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NOMENCLATURE 

The following terms are used frequently in the text:  

1. Bone Remodeling/Bone Turnover - The continuous process in bone that includes 

bone formation and resorption at the same site. 

2. Connectivity Density � numerically indicates the average no of connections 

present between trabeculae in a specified volume.  

3. Cortical Area � numerically explains the amount of cortical bone per square 

millimeter.  

4. Cortical Bone - the compact bone, protective in function that forms the outer layer 

of the bone as a shell. It is a smooth bone that we can see on the surface of the 

bone and comprises of 80% of total bone mass.  

5.   Cortical Bone Thickness � numerically explains the thickness of cortical (the 

outer layer of) bone.  

      6.   Cortical Porosity - describes the porous or empty spaces in the bone.  

      7.   Degree of Anisotropy - Anisotropy numerically explains the degree of directional 

organization of bone internal structure when a load is applied in a particular 

position. A higher DA indicates increasing disorganization when viewed from a 

given plane.  

8. Fatigue � �The failure of a material caused by loading� (1). Fatigue occurs as a 

result of the degradation of bone strength and a decrease in modulus of elasticity 

(2-4). 



 xi 
 

      9.  Medullary Area � numerically describes the central volume of the bone per square 

millimeter.  

      10. Modulus of Elasticity - describes the stiffness and hardness of bone (2).  The 

elastic modulus is the ratio of stress and strain that explains the degree of 

deformation following loading by providing a value for stiffness. Therefore, bone 

or any material having higher stiffness subsequently has higher elasticity (1).  

11. Osteoblast - a mononucleate cell arising from osteoprogenitor cells (mesenchymal 

cells), which as it matures, is associated with bone formation. 

12. Osteoclast - a large multinuclear cell associated with the resorption of bone. 

14. Physiological Force - it is the 30% of total force required to crush the bone at a 

physiological state by a reasonable force.  

15. Stiffness of bone is defined as its rigidity (5). 

16. Strain � it is the �fractional or percentage change in length.� Strain is calculated 

as �the amount of deformation divided by the original length of the specimen.� 

Increasing the stress causes bone to break. Before failure or breaking the 

specimen deforms which is known as strain (4). 

17. Stress - defined as the �load per unit area (4).� When an external load is applied, 

force is developed within the structure. This results in stress, which can be either 

tensile or compressive stress and usually depends on the way of load application. 

Normal stress may also occur, which changes the length in a structure. It can also 

be shear stress that changes the angle in a structure (1). 

18. Structural Model Index � numerically describes a bones relative rod like property. 

A value of zero corresponds to pure plates and a value of three corresponds to 
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perfect rods. Negative values indicate concave like structure and a value of four 

indicates sphere. Plate-like properties are considered desirable and rod-like 

properties are mostly seen in ovariectomized models as cross struts are removed 

and trabeculae are eroded (6-10). 

19.  Total Force - describes the force required to crush bone completely (11). 

20. Trabeculae - thin strand like structures in cancellous bone. 

21. Trabecular (Cancellous) Bone- the lattice like bone, rigid structure but appears 

spongy. Trabecular bone helps in withstanding dominating loads and strains. 

Possess honey comb-like structure with spaces in the bone.  

22. Trabecular Number � numerically describes the average number of trabeculae 

present per mm. 

23. Trabecular Separation � numerically describes the average separation or air space 

between trabeculae. Greater trabecular number (Tb. N) would result in less 

trabecular separation. 

24. Trabecular Thickness � numerically describes the average thickness of the 

trabeculae in a specified region 

25.  Von Mises Stresses - used as an indicator of the amount of stress within a bone 

when force is applied (11).
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CHAPTER I 

RESEARCH PROBLEM 

Introduction 

 Bone, a highly mineralized tissue, is organized into a skeleton and provides 

mechanical support to the body (12). It constantly maintains a balance between bone 

formation and bone resorption, which is called bone remodeling. Osteoblasts are the cells 

involved in bone formation and osteoclasts in bone resorption (12). The volume of bone 

matrix, the bone micro-architecture, and the degree of bone tissue mineralization 

determine the strength of the bone (13, 14). In the process of mineralization, minerals are 

deposited on the calcification front, which is then followed by secondary mineralization 

that occurs by a slow and progressive increase in mineral deposition (13).  

Bone formation is regulated both by local and endocrine factors. Metabolic 

disturbance in the formation process can result in either excess formation, osteopetrosis, 

or excess resorption and bone loss, osteoporosis (12). A negative balance between bone 

resorption and bone formation is observed in osteoporosis as a result of loss of bone mass 

and micro-architectural deterioration of the trabecular network (13). Studies have also 

suggested that bone mass is affected by dietary factors and that minerals in addition to 

calcium may be involved (15). Once the peak bone mass is achieved, a steady loss of 

bone mass occurs, together with progressive architectural alterations. This process 

continues throughout life
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 However, accelerated loss of bone mass occurs in the early postmenopausal period and a 

slower rate of bone loss in the later years with age (16, 17). Previously, there has been 

little research investigating the association between bone metabolism and long-term 

consumption of varying levels of dietary iron. Hence, this study investigates the long-

term consumption of varying levels of dietary iron and their effects on bone structure and 

strength. 

Significance of the problem 

Approximately one-half of women and one-fourth of men over age 50 are affected 

by osteoporosis (18).  Hence, the diagnosis, treatment, and monitoring of osteoporosis 

and other skeletal diseases have become prominent health care and research issues (18). 

Studies have suggested that bone mass is affected by dietary factors and that minerals in 

addition to calcium may be factors (15, 19). Iron intakes leading to iron deficiency or iron 

excess and osteoporosis are two major health problems faced by the world today (20, 21). 

Iron deficiency is a worldwide health problem, and iron excess is increasingly possible 

with the availability of nutrient supplements as well as with national food fortification 

policies (15, 19). Very few investigations regarding the association between bone micro-

architecture and iron intakes have been done. Hence, it is necessary to take a 

comprehensive approach to examine the effects of both iron deficiency and iron excess 

on bone structure and strength.  

Study purpose and objectives 

The purpose of this study was to examine whether dietary iron affects bone 

structure and strength during growth and following ovariectomy. The following 

objectives were developed for this study. 
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1. To determine the effects of inadequate, adequate, and excessive amounts of iron 

on bone architecture in three groups of rats: growing, sham-operated or 

ovariectomized. 

2. To determine the effects of inadequate, adequate, and excessive amounts of iron 

on bone mechanical properties in three groups of rats: growing, sham-operated or 

ovariectomized. 

Study Design 

    A randomized block design was used in this study. One hundred and twenty-four 

weanling female Sprague-Dawley rats were randomized into three treatment groups 

(growing, sham-operated and ovariectomized) and four dietary regimens (6, 12, 35 or 

150 ppm iron). After three weeks of acclimatization the rats were fed for 15 (growing) 

or 27 (sham and ovariectomized) weeks. Growing rats (N=40) were killed at 18 weeks 

of age and bones were collected. At 18 weeks of age the remaining rats were either 

ovariectomized to mimic menopause or sham-operated as controls. At 30 weeks these 

animals were killed and bones were collected. Cleaned fifth lumbar vertebrae (L5) and 

right femur stored in -20o C were scanned for micro-architecture (Micro-CT 40, 

SCANCO MEDICAL AG, Zurich, Switzerland) and strength analyses were performed.  

Hypotheses 

This study proceeds with the following hypotheses: 

1. There will be no statistically significant differences in L5 trabecular architecture. 

a. There will be no statistically significant effect of iron in growing rats. 

b. There will be no statistically significant effect of iron in sham-operated or 

ovariectomized rats. 
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c. There will be no statistically significant differences between sham-

operated or ovariectomized rats. 

d. There will be no statistically significant diet by treatment interactions in 

sham-operated or ovariectomized. 

2. There will be no statistically significant differences in distal femur trabecular 

architecture. 

a. There will be no statistically significant effect of iron in growing rats. 

b. There will be no statistically significant effect of iron in sham-operated or 

ovariectomized rats. 

c. There will be no statistically significant differences between sham-

operated or ovariectomized rats. 

d. There will be no statistically significant diet by treatment interactions in 

sham-operated or ovariectomized rats. 

3. There will be no statistically significant differences in femur cortical bone 

architecture. 

a. There will be no statistically significant effect of iron in growing rats. 

b. There will be no statistically significant effect of iron in sham-operated or 

ovariectomized rats. 

c. There will be no statistically significant differences between sham-

operated or ovariectomized rats. 

d. There will be no statistically significant diet by treatment interactions in 

sham-operated or ovariectomized rats. 

4. There will be no statistically significant differences in L5 strength. 
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a. There will be no statistically significant effect of iron in growing rats. 

b. There will be no statistically significant effect of iron in sham-operated or 

ovariectomized rats. 

c. There will be no statistically significant differences between sham-

operated or ovariectomized rats. 

d. There will be no statistically significant diet by treatment interactions in 

sham-operated or ovariectomized rats. 

5. There will be no statistically significant differences in distal femur strength. 

a. There will be no statistically significant effect of iron in growing rats. 

b. There will be no statistically significant effect of iron in sham-operated or 

ovariectomized rats. 

c. There will be no statistically significant differences between sham-

operated or ovariectomized rats. 

d. There will be no statistically significant diet by treatment interactions in 

sham-operated or ovariectomized rats. 

Assumption 

It is assumed that long-term storage of bones does not affect the architectural or 

mechanical properties  

Limitation 

Rats have minimal Haversian systems in cortical bone. Therefore, the pattern of 

bone remodeling in rats and humans is different. Although, the ovariectomized rat model 

is considered acceptable for studies on menopause, the findings of this study are limited 

to rats due to differences in the bone metabolism between two species 
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CHAPTER II 

REVIEW OF THE LITERATURE 

 Bone metabolism is affected by multiple factors, including mechanical strain or 

load bearing, (22) hormonal status (16), nutrition (15), growth factors and disease. In 

addition, these factors often affect bone in combination. The following sections review 

literature focusing on some of the factors that affect bone metabolism. Measurements of 

bone parameters and the appropriateness of using a rat model are also included. 

Functions of Bone 

Connective tissue is highly specialized. Bone, a connective tissue, provides 

mechanical support for movement, a �protective cage� for cranial, thoracic and 

abdominal organs, and is a reservoir for nutrients involved in various metabolic 

processes. Bone is composed of cells, extracellular matrix, and inorganic minerals. The 

extracellular matrix contains approximately 85% calcium phosphate and 10% calcium 

carbonate and provides bone with its structural rigidity (23). 

Physiology of Bone Formation and Remodeling 

Bone Formation 

The skeleton is made up of two tissues (cartilage and bone). Bone, exclusive of 

marrow, has three types of cells (chondrocytes, osteoblasts, and osteoclasts) (24).  Bone 

exists in two basic types (cortical and cancellous) in the human skeleton,
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 each having a different role and function. Cortical bone comprises 80% of the skeleton 

and is well suited for mechanical, structural, and protective functions.  Cortical bone is 

the major component of long bones and comprises the outside protective surfaces of all 

bones. It is 80-90% calcified and, therefore, dense. Cancellous bone comprises the 

remaining 20% of skeleton and has high metabolic activity compared to cortical bone. It 

is less dense being only 5-25% calcified. Cancellous bone consists of trabeculae, the lace-

like connective tissue that increases the surface area of bone. Because, bone metabolism 

occurs at surface sites only, this structure confers high metabolic activity to trabecular 

bone (18). Bones form through two distinct processes. Endochondreal ossification, a 

process involving a cartilage intermediate, forms most of the skeleton. Intra-membranous 

ossification is another process of bone formation in which a small number of skeletal 

elements such as craniofacial bones are formed (25). 

 The development of bone begins before birth and formation predominates until 

approximately the end of the second decade of life (26, 27). Bone is a composite material 

composed of an organic and inorganic phase. The organic phase is synthesized by 

osteoblasts, and the inorganic phase is composed of calcium phosphate (28). Osteoblasts, 

cells present in membranous skeletal elements (25), deposit mineral salts from plasma 

onto a collagen matrix during this period. Thus, mineral salts are deposited onto a 

collagen matrix by osteoblasts and increase the bone mass. Osteoclasts are the cells 

responsible for bone resorption and are the only cell type able to digest the mineralized 

matrix. The osteoclasts play a crucial role in bone physiology. They foster bone modeling 

during growth and bone remodeling during adulthood. Thus, defects in osteoclast 

differentiation or function are associated with multiple genetically inherited or acquired 
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diseases, all characterized by an arrest of bone resorption (29). Chondrocytes, the cells in 

endochondreal skeleton, deposit an extra-cellular matrix that is cartilage specific and help 

in the repair of degraded collagen matrix (25).   

Bone Remodeling 

 One of the most important physiological functions of the skeleton during 

adulthood is bone remodeling (30). Bone remodeling is the process by which bone mass 

is maintained at a virtually constant value between the end of skeletal growth and gonadal 

failure (31). It involves the removal and internal restructuring of previously existing bone 

and is responsible for the maintenance of tissue mass and architecture in the adult 

skeleton (32). In young adulthood, bone accumulation is replaced by bone remodeling in 

which osteoclastic cells resorb and osteoblastic cells secrete bone minerals in response to 

physiological triggers. In older adulthood, bone remodeling balance changes, and bone 

resorption exceeds bone formation due to decreased osteoblastic activity resulting in a net 

loss of bone mass (33). Women experience additional bone loss after menopause as 

osteoclastic activity increases in response to the decreased production of the bone 

protective female hormone, estrogen (34). 

 Findings of van der Linden et al. (24) also suggest that bone remodeling takes 

place at the surface of trabeculae and results in non-uniform mineral distribution. This 

will affect the mechanical properties of cancellous bone, because the properties of bone 

tissue depend on its mineral content (35). 

Effects of Growth on Bone Development 

The activity of bone formation predominates from infancy through late 

adolescence, resulting in a steady accumulation of bone mass (36). In the acquisition of 
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bone mass, puberty plays an important role. Indeed, between the onset of puberty and 

young adulthood skeletal mass approximately doubles (37, 38). A major determinant of 

peak bone mass (PBM) is the amount of bone mass accrued during puberty which in turn 

affects the relative risk of osteoporotic fractures occurring in later life. Therefore, the 

acquisition of an optimal PBM is a key factor for avoiding osteoporosis (37, 39). 

The Saskatchewan Bone Mineral Accrual Study (BMAS) is a longitudinal study 

of bone growth in Caucasian children (40). In this study, Bailey (40) examined bone 

mineral accretion in growing children. Findings revealed that peak linear growth was 

attained at the age of 13.5 years in boys whereas girls attained at the age of 11.6 years. At 

these ages both boys and girls attained 90% of adult status in height, 70% in bone mineral 

content (BMC) at the femoral neck, and 60% for the total body and lumbar spine. The 

rate of bone mineral uptake peaked for males and females, one year after peak linear 

growth showing dissociation between linear growth and bone mineral accrual. The two-

year period before and after peak linear growth is known as the growth spurt and is a 

critical time for bone mineral accretion.  During this four-year period, over 35% of total 

body and spine bone mineral and over 27% of bone mineral at the femoral neck were 

deposited. The bone mineral content accumulation during this time is more than the 

amount most people will lose during adult life. The peak skeletal mass attained during 

this growth period accounts for 50% of the variability in bone mass in the elderly. 

Therefore, the growing years determine much of the fracture risk in the elderly (40). 

Matkovic et al. (36) found results similar to the Saskatchewan Pediatric Bone 

Mineral Accrual Study when determining the timing of attainment of PBM. Even after 

the attainment of skeletal height at the age of 16 years, accumulation of bone minerals 
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continued to increase at several sites. Attainment of peak height by 16 years of age 

indicates decrease in longitudinal bone growth (36). The total skeleton mass accumulated 

between the ages of 11 and 15 years is 37% which is similar to the findings of Bailey�s 

study where it is 35% (40). The average gain in height was 2.4% of the peak adult height 

for women per year, and the accumulation of total bone mineral was 6% per year, 

between the ages of 8 and 16 years. The BMC and BMD changed only slightly but 

insignificantly between the ages of 18 and 50 years. Peak bone mass of the proximal end 

of the femur appeared to be achieved at about 17 years of age. Findings also indicated 

that once PBM of the proximal end of the femur is achieved BMD begins declining but 

not significant (36). 

