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PREFACE 
 

This study was conducted as the initial investigation of belowground processes under 

fire-grazing interaction in tallgrass prairie.  As such, N availability was chosen as the 

parameter of interest because of the dynamic nature of N transformations.  There was 

also ample literature to justify our hypotheses tests.  Specific objectives were to 

determine 1) if there were any differences in N availability between a shifting mosaic and 

an homogenous fire-grazing regime and to determine if those differences were more 

closely modeled by fire or grazing effects obtained from the literature and 2) the link 

between N availability and soil microbial biomass as affected by fire-grazing regime.   

 

I sincerely thank my major advisor Dr. Sam Fuhlendorf and graduate committee 

members Dr. Dave Engle and Dr. Shipeng Deng for their patience through the many trials 

and tribulations that were encountered before compiling satisfactory versions of these 

manuscripts.  Additionally, I would like to thank Clem Turner for his participation in 

laboratory analysis of samples and Dr. Carla Goad for her help in the statistical analysis 

of data.         
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INTRODUCTION 

Current management objectives on privately owned rangelands in North 

American tallgrass prairie are largely centered around livestock production.  Often a goal 

of ranchers on these rangelands is to maintain dominant forage species while reducing 

variability in plant species composition in an attempt to optimize livestock production.  

Management practices including multiple water sources, herbicide application, annual 

prescribed fire, brush control, and rotational grazing systems are used to achieve this goal 

through uniform livestock distribution.  Eventually, these management practices can lead 

to an homogeneous landscape that is moderately disturbed and where habitat is lacking 

for many animal species that may require undisturbed habitat as well as those that may 

require severely disturbed habitat.  Recent studies have reported that disturbance-driven 

heterogeneity is critical to ecosystem function and many declining wildlife populations 

(Christensen 1997; Ostfeld et al. 1997; Wiens 1997).  Hence, the goal of livestock 

production seems mutually exclusive to the goal of conservation under the current 

paradigm.  Land management strategies are, therefore, needed that integrate profitable 

livestock production with disturbance-driven heterogeneity to satisfy both objectives.     

 Fire and grazing are considered keystone disturbance processes operative 

throughout the evolution of Great Plains grasslands (Collins 2000; Knapp et al. 1999).  A 

paradigm shift in rangeland management has been proposed that integrates the use of 

these two paramount disturbance processes to achieve land management objectives 

(Fuhlendorf and Engle 2001).  This new paradigm proposes an evolutionary approach to 

rangeland management and focuses on restoring heterogeneity critical to grassland 

structure and function concomitant with a profitable livestock operation.  Under this 
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regime (i.e., patch burning), localized fires are applied to the landscape, on a three-year 

return interval in tallgrass prairie, and grazing animals are allowed to selectively graze 

between burned and unburned patches.  A central focal point of intense disturbance is 

created that can then be rotated across the landscape over several years because of the 

attraction localized fires have on the forage selection of large ungulates (Coppedge and 

Shaw 1998).  The result is a shifting mosaic of vegetation structure and composition in 

space and time that promotes uneven grazing distribution within a year, but uniform 

grazing distribution over multiple years.  Research thus far has resulted in positive effects 

on the biodiversity of plant and animal species in a variety of grassland landscapes 

(Fuhlendorf and Engle 2004).     

 Patch burning was developed with a three-year fire return interval in tallgrass 

prairie because of the biological responses of many organisms to fire (Collins 1990) as 

well as speculative accounts of how frequently fires occurred historically (Kay 1998).  

Research on other attributes of ecosystem function are needed that address evolutionary 

mechanisms of heterogeneity based management and to identity optimum fire return 

intervals.  Specifically, soil nitrogen (N) dynamics have been shown to interact with the 

availability of sunlight (i.e., the Transient Maxima hypothesis) to influence aboveground 

net primary production in tallgrass prairie (Seastedt and Knapp 1993).  We know that 

annual fires result in a net loss of N to the system and are not sustainable (Blair 1997; 

Fynn et al. 2003; Johnson and Matchett 2001; Ojima et al. 1994), but the optimum fire 

frequency from a production and sustainability basis is not well understood.  Therefore, 

much research is needed to form a more ecologically sound rationale before integrating 
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fire and grazing as a collective "dual purpose" management alternative to traditional 

production only based management on tallgrass prairie rangelands.     

 

OBJECTIVES  

The goal of this study was to evaluate the effects of focal fire and grazing 

disturbance with a three-year return interval on grassland function.  Nitrogen was chosen 

as the variable of interest as transformations are affected by disturbance and can have 

dramatic broad scale implications.  Specifically, this study was intended to develop an 

understanding of the combined interactive effect of fire and grazing on N availability 

under two contrasting fire-grazing management paradigms over two consecutive years.   

Chapters (manuscripts) include: 

• Inter and intra annual variability in N availability from pastures managed under patch 

burn and traditional management.   

• The quantity of soil microbial biomass as a potential mechanism regulating N 

availability under patch burn and traditional management. 

 

GRASSLAND N DYNAMICS   

Grasslands are inherently heterogeneous landscapes where variable patterns of 

resource availability regulate ecosystem processes.  Available nitrogen (N) is one such 

resource that often limits aboveground net primary productivity (Augustine et al. 2003; 

Blair 1998).  The competitive interactions between and among native flora and 

microorganisms for available N results in a spatially heterogeneous and diverse 

indigenous plant community (Maron and Jeffries 2001; Milchunas and Lauenroth 1995; 
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Tilman 1987).  Although N is generally considered a limiting resource, a vast amount of 

N present exists at all times.  However, approximately 98% of the N present in grasslands 

is found in recalcitrant organic compounds unavailable for plant uptake (Blair 1998).  

Therefore, N for new plant growth must be acquired from existing soil inorganic N, 

atmospherically deposited N, fixed N, or mineralized N from the more readily 

decomposed soil organic matter fractions.          

Mineralization of organic matter by the soil microbial biomass is a primary 

microbial process that regulates N availability in grasslands (Blair 1998; Collins 1990).  

Grassland soils contain large amounts of organic matter that accumulate as the production 

of herbaceous biomass reaches a steady state with decomposition over geologic time 

scales.  As a result, greater quantities of microbial biomass are supported relative to 

forested ecosystems as microorganisms in grasslands experience less C limitation (Zak et 

al. 1994).  Mineralization is greatly influenced by abiotic environmental conditions such 

as soil temperature and moisture (Drury et al. 2003; Goncalves and Carlyle 1994).  As a 

result, average rates of N mineralization are variable over temporal scales from seasonal 

patterns of precipitation and temperature (Vigil et al. 2002).   

Immobilization is essentially the inverse of mineralization in that inorganic N is 

transformed to organic N through microbial assimilation.  The soil microbial biomass 

will immobilize inorganic N found in soil solution if they are unable to obtain sufficient 

amounts from the substrate they are decomposing, for example dead plant or animal 

residues.  In grasslands, residues contain very little lignin, a large aromatic compound 

resistant to decomposition, but are variable in the relative proportion of N and carbon (C).  

The degree of C limitation relative to N limitation to decomposition is the primary 
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determinant regulating immobilization-mineralization dynamics (Parton et al. 1987; 

Schimel and Parton 1986).  In general, decomposing materials containing C:N ratios 

greater than 30:1 will typically result in immobilization and drastically reduce microbial 

activity that results from greater competition of existing available N.  Inversely, 

substrates with C:N ratios less than 20:1 will result in a net increase in available N 

concentrations due to net N mineralization.  The process of immobilization conserves N 

by narrowing the C:N ratio of poor quality residue (i.e., high C:N) through the release of 

C via respiration and the assimilation of existing soil inorganic N.  Thus, immobilization 

reduces N losses to the environment (i.e., leaching, denitrification, etc).  Immobilization 

will cease once the decomposing biota has narrowed the C:N ratio to a level sufficient for 

microbial metabolic activity.  This phenomenon demonstrates the resiliency of native 

grasslands in conserving N and the potential for aboveground disturbances that affect 

plant C cycling to, therefore, affect N availability. 

