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FORMAT OF THESIS

This thesis is presented in a combination of formats as outlined by 

Environmental Microbiology, Applied and Environmental Microbiology 

journals and Oklahoma State University graduate college style manual. The 

use of this format allows the independent chapters to be suitable for 

submission to scientific journals. Each paper is complete in itself with an 

abstract, introduction, materials and methods, results, discussion and 

reference sections.



1

Chapter I

INTRODUCTION

Microorganisms mediate nutrient cycling and degradation of organic 

materials in soil. Microbial responses to anthropogenic alterations of soil fertility 

and quality are often reflected by changes in microbial activity and community 

structure. Therefore, microbial activity and community structure are sensitive 

indicators of environmental impact (Kandeler et al. 1999; Zak et al. 1994) and 

soil health (Doran et al., 1994).

Agricultural production increasingly depends on input of large quantity of 

chemical fertilizers to maintain productivity. However, nutrient input exceeding 

crop requirements could become environmental contaminants. Ample evidence 

suggests that phosphorus (P) and nitrogen (N) from agro-ecosystems may 

contaminate nearby water bodies through leaching and runoff, resulting in 

eutrophication (Whalen and Chang, 2001). Environmental concerns are

intensified with increasing development of confined animal feeding operations. 

Large quantity of animal manure is often applied to a limited land area nearby 

the facility, exceeding nutrient requirement for crop production. It is reported 

that Mehlich-3 extractable P in animal manure amended soil reached over 1100 

kg P ha-1 soil (Reed et al., 1998). Some of the accumulated P may find its way 

to water bodies nearby.

Environmental impact by human activities is not limited to agricultural 

production. Manufacturing and processing of chemicals generated noticeable 
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quantity of environmental contaminants and left the nation with abundance of 

hazardous sites to clean and reclaim. Many of the contaminants are toxic to 

microorganisms and suppress microbial activity to limited degradation activities, 

resulting in persistence of these contaminants. For instance, over 50 years of 

soil contamination with explosives, cultural microbial population was reported to 

be as low as 5-colony forming unit g -1 soil (Meyer, 2002).

Seeking solutions for these environmental problems demands 

understanding of microbial responses to these environmental impacts.  

Microorganisms and their released enzymes dictate transformations of nutrients 

to forms that are more mobile, subject to leaching, or less mobile and retained 

in soil. Although toxic wastes often significantly reduce microbial activity in a 

contaminated environment, extensive studies indicated that many microbes 

persist in toxic waste contaminated sites. These persisting microbes may not 

only be tolerant to the toxic compound, but may also possess the ability to 

break down the toxic waste and detoxify the environment. Identification of such 

microorganisms is desirable for potential application in bioremediation of 

contaminated sites.

Therefore, the objectives of this study were (1) to determine the effects 

of TNT contaminations on soil bacterial community, aiming at identification of 

unique bacterial strains induced by TNT contamination; and (2) to evaluate the 

impact of manure application on soil P levels and phosphatase activities.  

Understanding biological and biochemical properties to prevailing soil 

conditions can benefit soil management strategies. 
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Chapter II

LITERATURE REVIEW

A. Animal Manures in Agriculture

Animal manures are not only nutrient sources for plant growth, but can 

also contribute to enhanced aggregation, and improved soil structure for better 

aeration (Lal, 2004). As a leading producer of animal products (i.e. 86 billion 

pounds of meat and poultry products in 2002), the United States generated 

more than 350 million tons of animal manure from livestock and poultry farms in 

2002 (Ribaudo, 2003). In Oklahoma, Concentrated animal feeding operations 

(CAFO) generate nearly 9 million tons of manure from cattle, poultry, horse, and 

swine in a year (Johnson et al., 2000).

Environmental concerns of land applied manure

Due to the confinement, large quantity of animal manure is applied 

repeatedly to limited land area near CAFO, exceeding the needs for crop 

production. As are a result, environment concerns of nutrient loading in nearby 

water bodies are intensified (Beegle and Lanyon, 1994). 

One nutrient of the concern is phosphorus (P). Soils usually contain 

between 100 to 3000 mg P kg-1 soil as orthophosphate compounds and organic 

forms of P can range from 30-65% (Harrison, 1987). Both inorganic and organic 

P (Po) forms are found in animal manure (Peperzak et al., 1959). P loading in 
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animal manure is in part due to a compound known as phytate. Phytate (inositol 

hexaphosphate) is a P-storage compound in plant seeds. Approximately 75% of 

P in plant seeds is in the form of phytate (Nelson et al., 1968; Morse et al., 

1992). Unfortunately, monogastric animals, including humans, chicken, and 

pigs, do not sustain microbes in their intestine to digest phytate. As a result, 

70% of the total P ingested by domestic farm animals is excreted (Church, 

1979). The concern is that application of animal manure exceeding crop 

requirements would lead to P accumulation in soil, which may ultimately result 

in potential P contamination in waters. It has been reported that soil test P 

(Olsen P) increased from 15 to 187 mg kg−1 following over 35 years of manure 

applications at 37–270 kg P ha−1 yr−1 (Sharpley and Smith, 1995). The 

accumulated soil P could reach water bodies through leaching or run off 

(Edwards and Daniel, 1993). Run off concentrations of total phosphorus ranged

between 47 to 300 mg/L (Novotny and Harvey, 1994). 

Other nutrients such as nitrogen (N) resulting from animal manure 

application are also of environmental concern. Ammonia emission from animal 

manure is a prime concern for air quality because approximately 50% of the 

total U.S. anthropogenic ammonia emissions are contributed from animal 

production activities (Van Aardenne et al., 2001). Ammonia emission not only 

degrades air quality, but also could lead to acid deposition (Roelofs and 

Houdijk, 1991). Ammonia deposited on land can also damage vegetation 

(Holtan-Hartwig and Bøckman, 1994; Van der Eerden et al., 1998) and reduce

plant biodiversity in natural ecosystems (Heil and Bruggink, 1987; Sutton et al., 
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1993). In addition to ammonia emission, animal manure degradation could 

result in the release of other gasses such as nitrous oxide (N2O) and methane 

(CH4) that contribute to global warming and stratospheric ozone depletion 

(Crutzen, 1981). These concerns accompany increased animal production in 

the U.S and the average amounts of N and P in manure generated per livestock 

operation of 1000 animal units (AU) nearly doubled between 1982 and 1997 

(from 4,910 to 10,180 kg N farm-1; from 2,110 to 4,740 kg P farm-1) (Kellogg et 

al., 2000).

Regulations for land application of manure

The U.S. federal legislation has set several standards and legislations to 

regulate the environmental issues arising out of land-applied manure. The 

recent ones include the promulgation of 40 CFR Part 503 regulations for land-

applied biosolids (USEPA, 1993), the USDA-NRCS Conservation Practice 

Standards for Nutrient Management Code 590 (USDA, 1999), the US 

Environmental Protection Agency (USEPA, 2003) concentrated animal feeding 

operation (CAFO) regulations, and the USDA National Organic Standards 

(USDA, 2000). The phosphorus issues were considered in Code 590 nutrient 

management standards which required the application of animal wastes based 

on nitrogen when phosphorus losses are low (USDA, 1999) and it also required 

that in case of any negative effects on the environment from a CAFO, the 

operation must obtain a nutrient management plan at any point of time. Meeting 

nutrient application standards will require CAFOs to spread their manure over a 
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much larger land base than they are currently using, and most will need to 

move their manure off the farm (USEPA, 2003). The USEPA has proposed new 

regulations requiring operations with the large number of animals to manage 

their manure according to a nutrient management plan. More recently, a revised 

regulation has been released by the agency about the concentrated animal 

feeding operations to improve management practices for livestock waste and it 

established performance expectances for manure storage, wastewater 

management, and land use (USEPA, 2003).

Methods for quantification of soil phosphorus

Phosphorus in soil is often quantified by extracting P with a chemical 

extractant, followed by determination of P in solution using a colorimetric 

method or by Inductively Coupled Plasma (ICP). These procedures are based 

on the assumption that chemical extractants selectively dissolve discrete 

groups of P compounds; therefore, such operationally defined P fractions are 

subject to broad interpretation (Sui, et al., 1999).

For plant available P, extraction methods vary depending upon soil types 

and mechanisms controlling the chemistry of soil P. Various soil extractant s are 

available for acid soils where Al and Fe dominate P chemistry and for basic or 

calcareous soils where Ca dominates soil P reactions (Pierzynski, 2000). For 

multi-element extractions, Mehlich-3 soil test is widely accepted and used for P, 

K, Ca, Mn, Cu, Fe, Mg, and Zn estimations (Mehlich, 1984). The Mehlich-3 

extractant is an acidic solution prepared using ammonium fluoride and acetic 
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acid contributing to the release of available P in most soils and the 

determination of extracted orthophosphate P is based on a colorimetric method 

(Mehlich, 1984). Mehlich-3 test is suitable for wide range of soils, both acidic 

and basic in reaction and hence it has been proposed to be used as a standard 

reference procedure for soil test P determination (Tucker, 1992). A Mehlich-3 

value of 45-50 mg P/kg soil is generally considered optimum for plant growth 

and crop yields (Pierzynski, 2000) and in manure applied soils, Mehlich 3 

extractable P can reach up to 1,121 kg P ha-1 year-1 (Reed et al., 1998).

