited studies 

conducted in the evaluation of S cycling were focused on crop production soil 

with one of these two processes.  

Thus, the objectives of this study were to evaluate the impacts of grazing 

and cultivation on S pools, and the activities of Arylsulfatase and Rhodanese in 

semiarid prairie ecosystems. 
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2. Materials and methods 

 

2.1. Site description 

 

Soil samples were taken from the rolling upland mixed prairie in the 

southern United States. The soils are classified as Cordell silty clay loam, 

shallow, somewhat excessively drained, weathered from hard siltstone.  

The vegetation is typical of the southern mixed prairie, dominated by 

perennial grasses with variable statures. The treatments that were sampled for 

this study were: Undisturbed (UD), no grazing or cultivation for more than 50 

years; abandoned (AB), set aside from cultivation for at least 30 years and 

grazed since 1996; moderate grazing (MG), 25 animal unit days per hectare 

(AUD ha-1); heavy grazing (HG), 50 AUD ha-1 ; and cultivated with continuous 

winter wheat (Triticum aestivum L.)(CL). No fertilizers or pesticides have been 

applied to the UD, AB, MG, and HG treatments. The CL treatment received 

annual application of 46 kg N ha-1 (in the form of urea and mono-ammonium 

phosphate) and 16 kg P ha-1 (mono-ammonium phosphate) in early September. 

At the time of sampling (May 2005) the wheat was at the hard dough stage. In 

the rest of the treatments many of the herbaceous plants were in bloom. 

 

2.2. Sampling and analysis 

  



 30 

 Soil sampling procedure was reported by Katsalirou (2006). Briefly, nine 

plots (71x71m, 0.5 ha) were randomly selected for each treatment to serve as 

field replications. Within each plot, a composite sample (35 to 45 cores, 0 to 10 

cm depth) was taken along the diagonal of the plot. Fresh soils were sieved (2 

mm sieve) and mixed thoroughly. A portion of the soil was air-dried for chemical 

analysis. Another portion of the field-moist soil was stored in sealed plastic bags 

at 4°C for biochemical and microbiological analysis. Soil moisture content was 

determined gravimetrically after drying at 105°C for 48 h. All analysis were 

conducted in duplicate and results are expressed on moisture-free basis.  

Activities of arylsulfatase was measured by the method of Tabatabai and 

Bremner (1970a), which is based on colorimetric determination of p-nitrophenol 

released by arylsulfatase activity when 1 g of soil was incubated with potassium 

p-nitrophenyl sulfate in acetate buffer at pH 5.8 and toluene for one hour at 37ºC. 

After incubation, NaOH was added to stop the reaction and CaCl2 was added to 

prevent dispersion of clay and extraction of soil organic matter during the 

extraction for p-nitrophenol released.  The released p-nitophenol was quantified 

by measuring the yellow color intensity at 415 nm using a spectrophotometer. 

The control was performed by the same procedure as for arylsulfatase activity, 

but the substrate, p-nitrophenyl sulfate solution, was added after the enzymatic 

reaction was stopped by the addition of NaOH.  

Rhodanese activity was measured by the method of Tabatabai and Singh, 

(1976), which involves the incubation of 4 g soil with THAM buffer, toluene, 

Na2S2O3 and KCN at 37ºC for 1 hour. After incubation, a CaSO4–formaldehyde 
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solution was added to stop the reaction.  Following filtration of the suspension, a 

ferric nitrate reagent was added and the reddish brown color developed was 

measured at 460 nm with a spectrophotometer. 

Available S, water soluble and adsorbed SO4
2- was measured using a 

method of Dick & Tabatabai (1979).  Briefly, soil was extracted using 500 ppm P 

as Ca(H2PO4)2 by shaking 10 g soil with 50 ml of extractant for 1 h and filtered 

with Whatman no.42 filter paper.  The available S in the filtrates was quantified 

by inductively coupled plasma analyses (ICP). For total S, soil was digested with 

nitric acid and hydrogen peroxide, S in the digested solutions was quantified with 

ICP (Dick and Tabatabai, 1979). 

Soil texture was determined by the hydrometer method (Gee and Or, 

2002). Soil organic C content (Corg) was determined by the Walkley-Black 

method (Nelson and Sommers, 1982), and total N (Nt) with Kjeldahl digestion 

(Bremner and Mulvaney, 1982). Soil pH was determined using a combination 

glass electrode (soil to 0.01 M CaCl2 ratio = 1:2.5). 

 Soil microbial biomass carbon and nitrogen were both determined using 

the fumigation–extraction method (Brookes et al., 1985a and b; Vance et al., 

1987), Contents of C and N extracted with 0.5 M K2SO4 from the unfumigated 

soils were used to indicate dissolved organic C (DOC) and soluble N (Nsol) 

(Haynes, 2005) as reported by Katsalirou (2006). 

 

2.3. Statistical methods 
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Significance differences among treatments were determined using one-

way analysis of variance. Comparison of treatment means was done according to 

the least significant difference test (LSD, P ≤ 0.05) by using the general linear 

model procedure of the Statistical Analysis System (SAS, 1999). Correlations 

between soil chemical and biological properties as well as enzyme activities were 

calculated using Pearson correlation coefficient. The ratios between enzymes 

activity to microbial biomass carbon (Cmic) was calculated to assess the impact of 

treatments on metabolic activity of microbial community. The St to Ssol ratio was 

calculated to assess the relationship between S pools.  

 Multivariate analysis can be used in an environmental study involving 

multiple variables to reveal the drivers of the ecosystem therefore, principle 

component analysis (PCA) was applied to reduce the dimensionality of different 

chemical and microbiological variable using JMP® start statistics software (Sall et 

al., 2005). Analysis of variance for the principal component scores of the first two 

principal axes (PC1 and PC2) was performed to test the significance of 

separations between the management systems. 

The obtained PC scores were plotted by Sigmaplot 9.0 (2004, Systat Software, 

Inc. Point Richmond, CA, USA). 

 

3. Results 

 

3.1. Soil properties 
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 The soil texture varied from loam to silt loam. The pH ranged from neutral 

to alkaline for all treatments (Table 1). UD and MG soils had the highest Corg and 

Nt; the UD and AB soils had the highest St, while CL was the lowest for all total 

C, N, and S contents. However, cultivation affected total C and N contents 

differently. Contents of Corg and Nt in the cultivated soils were 45% and 55% of 

those in the UD soils, respectively. The grazed and abandoned soil ecosystems 

were not significantly different from the UD system in total sulfur content. The CL 

system had the least total sulfur content, showing 29% lower than those of the 

UD system (Table 1). However, opposite trends of total C, N, and S were 

observed across the treatments for the soluble C, N, and S pools. Soluble S 

accounted for 4-6% of the total sulfur in the grazed, UD and AB soils, while it 

accounted for 9% in the CL system. Soluble S contents in the HG soils and UD 

soils were not significantly different from each other, but both were significantly 

lower than those in the MG soils (Fig.1).  

