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CHAPTER I

1.0 INTRODUCTION

1.1 BACKGROUND

1.1.1 ORIGIN OF PEANUT, Arachis hypogaea L.,

Peanut, Arachis hypogaea L., is a New World crop that originated in South 

America and was “domesticated in the Gran Chaco area including the valleys of 

Paraguay and Parana Rivers (Purseglove 1968).” The crop was found to be extensively 

cultivated in Mesoamerica, South America and the islands of the West Indies by early 

European explorers in the 1500s. While no one is certain of the exact date of 

domestication, records from archeological sites in Peru put the crop in agricultural use 

as early as 800BC. In North America, the crop was first cultivated in Mexico about the 

time of Christ, but there is no record of the crop in cultivation in the United States of 

America (USA), prior to Columbian time (Purseglove 1968).  

The earliest history of the crop is revealed in arts and artifacts of the early 

Peruvian civilization, which began along the eastern slopes of the Andes. The discovery 

of well-preserved groundnut fruits in terracotta jars and funerary vases, which were 

decorated with well-sculptured groundnut pods, reveals the esteem to which this crop 

was held by those cultures. As this civilization became more technologically advanced, 

peanut was then cultivated in small irrigation systems along-side other crops such as 

maize, manioc, and potatoes (Hammons 1994).
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1.1.2 THE TAXONOMY AND GENETICS OF A. hypogaea L.                                                                                                                                                                                                                                     

The genus Arachis L., belongs to the family Leguminnosae and comprises a 

very large and diverse group of diploid and tetraploid taxa.  In excess of 50 species 

exist in this genus; all indigenous to the area east of the Andes and south of the 

Amazon rainforest (Hammons 1994). The diversity of this genus is evident by the 

numbers of annuals and perennials it comprises and their varied forms of reproduction. 

Most of the species reproduce sexually, but some do reproduce a sexually by forming 

rhizomes (Knauft et al., 1999).

 The members of this genus can be identified and characterized by their 

“alternately attached basal and dorsal anthers, flowers in the terminal or axillary spikes 

or small heads, pinnate leaves and leaflets few without stipules (Stalker 1985).”

Arachis hypogaea L., was the first species, in this genus, to be described by 

Linnnaeus. However, over twenty-two species of the genus including A. villosa Benth, 

A. prostrate Benth, A. tuberosa Benth, A. glabrata Benth, A. repens H and A. pusilla, 

have now been described and characterized (Stalker 1985). A. hypogaea L., the 

principal genotype, and A.villosa are grown for their edible seeds while some of the 

others were adopted for varying uses, including grazing and ground cover 

(Hammons1994).

A. hypogaea L., is one of two tetraploid species (2n = 4x = 40) found in the 

Arachis section. The other tetraploid is A. monticola. Most of the other species are 

diploid, hence contain 2n= 20 complement of chromosomes (Stalker 1992). Cytological 

characterization of A. hypogaea L., reveals two distinctive pairs of 



3

chromosomes; the distinctively smaller pair of chromosomes, the A chromosomes, and 

the pair of B chromosomes, which have a secondary constriction and are satellited. The 

cytological differentiation between the two genomes of A. hypogaea L., is indicated by 

the presence of only one pair of A chromosomes (Smartt et al., 1978).”  A. hypogaea 

L., is thus a segmental allotetraploid, which combines the A and B genomes. During 

meiosis, chromosomes mostly pair as bivalents. However, quadrivalents can sometimes 

occur (Stalker 1992).

Although the exact origin of the A and B genomes remain unclear, six A 

genome species, A. cardenasii, A. chacoense, A. correntina, A. duranensis nom.nud., 

A.villosa and A. ipaensis nom.nud and one B genome species, A. batizocoi, have been 

identified as possible progenitors of A. hypogaea L., Interspecific hybrids of A. 

batizocoi have been noted to be sterile, but upon doubling of the chromosome 

complement, such hybrids may be able to produce stable, fertile amphidiploids.

Interspecific hybridization involving A. batizocoi could explain the origin of A. 

hypogaea L., (Smartt et al., 1978).   However, a number of molecular studies including 

RFLPs and chloroplast analyses indicate that A. batizocoi may not be a progenitor of 

the cultivated species, but A. duranensis had the same banding profile as A. hypogaea 

L., and A. monticola (Stalker 1992).

A. hypogaea L., is divided into two subspecies, hypogaea and fastigiata

(Table1), each with two botanical varieties. The cultivated lines of Spanish, sub-species 

fastigiata var.vulgaris, and Valencia, fastigiata var fastigiata, are observed in the 

fastigiata subspecies. The hypogaea subspecies is divided into the Virginia and Runner 

type varieties. The subspecie hypogaea is characterized by the absence of flowers on 
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the main stem and has pairs of vegetative and reproductive axes alternating along the 

lateral branches. The sub-specie fastigiata has a sequential arrangement of reproductive 

axes along lateral branches and has flowers on the main stem (Ramanatha Rao and 

Murty 1994).  

Table 1: The classification of groundnut into varieties and botanical types (Arachis hypogaea L.,)

Subspecies Variety Botanical 
type

Branching 
pattern

Growth 
habit

Seed/pod

hypogaea Virginia Alternate Prostrate to 
erect

2-3 hypogaea

hirsuta Peruvian 
Runner

Alternate Prostrate 2-4 

fastigiata Valencia Sequential Erect 3-5 fastigiata
vulgaris Spanish Sequential Erect 2

(Ramanatha Rao and Murty 1994)
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1.1.3 MORPHOLOGY OF ARACHIS

The plant Arachis hypogaea L., is an erect or trailing annual herbaceous legume 

with three or four leaflets, stipulate leaves, the characteristic papilionate flowers, a 

tubular hypanthium and subterranean fruits. The peg is unique to the species and is an 

expanded intercalary meristem at the base of the basal ovule. The intercalary meristem

expands into a carpel which contains one to five segments, each containing a single 

seed. The sub-specific classification is characterized on branching pattern, the presence 

or absence of reproductive axes (inflorescence) on the main stem and arrangement of 

vegetative and reproductive axes on primary laterals (Ramanatha Rao and Murty 1994).

ROOTS

A. hypogaea L., has evolved a well-developed taproot with many lateral roots 

unlike its other wild relatives, that have tuberous roots. Adventitious roots develop 

from the hypocotyls and aerial branches. Because there is no true epidermis (hence the 

absence of root hairs) absorption takes place 8-10mm behind the root cap. Nodules can 

normally be found on roots (Purseglove 1968). 

STEM

 The terminal bud of the epicotyl gives rise to the main stem. The first two 

lateral monopodial branches later develop from buds in the axils of the cotyledons. 

Nodes on the main axis give rise to monopodial vegetative branches. Secondary 

monopodial branches may be produced from the lateral branches. Reduced 

reproductive branches are produced from the monopodial branches. The monopodial 
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vegetative and reduced reproductive branches are of two distinct types (Purseglove 

1968).

ALTERNATE BRANCHED FORM

This branching pattern (Figure 1) occurs in the Runner (prostrate) and the 

spreading branch forms of the Virginia cultivars. There are no reproductive axes on the 

main stem. Alternating pairs of vegetative and reproductive branches arise from the 

lateral monopodial branches (Ramanatha Rao and Murty 1994).  

n

n+1          n+3  

n+1

Figure 1: Alternate Branching Pattern of Runner and Virginia Cultivars (Ramanatha Rao and
 Murty 1994).    

n       Main Stem

n+1  Primary Lateral Branch

n+2  Secondary Branch

n+3 Tertiary Branch
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SEQUENTIAL BRANCHED FORM

This branching pattern (Figure 2) occurs in the true erect branched forms of the 

Spanish and Valencia cultivars. Reproductive axes are borne on the main stem and are 

arranged in a continuous series on successive nodes of lateral branches (Ramanatha 

Rao and Murty 1994).  