Fire and Grazing Effects 

Nitrogen mineralization is a dynamic microbial process that is affected by 

disturbance (Asner et al. 1997).  Numerous studies have been conducted at the Konza 

prairie LTER research station and in other grassland ecosystems in attempt to quantify N 

mineralization dynamics under a variety of disturbance regimes.  This litany of research 

has determined that fire and grazing are the primary disturbance processes that influence 

N mineralization in grasslands (Blair 1998; Hobbs 1996; McNaughton et al. 1988).   

Herbivory is a keystone process in grasslands and can have profound ecosystem 

level consequences (Collins 2000; Knapp et al. 1999).  Studies on the direct effects of 

large ungulate grazing in grasslands have reported no detrimental effect on belowground 
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productivity or root tissue chemistry (i.e., higher C:N) in response to repeated defoliation 

(Johnson and Matchett 2001; McNaughton et al. 1998; Milchunas and Lauenroth 1993).  

Large ungulate grazing accelerates the turnover of ecosystem N from: 1) redistribution of 

N in aboveground vegetation into inorganic N containing fecal material (Frank et al. 

1994; Ruess and McNaughton 1987), although ammonia volatilization can result in 

ecosystem N loss (Sommer et al. 2001), and 2) imposing feedbacks between 

belowground fecal inputs and microbial activity that facilitates net N mineralization 

(Frank and Evans 1997; Frank and McNaughton 1993; Johnson and Matchett 2001; 

McNaughton et al. 1988; Risser and Parton 1982; Tracy and Frank 1998).  Other studies 

in grasslands have reported that soil N responses following herbivory are similar for 

small mammalian herbivores and not restricted to large ungulates (Holland and Detling 

1990; Holland et al. 1992).  However, heavily grazed sites in these studies were 

characterized by a greater dominance of less productive forbs and dwarf shrubs that 

provide less belowground C to heterotrophs.  As a result, feedbacks between 

belowground inputs and microbial processes are a more important determinant of N 

availability than direct fertilization effects from urine and dung deposition, although a 

synergistic effect is not precluded (Holland et al. 1992).  In addition, N limitations can 

have a large effect on the behavior and productivity of domestic and wild ungulates 

(Augustine and Frank 2001; Augustine et al. 2003).  For example, native large ungulates 

in the Serengeti and Yellowstone National Park have been shown to congregate on 

recently grazed areas which results in focal grazing and the formation of a grazing lawn 

that enhances plant productivity from N enrichment (Frank and McNaughton 1992; 

McNaughton 1984; McNaughton et al. 1997; McNaughton et al. 1988; Ruess and 
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McNaughton 1987; Seagle et al. 1992).  Thus, herbivores respond to N limitations in a 

manor that enhances their carrying capacity by manipulating ecosystem structure and 

function (Frank and McNaughton 1992; McNaughton et al. 1988).     

Fire is the most prevalent pathway of N loss in an ungrazed to moderately grazed 

grassland (Blair 1998; Collins 1990).  Nitrogen is volatilized and lost to the atmosphere 

during the combustion of aboveground biomass (Hobbs et al. 1991).  Annual spring 

burning affects the cycling of N by increasing root biomass of perennial grasses with less 

N allocation widening the C:N ratio of decomposable substrate available to heterotrophs 

(Fynn et al. 2003; Johnson and Matchett 2001; Ojima et al. 1994; Risser and Parton 

1982).  A slight but significant decrease in the N content of soil organic matter in the 

surface 2cm of soil has also been observed as a result of long term (i.e., >50 years) annual 

spring burning (Fynn et al. 2003).  Although annual spring burning consistently results in 

lower N availability, no decline in aboveground net primary productivity has been 

observed suggesting that different factors constrain productivity and N availability in 

grasslands (Knapp 1998).  However, this observation is the result of greater dominance of 

C4 grasses in annually spring burned sites responding to N limitation with greater N use 

efficiency (Towne and Kemp 2003)   In addition, infrequent fire (i.e., >3 years) has also 

negatively affected the mineralizable pool of labile N as evidenced by diminished net N 

mineralization from in situ incubations (Blair 1997; Turner et al. 1997).  These results 

suggest that short-term post fire microclimate effects (i.e., less soil moisture and warmer 

temperatures) are equally important in regulating N availability as are long-term effects 

of changes in the composition of flora and the subsequent interaction with soil fauna in 

grasslands subject to annual fire (O'Lear et al. 1996).  Although these studies report a 

    8



negative effect of infrequent fire when measured by in situ incubations, other studies in 

grasslands have reported a net increase in N availability immediately following fire when 

measured by other methods (Dudley and Lajtha 1993; Romanya et al. 2001).  

Additionally, a comprehensive meta-analysis has also reported that fire results in increase 

in inorganic soil N concentrations, but included a variety of ecosystems other than 

grassland (Wan et al. 2001).  Thus, methodological and vegetation variables should be 

considered when comparing the results of fire effects on N availability.              

The Transient Maxima Hypothesis 

A nonequlibrium or abiotic driven model describing the structure and function of 

tallgrass prairie was proposed and identified N availability and photosynthetically active 

sunlight (PAR) as critically limiting resources (Seastedt and Knapp 1993).  The transition 

between these limiting resources caused by fire was found to regulate productivity by 

these investigators (Fig. 1) and has been supported with subsequent research (Blair 1997).  

During these “transient maxima” a surge in production is observed that surpasses 

production during the equilibrium interval when just one essential resource is limiting.  

These investigators concluded that unburned prairie is energy limited as a result of the 

accumulation of surface litter inhibiting the penetration of sunlight through the vegetative 

canopy while burned prairie in non-drought years is strongly limited by N availability 

during post fire regrowth.  The resulting pattern of N availability following fire is an 

initial decline immediately following fire and the eventual recovery of available N as 

light becomes limited once again (Fig. 1).  Ultimately, these studies revealed a better 

understanding into the complexity of regulating factors that contribute to the function and 

dynamics of tallgrass prairie, a mesic grassland.   
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Figure 1.   A graphical illustration of The Transient Maxima hypothesis that predicts a 

pulse in plant production following the transition between N and PAR (photosynthetic 

active radiation) as critically limiting resources following an infrequent fire (modified 

from Seastedt and Knapp 1993; Blair 1997).  
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ABSTRACT    

Fire and grazing are highly interactive disturbance processes operative throughout 

the evolution of many grasslands.  Studies on nitrogen (N) availability frequently report 

different effects following each disturbance and have largely neglected their interaction 

in time and space.  Therefore, the objective of our work was to evaluate the combined 

interactive effect of fire and grazing on N availability in a tallgrass prairie ecosystem with 

a long evolutionary history of grazing.  To address this, we evaluated N availability on 

patches within a shifting mosaic landscape where each patch varied in time since focal 

fire and grazing disturbance.  We also evaluated N availability on a similar landscape, but 

where fires occurred annually and grazing pressure was moderate.  Samples were 

collected from upland sites in May of 2003 and 2004.  Total soil inorganic N was 

measured and a growth chamber experiment with hard red winter wheat (Triticum 

aestivum L. cv. Jagger) was used as a metric of net N mineralization.  A pulse in N 

availability was commonly observed in recently burned patches consistent with ungulate 

foraging patterns under a shifting mosaic fire-grazing regime.  Nitrogen availability was 

low to intermediate within the annually burned and moderately grazed landscape and 

although thought to contain greater mineralizable N than recently burned prairie, 

unburned patches were also more N limited compared to recently burned and heavily 

grazed sites.  Overall, our study produced patterns of N availability that are more similar 

to grazing lawn studies where N availability is enhanced by periodic focal grazing. 