  

3.2.  Enzymes activities 

 

Rhodanese activities showed mixed responses to grazing and were 

sensitive to grazing intensity (Fig. 2). When compared to the UD soils, rhodanese 

activity was higher in the MG soils and lower in the HG soils. Of the soils tested, 

rhodanese activity was highest in the MG soils, while the lowest rhodanese 

activity was found in the AB soil.  Activities of this enzyme in the cultivated soils 

were not significantly different from those of UD, HG, and AB soils.   
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The trends of arylsulfatase activities in soils under different management 

were somewhat different from those detected for rhodanese activities (Fig. 2). 

When compared to the UD system, arylsulfatase activity was significantly lower 

in cultivated and grazed soils. Cultivated soils had the lowest arylsulfase 

activities, which were about 25% of those found in the UD soils.  Arylsulfase 

activities in the cultivated soil were significantly lower not only than those in the 

UD soils but also in the AB, MG and HG soils (Fig 2).  
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Table 1. Effect of different management practices on soil properties. 

             

       

   Treatments  LSD 

Soil Property           P≤0.05 

       

 
   
UD       MG     HG    AB      CL  

              

       

pH 7.2 7.5 7.4 7.6 7.5 0.2 

       

Sand (%) 33 27 39 30 32 7 

       

Silt (%) 49 51 44 51 49 6 

       

Clay (%) 18 22 17 19 19 3 

       

Corg( g C kg-1 soil) 21.5 20.9 17.7 15.8 9.7 3.3 

       

Nt ( g N kg-1 soil) 2.2 2.1 1.9 1.6 1.2 0.3 

       

St (g S kg -1soil)  0.60 0.52 0.53 0.60 0.43 0.14 

       

DOC (mg C kg-1soil) 96 92 106 81 117 20 

       

N sol (mg N kg-1 soil) 23 24 17 17 25 1 

       

Ssol (mg SO4-S kg-1soil)  21 29 20 35 35 7.4 

       

Pt (mg P g-1soil) 760 703 627 594 521 134.4 

       

Porg (mg P g-1soil) 150 159 166 92 310 65.2 

              
       

1 UD: Undisturbed; AB: Abandoned from cultivation; MG: Moderately grazed; HG: 

highly grazed; CL; Cultivated with winter wheat. Corg: Organic carbon; Nt: Total 

nitrogen; St: total sulfur; Ssol: soluble sulfur; DOC: Dissolve organic carbon. 
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Fig. 1. Effect of land use and management practices on the size of soil sulfur 

pools. UD: Undisturbed; HG: Highly grazed; MG: Moderately grazed; AB: 

Abandoned from cultivation; CL: Cultivated with winter wheat. Columns are 

means ± standard error. Different letters indicate significantly different means 

according to least significant difference test (n=9, P ≤ 0.05). 
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Fig. 2. Effect of land use and management practices on activities of sulfur 

transforming enzymes. UD: Undisturbed; HG: Highly grazed; MG: Moderately 

grazed; AB: Abandoned from cultivation; CL: Cultivated with winter wheat. 

Columns are means ± standard error. Different letters indicate significantly 

different means according to least significant difference test (n=9, P ≤ 0.05). 
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3.3. Relationship between soil chemical and microbiological parameters 

 

In a soil system, the measured soil parameters interwove, exhibit complex 

relationships. Ratios of two measured parameters, Pearson correlation 

coefficients between two variables, and principle component analysis of multiple 

variables were employed to reveal insights into their relationships.  

Results from this study showed that soil C to N ratio among all systems 

was the lowest in the cultivated soils and highest in the HG soils. Soil C to S ratio 

was lowest in the AB soils and highest in the MG soils. The ratios of soluble S 

content to soil organic carbon in the CL soils was 0.004, which was four times of 

the ratio in the UD soil. The higher soluble S content and lower total S in the CL 

soils led to a significantly higher Ssol to St and Ssol to Corg ratios for these soils 

compared to all other soils tested (Table 2). 

The ratio of arylsulfatase to rhodanese activity ranged from 0.49 to 11.2, 

and was highest in the UD soils and lowest in the CL soils. When compared to 

UD system, cultivation led to significant increase of the rhodanese activity per 

unit of Cmic, while opposite trend for the ratio of arylsulfatase activity per unit of 

Cmic was observed where the lowest ratio was found in the cultivated soils 

(Table.2). 

Pearson correlation coefficients showed that the activity of S- transforming 

enzymes was positively correlated with each other. Both enzymes activities were 

significantly and positively correlated with Corg and Nt. Rhodanese activity 

showed little correlation with microbial biomass, while Arylsulfatase was 
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significantly and positively correlated with microbial biomass (Cmic and Nmic). With 

respect to total and soluble S, these two enzymes showed opposite trends. 

Rhodanese activity showed little correlation with soluble S but significantly and 

negatively correlated with total S content. Arylsulfatase was significantly and 

negatively correlated with Ssol, but showed little correlation to St (Table 3). 

Results from multivariate PCA for different variables evaluated showed 

that factor I accounted for 59% of the total variance and was loaded by organic 

C, total N, microbial biomass C, microbial biomass N content, and arylsulfatse 

activity while factor II accounted for 23% of the total variance and was loaded 

with total sulfur content and the activity of rhodanese (Table.4). When principal 

scores of soil variables tested were plotted against different management 

systems, grazing and cultivation altered factor I loadings significantly, but not 

factor II loadings (Fig.3). In the UD system, PC1 values averaged around a 

positive 1.99. As grazing intensity increased, the positive PC values shifted 

toward zero. The PC1 values were negative for AB and CL systems, averaging 

around negative 2.95 for the CL soils. 
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Table 2. Elemental and eco-physiological ratio between selected soil properties, 

enzyme activity ratio and ratio of enzyme activities to microbial biomass carbon 

              

       

   Treatments2   LSD 
Ratio1           P≤0.05 
       

    UD  
     
MG     HG    AB      CL  

              
       
Corg:Nt 9.7 9.6 9.8 9.3 7.9 0.9 
       
Corg: St 37.9 43.5 37.3 28.3 29.4 14.9 
       
Ssol:Corg 0.001 0.001 0.001 0.002 0.004 0.0006 
       
Ssol:St 0.04 0.06 0.05 0.06 0.11 0.05 
       
Aryl:Rhod 11.2 0.75 1.16 1.10 0.49 1.60 
       
Rhod:Cmic 0.3 0.3 0.3 0.2 1 0.4 
       
Aryl:Cmic 3.4 0.2 0.3 0.3 0.3 0.3 
              
       