                                               n                                

                                                                                   n +1

                                                                                               n +2

Figure 2: Sequential Branching Pattern of Spanish and Valencia Cultivars (Ramanatha Rao and 
Murty 1994).  

n       Main Stem
n+1   Primary Lateral Branch
n+2   Secondary Branch
n+3  Tertiary Branch

LEAVES

The primordia of the seeds give rise to the first leaves. The leaves, except in 

Trifoliolatae, are borne spirally in a 2/5 phyllotaxy. The leaves are paripinnate; leaflets 

which are borne on a slender, grooved and jointed rachis, are opposite, subsessile and 

elliptic. Stipules are present and prominent (Ramanatha Rao and Murty 1994).  

FLOWERS

Flowers emerge on compressed spikes in the axils of foliage leaves. Flowers are 

never borne at the same node as vegetative branches. The flower is sessile. The calyx is 
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composed of five lobes (four fused) and elongates as the bud develops. There are five 

petals at the top of the calyx tube; 10 stamens (two fused) four stamens with oblong, 

locular anthers, four stamens with smaller globose anthers; pistil is composed of the 

ovary of single sessile carpel with 2-6 ovules (Purseglove 1968).

FRUITS

Post fertilization, the ovary begins to grow after the activation of the intercalary 

meristem below the ovary. The peg is a stalk-like structure that carries the fertilized 

ovules at its tip. Upon entering the soil, the peg then begins to develop into the fruit 

(Ramanatha Rao and Murty 1994).     

1.1.4 DISTRIBUTION AND DISPERSAL

DISTRIBUTION

In its native habitat, peanut’s geographic distribution ranges from near the 

equator to approximately 34o S in southern Uruguay. From East to West, the plant is 

distributed from the Atlantic Ocean to the foothills of the Andes. The peanut plant can 

be found growing from sea level to an elevation of 1450 m. It is found growing in 

diverse ecological zones ranging from open grasslands to broken forests; from 

floodplains to semi arid regions (Stalker 1985).“Because of the geocarpic nature of the 

fruit, species distribution generally follows major river valleys (Stalker 1985).” 

As a crop peanut can be found cultivated 40o north and south of the equator.  

Because it is a warm season crop, peanut is very susceptible to cold weather and will be 

killed by frost. Peanut is cultivated in areas that normally receive 40 inches or more of 

annual rainfall. In the growing season there should be a minimum of 20 inches 
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annually.  The crop prefers well drained, loose, friable, sandy loam soils which are well 

supplied with calcium and moderate amounts of organic matter (Purseglove 1968).

The crop requirements for well-drained sandy soils are biased towards the 

ecological preference for cultivation. Because of the greater genetic diversity that exists 

in the wild species, as compared to the cultivated varieties, Arachis hypogaea L. is 

adapted to a wide range of environments. Wild species can be found growing on ill-

drained soils, in running water, heavy soils and rock outcrops (Valls et al., 1985).

DISPERSAL

Prior to the colonization of the New World, there is no credible historical record 

of the cultivation of peanuts outside of the Americas. The Portuguese are credited with 

the initial dispersal of the crop to Africa and India. Groundnuts from Brazil were first 

introduced to Africa then to India via the Portuguese trading ships. From Peru to 

Mexico, then across the Pacific, the Peruvian type A. hypogaea var. hirsuta was 

transported to China, Indonesia and Madagascar as an item of trade prior to 1815 (Valls 

et al., 1985). 

 The exact introduction into the United States of America remains obscured. It 

may have been introduced indirectly by European farmers or directly from South 

American and Central American agricultural societies (Valls et al., 1985). There is also 

some evidence that the crop may have been brought from Africa to North America by 

slave traders, who used it as food for the slaves during the middle passage (Woodroof 

1966).

Early records from colonial America mention the crop being grown in Virginia 

and North Carolina. However, it was only after the Civil War in 1865 that extensive 
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cultivation began. Due to the ravages of the Cotton Boll Weevil in 1920, farmers from 

Alabama, Florida and Georgia substituted peanuts for cotton (Woodroof 1966). The 

need for peanut oil, food, and feed during World Wars I and II, and the many food and 

industrial products generated from peanuts by George Washington Carver, were 

significant contributing factors for the expansion of acreages and development of the 

peanut industry in North America (Woodroof 1966).

1.1.5 PRODUCTION SYSTEM IN THE U.S.

HIGH INPUT SYSTEM

The concerted efforts at mechanization in the 1920’s resulted in the expansion of 

acreages under cultivation. By 1964, 90% of concentrated production was mechanized 

(Woodroof 1966). Cultivation practices such as deep tillage and smooth soil preparation, 

treating and planting seeds, applying fertilizers and herbicides, digging, windrowing and 

thrashing as well as drying were all mechanized. The mechanization of cultivation and 

harvesting has reduced the labor requirement from 43 to 24 man-hours per acre. It is now 

possible to grow 300-1000 acres of peanut per farm (Woodroof 1966).

In the U.S., peanut is cultivated under commercial conditions of improved 

varieties, high inputs, irrigation, modern crop management and mechanization. Yields 

of 2-4 t/ha are achieved under this system (Freeman et al., 1999).

The price support program instituted by the U.S. government in 1934 had a 

multitude of positive effects on the peanut industry. Under that program, each farm was 

allocated a poundage quota and peanuts produced within that poundage quota and 

meeting the quality requirements, were eligible for the price support. It was this price 
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support that provided the major incentive for the production thus precipitating the 

expansions in acreages, and the mechanization of production (Isleib et al., 1992).

Because of the commercial nature of production in the U.S., a functional 

research infrastructure has evolved to support the production, processing and utilization 

of the peanut crop. New technologies are being developed to resolve the constraints to 

all phases of the industry. Some of the research efforts include, (1) breeding programs 

for higher yielding cultivars adapted to mechanical harvesting, (2) development of 

machinery to completely mechanize production, (3) appropriate use of fertilizers based 

on soil tests and plant analysis, (4) use of high quality certified seeds, and (6) use of 

irrigation (Isleib et al., 1992).

1.1.6 PRODUCTION CONSTRAINTS

Improvements in yield, hence productivity, have been constrained by a number of 

biotic and abiotic factors. High incidences of diseases, insect pests, and adverse 

environmental factors such as low soil fertility and drought, have challenged peanut 

breeders to develop cultivars that are resistant to local pests and environmental conditions 

(Freeman et al., 1999).  However, breeding programs for resistance have not been overly 

successful.

    One of the more successful disease-resistant breeding programs resulted in the 

development of cultivars resistant to rosette virus in Senegal, Nigeria and Malawi 

(Coffelt 1989). In the U.S., a cultivar resistant to Cylindrocladium black rot 

(Cylindrocladium crotalariae), and a cultivar resistant to Pod rot (Pythium spp., 

Rhizoctonia solani Kuhn, and Fusarium spp) have been released (Coffelt 1989). A 
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number of cultivars resistant to Sclerotinia blight (Sclerotinia minor Jaggar) have also 

been released (Kirby et al., 1998, Coffelt et al., 1982, Simpson et al., 2000 and Smith et 

al., 1991). This disease, Sclerotinia blight, is a major limiting factor to the cultivation of 

peanuts in many peanut producing countries in the world (Akem et al., 1992).
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1.2 RATIONALE

Between 1979 and 1996 the global cultivation of peanut, Arachis hypogaea L., 

increased by 1.3% per annum. This increased trend in cultivation was especially 

pronounced in Asia where China expanded its production area by almost 60 percent. 

While Africa experienced a decline in production from the mid1970s to the mid 1980s, 

the expansion of production areas as Sudan, Nigeria and Egypt effected a reversal of 

this trend in the 1990s. Presently, developing countries account for over 90 percent of 

peanut production (Freeman et al., 1999). 

In the U.S., the expansion in acreages around 1900 was directly related to the 

invention and innovation of equipment, hence the mechanization of planting, 

cultivating, harvesting, picking, shelling and cleaning of kernels. By the 1950s some 

1,718,000 acres were under cultivation with production of 763,300 tons; an average of 

0.44 tons per acre or 880 lbs per acre (Woodroof 1966). Further technological gains in 

the 1960s and the 1970s did not increase the acreage under cultivation, but more 

importantly, increased the total yield per acre (1669.7 tons) by 62 % (Freeman et al., 

1999). An increase in acreage planted was experienced in the mid 1980s and mid 

1990s. However, this trend was followed by a decline. As of 2002, some 1,358,000 

acres were under cultivation and the average yield per acre remained high at 2,561 

pounds per acre (http://www.usda.gov/nass/pubs/agr03/acro03.htm).  

