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ABSTRACT 

Due to the adverse economic and ecological consequences of the conventional-till, 

monoculture winter wheat production system that dominates Oklahoma, producers are 

interested in no-till farming practices and diversifying their cropping systems through crop 

rotation and cover crops. In response to this interest, we evaluated cover crop biomass 

production and canopy closure, winter wheat nitrogen requirement, Hessian fly infestation 

pressure and final wheat grain yield response to warm-season cover crops in no-till, dual-

purpose and grain-only wheat production systems. Experimental design was a split split-

block with cover crop treatment (cowpea, soybean, guar, sorghum-sudangrass, pearl millet 

and fallow control) seeded following wheat harvest and chemically terminated approximately 

45 days after seeding as whole plots. Sub plot treatment was winter wheat variety (Duster and 

Endurance) sown into the standing cover crop residue. Sub-sub plots were topdress nitrogen 

application (non-fertilized or nitrogen rate determined by sensor based nitrogen rate 

recommendation). During 2009 and 2010, sorghum-sudangrass, pearl millet, and cowpea 

provided quick biomass and canopy closure, making them well suited for weed suppression 

and soil erosion prevention. In both dual-purpose and grain-only production systems, wheat 

productivity following fallow was equal to or greater than wheat following cover crops in 

almost all categories. Wheat following legume cover crops, in most cases, had production 

levels equal to or greater than wheat following grass cover crops; however, cover crops had 

no effect on Hessian fly infestation. Differences in Hessian fly infestation between resistant 

(Duster) and susceptible (Endurance) wheat varieties were found. Grain yield was not 

affected by differences in Hessian fly infestation, as infestation pressure was below the 

economic injury threshold. The integration of cash crops may be a better solution than cover 

crops, as producers can achieve many of the same benefits associated with cropping system 

diversification as seen with cover crops as well as receive economic returns through cash 

crop production.
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CHAPTER I 
 

 

INTRODUCTION 

In Oklahoma, monocrop hard red winter wheat (Triticum aestivum L.) is the 

dominant cropping system. Over 2.3 million hectares are sown to winter wheat annually, 

as the Oklahoma climate offers producers multiple uses for the crop. Traditionally, winter 

wheat is sown in the fall and allowed to overwinter before being harvested in the summer 

for grain. Taking advantage of Oklahoma’s mild climate, wheat producers can produce 

enough biomass to graze cattle during the winter and have ready access to this biomass 

due to few snow-covered days. Wheat that is grazed during the winter and harvested for 

grain in the summer is known as dual-purpose wheat. Dual-purpose wheat has been 

agronomically and economically successful for Oklahoma producers; therefore, many 

producers have shifted production from more diversified cropping systems to strictly 

monoculture winter wheat. While this cropping system works well for many producers, 

the continuous production of only one crop can have adverse consequences economically 

and ecologically. 

Negative effects of conventional-till, monoculture winter wheat production 

include the opportunity cost associated with a fallow period, soil erosion, nutrient 

leaching, and increased pest and weed problems. Monocrop systems often leave a fallow 

period where production is not taking place, thus limiting economic return to the  
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producer. In order to alleviate these negative effects, producers have expressed interest 

incorporating no-till farming practices and diversification of their cropping systems 

through crop rotation and cover crops. The adoption of no-till practices has slowly gained 

interest in Oklahoma as farmers see the benefits ranging from reduced soil erosion and 

soil moisture conservation to reduction in time and machinery inputs. The reluctance to 

convert to no-till farming is associated with a lack of suitable alternative crops to fit 

current producers’ production systems. The use of cover crops allows producers the 

ability to maintain their current production systems while adding an alternative crop to 

the short fallow period that may otherwise be too short to achieve a grain crop and be 

seeded back to wheat for that following year. Cover crops can reduce soil erosion, 

nitrogen leaching, and provide weed and pest suppression. Cover crops provide other 

benefits to the soil including enhanced nutrient cycling and greater water retention 

(Creamer and Baldwin, 1999; Clark, 2007). The implementation of crop rotation and 

cover crops into current cropping systems can provide both economic and ecological 

benefits. 

The climate of a region plays a major role in the potential diversity of viable 

cropping systems. A major yield-limiting factor in the dryland cropping systems of 

western Oklahoma is precipitation, as annual precipitation for this region averages less 

than 880 mm. Water availability and soil nitrogen content are the main factors to consider 

when substituting a cover crop for fallow in a wheat rotation (McGuire et al., 1998). 

Nielsen and Vigil (2005) conducted a study in eastern Colorado to evaluate the effect of 

legume green fallow termination date on soil moisture and winter wheat yield. They 

concluded soil water content at wheat planting was reduced by 55 and 104 mm at early 
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and late legume green-fallow termination dates as compared to the conventionally-tilled 

fallow plots. Nielsen and Vigil (2005) also found the average wheat yield was linearly 

correlated with the amount of soil moisture available at wheat planting. The negative 

effects of legume cover crops on fallow water storage can be offset by adequate seasonal 

precipitation (Danga et al., 2009). McGuire et al. (1998) found when adequate seasonal 

precipitation occurred, the yields of fertilized wheat after fallow and unfertilized wheat 

following a legume cover crop were similar. 

Cover crops have the ability to enhance nutrient cycling in multiple ways. First, 

cover crops uptake essential nutrients needed for plant growth. This uptake traps surplus 

nutrients within the plant, thus preventing them from being lost from the root zone by 

leaching, runoff or erosion. Tonitto et al. (2006) found that in fertilizer-intensive 

cropping systems, non-legume cover crops reduced nitrate leaching 70% as compared to 

bare-fallow systems. They also found cover crop nitrogen uptake of post-harvest surplus 

inorganic nitrogen to range from 20 to 60 kg nitrogen ha-1. Nutrient translocation from 

deeper subsoil to the soil surface is another advantage cover crops offer (Giese, 2009). 

Crops such as sorghum-sudangrass hybrids and cereal rye utilize fibrous root systems to 

penetrate deep into the soil for moisture and nutrients (Clark, 2007). Both grasses have 

the ability to produce large amounts of biomass quickly. 

While most cover crops offer a means of nutrient recycling, some can actually add 

nutrients to the soil. Legume cover crops have the ability to fix atmospheric nitrogen 

through a symbiotic relationship between bacterium (Rhizobium spp.) found in the root 

nodules of these plants. The amount of nitrogen contributed to the soil by legume crops 

can range from 0 to 450 kg N2 ha-1 per annum (Peoples and Craswell, 1995). Danga et al. 
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(2009) reports the amount of nitrogen contribution is dependent on the rate of symbiotic 

N2-fixing activity, growth, and the nitrogen harvest index of the legume crops. The rate 

of N2 fixation variation depends on the type of legume cultivar, method of measurement, 

presence of appropriate rhizobia, soil moisture, NO3 levels, P nutrition, and soil acidity 

(Amanuel et al., 2000; Andrade et al., 2002; Beck, 1992; Doughton et al., 1993; Herridge 

et al., 1995). Chalk (1998) found grain legumes with high concentrations of nitrogen in 

biomass, low nitrogen harvest index, and high symbiotic dependence have the greatest 

potential to contribute positively to soil nitrogen levels. 

The production of annual legume crops has been widely used to improve yields of 

cereals in rotations and contribute to the total pool of nitrogen in the soil (Herridge et al., 

1995). The benefits obtained from the use of a legume in a crop rotation can be separated 

into the N effect and non-N effect (Bullock, 1992; Stevenson and Van Kessel, 1996).   

Many research studies have shown the yield increase in cereals following legumes is 

mainly due to the nitrogen contribution (Herridge et al., 1995; Lopez-Bellido et al., 2004; 

McGuire et al., 1998; Turpin et al., 2002). In years where soil moisture is not limited in 

California’s Sacramento Valley, McGuire et al. (1998) found wheat yields following a 

winter legume cover crop were similar to those of fertilized wheat following fallow. 