1 Corg; Organic C; Nt: Total N; St: Total S; Ssol: soluble S. Cmic; Microbial biomass 

C; Aryl: Arylsulfatase; Rhod: Rhodanese. All ratios was calculated based in the 

same unit as shown in table 1 except for the ratios that included enzymes activity 

were mg of substrate per kg of soil  unit was used.2 UD: Undisturbed; AB: 

Abandoned from cultivation; MG: Moderately grazed; HG: Highly grazed; CL: 

Cultivated with winter wheat.
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Table 3. Correlation coefficient (r) of the liner relationship between S-transforming enzyme activities  

and soil properties (n=45)* 

                      

           

Variable  Corg Nt DOC St Nsol Ssol Cmic Nmic Rhod 
                      

           

           

Rhodanese .42** .32* -0.16 -.55** 0.21 0.23 0.21 0.15  
           
           
Arylsulfatase .50** .51** -0.73 0.19 0.17 -.35* .34* .41** 0.2 
           
                      

           

*Corg: Organic C; Nt: total N; St: Total S; Ssol: Soluble S; Pt: Total P; Nsol: soluble N; Cmic; Microbial  

biomass C; Nmic: Microbial biomass N; DOC: Dissolve organic C; Aryl: Arylsulfatase; Rhod:  

Rhodanese. *P≤0.05, **P≤0.01. 

4
1
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Table 4. Factor loadings of soil parameters tested and enzymes activity involved 

in S- transformation. 

        

    

Variables Factor I   Factor II  

        

    

Arylsulfatase 0.57 0.04  
    
Rhodanese 0.33 0.89  
    
Organic C 0.97 0.12  
    
Total N 0.98 0.02  
    
Total S 0.34 -0.87  
    
Microbial biomass C 0.92 -0.06  
    
Microbial biomass N 0.93 -0.15  
    
    
Eigenvalue 4.15 1.59  
    
Explained Variance (%) 59% 23%  
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Fig. 3. Factor scores of soil chemical, microbiological properties and S-

transforming enzyme activities against different management practices. UD: 

Undisturbed; HG: Highly grazed; MG: Moderately grazed; AB: Abandoned from 

cultivation; CL: Cultivated with winter wheat. 

 

 

 

 

 

 

 



 44 

 

4. Discussion 

 

4.1. Soil chemical and microbial properties 

 

It has long been recognized that long -term repeated cultivation reduce 

soil structural stability and changes the distribution of soil organic matter (SOM) 

(Parton et al., 2005; Malo et al., 2005). Cultivation resulted in significant 

reduction in soil organic C, total N, and total S (Caldwell et al.; 1999; Warlrop et 

al.; 2000; Haynes and Goh, 1980; Masciandaro et al.; 1998). In this study, this 

reduction was 55% for organic carbon, 45% for total nitrogen, but only 29% for 

total sulfur. Reducing the residue and disturbing soil C equilibrium through 

cultivations may led to changes in availability of C and other nutrients to the 

microbial community, which may suppress and cause changes in the microbial 

community structure and growth. 

Although long-term cultivation led to significant reduction of soil organic C, 

total N, and total S, it increased concentrations of dissolved organic C, soluble N, 

and soluble S significantly. This led to increase the percentage of soluble C to 

total C, soluble N to total N, and soluble S to total S. Tabatabai and Bremner 

(1972) found that soluble sulfur (sulfate sulfur) was about 1.3% to 15% of the 

total S in 37 Iowan soils. Soluble S in soils tested in this study accounted for 4 to 

11% of the total S, which is in the range of Iowan soils reported. In this study, 

soils were sampled in late spring, which may explain the high soluble nutrients 
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content in the cultivated soil. According to Haynes (2005), the soluble form of 

different nutrients increase in winter cereal cultivated soils from spring to 

summer, while in rangeland it is higher in late summer and early fall. 

Grazing can enhance or promote plant growth by returning nutrients back 

to the soil as organic waste (Haynes, 1993). In this study, soil S levels in grazed 

systems were similar to those in the undisturbed systems, indicating that removal 

of S from the system by animals and plants was accompanied with addition of 

materials that contain higher S content to the soil. These result showed 

interrelationships between different processes that may controlled S 

concentration in soils. The higher the grazing intensity (more animal unit /ha/day) 

the more S that is consumed by animals that feed on plants and the more S 

content that can be accumulating in the soil as organic form. Total S in AB soils 

was not significantly different form those in grazed and undisturbed soil. 

Removing soils from cultivation and introducing it to grazing since 1996 

enhanced the ability of the soils to evolve and restore its total nutrients content. 

However, grazing at high intensity reduced Ssol pool significantly when compared 

to the moderately grazed system and that could be related to the slow 

mineralization of S in the dung and possibly leaching of released SO4 (Mathews, 

1994). Set aside from cultivation for 30 years resulted in higher soil microbial and 

chemical property values when compared to the cultivated soil. This could be an 

indication that soils under intensive cultivation can recover and evolve toward 

native soil (Masciandaro, 1998). Set aside from cultivation promoted organic 
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matter build up and led to increase in microbial biomass content (Wali et al., 

1999., Zak et al., 1990., sparling et al., 1994).  

 

4.2. Enzyme activities 

 

In general, the activities of sulfur transforming enzymes in the undisturbed 

and moderately grazed soils were higher than those in AB and CL systems. 

However, management practices affected rhodanese and arylsulfatase activity 

differently. The lower enzyme activities in the cultivated soil were accompanied 

by lower contents of total S, organic C, and total N. Deng and Tabatabai (1997) 

reported that different soil properties could work interdependent. Relatively low 

nutrient levels in the cultivated soils supported lower levels of microbial life, which 

led to lower rhodanese activity when compared with UD and MG soils.  

Rhodanese activity did not show a clear trend in the grazed soils. 

Rhodanese is involved in the oxidization process of inorganic S to release 

available S to plant and micros and that was affected by grazing processes. 

Of ecosystems evaluated, moderately grazed system had the highest 

rhodanese activity. However, effect of grazing on activity of this enzyme was not 

consistent. Rhodanese activity in the HG soils was not only significantly lower 

than those in the MG soils, but also lower than the UD soils. Studies showed that 

continuous grazing reduced vegetation cover, which led to increased erosion and 

loss of organic C and N contents as well as microbial activity (Fuhlendorf et al., 

2002; Su et al., 2005; Zhao et al., 2007). Grazing at high intensity decreased root 
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biomass and increased mineralization rates that would also lead to the decrease 

in organic C contents (Holland and Delting, 1990; Mawdsley and Bardgett, 1997). 

