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INTRODUCTION 

 
“Thus, analysis of soil solution composition is frequently more instructive than is 

analysis of whole soils or soil extracts. 

   -Jeff Wolt (1994) 

 
The American Society of Agricultural and Biological Engineers define subsurface 

drip irrigation (SDI) as the “application of water below the soil surface through emitters, 

with discharge rates generally in the same range as drip irrigation” (Camp, 1998).  

Subsurface drip irrigation systems have been utilized since the 1920s, however systems 

similar to those used today were not developed until the late 1940s (Camp, 1998).  

During the 1970s SDI systems attracted scientist attention as well as producers driving 

technological growth.  Initial work was done in Israel where limited water supplies 

required development of irrigation methods that enhanced water use efficiency for 

agricultural production (Oron et al., 1991).  Current SDI systems are purported to be up 

to 95 % efficient at supplying water to the root zone as compared to more popular 

systems such as center pivot and surface drip irrigation with reported efficiencies of 70 

and 90 % respectively.   

Lamm (2002) stated that SDI allows for an increase in water use efficiency, the 

ability to use degraded water, a lower risk of contamination reaching other water sources, 

and a more homogeneous application of water.  Several studies done in Israel have shown 

that contamination of produce from waste water is negligible when the waste is applied 
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through SDI systems (Shelef, 1991; Oron et al., 1992; Oron, 1996; Campos et al., 2000). 

Lamm (2002) discussed advantages and disadvantages of using subsurface drip 

irrigation systems which were grouped into three categories; water or soil issues, 

cropping or cultural practices, and system infrastructure.  For water or soil issues SDI 

provides several advantages including water use efficiency by reducing soil evaporation, 

surface runoff, or deep percolation while improving infiltration and water storage.  Proper 

utilization of a system can partially eliminate evaporation from the soil surface and 

decrease the number of weeds present. The use of SDI also provides uniform application 

of irrigation or fertilization within the field and allows for use of waste waters while 

decreasing the risk of contact and contamination at the surface. 

Evaluation of advantages associated with cropping cultural practices has shown 

that yields and crop quality have improved in several irrigation systems.  Fertigation, the 

application of fertilizer with irrigation water, is also a common practice associated with 

SDI systems.  In this practice, fertilizers are applied in the root zone where they are most 

needed by plants without coming in contact with crop canopy or the soil surface (Haynes, 

1985).  This, in turn, makes it possible for improvements in weed control and overall 

improvements in management of a production facility. 

Advantages associated with system infrastructure include the likelihood for 

automation allowing for fewer individuals required to operate and maintain the system.  

Subsurface drip irrigation systems can be more versatile than more common systems such 

as center pivots which allow for multiple designs to fit the shape of any given fields while 

systems such as center pivot are capable of covering only a predefined circular area.  The 

use of subsurface drip irrigation also allows equipment access to the field during 



 3

irrigation events, as the surface is dryer and no equipment is located on the surface. 

Disadvantages to be considered when examining the usefulness of a SDI system 

include site characteristics where a system is being installed.  In areas with coarse 

textured soils the wetting pattern may not be sufficiently distributed for crop production.  

In areas where the systems exceed the soils ability to distribute the water evenly a 

chimney effect or surfacing may occur placing humans and other organisms in direct 

contact with waste water or to downward movement of contaminants to groundwater 

sources (Ben-Gal and Lazarovitch, 2003).  The location of irrigation tapes below the 

surface is disadvantageous as it is difficult to monitor the system for uniform application 

as well as locating and repairing any problem areas such as leaks, breaks, or clogs in the 

system.  Tillage practices are also limited based on the depth at which a system is placed 

because it is possible to damage an irrigation tape during cultivation.  In areas inhabited 

by large populations of burrowing animals potential exists for damage to occur to the 

irrigation tapes. 

Other issues which require furthur examination include the use of subsurface 

systems for seed germination.  However, as surfacing should not occur in a properly 

designed system, another irrigation method may be required to establish a crop before 

subsurface systems can be utilized.  Charlesworth and Muirhead (2003) found that 

subsurface systems would require more water than most sprinkler systems for plant 

establishment.  However, they also found that in their particular location sufficient 

surfacing was produced to assist in the establishment of the crop.  While it was possible 

for establishment to occur using subsurface systems water use efficiency was reduced 

during the establishment period.  Potentially the most prohibitive disadvantage for a 
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subsurface system is the initial cost which includes installation and maintenance.  High 

input cost in areas where adequate water is not always available may preclude the 

ultimate usefulness of the system.   

 

Aquifer Use in Southern High Plains 

The Southern High Plains region includes Cimarron, Texas, and Beaver counties 

in the Oklahoma Panhandle which overlay the High Plains, or Ogallala Aquifer that 

serves as the primary water source.  This region receives between 380 to 560 mm of 

precipitation per year resulting in limited surface water sources for agricultural 

production.  The lack of adequate water supply requires producers to utilize alternatives 

to supplement current water sources.  The Ogallala Aquifer, a non-renewable water 

source, supplies over 90 % of the water used to irrigate approximately one fifth of U.S. 

cropland (Guru and Horne, 2000).  As early as 1920 farmers were digging shallow wells 

to access groundwater for irrigation, but in 1931 during a particularly dry period, deeper 

wells were required by producers not fortunate enough to be located in flood plains of the 

region.  As of 1984, underground wells in Texas County were reported to supply 

irrigation water for nearly 20,234 hectares (50,000 acres).  Specifically Texas County 

was reported to use approximately 957,870 m3 (254 million gallons) of water per day 

from groundwater sources for irrigation (USGS, 2000). However, the continual 

withdrawal of groundwater is cause for concern as recharge rates average only 25 mL a 

year to replace the dwindling supply of water (Kromm, 2007).  For this reason, producers 

are looking to alternate sources such as effluent from local animal producers to 

supplement irrigation needs. 
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Swine Production 

Swine production is a common practice enlisted in many of the states considered 

to be part of the Cornbelt as well as those states located along its outer edge, including 

Oklahoma.  The National Agricultural Statistical Service (NASS), the January 2004 

report estimates 2,340,000 pigs and hogs in the state of Oklahoma, of which 1,490,000 

were located in three counties (Cimarron, Texas, and Beaver) and are all located in the 

panhandle.  Swine effluent accounts for approximately 12 to 15% of the total livestock 

waste produced in this area (Brumm, 1998).  Most swine production systems in this 

region utilize anaerobic lagoons to digest the solid waste and allow it to be handled as a 

liquid (Karlen et al., 1998).  This process allows for 70 to 90% of the N in waste to be 

volatilized; however there still exists the possibility for N and P to reach ground or 

surface waters.   Brumm (1998) stated that the number of producers moving towards 

confined production requiring the use of lagoons to treat manure produced on site was 

increasing.  Increased confinement has led to increased requirements for dietary 

supplements (NRC, 1998).  While supplementing helps produce healthier animals, there 

is an accounting for the increased concentrations of nutrients and trace elements such as 

Cu, Zn, and Cr produced on site.  To mitigate this dilemma several producers land apply 

effluent as a source for either a solid fertilizer or utilize the liquid for irrigation.  

However, continuous applications have led to the accumulation of nutrients and trace 

metals in soil profiles and then become susceptible to leaching or erosion into local water 

bodies.  Many of the problems associated with utilization of animal waste are a direct 

result of elevated concentrations of nutrients including N, P, Ca, Cu, and Zn, in swine 

diets.   
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Supplements added to increase dietary intake often cause excess nutrients in the 

waste produced.  Soybeans are added to increase quantities of amino acids and also 

supply excess lysine which increases N concentrations in the effluent.  Synthetic lysine 

has been shown to decrease the amount of soybean required.  The lack of phytase enzyme 

allows animals access to only 10 to 15 % and 25 % of phytate found in corn and soybean 

respectively (Brumm, 1998).  Low phytate corn has been shown to decrease levels of P 

excreted but is not currently economically feasible for farmers to produce.  However the 

addition of phytase enzyme to feed has shown to decrease quantities of P excreted by 30 

to 60 % (NRC, 1998).  Zinc, Cu, and Ca are also added as supplements to improve 

growth rates of swine; however concentrations often exceeded animal requirement 

resulting in larger amounts excreted through the waste. 

 

Water and Water Soluble Nutrient Movement 

Movement of water and nutrients through the soil is a function of soil’s saturated 

hydraulic conductivity, the rate at which water is discharged, and amount of time the 

system is allowed to operate (Haynes, 1990).  Bar-Yosef and Sheikholslami (1979) found 

that while water discharged from a point source moved through soil symmetrically, sandy 

soils exhibited more vertical movement than was found in clayey soils.  Increasing the 

discharge rate resulted in more horizontal movement while decreasing discharge rate 

produced more upward movement (Haynes, 1990; Li et al., 2003, Li et al., 2004).  Li et 

al. (2003) also found that increasing the volume of water increased the depth to which 

water moved.   

Nutrient movement is also a function of the soils cation exchange capacity (CEC) 
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and its current nutrient status.  Soils with high CEC’s are able to absorb larger quantities 

of positively charged ions, while soils with lower CEC’s do not adsorb nutrients and 

leaching is more likely to occur.  Nutrient distribution is also highly dependent on the 

form in which it is applied as is the case of N.  Haynes (1990) found that NH4
+-N 

concentrations increased directly below drip irrigation emitters while NO3
- and urea were 

more evenly distributed throughout the profile.  However, Li et al. (2004) also found that 

NO3
--N tended to accumulate at the wetting front regardless of when the fertilizer 

application occurred, due to the decrease in water content with respect to NO3
- 

concentrations.  Cases of denitrification were found directly below emitters of surface 

trickle irrigation due to the reducing environment which result from saturated conditions.  

This decreases the losses of N through NO3
- leaching.  The reducing conditions also 

decrease the rate of nitrification allowing N to remain in the form of NH4
+ thus 

decreasing losses.   

Orthophosphate distribution is dependent on the phosphate adsorption capacity of 

the soil (Haynes, 1985).  The concept that P is immobile within the soil leads to the 

assumption that P applied through an irrigation system will not move far beyond the point 

of discharge resulting in decreased concentrations in soil solution with increased distance 

from the application point.  Bar-Yosef and Sheikholslami (1979) found that in a clayey 

soil, phosphate concentrations were highest close to the application source with little 

vertical movement when using surface trickle irrigation, supporting this theory.  

However, several studies (Rauschkolb et al., 1976; Bacon and Davey, 1982; Ben-Gal and 

Dudley, 2003) found that P movement increased when applied through drip irrigation.  

Ben-Gal and Dudley (2003) state that increased moisture and irrigation frequency 
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increased P mobility and availability indicated by increased concentrations of P within 

the plant material under continuous irrigation.  Bacon and Davey (1982) found that P 

availability was cyclic based on the irrigation frequency for a given site.  Increased P 

solubility following irrigation cycles may have been due to reducing conditions which 

formed under saturated conditions.  The anoxic environment resulted in the reduction of 

ferrous iron associated with naturally occurring phosphate to ferric iron releasing the 

phosphate.  This release of phosphate may explain the lower than expected 

concentrations of phosphate closer to the irrigation emitters.   

In the case of calcium, copper, and zinc, each is selectively removed from 

solution and retained by various soil constituents including CEC and mineral content.  

Calcium is common is arid environments due to low rainfall and typically found in the 

form of calcite (CaCO3), Dolomite (CaMg(CO3)2), and gypsum (CaSO4).  Calcium is 

readily removed from soil solution by electrostatic forces (CEC) but dependent on the 

ions present in solution.  High concentrations of calcium in solution can saturate 

exchange sites resulting in little initial movement of calcium from the application point.  

Soil copper concentrations range from 1 to 40 mg L-1, while soil solution concentrations 

typically range from 10-8 to 10-6 M (Havlin et al., 1999).  Copper availability is 

determined predominantly by solution pH with soil solution concentrations remaining 

very low.  Copper is one of the most strongly sorbed divalent metals on iron and 

aluminum oxides and is chemically adsorbed by layer silicates again resulting in 

increased concentrations at application points.  Globally, zinc concentrations within the 

soil typically range between 10 and 300 mg L-1 while zinc concentrations in soil solution 

ranges between 0.002 and 0.07 mg L-1 (Havlin et al., 1999).  Zinc availability is also 
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determined by pH, decreasing as pH becomes more alkaline.  It is capable of forming 

stable complexes with SOM components, becoming immobilized by high molecular 

weight organic substances (lignin) and forming complexes with soluble organic 

substances resulting in insoluble salts.  In the presence of short-chain organic acids and 

bases, zinc becomes soluble and mobile within soil solution.   

