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CHAPTER I 
 

 

ABSTRACT 

Current methods of applying nitrogen (N) fertilizer do not treat small scale variability 

that is known to exist. Variations in corn grain yield can be found from one plant to the next.  

With knowledge that yield potential can be predicted by-plant, this in turn can be used to adjust 

fertilizer N rates for individual plants. This study was conducted in 2010 and 2011 to evaluate by-

plant sidedress N using plant height and normalized difference vegetation index (NDVI) sensor 

readings. Treatments included preplant N rates of 0, 45, 90, and 180 kg N ha
-1

 with 180 kg N ha
-1

 

as a reference strip. Sidedress N was applied as a variable rate on a by-plant basis, uniform rate 

on a by-plant basis, and uniform rate on the entire row with a non-fertilized check included.  By-

plant sidedress N applications increased yields when the preplant N rate was optimized.  When 

preplant N rates exceeded the optimum needed for maximum grain yields, no benefits of by-plant 

N fertilization were observed.
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CHAPTER II 
 

 

INTRODUCTION 

Nitrogen (N) is the most abundant element in the atmosphere, but also the most limiting 

nutrient for crop growth. Nitrogen use efficiency (NUE) of applied fertilizer N by cereals is 

currently 33% worldwide, where NUE = [(N removed in grain)-(N removed from soil + N 

deposited in rainfall)]/(fertilizer N applied). Low NUE can be attributed to several factors 

including plant N loss, denitrification, surface runoff of fertilizer, volatilization of NH3, and NO3 

leaching (Raun and Johnson, 1999).  Poor management of N is commonly thought to be the cause 

of the eutrophic zones in the Mississippi River Delta and other sensitive water ways. The annual 

loss of N fertilizer to the Gulf of Mexico has been estimated at a value above $750, 000,000 

(Malakoff, 1998). Increases in NUE can occur with better management practices, such as 

utilization of crop rotations including legumes, hybrid/variety breeding for selection of higher 

NUE, applications of NH4-N fertilizers, and midseason and foliar applications of N (Raun and 

Johnson, 1999).  

Precision farming can increase NUE through the application of N in a precise manner to 

treat by plant variability with fertilizer (Raun and Johnson, 1999). Solie et al. (1996) stated that 

the optimum field element size is one that provides the most precise measure of nutrient where 

levels of that nutrient change with distance. They further stated that variable rate applications on 

scales larger than 1.96 m
2
 will result in a grid too coarse and thus misapply 
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inputs.This indicates that the management zones have limitations as they do not match within 

field variability.  Scharf et al., (2005) stated that spatially intensive information for N 

management has greater potential benefits than management zones. Soil nutrients have to be 

variable at the sub-meter level (Raun et al., 1998; Solie et al., 1999). This indicates that inputs 

should also be applied at the sub-meter level.   

Individual plant N fertilization is needed because plant to plant variability in corn yields 

was shown to average 2765 kg ha
-1

(Martin et al., 2005). The reasons for this variation can be 

attributed to: interplant competition (Maddonni and Otegui, 2003), non-uniform stands 

(Nafzinger et al., 1991), sub-meter variability of nutrients (Raun et al., 1998; Solie et al., 1999), 

biotic and abiotic factors – elevation, soil texture, soil NO3-N, diseases, and drought (Machado et. 

al., 2000). Martin et al. (2005) stated that variability existed at less than 0.5 m, and this should be 

the target treatment scale. Similarly, work by Chung et al. (2008) stated that the optimum 

resolution for yield prediction should be less than 4 plants. Nitrogen uptake occurs within a 40 cm 

radius of corn plants (Hodgen et al., 2009). This small area allows for point source uptake of 

applied N.  In order to match soil variability with plant N uptake access zones, it is likely that 

fertilizer N applications need to be made by-plant. Variable rate fertilizer applied to individual 

trees based on ultrasonic measurements reduced fertilizer input by 38 % (Zaman et al., 2005) 

Optical sensors that collect NDVI data to refine N rates, have been proven to increase 

NUE by 15% (Raun et al., 2002). Raun et al. (2002) used in-season estimates of grain yield 

(INSEY) and a response index (RI) to predict yield in winter wheat (Triticum aestivum L.) and 

calculate N fertilizer rates on a 1 m
2
 scale. Teal et al. (2006) accurately used days from planting 