Additionally, there were no grain yield differences in wheat following fallow that 

received 28 kg N ha-1 as compared to treatments receiving the higher nitrogen fertilizer 

rate of 112 kg N ha-1 (McGuire et al., 1998). A study conducted in southeastern Australia 

evaluating wheat yield and grain quality response after legume and cereal grain crops 

showed wheat yields increased following a legume or alternative cereal grain crop (Evans 

et al., 1991). Evans et al. (1991) also noted that lupins, peas and barley improved wheat 
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yield 44, 32, and 4% as compared to a continuous wheat rotation. In the same study, grain 

nitrogen content was also increased 12% for both lupins and peas, while barley grain 

nitrogen content increased less than one percent. 

The nutrients recycled by cover crops are not immediately available for uptake by 

the following crop. Mineralization, the process by which soil microbes break down 

chemical compounds in organic matter and convert it into plant available forms, must 

occur before nutrients can be utilized by the next crop. The rate by which organic 

residues are decomposed is influenced by air temperature, humidity, soil moisture, 

aeration, soil temperature, microbial biomass and nutrient status (Swift et al., 1979). In 

Montana, wheat yields in a spring wheat-fallow system were higher than in lentil green 

manure-spring wheat system during the first three cycles of the system due to a lower 

amount of nitrogen availability following lentils (Cochran and Kolberg, 2002). In order to 

optimize utilization of cover crop residues, it is essential to understand the decomposition 

and nutrient release dynamics of crop residues at different maturity stages (Danga et al., 

2009). The period of maximum demand for the principal crop must be synchronized with 

the period of maximum nutrient release from decomposed organic residues to obtain 

optimal utilization (Myers et al., 1982). Palm (1995) found that organic residues released 

up to 80% of their nutrients during decomposition, but less than 20% was captured by 

crops. 

The improvement of soil quality has been associated with the use of cover crops. 

Continuous crop production increases the amount of vegetative biomass, thereby 

increasing the amount of plant residues that soil microbes can decompose and convert to   

soil organic matter. As soil organic matter increases, water retention and soil tilth 
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improve. In order to achieve desired soil quality results, the selection of the proper cover 

crop type is critical. Snapp et al. (2005) stated that, due to their ability to produce large 

amounts of biomass, cereal cover crops should be considered when soil organic levels 

must be increased rapidly. Cover crops with large taproots can reduce soil compaction 

that limits crop yield and water infiltration. Deep-rooted cover crops like alfalfa have the 

ability to increase the formation of macropores within the soil, thus increasing water 

percolation (Foltz et al., 1993). Increasing water infiltration allows more water to be 

stored within the soil, which improves yield in moisture-limited environments. Hoorman 

et al. (2009) showed that one pound of organic matter within the soil has the ability to 

hold eight to nine kg of water. They also demonstrated that continuously vegetated soils 

have the ability to retain 106 to 114 mm of water, while tilled, bare soils have the ability 

to hold 38 to 43 mm of water.    

Well-established cover crop stands compete with weed species for resources 

needed for life such as space, nutrients, water and light. This competition can prevent the 

germination of weed seeds. Furthermore, even when weed seeds germinate they often 

exhaust stored energy before building the necessary structural capacity to break through 

the cover crop mulch layer. This is often termed the cover crop smother effect 

(Kobayashi et al., 2003). In addition to the smother effect, sorghum-sudangrass hybrid 

seedlings, shoots, leaves and roots secrete an allelopathic compound that has the ability to 

suppress many weeds (Clark, 2007). 

Shifting from a monoculture to polyculture cropping systems breaks disease and 

pest cycles. Polycultures increase biological diversity and the population of natural 

predators which control pests. Cover crop treatments delayed the growth of mites and 
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springtails in a broccoli crop, thus improving stand establishment (Wyland et al., 1998).   

Biological diversity also inhibits the survival of diseases because their specific host is 

removed from the environment. The use of cruciferous crops can reduce soil pathogen 

populations (Lewis and Papavizas, 1971; Subbarao et al., 1994). Cover crops can also act 

as a host to pathogens and insects (Dillard and Grogran, 1985; Creamer and Baldwin, 

1999); therefore, cover crop selection can be critical in limiting the effects of pests and 

diseases within cropping systems. 

One of the most destructive pests found in wheat growing regions is the Hessian 

fly (Mayetiola destructor (Say)). Females oviposit on the wheat leaves and the eggs will 

hatch within three to ten days depending on temperature. Following hatching, first instar 

larvae migrate from the leaf down between the leaf sheath and stem where they begin to 

find a suitable feeding site (Chapin, 2008; Alvey, 2009). This is critical, as second instar 

larvae lack creeping pads, which inhibit them from moving around the plant to find 

alternative feeding sites (Harris et. al, 2006). When first instar larvae begin feeding on the 

wheat plant, components within the saliva triggers a change in the signaling pathway, 

thus altering the development of the plant (Kosma et. al, 2010). Photoassimialtes are 

imported to the site of the puncture wound creating a nutritive tissue sink where the 

larvae feeds (Harris et. al, 2006). If infestation is high, these induced plant changes can 

cause stunting and death of tillers, lodging, prevents spike development, and reduce grain 

yield (Castle Del Conte et. al., 2005).  

To reduce the impact of Hessian fly infestation, producers can use many different 

control methods. Use of resistant cultivars, crop rotation, seed treatments, delayed 

planting and conventional tillage are the more common control methods; however, these 
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methods are not successful everywhere. In the southern United States, delaying planting 

may result in loss of forage production, thus limiting economic return through grazing 

stocker cattle. The use of resistant cultivars has been the most successful control method 

in this region (Royer et. al, 2009). This method utilizes the avoidance category for pest 

management, thus even though pests are present within a field, crop management 

practices deter significant pest population densities or crop damage (Peairs et. al., 2005). 

Kosma et. al. (2010) found larvae that initiated feeding on resistant cultivars were unable 

to compromise the cell walls around the feeding site, thus they were unable to derive 

nutrients needed from nutritive tissue sinks. Shukle et. al. (2010) observed larvae that fed 

upon resistant wheat cultivars showed signs of midgut microvilli disruption and 

eventually were absent, thus concluding the midgut is the target of plant resistance 

compounds.  

As pests become more difficult to control and crops become better adapted for 

specific regions, more producers are interested in increasing crop diversity within their 

production system. This cultural control method may be extremely useful for Hessian fly 

control, as the Hessian fly is a specialist wheat pest with a narrow host range. By 

increasing crop diversity, the presence of an alternative crop may disrupt the ability of the 

pest to find its host crop or attract it away from the primary crop, thus limiting the pest’s 

abundance on the host crop (Vandermeer, 1989; Peairs et. al., 2005). In New Zealand, a 

study was conducted to evaluate egg laying and larvae survival response of Hessian fly 

on cereal and non-cereal grasses. Harris et.al. (1996) found Hessian fly laid eggs and 

larvae survived feeding on both cereal and non-cereal (wild and prairie) grasses; 

however, wheat had the greatest amount of egg laying and larvae survival as compared to 
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all other grasses. In addition, Hessian fly was more likely to lay eggs on host grasses that 

supported larval feeding as compared to host grasses that did not support larval feeding 

(Harris et.al., 1996). In North Carolina, no Hessian fly reproduction could be 

demonstrated on seven species of wild grasses (Zeiss et al., 1993). Chen et. al. (2009) 

reported Hessian fly adults laid approximately three times more eggs on wheat seedlings 

as compared to barley or rice seedlings. Newly hatched larvae survival was significantly 

decreased due to eggs not being laid on the abaxial leaf surface, thus hindering the 

larvae’s ability to migrate to the leaf sheath. Larval growth was much slower in larvae 

that feed upon susceptible barley seedlings as compared to wheat seedlings under the 

same conditions (Chen et. al, 2009).  