 

Lysimeters 

In Litaor’s (1988) review of soil solution sampling the discussion focuses on the 

methodology utilized in previous studies.  The basic premise of soil solution sampling 

has not changed, however paraphernalia has gone through several modifications.  Basic 

suction lysimeters are composed of a porous cup, a sample storage area, and tubing which 

allows for removal of solution (Parizek and Bell, 1970).  Final design and dimensions are 

based on the requirements for the experiment.  Lysimeter placement must be done with 

the greatest care to avoid introducing conditions dissimilar to surrounding areas.  Initial 

suction lysimeters were constructed using porous ceramic cups, which are still being used 

today.  New cup materials available include alundum, glass fiber, and Teflon each with 

its own advantages and disadvantages.  Suction methodology is also an important issue 

under much debate.   

Different materials offer many solutions to various concerns associated with 

solution sampling.  Porous ceramic cups are believed to be problematic when sampling 

for constituents including certain forms of P and N, and those materials which may be 

found in the ceramic used.  Proper preparation, done prior to placement, has been shown 

to reduce the negative effects associated with use of ceramic cups.  Glass fiber lysimeters 
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have been shown to have little effect on the chemistry of soil solution; however they must 

be handled with extreme care.  The fragility of glass fiber and alundum lysimeters makes 

them ill fitted for use in agriculturally active fields as well as in areas in which the ground 

may experience freezing conditions resulting in broke cups.  Teflon, also shown to have 

little effect on the chemistry of the soil solution, can have problems producing adequate 

samples in an unsaturated zone.   

Hansen and Harris (1975) discuss the use of porous ceramic cup lysimeters citing 

two methods of vacuum use which may account for some of the variations found in 

results.  Specifically, the concept of a falling vacuum method is introduced.  In this 

method a vacuum is placed on the lysimeter; the lysimeter is sealed and allowed to draw 

solution from the surrounding soil.  Pressure within the lysimeter decreases as liquid is 

drawn into the cup until reaching equilibrium with the surrounding environment (Hansen 

& Harris, 1975).  This method allows an adequate sample to be obtained over a given 

period of time without disturbing the site.   

One method suggested to decrease the effects of the ceramic cup sorption on 

solution chemistry includes rinsing cups with an acid before placement in the field 

(Grover and Lamborn, 1970).  However, these results were based on the cups available at 

the time of the study, thus may not hold true with current sources of porous ceramic cups.  

Grover and Lamborn (1970) examined the results of rinsing porous ceramic cups with 

either de-ionized water only or hydrochloric acid followed by water.  While 

concentrations of Ca remained high, contamination of K and Na decreased significantly 

as did the effects of orthophosphate adsorption.  McGuire et al. (1992) also found that 

acid washing produced lower absorption rates of trace metals when compared to water 
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rinsed samples.  However they also found that decreased absorption rates occurred in 

lysimeters rinsed with only water after they had been pretreated or treated in the field 

with a sample containing low concentrations of constituents examined.  Thus, by rinsing 

the cups with water and pre-treating them some of the damaged associated with acid 

rinses can be avoided.  These findings are supported by SoilMoisture documentation 

stating that due to changes in chemical composition of the ceramics used, acid washing 

was no longer recommended.  Hansen and Harris (1975) stated that one source of 

discrepancy in the obtained solution may have resulted from variation in the ceramic cups 

used for sampling.  Sorption of orthophosphates resulted in decreasing concentrations; 

however NO3
-, susceptible to screening, did not seem to be affected. 

Hornbuckle (2004) examined salt distribution associated within the same 

subsurface drip irrigation system.  In this study eighteen core samples were removed 

from three treatments, allowed to dry, and were rewetted to remove extracts for analysis.   

No significant increases of Na, Ca, or Mg were found in the system after one year of 

collection.  Analysis of samples from the field receiving the highest application rate (2.63 

L h-1) indicated an exaggeration of the concentrations due to the high rate flow from 

emitters.  Analysis of samples from the field receiving the lowest application rate (0.73 L 

h-1) indicated a large amount of gravitational flow leading to leaching through the profile 

with higher concentrations at lower depths.  Samples taken following rainfall events 

showed no increase in movement down through the profile.  A shallow caliche layer at a 

depth of 61 cm was believed to act as a confining layer which kept examined parameters 

within the root zone. 
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Objectives and Hypothesis 

As needs for agricultural production increase, production in less desirable 

environments becomes an increasing trend worldwide.  With increased production comes 

the requirement for more plant needs including nutrients and water.  In areas where 

excess nutrients and water are scarce, waste products, such as swine effluent, can serve as 

supplements for both moisture and nutrient requirements.  However, with application of 

waste products comes the concern that mismanagement may lead to far reaching 

environmental impacts.  Monitoring nutrient movement through the soil profile 

surrounding a SDI system provides producers with information needed to make 

management decisions. 

The primary objective of this study was to examine the extent of nutrient transport 

following emission from a subsurface drip irrigation tape.  Nutrients examined included 

NO3
--N, NH4

+-N, orthophosphate (OP), Ca, Cu, and Zn at four depths within the soil 

profile.  Understanding of nutrient movement will aid in the design and development 

when installing a SDI system as well as the use of alternative irrigation sources.  This 

further aids in development of an irrigation method which would maximize economical 

benefits with enhanced crop production and minimal negative impact to the environment. 

It is hypothesized that at emitter application rates of 0.72 L h-1 concentrations of 

NO3--N, NH4
+-N, orthophosphate, calcium, copper, and zinc will be uniformly 

distributed throughout the soil profile.  At the 2.38 L h-1 emitter application rate, NO3--

N concentrations are hypothesized to increase with distance from the irrigation tape as 

the NO3
--N moves with the wetting front.  Concentrations of NH4+-N, OP, Ca, Cu, and 

Zn are expected in be greatest near the irrigation tape at the point of application.  
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MATERIALS AND METHODS 

Site 

Located in Goodwell, Oklahoma, the Oklahoma Panhandle Research and 

Extension Center supplied research plots for the installation of SDI system described by 

Hornbuckle (2004).  In this semi-arid ecosystem which receives on average only 447 mm 

of precipitation a year irrigation becomes an integral component of agriculture production 

operation.  The dominant soil on the research station is a Richfield Clay Loam (Fine, 

smectitic, mesic Aridic Argiustolls), considered to be the most fertile soil in Texas 

County (SSS, 1984).  This soil is less susceptible to runoff and is capable of storing large 

quantities of water; however, during heavy rain events it is susceptible to sheet erosion.    

Four larger plots (measuring 182.9 m by 18.3 m) were designed to simulate the different 

flow rates using swine effluent and provide visual demonstrations for local farmers 

(Figure 1).  Flow rates range from the highest emitter flow rate of 2.38 L h-1 (0.63 gal h-1) 

for the field designated 49-50 to the lowest emitter flow rate of 0.72 L h-1 (0.19 gal h-1) 

for the field designated 53.   
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Figure 1. Layout of large subsurface drip irrigation plots located at OPREC used for 

demonstration. 
 

The four larger plots are currently used for a corn/soybean rotation.  In 2006 Corn 

(Zea mays) was grown on the field irrigated by irrigation tapes with an emitter discharge 

rate of 2.38 L h-1.  The field utilizing an emitter discharge rate of 0.72 L h-1 produced 

soybean (Glycine max).  Effluent applications occurred on four occasions; June 6th, June 

20th, July 26th, and August 9th.  On average, the field utilizing the highest discharge rates 

required two hours and the field using the lowest discharge rate required eight hours for a 

complete effluent application, approximately 17 cubic meters.  Supplemental irrigation, 

using groundwater, occurred daily, with fields on a rotational schedule.  Beginning in 

2006 sulfuric acid and urea sulfate were added at the rate of 0.004 cubic meter (1 gallon) 

per 22 cubic meters (5,400 gallons) of water added. 

 

Lysimeters 

Following a similar design as used by Hansen and Harris (1975) as well as 

SoilMoisture, lysimeters were constructed using porous ceramic cups (SoilMoisture®*), 

polyvinyl chloride (PVC) pipe, PVC caps, ¼ inch X ¼ inch barb to MIP adapter fittings, 
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and polyethylene tubing (Figure 2a).  Three coats of epoxy supplied by SoilMoisture 

were used to seal the top rims of the cups as well as to ensure a proper fit within the PVC 

pipe, allowing for an air tight seal for creation of a vacuum.  Polyvinyl chloride pipe was 

cut to length to allow for lysimeters at depths of 15, 30, 46, and 61 cm (6, 12, 18, and 24 

inches).  A hole was drilled into the end of each PVC cap into which a fitting was 

inserted and sealed with a silicone sealant.  This fitting, located at the soil surface 

allowed for sample collection from the lysimeters.  Epoxy was used to cement ceramic 

cups to the PVC pipe with a cap attached to the opposite end.  Polyethylene tubing ran 

the length of the PVC pipe from the bottom of the fitting to the ceramic cup allowing for 

removal of solution samples.  The barb fitting located at the top of the lysimeters was 

fitted with a length of tubing to allow for attachment to the manifold as well as sealing 

the lysimeters following sampling.   



 16

a.)  

 

b.)  

 
Figure 2. Materials used for lysimeter construction seen in part a included A.) a porous 
ceramic cup, B.) a length of polyethylene tubing, C.) a fitting, and D.)PVC pipe with cap 
attached.  Part B depicts fully constructed lysimeters consisting of a ceramic cup, PVC 
pipe, cap and fitting.  Figure illustrates relative size for 4 depths measured. 
 

Completed lysimeters (Figure 2b) cured for 2 days to allow the epoxy to harden 

and ensure the silicone seals had set.  A random sampling of ten ceramic cups were 

weighed to obtain a dry weight and then submerged in individual beakers containing 250 

milliliters of de-ionized water for 72 hours.  Ceramic cups were weighed to obtain their 

wet weight and pore volume was determined from the amount of water absorbed.  Based 

on an average of 7.6 mL of pore space, 100 mL (15 pore volumes) were drawn through 

each completed lysimeter to remove any loose particles from within the lysimeters as 

well as within the ceramic cups.  Additional lysimeters were tested prior to installation in 

the field by drawing a sample of de-ionized water through the cups.  These samples were 

then analyzed to determine the concentration of potential contaminants which may have 

been the result of the ceramic cups. 
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Lysimeter Placement 

Two treatments based on flow rate from the emitters were chosen for this 

experiment.  A group of 16 lysimeters were placed at each end (inlet and distal) of a 

single irrigation tape.  The position of the emitter was determined by locating an emitter 

outside the study field and then measuring into the field to locate the appropriate set of 

emitters.  These emitters were located within the area planted to include the effects of 

plant uptake in the measurements taken.  Due to the disturbance caused when locating 

emitters this method was chosen to insure as little disturbance to the chosen area of study.  

Flags were used to mark the location of the irrigation tapes and the emitters to ensure 

they would be easily located when lysimeters were being placed.  Upon transport to 

Goodwell, OK, lysimeters were placed in distilled water for 24 hours.  The first row of 

lysimeters was placed in line with an emitter located within the area of planting.   

All holes were drilled using a Giddings Hydraulic Probe to insure uniform 

opening sizes.  The soil core from an individual hole was placed in a bucket, pulverized 

and wetted to create a slurry which ensured contact between the ceramic cup and the 

surrounding soil.  The slurry was then placed in the hole, followed by the lysimeter and 

any remaining space was filled in with dry soil from the surface around the hole.  Once a 

row of lysimeters were completed a cover (consisting of a piece of two inch PVC pipe 

sliced in half and painted orange) was placed over the fittings to protect the lysimeters 

and mark their location.   
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Figure 3. Basic lysimeter layout for each replication.  Each letter, A, B, C, and D, 
indicates a depth of 15 cm, 30 cm, 45 cm, or 60 cm which were randomly assigned for 
each rep. Center of diagram represents location of subsurface drip tape with emitters 
marked with black squares. 
 

The layout design (Figure 3) for lysimeters was developed to allow for 

randomized lysimeter placement and based on the assumption of uniform water 

movement through the soil profile from a subsurface drip irrigation source.  It was 

determined that a total of sixteen lysimeters (Figure 3) would be used for each rep, with a 

total of 32 lysimeters per treatment.  This arrangement allowed for sampling to occur at 

and between two emitters on a given irrigation tape, as well as at two distances from the 

irrigation tape.  The depths and locations of each lysimeter followed a set pattern in 

which the depths were randomized to ensure that each depth was sampled at all possible 

locations between the emitters and away from the irrigation tape.  Distance between each 

lysimeter was determined by the spacing between to adjacent emitters.  For irrigation tape 

lines with an emitter rate of 2.38 L h-1 emitters were spaced 60 cm apart.  To ensure equal 

area was measured by each lysimeter spacing was determined to be 20.32 from the 

irrigation tape and between each lysimeter.  Irrigation tape lines with an emitter rate of 

0.72 L h-1 and emitters spaced 46 cm apart required lysimeter spacing to be reduced to 15 
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cm.  Figure 4 illustrates in three dimensions the placement of lysimeters for each of the 

four replications.  Irrigation tape location is indicated by a black line through each image.  