 

Key words: Fire; grazing; tallgrass prairie; N availability; net N mineralization 
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INTRODUCTION 

Ecosystems can be characterized by variability in space and time.  Variability can 

be driven by spatio-temporal patterns of resource availability and by variable patterns of 

disturbance.  In grassland ecosystems, fire and grazing are two primary disturbance 

processes (Collins 1990; Collins 2000; Knapp et al. 1999; McNaughton et al. 1988), and 

soil nitrogen (N) is frequently a resource that affects the productivity and composition of 

vegetation (Augustine et al. 2003; Maron and Jeffries 2001; Milchunas and Lauenroth 

1995; Tilman 1987).  Most studies of fire and grazing on N availability have focused on 

the main effects of each disturbance but have largely neglected their interaction in space 

and time which may have been an important evolutionary mechanism shaping grassland 

landscapes and providing habitat for many species (Fuhlendorf and Engle 2001).  

Therefore, studies of the patterns of N availability associated with fire-grazing interaction 

are needed to more fully understand the structure and function of grassland ecosystems. 

The interaction between fire and grazing is organized around spatial and temporal 

variability across the landscape and has been described as a shifting mosaic (Fuhlendorf 

and Engle 2001; Fuhlendorf and Engle 2004).  The probability of fire occurring is highest 

on an undisturbed grassland because of the accumulation of litter and standing biomass 

that that can serve as fine fuel.  When a fire occurs and fuel is consumed, productivity, 

palatability and accessibility of forage increases.  Thus, grazing animals are attracted 

increasing the probability and intensity of grazing.  Focal grazing lowers fuel levels and 

reduces the probability and intensity of fire (Hobbs 1996; Steuter et al. 1995).  Grazing 

animals will congregate on recently burned patches until fires occur in other locations.   

When grazing animals move to a recently burned area, the original burned patch has an 
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increase in biomass that includes a diversity of graminoids and herbaceous dicots.  Over 

the next several years the patch accumulates litter as grasses regain dominance again 

increasing the probability of fire.  The result is a mosaic of patches that are recently 

burned and focally grazed nested within a landscape that is variable in time since focal 

fire and grazing.  So, the landscape includes patches that are intensively disturbed, 

undisturbed, and many levels of recovery.   

Nitrogen limitations are common in grasslands (Augustine et al. 2003; Blair 1998) 

and can have a large effect on the behavior and productivity of domestic and wild 

ungulates (Augustine and Frank 2001).  For example, focal grazing by native large 

ungulates in the Serengeti and Yellowstone National Park has resulted in greater plant 

productivity from N enrichment on these grazing lawns (Frank and McNaughton 1992; 

McNaughton et al. 1988).  Accelerated N turnover within grazing lawns has even been 

proposed as the mechanism by which native African ungulates have evolved on N limited 

grasslands (McNaughton 1984; McNaughton et al. 1997; Ruess and McNaughton 1987; 

Seagle et al. 1992).  In fact, greater N mineralization within grazing lawns has been 

reported from numerous studies conducted across a variety of grassland ecosystems 

suggesting a consistent relationship between large ungulate grazers and grasslands 

(Augustine et al. 2003; Frank and Evans 1997; Frank and McNaughton 1993; Johnson 

and Matchett 2001; Risser and Parton 1982; Tracy and Frank 1998).  A major limitation 

to domestic livestock enterprises that are based on native grasslands is protein and N 

limitations in forage during the dormant season (McCollum and Horn 1986).  As a result,  

relationships between grazing and N availability have been investigated in the context of 
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agriculture and native ecosystems but remains largely unevaluated in the context of fire-

grazing interaction.  

Fire is a common disturbance on grasslands that can influence N availability.  In 

the absence of large ungulate grazing, annual burning has reduced net N mineralization 

and potentially mineralizable N (Blair 1997; Fynn et al. 2003; Turner et al. 1997).  Thus, 

promoting N limitation and immobilization of existing soil inorganic N from turnover of 

lower quality (i.e., higher C:N ratio) organic matter (Fynn et al. 2003; Johnson and 

Matchett 2001; Ojima et al. 1994).  However, infrequent fire allows accumulation of litter 

that can lead to limitations in productivity from reduced light availability.  Immediately 

following fire, productivity quickly becomes limited by N availability as plant growth is 

quickly increased (Seastedt et al. 1991; Seastedt and Knapp 1993).  The Transient 

Maxima hypothesis suggests that this transient release from light limited productivity to 

N limited productivity results in a temporary surge in overall grassland productivity 

(Seastedt and Knapp 1993).  The resulting pattern of N availability is an initial decline 

immediately following fire and the eventual recovery of available N as light becomes 

limited once again (Blair 1997; Seastedt et al. 1991; Seastedt and Knapp 1993).     

Fire and grazing are important disturbances in many grassland ecosystems 

regulating N availability, but most studies have focused on the main effects of fire and 

grazing with little attention given to their ecological interaction in space and time.  The 

ecological interaction is different from the statistical interaction in that it is regulated by 

spatial and temporal patterns of fire and grazing where the probability of each 

disturbance is dependent on the other disturbance and a shifting mosaic pattern emerges 

from the interaction.  Studies of the main effects of fire and grazing have generated 
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different hypotheses describing N availability following each disturbance (Fig. 1).  

However, the cumulative effect when both disturbances interact in space and time 

remains largely unknown.  We have developed a unique experiment capable of 

evaluating the ecological interaction of fire and large ungulate grazing on grassland 

structure and function (Fuhlendorf and Engle 2001; Fuhlendorf and Engle 2004).  For this 

study we continue this focus with our primary goal of evaluating the effect of the fire-

grazing interaction on soil N availability in tallgrass prairie.  We specifically tested 

whether N availability under a fire-grazing interaction was more accurately modeled by 

either of two competing hypothesis of the effects of fire and grazing independent of the 

other disturbance.  The Grazing hypothesis predicts an increase in N availability followed 

by a gradual decline in response to concentrated grazing pressure (McNaughton 1984; 

McNaughton et al. 1997; Ruess and McNaughton 1987; Seagle et al. 1992).  On the other 

hand, the Transient Maxima hypothesis predicts that N availability will decrease 

immediately following fire and gradually increase over the next few years as light 

becomes limited once again (Blair 1997; Seastedt et al. 1991; Seastedt and Knapp 1993).  

To evaluate these competing hypothesis, we evaluated N availability on patches within a 

shifting mosaic landscape where each patch varied in time since focal fire and grazing 

disturbance.  To evaluate the effects of focal fire and grazing disturbance, we also 

evaluated N availability on a landscape that had similar grazing pressure but where the 

entire area was burned annually and the fire-grazing interaction did not exist.  

 

MATERIALS AND METHODS 

Site Description 
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Our study was conducted on the Nature Conservancy’s 16,000-ha Tallgrass 

Prairie Preserve (TGPP) located at the southern edge of the Flint Hills in the tallgrass 

prairie region of central North America.  Mean annual precipitation of the region is 

870mm with 70% occurring between April and September (Bourlier 1979).  Vegetation 

at the TGPP is tallgrass prairie dominated by C4 grasses big bluestem (Andropogon 

gerardii), Indian grass (Sorghastrum nutans), switchgrass (Panicum virgatum), and little 

bluestem (Schizachyrium scoparium) (Hamilton 1996; Palmer 2000).  Topography is 

gently rolling with highly variable soils derived from shale, limestone, and sandstone.  