Many studies have evaluated the effect of cover crops on wheat yield; however, a 

literature review found no published research evaluating the effects of both grass and 

legume cover crops in a dual-purpose wheat production system compared to a grain-only 

wheat production system. Secondly, no published research has evaluated the impact of 

cover crops as a form of pest management on Hessian fly populations in wheat. The 

objectives of this experiment were to (i) determine hard red winter wheat grain yield 

response to production of warm-season cover crops during the summer fallow period, (ii) 

determine the effect of warm-season cover crops on wheat nitrogen requirement as 

predicted by Sensor Based Nitrogen Rate (SBNR) recommendation, and (iii) determine if 

warm-season cover crops inhibit Hessian fly infestation.
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CHAPTER II 
 

 

METHODOLOGY 

Field Experiment 

To evaluate the feasibility of cover crops in a no-till winter wheat production 

system, a study was established at Bornemann Farms, southeast of Union City, OK 

(35º22'39.83'' N, 97º51'32.62'' W, elevation 390 m), in 2009. The soil type was a Pond 

Creek silt loam (fine-silty, mixed, superactive, thermic Pachic Argiustolls). This rainfed 

site receives an average of 868 mm of precipitation annually. Prior to this experiment, 

this site was in a no-till wheat/canola rotation for three years and conventional-till 

monocrop wheat production prior to that.    

Summer Cover Crops 

The experiment was established directly following the harvest of wheat in 2009. 

Cover crops were sown directly into the standing wheat stubble 18 June 2009 and 22 

June 2010 using appropriate planting densities for the region (Table 1). Five cover crops 

treatments were evaluated: cowpea (Vigna unguiculata L.), soybean (Glycine max L.), 

guar (Cyamopsis tetragonoloba L.), sorghum-sudangrass hybrid (Sorghum bicolor x S. 

bicolor var. sudanese), pearl millet (Pennisetum glaucum L.) and a fallow control. The 

individual cover crop plots measured 15.2 m long by 7.3 m wide. Cover crops were 

sown using a Great Plains no-till drill (Great Plains Mfg. Inc., Salina, KS) equipped with
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coulters and a row spacing of 19 cm. Legume cover crops were inoculated using the 

recommended strain of rhizobium bacteria just prior to planting. Vegetation in fallow 

treatments was chemically controlled as needed throughout the summer growing season 

with 1.12 kg ha-1 glyphosate. 

Table 1. Cover crop cultivar and seeding density for the 2009 and 2010 summer 
growing seasons near Union City, OK. 
Cover Crop Cultivar Seeding Density (kg ha-1) 

Cowpea Iron & Clay 30 
Soybean Forrest 40 
Guar Kinman 6 
Sorghum-sudangrass Sweet Sunny Sue 16 
Pearl Millet Hybrid Pearl-PP102M 21 

 

 Five sets of canopy closure readings were taken weekly each season starting 2 

July 2009 and 6 July 2010 as weather permitted (Table 2). Canopy closure was measured 

using digital photography. Photographs were taken using a digital camera mounted on a 

monopod approximately one meter above biomass crop canopy. The digital photographs 

were batch analyzed using SigmaScan Pro (v. 5.0, Systat Software, Point Richmond, 

CA). This program was used to determine the number of green pixels in a photograph 

relative to the total pixels in the photograph similar to the procedure described by Purcell 

(2000).  

Table 2. Date of canopy closure measurement for cover crops sown in 2009 and 2010 
near Union City, OK. 

Year 
Canopy Closure Measurement Date 

1 2 3 4 5 

2009 2 July 10 July 16 July 27 July 6 August 
2010 6 July 13 July 20 July 27 July 6 August 
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The cover crops in this study were chemically terminated at the early to mid-

bloom stage of growth on 12 August 2009 and 11 August 2010 using 1.12 kg ha -1 

glyphosate. Termination date was established at early to mid-bloom developmental stage 

to avoid the onset of seed production. In order to obtain uniform spray coverage on the 

tall foliage, a bar was mounted ahead of the spray boom to restrict the crop canopy from 

obstructing the spray pattern. Prior to termination, two one-meter samples were clipped to 

determine biomass totals per plot. Biomass samples were dried for approximately 10 days 

at 50 ºC and weighed to estimate the total biomass produced per plot. Cover crop residue 

was allowed to stand undisturbed until wheat sowing. 

Winter Wheat Establishment 

 Two separate wheat production systems (dual-purpose and grain-only) were 

evaluated in this study. In the dual-purpose, cattle were allowed to graze from late 

October until the first hollow stem growth stage. The grain-only system was fenced off 

from the rest of the field to prevent grazing. Within each production system, a split split-

block experimental design was used to evaluate the effects of cover crops on pest 

management, nitrogen requirement and grain yield (Figure 1). Cover crop main plots 

were split by sowing half of each block to one of two hard red winter wheat varieties 

(Endurance and Duster) perpendicular to the row orientation of the cover crops. These 

wheat varieties were selected due to their adaptation to the area and dissimilar response to 

Hessian fly infestation, as Endurance is susceptible to Hessian fly while Duster expresses 

resistance.  
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Figure 1. Example of plot design within one replication. The main plot treatment was 
cover crop with wheat cultivar as the sub-plot and nitrogen treatment as the sub sub-plot. 
Plot design was replicated four times per production system. 

E
nd

ur
an

ce 

SBNR NF SBNR NF SBNR NF SBNR NF SBNR NF SBNR NF 

 N-RICH STRIP 

D
us

te
r 

SBNR NF SBNR NF SBNR NF SBNR NF SBNR NF SBNR NF 

Fallow Guar Soybean Cowpea Pearl millet 
Sorghum-
sudangrass 

Abbreviations: SBNR, sensor based nitrogen rate; NF, non-fertilized. 
 

Prior to seeding dual-purpose wheat, all plots were sprayed with 1.12 kg ha -1 

glyphosate to terminate any weeds prior to wheat emergence. The grain-only trial 

received an additional 1.12 kg ha-1 glyphosate treatment prior to seeding each year. 

Winter wheat was seeded using the same Great Plains no-till drill as previously 

mentioned and received an in-furrow application of 47 L ha-1 liquid ammonium 

phosphate (10-34-0). Seeding date and density are provided in Table 3. The ideal seeding 

date in this region for dual-purpose is mid-September and grain-only is early to mid-

October. Seeding dates were adjusted from optimum seeding date due to excessive fall 

precipitation in 2009 and insufficient soil moisture in 2010. Seeding densities were 

determined using appropriate seeding densities for the region and production system. 

Table 3. Winter wheat seeding date and densities for dual-purpose and grain-only 
systems for 2009 and 2010 near Union City, OK. 
System Year Seeding Date Seeding Density (kg ha-1) 

Dual-purpose 2009-2010 29 September 2009 134 
2010-2011 20 September 2010 134 

Grain-only 2009-2010 28 October 2009 100 
2010-2011 5 November 2010 100 
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Plots were routinely scouted throughout the growing season and pesticides were 

applied when warranted. In 2009, 0.018 kg ha-1 pyroxsulam was applied to the entire 

study 1 December 2009 to control winter annual grasses and broadleaf weeds. In 2010, 

0.83 kg ha-1 pinoxaden and 0.56 kg ha-1 MCPA were applied 10 March 2011 for control 

of Italian ryegrass (Lolium multiflorum) and broadleaf weeds. On 6 December 2010, an 

additional 0.56 kg ha-1 chlorpyrifos was applied to the grain-only system to control a 

winter grain mite (Penthaleus major) infestation.  

Nitrogen Management 

The sub sub-plot treatments tested the effect of warm-season cover crops on 

wheat nitrogen requirement as predicted by Sensor Based Nitrogen Recommendation 

(SBNR) as compared to a non-fertilized treatment. A nitrogen-rich strip was applied, in 

the buffer areas between each variety subplot after sowing by applying 220 kg N ha-1. 