Each asterisk indicated the location of a ceramic cup associated with a lysimeter located 

at depths of 15, 30, 45, or 60 cm.   

 

 

 

 

 

 

 

     a.)                 

 

 

 

 

 

 

 

     

 

 

 

b.) 

 

 
Figure 4. Three dimensional image showing location of ceramic cups of each lysimeter 
for the a.) inlet end of irrigation tapes with discharge rate of 2.38 L h-1 and the b.) inlet 
end of irrigation tapes with discharge rate of 0.72 L h-1.  Line located at the center of 
each figure indicates that location of the irrigation tape with asterisks marking each 
ceramic cup associated with a lysimeter.
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Sampling Procedure 

Following placement of lysimeters, suction was placed on each lysimeter to allow 

the soil solution to pass through the ceramic cup.  This was done to pre-condition the 

lysimeters before any soil solution was removed for analysis.  To “pull” a sample from 

the lysimeter polyethylene tubing at the soil surface was attached to a fitting on the 

manifold which led to an individual collection bottle.  A KNF Neuberger pump was used 

to create a vacuum within the collection bottle that in turn created a vacuum within the 

lysimeter and draw water from the surrounding soil profile.  As water passed through the 

ceramic cup and entered the inner cavity of the lysimeter, the vacuum pressure within the 

lysimeter decreased until reaching equilibrium with the surrounding soil.  A second 

vacuum was introduced approximately 24 hours following initial vacuum to remove the 

solution via the length of tube within the lysimeter.  Any sample within the lysimeter was 

collected in collection bottles on the surface.  When an adequate amount (approximately 

40 mL) of sample had been collected, the vacuum was removed and the lysimeter was 

sealed until the next sampling event.  The first samples were extracted in May of 2006 

following an irrigation event but prior to any application of animal waste.  This was done 

to collect concentrations of any background levels before wastewater was applied to the 

fields.  Subsequent solution extractions were obtained at the time of effluent irrigation 

events on June 7th, June 21st, July 26th, and August 9th.  Samples of swine effluent used 

for applications was obtained before reaching the filtering mechanism, acidified using 

sulfuric acid and transported to the laboratory for analysis.   
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Sample Analysis 

Electrical conductivity and pH were measured within 24 hours of removal using 

Vernier EC and pH probes with a handheld interface.  Solution samples were acidified 

with sulfuric acid to preserve samples for transport.  Samples were immediately 

refrigerated and transported to the laboratory for analysis.  All samples were analyzed for 

NO3
--N, NH4

+-N, and orthophosphate using a Lachat auto flow injection analyzer.  Ca, 

Cu and Zn concentrations were obtained using inductively coupled argon plasma. 
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RESULTS AND DISCUSSION 

 

Background Concentrations 

Samples obtained from effluent prior to application served to provide 

concentrations (Table 1) of nutrients supplied via SDI.  Analysis was determined to 

provide known concentrations of added nutrients.   

Table 2 showed nutrient concentrations on May 14th, prior to initial effluent 

applications for the 2006 season.  This data was used to examine potential increases 

beyond levels associated with the site resulting from effluent application.   Nutrient 

concentrations following effluent applications (Appendices B, O, BB, and CC) were 

greater than those found in soil solution in all cases except calcium and nitrate-nitrogen 

(NO3
--N).  This decrease is believed to result from the sorption of elements to soil 

particles as solution moves through the profile as well as plant uptake as the growing 

season progresses.  The increase in NO3
--N may be the result of nitrification of 

ammonium occurring prior to obtaining solution samples is obtained.  Increased calcium 

concentrations are likely due to high calcium associated with surrounding soil. 
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Table 1. Average (±SD) pH values, concentrations of selected nitrogen, phosphorus, trace elements, and EC content in acidified and 
non-acidified swine effluent used for application prior to filtration and application.  Average data includes samples obtained from 
2006-2008 effluent applications. 

Date pH NO3
--N NH4

+-N OP Ca Cu Zn EC 

  ---------------------------------------------------------------------mg L-1--------------------------------------------------------------------- dS m-1 

17-May-06* 8.60(±0.0) 525(±118.8) 698(±18.4) 30.80(±3.7) 41.01(±14.5) 1.14(±0.8) 7.83(±5.6) 8.3(±0.0) 

n= 2 2 2 2 2 2 2 2 

19-Jun-06†‡ 8.60 0.51 702.00 22.60 136.40 1.23 10.74 8.3 

19-Jun-06†§ 8.60 0.34 707.00 40.00 131.40 1.22 10.36 8.3 

Average‡ 8.19(±0.4) 0.42(±0.1) 392.00(±253.3) 22.84(±4.7) 72.63(±42.7) 1.22(±1.1) 4.46(±4.2) 6.9(±1.1) 

n= 4 3 3 4 4 4 4 4 

Average § 8.18(±0.4) 0.47(±0.3) 385.3(±278.7) 28.02(±11.9) 78.4(±35.4) 1.61(±1.2) 4.36(±4.0) 6.8(1.1) 

n= 4 3 3 4 4 4 4 4 
* Samples taken from single stage lagoon. 
† Only one data point available for analysis resulting in no standard deviation. 
‡ Samples were not acidified prior to analysis. 
§ Samples were acidified prior to analysis. 
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Table 2. Element concentration and pH (avg±SD, mg L-1) in soil solution on 14 May 2006 for emitter application rates of 2.38 and 
0.72 L h-1 averaged by depth.   
 

Emitter 
Rate Depth pH NO3

--N NH4
+-N OP Ca Cu Zn EC 

L h-1 cm  ------------------------------------------------mg L-1------------------------------------------------ µS cm-1 

2.38 15 8.1 (±0.4) 25.3 (±17.3) 0.4 (±0.6) 1.6 (±1.0) 90.2 (±22.0) 0.0 (±0.0)* 0.1 (±0.1) 1784.0 (±1163.0) 

n=  4 4 4 3 3 3 3 3.0 

 30 8.5 (±0.3) 39.9 (±11.1) 0.4 (±0.4) 1.7 (±0.9) 165.8 (±38.6) 0.0 (±0.0) * 0.3 (±0.3) 2641.5 (±436.6) 

n=  4 4 4 3 3 3 3 3 

 45 8.2 (±0.5) 29.8 (±24.2) 0.5 (±0.5) 1.6 (±0.2) 144.2 (±34.7) 0.0 (+0.0) * 0.5 (±0.6) 1541.0 (±525.6) 

n=  4 4 4 3 3 3 3 3 

 60 8.2 (±0.1) 9.9 (±12.0) 0.7 (±1.3) 1.0 (±0.5) 123.8 (±20.1) 0.0 (±0.0) * 1.2 (±2.2) 2181.9 (±1018.9) 

n=  4 4 4 4 4 4 4 4 

          

0.72 15 8.4 (±0.2)  20.6 (±14.0) 0.2 (±0.2) 1.6 (±0.1) 153.3 (±11.5) 0.0 (±0.0) * 0.3 (±0.2) 1173.9 (±62.6) 

n=  4 4 4 4 4 4 4 4 

 30 8.4 (±0.3) 10.7 (±2.9) 0.0 (±0.0) * 1.7 (±0.6) 104.0 (±1.2) 0.0 (±0.0) * 0.1 (±0.0) 970.5 (±58.4) 

n=  3 3 3 2 2 2 2 2 

 45 8.2 (±0.3) 26.3 (±10.5) 0.1 (±0.1) 1.0† 112.5† 0.0† 0.1† 1116.0† 

n=  2 2 2 1 1 1 1 1 

 60 7.8 (±0.0) 53.4 (±24.7) 0.2 (±0.3) 1.4 (±0.4) 168.9 (±39.7) 0.0 (±0.0) * 0.3 (±0.3) 1593.9 (±277.4) 

n=  3 3 3 3 3 3 3 3 
* Concentrations were below detection limits for analysis method. 
† Standard Deviation not calculated based insufficient number of samples.
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Water Movement 

Solution collected from each sampler varied based on several factors.  Moisture of 

surrounding soil and ability of the lysimeter to maintain a vacuum would account for 

variability in solution collection.  The length of time allowed for sample collection was 

constant to ensure the samples collected were uniform within a given instance.  Vertical 

movement of the saturation zone was expected at higher emitter rates after observation of 

puddles resulting from surfacing during application events.  According to Kafkafi (1994) 

puddles are indicative of discharge rates in excess of soil infiltration rates resulting in 

greater vertical movement.  One solution sample was obtained from each lysimeter 

regardless of volume within the lysimeter, making determination of moisture at a given 

location in the soil profile undeterminable.  The effect may be minimized in future 

studies by constructing lysimeters to the same length regardless of depth or measurement 

of total solution collected from each lysimeter.  Installation of soil moisture probes at 

depths corresponding to lysimeter placement would provide more accurate estimate of 

water movement.  Soil cores would offer the ability to determine soil moisture as well as 

analysis of soil for comparison of soil and solution concentrations.  Soil cores are 

extremely destructive with regards to the site, and potentially, the irrigation tapes.   

A pressure differential was observed in field via pressure gauges between the inlet 

and distal ends of 2.38 L h-1 irrigation tapes.  Solution collection at the distal end 

produced fewer solution samples at each sampling event.  Emitters using a discharge rate 

of 0.72 L h-1 did not demonstrate this trend therefore, data from the inlet ends of each rate 

will be discussed from this point forward.  On average eight lysimeters produced 

adequate solution at both inlet and distal ends for each sampling event.  Lack of sample 
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collected from every lysimeter may indicate longer sampling periods are required to 

allow for adequate collection of solution for analysis.  Longer sampling periods may 

prove problematic as the solution remains in contact with the atmosphere within the 

lysimeter resulting in changes in solution pH from reaction with atmospheric CO2 and 

nutrient concentration.  Further investigation could determine the extent of this effect. 

Lysimeters were rinsed prior to placement and allowed to equilibrate with the soil 

matrix for eight months prior to the first extraction.  Solution sample recovery was 

attempted from each lysimeter allowing for the opportunity to assess the condition of 

lysimeter.  Throughout the sampling time three samplers were found to have inadequate 

seals where the fitting attached to the PVC cap.  This was remedied by cleaning the cap 

and fitting and applying a silicone sealant.  Despite the use of protective covers placed 

across fittings at surface, one lysimeter was found to have been damaged resulting in loss 

of a lysimeter.  A bent fitting was found after the final effluent application for the 2006 

growing season, and thus does not impact the results of this study.   

In future studies soil sample analysis would offer added information pertaining to 

the sorption capacity of this site.  A more complete study is needed to determine the 

effects of crop production on nutrient removal including yield data.  This would also 

provide an indicator for water use efficiency based on emitter rate.  While surface 

characteristics may appear to indicate high flow rates were inadequate for this particular 

site, crop production may produce a contradictory outcome.  Examining solutions 

obtained following effluent applications produces trends following the expected outcome 

for this type of experiment.   
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Nitrogen 

 For emitter application rates of 0.72 L h-1 ammonium concentrations on 14 May 

2006 show no difference in concentration prior to effluent application throughout the soil 

(Figure 5).  Concentrations following the third effluent application on 26 July 2006 

produced similar results (Figure 6).  Statistical analysis indicates no significant 

correlation between NH4
+-N concentrations and time.  No relationship was found 

between lysimeters location and water soluble NH4
+-N concentrations.  Lack of 

significant correlation between lysimeter locations with respect to irrigation tape 

indicates no preferential movement throughout the profile, thus NH4
+-N is uniformly 

distributed at the 0.72 L h-1 emitter application rate.  Uniform dispersion results in NH4
+-

N readily available throughout the profile. 

 At emitter application rates of 2.38 L h-1 NH4
+-N was present on 14 May 2006 

prior to the first effluent application (Figure 7).  Again, no significant correlation was 

found between NH4
+-N concentration and time of extraction.  Increased concentrations 

are evident in Figure 7 above and below the irrigation tape.  The presence of NH4
+-N in 

solution prior to effluent application may result from residual organic material that may 

remain in the profile or naturally occurring background levels.  Uniform dispersion 

following the third effluent application is evident regardless of depth or lateral movement 

of moisture resulting in NH4
+-N available throughout the soil profile (Figure 8).  Uniform 

dispersion differed from the findings of Haynes (1990) which found that NH4
+-N 

concentrations increased below the irrigation tape. 