Limestone is typically found interbedded between sandstone and shale with sandstone 

found at the surface of ridge crests.  Either shale or limestone can be found as outcrops on 

side slopes or toe slopes as a result of geologic erosion.  The result is a heterogeneous 

mixture of soils over multiple scales that vary in texture depending on parent material and 

topographic position.  Site descriptions contain complexes of thermic lithic Haplustolls 

and thermic aquic Paleustalfs (Bourlier 1979).  Upland sites contain mollic epipedons 

characteristic of long term perennial grassland vegetation and possess smectitic 

mineralogy.  We limited our evaluations of N availability to upland soils.  

Study Design 

To evaluate the effects of the ecological interaction of fire and grazing on N 

availability, two contrasting fire-grazing regimes were evaluated (Fig. 2) each with two 

replications arranged in a completely randomized design.  A shifting mosaic fire-grazing 

regime has fire applied to spatially discrete patches within a larger area (approx 1,200-ha) 

that is unburned.  Fires were annually applied to one third of the landscape on a three-

year return interval while grazing intensity was calculated for the entire area.  
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Alternatively, an homogenous fire-grazing regime was burned in its entirety each year 

(also approx 1,200-ha).  These different fire-grazing regimes were stocked with large 

ungulates (Bos taurus) similarly, but previous analyses demonstrated that these grazing 

animals spend over 70% of their grazing time on recently burned patches and the 

majority of the remaining time on patches burned one year earlier avoiding most patches 

burned two years earlier (Fuhlendorf and Engle 2004).  So, grazing pressure in the 

shifting mosaic fire-grazing regime varied from two to three times greater than the 

homogenous fire-grazing regime on recently burned patches to patches that were 

essentially avoided by grazing animals.  Specifically, we sampled patches within the 

shifting mosaic fire-grazing regime in the first year of focal disturbance that were 

currently heavily grazed, one year since focal disturbance that were minimally grazed, 

and two years since focal disturbance which were avoided by grazing animals.  In 

addition, we sampled from similar sites within the homogeneous fire-grazing regime 

where fire occurs annually but grazing pressure was moderate.  All burns included in this 

study were conducted just prior to the growing season in March and grazing animals were 

moderately stocked for half of the growing season (April through July) based on the 

entire area they had access to.        

Soil N Measurements    

To evaluate N availability, soil samples were taken to a depth of 0-10cm using a 

1.9cm diameter soil core and bulked from each experimental area in May of 2003 and 

2004.  If needed, litter was removed to sample mineral soil only and direct sampling of 

fecal pats was avoided.  Total soil inorganic N (NH4+-N + NO3--N) was measured, 

immediately after sampling, in each year colorimetrically using a Lachat Quickchem 
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Autoanalyzer (Milwaukee, Wisc.) after extraction with 100ml's of 1 mol/L KCl solution 

(Mulvaney 1996).  Additionally, a growth chamber experiment was conducted in each 

year as a metric of net N mineralization (Fynn et al. 2003).  Four air-dried 500g 

subsamples from each homogenized composite sample were hand ground and placed into 

1-quart polystyrene containers.  Seven seeds of certified hard red winter wheat (Triticum 

aestivum L. cv. Jagger) were planted in each container.  Hard red winter wheat was 

selected because of its known response to additions of N (Oscarson et al. 1995).  Five 

plants container-1 were allowed to germinate and grow with optimal watering for seventy 

days with eighteen hours of light day-1 at 25ºC (Goncalves and Carlyle 1994).  Half of 

the subsamples in each year received a basal dressing of a nutrient solution that contained 

macro (P, K, Ca, Mg, S) and micro (Zn, Cu, Mn, Fe, B and Mo) nutrient elements made 

from reagent grade chemical to ensure that other nutrients were not critically limited.  

The nutrient solution was supplied to bring the containers to field capacity and was also 

supplied half way through the growing period to avoid nutrient toxicity, but to focus on 

previously described N limitations in grasslands (Augustine et al. 2003; Maron and 

Jeffries 2001; Milchunas and Lauenroth 1995; Tilman 1987).  Following each nutrient 

application subsamples were randomized within the growth chamber.  At the end of the 

seventy-day growing period, roots and shoots from each container were harvested, dried 

for seven days at 45ºC, and weighed (Ostertag and Hobbie 1999).  Tissue N (%) was 

determined by dry combustion with a Leco CN 2000 autoanalyzer (St. Joseph, Michigan) 

and plant N (mg container-1) was determined as the product of dry weight biomass (g) 

and tissue N (%).  The recovered total (roots + shoots) plant N from each container was 

used as an metric of net N mineralized over the seventy day trial (Fynn et al. 2003).  The 

    27



relative change in total plant N from 2003 to 2004 was also computed to illustrate 

differences between years and to determine the relative influence of spatial variability as 

time since focal disturbance was different in each year for the same site within the 

shifting mosaic fire-grazing regime (Fig. 2).    

Statistical Analyses  

Each patch within the replicated shifting mosaic fire-grazing regime and the 

similar sites sampled within the replicated homogenous fire-grazing regime were 

analyzed as separate levels of the same main effect which will be referred to as treatment.  

Both total soil inorganic N and total plant N data were analyzed in each year separately.  

Total plant N data were analyzed for interaction by a two-way analysis of variance 

(ANOVA) where treatment and nutrient application were both main effects.  There was 

no statistical interaction in either year, so data were combined in both years to better 

evaluate treatment effects on N availability.  Significant differences among treatment 

means for total soil inorganic N data, total plant N data, and the relative change in total 

plant N from 2003 to 2004 were independently tested using single degree of freedom 

contrasts in ANOVA.  Due to the extent of our study site and the small number of 

degrees of freedom, F values were considered significant at P < 0.10 throughout this 

paper.  All analyses were conducted in SAS (SAS Institute 1989).  

 

RESULTS   

Nitrogen availability was strongly influenced by treatment.  Total soil inorganic N 

was greatest in the focally disturbed patch in 2003 and decreased with each successive 

year since focal disturbance (Fig. 3), although no statistical differences were detected in 
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either year.  There was no statistical interaction between treatment and nutrient 

application for total plant N recovered across all subsamples in either 2003 (P = 0.317) or 

2004 (P = 0.938) trials.  So, total plant N for each treatment was combined across 

subsamples and used as a surrogate for net N mineralization.  Root and shoot biomass 

varied in a similar manner to total plant N while the concentration of tissue N did not 

vary much with treatment (Tables 1 and 2).  In 2003, the focally disturbed patch 

produced containers with the greatest total plant N while in 2004 year since focal 

disturbance shifted within the shifting mosaic fire-grazing regime but the same pattern 

was observed.  Table 3 shows significant differences from all pairwise contrasts.      

Change in total plant N from 2003 to 2004 (Fig. 5) from each experimental area 

indicates how net N mineralization changed from one year to the next relative to change 

in year since focal disturbance.  So, the relative change is a stronger indication of the 

treatment effect because it reflects the change that occurred on an individual sample site 

that is associated with a specific treatment.  The patch within the shifting mosaic regime 

focally disturbed between 2003 and 2004 sampling had the greatest increase (Fig. 5) 

indicating greater net N mineralization following focal fire and grazing disturbance and 

was significant from all other sites (Table 3).  Patches that were 1 or 2 years since focal 

disturbance within the shifting mosaic regime had the lowest change while the 

homogenous regime increased by 27%, but was still significantly less than the increase 

from the patch burned and focally grazed between years.  Greater total plant N was 

recovered in 2004 (  = 18.65mg) on average than in 2003 (y y  = 14.59mg) suggesting 

interannual variation from field conditions or from variation between trials in the growth 

chamber.  However, the moderate increase in total plant N from the homogeneous regime  
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is a more accurate reflection of the interannual variation that could be associated with the 

environment (  = 13.3mg in 2003 and   = 18.4mg in 2004). y y

 

 DISCUSSION 

Fire and grazing have long been recognized as dominant forces regulating the 

structure and function of grassland ecosystems.  The main effects of these disturbances 

on N dynamics have been described with different conclusions while the spatially 

controlled interaction has largely been neglected.  Focal grazing and the creation of 

grazing lawns are responsible for the increase in N availability in some grazed grasslands 

(McNaughton 1984; McNaughton et al. 1997; Ruess and McNaughton 1987; Seagle et al. 