For total soil phosphorus extractions, most commonly used methods are 

sodium carbonate (Na2CO3) fusion and acid digestion methods. Dick and 

Tabatabai, (1977) proposed an alkaline oxidation method using sodium 

hypobromite (NaOBr) and it is known to give better results than original method 

wherein HClO4 Digestion was used (Pierzynski, 2000).

Phosphorus in solutions is often quantified by colorimetric methods

because of their high sensitivity and reproducibility. These methods are based 

on reaction of P with molybdenum that forms molybdenum blue, which is 

proportional to P concentration in the solution (Olsen and Sommers, 1982). The 

most commonly used method was the one developed by Murphy and Riley

(1962). Inductively Coupled Plasma (ICP) spectrophotometry for solution P 

quantification is based on characteristic optical emission of atoms excited in a 

high-temperature (5000–8000 K) Ar (Argon) plasma wherein the molecules 

injected into the plasma undergo instantaneous vaporization, dissociation, and 

ionization. ICP measures total P in the solution (Soltanpour, et al., 1996). This 
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method is gaining preference over colorimetric methods because it provides

simultaneous analysis of many elements in addition to P (Khiari et al., 2000; 

Masson et al., 2001). It is reported that the P estimations from colorimetric 

analyses are not always directly comparable to those from ICP because ICP

determines total P in solution, while colorimetric procedures measure only the 

color-reactive P (Pierzynski, 2000). Measurement of P with ICP is reported to 

be giving 50% higher P estimations than those using colorimetric methods and 

the additional P could be mainly organic P (Hylander et al., 1995; Eckert and 

Watson, 1996; Masson et al., 2001).

Phosphorus transformation in soil

Transformation of nutrients in soil is mediated mainly by microbiological 

activities. Microorganisms are known to be involved in regulating the size and 

dynamics of different pools of soil P (Stevenson, 1986; Richardson, 1994). 

Many transformations in soil are governed by enzyme activities where most 

enzymes are of microbial and plant origin (Tabatabai, 1994).  Widely studied 

enzyme systems in soil include oxidoreductases, transferases, and hydrolases 

(Tabatabai, 1994).

There are several phosphatases that have been detected in soil, 

including alkaline and acid phosphomonoesterases (EC 3.1.3.1 and EC 

3.1.3.2), phosphodiesterase (EC 3.1.4), and inorganic pyrophosphatase (EC 

3.6.1.1). Methods for quantification of these enzymes are described in detail in 

Tabatabai (1994), which are well established and widely used. 
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B. Explosives and Nitroaromatic Compounds

Nitroaromatic compounds, including explosives, pesticides, and 

herbicides, are common organic contaminants found in soil. Explosives are one 

group of nitroaromatic compounds that are widespread in military site, resulting

from manufacture and handling of explosives (ATSDR, 1995). There are three 

classes of explosives, including nitroaromatics, nitroamine and nitrate esters 

(Kaplan, 1998). Explosive nitroaromatics include 2,4,6-trinitrotoluene (TNT), 

2,4-dinitrotoluene (2,4-DNT), 2,6-dinitrotolene (2,6-DNT), N-2, 4, 6-tetranitro-N-

methylamine (tetryl), and picric acid (2, 4,6-trinitrophenol). The nitramines 

include hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), octahydrol-1,3,5,7-

tetranitro-1,3,5,7-tetrazocine (HMX), 1-acetylhexahydro-1,3-dinitro-1,3,5-triazine 

(AcRDX), 1-acetyloctahydro-3,5,7-trinitro-1,3,5,7-tetrazocine (AcHMX), and 

nitroguanidine. The nitrate esters comprise of nitroglycerin (glycerol trinitrate), 

nitrocellulose, propylene glycerol dinitrate, triethylene glycol dinitrate, 

trimethylolethane trinitrate, hydroxylammonium nitrate (HAN), isopropyl 

ammonium nitrate (IPAN), trimethyl ammonium nitrate (TMAN), triethanol 

ammonium nitrate (TEAN), triaminoguanidine nitrate, and pentaerythritol 

tetranitrate (PETN) (Kaplan, 1998). The principal contaminants polluting 

munitions sites include 2,4,6-trinitrotoluene (TNT), and hexahydro-1,3,5-trinitro-

1,3,5-triazine (RDX) which is often used in combination with octahydrol-1,3,5,7-

tetranitro-1,3,5,7-tetrazocine (HMX) (Pennington, 1998).
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Historical perspective

Explosives entered human civilization thousands of years ago. It was 

during 220 B.C that blackpowder or gunpowder was accidentally prepared by 

Chinese alchemists and later during 13th Century and an English monk, Roger 

Bacon, prepared blackpowder using potassium nitrate and used it for mining 

and tunneling operations (Akhavan, 2004). During the mid 19th century, a 

Swedish chemist, Alfred Nobel, invented dynamite by using mixture of nitric and 

sulfuric acids and nitroglycerine. He developed a ‘blasting cap’ also patented 

the dynamite mixture known as ghur dynamite in 1867 (Russell, 2000). Alfred 

Noble also used ammonium nitrate in his later experiments as ammonium 

nitrate powder was known to explode upon mixing with charcoal and for his 

experiments, he is known as father of explosives. During 1888, blackpowder 

was replaced by Picric acid or trinitrophenol (C6H3N3O7) in British munitions and 

first military use of explosives was reported (Akhavan, 2004). 

Trinitrotoluene (TNT) was first prepared by Wilbrand in 1863 and 

produced by DuPont company in Wilmington, DE in 1880 (World Book Online 

Americas Edition, 2002). Subsequently, the German Army used TNT instead of 

picric acid starting 1902. In 1912, the US Army started the use of TNT. By 1914, 

TNT was the standard and most widely used explosive for all armies involved in

World War I. The use of nitramine and other explosives including RDX, HMX 

and PETN, did not start until World War I was over (Gilbert, 1980; Boileau et al., 
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1987). During World War II, there were nearly ten different types of explosives 

or explosive compositions in use (Akhavan, 2004). 

The industrial production of explosive ordnance and decommissioning of 

old ordnance have been carried out on a vast scale, resulting widespread 

contamination in soils near manufacturing sites (Spain et al., 2000). Although 

TNT is no longer been produced in the US, years of past manufacturing 

activities have resulted in many contaminated sites. Compounds like 2,4-DNT 

and 2,6-DNT are still being produced in the US by DuPont Company, Air 

products and Chemical Inc. 

In addition to explosives, nitroaromatics contaminations may also come 

from productions and application of agricultural chemicals and manufacturing 

process. These contaminants include dyes, polyurethane foams, plastics, 

pesticides, herbicides, insecticides, solvents and pharmaceuticals (Davis et al., 

1997; Snellinx et al., 2002). Agricultural use of pesticides like Dinoseb, 

Dinitrocresol, Parathion, Methylparathion (Spain et al., 2000), and use of RDX 

as rodenticide (Wildman and Alvarez, 2001) often lead to intentional release of 

nitroaromatic compounds in soil. 

It was estimated that there were more than 1000 sites contaminated with 

explosives, of which >95% were contaminated with TNT (Walsh et al., 1993). 

There were about 50 million acres of land contaminated by bombing and 

training in the USA alone (Armstrong, 1999b, 1999a). 

Explosives not only cause physical injury and property damage by 

detonation, they also have detrimental impact on human health. TNT has high 
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intrinsic toxic potential on mammalian including humans, aquatic life (algae, 

fish, and bacteria) and terrestrial organisms (plants, soil invertebrates) (Simini 

et al., 1995; Robidoux et al., 1999). Depending on the type of explosive 

compound, health concerns associated with exposure vary and the 

Environmental Protection Agency (EPA) has set the lifetime exposure drinking 

water advisory limits for TNT, RDX, and HMX as 2, 2, and 400 µg L-1, 

respectively (Crockett A. et al., 1999). During the handling of nitroaromatic 

compounds, dinitrotoluenes (mixture of 71-77% 2,4-DNT and 18-20% 2,6-DNT) 

can enter into human body via the skin, the respiratory tract, and the 

gastrointestinal tract leading to formation of methemoglobin (MetHb) in the 

blood that can be detrimental to health. Furthermore, general symptoms such 

as headache, irritation of the mucous membranes, nausea, and vomiting can 

also be seen in people exposed to these chemicals (National Institute for 

Occupational Safety and Health, 1985). The exposure to TNT through 

inhalation or skin can cause anemia, cataracts, headache, skin irritation, and 

liver injury (Morton et al., 1976; Hathaway, 1977). More over, TNT and some 

other nitroaromatic compounds including 2-amino-4-6-DNT and 2,6-diamino-4-

nitrotoluene can act as mutagens (George et al., 2001). Thus, the U.S. EPA has 

designated TNT as a hazardous waste (U.S. EPA, 1990). 

The exposure to RDX occurring through skin and inhalation was reported 

as early as 1965 (Kaplan et al., 1965) and being termed as a class C 

carcinogen, it is known to cause epileptiform seizures and unconsciousness in 

humans (Harvey et al., 1991). The minimal risk level (MRL) (an estimated dose 
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not likely to cause adverse systemic effects) for RDX is set to 0.03 mg kg-1 day-1 

(Mclellan et al., 1998).