 At emitter application rates of 0.72 L h-1 concentrations of NO3
--N increased at a 

depth of 60 cm; however it was uniformly distributed above this point on 14 May 2006 
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prior to effluent application (Figure 9).  A positive correlation (r=0.50, p<0.0004) was 

found with time of sample acquisition indicating increased concentrations with each 

subsequent effluent application.  Following the third effluent application NO3
--N 

concentrations increased relative to background levels (Table 2).  Although NO3
--N 

increased, there was a uniform distribution of NO3
--N throughout the soil (Figure 10) as 

indicated by the lack of significant correlation between lysimeter location and NO3
--N 

concentration. 

Emitter application rates of 2.38 L h-1 indicate prior to effluent application on 14 

May 2006 NO3
--N concentrations were uniform throughout the soil profile (Figure 11) 

and NO3
--N concentrations did not increase over time (Figure 12).  Nitrate-N 

concentrations decreased with depth (r=-0.35, p=0.0215) indicating that downward 

movement was not occurring.  This would signify NO3
--N concentrations are increasing 

above the irrigation tape, in the rooting zone of the plants.  Laher and Avnimelech (1980) 

found that under saturated conditions, nitrification may be inhibited resulting in lower 

concentrations of NO3
- -N with respect to subsurface drip irrigation.  However, no 

increase of NH4
+-N below the irrigation tape is evident indicating nitrification is not 

being inhibited.  Cote et al. (2003) found mobile nutrient (NO3
--N) concentrations were 

highest further away and above the emitter when applied at the beginning of the 

application event based on modeled data.  Significant positive correlation (r=0.42, 

p<0.0048) was found between lateral movement with respect to irrigation tape.  This 

correlation indicates increased concentrations were detected at increased lateral distance 

from the irrigation tape.  Thus, NO3
--N is moving with the wetting front which resembled 

the findings of Li et al. (2004).  Laher and Avnimelch (1980) produced similar results in 
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which NO3
--N increased as distance from application source increased. 

 
 
Figure 5.  Ammonium-N concentration (mg L-1) on 14 May 2006 from 0.72 L h-1 emitter 
application rate at the depth of 30 cm.  Background concentration prior to first effluent 
application event.  Black line located at zero distance from the irrigation tape indicates 
location of irrigation tape with respect to the x-axis. 
 

 
 
Figure 6.  Ammonium-N concentration (mg L-1) on 26 July 2006 from 0.72 L h-1 
application rates at the depth of 30 cm.  At 60 cm depth solution samples were obtained 
from limited lysimeters resulting in an incomplete graph.  No solution obtained from 
lysimeters located at 15 cm depth.  Black line located at zero distance from the irrigation 
tape indicates location of irrigation tape with respect to the x-axis. 
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Figure 7.  Ammonium-N concentration (mg L-1) on 14 May 2006 from 2.38 L h-1 emitter 
application rate  at depths of a.) 15 cm, b.) 30 cm, c.) 45 cm, and d.) 60 cm.  Black line 
located at zero distance from the irrigation tape indicates location of irrigation tape with 
respect to the x-axis. 
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Figure 8.  Ammonium-N concentration (mg L-1) on 26 July 2006 from 2.38 L h-1 emitter 
application rates at the depth of 60 cm.  At 60 cm depth solution samples were obtained 
from limited lysimeters resulting in an incomplete graph.  No solution obtained from 
lysimeters located at 15, 30, and 45 cm depth.  Black line located at zero distance from 
the irrigation tape indicates location of irrigation tape with respect to the x-axis. 
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Figure 9.  Nitrate-N concentration (mg L-1) on 14 May 2006 from 0.72 L h-1 emitter 
application rate at depths of a.) 15 cm, b.) 30 cm, c.) 45 cm, and d.) 60 cm.  At 45 cm 
depth solution samples were obtained from limited lysimeters resulting in an incomplete 
graph.  Black line located at zero distance from the irrigation tape indicates location of 
irrigation tape with respect to the x-axis. 
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Figure 10.  Nitrate-N concentration (mg L-1) on 26 July 2006 from 0.72 L h-1 emitter 
application rate at depths of a.) 30 cm, b.) 45 cm, and c.) 60 cm.  At 60 cm depth solution 
samples were obtained from limited lysimeters resulting in an incomplete graph.  No 
solution obtained from lysimeters located at 15 cm depth.  Black line located at zero 
distance from the irrigation tape indicates location of irrigation tape with respect to the x-
axis. 
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Figure 11.  Nitrate-N concentration (mg L-1) on 14 May 2006 from 2.38 L h-1 emitter 
application rates at depths of a.) 15 cm, b.) 30 cm, c.) 45 cm, and d.) 60 cm.  Black line 
located at zero distance from the irrigation tape indicates location of irrigation tape with 
respect to the x-axis. 
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Figure 12.  Nitrate-N concentration (mg L-1) on 26 July 2006 from 2.38 L h-1 emitter 
application rates at the depth of 60 cm.  At 60 cm depth solution samples were obtained 
from limited lysimeters resulting in an incomplete graph.  No solution was obtained from 
lysimeters located at 15, 30, and 45 cm depth.  Black line located at zero distance from 
the irrigation tape indicates location of irrigation tape with respect to the x-axis. 
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Orthophosphates 

Orthophosphate concentrations from the 0.72 L h-1 emitter application rate 

indicate low concentrations present on 14 May 2006 prior to effluent application (Figure 

13).  After three effluent applications, concentrations did not change (Figure 14).  As 

indicated by the lack of correlation between time of sampling and concentration.  

However, a significant negative correlation (r=-0.54, p=0.0002) exists between depth and 

concentration.  This indicates that concentration decrease with depth, thus introduction of 

orthophosphates into groundwater is not of concern.  No correlation was determined for 

lateral movement through the profile signifying uniform dispersion through the soil at a 

given soil depth. 

For the 2.38 L h-1 emitter application rate, the initial concentrations demonstrate 

orthophosphate was present prior to effluent application and increased (r=0.37, p=0.0189) 

following three effluent applications (Figure 16).  Concentrations decreased with depth 

(r=-0.41, p=0.0080) indicating that OP was not transported via percolation toward the 

vadose zone (Figures 15 and 16).  No correlation was found between lateral movement 

and concentration indicating uniform dispersion throughout the soil profile.  Ben-Gal and 

Dudley (2003) found that with continuous irrigation, P concentrations remained high 

throughout the entire irrigation time.  However, when irrigation occurred over shorter 

periods concentration increased but to a lower concentration than seen in the continuous 

application before leveling off.   

Orthophosphate concentrations measured in extract solution (Appendices B, O, 

BB, and CC) were significantly lower than those measured from filtered effluent used for 

applications (Table 1).  Sorption by the ceramic cups would account for initial decreases 



 

37 

as orthophosphate concentration of effluent used averaged at 28.09 mg L-1 while the 

average concentration extracted by the lysimeters (1.8 mg L-1) was much lower.  At the 

solution average pH of 7.2 for the site, phosphorus solubility is expected to decrease 

which would also account for the lower concentrations found.  However, no statistical 

correlation was found to support a relationship between pH and orthophosphate 

concentration. 
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Figure 13.  Orthophosphate concentration (mg L-1) on 14 May 2006 from 0.72 L h-1 
emitter application rate at depths of a.) 15 cm, b.) 30 cm, and c.) 60 cm.  No solution was 
obtained from lysimeters located at 45 cm depth.  At 30 cm depth solution samples were 
obtained from limited lysimeters resulting in an incomplete graph.  Black line located at 
zero distance from the irrigation tape indicates location of irrigation tape with respect to 
the x-axis. 
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Figure 14.  Orthophosphate concentration (mg L-1) on 26 July 2006 from 0.72 L h-1 
emitter application rate at depths of a.) 30 cm, b.) 45 cm, and c.) 60 cm.  No solution was 
obtained from lysimeters located at 15 cm depth.  At 60 cm depth solution samples were 
obtained from limited lysimeters resulting in an incomplete graph.  Black line located at 
zero distance from the irrigation tape indicates location of irrigation tape with respect to 
the x-axis. 
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Figure 15.  Orthophosphate concentration (mg L-1) on 14 May 2006 from 2.38 L h-1 
emitter application rate at depths of a.) 15 cm, b.) 30 cm, c.) 45 cm, and d.) 60 cm.  At 15 
cm depth solution samples were obtained from limited lysimeters resulting in an 
incomplete graph.  Black line located at zero distance from the irrigation tape indicates 
location of irrigation tape with respect to the x-axis. 
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Figure 16.  Orthophosphate concentration (mg L-1) on 26 July 2006 from 2.38 L h-1 
emitter application rate at depths of a.) 15 cm, b.) 45 cm, c.) 60 cm.  No solution was 
obtained from lysimeters located at 30 cm depth.  At 15, 45, and 60 cm depth solution 
samples were obtained from limited lysimeters resulting in an incomplete graph.  Black 
line located at zero distance from the irrigation tape indicates location of irrigation tape 
with respect to the x-axis. 
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Calcium 
 
 On 14 May 2006 calcium was present in solution prior to effluent application at 

0.72 L h-1 emitter application rate (Figure 17).  Concentrations increased following three 

effluent applications (Figure 18) with a significant positive correlation (r=0.40, 

p<0.0078) existing between concentration and sample.  Despite trends seen in Figures 17 

and 18 which would indicate concentrations decreased with depth.  There was no 

significant correlation was found between lysimeter location and concentration.  Despite 

overall increases in concentration, dispersion is uniform throughout the profile which 

follows the expected trend. 

Low concentrations of calcium were present in the solution prior to effluent 

application at the 2.38 L h-1 emitter application rate (Figure 19).  Following three 

successive effluent applications concentrations increased significantly (r=0.50, p<0.0013) 

over time.  A trend is evident between location of lysimeter and concentration (Figures 

19 and 20); however no statistically significant relationship was found.  This trend, 

similar to that found at the 0.72 L h-1, signifies dispersion of calcium throughout the 

profile is uniform. 

Average calcium concentration from the effluent used for application was 

determined to be 72.6 mg L-1 (Table 1) however, the concentrations removed though 

lysimeters were greater than 100 mg L-1 with the average concentration at two times that 

found in the effluent (Appendix B, O, BB, and CC).  Soils in the area are highly 

calcareous providing a likely source for increased calcium concentrations.  With pH 

decreasing over time it is likely a cause for an increase in calcium solubility however, pH 

did not drop below 7.3 thus solubility would not be expected to increase by such a large 
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margin.  The increased calcium and orthophosphate concentration are likely due to the 

neutral soil environment as well as the addition of N-Furic Acid injections into the 

irrigation water which began in 2006.  Lindsay (2001) states that calcium phosphate 

species contribute significant amounts of calcium in neutral and calcareous soils which 

would account for the concentrations exceeding those found in the applied effluent.  

Calcium concentrations are also increasing over time with an average concentration of 

150 mg L-1 prior to sampling and averaging 210 mg L-1 as of the final sampling on 9 

August 2006.  As concentrations are already high this increase is not as evident when 

compared to other parameters.   
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Figure 17.  Calcium concentration (mg L-1) on 14 May 2006 from 0.72 L h-1 emitter 
application rate at depths of a.) 15 cm, b.) 30 cm, and c.) 60 cm.  No solution was 
obtained from lysimeters located at 45 cm depth.  At 30 cm depth solution samples were 
obtained from limited lysimeters resulting in an incomplete graph.  Black line located at 
zero distance from the irrigation tape indicates location of irrigation tape with respect to 
the x-axis. 
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Figure 18.  Calcium concentration (mg L-1) on 26 July 2006 from 0.72 L h-1 emitter 
application rate at depths of a.) 30 cm, b.) 45 cm, c.) 60 cm, and d.) 60 cm.  No solution 
was obtained from lysimeters located at 15 cm depth.  At 60 cm depth solution samples 
were obtained from limited lysimeters resulting in an incomplete graph.  Black line 
located at zero distance from the irrigation tape indicates location of irrigation tape with 
respect to the x-axis. 
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Figure 19.  Calcium concentration (mg L-1) on 14 May 2006 from 2.38 L h-1 emitter 
application rate at depths of a.) 15 cm, b.) 30 cm, c.) 45 cm, and d.) 60 cm.  At 15 and 30 
cm depth solution samples were obtained from limited lysimeters resulting in an 
incomplete graph.  Black line located at zero distance from the irrigation tape indicates 
location of irrigation tape with respect to the x-axis. 
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Figure 20.  Calcium concentration (mg L-1) on 26 July 2006 from 2.38 L h-1 emitter 
application rate at depths of a.) 15 cm and b.) 60 cm.  No solution was obtained from 
lysimeters located at 30 and 45 cm depth no figures were produced.  At 15 and 60 cm 
depth solution samples were obtained from limited lysimeters resulting in an incomplete 
graph.  Black line located at zero distance from the irrigation tape indicates location of 
irrigation tape with respect to the x-axis. 
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Copper 
 

On May 14 of 2006 copper was present in soil solution at emitter application rates 

of 0.72 L h-1, prior to the application of effluent (Figures 21 and 22).  Concentrations 

increased significantly (r=0.92, p<0.0001) following each effluent application event 

before reaching a maximum measured concentration of 0.3 mg L-1 by mid-July.  