(DFP) and INSEY to predict corn grain yield, where INSEY was NDVI divided by the days from 

planting to sensing.  The greatest variation in NDVI readings occurs at the V6-V8 growth stage, 

while the highest correlation between NDVI and grain yield occurs at V7-V9 (Martin et al., 

2007). Sensor NDVI readings and plant height can accurately differentiate individual corn plants, 
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and those measurements were highly correlated with plant biomass and N uptake (Freeman et al., 

2007). Martin et al. (2011) was able to accurately predict yields for individual corn plants based 

on NDVI and a 5-plant competition factor using plant height and area occupied by plants. This 

work documented the potential of fertilizing individual corn plants based on predicted yield. 

Objective 

The objective of this study was to evaluate corn grain yield response to mid-season N 

applied on a by-plant basis, based on predicted yield using NDVI, plant height, and distance 

between plants. 
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CHAPTER III 
 

 

MATERIALS & METHODS 

Four field trials were established during the 2010 and 2011 growing seasons to evaluate 

different within-row sidedress methods of N fertilization in corn. One irrigated site was Lake Carl 

Blackwell (LCB) located on a Pulaski fine sandy loam: coarse loamy, mixed, superactive, 

nonacid, Udic Ustifluvent in both 2010 and 2011.  Grain yield was not recorded at LCB in 2011, 

because severe weather stress and animal infestations. A rain-fed location at Haskell (Taloka silt 

loam: fine, mixed, active, thermic Mollic Albaqualf) was also used in 2010. The final location 

was Efaw in 2011 (Norge loam: fine-silty, mixed, active, thermic Udic Paleustolls). The Efaw 

location received supplemental water via surface drip tape. All experiments employed a 

randomized complete block experimental design with 13 treatments and three replications. Plots 

measured 6.09 m x 3.05 m.  Treatments included four different preplant N rates (0, 45, 90, and 

180 kg N ha
-1

) with 180 kg N ha
-1

 as a reference strip for NDVI measurements. Fertilizer 

applications, planting information, and harvest information is located in Table 1.  Nitrogen was 

applied as urea ammonium nitrate (28-0-0). Trials were planted with a 4-row John Deere (Moline, 

IL) MaxEmerge Planter with a row spacing of 0.76 m. Weed control was achieved via pre-

emergence and mid-season application of glyphosate [N-(phosphonomethyl) glycine].   

Plant distance measurements were collected at V8-V10 described by the leaf collar 

method. Measurements were made to the nearest centimeter by placing a measuring tape parallel
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with the row. Distance occupied by plants was made under the assumption that the plant in 

question occupies one-half the distance to the neighbor on either side.Distance between plants 

was calculated as follows (Martin et al. 2011): 

   [
       

 
 
       

 
]  

Where: D is the linear distance occupied by the i
th
 plant (cm); d(i-1),di, and d(i+1) are the distances 

to the i-1, i, and i+ 1 plants (cm). 

 Individual plant height measurements were also collected at V8-V10. Plant height was used to 

calculate a 5-plant competition adjustment factor (Cadj), which assumes that neighbors will 

compete for resources on both sides on the plant in question. This is a weighted comparison on 

the competitive ability of the third plant in the sequence (plant in question) to its neighbors. Cadj is 

calculated as follows (Martin et al. 2011): 
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Where: Cadj is the competition adjustment factor for the height of the plant in question Htpq is the 

height of the plant in question Ht(pq-2), Ht(pq-1), Ht(pq+1), and Ht(pq+2) are the heights of the pq-2, pq-

1, pq+1, and pq+2 plants, respectively. 