Explosives once entered into soil, can also contribute to groundwater

contamination because solubilized RDX and HMX could leach into groundwater 

(U.S. Army, 1979, 1986). Among the 1000 sites contaminated with TNT in the 

U.S., nearly 87% of them had ground waters that exceeded the permissible 

contaminant levels (Walsh et al., 1993). 

Biodegradation of 2,4,6-trinitrotoluene

Microorganisms in the environment have the ability to break 

nitroaromatic compounds, which may result in detoxification of these organic 

contaminants. Biodegradation of nitroaromatic compounds involves the 

activities of aerobic, facultative and anaerobic bacteria as well as fungi (Esteve-

Nunez et al., 2001). Nitroaromatic compounds can be degraded through 

anaerobic and aerobic pathways by bacteria or fungi (Spain, 1995). Anaerobic 

bacteria break down nitroaromatic compounds by reducing the nitro group via 

nitroso and hydroxylamio intermediates to the corresponding amines. 

Subsequently these amines can be degraded aerobically or anaerobically to 

small aliphatic acids to enter metabolic pathways for complete degradation.

Under aerobic degradation, bacteria and fungi use nitroaromatic compounds as 

growth substrates. The initial step in the degradation often involves removal or 

metabolism of nitro groups, followed by ring cleavage, and then degradation to 

small aliphatic acids for subsequent degradation (Spain, 1995). Mechanism and 
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degradation pathways of TNT are further discussed below as examples to 

illustrate the concepts.  

Aerobic bacterial degradation

There are three known aerobic TNT degradation pathways (UMBBD, 

2005). Pathway A involves two bacteria or actinomycetes using nonspecific 

NAD(P)H  nitroreductases during the entire process with a final product 4-

acetamido-2-amino-6-nitrotoluene. Pathway B involves only bacterial species, 

but uses some specialized enzymes such as nitrobenzene reductase and 4-

amino-2-nitroso-6-nitrotoluene reductase (degradation is less complete, with the 

final product 4-amino-2-nitroso-6-toluene), and pathway C involves bacteria as 

well, but uses nonspecific NAD(P)H reductases like pathway A. Pathway C 

differs in the metabolites produced during degradation, ending with the same 

final metabolite as pathway A. In addition, an aerobic degradation pathway for 

TNT via 2,4-dihydroxylamino-6-nitrotoluene (2,4-DHANT) and 2-hydroxylamino-

4-amino-6-nitrotoluene (2HA4ANT) by Pseudomonas pseudoalcaligenes JS52 

was reported (Fiorella and Spain, 1997). 

Although both gram-positive and gram-negative bacteria were reported 

to be involved in TNT degradation, research data suggested that culturability of 

gram-positive bacteria were severely reduced by TNT in media (Fuller and 

Manning, 1997). On the other hand, gram-positive bacteria were shown 

complete degradation of several nitroaromatic compounds at concentrations 
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exceeding 100 µg mL-1 (Gundersen and Jensen, 1956; Lenke and Knackmuss, 

1992; Lenke et al., 1992).

Anaerobic bacterial degradation

The original studies on biodegradability of nitroaromatics indicated that 

anaerobic biodegradation was not possible (Kaplan, 1992). However, pure 

culture studies demonstrated that strictly anaerobic organisms could completely 

mineralize recalcitrant aromatic compounds such as toluene and naphthalene 

(Rabus et al., 1993; Galushko et al., 1999). Although no strict anaerobe has yet 

been isolated that can completely mineralize TNT, there are a few reports of 

microbial consortia that can oxidize TNT partially or completely in the absence 

of molecular oxygen (Funk et al., 1993; Boopathy and Manning, 1996). 

Preliminary investigations indicated that Fe (III) reducing bacteria (FeRB) might 

play a significant role in the transformation of nitroaromatics in the natural 

environments (Hofstetter et al., 1999).

There are four possible microbial pathways in anaerobic degradation of 

TNT (UMBBD, 2005). Pathway A involves a bacterial species or consortia that 

use specific enzymes such as nitrobenzene reductase during the reduction of 

TNT. The metabolites produced include the dead end intermediate 2,4-

dihydroxyl-amino-6-nitrotoluene and 4-amino-2,6-dinitrotoluene, which joins into 

the main pathway. Pathway B has many possible bacterial species which also 

produces the metabolite 4-amino-2,6-dinitrotoluene, but with a nonspecific 

NAD(P)H nitroreductase that merges into the center pathway. Pathway C 
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involves three possible bacterial species using a nonspecific NAD(P)H 

reductase producing 2-amino-4,6-dinitrotoluene that merges into the main 

pathway. Pathway D uses an anaerobic consortia and a nonspecific NAD(P)H 

nitroreductases producing the intermediate 2-amino-4,6-dinitrotoluene that 

merges into the center pathway. After the four pathways merge the final 

products of degradation include 4-hydroxytoluene, which can be used in the 

toluene pathway or uncharacterized organic acids.

The sequential reduction of the nitro groups of TNT by a Desulfovibrio 

spp. growing on pyruvate and sulfate with TNT as the sole nitrogen source 

(Preuss et al., 1993). D. sulfidogen reduced TNT completely to triaminotoluene, 

which was further transformed to unknown compounds. In this study, 2,4-

diamino-6-nitrotoluene was reduced to triaminotoluene by Clostridium 

pasteurianum and Clostridium thermoaceticum, in which 2,4-diamino-6-hydroxy 

laminotoluene was an intermediate. A hydrogenase from C. pasteurianum, and 

a carbon monoxide dehydrogenase from C. thermoaceticum catalyzed the 

reduction, with methyl viologen and/or ferrodoxin as electron carriers. Thus,

ferrodoxin-reducing enzyme systems, such as sulfite reductase (Livingston, 

1993), play an important role in the complete reduction of nitroaromatic 

molecules by these anaerobes. Research data suggested that Clostridium 

bifermentans degrade TNT and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in 

the presence of co-substrates (Crawford, 1995). 
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Fungal degradation

Of the biological systems investigated, fungi have proven to be the most 

effective in the degradation of nitroaromatic compounds (Spain, 1995).

However, hydroxylamino intermediates produced during the process are toxic to 

degraders (Spain, 1995). As a result, the rates of degradation are limited. In 

general, fungal degradation of nitroaromatic compounds has received little 

attention other than a modest amount of work on white-rot fungi. The wood-

decay white-rot basidiomycete fungus Phanerochete chrysosporium has been 

shown to degrade nitroaromatic compounds, such as TNT, through lignolytic 

enzymes (Field et al., 1993). Although lignolytic enzymes are not involved in 

the initial degradation (Stahl and Aust, 1993; Michels and Gottschalk, 1994), 

these are essential to further degrade amino-dinitrotoluenes through oxidative 

attack, which eventually lead to complete mineralization (Stahl and Aust, 1993; 

Michels and Gottschalk, 1994). 

However, much of the recent studies indicated concerns about the 

feasibility of using P. chrysosporium for treatment of TNT-contaminated soils 

because TNT suppress growth of this fungus (Spiker et al., 1992). White rot 

fungi have a major limitation as bioremediation agents. Establishing mycelium 

in soil for bioremediation purposes requires the soil be inoculated with the 

fungus growing on an organic substrate (usually wood chips) (Lamar et al., 

1993). Once the carbon source has been depleted, they will become ineffective 

in bioremediation unless additional woody substrates are provided (Meharg et 

al., 1997). 
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Achromobacter spp. in chemical degradation

Achromobacter sp. is a group of gram-negative, nonfermenting bacteria.

Originally described by Yabuuchi and Ohyama (1971), these organisms are 

known as causal agents of diseases like meningitis (Shigeta et al., 1978; 

Namnyak et al., 1985), pneumonia (Dworzack et al., 1978), surgical wound

infections (Pien and Higa, 1978), septicemia (Holmes et al., 1977), urinary tract

infections, peritonitis and pharyngitis (Igra-Siegman et al., 1980). It has also 

been isolated from aqueous environmental sources, some of which have been 

associated with nosocomial outbreaks of infections (Shigeta et al., 1978; 

McGuckin et al., 1980; Reverdy et al., 1984).

Achromobacter spp. were shown to be involved in degradation of some 

chemical compounds, including nicotine (Hylin, 1958), and pesticides

Carbofuran (Karns et al., 1986). These organisms are capable of producing N-

methylcarbamate hydrolase (carbofuran hydrolase) enzyme to hydrolyze a 

range of N-methylcarbamate insecticides, including Carbaryl and Aldicarb.