Uniform dispersion is evident prior to application (Figure 22) with a trend developing by 

the third application event (Figure 23) indicating increased concentrations around the 

emitter.  However these trends were not statistically significant. 

For the 2.38 L h-1 emitter application rates copper concentrations on May 14 of 

2006 (Figures 24 and 25) were low or below detection limits prior to effluent application.  

A significant increase (r=0.96, p<0.0001) was found following the third application event 

(Figure 26) indicating concentrations increased over time.  A similar trend is evident in 

Figures 25 and 26 as seen at the 0.72 L h-1 emitter application rate with concentrations 

increased near the emitter.  Again, this trend was not found to be statistically significant. 

Despite increased concentrations following the final application event, low 

concentrations prior to effluent application indicate copper concentrations decrease to 

background levels following the discontinuation of fertigation each season.  To determine 

the validity of this would require continued sampling throughout the year.  Ali et al. 

(2002) found that copper concentrations of 0.5 mg L-1 were sufficient to reduce plant 

growth of maize.  At a concentration of 0.3 mg L-1 potential for decreased yield exists if 

soil solution concentrations continue to increase despite discontinuation of effluent 

application. 

L’Herroux et al. (1997) found that copper concentrations accumulated at the 
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surface and was primarily tied up in the organic matter fraction.  Over the period of the 

study the copper concentration significantly increased, and was found in a more plant 

available form.  However, based on lysimeter extractions, copper concentrations did not 

appear to follow any particular pattern in relationship to the irrigation tape placement or 

emitter rate.  This determination is further supported by a lack of significant correlation 

existing between lysimeter location and irrigation tape.  This lack of apparent 

concentration pattern indicates that any copper remaining soluble moves throughout the 

soil profile at a consistent rate rather than being associated with the wetting front or 

accumulating at the point of application (Figures 23 and 26).  Studies (L’Herroux et al., 

1997; Sukkariyah et al., 2007) found that increased copper concentration were associated 

with organic matter content of the soil when dealing with surface applications.  

Sukkariyah et al. (2007) found that while coarse textured soils resulted in increased 

movement of copper up to 0.75 m from the application point, this increase was not visible 

in the groundwater.  It was stated that increased movement was affected by the soil 

texture as well as the low organic matter content at the point of application.   

The fate of the copper requires further investigation to determine the likelihood of 

its introduction into local water systems.  Copper concentrations are negatively correlated 

with solution pH for both emitter application rates (r=-0.64 and -0.57, p<0.0001).  

Negative correlation indicates that as pH increases the concentration of copper in solution 

decreases following accepted solubility rules for copper.  As pH decreases over time, 

copper concentrations are expected to increase.  Copper concentrations in soil solution 

are also shown to be lower than that found in the effluent used (Table 1).  It is possible 

that some sorption to the ceramic cup occurred; however, this effect would decrease after 
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subsequent extractions as the sorption sites associated with the ceramic cups would 

become saturated and would no longer be removing copper from solution.   
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Figure 21. Copper concentrations (mg L-1) on dates of effluent application by depth at 
emitter application rate of 0.72 L h-1 for lysimters a.) 15 cm and b.) 30 cm from the 
irrigation tape.

a.) 

b.) 
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Figure 22.  Copper concentration (mg L-1) on 14 May 2006 from 0.72 L h-1 emitter 
application rate at the depth of 60 cm.  No solution was obtained from lysimeters located 
at 45 cm depth.  At 30 cm depth solution samples were obtained from limited lysimeters 
resulting in an incomplete graph.  Black line located at zero distance from the irrigation 
tape indicates location of irrigation tape with respect to the x-axis. 
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Figure 23.  Copper concentration (mg L-1) on 26 July 2006 from 0.72 L h-1 emitter 
application rate at depths of a.) 30 cm, b.) 45 cm, and c.) 60 cm.  No solution was 
obtained from lysimeters located at 15 cm depth.  At 60 cm depth solution samples were 
obtained from limited lysimeters resulting in an incomplete graph.  Black line located at 
zero distance from the irrigation tape indicates location of irrigation tape with respect to 
the x-axis. 
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Figure 24. Copper concentrations (mg L-1) on dates of effluent application by depth at 
emitter application rate of 2.38 L h-1 for lysimeters a.) 20 cm and b.) 40 cm from the 
irrigation tape. 

a.) 

b.) 
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Figure 25.  Copper concentration (mg L-1) on 14 May 2006 from 2.38 L h-1 emitter 
application rate at the depth of 60 cm.  Black line located at zero distance from the 
irrigation tape indicates location of irrigation tape with respect to the x-axis. 
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Figure 26.  Copper concentration (mg L-1) on 26 July 2006 from 2.38 L h-1 emitter 
application rate at depths of a.) 15 cm and b.) 60 cm.  No solution was obtained from 
lysimeters located at 30 and 45 cm depth no figures were produced.  At 15 and 60 cm 
depth solution samples were obtained from limited lysimeters resulting in an incomplete 
graph.  Black line located at zero distance from the irrigation tape indicates location of 
irrigation tape with respect to the x-axis. 
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Zinc 

At 0.72 L h-1 zinc is present in solution on 14 May 2006 prior to initial effluent 

applications for the 2006 season (Figure 27). Concentrations following the third 

application event (Figure 28) show concentrations decreased despite addition of effluent, 

however this decrease was not significant.  Prior to application (Figure 27) zinc 

concentrations increased with depth with distance from the irrigation tape.  Following the 

third application event (Figure 28) dispersion of zinc appears uniform throughout the 

profile.  Lysimeter location was not found to be significantly correlated with 

concentration indicating zinc is not associated with emitter application points or wetting 

front. 

Zinc concentrations at the 2.38 L h-1 emitter application rate were low to below 

detection limit on 14 May 2006 (Figure 30) prior to effluent application.  Following the 

third effluent application event (Figure 31) concentrations appear to increase, however 

this trend was not found to be significant.  Trends in distribution (Figure 30) indicate 

concentration increased with depth and lateral distance from irrigation tape prior to 

effluent application.  Following three effluent applications (Figure 31) trends indicate 

concentrations increased near the surface.  Similar to emitter application rates of 0.72 L h-

1 no significant correlation exists between lysimeter location and concentration. 

Zinc concentrations were significantly lower than that of the effluent used for 

applications (Table 1).  Again some sorption to the ceramic cup may result in decreased 

concentrations.  However, sorption alone would not account for such a decrease.  Zinc in 

soil solution is a factor of pH and the amount absorbed on clay and organic surfaces 

(Havlin et al., 1999).  Concentration are consistently low and do not seem to follow any 
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pattern of movement, which is supported by presence of no statically significant 

interactions between zinc concentrations and lysimeter location.  L’Herroux et al. (1997) 

found that zinc concentrations accumulated in soils where pig slurry was applied to the 

surface, and was dominantly associated with the hydroxide fraction.  Concentrations in 

leachate were found to be low indicating movement of zinc out of the soil profile was not 

occurring.   
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Figure 27.  Zinc concentration (mg L-1) on 14 May 2006 from 0.72 L h-1 emitter 
application rate at depths of a.) 15 cm, b.) 30 cm and c.) 60 cm.  No solution was 
obtained from lysimeters located at 45 cm depth.  At 30 cm depth solution samples were 
obtained from limited lysimeters resulting in an incomplete graph.  Black line located at 
zero distance from the irrigation tape indicates location of irrigation tape with respect to 
the x-axis. 



 

59 

Distance From Lateral (cm)

-30 -20 -10 0 10 20 30a.) 

D
is

ta
n

ce
 B

et
w

ee
n

 E
m

it
te

rs
 (

cm
)

0

10

20

30

40

b.)  

c.)  

 
Figure 28.  Zinc concentration (mg L-1) on 26 July 2006 from 0.72 L h-1 emitter 
application rate at depths of a.) 30 cm, b.) 45 cm, and c.) 60 cm.  No solution was 
obtained from lysimeters located at 15 cm depth.  At 60 cm depth solution samples were 
obtained from limited lysimeters resulting in an incomplete graph.  Black line located at 
zero distance from the irrigation tape indicates location of irrigation tape with respect to 
the x-axis. 
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Figure 29. Zinc concentrations (mg L-1) on dates of effluent application by depth at 
emitter application rate of 0.72 L h-1 for lysimeters a.) 15 cm and b.) 30 cm from the 
irrigation tape.

a.) 

b.) 
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Figure 30.  Zinc concentration (mg L-1) on 14 May 2006 from 2.38 L h-1 emitter 
application rate at depths of a.) 15 cm, b.) 30 cm, c.) 45 cm, and d.) 60 cm.  At 15 and 30 
cm depth solution samples were obtained from limited lysimeters resulting in an 
incomplete graph.  Black line located at zero distance from the irrigation tape indicates 
location of irrigation tape with respect to the x-axis. 



 

62 

a.) b.) Distance From Lateral (cm)

-40 -30 -20 -10 0 10 20 30 40

 

 

 
 

Figure 31.  Zinc concentration (mg L-1) on 26 July 2006 from 2.38 L h-1 emitter 
application rate at depths of a.) 15 cm and b.) 60 cm.  No solution was obtained from 
lysimeters located at 30 and 45 cm depth no figures were produced.  At 15 and 60 cm 
depth solution samples were obtained from limited lysimeters resulting in an incomplete 
graph.  Black line located at zero distance from the irrigation tape indicates location of 
irrigation tape with respect to the x-axis. 
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Figure 32. Zinc concentrations (mg L-1) on dates of effluent application by depth at 
emitter application rate of 2.38 L h-1 for lysimeters a.) 20 cm and b.) 40 cm from the 
irrigation tape. 

a.) 

b.) 
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CONCLUSION 

Lysimeter placement is integral to obtaining representative data for the movement 

of nutrients though the soil profile.  In the case of this experiment the ability to sample 

from multiple depths at each point provides a more detailed analysis for the movement of 

soil nutrients.  A more extensive sampling regime would allow for analysis of the 

continuous effects of subsurface irrigation throughout the entire growing season and the 

effects of discontinuing fertigation following the final effluent application event for each 

year.   

At 0.72 L h-1 emitter application rate NO3
--N, calcium, and copper were found to 

be significantly correlated with time indicating accumulation through the growing season.  

Orthophosphate was found to have a significantly negative correlation with depth 

signifying decreased movement down through the profile.  No significant correlation was 

found between lysimeter location and concentration for the remaining nutrients 

measured, indicating uniform dispersion throughout the soil profile or removal at rates 

approximate to application.  At 2.38 L h-1 emitter application rate a significant increase 

over time was observed for orthophosphates, copper and calcium concentrations.  Nitrate-

N concentration was found to be significantly correlated with lysimeter location, 

increasing with lateral distance, and decreasing with depth.  Orthophosphate 

concentration displayed a significant negative correlation with depth.  Calcium, copper, 

and zinc concentrations were not significantly correlated with lysimeter location with 
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respect to irrigation tape. 

Further testing would determine whether concentrations decrease to background 

levels after effluent applications have ceased.  However, low concentrations prior to 

initial application indicate levels do decrease resulting from continued irrigation.  For this 

reason the potential for nutrient concentrations to exceed levels toxic to the plants would 

be unlikely.  



 

66 

 

 

 

 

REFERENCES 

Ali, N.A., M.P. Bernal, and M. Ater.  2002.  Tolerance and bioaccumulation of copper in 

Phragmites australis and Zea mays.  Plant and Soil.  239:103-111. 

 

Bacon, P.E. and B.G. Davey.  1982.  Nutrient availability under trickle irrigation: I. 

Distribution of water and Bray no. 1 phosphate.  Soil Sci. Soc. Am. J.  46:981-

987. 

 

Bar-Yosef, B. and R. Sheikholslami.  1979.  Distribution of water and ions in soils 

irrigated  and fertilized from a trickle source.  Soil Sci. Soc. Am. J.  40:575-582. 

 

Ben-Gal, A. and L.M. Dudley.  2003.  Phosphorus availability under continuous point 

source irrigation.  Soil Sci. Soc. Am. J.  67:1449-1456. 

 

Ben-Gal, A. and N. Lazarovitch.  Beyond burying the lateral:  Current issues in and 

future opportunities for subsurface drip irrigation.  Netafim.  (Available on-line at 

http://mop.textstore.co.il/data/Subsurface%20drip%20irrigation%202003.pdf) 

(Verified 5 January 2007). 