In a study of Koletzko et al. (41) females at the age of 14 had values similar to 

their mothers� for bone size, mass and density. Longitudinal growth ceased while bone 

mass continued to increase. Most epiphyses closed by the age of 16. For both male and 

female, 95-99% of PBM was achieved by the age of 18 (41).  

Matkovic et al. reported that the risk of developing osteoporosis was lower for 

those who had higher bone mass as young adults (36). Low bone mass is also considered 

a characteristic feature of adult growth hormone deficiency (GHD). Murray et al. 

examined the relationship between bone mineral density (BMD) and age in 125 severely 

GHD adults using dual-energy x-ray absorptiometry (DXA) (42). A significant positive 

correlation was observed between age and BMD (Z scores) at the lumbar spine, femoral 

neck, total hip, ultra distal (a site distal to the point at which the radius and ulna are 8 mm 

apart) and distal radius. Young adults were observed to have reduced bone mass, whereas 

the elderly GHD patients had normal Z scores. The cohort was divided into four age 
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ranges (<30, 30-45, 45-60, >60). BMD Z scores increased significantly at all five skeletal 

sites across the age groups from youngest to oldest (P<0.001). When BMD was assessed 

using absolute values (g/cm2), BMD at the total hip, ultra distal and distal radius 

increased with increased age in their grouping of GHD adults (P=0.003, P=0.004, and 

P=0.002, respectively) in contrast to the decline in BMD observed with aging in the 

normal population. Also a trend towards an increase in lumbar spine and femoral neck 

BMD was observed. The authors concluded that, the effect of severe GHD on BMD is 

dependent on age (42).   

Age-related changes on bone 

The primary cause of osteoporotic fractures in the elderly is age-related bone loss 

(43, 44). Bone loss begins approximately at the age of 40 years and progresses linearly at 

a rate of 0.5 to 1% per year. As a result, by 70 years of age 40 % of bone loss is accrued. 

This type of bone loss results in increased porosity in cortical and trabecular bone, 

decrease in mineralization and finally increases the risk of fracture (43, 44). A correlation 

between decrease in cortical bone strength at the femur with age and an increase in 

porosity has been reported. Also these porosity changes have shown a strength variance 

of 76 % (45).  In another study, Yeni et al. (46) reported that the toughness in fracture or 

stiffness of bone differed significantly with cortical porosity. Similarly, Burr et al. (47) 

suggested that the compact bone stiffness is dependent on its porosity and that the elastic 

modulus decreases with increases in porosity. Also, bones tend to become more rod-like 

than plate-like with aging (7, 8, 48). 

Most of the studies on age-related bone loss have focused on postmenopausal 

women since women start losing bone earlier than men. However, changes in bone mass 
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with age are also observed in the male skeleton. Between the ages of 20-30 years (early 

adulthood), bone loss begins in women after the growth of long bones is stopped due to a 

negative balance in the remodeling process (49). Many studies have shown that the onset 

of menopause has been associated with an increase in turnover and an increase in bone 

loss. The rate of bone remodeling doubles at perimenopause and triples after menopause. 

This rate of bone remodeling remains high in osteoporosis (50). A steady increase in 

bone loss is observed during the perimenopausal period that is independent of 

chronologic age. As a result, the greatest bone loss occurs in the first five years after 

menopause (51). 

At the onset of menopause estrogen production ceases resulting in increased bone 

turnover rate (52). Consequently, more resorption cavities on the endosteal surface of 

bone are produced with the increase in bone turnover. Deficiency of estrogen increases 

the life span of osteoclasts resulting in the resorption of bone being higher than 

formation. As a result net bone loss occurs since bone formation occurs at a slower rate 

than resorption.  This increase in resorption leads to increases in the resorption cavities 

and deeper resorption lacunae causing a net loss of trabecular connectivity. Loss of 

trabeculae brings changes in the micro-architecture of bone ultimately leading to a 

decrease in overall strength of the bone (53). This negative balance in bone turnover, 

where more bone is resorbed than formed is linked to a higher rate of cancellous bone 

loss in women with osteoporosis (54). Eventually, rapid loss of bone after menopause 

results in the complete destruction of some structural trabecular elements. The remaining 

trabecular elements show a reduced thickness due to the continuous loss of trabecular 

bone leading to further trabecular architecture deterioration (54, 55). 
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Cortical thinning and an expansion of marrow cavity is another important 

contributing factor in human osteoporotic fractures at the femoral neck (44, 56). An 

increase in the cortical area at the femoral midshaft is observed until the seventh decade 

of life (44). This medullary area triples in females and doubles in males from 21 to 97 

years of age. Besides, aging is also associated with marked intra-cortical porosity, which 

is present in some, but not all femurs (44). A recent study reported by Stein et al. (1999) 

showed that elderly patients did not have a greater number of pores than younger subjects 

in the cortical region but elderly subjects showed larger pores. However, this study did 

not assess the distribution of porosity throughout the cortical width and the porosity 

changes with age (57).  

Age-related bone loss has also been documented in the rat. A significant decrease 

in osteoid mineralization was observed in male Wistar rats after marrow ablation in 

femur (58). A decrease in the response of bone cells with age is observed by bone 

morphometric and structural properties. It is also observed that these rats did not show a 

significant decrease in femur strength when compared to their peak values as the force 

required to fracture femurs at midshaft did not change with aging. Conversely, ultimate 

stress decreased 14% from 12 to 24 months. Ultimate stress is a parameter that 

normalizes for differences in bone geometry and size. Other biomechanical properties, 

modulus of elasticity, yield strain and ultimate deformation, were not significant. 

Although the tissue strength increased with age, the strength of the femur was maintained 

due to architectural compensations. Based on these findings the authors concluded that 

bone status was compromised in the aged male rat (59). 



 14 
 

 

Effects of Ovarian Hormone Status on Bone Remodeling 

 Systemic hormones and local factors produced in bone regulate the activities of 

bone formation and bone resorption. Systemic hormones involved in stimulating bone 

formation include insulin, growth hormone (60) and estrogen (60) while hormones 

involved in bone resorption include parathyroid hormone (PTH)  (61) and thyroid 

hormone (62). Estrogen plays an important role in the growth and maturation of bone as 

well as in the regulation of bone turnover in adult bone (63). Hence, it is very important 

to include the effects of estrogen, an ovarian hormone, on bone remodeling. 

Estrogen Deficiency 

Estrogen plays a very important role in the regulation of bone remodeling (34). 

Deficiency of estrogen increases bone resorption and reduces trabecular bone mass in 

humans (64). The increased osteoclastic activity found following estrogen deficiency 

leads to changes in the trabecular plates resulting in greater perforation of the plates and 

loss of trabecular continuity (65, 66).  

 Ovariectomy or estrogen deficiency causes a rapid decrease in the strength of the 

femoral neck in growing rats as well as in older subjects (67, 68). The most rapid changes 

due to estrogen deficiency are observed in trabecular bone, particularly in vertebrae (64). 

Estrogen deficiency leads to increased osteoclastic activity and causes rapid loss of bone 

mass (63). However, it is not only the general loss of bone but also, even more 

importantly, the changes in the internal architecture of bone which leads to increased 

fragility (63, 64). Studies have also suggested that estrogen deficiency increases pro-

inflammatory cytokine production IL-1, IL-6 and TNF-α (69, 70). These cytokines may 

in turn lower the albumin levels thus, affecting the metabolism (71-74).  
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Deficiency of estrogen has a deleterious effect on trabecular micro-architecture of 

bone. Ikeda et al. (64) investigated the effect of trabecular bone contour on ultimate 

strength of lumbar vertebrae after bilateral ovariectomy in female Sprague-Dawley rats 

(n=190). The rats were divided into 19 groups. Ten rats were killed at day 0, half of the 

remaining rats underwent bilateral ovariectomy (OVX) and others were subjected to 

sham surgery. Ten rats from each group were killed at 3, 7, 11, 14, 28, 42, 56, 70, and 84 

days post-surgery. Fifth lumbar vertebrae were scanned and analyzed by micro-CT 

(micro computed tomography) and DXA. Findings reveal that bone mineral content 

(BMC) and bone mineral density (BMD) of the fifth lumbar body, as indicated by DXA 

diminished from days 42 (BMC) and 84 (BMD), compared with sham group. Trabecular 

bone volume fraction (BV/TV), also diminished from day 28 in OVX when compared 

with both base line control and sham. The authors concluded that changes in trabecular 

bone contour with increased bone turnover are critical for reducing lumbar bone strength 

during the early post-ovariectomy period in rats (64).    

Dick et al. (75) also reported that deficiency of estrogen affects bone. In this 

study, 34 Sprague-Dawley rats were randomized into sham or OVX treatment at six 

months of age. Bone mineral density and bone mineral content, measured by DXA 

decreased in both ovariectomized and sham-operated animals but significant decreases 

were observed only in the ovariectomized group of rats (75). Several studies have 

established that estrogen deficiency is detrimental to bone architecture (76-79).  

Osteoporosis 

Osteoporosis is characterized by low bone mass and increased fragility of the 

bones and is often associated with aging. This can lead to increased susceptibility to 
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fractures from minor trauma (80). Bone mineral density (BMD) is commonly used as an 

indicator to assess the risk of osteoporosis. The most commonly used tool for the 

measurement of bone mineral density (BMD) is dual energy X-ray absorptiometry 

(DXA) at the spine, wrist or proximal femur (81). According to the World Health 

Organization osteoporosis is defined as, a BMD value (T-score) ≥ 2.5 SD below the mean 

of a young adult (82). In the diagnosis of osteoporosis BMD was used as a preferred 

substitute marker primarily for 2 reasons: it facilitates in situ measurement, and it 

provides information on fracture risk, as increased risk of fracture is associated with 

decrease in BMD. However, fractures do occur in women who have normal BMD (83).  

Besides BMD there are several other factors like age, female sex, high bone 

turnover, low body weight, and life style factors, including risk of falls, smoking and 

excessive alcohol consumption that can increase the risk of fracture. Also independent 

risk factors such as medical history of fracture, family history of osteoporosis, and the use 

of medications such as corticosteroids can also increase the risk of fracture (84). 

Studying the factors that affect bone strength and bone quality may provide an 

insight into the causes of fractures (85, 86). In general, fractures occur when the load on a 

bone exceeds the ability of the bone to carry that load (87, 88). But this factor cannot be 

considered alone for fracture risks because bone is a composite material with a number of 

mechanical properties. Therefore, no single property can adequately describe the strength 

of the bone. The load carrying capacity of the bone can be better understood by four 

mechanical terms: ultimate force, resilience, stiffness and toughness (5, 89). The use of 

finite element modeling in computed tomography helps in estimating the physiological 

force of the bone i.e., the energy required to break the bone based on computer 
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reconstructions (90). The strength of the bone is a combination of two main features: 

bone density and bone quality (91). Therefore, it is important to measure both bone 

density and bone quality to assess bone strength. DXA provides information on bone 

mass over a projected area, but it cannot provide information about bone strength. 

Therefore, computed tomography is used to help explain the components of bone quality 

in terms of bone architecture (86, 92). 

Focusing on the material properties of bone is, therefore, important to understand 

bone quality and strength of the bone including the structural and material properties. 

Therefore, understanding the constituents of bone quality and how they can be measured 

may help identify the predictors of fracture risk. Also this would help to improve the 

diagnosis, management, treatment, and patient monitoring in osteoporosis (82). 

Bone quality and micro-architecture 

Bone mass measured by bone mineral density is used as a predictor for assessing 

the risk of fracture. But significant differences in the bone density of normal individuals 

and the patients who sustain fractures have been reported in recent clinical studies. Also 

it is observed that the contribution of bone mass to fracture risk is two fold out of the 13-

fold increase in the risk of hip fracture. Because questions still exist in considering BMD 

as a reliable indicator for fracture prediction, "bone tissue quality� emerged as a new 

strategy for identifying the risk of fracture (93). 

The term bone quality describes a set of characteristics that influence bone 

strength. These characteristics include structural and material properties that are used as a 

means to describe the overall quality of bone. Structural and material properties are 

affected by bone remodeling and modeling which are together referred as bone turnover 
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(89). The structural properties of bone are best described by the geometry and micro-

architecture of bone. Geometry of the bone is understood by the size and shape of the 

bone and micro-architecture is understood by the trabecular architecture and cortical 

thickness/porosity of the bone. Similarly, the material properties of the bone can be 

determined by mineral crystallinity, collagen structure and micro damage in bone (82). 

Structural properties 

Geometry 

Fracture occurs in bone when the stress on bone is higher than the ultimate 

strength (94, 95). Ultimate strength is �the maximum stress achieved prior to failure of a 

component on a single application of the load (96).� The stress within a bone is 

dependent on several factors such as the geometrical arrangement of bone, the material 

components or the composition of the bone, the direction and size of the force applied 

(94, 95) and not just its mass (97). However, the stresses are determined by geometry 

under specified loading conditions (98). 

Bone structural or geometrical arrangement is genetically determined and controls 

the bones� ability to adjust and function accordingly with the existing loads by modeling 

and remodeling. This process modifies the absolute and relative positions of both the 

external and internal envelopes of bone. The external envelope is known as periosteum 

where as the internal envelope is known as endosteum. The endosteal envelope consists 

of endocortical, trabecular and intracortical regions. These envelopes determine the size 

and shape of the bone and also the spatial distribution of its mineralized tissue mass. This 

suggests that together these traits (size, shape and the spatial distribution of mineralized 

tissue mass) contribute to bone strength (97). 
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Size and shape: The skeletal system modifies the size and shape of the bone 

depending upon whether it functions as a lever or spring.  For load bearing and leverage, 

it is necessary to maintain stiffness and lightness rather than flexibility. To serve this 

purpose bone tissue is designed into long bones such as the femur. The femur contains a 

medullary canal with the mineralized tissue cortex surrounding it. This tissue cortex is 

placed away from the center of the medullary canal, the long axis of the bone, which, in 

turn, enables cortical bone to withstand loads and provides greater resistance to bending. 

Thus, size of the bone can infer different properties; small bones with a small medullary 

area have the cortical bone close to the central axis and are more subject to bending than 

are larger bones with cortical bone at a greater resistance from the medullary center (99). 

 The bone mass inside the periosteum increases and forms into a cortex while 

bones grow in length and diameter. During this process the marrow cavity is formed 

which moves the cortical shell further and further from the neutral or long axis of the 

long bone. The diameter of the long bone, the mass of cortical bone, its cortical thickness, 

cross-sectional area (CSA), and the placement of the cortical mass relative to the neutral 

axis is determined by the absolute and relative movements of the periosteal and endosteal 

envelops (99). 

On the other hand, vertebral bodies function as spring-like shock absorbers where 

stiffness and peak load bearing are sacrificed for flexibility. The vertebral bodies contain 

porous and mineralized honeycomb-like interconnections known as spongiosa. This 

porous structure functions like springs and has the ability to store energy by deforming in 

compression.  The structural adaptation of the vertebral bodies helps to achieve lightness 

due to its porous network. This feature also provides greater strength to peak strains than 
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cortical bone despite sacrificing peak stresses (load/area) compared to cortical bone. The 

cancellous structure of bone helps to withstand larger deformations thus, facilitating 

flexion, extension, and rotation of the whole vertebral skeleton of the upper body (99).  

 During growth, vertebral bodies increase in length, width, and depth. As the 

vertebral body grows, the length and thickness of the trabecular plates also increase 

proportionately (99).  During puberty, both the boys and girls show a similar degree of 

increase in the apparent trabecular BMD, so that males and females have the same 

vertebral body, trabecular number, and thickness at peak. Growth builds a bigger 

vertebral body in males, but not a more dense vertebral body, such that the greater peak 

load tolerated in males is due to the larger size and not higher density. Also, the load per 

unit area is not different in young males and females (100). 