(Derbyshire et al., 1987; Tomasek and Karns, 1989). The bacterial strain 

Achromobacter piechaudii TBPZ-N61 was used in degrading 2,4,6-

tribromophenol (TBP) that displayed kanamycin resistance as a selective 

marker (Nejidat et al., 2004).
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Chapter III

IMPACT OF ANIMAL WASTE AMENDMENTS ON PHOSPHORUS LEVELS 

AND ACTIVITY OF PHOSPHATASES IN SOIL

Abstract 

Soil phosphorus (P) accumulation following long-term manure 

applications exceeding crop needs leads to concerns of soil health and 

subsequent potential threat to nearby water bodies. Studies were conducted to 

investigate effects of swine effluent and beef manure on soil P levels in a 

continuous corn experiment established in the southern Great Plains. Beef 

manure and swine effluent were each applied at 56, 168, and 504 kg N ha-1 yr-1 

(corresponding to P rate ranging from 4 to 91 kg P ha-1 yr-1) for consecutive six 

years. Total soil P levels ranged from 400 to 770 mg P kg-1 soil with the highest 

detected in the high rate beef manure-treated soil. Phosphorus accumulation in 

comparison to the controls was detected mostly in the surface soils of 0-10 cm 

depth following beef manure application. Annual addition of swine effluents at 

the two lower levels did not result in detectable increase of total soil P. Similar 

trends were observed for Mehlich-3 extractable P. Among the phosphatase 

activities evaluated, acid and alkaline phosphomonoesterase activities 

dominated at 0-10 cm soils, and decreased with increasing soil depth; while 

activities of phosphodiesterase and inorganic pyrophosphatase increased with 

increasing soil depth up to 30 cm. These two distinctly different trends among 
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the four enzymes evaluated imply potential differences in origin and activity of 

phosphatases in agro-ecosystems.

Introduction

Soils sustain immense diversity of microorganisms essential for nutrient 

cycling in terrestrial ecosystems. Due to close association between microbial 

diversity, soil and plant quality, and ecosystem stability, the microbial 

characteristics are often considered as sensitive indicators of soil health (Doran 

et al., 1994). Soil microbial community is composed of physiologically

heterogeneous (Korsaeth et al., 2001) and diverse microbial groups (Curtis et 

al., 2002; Zhou et al., 2002), and the nature of soil microbial community 

depends largely on land use practices (Bossio et al., 1998; NRCS, 2004).

Characterization of a community composition is important in assessing the 

impact of soil management practices on soil health.

In addition to meeting crop nutrient demands for the disposal of animal 

manure agricultural producers and animal feeding operations increasingly rely 

on land applications of large quantities animal manure that often exceed 

agronomic demands (NRC, 1993; Gollehon, et al., 2001). The long term and 

repeated applications of manure may lead to accumulation of soil phosphorus 

(Whalen and Chang, 2001) and could contribute to potential contamination of 

adjacent water bodies (James et al., 1996).
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It has long been recognized that the cycling and transformation of 

nutrients in soil are closely associated with microbial activities and studies 

conducted by Parham et al., (2002, 2003) suggested that long-term application 

of cattle manure may result in increased soil P mobility and a shift of soil

microbial community structure. Therefore, this study was initiated to assess the 

impact of animal manures and anhydrous ammonia on soil P levels and 

activities of phosphatases at soil depths of 0-30 cm.

Materials and Methods

Soil sampling and preparation

Soil samples were taken in March, 2000 from a continuous corn (Zea 

mays L.) experiment initiated during 1995 in western Oklahoma on a Richfield 

(fine, smectic, mesic Aridic Argiustolls) clay loam soil. The mean particle-size 

distribution of soils was 30% sand, 42.5% silt, and 27.5% clay. Treatments 

included beef manure, swine effluent, and anhydrous ammonia each applied at 

56, 168, and 504 kg N ha-1 yr-1 (referred as L, M, and H, respectively). Controls 

received no fertilizer amendments. Experimental design and soil sampling 

procedure can be found in Deng et al (unpublished). Field-moist soil samples 

were sieved to pass through a 2-mm screen, mixed and divided into two parts. 

One part was air-dried for chemical analysis and the other was stored at 4oC 

and kept field-moist for use in biochemical and microbiological analyses.



38

Soil chemical properties are reported in Deng et al. (unpublished). 

Briefly, pH values in control and manure treated soils ranged from 7.1 to 7.5,

organic carbon contents ranged from 7.0 to 15.6 g kg-1 soil, and total N contents

ranged from 0.76 to 1.72 mg N kg-1 soil. Soils with high beef manure treatments 

showed the highest organic carbon and total nitrogen contents when compared 

with control and other treatments. In anhydrous ammonia treated soils, soil pH 

valued ranged from 4.3 to 6.9, which decreased with increasing application

rates. When compared with the control soils, anhydrous ammonia treatments 

did not affect soil organic carbon and total nitrogen contents significantly in 

majority of anhydrous ammonia added soils matched closely with control. The 

detailed soil properties table is included in Deng et al (unpublished).

Total and Mehlich-3 extractable phosphorus

Total soil phosphorus analysis involved acid digestion of organic 

phosphorus and then subjecting directly to inductively coupled argon plasma 

atomic emission spectrometry (ICP-AES) for P analysis as described by Jones 

and Case (1990). Briefly, 1 g air-dried soil samples were wet digested for 48 h 

at room temperature and for 4 h at 120oC with 5 mL of concentrated nitric acid 

(HNO3) and followed by 180°C for 2 h with 10 mL of Perchloric acid (HClO4). 

The samples were then cooled, filtered and diluted to 50 mL with deionized 

water and P content in the solution was quantified by ICP-AES. The available 
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soil P was extracted using Mehlich-3 extractant (Mehlich, 1984), filtered through 

0.45 µm, and analyzed by ICP analysis (Jones and Case 1990).

Phosphatase assay

Four phosphatases, including phosphomonoesterases (acid and alkaline 

phosphatases; EC 3.1.3.2 and EC 3.1.3.1 respectively), phosphodiesterase (EC 

3.1.4) and inorganic pyrophosphatase (EC. 3.6.1.1), were determined. Activities 

of phosphomonoesterases were quantified by incubating soils in a buffer 

solution and with sodium ρ-nitrophenyl phosphate for one hour at 37oC followed 

by spectrophotometer measurement of ρ-Nitrophenol released at 405 nm 

(Tabatabai and Bremner, 1969; Eivazi and Tabatabai, 1977). For the 

phosphodiesterase activity, a similar procedure was used with bis-ρ-nitrophenol 

phosphate (BPNP) as the substrate (Browman and Tabatabai, 1978). Inorganic 

pyrophosphatase activity was determined by quantifying orthophosphate 

released during incubation of a soil sample in a buffer with pyrophosphate as 

the substrate (Dick and Tabatabai, 1978).

Statistical analyses were performed to test the significant difference 

among the treatments using Statistical Analysis Systems (SAS) and means 

were compared using Least Significant Difference (LSD) test at P ≤ 0.05. All 

reported results are averages of duplicated assays and analyses.
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Results

Soil phosphorus

When compared with the control soil there was significant increase in

total P (720 mg P kg-1 soil) of surface soils applied with high rates beef manure 

(Fig. 1A). There was a trend that application of high rate swine effluents 

increased total soil P levels in surface soils, though this increase was not 

statistically significant. Overall, soil total P levels decreased with increasing soil 

depth. Similar trend was shown with Mehlich-3 P levels detected (Fig. 1B). High 

rates of beef manure treatments resulted in Mehlich-3 extractable P up to 156 

mg P kg-1 soil. This was 2.6-9.8 fold increase in Mehlich-3 extractable P when 

compared with other treatments (Fig. 1B). Mehlich-3 extractable P increased 

with increasing swine effluent application rates. However, most of these 

increases were not statistically significant, with exception of comparing high and 

low rates for the surface soils. Mehlich-3 extractable P contents were 2.3 to 

24.6 % of soil total P, with highest in high rates beef manure amended surface 

soils (Fig. 1C).

Phosphatases

Activity of acid phosphatase in beef manure and swine effluent treated 

surface soils of 0-10 cm depth did not differ significantly when compared with 

control soils (Fig. 2A). Medium and high rates anhydrous ammonia treatments 
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increased acid phosphatase activity significantly (P≤0.05) in surface 0-10 cm 

soils, but decreased in soils of 10-20 and 20-30 cm depths (Fig. 2B). 

With the exception of anhydrous ammonia treated soils, alkaline 

phosphatase activities were significantly (P≤0.05) higher in the surface soils 

when compared with the lower soil profiles. Highest activity of alkaline 

phosphatase was shown in high rate beef manure treated surface soils, which 

was significantly (P≤0.05) higher than the control. Although low rates of 

anhydrous ammonia application did not affect alkaline phosphatase activity 

significantly when compared with control, increasing rates of anhydrous 

ammonia application led to significant decrease in alkaline phosphatase activity 

(Fig. 2B). 

Phosphodiesterase and inorganic pyrophosphatase activities increased 

with increasing soil depth (Fig. 2C, D), a very different trend from those of 

phosphomonoesterase. Highest activity of phosphodiesterase detected was in 

20-30 cm depth soils treated with high rate swine effluent. Among surface soils 

tested, high rate beef manure significantly increased phosphodiesterase activity 

when compared with the control. Though there was decreased activity of this 

enzyme in swine effluent treated surface soils, this decrease was not 

statistically significant. Phosphodiesterase activity decreased with increasing 

anhydrous ammonia application rates. The decrease was statistically significant 

for the lower soil profiles (10-20 and 20-30 cm depth) when compared within the
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Fig. 1. Effect of different levels of animal manure and anhydrous ammonia 
applications on total phosphorus (A), Mehlich-3 extractable phosphorus (B) and 
percentages of Mehlich-3 extractable P in total P (C) in soils from 0-30 cm depth. 
Bars indicate standard error. C=Control, B=Beef manure, S=Swine effluent, and 
A=Anhydrous ammonia. Application rates were L=Low (56 kg N ha-1 yr-1), 
M=Medium (168 kg N ha-1 yr-1), and H=High (504 kg N ha-1 yr-1)
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swine effluent application. When compared with the controls, the increase was 

statistically significant (P≤0.05) for the high rates swine effluent treated soils. 