 

Brumm, M.C.  1998.  Sources of manure: Swine.  P.49-63.  In J.L. Hatfield and B.A. 

Stewart (Ed.)  Animal waste utilization: Effective use of manure as a soil 

resource.  Ann Arbor Press. Chelsea MI. 

 

Camp, C.R.  1998.  Subsurface drip irrigation: A review.  Transactions of the ASAE.  

41:1353-1367. 

 

Campos, C., G. Oron, M. Salgot, and L. Gillerman.  2000.  Behavior of the fecal 

pollution indicators in a soil irrigated with treated wastewater under on-surface 

and subsurface drip irrigation.  Water Sci. Technol.  42:75-79. 

 



 

67 

Charlesworth, P. and W.A. Muirhead.  2003.  Crop establishment using subsurface drip 

irrigation: A comparison of point and area sources.  Irrig. Sci.  22:171-176. 

 

Cote, C.M., K.L. Bristow, P.B. Charlesworth, F.J. Cook, and P.J. Thorburn.  2003.  

Analysis of soil wetting and solute transport in subsurface trickle irrigation.  Irrig. 

Sci.  22:143-156. 

 

Grover, B.L. and R.E. Lamborn.  1970.  Preparation of porous ceramic cups to be used 

for extraction of soil water having low solute concentrations.  Soil Sci. Soc. Am. 

Pro.  35:706-708. 

 

Guru M. V. and J.E. Horne.  2000.  The Ogallala Aquifer.  The Kerr Center.  (Available 

on-line at http://www.kerrcenter.com/publications/ogallala_aquifer.pdf).  

(Verified 5 January 2007). 

 
Hansen, E. A. and A.R. Harris.  1975.  Validity of soil-water collected with porous 

ceramic cups.  Soil Sci. Soc. Am. Proc.  39:528-536. 

 

Havlin, J.L., J.D. Beaton, S.L., Tisdale, and W.L. Nelson.  Soil fertility and fertilizers: An 

introduction to nutrient management (6th ed.).  New Jersey: Prentice Hall.   

 

Haynes, R.J.  1985.  Principles of fertilizer use for trickle irrigated crops.  Fert. Res.  

6:235-255. 

 

Haynes, R.J.  1990.  Movement and transformations of fertigated nitrogen below trickle 

emitters and their effects on pH in the wetted soil volume.  Fert. Res.  23:105-112. 

 

Hornbuckle, K.A.  2004.  Transports of swine effluent salts when land-applied in a semi-

arid region through a subsurface drip irrigation system.  M.S. Thesis.  Oklahoma 

State Univ., Stillwater. 

 

Kafkafi, U.  1994. Combined irrigation and fertilization in arid zones.  Isr. J. Plant Sci.  

42: 301-320. 

 

 



 

68 

Karlen, D.R., J.R. Russel, and A.P. Mallarino.  1998.  A systems engineering approach 

for utilizing animal manure.  P. 283-315.  In J.L. Hatfield and B.A. Stewart (Eds.) 

Animal waste utilization: Effective use of manure as a soil resource.  Ann Arbor 

Press.  Chelsea, MI. 

 

Kromm, D. E.  2007.  Ogallala Aquifer.  Water Encyclopedia.  (Available on-line at 

http://www.waterencyclopedia.com/Oc-Po/Ogallala-Aquifer.html).  (Verified 3 

April 2007). 

 

Laher, M. and Y. Avnimelech.  1980.  Nitrification inhibition in drip irrigation systems.  

Plant Soil.  55: 35-42. 

 

Lamm, F.R.  2002.  Advantages and disadvantages of subsurface drip irrigation.  

International meeting on Advances in Drip/Micro Irrigation, sponsored by 

Instituto Canario de Investigaciones Agrarias.  Puerto de La Cruz, Tenerife, 

Canary Islands.  

 

L’Herroux L., S. Le Roux, P. Appriou, and J. Martinez.  1997.  Behaviour of metals 

following intensive pig slurry applications to a natural field treatment process in 

Brittany (France).  Environ. Pollut.  97:119-130.   

 

Li, J. J. Zhang, and M. Rao.  2003.  Water and nitrogen distribution as affected by 

fertigation of ammonium nitrate from a point source.  Irrig. Sci.  22:19-30. 

 

Li, J., J. Zhang, and M. Rao.  2004.  Wetting patterns and nitrogen distributions as 

affected by fertigation strategies from surface point source.  Agric. Water 

Manage.  67:89-104.   

 

Lindsay, W. L.  2001.  Chemical Equilibria in Soils.  The Blackburn Press, New Jersey. 

 

Litaor, M.I. 1988.  Review of soil solution samples.  Water Resour. Res.  24:727-733. 

 

McGuire, P.E., B. Lowery, and P.A. Helmke.  1992.  Potential sampling error:  Trace 

metal adsorption on vacuum porous cup samplers.  Soil Sci. Soc. Am. J.  56:74-

82. 

 



 

69 

National Research Council.  1998.  Nutrient requirements of swine.  10th ed.  National 

Academy Press.  Washington D.C. 

 

Oron, G. 1996.  Soil as a complementary treatment component for simultaneous 

wastewater disposal and reuse.  Water Sci. Technol.  34:243-252. 

 

Oron, G., Y. DeMalach, Z. Hoffman, and Y. Manor.  1992.  Effect of effluent quality and 

application method on agriculture productivity and environmental control.  Water 

Sci. Technol.  26:1593-1601. 

 

Oron G., Y. DeMalach, Z. Hoffman, Y. Keren, H. Martman, and N. Plazner.  1991.  

Wastewater disposal for sub-surface trickle irrigation.  Water Sci. Technol.  

23:2149-2158. 

Parizek, R.R. and B. Lane.  1970.  Soil-water sampling using pan and deep pressure-

vacuum lysimeters.  J Hydrol.  11:1-21. 

 

Phene, C.J.  Subsurface drip irrigation offers management advantages.  GEOFLOW.  

(Available on-line at http://www.geoflow.com/agriculture/phene.htm).  (Verified 

5 January 2007)  

 

Rauschkolb, R.S., D.E. Rolston, R.J. Miller, A.B. Carlton, and R.G. Burau.  1976.  

Phosphorus fertilization with drip irrigation.  Soil Sci. Soc. Am. J.  40:68-72. 

 

Shelef, F.  1991.  Wastewater reclamation and water resource management.  Water Sci. 

Technol.  24:251-265. 

 

Soil Survey Staff.  1984.  Soil Survey Texas County Oklahoma.  U.S. Department of 

Agriculture, Soil Conservation Services in cooperation with Oklahoma 

Agricultural Experiment Station. 

 

Sukkariyah, B., G. Evanylo, and L. Zelazny.  2007.  Distribution of copper, zinc, and 

phosphorus in coastal plain soils receiving repeated liquid biosolids applications.  

J. Environ. Qual.  36:1618-1626. 

 

 

 



 

70 

United States Department of Agriculture, Natural Resources Conservation Service. 

2006. Land Resource Regions and Major Land Resource Areas of the United 

States, the Caribbean, and the Pacific Basin. U.S. Department of Agriculture 

Handbook 296. 

 

Wolt., J.D.  1994.  Soil Solution Chemistry: Applications in Environmental Science and 

Agriculture.  John Wiley & Sons, Inc., New York. 



 

71 

 

 

 

 

 

 

 

 

 

 

 

APPENDICES 



 

72 

APPENDIX A: SOLUTION DATA – 14 MAY 2006 

Analysis results for soil solution collected in field utilizing emitter discharge rates of 2.38 
L h-1 (111-144) and 0.72 L h-1(311-344) on 14 May 2006.  Samples were taken prior to 
application of swine effluent for 2006.  Dash indicates missing data due to lack of sample 
collected. 
 
Sampler 

ID pH 
NO3

--
N 

NH4
+-

N OP Ca Cu Zn TDS EC Vol 
  -------------------------------mg L-1------------------------------- µS mL 

111 8.24 38.20 0.12 1.64 184.21 0.02 0.23 726.70 1450.50 10.91 
112 8.74 39.70 0.21 - 206.07 0.01 0.58 - - 5.31 
113 8.37 59.60 0.90 - - - - - - 8.22 
114 8.53 53.70 0.98 2.69 - - - 1525.80 3045.51 9.41 
121 8.10 39.60 0.16 1.23 162.11 0.02 0.13 1353.00 2700.60 17.84 
122 8.59 4.50 0.99 1.80 124.46 0.00 1.20 534.30 1066.47 9.26 
123 8.44 26.60 0.06 1.19 129.12 0.01 0.06 1091.30 2178.24 16.11 
124 7.54 17.00 0.00 1.35 123.79 0.01 0.08 1055.10 2105.99 32.71 
131 8.22 3.86 0.04 0.75 113.35 0.02 0.13 974.40 1944.91 12.90 
132 7.59 27.00 1.25 2.69 109.89 0.03 0.11 1546.50 3086.83 30.12 
133 8.03 4.01 0.09 1.54 102.59 0.01 0.19 470.70 939.52 18.75 
134 8.00 9.94 0.03 1.02 66.55 0.01 0.10 708.60 1414.37 18.05 
141 8.53 48.90 0.14 - - - - - - 9.37 
142 8.26 3.94 2.65 1.38 148.42 0.02 4.44 1693.40 3380.04 10.14 
143 8.29 15.40 0.07 1.02 94.30 0.02 0.21 426.20 850.70 26.55 
144 8.10 27.90 0.02 0.47 130.68 0.02 0.08 1234.10 2463.27 23.54 
311 7.83 70.40 0.048 1.65 192.09 0.03 0.10 912.90 1822.16 18.77 
312 8.61 28.90 0.385 1.58 157.98 0.02 0.59 598.90 1195.41 11.06 
313 - - - - - - - - - - 
314 8.43 36.00 0.013 1.78 166.98 0.02 0.11 614.50 1226.55 14.59 
321 8.25 7.02 0.106 1.56 147.36 0.02 0.19 596.40 1190.42 12.45 
322 7.83 64.80 0.508 1.50 191.51 0.01 0.66 838.90 1674.45 22.13 
323 8.31 10.60 0.117 1.55 140.98 0.02 0.13 542.60 1083.03 18.52 
324 7.84 25.10 0.000 0.93 123.00 0.02 0.04 643.90 1285.23 22.97 
331 7.95 18.80 0.000 0.97 112.45 0.02 0.07 559.10 1115.97 33.89 
332 8.05 9.39 0.000 2.20 103.18 0.02 0.03 506.90 1011.78 26.10 
333 8.42 33.70 0.110 - - - - - - 6.37 
334 8.53 8.73 0.000 - - - - - - 9.50 
341 8.57 14.10 0.002 1.29 104.91 0.02 0.07 465.50 929.14 18.72 
342 - - - - - - - - - - 
343 - - - - - - - - - - 
344 - - - - - - - - - - 
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APPENDIX B: RAW  SOLUTION DATA – 7 JUNE 2006 

Analysis results for soil solution collected in field utilizing emitter discharge rates of 2.38 
L h-1 (111-144) and 0.72 L h-1 (311-344) on 7 June 2006.  Samples were taken 
immediately following first swine effluent application for 2006. 
 
Sampler 

ID pH 
NO3

--
N 

NH4
+-

N OP Ca Cu Zn TDS EC Vol 
  ----------------------------------mg L-1---------------------------- µS mL 
111 8.28 44.60 0.000 2.12 185.13 0.03 0.04 702.40 1402.00 10.52 
112 8.28 38.50 0.199 1.33 178.40 0.03 0.13 646.00 1289.42 15.49 
113 - - - - - - - - - - 
114 - - - - - - - - - - 
121 7.53 56.10 0.076 1.96 182.95 0.04 0.02 718.90 1434.93 23.84 
122 8.23 17.20 0.510 1.54 174.88 0.03 0.59 604.10 1205.79 10.32 
123 - - - - - - - - - - 
124 8.17 44.70 0.125  155.92 0.02 0.18 609.30 1216.17 10.46 
131 7.42 12.20 0.369 1.55 178.89 0.03 0.04 677.00 1351.30 29.72 
132 8.24 36.00 1.770 - 281.22 0.02 0.22 887.50 1771.46 11.51 
133 8.33 3.06 1.170 1.01 132.46 0.02 0.13 503.30 1004.59 7.65 
134 8.55 43.40 1.280 1.20 192.37 0.02 0.03 711.70 1420.56 8.09 
141 - - - - - - - - - - 
142 8.05 12.00 0.701 1.80 177.18 0.03 1.13 750.00 1497.01 15.55 
143 - - - - - - - - - - 
144 8.30 38.50 0.002 0.99 141.72 0.02 0.18 631.50 1260.48 14.81 
311 - - - - - - - - - - 
312 - - - - - - - - - - 
313 - - - - - - - - - - 
314 8.19 39.90 0.000 2.68 164.88 0.01 0.10 581.90 1161.48 15.55 
321 8.03 36.90 0.000  183.46 0.00 0.06 616.50 1230.54 9.89 
322 - - - - - - - - - - 
323 7.97 30.70 0.051 2.13 169.16 0.00 0.21 578.80 1155.29 17.28 
324 8.05 15.60 0.089 1.57 136.61 0.00 0.05 583.90 1165.47 21.64 
331 7.82 22.50 0.000 0.92 144.15 0.01 0.06 570.50 1138.72 32.40 
332 7.65 19.40 0.050 1.73 132.92 0.01 0.17 527.60 1053.09 34.61 
333 - - - - - - - - - - 
334 7.71 24.50 15.600 1.69 145.10 0.00 0.03 543.60 1085.03 28.10 
341 7.63 26.50 0.000 1.48 136.89 0.01 0.05 518.30 1034.53 38.22 
342 - - - - - - - - - - 
343 8.03 25.80 0.016 1.19 138.12 0.01 0.06 509.50 1016.97 18.62 
344 - - - - - - - - - - 
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APPENDIX C: AMMONIUM-N CONCENTRATION ON 7 JUNE 2006  

AT 0.72 L H-1 

a.) b.)  