Two other important factors that play a vital role in determining bone strength are 

the external diameter of the bone and cortical thickness, together considered as bone 

dimensions (89, 101). The mechanical strength of the bone increases as the external 

diameter of bone increases resistance to flexion (5). As a compensatory mechanism, 

cortical bone adapts to decreasing bone mass in aging by increasing in the diameter (102, 

103). It is also observed in men who exhibit greater strength of the long bones and who 

have greater bone diameter when compared to women (104). This difference is not just 

due to BMD but also due to differences in bone size and geometry. A recent study in men 

and women with similar body sizes showed that men had greater BMC and BMD at the 

hip and distal tibia than women. The differences in BMC and BMD were associated with 

cortical thickness. This may partly explain the greater rates of fragility fractures in 

women than in men (105). In another study, Silva and Gibson (55) investigated the age-
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related changes in microstructure and mechanical behavior of human vertebral trabecular 

bone based on idealized two-dimensional model. The study reports that bone strength 

decreases if the trabecular number is lost, and that it may not be possible to restore the 

trabeculae that are lost due to resorption. This loss ultimately leads to the reduction in 

bone volume. Another finding of this study was that the modulus and strength of the 

vertebrae decreases two to five times more with the random removal of trabeculae rather 

than uniform reduction with the    same loss of bone volume. In another study (106), the 

vertebral bone size has been found to be smaller in women with spinal fractures with 

50% of the deficiency in bone mineral content. This deficiency is a result of a smaller 

bone size. Similarly, smaller bone size was also observed when patients with spinal 

fractures were matched with controls with the same areal BMD. Therefore, the size of 

bone appears to have an effect on overall fragility (106). 

 The geometry of the bone also affects the distribution of bone mass. The ability of 

bone to resist bending and torsion can be altered by changing the distribution of bone 

mass. However this change cannot be seen in BMD measurements (85). The distribution 

of bone mass is better understood by the architectural properties of bone. Therefore, in 

addition to geometric properties of bone it is important to understand the quality of the 

bone in terms of three-dimensional architectural properties. 

Micro-architecture 

Bone micro-architecture is an important structural property at the tissue level. 

Micro-architecture describes both the cortical bone and the three dimensional (3D) 

network of trabeculae in the cancellous bone. Therefore, bone micro-architectural 

parameters such as trabecular thickness (Tb.Th,) trabecular number (Tb.N), trabecular 
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separation (Tb.Sp), connectivity of the trabeculae, degree of anisotropy (DA) as well as 

thickness and porosity of the cortical bone help in understanding the micro-architecture 

of bone (107). While DA is a architectural property it is more commonly used to help 

explain mechanical strength.   

Trabecular Bone: The trabecular micro-architecture is understood by the 

thickness (Tb.Th), spacing (Tb.Sp), bone volume fraction (BV/TV) and the extent to 

which the trabeculae are interconnected. The role of trabecular bone is to transfer loads 

across joints such as the hip, and to resist compression, as in the spine (94). The ability of 

bone to withstand the compressive forces and shear or tensile forces depends upon the 

distribution of the trabecular network. The macroscopic structure of trabecular bone is 

composed of an interconnected series of osseous plates and struts (rods). The 

effectiveness of the trabecular network is due to the spacing (trabecular separation), the 

relative bone volume fraction (BV/TV) and the direction of the osseous plates and struts 

(108).  

Rod-like or plate-like properties of the cancellous bone are described by the term 

Structural Model Index (SMI). For an ideal plate and rod structure the SMI value is zero 

and three, respectively. The trabeculae can also possess a true sphere-like structure, 

which is indicated numerically by a value of four. Healthy cancellous bone is 

characterized by plate-like elements. Plate-like cancellous bone can transform into rod-

like elements due to aging or disease. Hence, the terms "rod-like" and "plate-like" are 

frequently used for a subjective classification of cancellous bone (6-9). It is also reported 

that SMI values can be negative when the trabecular bone is dense and possess concave 

like structure with BV/TV greater than 30%(109). These osseous plates and struts are 
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arranged three dimensionally within the inner surface of the cortex. The trabeculae that 

are in a vertical direction reduce the axial forces whereas horizontal plates react to the 

tensile (shear) stresses (10). When there is a reduction in the trabecular elements (Tb.Th, 

Tb.Sp, SMI) that are perpendicular to the direction of load it may lead to trabecular 

failure in terms of bone mechanical strength; i.e., it can lead to buckling or bending of the 

bone. Therefore, if the cancellous bone architecture is distributed with widely separated 

and disconnected thick trabeculae the bone is less capable of resisting deformation than 

an equivalent amount of more numerous connected and thin trabeculae (110). 

The cancellous bone architecture varies in different skeletal sites as well as in 

different disease states (6). Also the effect of bone loss may vary depending upon the 

directional orientation of the trabeculae.  It has been reported that this loss of trabeculae 

may show different effect on mechanical properties of cancellous bone. It has been 

reported that in vertebrae, mainly the horizontally placed trabeculae are removed first. 

This preferential deletion of trabeculae is associated with an increase in the mechanical 

anisotropy (111). In another study Thomsen et al. reported that the horizontally placed 

trabecular thickness decrease with aging whereas no changes were observed in the 

vertically placed trabeculae. However, it is not known if the deletion of rod like 

trabeculae that are placed in horizontal direction will have the same effect with that of the 

deletion of plate-like trabeculae or vice versa. Neither of these studies determined the 

shape of the trabeculae (rod-like or plate�like).  

 Studies have suggested that the strength of cancellous bone depends upon the 

three-dimensional architecture and the rod-like or plate-like properties of trabeculae. 

Hildrebrand et al. proposed a strong correlation between SMI and BV/TV. The study 
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reported that samples with lower bone mass showed smaller plate to rod ratio (6). In a 

recent study Van Ruijven et al. suggested that as bone volume fraction decreases, the 

number of plates also decreases (112). This decrease would also be associated with a 40 

% reduction in their thickness with an increase in the proportion of rods. The authors 

concluded that the effect of bone loss on plate-like trabeculae was opposite to its effect 

on rod-like trabeculae. Therefore, the strength of the bone depends not only on the 

thickness of the trabeculae but also on the relative bone volume and plate-like properties 

(113). 

Aaron et al. examined the trabecular architecture in men and postmenopausal 

women using two dimensional imaging of cancellous bone viewed within its three 

dimensional context. Both men and women that had similar bone mass as determined by 

DXA were recruited. Biopsies from 31 osteopenic postmenopausal women with vertebral 

compression fractures and 22 without vertebral compression fractures were taken. 

Similarly, biopsies from a group of 16 men with fracture and 11 men without vertebral 

compression fractures were taken. The study revealed that female patients with fractures 

had four times the number of broken trabeculae as women without fractures. Men with 

fractures also showed a higher number of broken trabeculae than who did not have 

fractures. The authors suggested that the lack of significant differences in men could be 

due to the smaller group of men and few suitable biopsies, since some of the biopsies 

from the suitable patients were eliminated due to the fractured trabeculae and displaced 

fragments while extracting biopsies. The authors concluded that three-dimensional 

histology of vertebral fractures that has been used in the study is a more sensitive 

predictor of fracture predisposition and may provide additional benefits in the evaluation 
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of bone fragility (114). The findings of this study thus, support the concept that trabecular 

architecture is particularly important to bone quality.  

An intact trabecular network appears to be vital in maintaining maximum bone 

strength. A study in which trabecular bone loss was induced suggested that loss of 

individual trabeculae has a greater impact on bone strength than the same amount of bone 

loss attributed to trabecular thinning (115). Therefore, architecture plays a very important 

role in the prevention as well as in the pathogenesis of fracture because improving the 

thickness of trabeculae has a very little effect on connectivity. No interventions can 

benefit existing bone because once the trabeculae are lost they cannot be replaced. 

Consequently, more emphasis must be given to preventions that can reduce the rate of 

resorption as well as the rate of remodeling activation (114). 

The amount of trabecular bone differs from site to site. The neck of the femur 

contains 25 % trabecular bone, whereas in a vertebral body the percentage ranges from 

66% to 90% (94). Therefore, loss of trabecular bone will primarily be seen first in the 

spine region or vertebral body. The trabecular deterioration is usually due to excess bone 

resorption over formation. As a result the densely connected, plate-like trabeculae are 

transformed to discontinuous rod-like structures. This leads to deterioration in the 

trabecular architecture (116, 117). It is also reported that, a progressive increase in the 

amount of cancellous bone occurs in the metaphyses of rat. This is also supported from 

the study findings of Osterman et al. (118), in which the growing rats that were given 14 

C-labeled disodium clodronate subcutaneously showed highest activity of the label in the 

primary sponigiosa of the distal femur metaphysis and in the cortical bone of the femoral 

diaphysis when compared to the other parts of femur (118).  
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The strength of the trabecular bone is in part due to its large surface to volume 

ratio. Trabecular remodeling occurs on a bone surface by directly removing old bone and 

then filling in the cavities with new bone. Therefore, remodeling is more active in 

trabecular bone than in cortical bone due to its large surface. This surface to volume ratio 

is approximately four times greater than that observed in cortical bone (65). The 

trabecular bone mass in the vertebral body decreases more rapidly with age and 

menopause than that of cortical bone mass. Hence, the proportion of cortical bone is 

higher in the elderly spine than in younger adults. In general, women lose 20% of peak 

cortical bone mass and 40-50% of trabecular mass by 90 years of age. This leads to a 

decrease in the load-bearing capacity of the vertebral body (119). 

Cortical bone: Cortical bone also plays a very important role in maintaining bone 

strength. Cortical bone is a dense and compact tissue. It comprises of the diaphyses of 

long bones and the outer shell of the metaphyses. The macroscopic structure of cortical 

bone shows osteons (108). Osteons, considered the building blocks of bone, are 

composed of a series of concentric rings of bone cells and bone matrix. The osteon 

surrounds a hole filled with blood vessels and nerves (120). These osteons are organized 

surrounding the Haversian canals in concentric layers, known as lamellae and are placed 

in interstitial tissue (23, 108). Interstitial tissue is formed from the remnants of old 

osteons. Osteons contain of space inside them known as lacuna. Osteocytes reside inside 

this lacuna. Secondary osteons are formed in the process of continuous remodeling of 

bone where old bone is replaced by new bone. In cortical bone, remodeling occurs at 

scattered locations on the surface of the bone through resorption and followed by 

reversal. The cavities thus, formed are refilled by osteoblasts with new bone in new 
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concentric lamellar pattern. The osteoblasts first synthesize the extracellular matrix 

composed of collagen and other structural proteins during bone formation. The osteoid is 

then mineralized. Mineralization occurs in two steps: primary mineralization and 

secondary mineralization. In the first few days, mineral density of the bone is increased 

up to a maximum of about 70% due to primary mineralization. But the secondary 

mineralization shows a gradual increase in the bone density.  A maximum of about 90-

95% of density is observed after several months. Consequently, recently remodeled bone 

tissue is less highly mineralized than unremodeled tissue (108). 

It is also important to observe the role of cortical bone to assess the risk of 

osteoporosis as well as to understand the bone biology. Cortical bone parameters such as 

cortical thickness and porosity help in describing the cortical bone architecture. The loss 

of cortical bone involves thinning of the cortex and an increase in intracortical porosity 

(121). McCalden et al. (45) reported that the decrease in the strength of the cortical bone 

with age at the femur was correlated with an increase in porosity. This porosity changes 

contributed to a variation in strength of about 76 % (45).  

Bell et al. (120) suggested a novel mechanism for induction of increased cortical 

porosity in cases of intracapsular hip fracture. In this study the investigators studied the 

relationship between remodeling and bone loss, osteonal diameter, wall thickness, and 

osteoid width in the femoral neck of patients with hip fracture. These parameters were 

then compared with age and gender matched healthy controls. Biopsies were taken from 

12 female intracapsular hip fracture cases and 11 age- and gender-matched control 

femoral neck biopsies. Bell et al. suggested that increased cortical porosity in patients 

with hip fracture appears to depend on the presence of giant canals in the femoral neck. 
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These canals are related to clusters of remodeling osteons. The study revealed that the 

osteonal systems were nearly twice as prevalent and had significantly thinner walls in 

patients with fractures. This study therefore, suggests that the deficits of remodeling in 

hip fracture are specific to composite osteons, which leads to increased porosity of 

cortical bone (120).  

Most of the bone mass that is lost in postmenopausal women is from the 

deterioration of trabecular bone (55). This is again due to the rapid rate of bone turnover 

in trabecular bone when compared with cortical bone (54). This negative effect of 

remodeling in general can be attributed to hormonal changes. The loss of trabecular 

horizontal links results in an irreversible loss of structural integrity. Since the amount of 

trabecular bone in the vertebrae is so high, this deterioration is particularly evident in the 

spine and revealed as compression fractures (122). Hence, in osteoporosis, more 

prominent changes are observed in the cortical thickness and trabecular density besides 

the normal age-related changes leading to a significant decrease of compressive strength 

in the vertebral body. Thus, these changes increase the likely occurrence of fracture. 

Therefore, loss of bone, particularly the trabecular bone, will cause a significant decrease 

in mechanical strength of the vertebral body (123). 

On the other hand, studies have also suggested that the strength of the bone varies 

depending upon the skeletal site and type of bone. Experiments on fatigue resistance of 

trabecular and cortical bone suggested that cortical bone tissue has higher fatigue 

resistance than trabecular bone tissue. Findings of Guo et al. (108) suggest that the 

trabecular tissue is 20-30 % less stiff than cortical bone tissue. The authors proposed that 

these differences could be due to the differences in tissue morphology (108). In another 
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study, loads on the rat femoral neck showed more withstanding ability due to cortical 

bone than cancellous bone (124). 

Material properties 

Bone is primarily composed of inorganic apatite crystals. These apatite crystals 

help in the mineralization of organic type I collagen matrix. Several factors such as the 

degree of mineralization, material properties of collagen matrix, crystal size and the 

mineral to matrix ratio all contribute to the strength of the bone. However, it is of 

importance to understand the role of mineralization and collagen, as these are the primary 

factors that affect the material properties of bone (13, 28, 125).  

Mineralization 

The degree of mineralization of bone has a significant effect on bone strength 

(125). The changes in the degree of mineralization and its distribution occur due to 

changes in turnover. These changes can modify the mechanical properties of bone. Low 

mineralization leads to reduced stiffness and strength while conversely, stiffness and 

strength are increased with high mineralization (126, 127). This is also confirmed by a 

study conducted by Follet and colleagues (125) in which a greater degree of 

mineralization of cancellous bone led to greater stiffness and compressive strength, while 

bone matrix volume and micro-architecture remain unchanged. However, a continuous 

increase in mineralization reduces fracture toughness, making bone more brittle and 

prone to fracture (14, 28, 126). There may be an optimum level of turnover that is 

appropriate for a balanced distribution of low- and high-mineralized bone which would 

increase bone's resistance to fracture (14, 28). 
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 The distribution of bone mineral depends not only on the remodeling activities of 

bone cells but also on the time course of mineralization of newly formed bone matrix. 

Ciarelli et al. (127) used back-scattered electron microscopy to study the mineralization 

levels of human iliac cancellous bone. Findings showed that the newly formed superficial 

areas of bone in women had a high rate of bone turnover and were significantly less 

mineralized. The authors concluded that both low and high mineralization may be 

detrimental to bone mechanical properties, with low mineralization levels causing 

reduced stiffness and strength and high mineralization leading to reduced fracture 

toughness due to increased brittleness. Hence, bone mineralization may also be 

considered as one of the factors influencing bone quality (89, 99). 