Mixed responses were shown in the anhydrous ammonia treated soils. 

Although activity of this enzyme decreased with increase application rates of 

beef manure, none of the decrease was statistically significant when compared 

with the control. 

In summary, high rates of beef manure and swine effluent treatments 

resulted in significantly higher activities of alkaline phosphatase and 

phosphodiesterase in surface 0-10 cm soils, while the activities of acid and 

inorganic pyrophosphatase were considerably enhanced by medium to high 

rates of anhydrous ammonia treatments.
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Fig. 2. Effect of different levels of animal manure and anhydrous ammonia on activities of acid phosphatase 
(A), alkaline phosphatase (B), phosphodiesterase (C), and inorganic pyrophosphatase (D) in soils at depths 
from 0-30 cm. Bars indicate standard error. C=Control, B=Beef manure, S=Swine effluent, and A= 
Anhydrous ammonia.  Application rates were L=Low (56 kg N ha-1 yr-1), M=Medium (168 kg N ha-1 yr-1), and 
H=High (504 kg N ha-1 yr-1).
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Discussion

As soil microorganisms mediate organic matter decomposition and 

nutrient cycling depending on several factors including nutrient additions, 

results of this study indicated that soil P levels and biochemical soil 

characteristics varied depending on soil depth, manure type and rates of 

application. Significantly higher levels of P accumulation and Mehlich-3 

extractable P in surface soils following addition of beef manure at high rates 

(nearly 1.5 fold for total P and about 4 fold for Mehlich-3 extractable P when 

compared with the control) depict impact of repeated and high rate manure 

applications on soil P. It was reported that the upper limit for crop response to P 

fertilizer was about 120 lb acre-1 based on Mehlich-3 extractable P (Johnson et 

al., 2000). Repeated application of high rate beef manure led to soil Mehlich-3 

extractable P reaching 156 mg P kg-1 soil, (equivalent to 312 lb acre-1). Thus, 

soil test P in these soils exceeded crop response range, which could potentially 

contaminate adjacent water bodies through runoff water and subsurface 

drainage (Sharpley, et al., 1994; McDowell and Sharpley, 2001). However, 

swine effluent treatments may be of less concern, as they did not result in 

significant increase in total or Mehlich-3 extractable P levels. The percentages 

of Mehlich-3 extractable P in total P levels did not exceed 10% for most of the 

treatments, with exception of high rate beef treatments. 

High P accumulation in beef manure applied soils could be in part due to 

greater P input from beef manure when compared with other treatment 
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evaluated. Cattle excrete around 80-85% of their P intake (Kornegay, 1997), 

resulting in high P content in beef manure. Nitrogen and P ratios in beef manure 

were reported to be around 1, while those in swine effluent were around 4 

(Zhang et al., 1998). Manure application rates were N-based. Therefore, about 

4-fold of P was applied in the beef manure treated soils comparing with swine 

effluent treated soils. Moreover, limited P removal (60 lb acre-1 yr-1) by corn 

(Bundy et al., 2001) grown in these soils could further contribute to elevated soil 

P levels. 

Phosphorus in soil exists in both organic and inorganic forms and the 

conversion of organic P to orthophosphate (Pi) requires activities of 

phosphatases. Soil enzymes could be intracellular or extracellular, that originate 

from microbes, plant and animal cells (Skujins, 1976); the associated 

biochemical activities may change depending on environmental conditions and 

presence of enzymes and substrates. The activity of soil phosphatases reported 

to be dependent on factors such as soil pH and organic carbon content (Eivazi 

and Tabatabai, 1977, Juma and Tabatabai, 1978). In this study, mixed 

responses of acid phosphatase activity resulted from manure treatment. The 

relatively high acid phosphatase activity in surface soils added with anhydrous 

ammonia can be attributed in part, to reduced soil pH from 7.5 (control soils) to 

6.9 (low rates application) to 4.3 (high rates application) (Deng et al., 

unpublished). Alkaline phosphatase activity in control, beef manured and swine 

effluent treated surface soils on the other hand was favored by their alkaline pH, 

which is consistent with data reported by Eivazi and Tabatabai (1977). It is, 
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therefore, not surprising that activities of this enzyme was reduced significantly 

following anhydrous ammonia treatment. Among the soils at 10-20 and 20-30 

cm depths, there were no significant differences in activity of alkaline 

phosphatase, except in soils that were treated with anhydrous ammonia. 

Although acidic pH ranges generally favor acid phosphatase activity and 

alkaline phosphatase is dominant in alkaline pH ranges (Eivazi and Tabatabai, 

1977), the pH optima of these enzymes may also be related to the origin of 

these enzymes in soils. Acid phosphatase in soil mainly comes from microbes 

and plants, whereas, alkaline phosphatase in soil is reported to be mostly from 

microbial and animal sources but not from plant roots (Dick et al., 1983; Juma 

and Tabatabai, 1988).

Activity of phosphodiesterase and inorganic pyrophosphatases showed a 

different trend than phosphomonoesterases with their increased activity in 

deeper soils. However, since the control soils also showed this trend, the higher 

activities with increasing soil depth may not be directly related to treatments. 

The activity of phosphodiesterase could be related to availability organic P and 

soil pH. It has been reported that solubility and availability of organic P 

increased with increasing soil pH (Gerke, 1992). In this study, soil pH was 

relatively high in manured and control soils, ranging from 7.1 to 7.5, which 

resulted in relatively higher phosphodiesterase activity when compared with 

other soils tested. Organic P is more mobile in soil than Pi and has showed 

downward movement in soil profiles (Chardon et al., 1997; Parham et al., 

2002). Diester phosphates are especially mobile in soil profiles because they do 
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not adsorb to soil particles (Cosgrove, 1967). Thus, increased availability of 

organic P in deeper soil profiles could have lead to enhanced synthesis of 

phosphodiesterase. The significant effects of high rates of swine effluent and 

anhydrous ammonia on inorganic pyrophosphatase activity in the surface soils 

could in part be due to their effect on soil pH, which resulted in altered solubility 

of Ca+2 and Mg+2 in soils. In general, Ca+2 availability is significantly reduced in 

pH less than 5, while Mg+2 availability is significantly higher in pH ranges of 4.5 

to 6.5 (Lucas and Davis, 1961). It has been suggested that inorganic 

pyrophosphatase is Mg+2 dependent and high input of Ca+2 (via beef manure) 

may displace Mg+2 (Avaeva et al., 2000) which could have lead to its reduced 

activity in beef manured soils.

Thus, it is imperative that high rate and repeated manure applications 

affect activity of phosphatases responsible for organic phosphorus 

mineralization reflecting altered soil microbial activity and community structure. 

Manure additions could result in P accumulation in soils and greater 

concentrations of runoff P can occur mainly by amending soils with high rates

beef manure.
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Chapter IV

DOMINANT BACTERIAL DIVERISTY AND COMMUNITY STRUCTURE IN 

TNT-SPIKED SOILS 

Abstract

Microbiological processes significantly influence degradation of 

nitroaromatics in the environment, while contamination of nitroaromatics could 

also affect microbial community inhabiting the environment. The effect of 2, 4, 

6-trinitrotoluene (TNT) on soil bacterial community was evaluated using 

denaturing gradient gel electrophoresis (DGGE) analyses of 16S rRNA genes. 

Following incubation of soils that were treated with TNT at 250 to 5000 mg TNT 

kg-1 soil for a minimum of 10 days, distinct changes in soil bacterial 

communities were detected as evidenced by changes in DGGE fingerprints. 

Out of the 11 DGGE bands sequenced, four bands showed sequence similarity 

with bacteria belonging to β-Proteobacteria. There are two intense DGGE 

bands shown in the soils spiked with 2500 to 5000 mg TNT kg-1, suggesting 

increasing dominance of these two bacterial ribotype in the community following 

TNT addition. Sequence of these two bands showed that one of them had 99% 

similarity to the 16S rRNA gene of Achromobacter xylosoxidans belonging to β-

Proteobacteria, while the other was an unknown bacterial ribotype.
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Introduction

Contamination of toxic chemicals is a wide spread problem that occurs in 

air, soil, sediments, and water, threatening the global community of inhabiting 

organisms. Environmental contaminants are contributed by agricultural, 

industrial and military activities. Explosive contamination, for example, could be 

contributed by the handling of explosive materials during their manufacture, 

processing and packaging at military ammunition plants (Widrig et al., 1997). 

The principal nitroaromatic contaminants found in defense sites are 2, 4, 6-

trinitrotoluene (TNT), and hexahydro-1, 3, 5-trinitro-1, 3, 5-triazine (RDX). RDX 

is often used in combination with octahydrol-1, 3, 5, 7-tetranitro-1, 3, 5, 7-

tetrazocine (HMX) (Pennington, 1998). Human health effects associated with 

exposure to high explosive compounds vary by explosive type and the USEPA 

has set lifetime exposure of drinking water health advisory limits for TNT, RDX, 

and HMX as 2, 2, and 400 µg L-1, respectively (Crockett et al., 1999). 

Soil contamination with TNT can be detrimental to soil microorganisms 

by inhibiting the growth and survival of bacteria, fungi, actinomycetes 

(Klausmeier et al., 1973; Fuller and Manning Jr., 1997, 1998) and can adversely 

affect microbial biomass and microbial processes (Gong et al., 1999). 