 NDVI data were collected with a GreenSeeker™ (N Tech Industries, Ukiah, CA) optical 

sensor mounted on a bicycle with the sensor head centered above the row in question. A shaft 

encoder on the rear wheel of the bicycle enabled NDVI measurements to be collected in 1 cm 

increments. Individual plant NDVI measurements were achieved by matching distance occupied 

by each specific plant to the corresponding NDVI readings.  
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Four methods of sidedress N application were used in this trial. Sidedress N rates were 

determined using the Sensor Based Nitrogen Rate Calculator (SBNRC) with the current 

Oklahoma State algorithm for prediction. Variable Rate on a by-plant basis (VRBP) where 

sidedress N was applied to individual plants based on NDVI, height, distance between plants, and 

Cadj. Sidedress N rates were calculated to match the area occupied by the plant in question. Also 

included was a uniform rate on a by-plant basis (URBP) where the average N rate was applied 

by-plant.  For this treatment, N applications were made to individual plants, but where all plants 

received the same sidedress N rate.  The uniform rate of N applied to the entire row (URER) 

treatment utilized the same the total amount of N applied in VRBP, but where N was applied over 

the entire row. This allows for all sidedress methods to receive the same total amount of sidedress 

N, but where the methods were different.  A zero N sidedress check was also included.  Sidedress 

N applications of urea ammonium nitrate (28-0-0) were made with a 1 mL syringe at the base of 

the corn plants or beside the row depending on the sidedress method. By-plant fertilizer N rates 

employed ranged from 8-206, 0-95, and 0-140 kg N ha
-1

 for LCB 2010, Haskell 2010, and Efaw 

2011, respectively.  

At physiological maturity, the center two rows were hand harvested from each four row 

plot.  Each individual ear was weighed from each plot. Corn ears were threshed in a Massey 

Ferguson 8XP experimental plot combine (AGCO Corp., Duluth, GA) equipped with a 

HarvestMaster weighing system (Juniper Systems Inc., Logan, UT) to obtain total plot weight and 

grain percent moisture. Grain moisture was adjusted to 15.5%. Grain sub-samples were collected, 

dried, and ground to pass a 140 mesh (100 µm) sieve.  Total grain N was analyzed with a LECO 

TruSpec (LECO Corp., St. Joseph, MI) dry combustion analyzer. A summary of all field work 

(Preplant application, planting, population, hybrid, sidedress N, and harvest)  for LCB 2010, 

Haskell 2010, and Efaw 2011 can be found in Table 1.
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CHAPTER IV 
 

 

RESULTS & DISCUSSION 

LCB, 2010 

Grain yield, NDVI collected at V8, grain N uptake, and NUE results for LCB, 2010 are 

reported in Table 2. Average grain yields at this site were 4408 kg ha
-1

, and there was a positive 

response to fertilizer N applied preplant.  Grain yields in treatments that received 0 kg N ha-1 

preplant and 42 kg N ha
-1

 were lower than the yield level in the control treatment (0 kg N ha
-1

). 

The highest yield level was observed at the 180 kg N ha
-1

 preplant rate, which had an average 

grain yield of 6586 kg ha
-1

. This was twice the yield of the lowest treatment 0 kg N ha
-1

 preplant 

and 42 kg N ha
-1

 sidedress applied using a variable rate on a by-plant basis at 3300 kg ha
-1

. This 

treatment also had the lowest NDVI collected at the V8 growth stage with 0.613. The treatment 

that received 90 kg N ha
-1

 preplant and 51 kg N ha
-1

 sidedress applied using a uniform rate on a 

by-plant basis was the highest yield when compared to VRBP and URER at the same rates.  

Across all sidedress methods, yields increased with increasing preplant N rate.  When 90 kg N ha
-

1
 was applied preplant with no sidedress application, it was the most efficient treatment in 

producing grain per unit of applied N with 19.3 kg ha
-1

 (accounting for the N in the check)  

The highest recorded nitrogen use efficiencies of 25% were observed when 90 and 180 

kg N ha
-1 

were applied preplant (Table 2). The 0 kg N ha
-1

 preplant and 42 kg N ha
-1

 sidedress 
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applied on a by-plant basis had a negative NUE, indicating that these treatments had lower yields 

than the 0 kg N ha
-1

 control  

Haskell, 2010 

Grain yield, grain N uptake, and NUE results for Haskell, 2010 are reported in Table 3.  

Average yields at this site exceeded 5500 kg ha
-1

, and where a positive response to applied 

fertilizer, preplant and sidedress was observed.  Yield increases over the check (0 preplant and 0 

topdress, 3720 kg ha
-1

) approached 3700 kg ha
-1

 (treatment mean of 7214 kg ha
-1

).  Applied N 

essentially doubled grain yields.   This treatment was 180 kg N ha
-1

 applied preplant, and that 

resulted in 19.4 kg grain per unit of N applied (after accounting for N in the check).  The most 

efficient treatment in terms of grain produced per unit of N applied was the variable rate applied 

by-plant (VRBP, treatment 1) with 53 kg grain increase per unit of N.  These benefits at the lower 

rates were expected. 