Collagen 

 Besides bone mineralization, another factor that is found to affect bone quality is 

the content and the structure of collagen. The chemistry of cross-links is one of the most 

distinctive characteristics of type I collagen found in mineralized tissue. Bones from 

patients with osteoporosis showed a reduced concentration of cross-links (128).  This is 

also supported by another study conducted by Oxlund and colleagues (82, 129). They 

collected vertebral bones from deceased individuals with osteoporosis and healthy 

individuals matching there age and gender. The trabecular regions of the vertebral bones 

from both the groups were observed for cancellous bone collagen. Increased 

extractability and a significant reduction in the concentration of divalent reducible 

collagen cross-links were observed in the individuals with osteoporosis when compared 

to the control group. The extractability of bone collagen depends on molecular packing, 

non-covalent intermolecular forces, and cross-links between collagen molecules. Also, a 
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reduced concentration of collagen cross-links was observed in the bones of individuals 

with osteoporosis. This change in the bone results in a reduction of the material strength 

of the bone trabeculae. This explains why individuals with osteoporosis had fractures 

even though they had a similar amount of trabecular bone as the healthy controls. 

Therefore, cross-links of collagen are considered one of the important factors 

contributing to bone quality. However, the influence of collagen on the stiffness of bone 

is less, but it improves bone toughness through intramolecular cross-links (82, 129).  Also 

the collagen fiber orientation shows 71% of variation in bone tensile strength when a 

linear regression analysis was performed (4).  Hence, collagen cross-links also influence 

bone quality.  

Bone Biomechanical Properties 

Fractures occur in bone when there are alterations in the distribution of bone 

mass, bone micro-architecture, and the degree of mineralization (125). These factors 

together affect the strength of the bone ultimately affecting the load carrying ability. The 

load carrying behavior of bone is better understood in terms of its biomechanical 

properties (5, 89). The biomechanical properties of bone are understood by the properties 

that are associated with elastic and inelastic reactions when a force is applied (2). These 

properties also involve the relationship between stress and strain (2).  The biomechanical 

properties of bone are understood by all the parameters of strength such as compressive 

strength, tensile strength, and shear strength. Other parameters like strain, fatigue life, 

modulus of elasticity also describes the mechanical properties of bone (2, 3). 

Bone fatigue may result in fracture. Fatigue occurs as a result of the degradation 

of bone strength and decrease in modulus of elasticity. This reduction in mechanical 
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properties or strength of bone occurs when micro-cracks are formed in the bone. These 

cracks or fractures of bone grow under repetitive stress (2-4). Fatigue may also occur 

more rapidly as a result of intense exercise when compared to normal activities (4). The 

modulus of elasticity describes the stiffness and hardness of bone (2). Elastic modulus is 

the ratio of stress and strain that explains the degree of deformation due to the force or 

load applied, by providing a value for stiffness. Therefore, bone or any material having 

higher stiffness subsequently has higher elasticity (1). However, the modulus of elasticity 

varies depending upon the direction, as the material properties of bone differ in all 

directions (anisotropic). The mature cortical bone has a modulus of elasticity of 18 

gigaPascals (GPa) in longitudinal direction and 12 GPa in transverse direction. Similarly 

the trabecular bone elasticity ranges from 0.1 to 3.5 GPa. The stiffness of a bone varies 

depending upon the degree of mineralization as observed in immature or woven bone and 

porosity as observed in a old bone. Reduced stiffness thus, lowers the modulus of 

elasticity (4). The ratio of stress to strain at any point in the elastic region of deformation 

yields a value for stiffness. The stiffer the material, the higher is the modulus. The moduli 

in compression and tension are different for most biological materials because they are 

anisotropic. 

In other words, the biomechanical properties of bone are those that describe the 

extrinsic and intrinsic properties of bone. Whole bone properties are called extrinsic 

properties of bone. Bone tissue properties such as stress and strain are called intrinsic 

properties of bone (5, 89). In order to understand these biomechanical properties of bone 

several biomechanical tests are used (5). 
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Mechanical testing of bone tissue is intended for determining the mechanical 

properties at the whole-bone, architectural, and bone-tissue level under different loading 

conditions. Primarily three kinds of biomechanical tests are used for assessing the 

biomechanical properties of bone: tension, compression, and torsion (130). Bending or 

flexion tests are also used. A bending test is practical method to measure the mechanical 

properties of small animal bones. Using this test one can determine both compression and 

tension of the bone. Tensile stress occurs when the material is stretched whereas when 

the material is compacted it results in compression stress. Usually fractures occur on the 

tensile side, as bone is weaker in the tension. To assess the properties of bone either a 

three-point or four-point bending test can be performed (5). Three-point bending is 

simple, and, hence, it is preferred when using rodent bones (5). In a three-point bending 

test the two ends of the bone are supported by fulcra, and then the force is applied at the 

mid shaft in the perpendicular direction of the long axis of the bone by a crosshead 

moving at a constant speed (59). In a four point bending test force is applied equally at 

four loading points: proximal and distal ends, and two points along the longitudinal axis. 

Applying equal force in all the directions is difficult when using rodent bones because of 

the irregular shape of the bones. However both types of bending tests have certain 

disadvantages: 1) they provide information only on a few elastic constants of bone 

biomechanical properties as the bone is destroyed in this method; and 2) the mechanical 

loading of the bone can be tested only in one axis while measuring the forces due to axial 

deformation. This affects the assessment of trabecular bone properties as the trabecular 

bone displays both anisotropic and visco-elastic properties. Therefore, the reproducibility 

of single mechanical test at a given orientation of the bone specimen and strain rate is 
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limited (130, 131). As a complement approach to mechanical testing, micro finite 

element analyses have been developed to calculate the elastic constants of bone 

specimens from computer models representing the trabecular micro-architecture (130).  

Assessment of Bone Biomechanical Properties Using Finite Element Analyses 

Finite element analysis takes into account both the geometric structure and the 

material properties. A finite element model can be generated using the computed 

tomography images that provide both three-dimensional geometric details and 

information about the material properties. Previously, studies have determined the 

mechanical properties of whole bone, trabecular bone (90, 132), and osteoporotic bone 

(133) using finite element models derived from the CT images. Studies have also 

examined the sensitivity of the model to material properties (35, 134, 135), image and 

mesh resolution, and element type (136, 137) that are important in accurate 

biomechanical measurements.  

In order to understand the biomechanics of bone, it is important to know the 

terminology that describes the material properties of bone. The total force parameter is 

used to describe the force required to crush bone completely (11). Physiological force is 

30% of total force required to crush the bone at a physiological state. Stress is defined as 

the �load per unit area� whereas strain is the �fractional or percentage change in length.� 

Strain is calculated as �the amount of deformation divided by the original length of the 

specimen.� Increasing the stress causes bone to break. Before failure or breaking the 

specimen deforms which is known as strain (4). The Von Mises stresses are used as an 

indicator of the amount of stress within a bone when force is applied (11). The stiffness 

of bone is defined as its rigidity (5). 
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  The finite element models are generated from high-resolution images. These 

images are obtained from the cross-sectional images of a region of interest of the bone 

specimen. The images thus, obtained from micro-computed tomography (µCT) system 

are digitized and stacked in order to rebuild the original structure of the specimen as a 3D 

voxel model. The micro-computed tomography (micro-CT) uses an image resolution of 

50 µm or better for specimens of approximately 8 cm in length. Using micro-CT 

technology has lowered the difficulty of assessing the biomechanical properties of bone 

specimens. In addition to micro-architecture, the FEA analysis helps to understand the 

properties of bone at tissue level. Three-dimensional images are developed by building 

the successive levels or several layers of bone tissue. Bone reconstructions thus 

developed artificially represent a geometric simulation of the tested specimen. Using 

these models, the analyses on bone can be performed at the architectural or whole bone 

level (90, 138-142). This combined approach of experiments and computer modeling has 

great potential in studying the quality of tissue-engineered trabecular bone (136, 137). 

However, in addition to finite element analysis it is important to understand the 

mechanical behavior in the direction of the applied load, since fractures are more prone in 

that direction. This mechanical behavior of bone can be understood by degree of 

anisotropy.  

Degree of Anisotropy 

Similar to other biological structures, bone has a certain grain or a preferred direction 

associated with the structure known as anisotropy (5, 143). �Anisotropy is constituted under 

the influence of preferential-oriented force applied to bone and permits [bone] to establish 

resistance to these strengths in a given preferential direction (144).�  In other words, 
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anisotropy characterizes the degree of directional organization of a material. The more 

preferential direction the structural organization has, the more important is the degree of 

anisotropy (DA). The anisotropy of trabecular bone depends on the skeletal site. Anisotropy 

was assessed in several bones such as the calcaneus, hip, vertebrae and radius. The results 

have shown that the main direction of force applied to the bone influences anisotropy (145-

147). 

 In a study, Sugita et al. (143) investigated the anisotropy of femur bones to examine 

the mechanism underlying femoral neck fracture. This study utilized twenty-three femoral 

heads from 20 female and three male patients with femoral neck fracture and with a mean 

age of 79.9 ± SD years. The femoral heads were removed during endoprosthetic replacement 

and stored at −20°C. They were defrosted in physiological saline at room temperature. The 

specimens obtained from each femoral head were randomly assigned for testing into two 

groups: parallel and perpendicular. The parallel group included 43 specimens, and the 

perpendicular group included 39 specimens. A compressive load was applied either parallel 

or perpendicular to the primary compressive group of the specimens in each respective 

group. Three parameters were obtained: compressive stiffness, maximum stress, and 

maximum energy. Each wet trabecular bone specimen was subjected to a stress-strain test in 

which compressive stress was applied either parallel or perpendicular to the primary 

compressive group. The compressive stress load was produced by displacement of the upper 

and lower plates of a servo-drive compression test machine (1356, Aiko, Kyoto, Japan) at a 

speed of 0.065 mm/sec. The magnitude of the applied load was measured by a strain force 

transducer (LU-200KE; Kyowadengyou, Japan) attached to the upper plates. Deformation of 

the specimen was measured by the displacement transducer (DT-20D; Kyowadengyou, 
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Kyoto, Japan) attached to the lower plate. The study confirmed that mechanical behavior of 

cancellous bone changed with subsequent changes in the testing direction. These variations 

were interpreted as an anisotropic feature of bone stress. Also it is observed that the 

trabecular bone anisotropy corresponds to the preferential orientation of trabeculae.  The 

authors concluded that anisotropy of the cancellous bone should be considered in predicting 

the fracture risk (143). 

The anisotropy evaluation can be done either on three-dimensional (3D) or on two-

dimensional (2D) images. The most currently used method to assess anisotropy is the mean 

intercept length (MIL) using three-dimensional (3D) images. The principle behind this 

method is to fit an ellipsoid to a polar diagram plotted with the values of the MIL obtained in 

several directions. The MIL for each direction is calculated as the total line length divided by 

the number of intersections between the bone-marrow interfaces. The magnitude and the 

vector orientations of three main MILs are determined from this ellipsoid. Based on these 

MILs, the DA can be defined as the ratio of the longest MIL vector magnitude to the smallest 

one. The MIL method is also used on 2D images where an ellipse is generated instead of an 

ellipsoid. Using MIL method for the evaluation of the degree of anisotropy is generally 

considered accurate (133, 147-149).  

Micro-CT generates data on DA using MIL method and three-dimensional images. It 

is suggested that poor bones have higher DA values (150).  When an analysis was performed 

for the bone graft market, it was observed that the porous hydroxyapatites with anisotropic 

characteristics showed lower compressive moduli than the isotropic specimens with the same 

apparent densities (151, 152).  Similar findings were suggested by Chappard and colleagues 

(147) from their study. They found higher DA values in the bones of subjects with vertebral 
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fractures than in control subjects.  Furthermore, the L1 and L2 vertebra of dogs that showed 

an improvement in the structural properties following alendronate treatment also showed a 

decreased degree of anisotropy in the bone specimens (153). 

Assessment of Bone Structural Properties Using Micro-Computed Tomography  

Advanced non-invasive techniques are essential for obtaining information on 

bone microstructure of specific parts of the skeleton and for determining its evolution 

with age and progression of disease. Specifically, to estimate mass losses and density 

variation, the key elements are microanalysis and classification of cortical and cancellous 

parts of bone. The commonly used techniques for diagnosis are radiography and 

laboratory tests such as biopsy, but the results are limited to two dimensional (2D) image 

measurements. These do not assess completely the complex three-dimensional structure 

of bone. Computed tomography (CT) offers the opportunity to obtain three-dimensional 

(3D) mapping of bone structure (154). Recent studies demonstrated that micro-CT can 

produce images from a variety of species at whole bone level (155). However, creating 

images from larger species using micro- CT is difficult, but possible if higher computing 

resources are used. Therefore, whole bone micro-CT is currently used for only small 

bones like rats and mice due to practical constraints (156). 

Micro-computed tomography thus, can be used as a tool to understand the 

structure of bone at the whole bone level. For example, in a study conducted by Bonadio 

et al. (156) the images of mouse bones were used to measure the cross-sectional 

properties. This is achieved by using micro-CT at 20µm resolution. The authors were 

able to demonstrate a compensatory increase in the amount and distribution of cortical 

bone tissue, while maintaining whole-bone properties in spite of a decrease in the tissue 
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properties observed in another similar study conducted on MOV-13 transgenic mice 

(157).  Also, this study revealed that it is possible to estimate a combined effect of 

mechanical testing based on the descriptions of the structure obtained from micro�CT 

images. Thus, based on the information obtained by measurements made from whole-

bone micro-CT images and whole-bone mechanical testing the authors were able to 

hypothesize that there was degradation in the mechanical properties of the tissue. The 

authors later confirmed this by performing mechanical testing at the tissue level (156). 

In recent years the use of micro-computed tomography (µCT) has become very 

popular in measuring the bone samples, because of its relative rapidity compared with 

conventional histology and its potentiality as a nondestructive method (158). Also, since 

bone mineral density alone is not enough to assess the risk of fracture, the distribution of 

bone mass is used as a predictor of fracture risk. Bone architecture assessed by micro-CT 

explains the distribution of bone mass in three-dimensional space. Bone architecture 

contributes to the tissue's biomechanical integrity and, therefore, to fracture risk (24, 

115). Increased bone fragility with age could also be caused by a change in material 

properties of the tissue (159).  Hence, it is very important to assess the changes in 

trabceular architecture, which is thus, made easy and possible by micro-computed 

tomography. It is observed in osteoporosis there is a decline in bone tissue, especially 

trabecular bone (160, 161). Skeletal fractures are the major complications of osteoporosis 

leading to increased morbidity and mortality in patients affected by this disease. Hence, 

micro-CT is increasingly used for the study of osteoporosis and other bone related 

disorders in animal models. 
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Connectivity, a property described by µCT analysis, decreases as bone mass 

decreases (162, 163). Although connectivity is not related to bone mass, it is very 

important to consider as a structural component contributing fracture risk (164). In a 

study conducted by Ulrich et al. (165) human cancellous bone (N=237) from different 

skeletal sites (iliac crest, lumbar spine, femoral head, and calcaneus) was used to 

calculate structural indices and elastic constants. These values were used to explore the 

predictive value of various three dimensional structural indices (3D) for understanding 

the elastic properties of bone. These 3D images were used to calculate bone volume over 

total volume (BV/TV), bone surface volume over total volume (BS/TV), trabecular 

thickness (Tb.Th), trabecular separation or spacing (Tb.Sp), trabecular number (Tb.N), 

and MIL ratio and for micro structural finite-element (micro-FE) analysis. These values 

were used to calculate Young's moduli, Shear moduli, and Poisson's ratios. A group of 

critical specimens was selected to represent specimens that could not be identified as 

osteoporotic or normal based on the BMD measurement alone. Using linear multivariate 

regression analysis the critical specimens, structural indices and elastic constants were 

correlated. When one of the 3D structural indices was included as an independent 

variable it was found that the elastic constants correlated better than when BV/TV was 

used as an independent variable. The correlation coefficients (r2 values) increased from 

53% (BV/TV alone) to 82% (BV/TV and MIL ratio) suggesting that including these 

structural indices in the model improved the correlation values.  However, these indices 

that were identified as more significant were not the same for the different skeletal sites. 