This application rate ensured nitrogen would not limit plant growth during the growing 

season. Normalized difference vegetation index measurements for each plot and its 

corresponding nitrogen-rich strip were taken 15 March 2010 and 22 March 2011 using a 

handheld NDVI sensor. This comparison was used to determine the amount of nitrogen 

fertilizer needed by the SBNR plots. Top-dress nitrogen rate recommendations were 

made using the sensor based nitrogen rate calculator for winter wheat in the US Grain 

Belt (http://www.soiltesting.okstate.edu/SBNRC/SBNRC.php, verified 11/15/2011). All 

four replications per production system were combined to obtain a mean fertilizer 

recommendation. Fertilizer was applied in 17 kg N ha-1 increments and plots were 

fertilized at the 17 kg N ha-1 increment that was closest to the actual SBNR 

recommendation. Urea ammonium nitrate (UAN) solution (28-0-0) was the fertilizer 
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source applied using a 3-m bicycle sprayer equipped with streamer nozzles. The sprayer 

was calibrated to deliver 34 kg N ha-1 fertilizer; therefore, plots requiring higher rates 

received multiple passes (Table 4). The 17 kg N ha-1 rate was obtained by using a 50/50 

solution of UAN fertilizer and water. 

Table 4. Top-dress nitrogen rates applied to winter wheat varieties within each cover 
crop treatment for 2010 and 2011 growing seasons near Union City, OK. Rate 
recommendations were made using the sensor based nitrogen rate calculator for winter 
wheat. 

System Cover Crop 

Top-dress Nitrogen Rates 
2010 2011 

Duster Endurance Duster Endurance 
  -------------------------kg N ha-1-------------------- 
Dual-purpose      
 Fallow 34 17 119 136 
 Cowpea 51 34 119 153 
 Soybean 51 51 119 119 
 Guar 51 51 119 119 
 Sorghum-sudangrass 51 68 136 153 
 Pearl Millet 34 51 136 119 
Grain-only      
 Fallow 17 51 0 0 
 Cowpea 17 17 34 0 
 Soybean 34 17 51 0 
 Guar 17 17 51 0 
 Sorghum-sudangrass 0 0 17 34 
 Pearl Millet 17 17 34 17 
 

Hessian Fly 

Two Hessian fly samples one in late-fall (first generation) and the other in early-

spring (second generation) were obtained from a single legume crop, single grass crop 

and the fallow control. The legume and grass cover crops were selected based on greatest 

canopy closure; therefore, samples were taken from the cowpea and sorghum-sudangrass 

plots. Five wheat samples were selected at random throughout the SBNR plots. Plants 

were excavated with roots intact using garden trowels and placed into one-gallon plastic 
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freezer bags. Samples were trimmed to 20 cm, so the samples could be stored in zip-close 

plastic bags. All samples were transported to the laboratory and stored in a freezer until 

they could be dissected. Dissection of first generation samples consisted of pulling each 

leaf down to the base of the plant and inspecting for the presence of any larvae or pupae. 

Second generation samples were dissected by cutting the entire length of the stem open 

vertically and inspecting for the any larvae or pupae. The number of larvae, pupae and 

tillers per sample bag were recorded. 

Insolation 

At anthesis, a LI-191S line quantum sensor (Li-Cor, Lincoln, NE) was used to 

determine the fraction of photosynthetically active radiation interception by wheat crop 

canopy. This was calculated by measuring photosynthetically active radiation above and 

below the crop canopy in unobstructed light within one hour of solar noon. The sensor 

was placed parallel to the orientation of the wheat rows when measuring below canopy 

radiation. The radiation from the soil surface was subtracted from the radiation value 

above the crop canopy and divided by above canopy radiation values to quantify the 

fraction of photosynthetically active radiation reaching the soil surface. Fraction of 

photosynthetically active radiation intercepted by the plant canopy was calculated as one 

minus the fraction of light reaching the soil surface. 

 

 

 



18 

 

Harvest 

Grain was harvested using a Wintersteiger small-plot combine (Wintersteiger 

Inc., Salt Lake City, UT) once moisture content of all plots was less than 13.5 percent. 

The center 2 m of each plot was harvested for a total harvested area of 10.6 m2. Due to 

the straw piles left by the plot harvester, a rotary mower was used to distribute straw 

more evenly prior to planting cover crops. 

Statistical Analysis 

 Cover crop biomass and canopy closure, Hessian fly infestation, nitrogen fertilizer 

recommendation, nitrogen fertilizer response index, insolation and wheat grain yield were 

analyzed using SAS software version 9.2 (SAS, Cary, NC). Analysis of variance was 

performed using PROC MIXED. Cover crop biomass and canopy closure were analyzed 

as randomized complete block experimental design. The remaining components were 

analyzed with appropriate comparisons using orthogonal contrasts in split block design 

with years and fertilizer treatments analyzed separately.
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CHAPTER III 
 

 

RESULTS AND DISCUSSION 

1.1 Dual-Purpose Production System 

1.1.1 Cover Crop Biomass and Canopy Closure 

Guar was removed from the 2009 analysis due to poor stand establishment. There 

were no differences in total biomass between grass cover crops (sorghum-sudangrass and 

pearl millet) or between legume cover crops (cowpea and soybean) in 2009 (Figure 2). 

Grass cover crops yielded 6,250 kg ha-1 more biomass than legume cover crops. In 2010, 

sorghum-sudangrass yielded 3,430 and 5,630 kg ha-1 more biomass than pearl millet and 

the legume cover crops, respectively. Biomass production did not differ among legume 

cover crops in 2010, and overall cover crop biomass production was reduced by 41% in 

2010 as compared to 2009.
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In 2009, sorghum-sudangrass canopy closure was at least four times greater than 

any other cover crop at 14 and 22 days after seeding (DAS)(Figure 3; Table 5). Fallow 

and soybean treatments all failed to reach greater than 5% canopy closure by 28 days 

after seeding. At termination (49 DAS) in 2009, cowpea, sorghum-sudangrass, and pearl 

millet had achieved near full canopy closure. In 2010, a steady increase in canopy closure 

was seen in all cover crop treatments from days 14 to 28 (Figure 4: Table 5). Following 

day 28, grass cover crop growth rate significantly decreased while legume cover crop 

growth rate remained steady. At day 35, sorghum-sudangrass and pearl millet reached 

maximum canopy closure; however, maximum canopy closure of these treatments was 9 

and 10% less than 2009. Sorghum-sudangrass and pearl millet canopy closure did not 

increase past 35 DAS but cowpea, and soybean did. Previous literature supports these 

findings as plant growth of cowpea, sorghum and millet are characterized by quick 

biomass production, thus making them well adapted for weed suppression and erosion 

control (Clark, 2007). 

Figure 2. Mean cover crop biomass yield for summer 2009 and 2010 growing seasons 
near Union City, OK. Columns within year with the same letter are not significantly 
different (α=0.05). 
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Figure 4. Mean percent canopy closure near Union City, OK during the 2010 summer 
growing season. 

Figure 3. Mean percent canopy closure near Union City, OK during the 2009 summer 
growing season. Guar was removed from this comparison due to poor stand. 
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Table 5. Mean canopy closure among cover crops at various days after seeding (DAS) 
near Union City, OK throughout the 2009 and 2010 summer growing seasons. Values 
within a column with the same letter are not significantly different (α= 0.05). 

Year Cover Crop 14 DAS 22 DAS 28 DAS 39 DAS 49 DAS 
2009 Sorghum-sudangrass 4 a 42 a 46 a 75 a 96 a 

Cowpea 2 b 13 b 25 ab 70 a 99 a 
Pearl Millet 0 b 11 b 21 ab 53 a 89 a 
Soybean 0 b 3 b 2 b 26 b 61 b 
Guar -† - - - - 
Fallow 0 b 0 b 0 b 1 b 10 c 

                    
14 DAS 21 DAS 28 DAS 35 DAS 45 DAS 

2010 Sorghum-sudangrass 6 ab 28 a 71 a 87 a 82 a 
Cowpea 10 a 27 a 52 a 73 b 83 a 
Pearl Millet 5 b 23 ab 70 a 79 ab 67 b 
Soybean 6 b 14 b 22 b 38 c 55 c 
Guar 1 c 4 c 8 b 12 d 26 d 

  Fallow 0 c 1 c 1 b 2 d 0 e 
† Guar was removed from comparison in 2009 due to poor stand establishment. 