In 2002, (Table 2) the principal states involved in peanut cultivation were 

Georgia, Texas, Alabama, North Carolina, Florida, Oklahoma, Virginia, New Mexico 

and South Carolina. The peanut industry (Table 3) generated some 596 million U.S. 
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dollars, a decline from the excess of 1 billion dollars U.S. generated in 2001 

(http://www.usda.gov/nass/pubs/agr03/acro03.htm). This drop in net farm returns 

reflects not only the changes in the 2002 Farm Act, which restructured the peanut quota 

and its price support systems, but also competition from imports and the challenges on 

the export market (http:// www.ers.usda.gov/publica.PDF).

TABLE 2: Peanut production Figures for the nine peanut producing states in the U.S.

PEANUTS FOR NUTS In 2002

STATES
AREA 

PLANTED

(1,000ACRES)

AREA HARVESTED

(1,000ACRES)

YIELD PER 
HARVESTED 

ACRE
(POUNDS)

PRODUCTION

(1,000POUNDS)

AL 190.0 185.0 2,050 379,250
FL 96.0 86.0 2,300 197,800
GA 510.0 505.0 2,600 1,313,000
NM 18.0 18.0 3,000 54,000
NC 101.0 100.0 2,100 210,000
OK 60.0 57.0 2,800 159,600
SC 10.0 8.7 2,200 19,140
TX 315.0 280.0 3,100 868,000
VA 58.0 57.0 2,100 119,700
US 1,358 1296.7 2,561 3,320,490
NASS, CROPS BRANCH, (202)-720-2127



15

TABLE 3: Revenue generated from peanut production by the nine
peanut producing states in the U.S.

MARKETING 
YEAR AVEARGE 
PRICE PER 
POUND (2002)

VALUE OF 
PRODUCTION 
(2002)

STATES

DOLLARS 1,000 DOLLARS
AL 0.168 63,714
FL 0.177 35,011
GA 0.175 229,775
NM 0.190 10,260
NC 0.208 43,680
OK 0.170 27,132
SC 0.166 3,177
TX 0.182 157,976
VA 0.198 23,701
US 0.179 594,426

NASS, CROPS BRANCH, (202)-720-2127

The value of the peanut crop finds basis in its utility. Peanut, more than any 

other crop, is widely believed to have the highest combined advantages as a food 

ingredient due to its “pleasing aroma and flavor; crunchy texture; high energy value; 

high in protein, minerals, and niacin; and its suitability of being made into hundreds of 

products for serving any time of the day and all occasions (Woodroof 1966).”

 Peanut is cultivated for its kernels, the oils and meals that can be extracted from 

them and for its vegetative residue which can serve both as a vegetable in soups or as a 

high quality forage for animals (Asiedu 1994). Peanut is considered to be one of the 

world’s principal oilseed crops and from 1994-1997 was ranked fifth in world’s 

production of vegetable oils and oilseed protein meal (Freeman et al., 1999).  

The most important commercial product of the crop is the extracted oil, thus 

slightly over 50 percent of world’s production is crushed into oils for human or 

industrial use (Freeman et al., 1999). For human consumption, the oil can be used for 

cooking, for margarines and vegetable ghee, for shortening in pastries and in bread. A 

number of pharmaceutical and cosmetic products, lubricant and emulsion for pesticides, 
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and fuel for diesel engines are also produced from the oil (Asiedu 1994). As the 

urbanization of populations in developing countries continues to increase, the 

opportunity costs associated with convenience foods will thus increase the demand and 

consumption of peanut oil (Freeman et al., 1999).  

It is the consumption of peanut as a direct food source that has, however, 

engendered the greatest demand for this highly nutritive food crop. The utilization of 

confectionary peanuts increased by 80 % between 1979-81 and 1994-96. Much of this 

increase was realized in developing countries where their share of global utilization 

increased from 75 to 83 %. The pattern of consumption, though, is quite different 

among developed countries (Freeman et al., 1999).

 In Asian countries, where the populations are experiencing a rise in per capital 

income, the mode of utilization has shifted to processed and packaged foods. In other 

countries, such as in Africa, the consumption pattern remains primarily in the forms of 

roasted nuts, boiled or raw groundnut or paste (Freeman et al., 1999).

 In developed countries, utilization of peanut increased by 19 % between 1979 

and 1994. The U.S has the highest level of utilization and is the largest producer of 

confectionary peanut. Most of the peanuts produced in the U.S. are used in 

confectionary products, packaged snacks and peanut candies (Freeman et al., 1999). 

About half of the U.S. peanut crop is processed into peanut butter. Among developed 

countries, the U.S. has experienced a decline from 58 % in 1979-81 to 52 % in 1994-96 

in the amount of confectionary peanuts utilized. The rise in price that occurred after the 

1990-91 season, consumer’s preference for low fat foods and the U.S. government’s 
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reduced purchases of peanut for domestic nutrition programs, have contributed to this 

decline (Freeman et al., 1999).

The determination that peanut is an important global and domestic agricultural 

crop commodity is merited, hence the concerted efforts across research institutions in 

understanding and determining the limiting factors and constraints to production. 

Though government policies such as the 2002 Farm Act and international trade 

agreements such as NAFTA currently regulate production acreages (http:// 

www.ers.usda.gov/publica.PDF), it is understanding and mitigating those constraints 

imposed by abiotic and biotic stresses (insect pests, diseases, drought and low soil 

fertility) that are central to the research efforts in productivity improvements. Of those 

biotic stresses, the constraint to productivity improvements imposed by the disease 

Sclerotinia blight continues to be a major challenge to researchers (Freeman et al., 

1999).

The challenge in managing this disease lies in the realization that there exists a 

lack of established control practices (Akem et al., 1992). This disease is particularly 

destructive (Figure 3) because it affects not just the yield (50% crop loss in Oklahoma 

can occur following severe outbreaks) but can also affect the quality of kernels 

produced (Figure 4). Runner cultivars grown under irrigation are particularly 

susceptible to infection. It is estimated that over 45 percent of peanut acreages in 

Oklahoma are currently infested with Sclerotinia minor Jaggar (Damicone et al., 2001). 



18

Figure 3: A field showing typical symptoms of Sclerotinia minor 
Jaggar infestation Courtesy H.A. Melouk

  Figure 4: A peanut kernel showing damage caused by Sclerotinia
  minor Jaggar. Courtesy: Texas Agricultural Extension Service
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1.3 Sclerotinia minor Jaggar and PEANUT CULTIVATION
1.3.1 BIOLOGY of S minor Jaggar

TAXONOMY

The fungus Sclerotinia minor Jaggar (Figure 5) is one of the most important and 

damaging pathogens of the peanut plant. This soil-borne fungus has a worldwide 

distribution and is the causative agent of the disease Sclerotinia blight, which is known 

to account for 5- 13% annual crop loss in Oklahoma and Virginia (Akem et al., 1997). 

Since its discovery in Oklahoma in 1972, the pathogen has now rapidly spread 

throughout the peanut producing counties. This fungus is particularly damaging to 

Runner genotypes, which account for over 70 % of acreages planted in Oklahoma 

(Akem et al., 1992). 

Figure 5: Symptoms of Sclerotinia minor Jaggar infecting 
peanuts Courtesy North C Carolina State University; Department 
of Plant Pathology.

The fungus S. minor Jaggar is the pathogen of a large number of plant families 

from the Angiospermae branch. These families include Leguminosae, Solanaceae, 
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Compositae, Cruciferae, Umbelliferae and Chenopodiaceae. These families host a large 

group of economically important crop species (Willet et al., 1980). This soil borne 

pathogen is capable of producing apothecia and sclerotia and is particularly damaging 

to peanuts because of its ability to spread rapidly within the canopy and its persistence 

in the soil (Smith 2001). The fungus over winters in the field as sclerotia, then produces 

apothecia and ascospores in late April. Peanut plants exposed to the ascospores then 

become infected with the disease (Wadsworth 1976).