The most efficient treatment in terms of nitrogen use efficiency had a total N rate of 67 

kg N ha
-1

 (45 preplant,  22 sidedress N, kg ha
-1

), and where N was applied variably on a by-plant 

basis (VRBP).  This NUE was 64%.  All other treatments had NUE’s less than 50.  This 

demonstrated the combined benefits of split applying fertilizer N, and variable rate application on 

a by-plant basis.   When comparing the exact same N rate combination (45 preplant,  22 sidedress 

N, kg ha
-1

, but where N was applied using a uniform rate along the entire length of row, a grain 

yield increase of 1560 kg ha
-1

 was observed (treatment 5 minus treatment 7). 

It is important to note that these same advantages of applying N on a by-plant basis were 

not realized at the higher N rate (90 preplant, treatments 9-11).  This is likely because yield 

maximums were observed when the lower total N rate of 67 kg N ha
-1

 was applied (treatment 5).  

While smaller increases in yield above the 67 kg N ha
-1

 rate were recorded, they were not 

significantly higher.  It makes intuitive sense that the real benefits of by-plant N fertilization will 
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not be realized unless evaluated at or near the optimum N rate for maximum yield.  At N rates 

higher than that needed for maximum yield, the benefits of by-plant N fertilization would be 

masked by over application.  At rates lower than that needed for maximum yield, improved use 

efficiency would likely be observed, but the by-plant N benefits would be skewed to the lower 

end of the N response curve. 

Efaw, 2011 

Grain yield, NDVI determined at V8, grain N uptake, and NUE results for Efaw, 2011 

are reported in Table 4. Average grain yields at this site were 4913 kg ha
-1

, and having a positive 

response to preplant N fertilizer. Limited differences were found between any of the sidedress N 

methods.  Yield increases over the check (0 preplant and 0 sidedress, 3906 kg ha
-1

) approached 

2000 kg ha
-1

 (treatment mean of 6102 kg ha
-1

).  When 90 kg N ha
-1

 was applied preplant, it 

resulted in 24 kg grain per unit of N applied, accounting for N in the check.  A yield benefit was 

noted when N was applied sidedress, by-plant, using a uniform rate, for the 45 kg N ha
-1 

preplant 

treatment. The most efficient treatment in terms of grain produced per unit of N applied was 2 kg 

N ha
-1

 applied using a variable rate, on a by-plant basis (VRBP, treatment 1) with 282 kg grain 

increase per unit of N).  

The highest NDVI value was 0.751 at growth stage V8 was recorded for the 90 kg N ha
-1

 

preplant and 14 kg N ha
-1

 sidedress applied at a uniform rate to the entire row.  The lowest NDVI 

value (0.639) was recorded when 45 kg N ha
-1

 was applied preplant with 0 kg N ha
-1

 applied 

sidedress.  The check (0 kg N ha
-1

 total) had the second lowest NDVI at 0.642. All treatments 

receiving a total N rate of 2 kg N ha
-1

, regardless of sidedress method, had nitrogen use 

efficiencies that exceeded 100%.  The lowest NUE occurred at the 180 kg N ha
-1

 preplant 

treatment with 17%.   
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The Efaw 2011 location was under severe heat with water stress throughout the growing 

season. There were 37 days of greater than 37°C temperatures. This heat stress severely impacted 

growth during flowering and lowered grain yields. Supplemental water was supplied with surface 

applied drip tape to counteract the high heat and low rainfall during the summer. Grain yields 

decreased at the 180 kg N ha
-1

 rate, and the optimum N rate for grain yield was found at 90 kg N 

ha
-1

.  

Also, corn at this site was under heat and water stress when NDVI data was collected, 

and this contributed to the low values, even within the N-rich strip. This in turn resulted in low 

sidedress N recommendations (2, 9, and 14 kg N ha
-1

).  The high NUE’s noted when low N rates 

were applied is a function of how the difference method for estimating NUE is calculated. 