The elastic constants for cancellous bone samples demonstrated an improvement when 

BV/TV is supplemented with structural indices. The authors concluded that the diagnosis 
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of osteoporosis and the mechanical properties of bone assessment could be improved if 

3D bone micro-architecture is used in addition to BMD (165). Thus, micro-computed 

tomography  (µCT) enables analysis of three-dimensional bone architecture in relation to 

bone strength by using high-resolution imaging technique (166, 167). A complete data set 

of three-dimensional bone architecture images forms the basis for finite element 

modeling (FEM) that helps to predict the mechanical properties of bone (22, 90) 

Rat as animal model for studying bone 

For many women today, a major health problem is postmenopausal osteoporosis. 

Understanding osteoporosis is hindered by the complexity of studying the disease, as it is 

restricted to humans. Osteoporosis is characterized by a slow progression of disease (16), 

and, hence, it requires several years of study duration in response to a therapy. Since the 

results come slowly, gathering data is time consuming. Also, it is difficult to maintain a 

study group for reasons of natural attrition either due to relocation or death. Hence, it is 

very helpful to choose an animal model that can provide more uniform experimental 

material, which allows for wide testing of future therapies. An appropriate experimental 

animal model that is selected carefully for the study of osteoporosis minimizes the 

limitations associated with studying the disease in humans such as time and behavioral 

variability among test subjects (168, 169). The selection of any animal model should be 

based on appropriateness, convenience, and relevance (170).  

Appropriateness 

All the factors that are acceptable as well as that facilitate studying a particular 

condition in an animal model are known as appropriateness (169). The rat is an 

appropriate animal model for studying factors related to bone development and 
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osteoporosis because growth patterns in a rat model is similar to humans. Rapid increase 

in length, weight, density and calcium content of femurs occur from one to three months 

of age in rats, which is similar to humans during rapid growth periods. There is an 

enormous modeling, remodeling, and growth occurring in this period. Hence, this age 

group can be opted for studying childhood and adolescence in humans.  A gradual 

increase is observed from the age six months in rats (169). At 12 months of age all bone 

parameters in rats reach stability and no further changes up to 24 months of age occur. 

A second factor that should be considered in selecting an animal model is that the 

anatomy and physiology should be similar to humans (168). Researchers should consider 

the following aspects to determine an appropriate animal model: �1) appropriateness as 

an analog, 2) transferability of information, 3) genetic uniformity of organisms where 

applicable, 4) background knowledge of biological properties, 5) cost and availability, 6) 

generalizability of the results, 7) ease and adaptability to experimental manipulation, 8) 

ecological considerations, and 9) ethical and societal implication (171).� 

The effects of ovariectomy have been studied in rats at different ages. Kalu 

suggested two ideal age groups that were especially appropriate for studying 

postmenopausal osteoporosis: mature rats (approximately three months of age) and aged 

rats (12 months old). At 3 months of age bone growth in the rats slows drastically and 

plateaus by 12 months (172). A high degree of genetic homology is observed between 

humans and rats (93%). Hence, the adult rat skeleton has many similarities to the human 

skeleton and is appropriate for studying bone and related problems. The size of bone in 

both humans and rats increases by epiphyseal and periosteal growth (5, 173).  Rats also 

experience the remodeling process of the secondary spongiosa like humans (174). Also 
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male rats undergo epiphyseal closure at the proximal tibia at about eight months of age 

whereas female rats undergo closure at about 10 months of age by bony bridging (175), 

leading to a slowing of the rate of bone growth.  

  Acheson et al. (176) studied female (N=13) and male (N=10) Sprague Dawley 

rats for skeletal development and compared rats for similarities to human skeletal 

development. Starting from 20th day the rats were weaned and fed ad libitum. The rats 

were separated by sex.  Using radiography techniques based on the principles of Oxford 

method, the skeletal maturation of rats was assessed. The changes that occur in the 

epiphyses of both long and round bones and irreversible processes during maturation 

were observed. These changes, which are otherwise called as maturity indicators, 

indicated that there are similarities between rat model and human skeletal system. Female 

rats matured more quickly than male rats, but at all stages of growth male rats were 

heavier and longer than the female rats. It is also observed that in male rats, the body 

length increased at a higher rate whereas it decreased in female rats between 70th and 80th 

day of life. At birth both the rat and human skeletons are immature and incompletely 

mineralized. Hence, the rat is an appropriate model to study the skeletal development as 

most of the changes to cartilage bone occur outside the uterus facilitating the study of 

stress as well as and other environmental factors.   

Convenience 

 The simplicity in using an animal model is known as convenience (169). It is 

convenient to maintain and work with rat model.  Rats are relatively economical with 

fewer ethical constraints when compared to other animal models such as dogs and non-

human primates. They are widely available with a well-characterized skeleton and they 
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grow rapidly. The shorter life span of rats also facilitates studies on the effects of aging 

on bone (177). 

Relevance 

 Comparisons made between animals and humans with reference to a particular 

event or aspects that are being studied are considered as relevance (169). There are many 

skeletal similarities between rats and humans. Similar to postmenopausal women, aged 

ovariectomized female rats also showed higher levels of bone loss in vertebrae than in 

femur i.e., the loss of cancellous bone was higher than cortical bone loss (169, 178). A 

similar pattern was observed in bone resorption exceeding the bone formation with an 

increase in the levels of biochemical markers of bone turnover (169). The ovariectomized 

rat model and postmenopausal women showed similar characteristics like rapid loss of 

cancellous bone, decreased intestinal calcium absorption, and a positive response to 

treatment. The response to treatment in ovariectomized rats given estrogen, 

biophosphonates, calcitonin, vitamin D and its analogs, tamoxifen, parathyroid hormone, 

and exercise showed similar preventive effects on bone loss as found for postmenopausal 

women. These similarities thus, confirm that the rat model is suitable for studying 

osteoporosis. Rat bones also show a similar skeletal composition of humans. The skeletal 

system in humans and rats consists of 80% cortical bone and 20% trabecular bone (179).  

Wang et al. (180) reported that Sprague-Dawley rats show a significant age-

related bone loss in the cortical and trabecular bone. The loss of bone started from nine 

months of age when bone growth had been completed. The authors suggested that the 

vertebra and femoral neck are the relevant bone sites to determine the cause of the loss of 

bone, and Sprague-Dawley rats are appropriate animal models to study for age-related 
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bone loss. No significant age-related changes are observed in F344 rats (80). Therefore, 

not all strains of rats are suitable animal models for studying age-related bone disorders. 

Associated problems with rat model   

Osteoporosis is a widespread disease, and numerous human subjects are available 

to conduct research. The rat model is preferred by researchers, however, due to ethical 

constraints that confine their ability to test new hypothesis or potential therapies in 

human beings (169). While the rat model has several advantages, there are certain 

disadvantages like the small blood volume for multiple biochemical measures and small 

total amount of bone available, minimal intra-cortical bone remodeling, and size related 

difficulty of performing surgical procedures. 

 It is well known that the aging rat shows increased bone fragility and a reduction 

in cortical bone, but it is unclear if this results in the higher incidence of fractures. 

Another problem is that rodents do not experience a natural menopause. As a result, a 

stable skeletal mass is maintained throughout the life span (169). Rats show a continuous 

estrus cycle for most of the life span (about 19 months of age). During this period, the 

bone mass is maintained due to the secretion of sex hormones by the ovaries. 

Ovariectomy has been used to produce an artificial menopause. In spite of having 

Haversian systems, although minimal in aged rats, and a significant loss of bone mass 

after ovariectomy, rats have a very limited naturally occurring multicellular unit-based 

remodeling (169, 172, 181, 182). They also have a fine-fibered lamellar bone trabecular 

remodeling and no intracortical remodeling. A rapid growth of longitudinal bone is 

observed in the long bones of rats after ovariectomy. However, this can be minimized by 
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using aged rats (9-12 months old) or by studying the skeletal sites where reduced 

longitudinal growth is seen such as lumbar vertebrae (181). 

Rats exhibited continuous growth including increased body weight when they 

were fed ad libitum. However, this increase in weight is due to the high deposition of 

body fat rather than to increases in lean body mass. Rats showed a decrease in body 

weight as well as lean body mass once they started aging. A decrease in osteogenesis and 

epiphyseal growth plates of rats between six to 18 months of age has been indicated in 

several studies. If rats live long, then they may suffer from senile bone loss (175).  

Rats show a very minimal Haversian remodeling of cortical bone (169, 183). This 

contributes to less bone remodeling in cortical bone (184-186).  As a result there will be a 

reduced accessibility to study the ovariectomy-induced changes in regions that contain 

higher amounts of cortical bone such as femoral diaphysis. It is very important to study 

the cortical bone changes in humans, such as the perimeter of the femoral neck as they 

can be clinically very important. This suggests that a careful approach is required in 

determining the various sites to be studied in rat, as there are differences in certain 

locations of human bone growth (183). However, the cancellous bone of rats is similar to 

humans in the remodeling activities of activation, resorption, and formation at several 

sites (23). Hence, it can be concluded that in spite of their differences, rats exhibit a 

similar mechanism of bone turnover as seen in humans and can be considered a good 

model for studying bone.  

Rat model and iron absorption      

Growing rats are extensively used for studying mineral metabolism. However, it 

is important to consider the differences between rat and human metabolism when using 



 47 
 

 

rats for the assessment of dietary iron absorption as they have serious limitations. It has 

been revealed that rats have higher iron absorption rate than humans. Though the actual 

cause is unclear the possible reason is predicted as the ability of rats to synthesize 

ascorbic acid.  Since studies on humans have established that iron absorption is enhanced 

by ascorbic acid, the differences in iron absorption of rats and human could be due to the 

effective absorption of iron facilitated by ascorbic acid (187) 

Effects of iron on bone 

Tuderman et al. proposed that iron is a cofactor for prolyl and lysyl hydroxylases. 

These enzymes act as catalysts in the ascorbate dependent hydroxylation of prolyl and 

lysyl residues which is an essential step in cross linking of lysyl oxidase (188). A similar 

but detailed mechanism of iron and its role in collagen formation has been explained by 

O� Dell (21). 

There are at least 4 types of collagen but 90 % of bone collagen consists of Type I 

collagen.  This collagen molecule is made up of three polypeptide units that are in the 

form of a coil known as α-chains. During the biosynthesis of collagen, procollagen is 

produced. From the α-chains, these peptide extensions are removed from the amino and 

carboxyl ends by a process known as hydroxylation. The amino acids in type I collagen 

include hydroxyproline and hydroxylysine, but hydroxyproline is present in higher 

amounts.  Both of these should be incorporated into peptides of collagen. This is done by 

post-translational hydroxylation. Three enzymes namely prolyl-4-hydroxylase, prolyl-3-

hydroxylase and lysyl hydroxylase are required for this process. All these enzymes 

require ferrous iron as a cofactor. Proline hydroxylation is necessary for triple helix 
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formation, which is necessary for cellular secretion of collagen. Therefore, iron plays a 

very important role in the collagen synthesis of bone (21). 

Effects of iron deficiency on bone 

 Iron acts as a co-factor in collagen synthesis and, thus, play a very important role 

in bone formation (21, 188). There are only a few studies to support the hypothesis that 

iron deficiency affects collagen metabolism. This could be due to the fact that anemia and 

other pathologic signs are observed initially before any changes could be seen in collagen 

hydroxylation (21).  

 Rothman et al. conducted a study to see the effects of iron deficiency anemia on 

fracture healing. For the purpose of the study, 120 Sprague Dawley rats weighing 300g 

were randomized into two groups: a control group fed a diet of powdered milk with a 

multiple vitamin supplement with adequate iron and an experimental group fed with the 

same type of diet as control except for iron. Anemia was induced by withdrawing four 

milliliters of blood once a week for four weeks. Iron deficiency anemia in the 

experimental rats was confirmed by hematocrit and serum iron measures. Fracture was 

induced by surgical procedures in the midshaft of the right fibula of both the 

experimental and control rats. Rats were sacrificed after the fracture at 3, 6, and 8 weeks. 

At each time period forty rats were sacrificed. To evaluate the fracture healing, tensile 

strength and microscopic examination of histologic serial sections of the site of fracture 

were used (189).  

Tensile strength at three weeks, six weeks and eight weeks were compared 

between the control and experimental rats.  Significant differences were observed 

between the treatment group and control group. The treatment group showed lower 
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fibular tensile strength as well as fracture non-union and retardation of fracture healing 

when compared to the control group rats after fracture. No differences were noticed 

between anemic and control rats in serum calcium, phosphorus, alkaline phosphatase 

(ALP), serum glutamic-oxaloacetic transaminase (aspartate aminotransferase or AST), 

albumin or uric acid (189).  

In another study Heppenstall and Brighton observed fracture healing in the 

presence of anemia in 30 male white New Zealand rabbits (weighing 2-3 kg). Animals 

were randomized in three groups: control group, normovolemic treatment group and 

hypovolemic treatment group.  Blood was withdrawn (20 mL) from the control group and 

then the whole blood was re-injected. In normovolemic treatment group 20 mL of blood 

was withdrawn, red cells discarded, and then an equal volume of plasma was re-injected. 

Phlebotomy (20 ml of blood) was performed in the hypovolemic treatment group. 

Fracture was induced in the fibula of all the animals through surgical procedures. The 

animals were sacrificed 21 days following fracture. A three point bending test was 

performed on the fibulae. Roentgenograms and histology was also performed (190). 

 The results of the control group were compared to other two treatment groups. 

Both the treatment groups, normovolemic and hypovolemic, showed a lower serum 

hematocrit values when compared to control group. The fibular strength and fracture 

healing was assessed by roentgenogram and histological testing. Findings revealed 

healing in control group and normovolemic group whereas a delay was observed in 

hypovolemic group. Also strength of the fibula in control and normovolemic groups was 

similar but very low strength was seen in normovolemic group. In spite of anemia, the 

normovolemic group exhibited fracture healing similar to the control group. This could 
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be due to the increased cardiac output and normalized tissue oxygen delivery since proper 

blood volume is maintained. But the hypovolemic rats were unable to repair the fracture 

due to decreased oxygen delivery secondary to blood loss as well as to loss of plasma 

constituents (190).   

 Deficiency of iron can cause alterations in the metabolism of other nutrients like 

calcium, phosphorus and magnesium.  Campos et al. (191) conducted a study using 94 

weanling male albino Wistar rats to observe the possible interactions between calcium, 

phosphorus and magnesium after inducing nutritional iron deficiency. Animals were 

randomized into two groups: control group and iron deficient rats. All animals were fed a 

diet according to AIN-76 recommendations for all nutrients except iron. An aliquot of 

blood was obtained at different time points (0, 10, 20, 30 and 40 days).  The levels of iron 

in the treatment group was lower in liver, spleen, sternum, and femur when compared to 

control group at all time points. But an increase in the intestinal calcium, phosphorous, 

and magnesium absorption was observed in treatment group. However, the phosphorous 

and magnesium balance decreased and that of calcium levels remained unchanged as the 

treatment progressed (191).  

In the treatment group, serum calcium concentration was low at all time periods. 

Similarly, calcium, phosphorous and magnesium content also decreased in the femur at 

all time periods compared to control rats. Besides bone mineral content no other bone 

measures were taken. Significant increases in serum cortisol and parathyroid hormone 

(PTH) were observed in iron deficient animals when compared to control group after 40 

days of dietary treatment. The authors concluded that mineral metabolism of calcium, 

phosphorous, and magnesium was altered with iron deficiency anemia (191).  
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 Yokoi et al. (192) used male Wistar rats to study the effects of dietary iron 

deficiency on mineral levels in tissues of rats. The rats were fed with either 128 

micrograms iron/g (control) or an iron-deficient diet containing 5.9 micrograms iron/g 

(treatment). Iron concentrations in different tissues of the body i.e., blood, brain, lung, 

heart, liver, spleen, kidney, testis, femoral muscle, and tibia were lower in rats fed with 

iron deficient diet when compared to control group. Similarly, magnesium and zinc levels 

in blood were also lower in treatment versus control groups. However, calcium and 

copper in blood and liver were significantly higher in treatment versus control animals. 