INFECTION AND TRANSMISSION

Peanut plant materials can become infected by either the ascospores that are 

discharged from the apothecia, by mycelium arising from adjacent plants or from 

mycelium of germinating sclerotia. Under favorable conditions of temperature, 

humidity and soil pH, the pathogen rapidly invades the plant tissues forming light 

brown watery rots followed by the growth of a white cotton-like mycelium (Figure 6) 

on the infected tissue. “Stunting, premature ripening and sudden collapse of the host are 

common symptoms (Willet et al., 1980).” The pathogen can be transmitted to clean 

fields by harvest equipment that have been contaminated by infected seeds and plant 

debris (Akem and Melouk, 1990; Melouk et al., 1991).
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    Figure 6: MYCELIUM GROWTH OF S. minor Jaggar on PEANUT: 
   Courtesy: North C Carolina State University; Department of Plant 
    Pathology.

After several days of infection, sclerotia develop from aggregates of mycelium. 

These sclerotia can remain dormant for extended periods of time by accumulating in 

plant debris or in the soil. Upon germination (Figure 7), these vegetative structures can 

give rise to hyphae or apothecia in which the ascospores, sexual spores of the fungus, 

are produced (Willet et al., 1980). The management and control of this disease is very 

difficult. An integrated approach using a combination of cultural practices, fungicides, 

and partially resistant cultivars is required to reduce disease losses (Chappell et al., 

1995).
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Figure 7: Life cycle and infection of Sclerotinia minor Jaggar in peanut field. Photo courtesy North         
Carolina State University; Department of Plant Pathology.
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1.3.2 MANAGEMENT OF SCLEROTINIA BLIGHT

DISEASE RESISTANCE

The identification and use of new sources of disease resistance in a breeding 

program is a viable strategy in the control of Sclerotinia blight. In general, Spanish and 

Valencia genotypes, because of their architecture (upright plant canopy), tend to exhibit 

greater resistance to Sclerotinia minor Jaggar than the dense spreading Virginia and 

Runner genotypes. The increased levels of resistance exhibited by those erect 

genotypes appear to be a morphological escape mechanism (Akem et al., 1992). This 

escape mechanism may not only be the result of the upright plant canopy, but also the 

early maturity habit or result from greater resistance of the plant tissues to the 

pathogens (Chappell et al., 1995). This resistance is heritable hence the use of open or 

upright canopy types as a parent in breeding for resistance in Virginia types (Chappell 

et al., 1995). Southwest Runner (SWR) is a cultivar with moderate resistance that was 

released by the Oklahoma Agricultural Experimental Station and the USDA-ARS in 

1995. This cultivar is the product of a cross between the Spanish cultivar Comet and 

Florunner, a Runner cultivar (Kirby et al., 1998).

CHEMICAL MANAGEMENT

While the use of resistant cultivars remain a viable option for the management 

of Sclerotinia blight, the use of fungicides may be necessary in cases of severe 

infestation. Presently, a number of fungicides have been tested for use in the control of 

this disease. Two and three applications of Iprodione at the rate of 1.12 kg/ha reduced 

the disease incidence for Okrun by 56% and 70%, respectively. Yields increased by 
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547 kg/ha with the two applications and by 801 kg/ha with the three applications. Two 

applications of   Fluazinam applied at a rate of 0.56 kg/ha reduced the disease incidence 

in the range of 56-80% in Okrun. One application of Fluazinam increased yields in 

Okrun by 1030 kg/ha. (Damicone et al., 1996). Other fungicides as 

Pentachloronitrobenzene and dicloran have also been used in fungicidal programs for 

Sclerotinia blight (Damicone et al., 2001).

BIOTECHNOLOGY IN Arachis IMPROVEMENT:

Recombinant DNA technology, technologies for genetic analysis and gene 

transfer, provides additional options for groundnut improvements. Protocols in somatic 

embryogenesis, plant regeneration and particle bombardment for gene transfer, are 

being employed to transfer genes of agronomic importance to peanut. Genes from 

viruses and other plants that may confer some useful properties are being identified and 

sequenced for improving the peanut crop. Restriction fragment length polymorphism 

(RFLP) and randomly applied polymorphic DNA (RAPD) have both been applied to 

cultivated groundnut and its wild relatives to determine the genetic variations among 

cultivars and accessions so as to produce genetic maps (Weissinger 1992).

The production of chitinases and glucanases hydrolytic enzymes has shown to 

be effective defense mechanisms to chitin-containing pathogens (Ji et al., 1996). The 

transformation of peanut cultivars with those hydrolytic enzymes serves as an alternate 

approach to classical breeding and fungicidal applications for the control of Sclerotinia 

blight. “Traditional breeding and screening practices have resulted in few cultivars 

resistant to fungal diseases that are suitable for commercial use (Chenault et al., 2002).” 

The expense of fungicide applications and concerns of environmental contamination 
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make genetic engineering an alternate method for Sclerotinia blight management 

(Chenault et al., 2002).   
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1.4 RESEARCH OBJECTIVES

The first objective of this research was to evaluate (in the field) the resistance to 

Sclerotinia blight of two transgenic peanut lines that were transformed with chitinase 

and glucanase hydrolase genes. These genes were placed into the Okrun genetic 

background and the transformed plant lines were evaluated for disease resistance, 

quality factors and return.

The second objective was to evaluate (in the field) the resistance to Sclerotinia 

blight of the two transgenic peanut lines to commercial cultivars with good to excellent 

levels of resistance to Sclerotinia blight by evaluating yield, Sclerotinia blight 

incidence, and grade quality factors under three disease pressure environments.
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CHAPTER II

         2.0 MATERIALS AND METHODS

2.1 Objective I

Evaluation of resistance to Sclerotinia blight by comparing Sclerotinia blight 
incidences of the two transgenic lines and the four Genotypes.

2.1.1 INTRODUCTION

The control of fungal diseases through the repeated applications of fungicides is 

limited by the associated costs and environmental concerns. Further, the inherent 

abilities of pathogens to develop resistance to chemicals limit the effectiveness of 

fungicides (Bliffeld et al., 1999).  An integrated pest management strategy, which 

incorporates the use of cultivars resistant to specific fungal races, serves as an 

alternative to chemical control (Patterson et al., 1987). Genetic engineering can also be 

an alternative to enhancing the disease resistance of commercial crops while reducing 

the need for chemical inputs (Bliffeld et al., 1999).

Plants have evolved a complex defense of mechanisms in response to fungal 

attacks (Lozovaya et al., 1998). These mechanisms are designed to limit the penetration 

and development of pathogens and “include structural and biochemical responses like 

reinforcement of the plant cell wall, accumulation of phytoalexins with microbial 

toxicity, ribosome-inactivating proteins that inhibit protein synthesis, antimicrobial 

peptides and the synthesis of other pathogenesis- related proteins (Bliffeld et al.,
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1999).”Chitinase and β-1, 3 glucanase are two known pathogenesis- related (PR) plant 

proteins (Mauch et al., 1988). Chitinase and β-1, 3 glucanase are capable of 

hydrolyzing the chitin and β-1,3 glucans; the major cell wall component of many fungi 

(Ji and Kuc., 1996). These two PR proteins can be induced by ethylene, by a pathogen 

infection or by pathogen derived elicitors (Mauch et al., 1988). In the lab, these two PR 

proteins are known to act synergistically to restrict the growth of several genera of 

fungi. (Lozovoya et al.,1998). According to Zhu et al., 1994, the combination of the 

two genes, in transgenic tobacco, gave substantially greater protection against the 

fungal pathogen Cercospora nicotianae, the causal agent of the frogeye, than either 

transgene alone. 

2.1.2 MATERIALS AND METHOD

From the split plot experiment data were collected over the two years to 

determine Sclerotinia blight incidences, that is, percentage of peanut plants infected 

with the disease Sclerotinia blight. 

Disease counts were taken once a week over a three-week period, hence a total 

of three counts per year. Disease symptoms of dead, wilting shredded limbs and 

mycelial growth were observed and diseased plants were counted and color tagged. 