1992).  On the other hand, infrequent fires have been reported to reduce N availability as 

grasses increase production and capture all available resources following the removal of 

light limitation (Blair 1997; Seastedt et al. 1991; Seastedt and Knapp 1993).  So, the 

dominant disturbances of fire and large ungulate grazing can lead to competing 

hypotheses describing N availability in grassland ecosystems (Fig. 1) suggesting a 

potential conflict in understanding the interactive effect of the fire-grazing shifting 

mosaic.  It was our goal in this study to determine the effect of spatially controlled fire-

grazing interaction on N availability and to accurately assess the combined interactive 

effect of these two dominant disturbances on grassland structure and function.   

Although no statistical differences were detected, greater concentration of total 

soil inorganic N observed in the focally disturbed patch in 2003 (Fig. 3) is consistent with 

the Grazing hypothesis (Fig. 1).  Precipitation was greater in the spring of 2004 resulting 

in greater primary productivity and possibly greater plant N uptake across all sites at our 
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study area, so the focally disturbed patch did not contain more total soil inorganic N than 

the other sites.  Furthermore, soil inorganic N concentrations in recently burned native 

grasslands are typically maintained at low concentrations as a result of the competitive 

interactions between and among microorganisms and vigorously growing vegetation 

(Bardgett et al. 2003).  As a result, the growth chamber experiments were conducted to 

evaluate the supply rate of available N over several months as opposed to an 

instantaneous concentration and has previously been reported from a grassland ecosystem 

(Fynn et al. 2003).  Results from the growth chamber experiments (Figs. 4 and 5) are also 

consistent with the Grazing hypothesis where the creation of a grazing lawn resulted in 

greater total plant N recovered across all subsamples.       

Differences between fire-grazing regimes are characterized by fire frequency and 

spatio-temporal patterns of the current years grazing intensity.  The most recently burned 

patches within the shifting mosaic fire-grazing regime are most heavily grazed, whereas, 

grazing pressure within the homogenous fire-grazing regime is homogenously distributed 

throughout the landscape and grazing lawns do not develop.  In general, focally disturbed 

patches were found to contain greater N availability relative to previously burned patches 

and the homogenous fire-grazing regime respectively.  Furthermore, treatment patterns 

were consistent between years and through the analysis of change from year to year.  

Thus, our results indicate that even with variable spatial disturbance from year to year the 

effects persist resulting in a mosaic of N enriched patches that are recently burned and 

focally grazed nested within an unburned and ungrazed landscape.  Our study 

demonstrates that fire-grazing interaction produces patterns of N availability that are 

more similar to grazing lawn studies where N availability is enhanced by periodic focal 
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grazing by large ungulates while N availability in an annually burned and homogenously 

grazed regime is influenced more by interannual variability.   

Herbivory is a keystone disturbance process in grasslands that can have profound 

consequences on the amount of N available to growing plants.  Studies have commonly 

reported C translocation from roots to shoots following defoliation (Detling et al. 1979; 

Caldwell et al. 1981; Osterheld and McNaughton 1988) which could potentially alter the 

C:N ratio of senesced roots during decomposition regulating mineralization-

immobilization dynamics (Parton et al. 1987; Schimel and Parton 1986).  Other studies, 

including a comprehensive meta-analysis, have reported no decline in belowground 

primary productivity in grasslands with a long evolutionary history of grazing in response 

to periodic defoliation (McNaughton et al. 1998; Milchunas and Lauenroth 1993).  

However, grazing patterns in these studies differ from the effects of short duration, high 

intensity grazing such as what occurs under a shifting mosaic fire-grazing regime.  

Intense defoliation on grazing lawns may impede belowground C inputs to heterotrophs 

during focal disturbance reducing N immobilization by the soil microbial biomass and 

increasing mineralization potentials (Johnson and Matchett 2001; Sankaran and 

Augustine 2004).  There is an apparent feedback that exists between N availability and 

grazing activity moderated through decomposition (Augustine et al. 2003; McNaughton 

et al. 1997), but the degree to which intensity and duration of grazing influences N 

availability is less known.  Although the degree to which grazers influence 

decomposition is questionable, the most conspicuous effects of large herbivores 

commonly reported are accelerated turnover of ecosystem N from: 1) redistribution of N 

in aboveground vegetation into inorganic N containing excrement (Frank et al. 1994; 
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Ruess and McNaughton 1987), and 2) imposing feedbacks between feces and microbial 

activity that facilitates net N mineralization surrounding the affected microsite (Frank and 

Evans 1997; Frank and McNaughton 1993; McNaughton et al. 1988; Risser and Parton 

1982; Tracy and Frank 1998; Ruess and McNaughton 1987; Seagle et al. 1992).  It has 

been suggested that grazing effects on decomposition are a more important determinant 

of N availability than direct inorganic N deposition in excrement (Holland et al. 1992).  

Our data agrees with this conclusion as significant differences in total plant N, an index 

of net N mineralization, were observed in both years while no statistical differences 

occurred for total soil inorganic N data in either year.  Uncoupling the relative 

contributions of urine, dung, and grazer-modified substrate availability to determine the 

actual causal mechanism behind the observed pulse in N availability in the current study 

remains difficult, although synergistic effect is not precluded.      

Previous site management and disturbance history must also be considered to 

effectively interpret results.  All experimental areas prior to 2000 were managed for 

homogeneity with frequent fire and grazing by large ungulates, similar to the 

homogenous fire-grazing regime.  It is clear that a single rotation of localized fire on a 

three year return interval may not have allowed sufficient time for all ecosystem traits to 

stabilize to the effect of short term intensive grazing followed by periodic deferment from 

both fire and grazing over subsequent years within the shifting mosaic fire-grazing 

regime.  However, in spite of the necessity of long term treatments, we were able to 

demonstrate significant short-term effects of focal disturbance on N dynamics.    

Management Implications 
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Long term annual burning has consistently resulted in a reduction in N availability 

(Blair 1997; Fynn et al. 2003; Ojima et al. 1994; Turner et al. 1997).  Plant responses 

have also been documented resulting in greater root primary productivity with less tissue 

N content (Johnson and Matchett 2001).  This widens the C:N ratio of decomposable 

substrate available to heterotrophs which is an important control over microbial 

immobilization-mineralization dynamics (Parton et al. 1987; Schimel and Parton 1986).  

Although there has been less research, plant responses to annual burning followed by 

moderate to heavy grazing are significantly different.  Johnson and Matchett (2001) 

reported that large ungulate grazing in an annually burned tallgrass prairie preserves root 

tissue quality (i.e., lower C:N) as vegetation allocate less C to belowground roots and 

rhizomes in response to repeated defoliation relative to annually burned prairie alone.  

Thus, grazing activity seemingly acts as a buffer against declines in N availability 

commonly observed in annually burned grasslands.  In our study we could not identify 

any reduction in N availability associated with annual burning and moderate uniform 

grazing within the homogeneous fire-grazing regime relative to other infrequently burned 

sites.              