These somewhat contrasting results between years for biomass and canopy 

closure can be attributed to timely precipitation and utilization of residual nitrogen deep 

within the soil profile. While precipitation was initially below average in June 2009, 

timely rains throughout July and early-August provided adequate soil moisture to sustain 

vegetative growth. In 2010, timely precipitation following harvest allowed timely and 

rapid stand establishment among all cover crops; however, precipitation throughout the 

rest of the growing season was limited. Additionally in 2010, nitrogen deficiency might 

have also been a confounding factor as grass cover crops exhibited biomass color and 

growth differences between the whole plot and the location of the previous year’s 

nitrogen-rich strip (Figure 5). This difference illustrates how the previous year’s grass 

cover crop and wheat utilized much of the residual nitrogen from the subsoil and lack of 
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plant residue incorporation may have slowed nitrogen mineralization, thus causing 

nutrient deficiency in the larger plot.  

 

Figure 5. Differences in biomass color and growth within grass cover crops during the 
summer 2010 growing season near Union City, OK. Strip through the middle was the 
location of the previous year’s nitrogen-rich strip for wheat while the remaining plot 
areas were designated for SBNR and non-fertilized nitrogen treatments. In SBNR 
treatments, nitrogen was applied at rates necessary to achieve predicted wheat yield 
potential for that particular growing season but no nitrogen was added to support cover 
crop growth.  
 

1.1.2 Nitrogen Management 

In 2010, pairwise contrasts among main effects revealed a significant difference 

for recommended nitrogen rates between cover crop and fallow, and recommended 

nitrogen rates for cover crop treatments were 26 kg N ha-1 greater than the fallow 

treatments (Table 6). Predicted yield response to the application of SBNR-recommended 

nitrogen rate was 27% greater in wheat following cover crops as compared to fallow 
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treatments. Wheat following legume crops had 520 kg ha-1 greater predicted yield 

potential with nitrogen fertilizer than grass crops. Average predicted yield potential 

without nitrogen in wheat following cover crops was 680 kg ha-1 less than the fallow 

treatments, while wheat following a legume had 550 kg ha-1 greater predicted yield 

potential without nitrogen as compared to wheat following grass cover crops. 

Recommended nitrogen rate and predicted yield potential responses may be attributed to 

cover crop nitrogen uptake and mineralization, as not growing a cover crop made residual 

nitrogen more readily available for winter wheat uptake and utilization. Previous 

literature indicated residues on the soil surface decompose more slowly than incorporated 

residues, which limits the release and nitrogen availability to the following crop in no-till 

systems (Clark, 2007). Increased predicted yield potential in wheat following legume as 

compared to grass cover crops suggests reduced nitrogen immobilization by legume 

residue. Grass cover crops typically have high carbon to nitrogen ratios; therefore, 

microorganisms must use soil nitrogen to decompose residue rather than making it 

available for plant growth (Clark, 2007).  

Mean nitrogen fertilizer recommendations increased across all treatments from 44 

kg N ha-1 in 2010 to 125 kg N ha-1 in 2011 (Table 6). Response levels nearly doubled 

between years due to increased predicted yield potential with nitrogen and decreased 

predicted yield without nitrogen as compared to 2010. In 2011, there were no differences 

among treatments for SBNR recommendations, predicted yield potential with topdress 

nitrogen, or response index. Predicted yield potential without nitrogen in wheat following 

guar was 310 kg ha-1 greater than cowpea or soybean. Lack of differences during 2011 

was caused by limited precipitation throughout the cover crop and wheat growing 
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seasons. Limited soil moisture following grazing termination decreased wheat biomass 

regrowth; therefore, reducing visual differences among treatments.  

Table 6. The influence of cover crops on response index (RI), SBNR fertilizer 
recommendations, and predicted yield potential with (YPN) or without (YP0) topdress 
nitrogen, and within wheat cultivars near Union City, OK for 2010 and 2011. 

Main Effect 
RI SBNR YPN YP0 YPN YP0 

2010 2011 2010 2011 2010 2011 
   --kg N ha-1-- ---kg ha-1--- ---kg ha-1--- 
Cover Crop         

Fallow 1.2 2.6 22 119 3,460 3,000 4,140 1,650 
Cowpea 1.4 3.1 42 138 3,350 2,470 4,270 1,390 
Soybean 1.4 2.6 53 117 3,820 2,720 3,990 1,540 
Guar  -† 2.4 - 115 - - 4,170 1,770 
Sorghum-sudangrass 1.6 3.0 58 137 3,130 1,920 4,320 1,450 
Pearl Millet 1.5 2.7 39 123 3,000 2,180 4,130 1,560 

Cultivar         
Duster 1.4 2.7 43 119 3,330 2,430 4,040 1,550 
Endurance 1.4 2.8 45 130 3,530 2,580 4,300 1,570 

         
Contrasts         

Cover Crop vs. Fallow *  NS‡ * NS NS ** NS NS 
Legume vs. Grass NS NS NS NS ** ** NS NS 
Cowpea & Soybean vs. 
Guar - NS - NS - - NS * 
Cowpea vs. Soybean NS NS NS NS NS NS NS NS 
Sorghum vs. Millet NS NS NS NS NS NS NS NS 
Duster vs. Endurance NS NS NS NS NS NS NS NS 

† Guar was removed from comparison in 2009 due to poor stand establishment. 

‡ NS,*,** Nonsignificant or significant at P ≤ 0.05 or 0.01, respectively. 
 

The impact of cover crop incorporation into a cropping system may not always be 

immediate. Nielsen and Vigil (2005) showed an establishment period is required when 

cover crops are introduced to a cropping system. In this period, they found fallow 

contained greater available nitrogen. After the second year, no significant differences 

were observed in available nitrogen levels within non-fertilized legume plots and 

fertilized fallow plots; however, their work was in a grain-only production system. 
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Increased fertility demands needed for forage and grain production within a dual-purpose 

system may not be achieved from cover crop N contributions, thus supplemental 

fertilization may be warranted to achieve optimum yield goals.  

1.1.3 Hessian fly  

 In 2010 and 2011, first generation Hessian fly infestation was inconsequential; 

therefore, only the second generation Hessian fly infestation levels were analyzed. In 

2010, average cumulative immature Hessian fly per tiller were 0.07 and 0.26 in Duster 

and Endurance, respectively. In 2011, these values were 0 and 0.15 in Duster and 

Endurance, respectively. Buntin (1999) reported economic damage from Hessian fly 

infestation occurred at 0.4 to 1.0 immatures per stem; therefore, Hessian fly infestation 

pressure over both years and varieties probably had little impact on overall grain yield. 

Additionally, there were no differences among all other treatments. Increased infestation 

densities in the second generation may be attributed to population migrating in from 

neighboring fields during the spring. The presence of cover crop residue revealed no 

reduction in infestation pressure; however, the reduction of larval establishment in 

resistant wheat cultivars supports the findings of Kosma et. Al (2010) and Harris et. al. 

(2006). Results from additional research studies support low infestation pressures within 

the region. These relatively low values may be attributed to an increase in farmers 

planting well-adapted, Hessian fly resistant winter wheat varieties. 

 The influence of habitat fragmentation may have been another factor in the 

reduced levels of Hessian fly infestation pressure. Typically, fields devoted for wheat 

production in Oklahoma are relatively large in scale. The introduction of increased crop 
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diversity through small-plot research may have altered the overall dynamics of the 

Hessian fly’s ecosystem; therefore, hindering the ability of the pest to find a suitable host 

critical for survival and reproduction.  

1.1.4 Insolation 

In 2010, canopy closure measured at anthesis did not differ among cover crops 

within SBNR treatments (Table 7). Within non-fertilized treatments, wheat following 

sorghum-sudangrass had 7% greater canopy closure as compared to pearl millet. 

Additionally, Duster had 5% less canopy closure as compared to Endurance. In 2011, 

both the SBNR and non-fertilized fallow treatments intercepted twice as much solar 

radiation as the cover crop treatments. Within SBNR treatments, canopy closure was 5% 

greater in Duster as compared to Endurance. Mean canopy closure was 71% less in 2011 

than 2010. Evans et. al (1991) reported median increases in wheat above ground biomass 

following lupin and pea to be 20 and 29%, respectively. Winter and Musick (1991) found 

leaf area index at anthesis and winter wheat grain yield to be positive correlated. 