Three different color tags were used, one at each count. At each count, only newly and 

unrecorded infected plants were counted and color tagged. The totals for the three 

counts per year were then summed to obtain a grand total of disease rating for each sub-

plot. 
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2.2 OBJECTIVE II

Evaluation of resistance to Sclerotinia blight by comparing yields of the two 
transgenic lines and four commercial cultivars.

2.2.1 INTRODUCTION

The average yield per acre of peanuts in the United States has steadily 

increased. In the 1930’s the average yield was 861 pounds per acre. During the decade 

of the 1960’s the yield increased to 1,735 pounds per acre (Marshall and Schools., 

1968). In 2002, the average yield was 2561 lbs/acre 

http://www.usda.gov/nass/pubs/agr03/acro03.htm). As of 2003, some research plots on 

the Caddo County Research Station in Oklahoma, have yielded over 5000 pounds per 

acre (Sholar et al., 2003).

While U.S. farmers have experienced a substantial increase in mean yield per 

acre, the global mean dry pod yield ranged from 0.7 to 2.8 tons/ha with an average of 

about 1ton/ha, however yields of over 9 ton/ha have been realized.  China has recorded 

mean dry pod yields of 11.2 tons/ha in 0.1 ha plots and 9.6 ton/ha in 14 ha plots. 

Zimbabwe has also reported similar yields of 9.6 tons/ha (Johansen and Rao., 1996). 

According to Johansen and Rao., 1996, the yield potential estimated by radiation use 

efficiency for short duration and medium duration Spanish cultivars were 11.9 ton/ha 

and 17.3 ton/ha, respectively. 

Breeding for increased yields continues to be a viable objective of most peanut 

breeding programs (Coffelt, 1989). The objective of those breeding programs then is to 

narrow the yield gap; “the difference between the yields realized by farmers and 

potential yields; by identifying and addressing the biotic and abiotic factors responsible 
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for this gap (Johansen and Rao., 1996).” Abiotic stress factors as drought and high 

temperature and biotic factors as pest, diseases, nematodes, and viruses can seriously 

constraint yields and quality of groundnuts (Maiti, 2002). Soil physical characteristics 

and nutrient availability can also limit yield potential (Johansen and Rao., 1996).

2.2.2 MATERIALS AND METHOD

EXPERIMENT DESIGN

A split plot experiment was conducted at the Caddo County Research Station, 

near Fort Cobb Oklahoma, to evaluate the resistance of three commercial cultivars, one 

breeding line and two transgenic lines of peanuts to the disease Sclerotinia blight. In 

this experiment, three spray treatments of 0, 1 and 2 applications of Omega, (Syngenta, 

Greensboro, NC) at a rate of 1.5 pts/acre, were the main factors and six genotypes were 

the sub-factors. These three spray treatments were used to create the three disease 

pressure environments. There were five replicates; 15 main plots each measuring 25 ft 

x 18 ft and the experiment was conducted over two years. The soil type was Cobb 

Sandy Loam.

GENOTYPES

The genotypes chosen for this experiment were all Runner genotypes. The three 

commercial cultivars were TX 977006 (Tamrun OL 01), Southwest Runner, which are 

moderately resistant to Sclerotinia blight (Simpson et al., 2003, Kirby et al., 1998), and 

Okrun, which is susceptible to this disease (Kirby et al., 1989). The breeding line TX 

994336, which was developed by Texas A&M and USDA-ARS and has some 
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resistance to Sclerotinia blight, was also evaluated. Two transgenic lines 654 and 487, 

that were developed at the USDA-ARS peanut lab in Stillwater, were evaluated 

(Chenault et al., 2002). These two lines were generated from Okrun somatic embryos 

by transforming them with chitinase and glucanase gene constructs. These plant lines 

exhibited higher levels of hydrolase activity than the non-transformed Okrun cultivar 

when assayed.

PLASMID CONSTRUCTS:

CHITINASE PLASMID CONSTRUCT:

A rice chitinase gene cassette was excised from plasmid pBZ56 by BamHI 

digestion and sub-cloned into plasmid pRTL2, which contained a duel-enhanced CaMV 

35S promoter. Hind III was used to isolate this expression cassette and the construct 

was then ligated with plasmid pTRA141, which contained a hygromycin (hph)

resistance gene, thus creating plasmid pAB2.5 (Chenault et al., 2002).

GLUCANASE PLASMID CONSTRUCT:

An alfalfa glucanase gene cassette (AGLU1) was excised from plasmid pMU2X 

by EcoRI digestion and inserted into pRTL2. Hind III was used to isolate this 

expression cassette and the construct was then ligated with plasmid pTRA141, thus 

creating plasmid pAB8 (Chenault et al., 2002).
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SEED TREATMENT:

All seeds were given a seed protectant treatment with the fungicide Tops 90 

(Gustafson LLC, Plano, TX) and hand planted at a distance of 2.5”apart. Seed 

germination count was taken 5 weeks after planting to determine plant stand for disease 

ratings.

AGRONOMIC AND CULTURAL PRACTICES.

HERBICIDE AND INSECTICIDE APPLICATIONS:

Herbicides and insecticides applications were used to control weeds and insects 
and were similar to the practice employed by peanut farmers in Oklahoma. (Table 4 
and 5).

Table 4: Herbicide and insecticide applications used to control weeds and insects (2002)  
HERBICIDES

TYPE APPLICATION RATE DATE

SONALAN 2.5pt/acre 5-10- 02

CADRE + BUTYRAC 200 1.44 oz + 1pt/acre (resp) 7-10- 02

INSECTICIDES

ORTHENE 90WSP 8oz/acre 6-6-02

Table 5: Herbicide applications used to control weeds (2003)
HERBICIDES

TYPE APPLICATION RATE DATE

PROWL 2.4pt/acre 5-22- 03

CADRE +BUTYRAC 200 1.44 oz + 1pt/acre (resp) 7-10- 03

      *SONALAN and BUTYRAC 200 (Dow AgroSciences LLC, Indianapolis, IN)
      *CADRE and PROWL (Basf Corporation, Research Triangle Park, NC)
      *ORTHENE 90WSP (Monsanto, San Ramon, CA) 
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FUNGICIDES

Fungicides were applied to control the varied numbers of fungal diseases of 

peanuts such as Sclerotinia blight, Southern blight, and Leaf spot. Tables 5 and 6 list 

the fungicides applied.

Tilt + Bravo (Syngenta, Greensboro, NC) were used to control Leaf Spot, Early 

and Late blight and Southern blight. Folicur (Bayer, Kansas City, MO) was used to 

control a range of foliar and soil borne fungal diseases including Rhizoctonia, limb and 

Pod rot, and Sclerotium stem and Pod rot. Omega, with the active ingredient fluazinam 

(Syngenta, Greensboro, NC), was the fungicide used in the experiment to create the 

different disease pressures necessary to evaluate the transgenic lines’ resistance to 

Sclerotinia blight. In 2002, the main plots (MP) receiving one treatment of Omega 

(Syngenta, Greensboro, NC) were sprayed on 8-05-02. The main plots receiving two 

treatments were sprayed on 08-05-02 and 09-12-02. In 2003, main plots receiving one 

treatment were sprayed on 08-13-03, while main plots receiving two treatments were 

sprayed on 08-13-03 and 09-12-03.