Contaminant concentrations often lead to reduced microbial activities, biomass 

and biodiversity due to the stress of contamination and as low as 1-2 mg 

acetonitrile extractable TNT kg−1 can significantly inhibit soil microbial activity 

(Gong et al., 1999). 
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Although nitroaromatic compounds inhibit growth of many 

microorganisms, degradation of this class of organic chemicals is also 

undertaken by microorganisms. Therefore, it is anticipated that microbial 

community would change towards a community that is tolerant or even capable 

of using nitroaromatic compounds as nutrient and energy sources in a 

nitroaromatics-contaminated soil environment (Gong et al., 2000). Numerous 

studies have demonstrated microbial degradation of nitroaromatics (Melius, 

1990; Fuller and Manning 1998). Revealing microbial communities that 

dominate in a nitroaromatics-contaminated soil is of interest in developing 

strategies for bioremediation of these contaminated soils. 

Limited information is available about specific microbial species that are 

involved in explosive degradation. Bacteria belonging to the genus 

Achromobacter are found to present in gunshot wounds (D'Amato et al., 1988), 

indicating potential role in breakdown of explosive. Achromobacter sp. is  a 

gram-negative, nonfermenting bacteria originally isolated from clinical 

specimens (Namnyak et al., 1985), and are shown to be involved in degradation 

of chemicals such as nicotine (Hylin, 1958), pesticides (Karns et al., 1986) and 

2,4,6-tribromophenol (TBP) (Nejidat et al., 2004). Therefore, this study was 

initiated to reveal changes in dominant bacterial ribotypes following amendment 

of TNT to soil. 
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Materials and Methods

Soil samples and analysis

An agricultural soil was taken from a continuous winter wheat (Triticum 

aestivum) experiment site located in central Oklahoma. The soil is a silt loam 

with mean particle size distribution of 37.5% sand and 22.5% clay containing no 

detectable level of TNT or other explosives. Soil pH was 5.6 with total nitrogen 

of 0.9 g N kg-1 soil, and total organic carbon of 10.2 g C kg-1 soil (Meyer, 2002). 

A 50 g (<2 mm) of soil was taken in six different glass beakers and spiked with 

0, 250, 500, 1000, 2500, and 5000 mg TNT kg-1 soil respectively. The spiked 

soils were incubated at 23oC and maintained at 60% field moisture content.

Extraction of soil DNA and PCR amplification of 16S rRNA genes 

Following a minimum of 10 days incubation, soil DNA was extracted 

using an UltraCleanTM soil DNA kit (Mo Bio Laboratories Inc., Solana Beach, 

CA, U.S.A.). 16S rRNA genes of bacterial community were obtained by 

polymerase chain reaction (PCR) amplification using soil DNA as templates and 

universal primers that are specific for the domain bacteria. PCR primers used 

were BF1092 (5’-AAGTCCCGTAACGAGCGCAA-3’) (Woese, 1987) and 

U1392GC with 40 bases of GC clamp (5’-

CGCCCGCCGCGCCCCGCGCCCGGCCCGCCGCCCCCGCCCCACGGGCG

GTGTGTAC-3’) (Meyers et al., 1985; Olsen et al., 1986; Ferris et al., 1996).  
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These two primers are reported to maximize the recovery of soil bacterial 

community, and correspond to E. coli positions 1092-1111 and 1392-1406, 

respectively. Therefore the PCR products should be around 354 bp with about 

314 bp from the 16S rRNA genes of the members from bacteria domain. 

The PCR amplification was performed using Promega Chemicals 

(Madison, WI, USA) supplied 10x Magnesium free buffer, 1.25 mM MgCl2, 1.5 

units of Taq DNA polymerase stored in PCR buffer A, and Fisher scientific Inc., 

(Fisher Bioreagents, Pittsburgh, PA, USA) supplied PCR nucleotide mix (300 

µM) along with 1.5 µg bovine serum albumin and 0.6 µM of each primer 

mentioned above. All reagents were mixed with PCR grade distilled water along 

with 50 ng of soil DNA, and the final volume was 100 µL. The PCR was 

performed using a modified procedure as described by Ferris et al. (1996) that 

involved an initial denaturation of 2 min at 94oC, followed by 9 cycles with 1 min 

denaturation at 94oC, 1 min annealing at 56oC with a touchdown of 1oC per 

cycle, and 2 min of extension at 72oC. Additional 22 cycles were also performed 

with cycle composed of 40 sec at 94oC, 40 sec at 47oC, and 2 min at 72oC. A 

final extension at 72oC for 8 min was included. The PCR products were 

checked for the expected size and quantified on 2.5% agarose gels using 

molecular weight markers as a reference.
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DGGE analysis of rRNA genes

The PCR amplicons were separated using a DCodeTM Universal 

Mutation Detection System (Bio-Rad, Inc., Hercules, CA, USA). A 6.5% 

acrylamide gel with a 30-55% parallel denaturing gradient was prepared using a 

Hoefer SG100 gradient maker (Amersham Pharmacia Biotech Inc., Piscataway, 

NJ, USA). The denaturing solution of 100% contained 7 M urea and 40% 

deionized formamide. The gel was polymerized for at least 4 hours and about 2 

µg PCR products along with loading dye were added to each well. The DGGE 

gel was run for 5 h at 200 mV constant voltage in 1x TRIS-acid EDTA (TAE) 

buffer at 60oC. The gel image was taken using a Kodak 1D Scientific Imaging 

System attached with a Kodak DC 290 zoom digital camera (New Haven, CT, 

USA). 

Isolation and Sequencing of dominant DGGE bands

Prominent bands from DGGE gels were excised, suspended with 50 µL

sterile water in eppendorf tubes and kept overnight at 4oC for the DNA to diffuse 

into water. A 10 µL of the suspended DNA was used as a template to reamplify 

the band of interest using the same primers and PCR conditions described 

above. The reamplified PCR products were then purified using UltraCleanTM

PCR clean-up DNA purification kit (Mo BIO laboratories, Inc., Solana Beach, 

California, USA) to remove the unused primers and short oligonucleotides. 

Purified DNA was sequenced using primers used in the PCR reaction as 
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described above on an ABI PRISM 3700 DNA analyzer (Applied Biosystems, 

Foster City, CA, USA). 

Similarity searches for all the sequences were done using the BLAST 

program (Altschul et al., 1997) in the GenBank database to identify the nearest 

relatives of the excised bands. Phylogenetic analysis were conducted with 

Biology WorkBench, version 3.2 (San Diego Supercomuter Center; 

http://workbench.sdsc.edu).

Nutrient agar-culturable bacterial population and its DGGE fingerprints

Results from PCR-DGGE analysis indicated that there were two 

ribotypes enriched by TNT addition, an uncultured unknown and a ribotype that 

was closely related to Achromobacter spp. Therefore, Achromobacter 

xylosoxidans (ATCC 31040) was evaluated for its ability in degrading TNT. 

Since this bacterial species is usually cultured on nutrient agar plates, nutrient 

agar-culturable bacterial community and DGGE fingerprints in TNT-spiked soils 

were evaluated for involvement of Achromobacter spp in TNT degradation. 

A 2.0 g of TNT-spiked soil was suspended in 18.0 mL of 25% sterile 

ringer solution and 36 µl of 10% Sodium pyrophosphate solution (0.18%). 

Following serial dilutions, 100 µl of 10-3 and 10-6 were plated on nutrient agar

plates in five replicates and incubated at 37oC. Bacterial cells appeared at day 

1, day 2 and day 10 were scraped off the plates for genomic DNA extraction 

(Richter et al., 1991).  16S rRNA genes of the recovered and spiked soil 
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bacterial community and that of Achromobacter xylosoxidans (ATCC 31040)

were obtained by PCR amplification and analyzed by DGGE as described 

above. Extraction of Achromobacter xylosoxidans genomic DNA was conducted 

as described by Richter et al. (1991).

Achromobacter xylosoxidans in TNT degradation

A 50 mL of basal broth supplemented with 5 ppm of TNT in 250 mL of 

Erlenmeyer flasks was inoculated with 100 µL of overnight Achromobacter 

xylosoxidans (ATCC 31040) culture. The flasks were placed on a rotary shaker 

at 37oC. TNT concentrations in the culture medium were monitored on daily 

basis for 5 days. TNT degradation was evaluated by comparing TNT 

concentrations in different days of incubation and with the uninoculated 

controls.

TNT in solution was quantified by High Performance Liquid 

Chromatography (HPLC) using acetonitrile and water (80:20) as a mobile phase 

and a UV detected at 254 nm, and calibrated with 0-10 ppm TNT standard 

curve developed under the same analysis conditions.
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Results

Microbial Community analysis using DGGE

DGGE banding pattern obtained from the contaminated soils showed only a few 

bands, indicating effect of contamination. The control soil showed no discrete or 

dominant bands and the soils treated with TNT showed prevailing bands 

indicating dominance of several bacterial ribotype induced by the presence of 

TNT (Fig. 1).