The low rhodanese activity in the AB soils indicated that it takes a long time to 

restore biological activity following abandonment from cultivation. Fuhlendorf et 

al. (2002) reported that restoration of native prairie soils required decades to 

restore organic matter and nutrient contents. Suggesting that 30 years 

abandoned from cultivation is not enough to restore biological activity in prairie 

soils.  

Of the soils tested, the significantly lower arylsulfatase and relatively low 

rhodanese activities in the CL soils could be attributed to lack of plant residue 

cover during winter and spring period (Acosta-Martines et al., 2003; Acosta- 

Martines et al 2007; Bandick and Dick 1999; Gupta and Germida 1988), Lack of 

S fertilizers affect enzymes activity. As reported by Baligar 2005; high levels of 

applied S stimulated higher arylsulfatase activity. Arylsulfatase reduction in the 

cultivated soils was accompanied by reductions in organic C, total N, total S, and 

microbial biomass C and N. Deng and Tabatabai (1997) suggested that soil 

organic matter plays an important role in maintaining soil enzymes activity. 

Although cultivation reduced arylsulfatase activity, a higher level of available S 

was found in the cultivated soils. Because the Aryl:Cmic ratios were similar in the 

cultivated and grazed soils, the results suggested that sulfur consumption in the 

cultivated soils was slow.  



 48 

Arylsulfatase activity in AB soils was not significantly different from those 

in the grazed soils, suggesting that conservation helped restoring nutrients and 

the ability of soil to support microbial life.  

The reduction of total S was accompanied with the reduction of 

arylsulfatase activity and with an increase in available S content. On the other 

hand, rhodanese activity was significantly and negatively correlated with total S 

content. However the increase of rhodanese activity was accompanied by an 

increase of available S content. These results suggested that rhodanese 

reactions are regulated by the substrate availability, while arylsulfatase reactions 

are regulated by the end product concentrations (feedback inhibition). 

 

4.3. Relationship between soil chemical and microbiological parameters 

 

Cultivation led to lower ratios of Corg to Nt and Corg to St, indicating that the 

loss of C was greater than the loss of N and S upon cultivation. On the other 

hand, grazing, especially at moderate intensity, led to high C: S ratios. Compared 

to C, S was more slowly but restored more rapidly in the soil ecosystems. The 

relatively stability of S compared C could suggest that C is more limiting in the 

soil ecosystems, especially under cultivation. This is further evidenced by organic 

C being one of main loading factors for PC1.  

Ratios between enzymes may indicate substrate composition in soil 

(Caldwell et al., 2005). Higher arylsulfatase to rhodanese ratio in the UD soils 

indicated higher organic sulfur to inorganic form in the system. This is further 
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supported by data showing that UD soils had the highest total S but lowest 

soluble S in soil systems evaluated. Soluble S in soil is dominated by sulfate-S 

(Tabatabai, 1982). 

Enzyme activity per unit of microbial biomass provides an indication of 

microbial metabolic activity. In this study, the arylsulfatase to microbial biomass 

C ratio in the UD soils was 10 fold of those found in all other soils tested. This 

suggests that production of arylsulfatase by microbial biomass was enhanced by 

its relatively high substrate (organic S) content. On the other hand, the synthesis 

of rhodanese activity was enhanced by the presence of high inorganic S in the 

cultivated soils, resulting ratios of this enzyme to microbial biomass C in the CL 

soils 3-5 folds of those found in other soils tested. 

Both rhodanese and arylsulfatase activities were correlated with organic 

carbon and total N contents, as reported in previous studies (Singh and 

Tabatabai, 1978; Deng, 1990; Tabatabai and Bremner 1970; Deng and 

Tabatabai 1997; Klose and Tabatabai 1999; Chang et al., 2007). Soil organic 

matter plays an important role in maintaining soil enzymes activity (Deng and 

Tabatabi, 1997). The positive correlations between arylsulfatase activity and total 

S content, and the significantly negative correlations between this enzyme and 

soluble S form were consistent with other studies as well (Tabatabai and 

Bremner 1970a; Baligar et al., 2005). The observed phenomenon could indicate 

that synthesis of arylsulfatase by microorganisms was inhibited by the end 

product concentrations of high soluble S content. Rhodanese and arylsulfatse 
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activities are involved in different S transforming processes. It is, therefore, not 

surprising that activities of these two enzymes were not correlated.  

According to PCA of all variables, grazing and cultivation significantly 

altered factor 1 loading variables, including Corg, Nt, Cmic, Nmic and arylsulfatase 

activity, but not factor 2 loading variables of St content and rhodanese activity. 

The shift of factor I variables toward the negative PC1 values in CL soils 

suggested limitations of organic carbon, total nitrogen, and microbial biomass 

contents. The limited contribution of rhodanese activity to total variance and little 

impact of management practices on its PC2 values suggested that arylsulfatase 

activity contributed more to sulfur cycling in soil than rhodanese did. As 

cultivation led to limitation of arylsulfatase activity, this would result in limited 

functional capacity for cultivated soils to cycle S.  

 

4.3. Conclusion  

 

Principle component analysis of the tested variables revealed that organic 

carbon, total nitrogen, microbial biomass carbon and nitrogen and arylsulfatase 

activity were drivers in the soil ecosystems.  Of the two S transforming processes 

evaluated, mineralization of organic S contributed more to S cycling than did the 

S oxidation processes. Total and soluble S contents as important nutrient pools 

or reservoir were affected significantly by cultivation and to certain degree by 

grazing. When compared to the undisturbed systems, total sulfur was 

significantly lower and the soluble S was significantly higher in the cultivated 
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soils. Grazing promote or maintained S pools and the capacity of the soils to 

transform S to a degree similar to those in the undisturbed soils. Systems set 

aside from cultivation for more than 30 years allowed the soil to regain its 

capacity to cycle S and to evolve towards the native system. However, activity of 

S transforming enzymes showed that 30 years of conservation did not completely 

erase the impact of cultivation. 
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CHAPTER IV 
 

 

INTERACTIONS OF CARBON, NITROGEN, PHOSPHORUS, AND SULFUR 

POOLS AND ENZYME ACTIVITIES INVOLVED IN THEIR TRANSFORMATION 

 

Abstract 

 