Increased leaf area enhances delivery of photosynthate, thus increasing grain yield 

potential (MacKown and Rao, 1998). The reduced canopy closure in this study in 2011 is 

probably due to lack of soil moisture as well as lack of timely rains to incorporate 

topdress nitrogen. Differences in canopy closure among fallow and cover crop treatments 

in 2011 suggest fallow plots may have had greater soil moisture content reserves where 

cover crop plots were depleted during the summer growing season.  
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Table 7. Mean wheat percent canopy closure for SBNR and non-fertilized (NF) cover 
crop and cultivar treatments taken at anthesis near Union City, OK in 2010 and 2011. 

Main Effect 
2010 2011 

SBNR NF SBNR NF 
 ------------------------ % --------------------- 
Cover Crop     

Fallow 90 86 32 19 
Cowpea 90 85 16 9 
Soybean 87 82 12 8 
Guar  -† - 20 10 
Sorghum-sudangrass 86 86 17 10 
Pearl Millet 88 79 19 7 

Cultivar     
Duster 86 82 16 9 
Endurance 90 87 23 12 

Contrasts 
Cover Crop vs. Fallow  NS‡ NS ** ** 
Legume vs. Grass NS NS NS NS 
Cowpea & Soybean vs. Guar - - NS NS 
Cowpea vs. Soybean NS NS NS NS 
Sorghum vs. Millet NS * NS NS 
Duster vs. Endurance NS ** ** NS 

† Guar was removed from comparison in 2009 due to poor stand establishment. 

‡ NS,*,** Nonsignificant or significant at P ≤ 0.05 or 0.01, respectively. 
 

1.1.5 Winter Wheat Grain Yield 

 In 2010, there were no grain yield differences among cover crops within SBNR 

and non-fertilized treatments; however, grain yields for Endurance were 270 kg ha-1 

greater than Duster within SBNR treatments (Table 8). Overall, grain yield was 

approximately 3,000 kg ha-1 less in 2011 than 2010. In 2011, SBNR wheat following 

cover crops yielded 300 kg ha-1 less than the fallow treatments, while wheat following a 

grass yielded 250 kg ha-1 more than legume treatments. Grain yield did not differ among 

non-fertilized treatments. During both years, application of topdress fertilizer increased 

final grain yield regardless of cover crop treatment. Evans and Herridge (1987) reported 
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wheat grain yield response following a legume crop to range from 0 to greater than 100% 

as compared to after wheat. Evans et.al. (1991) also found non-legume crops enhance 

subsequent wheat grain yield; however, the response was less than wheat following 

legume crops. In many of these studies, conventional tillage practices were used, which 

made nitrogen more available for the next crop. Increased grain yield following fallow 

treatments are consistent with the findings of Nielsen and Vigil (2005) during the 

establishment years. The cost of decreased available water and nitrogen availability 

associated with cover crops in water-limited environments may be too much to justify 

subsequent potential grain yield reductions. 

Table 8. Mean wheat grain yield for SBNR and non-fertilized (NF) cover crop and 
cultivar treatments near Union City, OK in 2010 and 2011. 

Main Effect 
2010 2011 

SBNR NF SBNR NF 
Cover Crop     

Fallow 4,660 4,490 1,620 1,230 
Cowpea 4,530 4,050 1,190    980 
Soybean 4,400 3,820 1,090 1,010 
Guar  -† - 1,370 1,120 
Sorghum-sudangrass 4,410 4,200 1,400 1,050 
Pearl Millet 4,350 3,870 1,520 1,230 

Cultivar     
Duster 4,340 4,000 1,400 1,140 
Endurance 4,610 4,280 1,330 1,060 

Contrasts 
Cover Crop vs. Fallow  NS‡ NS * NS 
Legume vs. Grass NS NS * NS 
Cowpea & Soybean vs. Guar NS NS NS NS 
Cowpea vs. Soybean NS NS NS NS 
Sorghum vs. Millet NS NS NS NS 
Duster vs. Endurance ** NS NS NS 

† Guar was removed from comparison in 2009 due to poor stand establishment. 

‡ NS,*,** Nonsignificant or significant at P ≤ 0.05 or 0.01, respectively. 
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CHAPTER IV 
 

 

RESULTS AND DISCUSSION 

2.1 Grain-only Production System 

2.1.1 Cover Crop Biomass and Canopy Closure 

 Guar was removed from the 2009 analysis due to poor stand establishment. Total 

biomass production was equivalent between sorghum-sudangrass and pearl millet in 2009 

(Figure 6). Additionally, there were no differences in total biomass production between 

pearl millet and soybean as well as between soybean and cowpea. In 2010, sorghum-

sudangrass and pearl millet produced equivalent total biomass. Biomass production did 

not differ among pearl millet, soybean, cowpea, and guar. Overall cover crop biomass 

production was 56% less in 2010 as compared to 2009.
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In 2009, canopy closure of sorghum-sudangrass was at least two times greater 

than any other cover crop at 14, 22 and 28 days after seeding (DAS) and reached a 

maximum canopy closure of 95% (Figure 7; Table 9). Fallow and soybean failed to reach 

greater than 5% canopy closure by 28 days after seeding. At termination (49 DAS), 

sorghum-sudangrass, cowpea and pearl millet had achieved near full canopy closure. In 

2010, adequate soil moisture early within the growing season allowed all cover crops to 

increase canopy closure from 14 to 28 DAS (Figure 8; Table 9). Following day 28, all 

cover crops continued to increase canopy closure; however, grass cover crop closure rate 

was slowed while legume cover crop growth rate remained steady. At day 35, sorghum-

sudangrass, pearl millet, and cowpea reached maximum canopy closure; however, 

maximum canopy closure of these treatments was 22, 38, and 21% less than 2009. 

Canopy closure of sorghum-sudangrass, pearl millet, and cowpea did not increase past 35 

DAS but soybean and guar did. Clark (2007) states characteristics such as quick biomass 

Figure 6. Mean cover crop biomass yield for summer 2009 and 2010 growing seasons 
near Union City, OK. Columns within year with the same letter are not significantly 
different. (α=0.05). 
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production and canopy closure adapt well for weed suppression and erosion control in 

cowpea, sorghum and millet crops. 

 

 

Figure 8. Mean percent cover crop canopy closure near Union City, OK during the 2010 
summer growing season.  

Figure 7. Mean percent cover crop canopy closure near Union City, OK during the 2009 
summer growing season. Guar was removed from this comparison due to poor stand 
establishment. 
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Table 9. Mean canopy closure among cover crops at various days after seeding (DAS) 
near Union City, OK throughout the 2009 and 2010 summer growing seasons. Values 
within a column with the same letter are not significantly different (α= 0.05). 

Year Cover Crop 14 DAS 22 DAS 28 DAS 39 DAS 49 DAS 
2009 Sorghum-sudangrass 7 a 32 a 49 a 67 a 96 a 

Cowpea 1 b 11 bc 23 b 63 a 95 a 
Pearl Millet 0 b 15 b 17 b 54 a 87 a 
Soybean 0 b 3 bc 4 c 25 b 61 b 
Guar -† - - - - 
Fallow 0 b 0 c 0 c 3 c 22 c 

                    
14 DAS 21 DAS 28 DAS 35 DAS 45 DAS 

2010 Sorghum-sudangrass 6 a 34 a 69 a 74 a 59 a 
Cowpea 7 a 19 b 29 c 57 b 50 a 
Pearl Millet 5 a 19 b 57 b 66 ab 48 a 
Soybean 6 a 12 c 22 c 40 c 52 a 
Guar 2 b 4 d 11 d 22 d 29 b 

  Fallow 0 b 2 d 2 d 3 e 0 c 
† Guar was removed from comparison in 2009 due to poor stand establishment. 