The sequence analyses of excised DGGE bands and subsequent 

comparisons to sequences in GenBank database showed presence of both 

uncultured and known bacteria (Table 2). Of the 11 bands sequenced, four of 

the sequences matched with β-proteobacteria and identified to be 

Achromobacter sp. and Alcaligens sp. Three of the sequences showed over 

98% sequence similarity with Achromobacter xylosoxidans that was dominated 

to be present in soils treated with increased levels of TNT. The rest 7 bands

belonged to uncultured soil bacteria.

Phylogenetic analysis of 16S rRNA sequences of the 11 excised bands 

excised showed presence several clusters of soil bacterial community (Fig. 2)

differing with TNT treatments. An uncultured bacterial ribotype (L11) was shown 

closely related to Achromobacter xylosoxidans.

In general, fewer bacterial ribotypes were detected on nutrient agar 

plates in comparison with PCR-DGGE fingerprints obtained using soil DNA as a 

PCR template (Fig. 3). High concentration of TNT also led to reduction of 
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bacterial ribotypes in the culturable population (comparing A and B groups, Fig. 

3). There is evidence that bacterial ribotypes closely related to Achromobacter 

spp. were enhanced by TNT contamination (indicated by arrows a, and b in Fig.

3). There were three bands shown in the PCR-DGGE fingerprint for 

Achromobacter xylosoxidans (ATCC 31040), suggesting presence of multiple 

operon copy number heterogeneity of rRNA in this bacterium (Crosby and 

Criddle, 2003).  However, Achromobacter xylosoxidans did not break down TNT 

under conditions evaluated (Table 2).
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Fig. 1. (A) A 2.0% agarose gel electrophoresis of PCR-
amplified 16S rRNA gene fragments. The template DNAs 
were extracted from soil amended with different 
concentrations of TNT, ranging from 250 to 5000 mg TNT 
kg-1 soil. (B) Denaturing gradient gel electrophoresis 
(DGGE) of PCR-amplified 16S rRNA genes. Bands marked 
are excised and sequenced (see Table 1). 
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Fig. 2. Phylogenetic analysis of 16S rRNA sequences of the 
11 excised bands from DGGE gel (as indicated in Fig. 1). The 
dendrogram was constructed using Biology WorkBench, 
version 3.2 (San Diego Supercomputer Center; 
http://workbench.sdsc.edu).
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Table 1. Tentative Identification of dominant DGGE bands by sequencing the excised bands and BLAST analysis*

*Sequences were aligned with the closest relatives (highest score) in the GenBank database by using BLAST. 
Bands correspond to those excised from DGGE gel as L11 for band 1 in lane 1 (Fig. 1). The percentage of 
similarity was calculated without taking gaps into account. The part of the total sequence used for alignment is 
indicated by the alignment data.

Band Name Sequence 
size (bp)

Closest relative Alignment &
% similarity

Score Taxonomic 
affiliation

L11 314 Uncultured soil bacterium 314/315
99

609 Unknown

L21 312 Uncultured soil bacterium 311/314
99

575 Unknown

L31 313 Uncultured soil bacterium 313/313
100

620 Unknown

L32 298 Achromobacter xylosoxidans 278/281
98

527 β-Proteobacteria

L33 311 Uncultured soil bacterium 308/314
98

553 Unknown

L34 311 Uncultured soil bacterium 306/314
97

537 Unknown

L51 291 Achromobacter xylosoxidans 273/278
98

488 β-Proteobacteria

L52 289 Alcaligens sp. 274/276
99

523 β-Proteobacteria

L53 319 Uncultured soil bacterium 308/320
96

476 Unknown

L61 301 Achromobacter xylosoxidans 281/282
99

543 β-Proteobacteria

L62 316 Uncultured soil bacterium 309/316
97

547 Unknown
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Table 2. TNT (mg L-1) detected in basal broth (BB) following 
different treatments and up to five days of incubation at 37oC

BB+TNT

1
2
3
4
5

8.41
9.02
8.99
9.40
8.89

8.51
10.36
9.44
9.51
8.54

Days of 
incubation BB+TNT+ A. xylosoxidans
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A B                         C

d1      d2     d10     d1     d2    d10      1       2       3

a
b

A B                         C

d1      d2     d10     d1     d2    d10      1       2       3

a
b

Fig. 3. PCR-DGGE banding patterns of 16S rRNA genes obtained by 
PCR amplification of 16rRNR genes using template DNA extracted from 
soil bacteria  cultured on nutrient agar plates, soil, and Achromobacter 
xylosoxidans (ATCC 31040). A, bacteria recovered on nutrient agar 
plates from soils spiked 250 mg TNT kg-1 soil; and B, bacteria 
recovered from the soil spiked with 5000 mg TNT kg-1 soil. Lanes d1, 
d2 and d10 indicate recovery at day 1, day 2 and day 10 incubation 
times. PCR template DNA for lanes 1 and 2 in the C group was 
extracted directly from soils spiked with 250 and 5000 mg TNT kg-1 soil; 
respectively; that of lanes 3 was genomic DNA of Achromobacter 
xylosoxidans. Arrows a and b indicate possible presence of some 16S 
rRNA bands of Achromobacter xylosoxidans in TNT-spiked soils.
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Discussion

The PCR-DGGE fingerprints of 16S rRNA genes from soils spiked with 

different levels of TNT showed increased band intensity and dominance of few

bands reflecting a shift in bacterial community towards TNT tolerant and 

potentially TNT degrading bacterial community. 

The biodegradation of soil contaminants usually limited by factors such 

as bioavailability, chemical toxicity, diffusion and transportation of contaminants 

to microbial cell, and associated low populations of microorganisms capable of 

degrading contaminants (Pieper and Reineke, 2000) in soil. Thus, the fewer 

dominant bands in TNT contaminated soils depicted potentially reduced 

diversity of bacterial community, due to persistence and toxic effects of TNT 

contamination in soil. 

Contamination of soils with TNT limits proliferation of microbial 

population, microbial biomass, and activity of enzymes, such as 

dehydrogenases (Gong et al., 1999; Meyer, 2002 ). Thereby, TNT contamination 

of soils affects survivability of soil microorganisms and lead to lesser microbial 

diversity. This is evidenced by the presence of fewer bands in the PCR-DGGE 

fingerprints of 16S rRNA genes in the bacterial community following spiking the 

soils with TNT. A few bacterial ribotypes were enhanced by TNT contamination, 

which could be due to reduced competition and preferential growth of TNT-

tolerant bacteria. 
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Upon sequencing the dominant PCR-DGGE bands in TNT contaminated 

soils, the sequence similarity search indicated one of the bands was closely 

related to Achromobacter spp. The cluster analysis indicated that these bacteria 

formed a distinct group and dominated in soils spiked with elevated levels of 

TNT. The increasing band intensity with increasing TNT concentrations up to 

5000 mg kg-1 pointed out that growth of these bacteria might be stimulated by 

the presence of TNT in soil. 

The apparent presence of ribotypes that are closely related to 

Achromobacter spp in soils spiked with TNT indicated their high tolerance to 

TNT contaminations, especially when TNT concentrations as low as 1-2 mg kg-1 

soil were shown to inhibit the native soil bacterial activity (Gong et al., 1999). 

The indirect evidences of involvement of Achromobacter spp. in degrading 

nitroaromatic compounds like pesticides and Nicotine (Hylin, 1958; Karns et al., 

1986), and their isolation of Achromobacter xylosoxidans in gunshot wounds 

(D'Amato et al., 1988) indicates their potential involvement in degradation of 

TNT. 

However, preliminary laboratory incubation studies indicated that 

Achromobacter xylosoxidans (ATCC 31040) did not break down TNT.  The 

increased growth of this bacterium in basal broth was observed when 2% N 

solution using NH4Cl was supplied instead of TNT indicating its requirement for 

nitrogen (data not shown). When TNT was used as sole nitrogen source, the 

growth of Achromobacter xylosoxidans was observed at slower rate but there 

was no detectable reduction in TNT concentrations (up to five days incubation). 
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Thus, it can be inferred that either this bacterium degrades TNT at very slow 

rates or obtained N nutrition by fixing atmospheric N (Goerz and Pengra, 1961). 

On the other hand, the ribotypes that were induced by the presence of high 

concentrations of TNT are not identical to Achromobacter xylosoxidans (ATCC 

31040), evidenced by 99% sequence similarity and DGGE banding patterns. 

Further studies are needed to confirm the obtained results.

In addition, the uncultured soil bacteria in TNT spiked soils could also be 

breaking down TNT. In fact, TNT degradation may require consortium of 

bacteria and not by Achromobacter xylosoxidans alone. Complete breakdown 

of TNT by a single bacterium in soil could be hindered because of the possible 

release of nitrite via nucleophilic attack (Vorbeck et al., 1994), and since nitrite 

is known to be detrimental for bacterial growth (Stein and Arp 1998), there 

could be possible occurrence of incomplete TNT degradation. TNT detection 

methods also need to be improved due to co-elution of more than one peak

shown in basal medium (data not shown).

However, when comparing PCR-DGGE fingerprints developed using soil 

DNA or nutrient agar-cultured bacterial genomic DNA as a PCR template, it was 

clear that high concentrations of TNT led to fewer number of bacterial ribotypes.