Significantly higher manganese concentrations were found in iron deficient 

animals as compared to the controls in brain, heart, spleen, kidney, testis, femoral muscle 

and tibia. Based on these results it can be concluded that iron deficiency affects mineral 

status (iron, calcium, magnesium, copper, zinc, and manganese) in rats (192). 

 The influence of copper and iron deficiencies on the femoral mineral content and 

biomechanical properties was examined in 3-week-old male weanling Long-Evans rats. 

The rats were randomly assigned to one of three dietary treatments: control (n = 5), 

copper-deficient (n = 6) and iron-deficient (n =7) groups until 9 weeks of age. Femur 

bone mass was assessed using radiography and single photon absorptiometry. A 

significant decrease in the breaking strength of femur was observed in rats fed both 

copper and iron deficient diets. Also rats fed both of these diets (copper and iron 

deficient) showed smaller cortical area, but larger medullary area in femur one fourth 

from the distal end but no differences were found in the midshaft and proximal end of the 

femur when examined by radiography. However, no significant differences were 

observed in BMD and BMC. The authors concluded that iron deficiency significantly 
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influences bone biomechanical strength and hence, further research is required as iron 

deficiency anemia is one of the major public health concern (193). 

Medeiros et al. (15) studied the impact of iron deficiency on the morphology and 

density of rats� femur and tibia. Thirty-two weanling Long-Evans male rats were 

assigned to one of four dietary regimens: control diet as per the recommendations of AIN 

in 1980, an iron-deficient diet (5-8 mg/kg or 89-143 µmol/kg diet), a calcium restricted 

diet (1.0 g/kg Ca or 0.025 mol/kg diet) and an iron�deficient and calcium restricted diet 

with a sample size of eight in each group. The diet was continued for five weeks. Rats fed 

low calcium and iron diets showed significant changes in bone density and morphometry. 

All the three experimental groups showed a decrease in the tibia, cortical and total 

femoral width compared to the control group. Iron-deficient diet fed rats also showed a 

significant decrease in medullary widths compared to the other three groups. Similarly, 

total cortical bone area also decreased in all the three experimental groups compared to 

controls. However, the tibia cortical area in the iron-deficient rats was greater than that of 

calcium restricted or calcium and iron restricted groups. Also DXA analysis on bone 

density showed a significant reduction in iron-deficient, calcium restricted, iron and 

calcium deficient groups when compared to control group. It appears from this study that 

iron deficiency decreases bone mass and increased bone fragility. The authors suggested 

that iron deficiency has a negative impact on bone health and this is aggravated by a 

calcium-restricted diet (15). 

In another recent study, Medeiros et al. (11) observed the effect of iron deficiency 

on bone micro-architectural parameters. Thirty-two weanling female Long-Evans rats 

were randomly assigned to one of the four groups of diet: control, calcium restricted (1.0 
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g Ca/kg diet), iron deficient (<8 mg Fe/kg diet) and control, pair-fed to the iron-deficient 

group. The study examined if iron deficiency has direct adverse effects on femur and 

vertebral trabecular bone. Both BMD and BMC were lower in the calcium-restricted and 

iron-deficient rats than pair-fed and control rats when DXA analysis was performed on 

the whole body and femur. However, pair-fed rats also showed a decrease in the femur 

BMD and BMC when compared to control rats. Bone strength measured by finite 

element modeling was compromised in femurs from rats fed calcium-restricted and then 

in iron-deficient diets compared to pair-fed and control groups. Analyses by micro-

computed tomography (Micro-CT) on the third lumbar vertebrae revealed that bone 

volume fraction (BV/TV), trabecular number (Tb. N) and trabecular thickness (Tb. Th) 

decreased in both calcium and iron deficient groups with an increase in the trabecular 

separation (Tb. Sp). Also the architectural parameters affected the structural model index 

(SMI) and exhibited rod-like properties in both the deficient diet groups. The control and 

pair-fed groups did not differ from one another, suggesting that iron deficiency and 

calcium restriction affected vertebrae independently of food intake and body weight (11). 

 Finite element analysis (FEA) revealed that the trabecular bone of vertebrae in 

calcium-restricted rats required less total force than all the other groups, while iron 

deficient rats required less force than pair-fed and control groups, respectively. A similar 

trend was observed in bone stiffness and Von Mises stress with the calcium restricted 

group having the lowest values and then followed by iron deficient group. However, no 

significant differences were observed between control and pair-fed animals. An increase 

in urinary deoxypyridinium cross links, serum osteocalcin, and cholcalciferol were 

observed in calcium-restricted rats when compared to the other three groups. The 
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analyses by micro-CT in this study demonstrated that iron deficiency has an effect on 

micro-architectural parameters of vertebral trabecular bone but not as severe as the 

calcium restriction (11). 

Effects of iron excess on bone 

Iron, on the other hand, may act as a toxin to bone cells and contribute to 

osteoporosis or other bone diseases in people with impaired iron metabolism and iron 

overload. Schnitzler et al. (194) examined the role of alcohol, iron overload and 

hypovitaminosis C to the osteoporosis associated African hemosiderosis in 53 African 

males diagnosed with skeletal disorders (vertebral osteoporosis, femoral neck fracture, 

and osteonecrosis of the femoral head). Forty-three age-matched black males were the 

control group out of which nine were limb surgery patients and the rest (n= 34) had died 

suddenly but previously had been healthy. Double-tetracycline-labeled iliac crest bone 

biopsies and serum biochemistry were performed on patients with (+ Fe, n= 38) and 

without iron (-Fe, n=15) overload and also on controls. Bone biopsy on both  �Fe group 

and the + Fe group showed less trabecular thickness and greater trabecular separation 

than controls. The trabecular number also was lower in + Fe group than in controls. The 

+Fe group had significantly higher serum ferritin, transferrin and serum iron but lower 

levels of ascorbic acid than the �Fe and control groups. The erosion depth was 

significantly higher in + Fe group, followed by �Fe and control groups, respectively. The 

iron granules in the marrow showed a positive correlation with trabecular separation and 

erosion depth while a negative correlation was observed on trabecular number. The 

authors concluded that osteoporosis was associated with dietary iron overload and 
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resulted from a combination of alcohol abuse, iron overload, and hypovitaminosis C 

(194). 

Conte et al. (195) compared BMD and bone histomorphometric analyses among 

six human males (mean age 48.8 ± 5.5 years) with primary hemachromatosis (PH) to 

eight human males (mean age 49.5 ± 7.9 years) with alcoholic cirrhosis (AC) and thirty 

healthy male subjects (control). Densitometric and histomorphometric results indicated 

impairment of trabecular bone in both patient groups as compared to controls. Cortical 

impairments were observed only in hemosiderosis patients. Plasma alkaline phosphatase 

activity (ALP) was greater in patients with alcoholic cirrhosis. However, no significant 

differences were observed between primary hemachromatosis and alcoholic cirrhosis 

patients in the plasma or in urine calcium and phosphate. Elevated levels of creatinine-

corrected urinary hydroxyproline excretion were observed in PH and AC groups 

compared to the control group. Densitometric and histomorphometric findings suggested 

a decrease in BMD and a derangement of trabecular bone in both alcoholic and 

hemochromatotic cirrhosis. Cortical porosity was observed only in hemochromatotic 

patients (195). 

The effect of iron overload on bone remodeling has been studied in ten female 

pigs of age 76-91 days. In this study, five control pigs were compared to five pigs treated 

with 300 mg of iron dextran for 35 days. Animals were sacrificed after 36 days. Bone 

histomorphometric analyses revealed that treated pigs showed a decrease in osteoblast 

cell surfaces, double and total labeled surfaces, appositional rate, and tissue formation. 

Whereas, an increase in reversal surfaces were observed. No significant changes were 

observed in mineralization since no changes were observed in osteoid thickness. Also the 
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treatment group showed no changes in urinary calcium, phosphate and hydroxyproline, or 

on serum 25-OHD and serum 1,25(OH) 2D levels. No differences were observed in bone 

calcium, phosphate, magnesium or ash content. However, the iron content in the 

metatarsal bone was significantly higher in treated animals when compared to control 

animals. A significant correlation was seen between liver and bone iron. Although an 

imbalance is observed between bone formation and resorption, no changes were observed 

in bone mass as indicated by trabecular bone volume and bone ash content. The authors 

hypothesized that this could be due to short duration of the study (196). 

Twenty-two men with idiopathic hemochromatosis aged 35 to 62 years (5 

hypogonadol (H), 9 eugonadal non-venesected (EN), and 8 eugonadol vennesected (EV)) 

and 20 age-matched controls were recruited to study the prevalence, severity, type and 

pathogenesis of osteopenia. Spinal radiography, spinal and forearm bone mineral density 

estimations, skeletal histomorphometry, and serum biochemistry was performed on all 

participants. Findings of this study revealed that serum ferritin, aspartate 

aminotransferase (AST), alanine aminotransferase (ALT), serum inorganic phosphate and 

urinary hydroxyproline were higher in the hypogonadol group than all other groups. 

However, serum ferritin, AST and ALT were higher in eugonadal when compared to 

eugonadal vennesected and control. The radial bone density, vertebral bone density and 

trabecular bone volume were significantly decreased in hypogonadol compared to other 

groups. The mineral apposition rates were significantly lower in all groups when 

compared to controls and significantly lower in EN than EV. The iliac crest bone biopsy 

showed that the osteoclast surface and number were significantly greater in H compared 

to all other groups. The authors concluded that bone density was significantly lower in 
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patients with idiopathic hemochromatosis and that bone density is significantly lowered 

in patients associated with hypogonadism (197).  

Diamond et al. (198) conducted another study with106 men and women who were 

diagnosed with chronic liver disease (39 with alcoholic liver disease, 23 with 

hemochromatosis, 25 with chronic active hepatitis, and 19 with cholestatic liver 

diseases). The subjects were divided into two groups: cirrhotic and non-cirrhotic. Data 

were collected on BMD from 113 healthy volunteers (Control) who were matched for 

age, sex, and menopausal status. Bone biopsy was conducted on forty subjects of the 

control group as well as 106 subjects in the experimental group. The cancellous bone area 

was significantly lower in all subjects when compared to control group. All the patients 

had mean concentration of bone iron 2.5 times greater than controls, but 80% of the 

patients were within the normal range. No significant differences were observed in bone 

aluminum and copper levels in any of the groups. Bone biopsy in cirrhotic and non-

cirrhotic patients revealed that 40 of them were osteoporotic and 23 of these 40 

participants showed low bone formation rates.   A negative correlation was observed 

between bone iron and bone formation. The analysis of forearm mineral content by single 

photon absorptiometry was significantly lower in cirrhotic patients when compared to 

non-cirrhotic patients. Similar results were found when the BMD of vertebrae was 

measured using single energy computed tomography. When in vitro experiments were 

conducted using rat osteoblast-like osteosarcoma cells, diminished cellular proliferation 

and function was observed at high iron concentrations (400 µmol/liter). Elevated levels of 

iron were observed in patients with chronic liver disease. The authors concluded that the 
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results of these studies were insufficient to support that iron was responsible for the 

osteoblast dysfunction observed among these patients (198).  

Duquenne et al. (199) conducted a study using a French Caucasian male (age 48 

years), diagnosed with primary heamachromatosis but who initially presented for the 

treatment of multiple spontaneous vertebral fractures. Elevated levels of ALP but lower 

levels of testosterone and reduced osteoblast, osteoclast activity was observed. A 

remarkable decrease in trabecular bone volume associated with a decrease in cortical 

bone thickness was observed. Urinary hydroxyproline excretion corrected for creatinine 

was elevated. However normal thyroid status is observed. Assessment by DXA at the 

lumbar spine and femoral neck showed very low bone mineral content. The authors 

concluded that although the exact mechanism is not known, osteoporosis in 

hemachromatosis might be due to excessive bone resorption and inadequate bone 

formation (199). 

Dietary iron overload also was found to alter the metabolism of nutrients. Storey 

and Greger (200) examined the interactions of iron, zinc and copper on 96 male Sprague-

Dawley rats. Rats were fed with adequate levels of iron (33-35 micrograms Fe/g diet) and 

zinc (15-25 micrograms Zn/g diet) and diets with excessive levels of zinc (2441-2470 

micrograms Zn/g diet) or iron (1408-3042 micrograms Fe/g diet). Decreased tibial zinc 

retention was found in animals fed excess iron diets when compared to animals fed 

excess iron in only one meal. Also excess iron diet fed rats (3042 micrograms Fe/g diet) 

showed significantly lowered daily food intake, final body weight and higher ratio of 

liver to body weight. Elevated levels of iron were observed in kidney and liver of rats fed 

excess iron diet than all the other groups. Similarly, tibia copper levels were higher in the 
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excess iron group fed for several weeks when compared to control group while copper 

levels were significantly lower in rats fed excess iron in only one meal. Although not 

significant, kidney and tibia zinc levels were also found low in excess iron group 

compared to the control group (200). The authors concluded that animal or human studies 

on nutrition interactions given a single dose of test substances might not be reliable 

because acute responses do not reflect all the changes induced due to chronic feeding. 

Association between iron and bone mass 

Studies on animals have suggested that both iron overload and iron deficiency are 

associated with low bone mass. In a study conducted by Medeiros et al.(193) using Long-

Evans male rats revealed that the strength for breaking the bone was lower in iron 

deficient rats than control and pair fed groups, suggesting that iron deficiency may play a 

role in bone fragility. The study of Kipp et al. (201) also revealed that iron deficiency 

resulted in low bone mass and bone volume. Another study conducted more recently by 

the same author suggested that long-term iron deficiency altered bone mass and bone 

structure in growing female rats (202). Iron overload has also been associated with low 

bone density (194, 197). Thus, the association between bone mass and iron has been 

supported by animal studies. However, very few clinical trials have been conducted to 

see the association between iron and bone mass. 

The relationship between bone mass and ferritin was studied in a four year 

clinical trial of calcium supplementation in adolescent girls. Adolescent girls (n=354) in 

pubertal stage 2 who were premenarcheal at baseline (x+/-SD age: 10.8+/-0.8 y) were 

recruited to study the effects of growth, menstrual status, and calcium supplementation on 

iron status.  Girls were randomly assigned to either placebo or treatment group. The 
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treatment group was given 1000 mg Ca/d as calcium citrate malate. Physical 

examinations, anthropometric measurements, bone mass measurements, and nutritional 

status were measured. Ferritin and red blood cell indexes were also assessed . The effect 

of menarche on serum ferritin concentration was evaluated after adjusting for changes in 

lean body mass (LBM). A significant negative association between changes in LBM and 

serum ferritin was observed. A trend for a positive association was observed between 

BMD of forearm and serum ferritin at baseline. A similar trend was noticed between the 

total body bone mineral density and content and serum ferritin in the fourth year of the 

study but only in the placebo group. No significant differences were observed in serum 

ferritin concentrations and red blood cell indexes between menstruating girls with higher 

iron and low iron intakes. The authors concluded that growth spurt and menstrual status 

had adverse effects on iron stores in adolescent girls with low iron intakes. Nevertheless, 

long-term supplementation with calcium (total intake: approximately 1500 mg/d) did not 

affect iron status (203). 

The study of Harris et al. (204) on healthy, non-smoking postmenopausal women 

(n = 242; 40-66y) also confirmed an association between dietary iron and bone mineral 

density (BMD). Postmenopausal women who satisfied the inclusion criteria in terms of 

diet (iron intake < 40mg/d) and mean energy intake (± 40% of the RDA) were included in 

the study. A three day diet record was used to assess the mean nutrient intake. Bone 

mineral density (BMD) at different sites (lumbar spine L2-L4, trochanter, femur neck, 

Ward�s triangle and total body) was measured using dual energy X-ray absorptiometry 

(DXA). The BMD measured at each site is taken as a dependent variable and iron as an 

independent variable to calculate the regression models. Besides adjusting for protein 
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and/or calcium it was found that high iron was associated with greater BMD at all sites. 