Discussion 

For the three locations where combinations of preplant, sidedress, and sidedress-methods 

were evaluated, differing results were the norm.  The impact of environmental conditions were 

clearly different at all three sites.  At Lake Carl Blackwell, noting that the highest yields were 

recorded at the highest preplant N rate of 180 kg N ha
-1

, somewhat restricted what could be 

deciphered for the methods of application that were evaluated.  It was hoped that the methods of 

application (variable rate, uniform rate by plant, uniform rate entire row) would be evaluated at or 

near the maximum yield.  This also has implications concerning spatial variability whereby the 

benefits of by-plant approach might be compromised if inherent variability overrides the ability to 

recognize scale.  Getting the average optimum N rate right will be critical if the benefits of a by 

plant approach are to be seen.   

At Haskell, the average N rate (sidedress) that was identified using the SBNRC was 

likely correct.  As a result the ability to distinguish difference between the sidedress methods was 
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enhanced.  At the higher preplant rates, the benefits of the mid-season by-plant approach were 

more difficult to discern. 
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CHAPTER V 
 

 

CONCULSIONS 

Over all sites, yields in general increased with increasing preplant N rate.  Within 

preplant N rates applied, sidedress N almost always increased yields.  By-plant sidedress N 

applications increased yields when the preplant N rate was optimized.  When preplant N rates 

exceed the optimum needed for maximum grain yields,  no benefits of by-plant N fertilization 

were observed.  For N rates lower than that needed for maximum yield, improved use efficiency 

was expected, but by-plant N benefits will be noted lower on the N response curve. With the 

exception of Haskell 2010, heat and water stress severely restricted corn grain yields.  

Furthermore, the precision at which mid-season prediction of corn grain yields could take place 

using NDVI, were clearly altered by the early season stress measurements.  If mid-season yield 

prediction is inaccurate, the ability to decipher the correct N rates using in season sensor 

measurements becomes equally cumbersome.  
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TABLES 

Table 1. Preplant nitrogen, planting, seeding rate, maize hybrid, sidedress nitrogen, and harvest 

date for Lake Carl Blackwell 2010, Haskell 2010, and Efaw 2011.  

Location Preplant N Planting Population Hybrid Sidedress N Harvest 

 (seeds ha
-1

)  

LCB 2010 April 15 May 25 86,500 Dekalb DKC52-59 June 30 Sept 16 

Haskell 2010 May 4 May 4 61,700 Dekalb DKC52-59 June 29 Aug 17 

Efaw 2011 April 6 May 4 56,800 Pioneer P0902XR June 13 Aug 9  
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Table 2. Analysis of variance and treatments means for corn grain yield, NDVI collected at V8, 

grain nitrogen uptake, and nitrogen use efficiency with different preplant nitrogen rates and 

methods of sidedress nitrogen fertilization, Lake Carl Blackwell, 2010. 

 

 Yield NDVI Grain N Uptake NUE
≠
 

Source of Variation  df  (mean squares)  

Replication  2  930142  0.003 83 27258** 

Preplant N  2 8819540**  0.033** 1475** 12979* 

Sidedress Method  3  178739  0.004  35 151 

Preplant * Sidedress Method  6  234428  0.003 52 84 

Error  22  4551123  0.002 89 2771 

 

Treatment 

Preplant N Sidedress N Method Yield NDVI Grain N Uptake NUE 

kg N ha
-1 

kg N ha
-1 

 kg ha
-1 

kg ha
-1

 %  

0 42 VRBP 3300 0.613 40 -63 

0 42 URBP 3483 0.643 41 -60 

0 42 URER 3767 0.621 45 -51 

0 0 None 3496 0.655 43 --- 

45 51 VRBP 3870 0.761 46 -3 

45 51 URBP 4072 0.709 49 0.1 

45 51 URER 4162 0.675 50 3 

45 0 None 3865 0.678 45 5 

90 51 VRBP 5048 0.730 61 12 

90 51 URBP 5687 0.790 71 19 

90 51 URER 4747 0.701 56 8 

90 0 None 5231 0.715 65 25 

180† 0 None 6586 0.765 87 25  

SED 550 0.036 7 43 

r
2
 0.68 0.70 0.64 0.61 

CV, % 15.9 6.4 18.6 -553 
 
SED – standard error of the difference between two equally replicated means. 

VRBP – variable rate of N applied on a by-plant basis. 