Annual spring burning followed by spring and early summer grazing is a livestock 

enterprise system common to the Flint Hills in the tallgrass prairie region of central North 

America.  Livestock ranchers employ annual spring burning as a means to uniformly 

distribute grazing pressure in order to achieve more efficient forage utilization when 

dominant tallgrasses are preferred forage.  Tallgrasses are more productive, fire tolerant, 

warm season forage species that have a competitive advantage over less productive 

species when annually burned in spring (Seastedt et al. 1991; Towne and Kemp 2003).  
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Despite the compensation in root tissue chemistry that occurs when grazing animals are 

present in annually burned grasslands, this management regime is not without its 

consequences.  For example, long term annual burning has resulted in loss of grassland 

obligate species diversity (Collins 1998; Jansen et al. 1999).   

Unlike this traditional management, a rotation of localized fires concentrate 

livestock on post burn regrowth (i.e., fire-grazing interaction) maximizing livestock 

distribution over several years but minimizing distribution within individual years 

(Fuhlendorf and Engle 2004).  Periodic deferment from fire and focal grazing under this 

management regime allows the accumulation of detritus in unburned patches and has 

resulted in positive effects on the biodiversity of plant communities in grassland 

landscapes (Fuhlendorf and Engle 2004).  Changes in animal communities have also been 

demonstrated (Harrell et. al 2004; Townsend et al 2004,).  In addition, a shifting mosaic 

application of the fire-grazing model seemingly enhances the carrying capacity in the 

focally disturbed patch as a result of elevated N availability observed in the current study 

(Frank and McNaughton 1992; McNaughton et al. 1988).  Given adequate growing 

conditions, fire-grazing interaction may provide a management alternative that enables 

sustainable livestock production concomitant with a variety of species habitats in 

predominantly N limited grasslands. 
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Fig. 1. Conceptual model of the temporal dynamics of soil N availability in response to 

fire: Transient Maxima hypothesis (Blair 1997; Seastedt et al. 1991; Seastedt and Knapp 

1993) and grazing: Grazing hypothesis (McNaughton 1984; McNaughton et al. 1997; 

Ruess and McNaughton 1987; Seagle et al. 1992). Samples were collected in May of 

2003 and 2004 from patches recently disturbed by focal fire and grazing (A), one year 

since focal disturbance (B), and two years since focal disturbance (C). The effect of 

disturbance is a combined interactive effect of localized fire followed by focal grazing 

and the formation of a grazing lawn (Fuhlendorf and Engle 2001). 
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Fig. 2. Graphical illustration of experimental units as sampled in 2003. Samples were 

collected in May of 2003 and 2004 from an homogeneous fire-grazing regime and 

patches within a shifting mosaic fire-grazing regime. Patches were recently disturbed by 

focal fire and grazing (A), one year since focal disturbance (B), and two years since focal 

disturbance (C). Focal disturbance within the shifting mosaic was rotated in 2004 

providing replication in space and time.        
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+ -Fig. 3. Total inorganic N (NH -N + NO4 3 -N) as affected by an homogenous fire-grazing 

regime and patches within a shifting mosaic fire-grazing regime. Patches were recently 

disturbed by focal fire and grazing, one year since focal disturbance (YSFD), and two 

years since focal disturbance. Histogram bars are least squares means ( ± 1 SE).   
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Fig. 4. Total plant N (roots + shoots) recovered from a growth chamber experiment using 

hard red winter wheat (Triticum aestivum L. cv. Jagger) as affected by an homogenous 

fire-grazing regime and patches within a shifting mosaic fire-grazing regime. Patches 

were recently disturbed by focal fire and grazing, one year since focal disturbance 

(YSFD), and two years since focal disturbance. Histogram bars are least squares means 

(± 1 SE).   
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Fig. 5. Relative change in total plant N (roots and shoots) recovered from a growth 

chamber experiment using hard red winter wheat (Triticum aestivum L. cv. Jagger) as 

affected by an homogenous fire-grazing regime and patches within a shifting mosaic fire-

grazing regime. Patches were disturbed by focal fire and grazing in the present year, one 

year since focal disturbance (YSFD), and two years since focal disturbance. Histogram 

bars are least squares means ( ± 1 SE).   
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CHAPTER III 
 

MICROBIAL BIOMASS IN A MESIC GRASSLAND  
UNDER A FIRE - GRAZING INTERACTION  
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ABSRACT 

The ecological interaction between fire and grazing (fire-grazing interaction) is an 

important disturbance in many grassland ecosystems regulating nitrogen (N) availability.  

Grazing animals congregate in recently burned patches enhancing N availability while 

unburned areas accumulate detritus and are N limited.  We hypothesized that urine and 

dung deposition from congregated grazing activity following localized fire should 

enhance substrate quality (i.e., lower C:N) resulting in a temporary surge in the quantity 

of soil microbial biomass concurrent with elevated N availability.  To address this, we 

measured soil microbial biomass C (MBC) on patches within a shifting mosaic tallgrass 

prairie landscape where each patch varied in time since focal fire and grazing 

disturbance.  To evaluate the effects of focal disturbance, we also evaluated an 

homogenous landscape that had similar grazing pressure but where the entire area was 

burned annually and the fire-grazing interaction was not allowed to be expressed in 

spatio-temporal dynamics.  MBC was positively correlated with organic C and N, pH, 

and clay content.  Multiple regression was used to evaluate the influence of each variable 

relative to fire-grazing regime effects on MBC values.  Most of the variance in MBC 

values was related to variability in organic C and pH, whereas fire-grazing regime had no 

detectable effect. 

 

Key words: Fire; grazing; tallgrass prairie; microbial biomass; N availability   
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INTRODUCTION  

Microorganisms are largely responsible for nitrogen (N) transformations and the 

vast majority of available N in terrestrial ecosystems.  In grasslands, large amounts of 

organic matter accumulate as the production of herbaceous biomass reaches a steady state 

with decomposition over geologic time scales.  Consequently, large quantities of soil 

microbial biomass are usually present relative to forested ecosystems as there is less C 

limitation (Zak et al. 1994).  Mineralization of organic N by soil microbial biomass 

liberates N for plant uptake while immobilization serves as a sink.  The balance between 

these two microbial processes largely regulates N availability which can have profound 

ecosystem level consequences in grasslands (Maron and Jeffries 2001; Milchunas and 

Lauenroth 1995; Tilman 1987).  Therefore, the soil microbial biomass should be 

especially paramount in regulating N availability following disturbance in these systems.          

Fire and grazing are primary disturbance processes regulating the structure and 

function of grassland ecosystems (Collins 1990; Collins 2000; Knapp et al. 1999; 

McNaughton et al. 1988).  Both disturbance processes are critical to grasslands and 

influence ecosystem N availability (McNaughton et al. 1988; Seastedt and Knapp 1993).  

Thus, the role of soil microbial biomass in regulating spatial and temporal patterns of N 

availability as affected by fire, grazing, and the interaction between fire and grazing 

needs explored.  However, most studies have neglected the interaction which may have 

been an important evolutionary mechanism shaping grassland landscapes and providing 

habitat for many species (Fuhlendorf and Engle 2001).    
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The ecological interaction of fire and grazing (fire-grazing interaction) is 

organized around spatial and temporal variability across the landscape that has been 

described as a shifting mosaic (Fuhlendorf and Engle 2001; Fuhlendorf and Engle 2004).  