 

Lack of timely precipitation and utilization of residual nitrogen deep within the 

soil profile can be attributed to these somewhat contrasting results between years for both 

biomass and canopy closure. While precipitation was initially below average in June 

2009, timely rains throughout July and early August provided adequate soil moisture to 

sustain growth. In 2010, timely precipitation following harvest allowed timely and rapid 

stand establishment among all cover crops; however, precipitation throughout the rest of 

the growing season was limited. Additionally in 2010, nitrogen deficiency might have 

also been a confounding factor as grass cover crops exhibited biomass color and growth 

differences between the whole plot and the location of the previous year’s N-rich strip 

(Figure 9). This difference illustrates how the previous year’s grass cover crop and wheat 

utilized much of the residual nitrogen from the subsoil. The lack of plant residue 
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incorporation may have slowed the nitrogen mineralization, which caused nutrient 

deficiency.  

 

Figure 9. Differences in biomass color and growth within grass cover crops during the 
summer 2010 growing season near Union City, OK. Strip through the middle was the 
location of the previous year’s nitrogen-rich strip for wheat while the remaining plot 
areas were designated for SBNR and non-fertilized nitrogen treatments. In SBNR 
treatments, nitrogen was applied at rates necessary to achieve predicted yield potential for 
that particular growing season but no nitrogen was added to support cover crop growth.  

2.1.2 Nitrogen Management 

In 2010, pairwise contrasts among main effects revealed no differences for SBNR 

recommended nitrogen rates or the predicted yield response to the application of the 

SBNR recommended nitrogen rates (Table 10). Predicted grain yield potential with 

nitrogen fertilizer in wheat following fallow was 820 kg ha-1 greater than cover crop 

treatments. Wheat following legume cover crops had 1,190 kg ha-1 greater predicted yield 

potential with nitrogen and 1,330 kg ha-1 greater predicted yield potential without 
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nitrogen as compared to grass crops. Additionally, predicted yield potential with and 

without nitrogen in Duster was 700 and 860 kg ha-1 greater than Endurance. 

Recommended nitrogen rate and predicted yield potential responses may be attributed to 

cover crop nitrogen uptake and nitrogen mineralization. Not growing a cover crop made 

residual nitrogen more readily available for winter wheat uptake and utilization. Previous 

literature indicated residues on the soil surface decompose more slowly than incorporated 

residues found in conventional tillage, thus limiting the release and nitrogen availability 

to the following crop (Clark, 2007). Increased predicted yield potential in wheat 

following legume cover crops may be attributed to reduced nitrogen immobilization 

within legumes as compared to grass cover crops. Grass cover crops typically have high 

carbon to nitrogen ratios; therefore, microorganisms must use soil nitrogen to decompose 

residue rather than making it more readily available for plant growth.  

Average nitrogen fertilizer recommendation and response levels remained 

relatively consistent between 2010 and 2011. In 2011, predicted yield response to the 

application of SBNR recommended nitrogen rates did not differ among all treatments. 

There were no differences in recommended fertilizer rates among cover crop main 

effects; however, SBNR recommendations for Duster were 10 kg N ha-1 greater than 

Endurance. Additionally, wheat following grass cover crops had 1,070 kg ha-1 less 

predicted yield potential with nitrogen and 1,310 kg ha-1 less predicted yield potential 

without nitrogen as compared to legume crops. Lack of differences during 2011 was 

probably due to limited precipitation throughout the cover crop and wheat growing 

seasons.  
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Table 10. The influence of cover crops on response index (RI), SBNR fertilizer 
recommendations, and predicted yield potential with (YPN) or without (YP0) topdress 
nitrogen, and within wheat cultivars near Union City, OK for 2010 and 2011. 

Main Effect 
RI SBNR YPN YP0 YPN YP0 

2010 2011 2010 2011 2010 2011 
   --kg N ha-1-- ---kg ha-1--- ---kg ha-1--- 
Cover Crop         

Fallow 1.3 1.0 33 0 4,280 3,590 3,800 3,800 
Cowpea 1.1 1.1 14 12 3,840 3,550 4,860 4,620 
Soybean 1.2 1.3 27 13 4,180 3,620 4,470 4,190 
Guar  -† 1.2 - 12 - - 4,020 3,770 
Sorghum-sudangrass 1.0 1.3 3 11 2,420 2,360 2,900 2,670 
Pearl Millet 1.2 1.1 19 12 3,080 2,680 3,340 3,090 

Cultivar         
Duster 1.1 1.2 14 15 3,950 3,660 4,020 3,700 
Endurance 1.2 1.2 21 5 3,250 2,800 3,780 3,680 

         
Contrasts         

Cover Crop vs. Fallow  NS‡ NS NS NS ** NS NS NS 
Legume vs. Grass NS NS NS NS ** ** ** ** 
Cowpea & Soybean vs. 
Guar NS NS NS NS NS NS NS NS 
Cowpea vs. Soybean NS NS NS NS NS NS NS NS 
Sorghum vs. Millet NS NS NS NS NS NS NS NS 
Duster vs. Endurance NS NS NS * * * NS NS 

† Guar was removed from comparison in 2009 due to poor stand establishment. 

‡ NS,*,** Nonsignificant or significant at P ≤ 0.05 or 0.01, respectively. 

 

 Overall, predicted yield potential with nitrogen was greater than without nitrogen 

during both years; therefore, incorporating cover crops into a cropping system may not 

always show immediate impacts. Nielsen and Vigil (2005) showed an establishment 

period takes place when cover crops are introduced to a cropping system. In this period, 

they found fallow contained more available nitrogen. After the second year, no 

significant differences were observed in available nitrogen levels within non-fertilized 

legume plots and fertilized fallow plots. While these results are consistent with predicted 

yield potential in 2010, the remaining predicted yield potentials showed no significant 
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differences between wheat following cover crops and fallow, which may be attributed to 

more nitrogen availability rather than soil moisture. During both years, wheat following a 

legume crop had increased predicted yield potential with and without nitrogen. Delays in 

planting over both years may have influenced the impact of nitrogen. Early season 

growth was limited; therefore, allowing soil nitrogen to be utilized as wheat came out of 

dormancy.  

2.1.3 Hessian fly 

In 2010 and 2011, first-generation Hessian fly infestation was inconsequential; therefore, 

only the second-generation infestation levels were analyzed. In 2010, average cumulative 

immature Hessian fly per tiller were 0.01 and 0.11 in Duster and Endurance, respectively. 

In 2011, these values were 0 and 0.09 in Duster and Endurance, respectively. Buntin 

(1999) reported economic damage from Hessian fly infestation occurred at 0.4 to 1.0 

immatures per stem; therefore, Hessian fly infestation pressure over both years and 

varieties had little impact on overall grain yield. Additionally, there were no differences 

among all cover crop treatments. Increased infestation densities in the second generation 

may be attributed to population migrating in from neighboring fields during the spring. 

The presence of cover crop residue had no effect on ovipoistion; however, the reduction 

of larval establishment in resistant wheat cultivars supports the findings of Kosma et. al 

(2010) and Harris et. al. (2006). Results from additional research studies support low 

infestation pressures within the region. These relatively low values may be attributed to 

an increase in farmers planting well-adapted, Hessian fly resistant winter wheat varieties. 
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 The influence of habitat fragmentation may have been another factor in the 

reduced levels of Hessian fly infestation pressure. Typically, fields devoted for wheat 

production in Oklahoma are relatively large in scale. The introduction of increased crop 

diversity through small-plot research may have altered the overall dynamics of the 

Hessian fly’s ecosystem; therefore, hindering the ability of the pest to find a suitable host 

critical for survival and reproduction.  