Women who had a mean consumption of calcium between 800-1200 mg/d and with 

higher levels of iron intake showed greater BMD at several bone sites. But higher levels 

of iron intake in women with higher (>1200 mg/d) or lower calcium intakes (<800 mg/d) 

did not show a distinct effect on BMD. The authors concluded that dietary iron may play 

more important role in bone mineralization than originally thought and suggested for 

future studies on the combined effect of dietary iron and calcium on BMD (204). 

Maurer et al. (205) observed an association between bone mineral density (BMD) 

and dietary intakes of iron and calcium. The study was conducted over a period of one 

year on healthy non-smoking postmenopausal women (mean age 55.6 +/- 4.6 y) 

undergoing hormone replacement therapy (HRT, n= 116) or those who had not used HRT 

(n=112). Dietary assessment was performed at 8 randomly assigned days and at different 

time periods: baseline (3 days), 6th month (2 days) and 12th month (3 days). Mean 

nutrient intake was recorded. All women were given elemental calcium supplements in 

the form of calcium citrate. BMD was measured at 5 different sites of the body (Lumbar 

spine L2-L4, femur trochanter, femur neck, Wards triangle, and total body) using DXA. 

The effects of iron and calcium intakes on BMD change versus baseline BMD, weight 

change, exercise, and energy intake was examined by regression analyses.  Women were 

grouped by HRT status and then the interaction of calcium with iron on change in BMD 

was assessed using tertiles of iron and calcium intake and estimated marginal mean 

change in BMD. A positive association between iron and BMD was observed in women 

using HRT at the trochanter and Ward's triangle but not in women who were not on HRT. 

However, the association between calcium with BMD change was observed at the 
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trochanter and femur neck. Women on HRT with lowest intake of calcium showed an 

increase in BMD with the increased iron intake. But in contrast BMD increased with 

highest calcium intake in women who were not on HRT. The authors concluded that the 

association between iron and calcium on change in BMD might be influenced by the use 

of HRT (205).
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CHAPTER III 

MATERIALS AND METHODS 

The experimental design, diet, housing, feeding and necessary protocols are 

included in this chapter. The protocol for micro computed tomographical analysis of L5 

vertebrae and femora are also included.  The statistical analyses for assessing the results 

are described. 

Experimental Design 

We received one hundred and twenty-four female Sprague-Dawley weanling rats 

(SASCO, Kingston, NY) at 21 days of age. Immediately upon arrival the animals were 

randomized into 4 x 3 diet by treatment groups with 40 rats per treatment and 10 rats per 

diet except that the extra rats were randomized to the 6 or 150 ppm iron diet in the 

ovariectomized treatment group. The treatment groups were growing and two ovarian 

hormone status groups: sham-operated and ovariectomized, respectively. The rats were 

maintained on commercial rat chow (AIN-93-G diet, Teklad, Madison, WI) and deionized 

water for three days after arrival. Dietary iron levels were set at 6, 12, 35 and 150 ppm. 

Animals were maintained on the assigned diet throughout the treatment period. At 18 

weeks of age growing rats were killed and bones were collected: ovariectomy was 

performed to mimic menopause or sham-operated as a control at 18 weeks in the other two 

groups. After 30 weeks of age both sham-operated and ovariectomized rats were 



 64 
 

 

killed and bones were collected. The experimental design is illustrated in Figure 1. Right 

femur and fifth lumbar vertebrae were collected and stored in -20o C for analyzing the 

bone micro-architecture. The study was approved by the Institutional Animal Care and 

Use Committee (IACUC) at Oklahoma State University (see the approval form in 

Appendix A). 

  

 

Figure 1: Experimental design 
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Treatment Protocol 

Housing 

 All the animals were housed in Oklahoma State University Laboratory Animal 

Resources (LAR) facility in light, temperature and humidity controlled conditions under 

the supervision of a veterinarian. The animals were maintained under a 12-hour light/dark 

cycle. The rats were placed in individual plastic cages with raised plastic flour grids. 

Below the grids a small amount of ground cornhusk bedding was used for waste 

absorption. Every week all the cages, feed dishes and water bottles were changed. 

Diet 

 For the purpose of this study, all the organic diet components were purchased 

from Teklad (Madison, WI). Researchers prepared the diet and mineral mixes as per 

AIN-93G and AIN-93M standards (206) with the exception of iron concentration. The 

diet composition for the growth and maintenance diets is given in Table 1. Mineral mixes 

were prepared in one-kilogram batches but a total of 2.5 kg was prepared and mixed from 

single lots of ingredients, sufficient for the entire experiment. First the macro and 

micronutrients were weighed and then a burundum fortified porcelain jar was used for 

combining and mixing the mineral mixes. Four dietary regimens were prepared with two 

groups containing iron inadequate diets calculated at 6 ppm, 12 ppm, one control group 

calculated at 35  ppm and one excess level of iron calculated at 150 ppm. But for the 

purpose of this research, only samples from 6 ppm, 35 ppm and 150 ppm iron fed animals 

were used. The ingredients and the amount of mineral mixes used for growth and 

maintenance diets are given in Tables 2 and 3 respectively. 
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Feeding 

 To minimize spilling of the diet, animals were fed late in the afternoon. Animals 

and the remaining diet were weighed twice a week. The diet was weighed and adjusted 

biweekly based on feed consumption of animals that gained the least weight. Two plastic 

cups were used for each rat labeled with rat number, diet and treatment. The feed was 

weighed into the cups twice a week, and the cups were taken to the LAR and stored in the 

refrigerator until feeding time. 

 

 

TABLE 1 

American Institute of Nutrition 1993 Purified Diet Components for Laboratory Rodents1

Diet Composition 

Component Growth (AIN-93G, g/kg) Maintenance (AIN-93M, g/kg)

Corn Starch 397.5 582.10 

Casein 200.0 140.0 

Dextrinized Corn Starch 132.0 155.0 

Sucrose 100.0 100.0 

Soybean Oil 70.0 40.0 

Cellulose 50.0 50.0 

Mineral Mix  35.0 35.0 

Vitamin Mix 10.0 10.0 

L-Cystine 3.0 1.8 

Choline 2.5 2.5 
1Reeves, et al. (206)d} 
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TABLE 2 

American Institute of Nutrition 1993 Growth Mineral Mix 

Component   Growth (AIN-93G, g/kg) 
Calcium Carbonate 40.04% Ca 357.00 
Potassium Phosphate 22.76 P, 28.73% K 196.0 
Potassium Citrate 36.16% K 70.78 
NaCl 39.34% Na, 60.66% Cl 73.275 
Potassium Sulfate 44.87% K, 18.39% S 46.6 
Magnesium Oxide 60.32% Mg 24.0 
Zinc Carbonate 52.14% Zn 1.65 
Manganous Carbonate 47.79% Mn 0.63 
Cupric Carbonate 57.47% Cu 0.30 
Potassium Iodate 59.3% I 0.01 
Sodium Selenate 41.79% Se 0.01025 
Ammonium Paramolybdate 54.34% Mo 0.00795 
Sodium Meta-Silicate 9.88% Si 1.45 
Chromium Potassium Sulfate 10.42% Cr 0.275 
Lithium Chloride 16.38% Li 0.0174 
Boric Acid 17.5% B 0.0815 
Sodium Fluoride 45.24% F 0.0635 
Nickel Carbonate 45% Ni 0.0318 
Ammonium Vanadate 43.55% V 0.0066 

Levels of Dietary Iron for AIN-93G (Corrected for Amount of Iron in Cellulose) 
 6 ppm 35 ppm 150 ppm 

Ferric Citrate g/kg 0.88 5.8883 25.8126 

Powdered Sucrose for AIN-93G ( Corrected for Amount in Titrated Minerals) 

Sucrose g/kg 217.37 212.36 191.98 
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TABLE 3 

American Institute of Nutrition 1993 Maintenance Mineral Mix 

Component   
Maintenance  

(AIN-93M, g/kg) 
Calcium Carbonate 40.04% Ca 357.00 
Potassium Phosphate 22.76 P, 28.73% K 250.0 
Potassium Citrate 36.16% K 28.00 
NaCl 39.34% Na, 60.66% Cl 73.275 
Potassium Sulfate 44.87% K, 18.39% S 46.6 
Magnesium Oxide 60.32% Mg 24.0 
Zinc Carbonate 52.14% Zn 1.65 
Manganous Carbonate 47.79% Mn 0.63 
Cupric Carbonate 57.47% Cu 0.30 
Potassium Iodate 59.3% I 0.01 
Sodium Selenate 41.79% Se 0.01025 
Ammonium Paramolybdate 54.34% Mo 0.00795 
Sodium Meta-Silicate 9.88% Si 1.45 
Chromium Potassium Sulfate 10.42% Cr 0.275 
Lithium Chloride 16.38% Li 0.0174 
Boric Acid 17.5% B 0.0815 
Sodium Fluoride 45.24% F 0.0635 
Nickel Carbonate 45% Ni 0.0318 
Ammonium Vanadate 43.55% V 0.0066 

Levels of Dietary Iron for AIN-93M (Corrected for Amount of Iron in Cellulose) 
 6 ppm 35 ppm 150 ppm 

Ferric Citrate g/kg 0.88 5.8883 25.8126 

Powdered Sucrose for AIN-93M ( Corrected for Amount in Titrated Minerals) 
Sucrose g/kg 217.37 212.36 191.98 
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Water 

Rats were given deionized water ad libitum to ensure adequate hydration. Glass 

bottles with straight stainless steel sipper tubes were used to provide water to animals. 

Animals were given fresh water thrice a week.  

Surgery 

 At 18 weeks of age rats that were randomized into sham or ovariectomy group 

were subjected to surgery. Food was with held for 12 hours and water withheld for 6 

hours prior to surgery. Animals were anaesthetized by halothane inhalation. Ovaries were 

removed by ligation in ovariectomized animals. Ovaries were lifted from and then 

replaced in the body in sham-operated animals. After surgery the animals were continued 

on their respective dietary regimen.  

Necropsy 

 Necropsy was performed on growing rats when they were 18 weeks of age and 

bones were collected. Food was withheld prior to killing but deionized water was given. 

Animals were anesthetized by intraperitoneal injection with 50mg of ketamine and 

2.5mg/kg body weight of xylazine. Femur and L5 vertebrae were collected and stored at 

 �200C. Calvarias were collected and stored at-800C. The same procedure was adopted 

for the necropsy and tissue collection of sham-operated and ovariectomized rats at 30 

weeks of age.  

Analyses 

Micro Computed Tomography  

  Cleaned fifth lumbar vertebrae and right femora were scanned for micro-

architecture (Micro-CT 40, SCANCO MEDICAL AG, Zurich, Switzerland, 2001) and 
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strength analyses were performed. Fifth lumbar vertebrae and right femur of three groups 

of rats (growing, sham operated and ovariectomized) and three dietary treatments (6ppm, 

35ppm and 150ppm of iron as the ferric citrate) were imaged with a desktop µCT, with a 

voxel size of 16×16×16.5µm and a slice thickness of 0.016mm. CT images were 

reconstructed in 1024×1024 pixels using a medium resolution. A low pass gaussian filter 

was applied to remove noise and a fixed threshold was used to extract the structure of 

mineralized tissue. The apparatus consists of x-ray gun/tube through which the x-rays 

were generated. These generated x-rays detect a two dimensional charge coupled device 

(CCD) array with 512/1024/2048 elements. In micro-CT the object is placed in a plastic 

holder, which is attached to the turntable, and placed in between the x-ray source and 

CCD camera. After acquiring the data, the object/specimen is rotated a very small angle 

and is scanned again. This process continues until the table rotates to 360ο. The scanned 

2D images were stacked and rebuild in the computer to obtain a 3D image. The scout 

view scan, which measures the overview image, is obtained for selecting the region of 

bone to scan for 3D imaging. Region / Volume of interest (VOI) were taken for 3D 

histomorphometric evaluation, which was obtained by contouring. Morphing was done to 

create VOI for missing objects between two reference lines. 

Vertebrae analyses   

Five vertebrae were placed in a 20-mm tube for overall scanning and each 

vertebra was measured separately. The vertebrae were placed in the tube aligning through 

the foramen using a toothpick to position the bone. The empty space was covered with 

foam such that the vertebrae did not move within the tube during scanning. The vertebrae 

were arranged such that the interior facets were placed in the downward direction and the 
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superior facet is lined up, to match the line on the tube. The vertebrae thus, scanned were 

then analyzed for trabecular region. A single operator blinded to treatments, contoured 

the trabecular bone region within the vertebral body for CT slice. Details of the analyses 

are in Appendix B. The volume of interest (VOI) was thus identified in the trabecular 

region was subsequently analyzed. Relative bone volume (BV/TV), structural model 

index (SMI), physiological force (phy_fce), trabecular number (Tb.N), and separation 

(Tb.Sp) were calculated. Structural indices were assessed by three- dimensional (3D) 

techniques for trabecular bone.  

Data generated by the scanner included the following. The mean and SD were 

calculated at each time point for trabecular bone structure. Bone volume, structural model 

index, physiological force, trabecular number and separation were generated. Bone 

volume (BV) is calculated using tetrahedron corresponding to the enclosed volume of the 

triangulated surface. Total volume (TV) of the sample was examined as a normalized 

index. Bone volume/total volume (BV/TV) was used to compare samples of varying size. 

Structural model Index (SMI) quantifies the plate versus rod-like nature of the cancellous 

bone such that structures that were purely rod-like have an SMI of three, whereas those 

that were purely plate-like have an SMI of zero. 

Femur analyses  

The right femur was placed in a 16-mm tube for overall scanning and the distal 

femur and midshaft were measured separately. The empty space was covered with foam 

such that the femur did not move within the tube during scanning. The femur was placed 

vertically such that the line on the tube was aligned with the anterior side of the femur 

patellar surface at the bottom of the tube and neck of the femur at the top of the tube. The 
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distal portion of the femur was scanned by identifying the growth plate, and from the 

growth plate 350 slices were taken for measurement. The distal femur thus, scanned was 

then analyzed for trabecular region. The midshaft of the femur was scanned for 34 slices 

by taking the average of the total femur length. The midshaft of the femur thus, scanned 

was then analyzed for cortical region by contouring the third and 32nd slice. The contours 

in between the slices were placed in a semi-automated fashion. Thus, the total number of 

cortical slices analyzed was always 30. Cortical thickness, cortical porosity, cortical area 

and medullary area were analyzed for cortical bone. 

A single operator blinded to treatments, outlined the trabecular bone region within 

the distal femur for every 15 slices. Details of the procedure are in Appendix B. All the 

parameters were taken similar to the vertebrae for understanding the trabecular micro-

architecture. Midshaft regions of all the femurs were analyzed by always contouring slice 

30 through 1. Detailed descriptions of the µCT procedures are described in Appendix B. 

Finite Element Analyses  

Micro computed tomography images provide both geometric details and the 

information about the material properties of bone. This information is used to generate 

finite element models (142). Finite element analysis was performed by using specialized 

computer software in which the micro-computed tomography (µCT) histomorphometric 

data was used to simulate compression of a region of interest of a material. This enables 

one to determine the behavior of the material in response to the compression.  Analyses 

were performed on the VOI previously identified in the fifth lumbar vertebrae and the 

distal femur. The data thus, obtained on micro-architecture was subjected to a high 

friction compression test in the z direction.  This provides data on average strain, total 
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force, physiological force, stiffness, size independent stiffness, and average Von Mises 

stress of the trabecular bone. This data is used to determine the mechanical properties of 

the bone specimen. In this study the same scans used for architectural properties were 

used for FEM analyses. Detailed description of the FEM procedures are described in 

Appendix C. 