One of the dominant bands in the PCR-DGGE fingerprint developed by using 

DNA extracted from the soil spiked with 5000 mg TNT kg-1 soil demonstrated 

similar mobility with one of the three bands for Achromobacter xylosoxidans on 

a DGGE gel, suggesting potential involvement of Achromobacter spp. in TNT 
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degradation and/or tolerance. With increasing interest in developing effective 

bioremediation technologies, the obtained results warrant further studies. 
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Chapter V

Summary and Conclusion

Results from this study suggested that P transformation were enhanced, 

as evidenced by enhanced phosphatase activities following manure 

applications at high rates. Accumulation of P would be of environmental 

concern only if animal manures were applied repeatedly at excessive amounts. 

Beef manure is more of a concern than swine effluent when application rates 

are N-based.

Nitroaromatic compounds, such as 2,4,6-trinitrotoluened (TNT), altered 

microbial community structure. Spiking soil with TNT induced dominance of an 

unknown soil bacterium and a potential human pathogen Achromobacter 

xylosoxidans (ATCC 31040). The potential role of Achromobacter xylosoxidans

in degradation of TNT deserves special attention in future studies.
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L11 AAGTCCCGTA ACGAGCGCAA CCTTATCAAT AGTTGCCAGC GGTTCGGCCG
GGCACTCTAT TGAGACTGCC GTTGACAAAA CGGAGGAAGG TGGGGATGAC
GTCAAGTCCT CATGGCCTTT ATGTCCAGGG CTACACACGT GCTACAATGG
CGAGTACAAA GCGCTGCAAA CCTGCAAGGG GGAGCCAATC GCAAAAAGCT
CGTCTCAGTT CGGATTGGAG TCTGCAACTC GACTCCATGA AGCTGGAATC
GCTAGTAATC GCAGATCAGC ATGCTGCGGT GAATACGTTC CCGGGTCTTG
TACACACCGC CCGT

L21 AAGTCCCGTA ACGAGCGCAA CCTCGTCTCT AGTTGCTACC ATTTAGTTGG
GCACTCTAGA GAAACTGCCG GTGATAAGCC GGAGGAAGGT GGGGATGACG
TCAAGTCCTC ATGGCCCTTA CGCGCTGGGC TACACACGTG CTACAATGGC
GGTGACAGTG AGCAGCGACC CCGCGAGGGT GAGCTAATCT CCAAAAGCCC
GTCTCAGTTC GGATTGTTCT CTGCAACTCG AGAGCATGAA GGCGGAATCG
CTAGTAATCG CGGATCAGCA TGCCGCGGTG AATACGTTCC CAGGCCTGTA
CACACCGCCC GTT

L31 AAGTCCCGTA ACGAGCGCAA CCCTCGTCTC TAGTTGCTAC CATTTAGTTG
GGCACTCTAG AGAAACTGCC GGTGATAAGC CGGAGGAAGG TGGGGATGAC
GTCAAGTCCT CATGGCCCTT ACGCGCTGGG CTACACACGT GCTACAATGG
CGGTGACAGT GAGCAGCGAC CCCGCGAGGG TGAGCTAATC TCCAAAAGCC
GTCTCAGTTC GGATTGTTCT CTGCAACTCG AGAGCATGAA GGCGGAATCG
CTAGTAATCG CGGATCAGCA TGCCGCGGTG AATACGTTCC CAGGCCTTGT
ACACACCGCC CGT

L32 AAGTCCCGTA ACGAGCGCAA TTAGTTGCTA CGAAAGGGCA CTCTAATGAG
ACTGCCGGTG ACAAACCGGA GGAAGGTGGG GATGACGTCA AGTCCTCATG
GCCCTTATGG GTAGGGCTTC ACACGTCATA CAATGGTCGG GACAGAGGGT
CGCCAACCCG CGAGGGGGAG CCAATCCCAG AAACCCGATC GTAGTCCGGA
TCGCAGTCTG CAACTCGACT GCGTGAAGTC GGAATCGCTA GTAATCGCGG
ATCAGCATGT CCCGGTGAAT ACGTTCCCGG GTCGTACACA CCGCCCGT

Fig. 1. Partial gnces of L11, L21, L31 and L32 DGGE bands from the TNT-treated soils.
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L33 AAGTCCCGTA ACGAGCGCAA CCTCGTCTTT AGTTGCCATC CATTTAGTTG
GGCACTCTAA AGAAACTGCC GGTGATAAGC CGGAGGAAGG TGGGGATGAC
GTCAAGTCCT CATGGCCCTT ACGCGCTGGG CTACACACGT GCTACAATGG
CGGTGACAGT GGGCTGCAAA CTCGCGAGAG TGAGCAAATC CCCAAAAACC
GTCTCAGTTC GGATTGTTCT CTGCAACTCG AGAGCATGAA GGCGGAATCG
CTAGTAATCG CGGATCAGCA TGCCGCGGTG AATACGTTCC CAGGCCGTAC
ACACCGCCCG T

L34 AAGTCCCGTA ACGAGCGCAA CCTCGTCTCT AGTTGCCATC ATTTAGTTGG
GCACTCTAAA GAAACTGCCG GTGATAAGCC GGAGGAAGGT GGGGATGACG
TCAAGTCCTC ATGGCCCTTA CACGCTGGGC TACACACGTG CTACAATGGC
GGTGACAGTG GGCAGCAAAC TCGCGAGAGT GAGCAAATCC CCAAAAACCG
TCTCAGTTCG GATTGTTCTC TGCAACATCG AGAGCATGAA GGCGGAATCG
CTAGTAATCG CGGATCAGCA TGCCGCGGTG AATACGTTCC CAGGCCGTAC
ACACCGCCCG T

L51 AAGTCCCGTA ACGAGCGCAA CCTTGTCATT AGTTGCTACG AAAGGGCACT
CTAATGAGAC TGCCGGTGAC AAACCGGAGG AAGGTGGGGA TGACGTCAAG
TCCTCATGGC CCTTATGGGT AGGGCTTCAC ACGGTCATAC AATGGTCGGG
ACAGAGGGTC GCCAACCCGC GAGGGGGAGC CAATCCCAGA AACCCGATCC
GTAGTCCGGA TCGCAGTCTG CAACTCGACT GCGTGAAGTC GGAATCGCTA
GTAATCGCGG ATCAGCATGT CTCGGTGTAC ACACCGCCCG T

L52 AAGTCCCGTA ACGAGCGCAA CCTTGTCATT AGTTGCTACG AAAGGGCACT
CTAATGAGAC TGCCGGTGAC AAACCGGAGG AAGGTGGGGA TGACGTCAAG
TCCTCATGGC CCTTATGGGT AGGGCTTCAC ACGTCATACA ATGGTCGGGA
CAGAGGGTCG CCAACCCGCG AGGGGGAGCC AATCCCAGAA ACCCGATCGT
AGTCCGGATC GTAGTCTGCA ACTCGACTAC GTGAAGTCGG AATCGCTAGT
AATCGCGGAT CAGCATGTCG CGGTGTACAC ACCGCCCGT

Fig. 2. Partial 16S rRNA gene sequences of L33, L34, L51 and L52 DGGE bands from 
the TNT-treated soils.
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L53 AAGTCCCGTA ACGAGCGCAA CCTCGTCTCT AGTTGCCATC ATTTAGTTGG
GCACTCTAAA GAAACTGCCG GTGATAAGCC GGAGGAAGGT GGGGATGACG
TCAAGGTCCT CATGGCCCTT ACACGGCTGG GCTACACACT GTGCTACAAT
GGCCGGTGAC AAGTGGGCAC GCAAACTCGC GAGAGTGAGC AAATCCCCAA
AAACCGTCTC AGTTCGGATT GTTCTCTGCA ACTCGAGAGC ATGAAGGCGG
AATCGCTAGT AATCGCGGAT CAGCATGCCG CGGTGAATAC GGTTCCCAGG
CCTTGTACAC ACCGCCCGT

L61 AAGTCCCGTA ACGAGCGCAA TTAGTTGCTA CGAAAGGGCA CTCTAATGAG
CACTGCCGGT GACAAACCGG AGGAAGGTGG GGATGACGTC AAGTCCTCAT
GGCCCTTATG GGTAGGGCTT CACACGTCAT ACAATGGTCG GGACAGAGGG
TCGCCAACCC GCGAGGGGGA GCCAATCCCA GAAACCCGAT CGTAGTCCGG
ATCGCAGTCT GCAACTCGAC TGCGTGAAGT CGGAATCGCT AGTAATCGCG
GATCAGCATG TCGCGGTGAA TACGTTCCCG GGTCTTGTAC ACACCGCCCG

T

L62 AAGTCCCGTA ACGAGCGCAA CCCTCGTCTC TAGTTGCCAT ACATTTAGTT
GGGCACTCTA AAGAAACTGC CGGTGATAAG CCGGAGGAAG GTGGGGATGA
CGTCAAGTCC TCATGGCCCT TACACGGCTG GGCTACACAC TGTGCTACAA
TGGCGGTGAC AGTGGGCAGC AAACTCGCGA GAGTGAGCAA ATCCCCAAAA
ACCGTCTCAG TTCGGATTGT TCTCTGCAAC TCGAGAGCAT GAAGGCGGAA
TCGCTAGTAA TCGCGGATCA GCATGCCGCG GTGAATACGT TCCCAGGCCT
TGTACACACC GCCCGT

Fig. 3. Partial 16S rRNA gene sequences of L53, L61 and L62 DGGE bands from the 
TNT-treated soils.
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