2.1.4 Insolation 

In 2010, canopy closure in wheat following cover crops was 12 and 10% less as 

compared to wheat following fallow in both the SBNR and non-fertilized treatments, 

respectively (Table 11). Wheat following legume crops had an 18% increase in canopy 

closure as compared to grass crops in both SBNR and non-fertilized treatments. Within 

both SBNR and non-fertilized treatments, wheat following sorghum-sudangrass provided 

the least amount of canopy closure and was 16 and 13% less canopy closure as compared 

to pearl millet. In 2011, wheat following a legume crop had 9 and 11% greater canopy 

closure as compared to wheat following a grass crop in the SBNR and non-fertilized 

treatments, respectively. Additionally, canopy closure in Duster was 10% greater than 

Endurance within SBNR treatments. Canopy closure did not differ among all other cover 

crop treatments. Canopy closure was 7% less in 2011 than 2010. Evans et. al (1991) 

reported median increases in wheat aboveground biomass following lupin and pea to be 

20 and 29%, respectively. Winter and Musick (1991) found leaf area index at anthesis 

and grain winter wheat grain yield to be positively correlated. Increased leaf area 

enhances delivery of photosynthate, thus increasing grain yield potential (MacKown and 

Rao, 1998). The reductions found in this experiment were attributable to the lack of soil 
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moisture as well as lack of timely rains to incorporate topdress nitrogen. Differences 

among legume and grass treatments in 2011 suggest legume plots had greater available 

soil nitrogen, whereas uptake of residual nitrogen from grass crops during the summer 

growing season limited wheat biomass production. Lack of substantial precipitation never 

allowed topdress nitrogen to be incorporated into the soil for plant uptake. 

Table 11. Mean wheat canopy closure for SBNR and non-fertilized (NF) cover crop and 
cultivar treatments taken at anthesis near Union City, OK in 2010 and 2011. 

Main Effect 
2010 2011 

SBNR NF SBNR NF 
 ------------------------ % --------------------- 
Cover Crop     

Fallow 65 67 44 37 
Cowpea 57 67 45 42 
Soybean 66 64 43 45 
Guar  -† - 48 39 
Sorghum-sudangrass 36 41 33 30 
Pearl Millet 52 54 39 33 

Cultivar     
Duster 56 61 37 37 
Endurance 55 56 47 39 

Contrasts 
Cover Crop vs. Fallow * *  NS‡ NS 
Legume vs. Grass ** ** ** ** 
Cowpea & Soybean vs. Guar - - NS NS 
Cowpea vs. Soybean NS NS NS NS 
Sorghum vs. Millet * * NS NS 
Duster vs. Endurance NS NS ** NS 

† Guar was removed from comparison in 2009 due to poor stand establishment. 

‡ NS,*,** Nonsignificant or significant at P ≤ 0.05 or 0.01, respectively. 

 

2.1.5 Winter Wheat Grain Yield 

 In 2010, there were significant differences among all SBNR treatments with the 

exception of cowpea and soybean vs. guar (Table 12). Grain yields for wheat following 
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fallow were 470 and 420 kg ha-1 greater than wheat following cover crops in SBNR and 

non-fertilized treatments, respectively. Wheat after a grass crop yielded 700 kg ha-1 less 

as compared to legume crops. Both wheat following soybean and pearl millet were the 

highest-yielding legume and grass crop treatments with each producing approximately 

500 kg ha-1 more grain than the next closest legume and grass cover crop. Within the 

non-fertilized treatments, wheat following legumes produced 650 kg ha-1 more grain as 

compared to grass crop treatments. Additionally, Endurance yielded 220 kg ha-1 less 

grain as compared to Duster. In 2011, Grain yield in wheat following grasses yielded 370 

kg ha-1 less than legumes in both SBNR and non-fertilized treatments, respectively. 

Wheat after pearl millet produced 425 kg ha-1 more grain as compared to sorghum-

sudangrass in both the SBNR and non-fertilized treatments.  

Even though wheat was planted past the optimum window during both years, 

differences in yield between 2010 and 2011 can be attributed to soil moisture and 

nitrogen availability. In 2010, soil moisture was a not limiting factor therefore wheat 

yields in 2010 were 1,040 kg ha-1 as compared to 2011 where soil moisture was greatly 

limited. Additionally, wheat following legumes yielded higher during both years and 

nitrogen treatments as compared to following grass cover crops. These results are 

consistent with yield potential predictions and canopy closure measurements made earlier 

in the growing season. Additionally, the overall application of topdress nitrogen fertilizer 

increased final grain yield.  
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Table 12. Mean wheat grain yield for SBNR and non-fertilized (NF) cover crop and 
cultivar near Union City, OK in 2010 and 2011. 

Main Effect 
2010 2011 

SBNR NF SBNR NF 
Cover Crop     

Fallow 3,360 3,240 1,950 1,890 
Cowpea 2,990 3,140 2,180 2,100 
Soybean 3,500 3,160 2,090 2,060 
Guar -† - 2,010 1,960 
Sorghum-sudangrass 2,310 2,320 1,510 1,460 
Pearl Millet 2,780 2,680 1,940 1,880 

Cultivar     
Duster 3,020 3,020 1,980 1,930 
Endurance 3,000 2,800 1,910 1,850 

Contrasts 
Cover Crop vs. Fallow ** *  NS‡ NS 
Legume vs. Grass ** ** ** ** 
Cowpea & Soybean vs. Guar - - NS NS 
Cowpea vs. Soybean * NS NS NS 
Sorghum vs. Millet * NS ** ** 
Duster vs. Endurance NS * NS NS 

† Guar was removed from comparison in 2009 due to poor stand establishment. 

‡ NS,*,** Nonsignificant or significant at P ≤ 0.05 or 0.01, respectively. 
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CHAPTER V 
 

 

CONCLUSION 

In Oklahoma, over 2.3 million hectares of hard red winter wheat are sown 

annually, as the Oklahoma climate offers producers multiple uses for the crop. While this 

cropping system has been successful for many producers, the continuous production of 

only one crop can have adverse consequences economically and ecologically. Negative 

effects of the conventional-till, monoculture winter wheat production system used in 

much of Oklahoma include the opportunity cost associated with a fallow period, soil 

erosion, nutrient leaching and increased pest and weed problems. As a result of these 

consequences, producers are becoming interested in incorporating no-till farming and 

diversification of their cropping systems through crop rotation and cover crops. The 

climate of this region plays a major role in the diversity of cropping systems as western 

Oklahoma’s annual precipitation averages less than 880 mm. While the diversification of 

cropping systems is possible in Oklahoma, it may not always be feasible for the producer.  

The incorporation of cover crops into Oklahoma cropping systems is primarily to 

provide soil erosion protection and enhancement of nutrient cycling. During both the 

summer of 2009 and 2010, sorghum-sudangrass, pearl millet, and cowpea provided quick 

biomass and canopy closure; therefore, making them well suited for weed suppression 

and soil erosion prevention. Additionally, the continuous production of biomass
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throughout the year could increase soil quality through increased soil organic matter 

levels as well as increased water infiltration. 

While the incorporation of cover crops has the ability to enhance many soil 

qualities, this enhancement may come at the cost of reduced soil moisture and nitrogen 

availability in the short-term. In both dual-purpose and grain-only production systems, 

wheat productivity following fallow was equal to or greater than wheat following cover 

crops in almost all categories. Wheat following legume cover crops, in most cases, had 

production levels equal to or greater than wheat following grass cover crops. In order to 

optimize production, supplemental nitrogen may be warranted prior to wheat seeding into 

cover crop residue in order to avoid limiting early growth and development; therefore, 

allowing cover crop residues more time to break down and more readily available for late 

growth stages. This is even more critical in dual-purpose production systems as these 

systems require higher amounts of nitrogen in order to meet both fall forage and grain 

production goals.  

For producers interested in using cover crops as a method of pest management, 

results from this study revealed no evidence of cover crops having any effect on Hessian 

fly infestation. The only differences in Hessian fly infestation were between resistant 

(Duster) and susceptible (Endurance) wheat varieties. Even though there were significant 

differences in infestation numbers between varieties, grain yield was not affected as 

infestation pressure was below the economic injury threshold.  

 The viability of producers incorporating cover crops into their current production 

systems is dependent on economic benefits through reduced inputs or increased yield 
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production. The results of this study revealed little evidence to support economic benefit; 

however, this may be attributed to the duration of the study. Previous research suggests 

that there is an establishment period initially with the incorporation of cover crops into a 

no-till production system as crop residues are not incorporated into the soil through 

tillage. The integration of cash crops may be a better solution as producers can achieve 

many of the same benefits associated with cropping system diversification as seen with 

cover crops as well as receive economic returns through cash crop production.
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