This spatial variance is driven by inherent variability in resources and the interaction of 

fire and grazing disturbances.  The probability of fire occurring is highest on an 

undisturbed grassland because of the accumulation of litter and standing biomass that can 

serve as fine fuel.  When a fire occurs and fuel is consumed, productivity, palatability and 

accessibility of forage increases.  Under this condition, grazing animals are attracted and 

can congregate increasing grazing pressure on the recently burned patch enhancing N 

availability (Anderson 2005).  Grazing animals will congregate there until fires occur in 

other regions.  When grazing animals move to a new, recently burned area, the original 

burned patch has an increase in biomass that includes a diversity of graminoids and 

herbaceous dicots.  Over the next several years the patch accumulates litter as grasses 

regain dominance again increasing the probability of fire and N availability returns to 

pre-fire levels (Anderson 2005).  The result is a mosaic of N enriched patches that are 

recently burned and focally grazed nested within an unburned and ungrazed landscape. 

The ecological interaction between fire and grazing (fire-grazing interaction) is an 

important disturbance in many grassland ecosystems regulating N availability.  The 

causal mechanism responsible for the pulse in N availability following focal disturbance 

previously reported, however, remains unknown.  In general, annual C inputs from 

senesced plant litter is only adequate to meet the maintenance requirements of 

microorganisms (Smith 1990; Zak et al. 1994).  Thus, we hypothesized that urine and 

dung deposition from congregated grazing activity should enhance substrate quality (i.e., 
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lower C:N) resulting in a temporary surge in the quantity of soil microbial biomass 

facilitating greater N turnover.  To address this we compared the quantity of soil 

microbial biomass from patches within a shifting mosaic fire-grazing regime where each 

patch varied in time since focal disturbance.  To evaluate the effects of focal disturbance, 

we also compared the quantity of soil microbial biomass from an homogenous fire-

grazing regime that had similar grazing pressure but where the entire area was burned 

annually and the fire-grazing interaction was not allowed to be expressed in spatio-

temporal dynamics.   

  

MATERIALS AND METHODS 

Site Description 

Our study was conducted on the Nature Conservancy’s 16,000ha Tallgrass Prairie 

Preserve (TGPP) located at the southern edge of the Flint Hills in the tallgrass prairie 

region of central North America.  Mean annual precipitation of the region is 870mm with 

70% occurring between April and September (Bourlier 1979).  Vegetation at the TGPP is 

tallgrass prairie dominated by C4 grasses big bluestem (Andropogon gerardii), Indian 

grass (Sorghastrum nutans), switch grass (Panicum virgatum), and little bluestem 

(Schizachyrium scoparium) (Hamilton 1996; Palmer 2000).  Topography is gently rolling 

with highly variable soils derived from shale, limestone, and sandstone.  Limestone is 

typically found interbedded between sandstone and shale with sandstone generally found 

at the surface of ridge crests.  Either shale or limestone can be found as outcrops on side 

slopes or toe slopes as a result of geologic erosion.  The result is a heterogeneous mixture 

of soils over multiple scales that vary in texture depending on parent material and 
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topographic position.  Site descriptions contain complexes of thermic lithic Haplustolls 

and thermic aquic Paleustalfs (Bourlier 1979).  Upland sites contain mollic epipedons 

characteristic of long term perennial grassland vegetation and possess smectitic 

mineralogy.  We limited our sampling to upland soils.  

Experimental Design 

To evaluate the effects of the ecological interaction of fire and grazing on the 

quantity of soil microbial biomass, two contrasting fire and grazing regimes were 

evaluated each with two replications arranged in a completely randomized design.  A 

shifting mosaic fire-grazing regime has fire applied to spatially discrete patches within a 

larger area that is unburned.  Fires were annually applied to one third of the landscape on 

a three-year return interval while grazing intensity was calculated for the entire area.  

Alternatively, an homogenous fire-grazing regime was burned in its entirety each year.  

These different fire-grazing regimes were stocked with large ungulates similarly but 

previous analyses demonstrated that these grazing animals spend over 70% of their 

grazing time on recently burned patches and the majority of the remaining time on 

patches burned one year earlier avoiding most patches burned two years earlier 

(Fuhlendorf and Engle 2004).  So, grazing pressure in the shifting mosaic fire-grazing 

regime varied from two to three times greater than the homogenous fire-grazing regime 

on recently burned patches to patches that were essentially avoided by grazing animals.  

Specifically, we sampled patches within the shifting mosaic fire-grazing regime that were 

currently being heavily grazed as a grazing lawn, one year since fire which were 

minimally grazed, and two years since fire which were avoided by grazing animals.  In 

addition, we sampled from the homogeneous fire-grazing regime where fire occurs 
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annually but grazing pressure was moderate.  Burns included in this study were either 

conducted in spring (in March) or summer (in August) and grazing animals were 

moderately stocked for half of the growing season (April through July) based on the 

entire area they had access to.     

Soil Analysis 

Soil microbial biomass C (MBC) was determined using the chloroform 

fumigation extraction method (Horwarth 1996; Jenkinson 1987).  Field moist samples 

were sieved with a 4mm screen to remove roots, rocks, and other debris.  Moisture was 

determined gravimetrically after drying 100g of field moist soil at 75ºC for twenty four 

hours.  Duplicate 20g dry weight equivalent aliquots were placed in 170mm glass 

desiccators, sealed under pressure, and exposed to chloroform vapor for five days.  

Fumigated samples were extracted with 100ml of 0.5M K2SO4 by vigorously shaking for 

thirty minutes followed by filtration using Whatman #2 filtration paper.  Extracts were 

back titrated after a dichromate digestion with 0.017M Fe(NH4)2(SO4)2 to an end point 

using Ferroin indicator solution.  Total extracted C was quantified with a calibrated 

regression curve generated using known concentrations of sucrose-C solution digested 

and titrated as standards (Heanes 1984).   

Additional soil properties were measured because the quantity of soil microbial 

biomass is often affected by topoedaphic factors (Schimel and Parton 1986; Tracy and 

Frank 1998).  Total organic C and N in original composite samples were determined by 

dry combustion with a Leco CN 2000 autoanalyzer (St. Joseph, Michigan) and soil C:N 

ratios were calculated.  Soil reaction was determined using a 1:1 ratio of deionized water 
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to dry soil on a Metler Toledo pH meter (Columbus, Ohio) and particle size analysis was 

conducted using the hydrometer method (Day 1965). 

Statistical Analysis   

To evaluate the response of spring and summer burns, MBC from each patch 

within the shifting mosaic fire-grazing regime was averaged across subsamples and 

analyzed for interaction by two way analysis of variance (ANOVA) where season of burn 

and year since focal disturbance were both main effects.  No season of burn effects were 

detected so data were combined.  Each year since focal disturbance within the shifting 

mosaic fire-grazing regime and the similar sites sampled within the homogenous fire-

grazing regime were analyzed as separate levels of the same main effect and will be 

referred to as treatment.  Significant differences among treatment means for MBC and 

selected soil properties were independently tested using single degree of freedom 

contrasts in ANOVA.  Multiple regression was then used to determine the dominant 

variables affecting the variance in MBC values.  Due to the extent of our study site and 

the small number of degrees of freedom, F values were considered significant at P < 0.10 

throughout this paper.  All analyses were conducted in SAS (SAS Institute 1989). 

 

RESULTS 

MBC was strongly affected by site variability but not by treatment.  Across all 

sites, MBC values ranged from 137.99 to 913.15 mg C kg-1 and were positively 

correlated with organic C (r = 0.74, P < 0.001), organic N (r = 0.45, P = 0.081), pH (r = 

0.74, P = 0.001), and clay content (r = 0.65, P = 0.006).  There was no statistical 

interaction between season of burn and treatment on the response of MBC values (P = 
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0.343) so data were combined to better evaluate treatment effects.  No main effects were 

observed for either the season of burn (P = 0.760) or treatment (P = 0.279) on MBC.  