Table 6: Fungicide applications used to control fungal problems in 2002
TYPE APPLICATION RATE DATE

TILT + BRAVO 2oz + 1pt/acre (resp) 7-2-02

TILT + BRAVO 2oz + 1pt/acre (resp) 7-23- 02

FOLICURE 7.2 oz/acre 8-5-02

OMEGA 1.5pt/acre 8-5-02

FOLICUR 7.2 oz/acre 8-19- 02

OMEGA 1.5pt/acre 9-12- 02

          *TILT, BRAVO and OMEGA (Syngeneta, Greensboro NC)
          *FOLICUR (Bayer, Kansas City, MO)        
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Table 7: Fungicide applications used to control fungal problems in 2003
TYPE APPLICATION RATE DATE

TILT + BRAVO 2oz + 1pt/acre (resp) 6-30- 03

TILT + BRAVO 2oz + 1pt/acre (resp) 7-14- 03

TILT + BRAVO 2oz + 1pt/acre (resp) 7-28- 03

TILT + BRAVO 2oz + 1pt/acre (resp) 8-12- 03

OMEGA 1.5pts/acre 8-13- 03

TILT + BRAVO 2oz + 1pt/acre (resp) 8-21- 03

TILT + BRAVO 2oz + 1pt/acre (resp) 9-8-03

OMEGA 1.5pts/acre 9-12- 03

          *TILT, BRAVO and OMEGA (Syngeneta, Greensboro NC)

IRRIGATION

Figures 8 and 9 represent the total rainfall and irrigation crop received over the two 

growing seasons. 
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         Figure 8: Total rainfall and irrigation the crop received at
         Ft- Cobb in 2002
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2003 Rain and Irrigation FT-Cobb
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           Figure 9: Total rainfall and irrigation the crop received at
           Ft- Cobb in 2003

HARVESTING

Digging was done with a single row digger and curing was done in wind-rows.  

After thrashing, all plant materials were gathered and burnt in the field. Pods were dried 

in an electric drier. All equipment were thoroughly cleaned and the field was re-dug 

with a hand fork to remove all remaining pods. Weights were taken and all transgenic 

peanuts were stored at the USDA-ARS facility. 
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2.3 OBJECTIVE III

Evaluation of resistance to Sclerotinia blight by comparing Seed Quality Ratings 
and Return of the two transgenic lines and the four commercial cultivars.

2.3.1 INTRODUCTION

Defining and establishing standards for peanut quality are challenging exercises 

because of not only the quantitative standards that are involved, but more importantly, 

the sensory qualities measured and conferred are subjective in nature. In general, two 

broad subdivisions of peanut quality are established. The economic qualities, or grade 

factors, are well defined and determine the economic value of the crop. The sensory 

qualities, the second subdivision, reflects “all the physical and chemical characteristics 

of edible peanut seed or their products that influence human senses and bring about 

acceptability judgments by the consumer (Pattee and Ahmed., 1987).” 

The USDA establishes grade factors for the farmers’ stock peanuts. Each 

market type has a slightly different grade requirement developed for price support 

purposes (Davidson et al., 1982). In determining grade factors the percentages of edible 

kernels, inedible kernels, split kernels, foreign material, and moisture are measured 

(Dowell, 1992). The sample for grading is shelled to determine the percentage of sound 

mature kernels (SMK), sound splits (SS), damaged kernels (DK), small other kernels 

(OK), and moisture content (MC). It is also required to inspect peanuts for the toxin 

producing mold, Aspergillus flavus (Dowell, 1992). The grading of farmers’ stock 

peanuts determines the suitability of the peanut for food (Davidson et al., 1982).

The importance of sensory qualities in determining peanut quality is secondary 

to grade factors (Pattee and Ahmed., 1987). The sensory tests and tools for measuring 
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the desirable characteristics of flavor, texture, odor and appearance are difficult to use 

or are not known or developed (Matlock, 1969).

Maintaining peanut quality from planting to consumption is a continuous 

process. Peanut quality, once lost, cannot be restored (Sanders et al., 1987). There are 

many factors that may cause poor quality, and some of these include the influence of 

maturity, curing practices and mold infection (Sharon, 1963).

2.3.2 MATERIALS AND METHOD   

GRADE SAMPLING

Two hundred grams (200g) were taken from each plot and used for grade 

sampling. Grading samples were shelled and graded with runner screens; 21/64 of an 

inch, 18/64 of an inch and 16/64 of an inch, to obtain grade sample data for % 

TOTSMK, % SS, % DK, % OK and seed weight (SDWT100). All transgenic seeds 

were handled at the USDA-ARS facility.

Return was calculated by adding the bonuses and subtracting the deductions for 

the base price to obtain a price per ton. This price was then multiplied by the tonnage to 

per acre to obtain the return per acre. The base price was obtained from a buying point. 

Detections include the sound split when > 4% and damaged kernel when ≥ 2%. A 

bonus is given for every grade above 73% TOTSMK for runners. A price is also given 

for OK kernel and which is included in the grade per acre.
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CHAPTER III

3.0 RESULTS

Data for the response variables Sclerotinia blight incidence, yield, % Total 

Sound Mature Kernel (TOTSMK), 100 Seed Weight (SDWT 100) and Return were 

collected over the two years of the experiment. The SAS software (SAS Institute, 2001) 

was used for statistical analysis. First, the data were analyzed to determine whether it 

was possible to combine means over the two years. Through statistical analysis, it was 

found that the means of certain response variables could be combined, while others had 

to be analyzed separately over the two years.

3.1 RESULTS FOR OBJECTVE I:

Objective I: Evaluation of resistance to Sclerotinia blight by comparing 
Sclerotinia blight incidence of two transgenic lines and the four genotypes.

There were no significant effects caused by Years or genotype x Years for 

Sclerotinia blight incidence (Table 8). There were significant effects caused by Spray 

Treatments, Genotypes, Spray Treatments x Year and Spray Treatment x Genotype. 

Because of these significant interaction, it was necessary to look at the test of effect 

slice to determine which sub factor treatments were significantly different at a fixed 

level of main factor and which main factor treatments were significantly different at a 

given sub factor.
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At the 0 spray treatment (Figure 10) the transgenic line 654 had significantly 

less disease than Okrun. This line was also significantly different to line 487 which 

recorded a mean Disease Score Rating of 40.1%. While line 487 had 7.7% less disease 

than Okrun, there was no significant difference between their means.

Both lines exhibited lower and significantly different Sclerotinia blight 

infestation than Okrun at the 1 spray treatment. There was no significant difference 

between the means of these two lines at this spray treatment level.

At the 2 spray treatment, there was no significant difference between the 

transgenic line, TX 994336,Tamrun OL 01, and Okrun. Southwest Runner was 

significantly different to the transgenic lines, TX 994336,Tamrun OL 01, and Okrun at 

the 2 spray treatment. Only Southwest Runner had no significant difference in disease 

score ratings across spray treatments.

3.2 RESULTS FOR OBJECTVE II:

Objective II: Evaluation of resistance to Sclerotinia blight by comparing Yield of 
two transgenic lines and the four genotypes.

The only effect that was not significant for yield was spray treatment x year 

(Table 8). Because of the significant difference observed between Years, it was 

necessary to evaluate some of the main effects across years. The test of effect slice was 

necessary to evaluate the significant interactions.

In 2002, line 654 had a significantly higher yield than Okrun (Table 9). While 

line 487 had a higher mean yield than Okrun, there was no significant difference 

between these two means. Though lines 654 and 487 had higher mean yields than 

Okrun in 2003, there was no significant difference between their means. In both years, 
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the breeding line TX 994336 had significantly higher yields than the transgenic lines 

and Okrun.

 Southwest Runner had mean yields which were not significantly different 

across all three spray treatments (Table10). With 2 sprays Okrun out yielded the 

transgenic lines, but there was no significant difference between their means. The 

breeding line, TX 994336, had significantly higher yields than both transgenic lines at 

the 2 spray level. With 1 spray line 654 had a significantly higher yield than Okrun. At 

0 spray treatment, while both transgenic lines 654and 487 had higher yields than 

Okrun, 229lbs/acre and 22lbs/acre respectively, their means were not significantly 

different.

3.3 RESULTS FOR OBJECTVE III:

Objective III: Evaluation of resistance to Sclerotinia blight by Seed Grade Quality 
rating and Return of two transgenic lines and the four genotypes.