 

 
 

Ammonium-N concentration (mgL-1) on 7 June 2006 from 0.72 L h-1 emitter application 
rate at depths of a.) 15 cm and b.) 30 cm.  No solution was obtained from lysimeters 
located at 45 and 60 cm depth no figures were produced.  Black line located at zero 
distance from the lateral indicates location of lateral with respect to the x-axis. 



 

75 

APPENDIX D: AMMONIUM-N CONCENTRATION ON 7 JUNE 2006  

AT 2.38 L H-1 

a.) b.)  

c.) d.)  

 

 
 
Ammonium-N concentration (mgL-1) on 7 June 2007 from 2.38 L h-1 emitter application 
rate at depths of a.) 15 cm, b.) 30 cm, c.) 45 cm, and d.) 60 cm.  At 15 and 30 cm depths 
solution samples were obtained from limited lysimeters resulting in incomplete graphs.  
Black line located at zero distance from the lateral indicates location of lateral with 
respect to the x-axis. 
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APPENDIX E: NITRATE-N CONCENTRATION ON 7 JUNE 2006  

AT 0.72 L H-1 

a.) b.) Distance From Lateral (cm)

-30 -20 -10 0 10 20 30

 

 

 
 

Nitrate-N concentration (mgL-1) on 7 June 2006 from 0.72 L h-1 emitter application rate 
at depths of a.) 15 cm and b.) 30 cm.  No solution was obtained from lysimeters located 
at 45 and 60 cm depth no figures were produced.  Black line located at zero distance 
from the lateral indicates location of lateral with respect to the x-axis. 
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APPENDIX F: NITRATE-N CONCENTRATION ON 7 JUNE 2006  

AT 2.38 L H-1 
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Nitrate-N concentration (mgL-1) on 7 June 2006 from 2.38 L h-1 emitter application rate  
at depths of a.) 15 cm, b.) 30 cm, c.) 45 cm, and d.) 60 cm.  At 15 and 30 cm depths 
solution samples were obtained from limited lysimeters resulting in incomplete graphs.  
Black line located at zero distance from the lateral indicates location of lateral with 
respect to the x-axis. 
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APPENDIX G: ORTHOPHOSPHATE CONCENTRATION ON 7 JUNE 2006  

AT 0.72 L H-1 

a.) b.) Distance From Lateral (cm)
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Orthophosphate concentration (mgL-1) on 7 June 2006 from 0.72 L h-1 emitter 
application rate at depths of a.) 15 cm and b.) 30 cm.  No solution was obtained from 
lysimeters located at 45 and 60 cm depth.  At 30 cm depth solution samples were 
obtained from limited lysimeters resulting in an incomplete graph.  Black line located at 
zero distance from the lateral indicates location of lateral with respect to the x-axis. 
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APPENDIX H: ORTHOPHOSHATE CONCENTRATION ON 7 JUNE 2006 

AT 2.38 L H-1 

a.) 

D
is

ta
n

ce
 B

et
w

ee
n

 E
m

it
te

rs
 (

cm
)

0

10

20

30

40

50

60

 b.) Distance Between Emitters (cm)

-40 -30 -20 -10 0 10 20 30 40

 

c.)  

 
Orthophosphate concentration (mgL-1) on 7 June 2006 from 2.38 L h-1 emitter 
application rate at depths of a.) 30 cm, b.) 45 cm, and c.) 60 cm.  No solution was 
obtained from lysimeters located at 15 cm depth.  At 30 and 45 cm depth solution 
samples were obtained from limited lysimeters resulting in an incomplete graph.  Black 
line located at zero distance from the lateral indicates location of lateral with respect to 
the x-axis. 
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APPENDIX I: CALCIUM CONCENTRATION ON 7 JUNE 2006 0.72 L H -1 

a.) b.) Distance From Lateral (cm)
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Calcium concentration (mgL-1) on 7 June 2006 from 0.72 L h-1 emitter application rate at 
depths of a.) 15 cm and b.) 30 cm.  No solution was obtained from lysimeters located at 
45 and 60 cm depth no figures were produced.  Black line located at zero distance from 
the lateral indicates location of lateral with respect to the x-axis. 
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APPENDIX J: CALCIUM CONCENTRATION ON 7 JUNE 2006 AT 2.38 L H -1 
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Calcium concentration (mgL-1) on 7 June 2006 from 2.38 L h-1 emitter application rate at 
depths of a.) 15 cm, b.) 30 cm, c.) 45 cm, and d.) 60 cm.  At 15 and 30 cm depth solution 
samples were obtained from limited lysimeters resulting in an incomplete graph.  Black 
line located at zero distance from the lateral indicates location of lateral with respect to 
the x-axis. 
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APPENDIX K: COPPER CONCENTRATION ON 7 JUNE 2006 AT 0.72 L H-1 

a.) b.) Distance From Lateral (cm)
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Copper concentration (mgL-1) on 7 June 2006 from 0.72 L h-1 emitter application rate at 
depths of a a.) 15 cm and b.) 30 cm.  No solution was obtained from lysimeters located at 
45 and 60 cm depth no figures were produced.  Black line located at zero distance from 
the lateral indicates location of lateral with respect to the x-axis. 
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APPENDIX L: COPPER CONCENTRATION ON 7 JUNE 2006 AT 2.38 L H-1 
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Copper concentration (mgL-1) on 7 June 2006 from 2.38 L h-1 emitter application rate at 
depths of a.) 15 cm, b.) 30 cm, c.) 45 cm, and d.) 60 cm.  At 15 and 30 cm depth solution 
samples were obtained from limited lysimeters resulting in an incomplete graph.  Black 
line located at zero distance from the lateral indicates location of lateral with respect to 
the x-axis. 
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APPENDIX M: ZINC CONCENTRATION ON 7 JUNE 2006 AT 0.72 L H -1 

a.) b.) Distance From Lateral (cm)
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Zinc concentration (mgL-1) on 7 June 2006 from 0.72 L h-1 emitter application rate at 
depths of a.) 15 cm and b.) 30 cm.  No solution was obtained from lysimeters located at 
45 and 60 cm depth no figures were produced.  Black line located at zero distance from 
the lateral indicates location of lateral with respect to the x-axis. 
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APPENDIX N: ZINC CONCENTRATION ON 7 JUNE 2006 AT 2.38 L H -1 
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Zinc concentration (mgL-1) on 7 June 2006 from 2.38 L h-1 emitter application rate at 
depths of a.) 15 cm, b.) 30 cm, c.) 45 cm, and d.) 60 cm.  At 15 and 30 cm depth solution 
samples were obtained from limited lysimeters resulting in an incomplete graph.  Black 
line located at zero distance from the lateral indicates location of lateral with respect to 
the x-axis. 
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APPENDIX O: RAW SOLUTION DATA – 21 JUNE 2006 

Analysis results for soil solution collected in field utilizing emitter discharge rates of 2.38 
L h-1 (111-144) and 0.72 L h-1 (311-344) on 21 June 2006.  Samples were taken 
immediately following second swine effluent application of 2006. 
 
Sampler 

ID pH 
NO3

--
N 

NH4
+-

N OP Ca Cu Zn TDS EC Vol 
  -------------------------------mg L-1------------------------------- µS mL 
111 - 46.50 7.810 - - - - - - 4.63 
112 - - - - - - - - - - 
113 - - - - - - - - - - 
114 - - - - - - - - - - 
121 7.71 90.90 0.085 2.18 203.91 0.04 0.04 737.50 1472.06 18.27 
122 8.31 34.30 2.050      0.00 6.53 
123 8.18 61.90 1.150 4.35 257.42 0.07 0.29 681.20 1359.68 10.25 
124 - - - - - - - - - - 
131 8.22 17.70 0.220 1.41 124.67 0.05 0.06 487.20 972.46 10.40 
132 7.78 94.20 0.306 1.90 348.35 0.05 0.08 1039.10 2074.05 16.14 
133 - - - - - - - - - - 
134 7.85 26.90 0.825 2.11 117.24 0.05 1.23 461.40 920.96 21.12 
141 - - - - - - - - - - 
142 - - - - - - - - - - 
143 - - - - - - - - - - 
144 7.98 26.80 0.000 0.92 173.72 0.07 0.08 603.10 1203.79 15.29 
311 - - - - - - - - - - 
312 - - - - - - - - - - 
313 - - - - - - - - - - 
314 8.10 8.101 61.50 0.072 252.59 0.07 0.08 707.60 1412.38 12.61 
321 7.67 7.665 40.70 0.000 183.63 0.06 0.05 660.50 1318.36 35.48 
322 8.03 8.026 101.00 0.013 304.51 0.08 0.06 909.80 1815.97 15.38 
323 8.20 8.204 87.30 0.180 243.71 0.08 0.10 751.00 1499.00 15.70 
324 - - - - - - - - - - 
331 - - - - - - - - - - 
332 7.70 7.698 113.00 0.137 241.25 0.11 0.44 820.30 1637.33 39.50 
333 - - - - - - - - - - 
334 7.66 7.661 78.70 0.049 210.77 0.09 0.22 701.30 1399.80 38.80 
341 7.76 7.764 74.00 0.012 206.25 0.08 0.06 693.60 1384.43 26.16 
342 - - - - - - - - - - 
343 8.08 8.083 42.30 0.000 176.60 0.10 0.13 612.90 1223.35 20.60 
344 - - - - - - - - - - 
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APPENDIX P: AMMONIUM-N CONCENTRATION ON 21 JUNE 2006 

AT 0.72 L H-1 

a.) b.)  

 

 
 

Ammonium-N concentration (mgL-1) on 21 June 2006 from 0.72 L h-1 emitter 
application rate at depths of a.) 15 cm and b.) 30 cm.  No solution was obtained from 
lysimeters located at 45 and 60 cm depth no figures were produced.  Black line located at 
zero distance from the lateral indicates location of lateral with respect to the x-axis. 
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APPENDIX Q: AMMONIUM-N CONCENTRATION ON 21 JUNE 2006  

AT 2.38 L H-1 

a.) b.)  

c.) d.)  

 

 
 

Ammonium-N concentration (mgL-1) on 21 June 2006 from 2.38 L h-1 emitter 
application rate at depths of a.) 15 cm, b.) 30 cm, c.) 45 cm, and d.) 60 cm.  At 15, 30 
and 45 cm depths solution samples were obtained from limited lysimeters resulting in 
incomplete graphs.  Black line located at zero distance from the lateral indicates location 
of lateral with respect to the x-axis. 
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APPENDIX R: NITRATE-N CONCENTRATION ON 21 JUNE 2006  

AT 0.72 L H-1 

a.) b.) Distance From Lateral (cm)
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Nitrate-N concentration (mgL-1) on 21 June 2006 from 0.72 L h-1 emitter application rate 
at depths of a.) 15 cm and b.) 30 cm.  No solution was obtained from lysimeters located 
at 45 and 60 cm depth no figures were produced.  Black line located at zero distance 
from the lateral indicates location of lateral with respect to the x-axis. 
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APPENDIX S: NITRATE-N CONCENTRATION ON 21 JUNE 2006 

AT 0.72 L H-1 
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Nitrate-N concentration (mgL-1) on 21 June 2006 from 2.38 L h-1 emitter application rate 
at depths of a.) 15 cm, b.) 30 cm, c.) 45 cm, and d.) 60 cm.  At 15, 30 and 45 cm depths 
solution samples were obtained from limited lysimeters resulting in incomplete graphs.  
Black line located at zero distance from the lateral indicates location of lateral with 
respect to the x-axis. 
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APPENDIX T: ORTHOPHOSPHATE CONCENTRATION ON 21 JUNE 2006 

AT 0.72 L H-1 

a.) b.) Distance From Lateral (cm)
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Orthophosphate concentration (mgL-1) on 21 June 2006 from 0.72 L h-1 emitter 
application rate at depths of a.) 15 cm and b.) 30 cm.  No solution was obtained from 
lysimeters located at 45 and 60 cm depth no figures were produced.  Black line located at 
zero distance from the lateral indicates location of lateral with respect to the x-axis. 
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APPENDIX U: ORTHOPHOSHATE CONCENTRATION ON 21 JUNE 2006 

AT 2.38 L H-1 
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c.)  