Understanding the interaction between different soil nutrients and their 

cycling processes under different management practices could assist the 

evaluation and development of management systems that sustain and enhance 

ecosystems functions. The objective of this study was to use multivariate 

analysis to reveal the interrelationships of carbon (C), nitrogen (N), phosphorous 

(P), and sulfur (S) cycles by evaluating 11 key enzyme activities involved in 

transforming these nutrients under different management practices. Forty-five 

soils were taken from five long-term (more than 30 years) treatments, including 

undisturbed, set-aside from cultivation, moderately grazed, heavily grazed, and 

winter wheat (Triticum aestivum L.). Nutrient pools evaluated include total, 

soluble, and microbial forms. Of micronutrients tested, B and Mg were most 

limiting in these systems. Of macronutrients evaluated, Corg, Cmic, Nt, and Nmic 

were more limiting in the cultivated than in the uncultivated soils. Although there
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 is some indication that mineralization of organic S is a key process that governs 

ecosystem functions, there was generally no clear trend that one nutrient 

transforming enzyme or process was more dominating than other enzyme 

activities or processes in nutrient transformation. However, the capacity of soil 

enzymes to release simple sugar and inorganic nutrients appeared to be key 

factors regulating nutrient cycling, suggesting microbial biomass was the driver of 

C, N, P, and S transformation processes of all variables evaluated. 

 

1. Introduction 

 

Nutrient cycling in soils is a continual process of biological-geological-

chemical transformation that constantly changes nutrients from one form to 

another. Microbiological and biochemical activities are often the driving force for 

nutrient cycling, and thus control the size of nutrient pools in soil. Soil enzyme 

activities are the driving force in nutrient cycling therefore; have also been 

suggested as indicators in detecting changes or disturbances of the soil 

ecosystem (Naseby and Lynch, 2002). 

Management practices such as cultivation, fertilization, and grazing affect 

C, N, P, and S cycling in soils differently, as it causes different degrees of soil 

disturbance and different effects on soil ecosystem functions (Dodor and 

Tabatabai, 2003; Green et al., 2007; Klose et al., 1999; Doran and Parkin, 1994). 

Long term cultivation and continuous grazing decrease soil organic matter 

content, total N, and available phosphorus (Su et al., 2005; Malo et al., 2005; 
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Parton et al., 2005; Neff et al., 2005; Jaiyeoba, 2003; Davinson and Ackerman, 

1993). Continuous cultivation reduced enzymes activity such as arylsulfatase, β-

glucosaminidase and β-glucosidase in semiarid agricultural soils compared to 

conserved fields and integrated crop-livestock systems (Acosta-Martinez et al., 

2003; Acosta-Martinez et al., 2004). Low organic matter content in the semiarid 

environments can led to progressive degradation of their quality and productivity 

(Caravaca et al., 2002). Leaving crop residue on the soil surface improves 

nutrient cycling and, ultimately, soil quality that will increase and sustain soil 

productivity (Al-Kaisi et al., 2005). Incorporation of canola residue into nutrient 

poor sandy soil did not affect C and S cycling, but altered N cycling (Singh et al., 

2006). Cultivation and intensive grazing reduced microbial biomass C (Holt and 

Mayer, 1998; Saviozzi et al., 2001; Sankaran and Augustine., 2004). On the 

other hand, grazing in mixed-grass rangelands led to increased levels of soil C 

and N through enhanced incorporation and decomposition of the litter and 

standing dead plant material (Schuman et al., 1999), and exclusion from grazing 

in grassland reduced microbial biomass C in the soil (Bardgett et al., 1997).  

Past research effort has been focused on individual nutrient cycling, while 

little is known about the relative importance and interactions among nutrients and 

their transformation processes. Understanding the drivers and interactions of an 

ecosystem would assist in developing management practices that enhance the 

functioning capacity of a soil ecosystem. Therefore, the objective of this study 

was to reveal the drivers of soil ecosystems and to understand the interactions 
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and relationships of four major nutrient cycles by evaluating their key enzyme 

activities using multivariate analysis. 

 

2. Materials and methods 

 

2.1 Site description 

 

Soil samples were taken from the rolling upland mixed prairie in the 

southern United States. The soils are classified as Cordell silty clay loam, 

shallow, somewhat excessively drained, weathered from hard siltstone.  

The vegetation is typical of the southern mixed prairie, dominated by 

perennial grasses with variable statures. The treatments that were sampled for 

this study were: Undisturbed (UD), no grazing or cultivation for more than 50 

years; abandoned (AB), set aside from cultivation for at least 30 years and 

grazed since 1996; moderate grazing (MG), 25 animal unit days per hectare 

(AUD ha-1); heavy grazing (HG), 50 AUD ha-1; and cultivated with continuous 

winter wheat (Triticum aestivum L.)(CL). No fertilizers or pesticides have been 

applied to the UD, AB, MG, and HG treatments. The CL treatment received 

annual application of 46 kg N ha-1 (in the form of urea and mono-ammonium 

phosphate) and 16 kg P ha-1 (mono-ammonium phosphate) in early September. 

At the time of sampling (May 2005) the wheat was at the hard dough stage. In 

the rest of the treatments many of the herbaceous plants were in bloom. 
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2.2. Sampling and analysis 

 

Soil sampling procedure was reported by Katsalirou (2006). Briefly, nine 

plots (71x71m, 0.5 ha) were randomly selected for each treatment to serve as 

field replications. Within each plot, a composite sample (35 to 45 cores, 0 to 10 

cm depth) was taken along the diagonal of the plot. Fresh soils were sieved (2 

mm sieve) and mixed thoroughly. A portion of the soil was air-dried for chemical 

analysis. Another portion of the field-moist soil was stored in sealed plastic bags 

at 4°C for biochemical and microbiological analysis. Soil moisture content was 

determined gravimetrically after drying at 105°C for 48 h. All analysis was 

conducted in duplicate and results are expressed on moisture-free basis.  

Soil texture was determined by the hydrometer method (Gee and Or, 

2002). Soil organic C content (Corg) was determined by the Walkley-Black 

method (Nelson and Sommers, 1982), and total N (Nt) with Kjeldahl digestion 

(Bremner and Mulvaney, 1982). Soil pH was determined using a combination 

glass electrode (soil to 0.01 M CaCl2 ratio = 1:2.5). Soil microbial biomass 

carbon and nitrogen were both determined using the fumigation–extraction 

method (Brookes et al., 1985a and b; Vance et al., 1987), Contents of C and N 

extracted with 0.5 M K2SO4 from the unfumigated soils were used to indicate 

dissolved organic C (DOC) and soluble N (Nsol) (Haynes, 2005) as reported by 

Katsalirou (2006). 

Many trace elements are inhibitors or cofactors of enzymatic functions. 