3.3.1 EVALUATION OF TOTAL SOUND MATURE KERNEL (%)

Spray treatments and genotypes did have a significant effect on %TOTSMK 

(Table 8). Averaged over all genotypes, the mean %TOTSMK in the 2 spray treatment 

was significantly higher to the mean %TOTSMK in the 0 and 1 spray treatments 

(Figure 11). The means for %TOTSMK of line 654 (Figure 12) when averaged over all 

spray treatments and years, was significantly higher than Okrun and all the other 

genotypes except line 487. The breeding line, TX 994336, had the lowest % TOTSMK 

mean at 69.8 % and was significantly different to the mean % TOTSMK of all the other 

genotypes. 
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3.3.2 EVALUATION OF 100 SEEDWEIGHT (SDWT100)

For the response variable SDWT100, the ANOVA (Table 8) indicates a 

significant difference between Genotypes. There were significant interactions between 

genotype and Year and between Spray Treatments and Genotypes. The test of effect 

slice was necessary for analysis of these interactions.

Only the breeding line, TX 994336, had significantly different SWDT100 

responses across years (Table11). In 2002, the mean SDWT100 for the breeding line, 

TX 994336, was higher and significantly different to its mean in 2003. The mean 

SDWT100 for the transgenic lines 654 and 487 were lower and significantly different 

to Okrun. Line 487 was also significantly different to line 654 in 2002. Tamrun OL 01 

registered the highest mean SDWT100 and was significantly different to all other 

means in both years. The Southwest Runner recorded the lowest mean SDWT100 and 

was significantly different to all other means in both years.

Only line 654 and Southwest Runner mean SDWT100 were significantly 

different across spray treatments (Table 12). The 2 spray treatment generated a 

significantly higher mean SDWT100 than the 0 spray for line 654. For Southwest 

Runner, the mean SDWT100 in the 0 spray treatment was higher and significantly 

different to the mean in the 2 spray treatment. Okrun had a significantly larger 

SDWT100 than 654 and 487 at 0 spray, significantly larger than 654 at 1 spray and 

significantly larger to both 654 and 487 at 2 sprays. 
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3.3.3 EVALUATION OF RETURN

In the ANOVA (Table 8) for Return, there were significant differences between 

spray treatments, genotypes and years. There were significant interactions between 

genotypes and year and between spray treatment and genotypes. Test of effect slice was 

necessary to evaluate these interactions.

When the genotypes were analyzed across years for return (Table 13), line 654 

mean was U.S.$ 71 more per acre than Okrun in 2002. There was a significant 

difference between their means. While line 487 mean was higher than Okrun, there was 

no significant difference. In 2002, Southwest Runner had the highest mean at U.S$ 497 

per acre. In 2003, both transgenic lines’ means were not significantly different to 

Okrun. The 2 spray treatment (Table 14) had significantly higher return than the 0 spray 

for the transgenic lines and the other genotypes, except Southwest Runner. In all three 

spray treatments, the mean returns for Southwest Runner were not significantly 

different. The transgenic lines had higher return than Okrun in the 0 spray treatment 

but, there was no significant difference between their means. In the 1 spray treatment, 

line 654 return was higher and significantly different to Okrun’s. When there were two 

sprays, TX 994336 had the highest return and it was significantly different to 

Southwest Runner, line 654 and line 487.
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Table 8: ANOVA of Yield, Sclerotinia Blight Incidence, % Total Sound Mature 
Kernel 100 Seed Weight and Total Return for a Peanut Trial Conducted near 

        Ft Cobb Oklahoma in 2002-2003.
EFFECT RESPONSE VARIABLE

DF SCLEROTINIA
BLIGHT 
INCIDENCE

YIELD TOTAL 
SOUND 
MATURE 
KERNEL

100 SEED 
WEIGHT 

RETURN

SPRAY 
TREATMENT

2 *** *** *** NS ***

GENOTYPES 5 *** *** *** *** ***
YEAR 1 NS *** NS NS ***
SPRAY 
TREATMENT X
YEAR

2 ** NS ** NS NS

GENOTYPE X 
YEAR

5 NS *** NS *** ***

SPRAY
TREATMENT X
GENOTYPE

10 * * NS * *

         * ** *** Reflects significance at p= 0.05, 0.01 and 0.001
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Figure 10: Summary of Sclerotinia blight incidence for six peanut genotypes at   
      three different fungicide treatments conducted near Ft Cobb, Oklahoma
      during 2002 and 2003. 

      Upper case letters: Compares a genotype across all spray treatments                
      Lower case letters:  Compares genotypes across a fixed spray treatment.
     *Means followed by same case letters are not significantly different at p=0.05
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Table 9: Summary table for interaction for Genotypes by Year for Yield for a 
Peanut Trial Conducted near Ft Cobb, Oklahoma in 2002-2003.
Genotypes 2002 (Lbs/acre) 2003 (Lbs/acre)
SWR 2819  A a 2982  A c
OKRUN 1850  B c 3114  A bc
TX 994336 2759  B a 3651  A a
TAMRUN OL 01 2719  B a 3561  A a
654 2207  B b 3185  A b
487 1981  B bc 3175  A bc

*Upper case letters: comparison of Years to a given Genotype across rows.
*Lower case letters: comparison of given Genotypes within a Year down a column.

      *Means followed by same case letters are not significantly different at p =0.05

Table 10: Summary table of means for Spray Treatment x Genotype interaction 
for Yield (lbs/acre) for a Peanut Trial Conducted near Ft Cobb, Oklahoma in 
2002-2003.   

SPRAY TREATMENTSGENOTYPES
O SPRAY 1 SPRAY 2 SPRAYS

SWR 2833  A a 2822  A a 3047  A c
OKRUN 2149  B b 1974  B c 3323  A bc
TX 994336 2868  B a 2924  B a 3821  A a
TAMRUN OL 01 3031  AB a 2869  B a 3520  A ab
654 2378  B b 2628  AB ab 3082  A c
487 2371  B b 2213  B bc 3149  A c

     *Upper case letters: comparison of levels of Spray Treatments to a given Genotype                  
across rows.
*Lower case letters: comparison of given Genotypes to a fixed level of Spray         
Treatments down a column.

      *Means followed by same case letters are not significantly different at p =0.05
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Table 11: Summary table of Means of interaction for Genotypes x Years
   for SDWT100 for Peanut Trial Conducted near Ft Cobb, Oklahoma in 

2002-2003.
GENOTYPES SDWT100 2002 (g) SDWT100 2003 (g)
SWR 50.6  A f 51   A d
OKRUN 57.7  A c 58   A b
TX 994336 60.4  A b 56.5 B c
TAMRUN OL 01 70.8  A a 70.7 A a
654 53     A e 55.1 A c
487 55.6  A d 55.7 A c

         *Upper case letters: comparison of Years to a given Genotype across rows.
*Lower case letters: comparison of Genotypes to a fixed level of Spray 
Treatments down a column.

      *Means followed by same case letters are not significantly different at p =0.05

Table 12: Summary table of Means of interaction of Spray Treatment x Genotypes 
for SDWT100 for Peanut Trial Conducted near Ft Cobb, Oklahoma in 2002-2003.

SPRAY TREATMENTS (g)SP 
(GENOTYPES) 0 SPRAY 1 SPRAY 2 SPRAYS
SWR 52.6  A c 51    AB e 49    B d
OKRUN 58     A b 57    A    bc 58.7 A b
TX 994336 58     A b 58.7 A    b 58.3 A b
TAMRUN OL 01 70.8  A a 70    A    a 71.4 A a
654 53     B c 53.9 AB d 55.6 A c
487 54.8  A c 56.2 A    c 55.9 A c

        *Upper case letters: comparison of levels of Spray Treatments to given Genotypes                                                          
         across rows.  

*Lower case letters: comparison of given Genotypes to a fixed level of Spray 
Treatments down a column.                                                                                                                                               

     *Means followed by same case letters are not significantly different at p =0.05
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Table 13: Summary table of Return Means for interaction of Genotype x Year for 
Peanut Trial Conducted near Ft Cobb, Oklahoma in 2002-2003.. 
GENOTYPES U.S.$/ACRE 2002 U.S.$/ACRE 2003
SWR 497   A a 513   A c
OKRUN 324   B c 544   A bc
TX 994336 455   B a 614   A a
TAMRUN OL 01 472   B a 597   A ab
654 395   B b 567   A abc
487 348   B bc 551   A abc

        *Upper case letters: comparison of Years a given Genotype across rows.
        *Lower case letters: comparison of given Genotypes to a fixed level of Spray

Treatment down a column.
     *Means followed by same case letters are not significantly different at p =0.05

Table 14: Summary table of means of interaction of Genotype x Spray Treatment 
for Return for Peanut Trial Conducted near Ft Cobb, Oklahoma in 2002-2003.