URBP – uniform rate of N applied on a by-plant basis. 

URER – uniform rate of N applied along entire length of row. 

None – no sidedress N was applied. 

† - not included in complete factorial arrangement of treatments. 

*, ** significant at the 0.05 and 0.01 probability level, respectively. 

≠ df computed using one less treatment (0-N check) 
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Table 3. Analysis of variance and treatments means for corn grain yield, nitrogen uptake, and 

nitrogen use efficiency with different preplant nitrogen rates and methods of sidedress nitrogen 

fertilization, Haskell, 2010  

 

 Yield Grain N Uptake NUE
≠
 

Source of Variation  df (mean squares)  

Replication  2  86663  29 7254** 

Preplant N  2 16943963**  3608** 2553 

Sidedress Method  3  689562  129 294 

Preplant * Sidedress Method  6  1383921  337 506 

Error  22  851162  180 824 

 

Treatment 

Preplant N Sidedress N Method Yield Grain N Uptake NUE 

kg N ha
-1

 kg N ha
-1

 kg ha
-1

 kg ha
-1  

%  

0 19 VRBP 4731 45 30 

0 19 URBP 3569 35 -5 

0 19 URER 4284 41 15 

0 0 None 3720 40 --- 

45 22 VRBP 6737 81 64 

45 22 URBP 5867 66 44 

45 22 URER 5177 59 41 

45 0 None 5560 62 50 

90 22 VRBP 5694 63 21 

90 22 URBP 6569 75 33 

90 22 URER 7148 90 46 

90 0 None 5947 64 28 

180† 0 None 7214 92 29  

SED 753 11 23 

r
2
 0.70 0.71 0.65 

CV, % 17.0 22.3 85.9 
 
SED – standard error of the difference between two equally replicated means. 

VRBP – variable rate of N applied on a by-plant basis. 

URBP – uniform rate of N applied on a by-plant basis. 

URER – uniform rate of N applied along entire length of row. 

None – no sidedress N was applied. 

† - not included in complete factorial arrangement of treatments. 

*, ** significant at the 0.05 and 0.01 probability levels, respectfully. 

≠ df computed using one less treatment (0-N check) 
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Table 4. Analysis of variance and treatments means for corn grain yield, NDVI collected at V8, 

grain nitrogen uptake, and nitrogen use efficiency with different preplant nitrogen rates and 

methods of sidedress nitrogen fertilization, Efaw, 2011. 

 

 Yield NDVI Grain N Uptake NUE≠ 

Source of Variation  df  (mean squares)  

Replication  2  3171006*  0.003 605** 256 

Preplant N  2 4248514**  0.0006 1317** 51902** 

Sidedress Method  3  428443  0.005 41 7657** 

Preplant * Sidedress Method  6  960059  0.005 160 8762** 

Error  22  772994  0.002 125 339 

 

Treatment 

Preplant N Sidedress N Method Yield NDVI Grain N Uptake NUE 

kg N ha
-1 

kg N ha
-1 

kg ha
-1 

kg ha
-1 

%  

0 2 VRBP 4471 0.692 59 403 

0 2 URBP 4293 0.723 58 101 

0 2 URER 4336 0.668 55 242 

0 0 None 3906  0.642 50 --- 

45 9 VRBP 4461 0.685 64 24 

45 9 URBP 5594 0.746 76 45 

45 9 URER 4610 0.652 63 24 

45 0 None 4660 0.639 63 29 

90 14 VRBP 4636 0.658 67 17 

90 14 URBP 5141 0.675 71 21 

90 14 URER 5888 0.751 84 33 

90 0 None 6102 0.689 82 36 

180† 0 None 5771 0.650 80 17  

SED 718 0.036 9 15 

r
2
 0.56 0.55 0.64 0.97 

CV, % 18.2 6.5 16.9 34.8 
 

SED – standard error of the difference between two equally replicated means. 

VRBP – variable rate of N applied on a by-plant basis. 

URBP – uniform rate of N applied on a by-plant basis. 

URER – uniform rate of N applied along entire length of row. 

None – no sidedress N was applied. 

† - not included in complete factorial arrangement of treatments. 

*, ** significant at the 0.05 and 0.01 probability level, respectively. 

≠ df computed using one less treatment (0-N check)
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