Table 1 shows selected soil properties for each site samples were collected.  Additionally, 

no treatment effects were detected for any of the response variables measured.    

Multiple regression analysis was performed using all correlated variables and 

treatment as main effects model parameters.  Organic N, clay content, and treatment were 

not significant and were removed from the model.  Results from the subsequent analysis 

revealed that organic C (P > 0.001) and pH (P = 0.018) were dominant variables 

explaining the variance in MBC values (R2 = 0.73).  Clay content was not significant, 

presumably from mulitcolinearity with organic C (r = 0.833, P < 0.001) and pH (r = 

0.747, P < 0.001).  So, treatments were not significant and the majority of the variability 

in MBC was explained by site variability associated with organic C and pH.  

 

DISCUSSION 

Grasslands are heterogeneous landscapes where variable patterns of resource 

availability regulate ecosystem processes.  Decoupling inherent landscape variability 

from that driven by disturbance has long been an objective of ecologists.  In this paper we 

evaluated the impact of two contrasting fire-grazing regimes on the quantity of soil 

microbial biomass as a mechanism regulating N dynamics relative to inherent landscape 

variability.  Under a shifting mosaic fire-grazing regime, grazing animals congregate in 

the most recently burned patch leading to the formation of a grazing lawn (Fuhlendorf 

and Engle 2004).  Accelerated N turnover within grazing lawns has been proposed as the 

mechanism by which native African ungulates have evolved on N limited grasslands 
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(McNaughton 1984; McNaughton et al. 1997; Ruess and McNaughton 1987; Seagle et al. 

1992).  In fact, greater N mineralization within grazing lawns has been reported from 

numerous studies conducted across a variety of grassland ecosystems suggesting a 

consistent relationship between large ungulate grazers and grasslands (Augustine et al. 

2003; Frank and Evans 1997; Frank and McNaughton 1993; Johnson and Matchett 2001; 

Risser and Parton 1982; Tracy and Frank 1998).  Thus, we hypothesized that urine and 

dung deposition from congregated grazing activity should enhance substrate quality (i.e., 

lower C:N) resulting in a temporary pulse in the quantity of soil microbial biomass 

concomitant with that observed for N availability (Anderson 2005).  Our results indicate 

that the quantity of soil microbial biomass is more affected by landscape variability while 

N dynamics are related more to variable patterns of disturbance.          

 Soil samples were restricted to upland sites but did little to mitigate the influence 

of spatial variability.  The extent of experimental units and the distance between units 

made it difficult to find compatible sites, although treatments were randomly applied to 

the landscape.  As such, variability among organic C and N were considered inherent to 

the region as no treatment effects were detected.  Soil reaction and surface texture were 

also measured because both fundamental soil properties have been shown to influence the 

function of grassland ecosystems.  For example, species richness has been negatively 

correlated with soil reaction in a tallgrass prairie landscape (Palmer et al. 2003).  The 

effect of pH on soil microbial biomass, however, has been less studied.  Inversely, 

surface texture has received much attention where studies commonly report that finer 

textured soils support greater quantities of soil microbial biomass than do coarse textured 

soils given comparable climates (Burke et al. 1989; Merckx et al. 1985; Muller and 

    65



Hoper 2004; Ruess and Seagle 1994; Schimel and Parton 1986).  Our data are consistent 

with these studies and suggest that the relative influence of pH, clay content, and organic 

C on soil microbial biomass can be considered equivocal because all soil properties are 

inter-related as a result of long-term soil forming processes.          

 Two contrasting fire-grazing regimes were evaluated in this study.  The lack of a 

significant treatment effect is evidence that neither fire, regardless of season, nor grazing, 

regardless of intensity, has an effect on the quantity of soil microbial biomass in 

grasslands.  However, previous research in the Serengeti reported a positive independent 

effect on the quantity of soil microbial biomass with increasing large ungulate grazing 

intensity and organic C content (Ruess and McNaughton 1987).  Although a similar trend 

with organic C was observed in the current study (Fig. 1), we suggest that the 

discrepancy between grazing effects may be related to the degree of spatial variability 

associated with our two study sites.  Research from a European grassland has also 

reported an increase in the quantity of soil microbial biomass on intensively grazed sites 

(Patra et al. 2005).  However, this conclusion was the result of long-term continuous 

grazing which differs from high intensity-short duration grazing such as what occurs 

under a shifting mosaic fire-grazing regime.  Inversely, research in an African grassland 

has shown a negative effect of grazing on the quantity of soil microbial biomass 

suggesting a potential conflict in understanding grazing effects on the soil microbiota 

(Sankaran and Augustine 2004).  Grazing effects on microbial biomass have also been 

studied in a northern grassland inside Yellowstone National Park and reported results 

consistent with the current study.  These investigators reported that topography and 
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ANPP were dominant variables regulating the quantity of soil microbial biomass whereas 

grazing activity had no effect (Tracy and Frank 1998).    

Studies reporting the effects of fire on soil microbial biomass in grasslands are 

also confounding.  Research from tallgrass prairie has reported that the quantity of 

microbial biomass varied from year to year and that infrequent fires had no effect (Garcia 

and Rice 1994).  However, an additional study from the same site reported that annual 

burning resulted in a net reduction in the quantity of soil microbial biomass, although 

these sites were also N fertilized (Ajwa et al. 1999).  A study from a New Zealand 

grassland reported that infrequent fire also resulted in a reduction in microbial biomass 

values (Ross et al. 1997).  Thus, direct fire effects on microbial biomass in native 

grasslands are seemingly influenced by other factors.    

In general, C inputs from vegetation constrain the growth of microorganisms 

(Smith 1990; Zak et al. 1994) making detection of direct aboveground disturbance effects 

on microbial biomass operationally difficult.  Disturbance regimes that affect plant C 

allocation should thus be most easily detected.  For example, long term (i.e., > 10 years) 

annual burning in tallgrass prairie has resulted in compensatory C allocation to 

belowground productivity (Johnson and Matchett 2001).  However, studies on the direct 

effects of large ungulate grazing in grasslands have reported no effect on belowground 

productivity or root tissue chemistry (i.e., higher C:N) even when grasslands are annually 

burned (Johnson and Matchett 2001; McNaughton et al. 1998; Milchunas and Lauenroth 

1993).  It appears that grazing activity may, therefore, mitigate any indirect effects of 

annual fire on the quantity of soil microbial biomass.  In the current study, all 

experimental areas prior to 2000 were managed for homogeneity with frequent fire and 
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grazing by large ungulates, similar to the homogenous fire-grazing regime.  It is clear that 

a single rotation of localized fire on a three year return interval may not have allowed 

sufficient time for all ecosystem traits to stabilize to the effect of short term intensive 

grazing followed by periodic deferment from both fire and grazing over subsequent years 

within the shifting mosaic fire-grazing regime. 

In summary, we found that the quantity of soil microbial biomass on upland sites 

in tallgrass prairie was strongly regulated by variability in organic C and pH.  Neither the 

effects of focal fire and grazing disturbance nor annual burning and moderate uniform 

grazing, however, had a detectable effect.  Organic C was also unaffected by fire and 

grazing but was significantly correlated to pH and clay content suggesting that the 

relative effects of each soil property on microbial biomass should be considered 

equivalent.  Overall, our results indicate that the quantity of soil microbial biomass in 

tallgrass prairie was regulated by inherent topoedaphic variability rather than disturbance.   
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Fig. 1. Relationships among microbial biomass C (MBC), pH (A), and organic C (B) for 

an homogenous fire-grazing regime and patches within a shifting mosaic fire-grazing 

regime. Patches were recently disturbed by focal fire and grazing, one year since focal 

disturbance (YSFD), and two years since focal disturbance 
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