Therefore, soil was extracted using 500 ppm P as Ca(H2PO4)2 by shaking 10 g 



 63 

soil with 50 ml of extractant for 1 h and filtered with Whatman no.42 filter paper.  

Extractable elemental contents, including Boron (B), magnesium (Mg), Iron (Fe), 

Copper (Cu), and Zinc (Zn) were determined using inductively coupled plasma 

(ICP). Activities of key enzymes involved in C, N, P, cycling were determined 

using methods reported by Katsalirou (Katsalirou, 2006). Activities of enzymes 

involved in S cycling were reported in chapter III. 

 

2.3. Statistical analysis  

 

Significant differences among treatments were determined using one-way 

analysis of variance. The ratio between each enzyme activity to microbial 

biomass carbon (Cmic) was calculated to assess the impact of treatments on 

metabolic activity of microbial community. 

Principle component analysis (PCA) was applied to reduce the 

dimensionality of different chemical and microbiological variables. Principle 

component analysis was conducted using JMP® start statistics software (Sall et 

al., 2005). The correlation rather than covariance matrix was used because the 

tested soil variables were expressed in different units (Johnson, 1998). Analysis 

of variance for the principal component scores of the first two principal axes (PC1 

and PC2) was performed to test the significance of separation between the 

management systems. The obtained PC scores were plotted by Sigma plot 9.0 

(2004, Systat Software, Inc. Point Richmond, CA, USA). 

 



 64 

 

3. Results 

 

3.1. Nutrient pools, microbial biomass, and their interactions 

As discussed in Chapter III, soil organic C, and total N, P and S contents 

were all highest in the UD soils and lowest in the CL soils. These nutrients 

contents in the grazed systems were not significantly lower than the UD soil. 

However, the opposite trends were observed for soluble nutrient contents, which 

were always the highest in CL soils compared to UD soils. 

Similarly, the extractable K contents were significantly higher in the 

cultivated and AB systems when compared with uncultivated ones (Fig. 1). 

Trends for micronutrients in these systems varied depending on the nutrient 

element. Grazing at high intensity led to reduced availability of Mg and B, while 

moderate grazing actually enhanced Mg extractability. Cultivation did not show 

any detectable impact on the extractability of these two micronutrients, but 

significantly enhanced extractable Fe contents, and to certain degree, Cu 

contents as well. Grazing and cultivation both led to lower extracted Zn 

concentrations when compared with the UD system. Of the micronutrients tested, 

B and Mg were most discriminating among soil systems and loaded factor I, 

which accounted 40% of the total variance (Table 1). Factor II was loaded with 

Cu and Zn, and accounted for 29% of the total variance. Iron was the primary 

loading for factor III, which accounted for 16% of the total variance.  
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Fig 1. Treatments effect in soil elemental content. UD: Undisturbed; HG: Highly 

grazed; MG: Moderately grazed; AB: Abandoned from cultivation; CL: 

Cultivated with winter wheat. Columns are means ± standard error. Different 

letters indicate significantly different means according to least significant 

difference test (n=9, P ≤ 0.05). 
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Table1. Factor loadings of soil micronutrient contents. 

             

Variable  Factor I Factor II Factor III  

             

       

Boron   0.85 -0.35 0.04  

       

magnesium  0.91 0.18 0.21  

       

Iron   0.16 -0.04 0.98  

       

Copper   0.25 -0.79 0.12  

       

Zinc   -0.12 -0.90 -0.06  

       

Eigenvalue  2.01 1.46 0.82  

       

Explained Variance (%) 40% 29% 16%  
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Fig 2. Factor scores of soil elemental content against different management 

practices . UD: Undisturbed; HG: Highly grazed; MG: Moderately grazed; AB: 

Abandoned from cultivation; CL: Cultivated with winter wheat. 
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The management practices tested affected factor I loadings, but little on 

factor II and factor III loadings (Fig. 2). In other words, all the systems showed 

close relationships to factor II and to factor III, but their relationships to factor I 

were shifted by management practices. Of the systems evaluated, UD and MG 

systems were most closely related to factor I. AB and HG systems were not only 

less related to factor I, but also showed opposite relationships with AB being 

positively and HG being negatively related to factor I. 

The relative importance of major macronutrients in their total and soluble 

forms as well as microbial biomass was examined by multivariate analysis. 

Microbial biomass was included because microbes are key players in nutrient 

transformations and because previous studies have shown that microbial 

biomass was the lowest in the cultivated systems (Katsalirou, 2006). According 

to PCA factorial analysis, factors I, II, and III together accounted for 77 % of the 

total variance (Table. 2). Factor I, explained 41% of the total variance, and was 

loaded by organic C, Cmic, total N and Nmic. Factor II explained 24% of the total 

variance and was loaded by DOC, Nsol, and Porg. Factor III accounts for 12% of 

the total variance and was loaded by Pinorg and St. When factor scores were 

plotted against different management practices, AB soils were mostly related to 

factor I, while HG systems were closely related to factor II as well as factor III 

(Fig 3). Both UD and MG systems were closely related to factor II and both CL 

and UD systems were closely related to factor III. 
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 Table 2. Factor loadings of soil parameters tested. 

            

 
Variable     Factor I 

             
Factor II   Factor III 

            

      

Organic C   0.96 0.05 -0.07 

      

DOC   -0.18 -0.54 -0.26 

      

Microbial biomass C  0.93 0.17 -0.12 

      

Total N   0.96 -0.01 -0.20 

      

N sol   0.03 -0.81 0.17 

      

Microbial biomass N  0.90 0.15 -0.26 

      

Total P   0.16 -0.66 -0.67 

      

Pinorg   0.35 -0.21 -0.83 

      

Porg   -0.22 -0.88 0.01 

      

Total S   0.16 0.14 -0.91 

      

Ssol   -0.32 -0.04 0.27 

      

      
Eigenvalue   4.52 2.6 1.29 
      
Explained Variance  41% 24% 12% 
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Fig 3. Factor scores of soil chemical and microbiological parameters against 

management practices systems. UD: Undisturbed; HG: Highly grazed; MG: 

Moderately grazed; AB: Abandoned from cultivation; CL: Cultivated with winter 

wheat. 

 

 



 71 

3.2. Relationships of carbon-, nitrogen-, phosphorus-, and sulfur- transforming 

enzymes 

 

Principal component analysis of 11 key enzymes involved in C-, N-, P-, 

and S-transformation showed that factor I explained 63% of the total variance, 

and factor II explained 15% of the total variance (Table 3). Factor I was loaded 

by activities of β-glucosidase, cellulase, urease, L-asparaginase, alkaline 

phosphatase, and arylsulfatase, while factor II was loaded with β-

glucosaminidase, acid phosphatase, and rhodanese activity (Table 3). 