 
Orthophosphate concentration (mgL-1) on 21 June 2006 from 2.38 L h-1 emitter 
application rate at depths of a.) 15 cm, b.) 30 cm, c.) 60 cm.  No solution was obtained 
from lysimeters located at 45 cm depth.  At 15 and 30 cm depth solution samples were 
obtained from limited lysimeters resulting in an incomplete graph.  Black line located at 
zero distance from the lateral indicates location of lateral with respect to the x-axis. 
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APPENDIX V: CALCIUM CONCENTRATION ON 21 JUNE 2006 AT 0.72 L H -1 

a.) b.) Distance From Lateral (cm)
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Calcium concentration (mgL-1) on 21 June 2007 from 0.72 L h-1 emitter application rate 
at depths of a.) 15 cm and b.) 30 cm.  No solution was obtained from lysimeters located 
at 45 and 60 cm depth no figures were produced.  Black line located at zero distance 
from the lateral indicates location of lateral with respect to the x-axis. 
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APPENDIX W: CALCIUM CONCENTRATION ON 21 JUNE 2007 AT 2.38 L H -1 
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Calcium concentration (mgL-1) on 21 June 2006 from 2.38 L h-1 emitter application rate 
at depths of a.) 15 cm, b.) 30 cm, and c.) 60 cm.  No solution was obtained from 
lysimeters located at 45 cm depth.  At 15 and 30 cm depth solution samples were 
obtained from limited lysimeters resulting in an incomplete graph.  Black line located at 
zero distance from the lateral indicates location of lateral with respect to the x-axis. 
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APPENDIX X: COPPER CONCENTRATION ON 21 JUNE 2006 AT 0.72 L H-1 

a.) b.) Distance From Lateral (cm)
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Copper concentration (mgL-1) on 21 June 2006 from 0.72 L h-1 emitter application rate at 
depths of a.) 15 cm and b.) 30 cm.  No solution was obtained from lysimeters located at 
45 and 60 cm depth no figures were produced.  Black line located at zero distance from 
the lateral indicates location of lateral with respect to the x-axis. 
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APPENDIX Y: COPPER CONCENTRATION ON 21 JUNE 2006 AT 2.38 L H-1 
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Copper concentration (mgL-1) on 21 June 2007 from 2.38 L h-1 emitter application rate at 
depths of a.) 15 cm, b.) 30 cm, and c.) 60 cm.  No solution was obtained from lysimeters 
located at 45 cm depth.  At 15 and 30 cm depth solution samples were obtained from 
limited lysimeters resulting in an incomplete graph.  Black line located at zero distance 
from the lateral indicates location of lateral with respect to the x-axis. 
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APPENDIX Z: ZINC CONCENTRATION ON 21 JUNE 2006 AT 0.72 L H -1 

a.) b.) Distance From Lateral (cm)
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Zinc concentration (mgL-1) on 21 June 2006 from 0.72 L h-1 emitter application rate at 
depths of a.) 15 cm and b.) 30 cm.  No solution was obtained from lysimeters located at 
45 and 60 cm depth no figures were produced.  Black line located at zero distance from 
the lateral indicates location of lateral with respect to the x-axis. 
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APPENDIX AA: ZINC CONCENTRATION ON 21 JUNE 2006 AT 2.38 L H -1 
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Zinc concentration (mgL-1) on 21 June 2006 from 2.38 L h-1 emitter application rate at 
depths of a.) 15 cm, b.) 30 cm, and c.) 60 cm.  No solution was obtained from lysimeters 
located at 45 cm depth.  At 15 and 30 cm depth solution samples were obtained from 
limited lysimeters resulting in an incomplete graph.  Black line located at zero distance 
from the lateral indicates location of lateral with respect to the x-axis. 
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APPENDIX BB: RAW SOLUTION DATA – 26 JULY 2006 

Analysis results for soil solution collected in field utilizing emitter discharge rates of 2.38 
L h-1 (111-144) and 0.72 L h-1 (311-344) on 26 July 2006.  Samples were collected 
immediately following third application of effluent of 2006. 
 
Sampler 

ID pH 
NO3

--
N 

NH4
+-

N OP Ca Cu Zn TDS EC Vol 
  ---------------------------------mg L-1-------------------------------- µS mL 
111 - - - - - - - - - - 
112 - - - - - - - - - - 
113 - - - - - - - - - - 
114 - - - - - - - - - - 
121 - - - - - - - - - - 
122 8.05 - - 2.83 - - - - - 4.51 
123 - - - - - - - - - - 
124 7.74 101.00 0.087 1.35 301.64 0.22 0.11 1014.80 2025.55 27.49 
131 7.41 9.80 0.000 1.56 180.00 0.25 0.12 576.20 1150.10 43.08 
132 7.79 2.70 0.124 1.70 208.89 0.24 0.29 647.60 1292.61 15.52 
133 7.40 5.40 0.350 1.17 191.14 0.26 0.08 645.50 1288.42 37.57 
134 7.78 - - 3.93 170.53 0.25 2.49 557.60 1112.97 9.41 
141 - - - - - - - - - - 
142 7.72 26.10 0.104 1.45 247.39 0.26 0.11 831.70 1660.08 22.79 
143 - - - - - - - - - - 
144 - - - - - - - - - - 
311 - - - - - - - - - - 
312 - - - - - - - - - - 
313 - - - - - - - - - - 
314 - - - - - - - - - - 
321 - - - - - - - - - - 
322 7.34 35.90 0.000 1.24 172.75 0.26 0.08 678.60 1354.49 42.18 
323 7.66 26.20 0.206 2.67 204.35 0.25 0.29 642.90 1283.23 12.60 
324 7.53 23.20 0.000 1.16 148.77 0.28 0.21 632.60 1262.67 42.02 
331 7.51 53.10 0.085 1.11 188.49 0.29 0.26 713.20 1423.55 42.71 
332 7.49 50.80 0.096 1.58 198.18 0.28 0.13 693.10 1383.43 28.25 
333 - - - - - - - - - - 
334 7.47 44.90 0.000 1.64 178.64 0.28 0.13 625.80 1249.10 32.13 
341 7.40 60.00 0.000 1.84 177.95 0.28 0.44 617.60 1232.73 42.37 
342 - - - - - - - - - - 
343 7.55 52.60 0.000 2.09 199.45 0.29 0.27 637.20 1271.86 22.87 
344 7.59 54.50 0.000 1.29 175.03 0.25 0.09 686.30 1369.86 43.02 
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APPENDIX CC: RAW SOLUITON DATA – 9 AUGUST 2006 

Analysis results for soil solution collected in field utilizing emitter discharge rates of 2.38 
L h-1 (111-144) and 0.72 L h-1 (311-344) on 9 August 2006.  Samples were collected 
immediately following the fourth and final effluent application of 2006. 
 
Sampler 

ID pH 
NO3

--
N 

NH4
+-

N OP Ca Cu Zn TDS EC Vol 
  -------------------------------mg L-1------------------------------ µS mL 
111 - - - - - - - - - - 
112 - - - - - - - - - - 
113 - - - - - - - - - - 
114 - - - - - - - - - - 
121 7.52 1.98 0.227 1.49 172.32 0.27 0.12 561.20 1120.16 25.57 
122 - - - - - - - - - - 
123 - - - - - - - - - - 
124 7.70 42.90 0.134 1.28 241.20 0.26 0.15 798.10 1593.01 21.25 
131 7.32 12.00 0.406 1.34 181.67 0.29 0.12 621.70 1240.92 43.13 
132 7.98 17.30 0.051 2.35 196.80 0.27 0.13 657.40 1312.18 13.48 
133 - - - - - - - - - - 
134 7.97 - - 2.95 - - - - - 5.79 
141 - - - - - - - - - - 
142 7.57 32.10 0.066 1.23 241.68 0.30 0.10 860.10 1716.77 42.36 
143 - - - - - - - - - - 
144 - - - - - - - - - - 
311 - - - - - - - - - - 
312 - - - - - - - - - - 
313 - - - - - - - - - - 
314 - - - 2.82 - - - - - 3.48 
321 - - - - - - - - - - 
322 7.62 38.20 0.000 1.16 167.50 0.30 0.15 687.40 1372.06 43.07 
323 7.91 - - 2.38 216.27 0.26 0.20 644.50 1286.43 12.38 
324 7.58 26.50 0.000 1.25 161.41 0.30 0.13 676.00 1349.30 42.34 
331 7.52 60.70 0.000 1.41 190.07 0.29 0.10 722.60 1442.32 42.28 
332 7.56 51.00 0.000 2.33 207.93 0.29 0.10 693.60 1384.43 42.38 
333 - - - - - - - - - - 
334 7.51 80.90 0.132 1.92 249.10 0.28 0.09 817.20 1631.14 42.45 
341 7.62 52.50 0.000 1.71 168.26 0.27 0.10 589.10 1175.85 43.20 
342 - - - - - - - - - - 
343 7.81 52.50 0.081 1.80 179.91 0.27 0.17 639.30 1276.05 19.92 
344 - - - - - - - - - - 
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APPENDIX DD: ORTHOPHOSPHATE CONCENTRATION ON 9 AUGUST 2006 

AT 0.72 L H-1 
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Orthophosphate concentration (mgL-1) on 9 August 2006 from 0.72 L h-1 emitter 
application rate at depths of a.) 15 cm, b.) 30 cm, and c.) 60 cm.  No solution was 
obtained from lysimeters located at 45 cm depth.  At 15 and 60 cm depth solution 
samples were obtained from limited lysimeters resulting in an incomplete graph.  Black 
line located at zero distance from the lateral indicates location of lateral with respect to 
the x-axis. 
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APPENDIX EE: ORTHOPHOSPHATE CONCENTRATION ON 9 AUGUST 2006 

AT 2.38 L H-1 

a.) b.) Distance From Lateral (cm)
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Orthophosphate concentration (mgL-1) on 9 August 2006 at 2.38 L h-1 emitter application 
rate at depths of a.) 15 cm and b.) 60 cm.  No solution was obtained from lysimeters 
located at 30 and 45 cm depth.  At 15 and 60 cm depth solution samples were obtained 
from limited lysimeters resulting in an incomplete graph.  Black line located at zero 
distance from the lateral indicates location of lateral with respect to the x-axis. 
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APPENDIX FF: CALCIUM CONCENTRATION ON 9 AUGUST 2006  

AT 0.72 L H-1 
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Calcium concentration (mgL-1) on 9 August 2006 from 0.72 L h-1 emitter application rate 
at depths of a.) 15 cm, b.) 30 cm, and c.) 60 cm.  No solution was obtained from 
lysimeters located at 45 cm depth.  At 15 and 60 cm depth solution samples were 
obtained from limited lysimeters resulting in an incomplete graph.  Black line located at 
zero distance from the lateral indicates location of lateral with respect to the x-axis. 
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APPPENDIX GG: COPPER CONCENTRATION ON 9 AUGUST 2006 

AT 0.72 L H-1  
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Copper concentration (mgL-1) on 9 August 2006 from 0.72 L h-1 emitter application rate 
at depths of a a.) 15 cm, b.) 30 cm, and c.) 60 cm.  No solution was obtained from 
lysimeters located at 45 cm depth.  At 15 and 60 cm depth solution samples were 
obtained from limited lysimeters resulting in an incomplete graph.  Black line located at 
zero distance from the lateral indicates location of lateral with respect to the x-axis. 
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APPENDIX HH: COPPER CONCENTRATION ON 9 AUGUST 2006 

AT 0.72 L H-1 
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Zinc concentration (mgL-1) on 9 August 2007 from 0.72 L h-1 emitter application rate at 
depths of a a.) 15 cm, b.) 30 cm, and c.) 60 cm.  No solution was obtained from 
lysimeters located at 45 cm depth.  At 15 and 60 cm depth solution samples were 
obtained from limited lysimeters resulting in an incomplete graph.  Black line located at 
zero distance from the lateral indicates location of lateral with respect to the x-axis. 
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