SPRAY TREATMENTS Means U.S.$/ACREGENOTYPES
0 SPRAY 1 SPRAY 2 SPRAYS

SWR 496   A a 486   A    a 533   A b
OKRUN 371   B b 336   B    c 595   A ab
TX 994336 476   B a 467   B    ab 660   A a
TAMRUN OL 01 502   B a 491   B    a 610   A ab
654 418   B b 470   AB a 555   A b
487 392   B b 390   B    bc 566   A b

        *Upper case letters: comparison of levels of Spray Treatments to a given Genotype 
        across rows.

     *Lower case letters: comparison of given Genotypes to a fixed level of Spray           
     Treatments down a column.
     *Means followed by same case letters are not significantly different at p =0.05
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4.0 CHAPTER IV

DISCUSSION AND CONCLUSION

According to Yang et al.,1998,  the levels of transgene expressions  tend to be 

variable and unpredictable among independent transformants. Because of this 

variability and unpredictability, transformed lines may tend to exhibit different levels of 

field resistance. Lines 654 and 487 both contained chitinase and glucanase hydrolase 

genes, but their varying levels of field resistance to Sclerotinia blight, particularly in the 

0 spray treatment, can be explained by this variability in transgene expression. 

Enzymatic expression studies done by Chenault et al., 2002 on the transgenic lines 

generated, revealed that line 487 had higher enzymatic expression levels than line 654. 

Gene silencing could be another possible explanation for the varying levels of 

expression of the two transgenic lines. Through transcriptional or post-transcriptional 

gene silencing mechanism, plants have evolved complex mechanisms of inactivating 

foreign genes (Wassenegger, 2002). Wassenegger, 2002, further states that single copy 

genes can also be silenced. Fladung 1999, further states that the integration site can 

influence transgene expression.

The 20% reduction in Sclerotinia blight incidence observed in line 654 as 

compared to Okrun, in the high disease pressure environment, is an indication of 
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 improved resistance to Sclerotinia blight. Line 487 did not exhibit any significant 

difference in Sclerotinia blight resistance in comparison to Okrun, however the lower 

disease incidence observed in this line may indicate some level improvement for 

resistance to Sclerotinia blight, when compared to Okrun.

The improvement for resistance observed in the transgenic lines, particularly 

line 654, maybe the result of a genetic difference between these lines and their somatic 

parent, Okrun. The source of the genetic difference ascribed to the transgenic lines is 

the presence of the chitinase and glucanase hydrolase genes which were used to 

transform Okrun somatic embryos. Chitinase and glucanase are anti-fungal hydrolases 

which break down the chitin component of most filamentous fungi cell wall. Chitinase 

is capable of degrading the β -1,4 linkage of chitin and glucanase is thought to function 

in a similar manner (Mauch et al., 1988). In a greenhouse study by Anand et al., 2002, 

lines of transgenic wheat plants expressing chitinase and glucanase transgenes were 

effective in delaying the spread of scab infection. However, under field conditions, 

these plants lacked effective resistance.

The significant interaction observed between the spray treatments and the 

genotypes would indicate that specific fungicidal treatment programs maybe required 

for reducing disease pressure and increasing yield in cultivars differing in reaction to 

Sclerotinia blight. Damicone et al., 1996, support this observation.

The level of resistance that line 654 has for Sclerotinia blight is about the same 

as the moderately resistant Tamrun OL 01 and the TX 994336. Southwest Runner, 

having a significantly lower incidence of Sclerotinia blight than all the other genotypes, 

can be confirmed as a having the best resistance to Sclerotinia blight among the six 
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genotypes. Hardin 1995 reports similarly that Southwest Runner was able to resist 

Sclerotinia blight in fields that were heavily infested with the pathogen, S. minor

Jaggar.  

The significant difference in yield observed for the different genotypes, except 

Southwest Runner, could be the effect of a significant genotype x year interaction. In 

2003, the yield for all entries, except Southwest Runner, was significantly higher than 

in 2002. Damicone et al., 2003, made a similar observation of differences in yield 

observed in a peanut experiment conducted at the same location between 2002 and 

2003. The non- significant increase in yield observed for Southwest Runner could 

imply that this genotype has reduced genetics potential for yield, as compared to the 

other genotypes. The improved irrigation system constructed at Ft Cobb in 2003 could 

have contributed to the increase in yield of five of the genotypes.

Both transgenic lines had higher yield than Okrun in 2002. However, only line 

654 yield was significantly different. The increased resistance to Sclerotinia blight 

observed in line 654 could have resulted in this line having a significantly higher yield 

than Okrun. Though line 487 yield was not significantly different to Okrun’s, the 

improvement in yield of 131lbs/acre could be the result of its genetic difference.

The higher but not significantly different yields observed for the transgenic 

lines, compared to Okrun in the high disease pressure environment created by the 0 

spray treatment, would further indicate their genetic improvement. Line 654 had a 

significantly higher yield than Okrun in the 1 spray treatment, thus providing more 

evidence of the positive change caused by inserting the genes into Okrun. 
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Line 654 has improved % TOTSMK over all the other genotypes, except line 

487. The observed difference in %TOTSMK between 654 and Okrun provides 

additional evidence that   the transformation of Okrun has had positives effects. 

There was a significant genotype x spray treatment interaction for SDWT100. 

As disease pressure increases i.e. spray treatments decrease, the SDWT100 for line 654 

decreases, while the SDWT100 for Southwest Runner increases. This may suggest that 

these two genotypes have different mechanisms for resistance. The SDWT100 for both 

654 and 487 are significantly different in the 0 and 1 spray treatments, suggesting the 

transformations have had an effect on SDWT100.

The higher yields observed for the transgenic lines in 2002, as compared to 

Okrun, and the higher %TOTSMK for the transgenic lines translated into higher 

returns/acre in 2002. Line 654 had a significantly higher return than Okrun.

The return figures for lines 654 and 487 in the 0 spray treatment were not 

significantly different from Okrun. The significantly higher return obtained for line 

654, when compared to Okrun, in the 1 spray treatment, further highlight the overall 

improvement observed in this line. 
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CHAPTER V

5.0 SUMMARY

The transgenic lines 654 and 487, which were generated from Okrun somatic 

embryo and transformed with a chitinase and glucanse gene construct, were evaluated 

for resistance to Sclerotinia blight by comparing their yields, Sclerotinia blight 

incidences, seed quality ratings and return. These two lines were evaluated against their 

somatic parent, Okrun, a susceptible cultivar, Southwest Runner, with good resistance, 

Tamrun OL 01and TX 994336, which are both moderately resistant.

The significantly lower Sclerotinia blight incidence observed for line 654 when 

compared to Okrun, is an indication of this line’s improved resistance to Sclerotinia 

blight. The lower disease incidence observed in Southwest Runner at all spray 

treatments would further confirm this as a cultivar with good resistance.

Line 654 demonstrated improved resistance to Sclerotinia blight during the first 

year of the experiment as it had a significantly higher yield than Okrun. Though line 

654 had a higher yield than Okrun in the 0 spray treatment, that yield increase was not 

significant. However, at the 1 spray treatment, line 654 yield was significantly higher. 

At the 2 spray treatment, this line’s yield was the same as line 487, Okrun, and 

Southwest Runner. In comparing seed quality, line 654 showed an improvement over 

Okrun for total sound mature kernels (TOTSMK).
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Line 654 can be very useful as part of a peanut-breeding program for improving 

resistance to Sclerotinia blight. Line 487 also showed an improvement to Okrun in 

terms of Sclerotinia blight incidence at the high disease pressures created by the 0 and 1 

spray treatments even though the differences were not significant. A similar 

observation was made for yield where the improvement was not significant. Line 487 

showed a significant improvement over Okrun for %TOTSMK, but there was no 

significant difference in return. 
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