Management practices affected the relative importance and relationships among 

factor I loadings (Fig 4). There were considerable variations within the UD, HG, 

or MG samples, but all AB and CL soils were closely related to PC2. Although 

none of the systems tested showed a close relationship to PC1, the UD and 

grazed systems were generally on the positive side of PC1 while AB and CL 

were on the negative side of the PC1.  

PCA factorial analysis of these enzymes within each management system 

was conducted to reveal whether management practices changed the relative 

importance and relationships among these enzymes (Table 4). Factor I and 

factor II within each system accounted for 74-94% of the total variance within the 

system. When compared with the UD system, the relative importance for some of 

the variables was not significantly affected by grazing or cultivation, including α-

galactosidase and urease, which generally loaded factor I in all systems. On the 

other hand, the relative importance of many enzymes, 
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Table 3. Factor loadings of selected enzyme activities. 

        

Variable   PC1  PC2  

        

    

β-glucosidase 0.84 0.44  

    

α-galactosidase 0.75 0.60  

    

Cellulase 0.83 0.31  

    

Urease 0.83 0.37  

    

L-asparaginase 0.77 0.22  

    

β-glucosaminidase 0.26 0.89  

    

Acid phosphomonoesterase 0.23 0.88  

    

Phosphodiesterase 0.65 0.60  

    

Alkaline phosphatase 0.94 0.20  

    

Arylsulfatase 0.70 -0.12  

    

Rhodanese 0.06 0.77  

    

    

Eigenvalue 6.92 1.16  

    

Explained Variance (%) 63 15  

        
 

 

 

 

 

 



 73 

 

 

 

 

PC1 (63%)

-4 -2 0 2 4

P
C

2
 (

1
5
%

)

-4

-2

0

2

4
UD 

HG

MG

AB

CL

 

Fig  4. Factor scores of the carbon, nitrogen, phosphorous, and sulfur 

transforming enzyme activities in soil under different management systems. UD: 

Undisturbed; HG: Highly grazed; MG: Moderately grazed; AB: Abandoned from 

cultivation; CL: Cultivated with winter wheat.
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Table 4. Factor loadings of enzyme activity analyzed by management systems 
                      

Variables              UD               HG              MG              AB               CL 

 Factor I Factor II Factor I Factor II Factor I Factor II Factor I Factor II Factor I Factor II 

                      

                

Cellulase -0.02 0.88 0.80 -0.47 0.47 0.67 0.38 0.79 0.43 0.67 

               

β-glucosidase 0.73 0.61 0.91 -0.18 0.86 0.32 0.87 0.48 0.97 0.11 

               

α- galactosidase 0.83 0.27 0.97 0.03 0.41 0.88 0.90 0.41 0.97 -0.13 

               

Urease 0.92 -0.23 0.75 -0.43 0.72 0.47 0.97 0.08 0.80 -0.17 

               

β-glucosaminadase 0.75 0.56 0.01 0.88 0.05 0.96 0.85 0.47 0.93 0.29 

               

L- asparaginase 0.29 0.84 0.24 -0.62 -0.79 -0.44 0.25 0.93 -0.09 0.11 

               

Phosphodiesterase 0.92 0.25 0.69 0.05 0.94 0.20 0.08 0.05 -0.10 0.87 

               

Acid-phosphatase 0.75 0.25 0.05 0.93 0.09 0.91 0.94 0.25 0.88 -0.45 

               

Alkaline phosphatase 0.80 0.44 0.69 -0.69 0.96 -0.15 0.55 0.81 -0.62 0.71 

               

Arylsulfatase 0.55 0.54 0.71 -0.62 0.90 -0.05 0.20 0.95 -0.58 0.23 

               

Rhodanese 0.30 0.80 -0.31 0.73 -0.15 0.89 0.82 0.55 0.86 -0.45 

               

Eigenvalue 6.92 1.76 6.25 2.15 5.49 3.78 8.78 1.51 6.11 2.01 

Explained Variance (%) 63% 16% 57% 20% 50% 34% 80% 14% 56% 18% 

                      

7
4
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including cellulase, β-glucosidase, , acid-phosphatase, and arylsulfatase, were 

altered by grazing. Cultivation shifted the relative importance of 

phosphodiesterase and rhodanese 

 

3.3. Interrelationships between microbial communities and their contributions 

to soil enzyme activities  

Activity and growth of the microbial community are often regulated by the 

resource availability in soil, while enzyme syntheses are closely associated with 

microbial activities. On the other hand, soil enzyme activities could regulate labile 

C pools, and thus regulate microbial growth. The complex interrelationships are 

often evaluated by ratios between multiple microbial and C related soil variables. 

Principle component analysis of these ratios may reveal microbial community 

structures, processes or coupled relationships that regulate soil ecosystem 

functions. PCA factor analysis showed that three factors explained 79 % of the 

total variation (Table 4). Factor I was loaded by ratios of activity of α- 

galactosidase/ Cmic, β-glucosidase/Cmic, β-glucosaminadase/ Cmic , acid-

phosphatase to Cmic, and rhodanese to Cmic, while factor II was loaded by ratio of 

Cmic to Nmic , Cmic to Corg and the ratio of  Phosphodiesterase/Cmic and alkaline 

phosphatase/ Cmic. Ratio of arylsulfatase to Cmic loaded factor III. Based on factor 

scores, management practices did not have detectable effect on PC1 variables, 

but they affected the PC2, and especially the PC3 variables (Fig. 5). All grazed 
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systems, including HG, MG, and AB, were closely related to PC3, while UD and 

CL systems clustered close to each other, but away from PC3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 77 

Table 5. Factor loadings of different ratio of chemical and microbiological 

properties 

          

Variable Factor I Factor II Factor III  

          

     

Cmic: Corg -0.57 -0.66 -0.22  
     

Cmic:Nmic 0.08 0.88 0.06  
     

Cellulase/Cmic 0.59 0.62 0.09  
     

Β-glucosidase/Cmic 0.82 0.47 0.15  
     

Α-galctosidase/Cmic 0.92 0.31 0.15  
     

Urease/Cmic 0.48 0.23 0.53  
     

Β-glucosaminidase/Cmic 0.83 0.14 -0.29  
     

L-asparaginase/Cmic 0.20 0.48 0.36  
     

Phosphodiesterase/Cmic 0.52 0.70 -0.27  
     

Acid phosphatase/Cmic 0.92 -0.11 -0.01  
     
Alkaline 
phosphatase/Cmic -0.02 0.92 0.24  
     

Arylsulfatase/Cmic -0.12 0.02 0.88  
     

Rhodanese/Cmic 0.93 0.01 0.11  
     

Eigenvalue 6.51 2.37 1.37  
     

Explained Variance (%) 50% 18% 11%  
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Fig 5. Factor scores of the ratio of basic soil properties and specific enzyme 

activities against management practices systems. UD: Undisturbed; HG: Highly 

grazed; MG: Moderately grazed; AB: Abandoned from cultivation; CL: Cultivated 

with winter wheat 
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4. Discussion 

 

 
Grazing at moderate degree altered Mg and B concentrations. When 

compared to UD soils, Fe content in cultivated soils increased significantly. Both 

AB and HG management practices affected the relative importance of Mg and B 

in the trace elements evaluated, led to shifting their PC1 scores to positive and 

negative values, respectively. This indicated that B and Mg were limiting in those 

systems. 

Of macronutrients evaluated, Corg, Cmic, Nt, and Nmic were most limiting in 

the cultivated soils, while these nutrients were not significantly affected by 

grazing. Studies have shown that cultivation of prairie soils led to reduction in 

organic matter content and microbial biomass (Saviozzi et al., 2001). On the 

other hand, grazing may lead to increase in Corg content by influencing the 

storage of the above and below ground biomass and stimulating plant growth 

and nutrient flow (Schuman et al., 1999). The close relationship between UD and 

grazed systems with soil P content (Pt, Pinorg and Porg), total S and soluble N 

suggest that these PC2 and PC3 variables were also important in ecosystem 

processes and function. The AB system was closely related to PC1, indicate that 

Corg, Nt, Cmic, Nmic were still important drivers of ecosystem function in these 

systems and that 30 years of conservation were not sufficient in erasing affect of 

cultivation on soil nutrient reservoir and its capacity to support microbial life.  

 



 80 

Management systems were separated by the activities of enzymes 

involving in the C, N, P, and S cycling, indicating that enzyme activities are 

sensitive indicators of ecosystems disturbance. When eleven different enzymes 

involved in the C, N, P, and S cycling were plotted using factor scores from PCA,

factor I variables separated managements practices with UD, MG and HG 

positively correlated with factor I loadings. The impacts of long term cultivation in 

the AB soils were still detectable after 30 years of conservation, indicating that 

building healthy soils by improving its organic matter content and its ability to 

cycle nutrient could take long time. The CL and AB systems were negatively 

correlated with factor I loadings. Annual applications of inorganic fertilizer in the 

cultivated system increased the concentration of nutrients in the soil solution 

which suppressed enzyme activities and that reduced the potential for C, N, and 

P cycling in these systems (Kandeler et al., 1999). As shown by Katsalirou 

(2006), the activities of these enzymes were lowest in the CL and AB soils and 

highest in the UD MG and HG soils, suggesting that the presence of natural 

vegetation and the widespread root system of perennial grasses in the 

uncultivated sites enhanced the rhizosphere effect and promoted microbial 

community activity compared to cultivated soils (Bandick and Dick, 1999). The 

obtained results suggested that enzymes involved in C cycling (β-glucosidase 

and cellulase), N cycling (Urease), P cycling (alkaline phosphatase), and S 

cycling (arylsulfatase) were most limiting factors that controlled the 

transformation processes of these major biological nutrients. The capacity of soil 

enzymes to release simple sugars, ammonia, orthophosphate, and sulfate to 
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support microbial activity in these soils predominantly regulated nutrient cycling 

and transformation processes in these soil systems. This is evidenced by the 

important PC1 loading factors such as α-galactosidase for C cycling to release 

simple sugar, urease for N cycling to release ammonia, alkaline phosphatase for 

P cycling to release inorganic P, and arylsulfatase in S transformation to release 

inorganic S. 

All management practices were separated based on factor III loadings 

variables.  The UD and CL were affected by arylsulfatase/Cmic ratio which 

indicated that the ability of the microbial community to release soluble S was the 

limiting factors in these soils. 

Data analysis from this study suggested that it is challenging to pin point a 

single driver that regulates processes and function in an ecosystem.  The fact 

that all management practices were separated based on ratios of 

arylsulfatase/Cmic suggested that organic S as an often neglected nutrient could 

be a key factor driving ecosystem functions.  Moreover, this study also confirmed 

our long-term hypothesis that microbial community is the driver of all nutrients 

cycling process, labile nutrients regulate microbial growth, and enzyme activities 

that release labile nutrients govern microbial growth. 

 

4.2. Conclusion 

 

Of micronutrients tested, B and Mg were most limiting in these systems. 

Of macronutrients evaluated, Corg, Cmic, Nt, and Nmic were more limiting in the 
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cultivated than the uncultivated soils.  Although there is some indication that 

mineralization of organic S is a key process that governs ecosystem functions, 

there was generally no clear trend that one nutrient transforming enzyme or 

process was more dominating than another enzyme activities or processes in 

nutrient transformation. However, the capacity of soil enzymes to release simple 

sugar and inorganic nutrients appeared to be key factors regulating nutrient 

cycling, suggesting microbial biomass as the drivers of C, N, P, and S 

transformation processes of all soil variables evaluated.  In addition, PCA 

factorial analysis of enzymes evaluated revealed that management practices 

changed the relative importance and relationships among these enzymes within 

an ecosystem. 
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CHAPTER V 
 

 

SUMMARY AND CONCLUSIONS 

 

 

Sulfur dynamic in soil is governed more by mineralization of organic S 

than inorganic S oxidation processes. When compared to the undisturbed 

systems, total sulfur was significantly lower and soluble S was significantly higher 

in the cultivated soils. Grazing promote or maintained S pools and the capacity of 

the soils to transform S to a degree similar to the undisturbed soils. Systems that 

set aside from cultivation for more than 30 years allowed the soil to regain its 

capacity to cycle S and are evolving towards the undisturbed systems. However, 

analysis based on S transforming enzymes showed that 30 years of conservation 

did not completely erase the impact of cultivation.  

Of the five micronutrients tested, B and Mg were most limiting in soils. 

Contents of Corg, Cmic, Nt, and Nmic were more limiting in the cultivated than the 

uncultivated soils. However, there were no clear general trends that one nutrient 

transforming enzyme or process was more dominating than enzyme activities or 

processes involved in the transformation of another nutrient. The capacity of soil 

enzymes to release simple sugar and inorganic nutrients appeared to be key 

factors regulating nutrient cycling, suggesting microbial biomass as the drivers of 

C, N, P, and S transformation processes of all soil variables evaluated. 
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