Statistical Analyses 
Data were analyzed using SAS (version 9.1, SAS Institute, Cary, NC). The 

completely randomized model was analyzed using the generalized linear model (GLM) 

procedure in SAS to analyze for effects of dietary iron on bone architecture and 

strength. Significance level was set at P≤ 0.05. Differences of means were tested by LS 

means.
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CHAPTER IV 

RESULTS AND DISCUSSION 

Growing Rats 

Results from bone analyses in growing female rats are presented in this chapter. Of 

the forty rats randomized to the growing treatment group, only those in diet groups 6, 35 

and 150ppm were included in the present study. Only those rats received in the first 

shipment were included. Thus, bone analyses were conducted on five rats per diet group. 

The effect of dietary iron on body composition, nutritional adequacy indicators and 

hematological parameters for these rats are presented. The effects of dietary iron on micro-

architectural properties, strength and quality of bones in growing rats are also discussed.  

Body Composition 

In our study the animals weighed an average of 76 grams initially and 226 grams 

at the end of the study. No significant differences were observed in either weight among 

the three diet groups (Table 4). Similar findings were reported in another study (207), in 

which the effects of marginal and excessive iron on body weight with no significant 

differences observed among the diet groups at the end of six week and 12 week feeding 

periods.  In contrast to this study (207) and the findings of the present study, Medeiros et 

al. (11) reported a dramatic decrease in body weight and corresponding food intake in 

iron deficient rats (< 8mg Fe/kg diet). 
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Although not significant, slight increase in the weight gain among excess fed iron 

fed rats was observed when compared to low iron fed rats that showed least weight gain. 

Similar findings were reported in two separate studies (208, 209). In the study of Beard et 

al. (208) rats were fed two levels of dietary iron, low (< 5 ppm) and adequate iron levels 

(50 ppm) for 6 weeks. The low iron level iron fed rats gained less weight and had lower 

final weights compared to iron adequate rats. Lowest body weights were observed in 

animals maintained on an iron deficient diet (9 ppm) in the study of Stangl and 

Kirchgessner (209) where rats were fed for 5 weeks. Observations from both the studies 

indicated lower body weights in male rats maintained on iron deficient diets and are in 

agreement with our findings. 

Indicators of Nutritional Adequacy 

 We performed serum analyses in order to assess the nutritional status and liver 

function. No significant effect of dietary iron was observed in creatinine or albumin 

(Table 4).  Although not significant, the albumin levels were lower in high iron fed 

groups when compared to low and adequate level iron fed groups. However, the albumin 

levels from all the three groups were lower compared to the normal albumin levels as 

provided by Harlan (personal communication). These differences could be due to the 

analytical methods employed for the assessment of albumin levels as other parameters 

indicate that the animals were growing normally and are fed adequately. Urinary 

hydroxyproline measured from a final 12 hr collection was corrected for urinary 

creatinine. Urinary hydroxyproline is an indicator of bone breakdown. Our results show 

no significant differences in urinary hydroxyproline among the dietary groups. 
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Hematology 

Hematological indicators were used to assess the iron status in all the groups. 

Since our goal was to induce iron deficiency, excess and adequate iron levels and study 

their effect on bone micro-architecture it is of importance to ensure that this goal was 

achieved by examining the red blood cell count (RBC), hemoglobin (HB), hematocrit 

(HCT) and reticulocyte (RTC) counts. Significant results were observed in all the 

parameters of HCT, HB, RBC and RTC (Table 5). The rats fed with 6 ppm iron showed 

significantly lower levels of hemoglobin and HCT when compared to 35 and 150 ppm 

fed rats. However, no significant differences were observed between the 35 and 150 ppm 

groups.  Besides low levels of hemoglobin and HCT, the 6 ppm fed rats exhibited 

significantly greater levels of RBC and RTC when compared to 35 ppm and 150 ppm 

iron fed groups (Table 5). Increased numbers of red blood cells and reticulocytes also 

confirms iron deficiency. Decreased oxygen carrying capacity is compensated by 

increased production of immature and mature RBC from the bone marrow. No 

differences were observed in the leukocyte counts due to dietary treatments, but all 

animals showed decreased level of WBC than the normal range (210, 211). Similar 

findings were reported in the study of Stangl and Kirchgessner (209) except for the levels 

of RBC. Though all the three groups showed an RBC within the normal range (210, 211), 

significant differences were observed among the groups (Table 5).  

In the present study, we observed greater levels of RBC in lowest iron fed group 

whereas Stangl and Kirchgessner (209) observed the lower levels of RBC in low iron fed 

group. These differences could be due to the feeding duration as the rats in the current 

study were fed a longer period (18 weeks vs. 5 weeks) and also differences in dietary iron
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concentration because in the present study rats were given 6 ppm as against to 9 ppm in 

their study (209). The method of counting cells also could have contributed for this 

difference. We have used the automated instrument for counting cells including 

reticulocytes, and, therefore, our cell counts may be more reliable as compared to their 

measurement with coulter counter and hemoglobinometer (209). Conversely, our study 

findings are similar to two separate studies (212, 213) despite the differences in study 

duration and gender of animals used in this study. Dallman et al. (212) observed the 

differences in hematocrit whereas Siimes et al. (213) observed differences in both 

hematocrit and hemoglobin levels. Both studies have suggested that Sprague-Dawley rats 

fed very low dietary iron, 2 and 6 ppm iron (212), 7 ppm (213) showed decreased 

hemoglobin and HCT values. 

 Our findings on nutritional adequacy indicators as well as hematological 

indicators suggest that rats were adequately fed for growth and that iron deficiency was 

induced. No significant differences were observed in weights and albumin level, and the 

lowest iron fed group was made iron deficient as indicated by HB, HCT, RBC and RTC 

number. Hence, our goal was met to produce iron deficiency without affecting growth. 

Bone Micro-architecture 

Bone micro-architecture or the structural arrangement of bone is strongly related 

to bone strength. Since it is not enough to predict the quality of bone with bone mass, 

bone micro-architecture assessed by micro-CT is used in this study to observe the effects 

of dietary iron on bone microstructure and the corresponding changes in biomechanical 

parameters. This section presents data on fifth lumbar vertebrae, distal femur and cortical 

data on midshaft of right femur.  
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Fifth Lumbar Vertebrae 

Vertebral trabecular bone parameters varied in growing rats with changes in 

dietary iron (Table 6). There were no significant differences between groups for bone 

volume/total volume (BV/TV), Connectivity density (Conn. D), trabecular thickness 

(Tb.Th) and degree of anisotropy (DA). 

Similar results were observed in the structural model index (SMI) of growing rats 

fed with different levels of dietary iron (Table 6). The SMI describes the three-

dimensional trabecular bone properties (8). The trabecular bone can be plate-like, rod-

like or true sphere. Hilderbrand et al. (6) suggested that negative SMI values are derived 

from very dense samples resulting in a concave plate-like structure, also referred to as a 

spherical void. It is also reported that SMI values can be negative when the trabecular 

bone is dense and possess concave like structure with over 30% of BV/TV (109). In our 

study all the dietary groups showed BV/TV greater than 30%. This proposes a strong 

relation between SMI and BV/TV.  

Hildrebrand et al. (6) proposed a negative correlation between SMI and BV/TV. 

However, a recent study Van Ruijven et al. (112) suggested that as bone volume fraction 

decreases, the number of plates also decreases. This decrease would be associated with a 

40 % reduction in their thickness with an increase in number of rods. The authors 

concluded that the effect of bone loss on plate-like trabeculae was opposite to its effect 

on rod-like trabeculae. In our study, we did not see any significant reduction in bone 

volume fraction and trabecular thickness due to dietary treatment. Also the trabeculae 

were concave in structure indicating better bone quality and supporting the conclusions of 

the above study (112).
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In contrast to our findings on SMI (Table 6), Medeiros et al. (11) reported rod-like 

properties in iron deficient rats. Bones tend to become more rod-like than plate-like with 

aging (7, 8, 48). The rats used in the study of Medeiros et al. (11) were much younger (8 

weeks of age) than our rats (18 weeks) and were fed only for 5 weeks. Their animals 

showed rod-like SMI which was suggested as dietary iron effect (11). Since rod-like 

properties were not observed in our iron deficient rats in spite of being older compared to 

the rats in Medeiros et al. (11) study, it is not clear if dietary iron affects the SMI. 

Although the feeding duration was different, rats from their (11) study and our study 

showed significant reduction in hematocrit levels indicating iron deficiency has been 

induced. Besides hematocrit number, other parameters we used to assess iron deficiency 

such as reticulocytes and RBC may be more reliable indicators than heart weight and 

graying of hair used as indicators by Medeiros et al. (11). Since the animals in the present 

study were older and were fed for a longer period on an iron-deficient diet, we would also 

expect rod-like properties in this study. The rats used in our study although fed for longer 

period are still growing and showed thick and concave trabeculae. Also, we did not see a 

significant effect of dietary iron on SMI. Hence, age and feeding duration cannot be 

considered as a factor for these differences. It is not clear if strain differences might have 

contributed for such difference. Therefore, we cannot offer a possible explanation. 

Dietary iron did not show a significant effect on trabecular thickness (Table 6). In 

contrast to our findings, Medeiros et al. (11) reported significant decrease of trabecular 

thickness in L3 vertebrae of iron deficient rats (P < 0.05).  
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In growing rats the trabecular number (Tb. N) increased as the level of dietary 

iron increased and the average separation or air space (Tb. Sp) decreased as the level of 

dietary iron increased (Table 6). This suggests that trabecular architecture deteriorates 

with iron deficiency in growing rats. No significant differences in the trabecular number 

or separation were observed between 35 ppm and 150 ppm iron fed rats. In these rats it 

appears that excessive iron was not harmful to bone. Our results are in agreement with 

the findings of Medeiros et al. (193). No significant changes were observed in other 

architectural parameters in lumbar vertebrae for connectivity density and degree of 

anisotropy (Table 6). 

Distal Femur   

 The data on the trabecular bone in distal femur architectural parameters of bone 

volume fraction (BV/TV), SMI, connectivity density, trabecular number, trabecular 

thickness and trabecular separation showed no significant effect of dietary iron (Table 6). 

The trabecular volume varies depending upon the skeletal site. Besides, the amount of 

cancellous bone also differs in different parts of femur. It is well known that the femur 

has less trabecular volume and more cortical bone when compared to vertebral bodies 

(214). Also studies have been reported that loss of trabecular bone will primarily be seen 

first in the spine region or vertebral body (94). Therefore, this difference in the skeletal 

sites might have contributed to less dietary iron effect on the femur trabecular bone than 

vertebrae. Another contributing factor for this less significant effect of iron on femur 

could be due to the differences in the cancellous bone growth in different skeletal sites. 

Since the rats were in the growing age, even if there were some loss of trabeculae, the 
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trabeculae might have been replaced with new ones. The growth of cancellous bone 

varies in different parts of femur. 

It has been reported that, from birth to an age of 6 months, the bones of rats grow 

rapidly in length and width. Also a progressive increase in the cancellous bone occurs in 

the metaphyses. This is also supported from the study findings of Osterman et al. (118), 

in which the rats that were given 14 C-labeled disodium clodronate subcutaneously 

showed highest activity in the primary sponigiosa of the distal femur metaphysis and in 

the cortical bone of the femoral diaphysis when compared to the other parts of femur 

(118).  

On the other hand, a significant effect of dietary iron is observed on distal femur 

degree of anisotropy (Table 6). Degree of anisotropy (DA) describes the material 

properties of bone in different directions. It is considered that higher degree of anisotropy 

indicates poorer bone quality (151). However, it is not known what levels are considered 

detrimental. The degree of anisotropy increased as the dietary iron concentration 

increased and was significantly lower in rats fed 6 ppm diet than in the 35 and 150 ppm 

Fe groups. However no significant differences were observed in the distal femur of rats 

fed recommended level (35 ppm) and excess iron (150 ppm).  

The significant effect on DA in femur but not on any other properties of 

trabecular bone also suggests the growth of cancellous bone in femur diaphysis might 

have contributed to the replacement of lost trabeculae with new ones. However, this loss 

of trabeculae might have contributed to changes in the trabecular orientation, thus, 

affecting the DA. These higher DA values in 35 ppm and 150 ppm iron fed rats suggests 

that the structure is more anisotropic, and, therefore, some of the trabeculae providing 
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resistance to stress in preferential directions might be deleted (150). The loss of the 

preferentially oriented trabeculae affects the mechanical properties of bone (111).  

Dietary iron did not affect any architectural properties in femur but affected 

lumbar bone. Similarly, the architectural property that describes the mechanics of bone 

(DA) was observed only in femur but not in lumbar bone. Studies have suggested that, 

any effect due to disease or treatment on the bone would be first noticed in the vertebral 

trabecular bone (94). Findings on human bones also suggest that, the extra load applied 

on the vertebral bone would result in the removal of horizontal trabeculae, affecting the 

mechanical properties of bone as well as the architectural properties (113). However, in 

our study we observed architectural alterations in vertebrae but no changes in the DA 

compared to the changes observed in femur. This again proposes the differences between 

the tissue morphology between human and rat models. Rat, a quadruped animal during 

movement receives �cantilever bending� load, therefore the lumbar bone may receive less 

load compared to femur bone (215). This supports the findings in our study that the 

horizontal trabeculae might be deleted due to the extra load applied in femur but not in 

vertebrae. The architectural changes observed in vertebrae but not in femur might be due 

to the trabecular amount as well as due to the growth observed in femur diaphyses. 

Greater growth in femoral diaphyses than other parts of the femur and lumbar bone was 

supported by another study (118).  

Interesting effects were observed in the trabecular architecture of lumbar 

vertebrae and distal femur. Although there were significant differences in the trabecular 

number, no significant effects were observed in the DA of lumbar vertebrae. On the other 

hand, the femur showed an increase in DA values although no significant changes were 
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observed in other architectural parameters. These differences can be understood by the 

findings of Hing et al. (151) conducted for the bone graft market. They observed that the 

porous hydroxyapatites with anisotropic characteristics showed lower compressive 

moduli than the isotropic specimens with the same apparent densities.  Probably, the 

trabeculae in vertebra are more isotropic than the ones in femur because the femur might 

have replaced the lost trabeculae with the new ones. Therefore, despite having higher 

density or the thick trabecular bone in femur, there is a possibility of poor quality due to 

anisotropy resulting in changes in the direction of trabeculae. Our findings on anisotropy 

are in agreement with the observations of Sugita et al. (143). The authors suggested that 

mechanical properties of cancellous bone changes with subsequent changes in the 

direction of load applied.  It is also proposed that the anisotropy of trabecular bone is site 

specific (145-147).  

Femur Midshaft 

No significant effects were observed in the architectural parameters of cortical 

bone namely total volume (TV), bone volume (BV), cortical thickness, cortical porosity, 

cortical area and medullary area (Table 7). Several reasons may be attributed for this 

unchanged effect in cortical bone of all the three groups of rats fed different levels of  

dietary iron. When compared to humans, rats show higher cortical bone and lower 

trabecular bone. Also in contrast to human bones, rats show an evenly distributed cortical 

and trabecular bone in different parts of the femur. Rats through a process of �modeling 

dependent periosteal apposition� have the ability to adjust the cortical thickness and 

increase inertia (216). Another contributing factor may be minimal Haversian remodeling 

in cortical bone of rats. The reduced rate of Haversian remodeling decreases cortical 
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porosity (186). Also cortical bone is more inert than trabecular bone. In contrast to our 

findings, reduced width and area of cortical bone was observed by Medeiros et al. (15) in 

another study conducted on iron deficient rats. 

Biomechanical Testing 
 
Fifth lumbar and distal femur  

Finite element analyses take into account both geometrical and material properties 

in producing values for strength parameters. Therefore, we used finite element analyses 

to assess the mechanical properties of bone. The µCT data was used to generate finite 

element models and to determine the behavior of the material in response to compression. 

Both fifth lumbar and distal femur were analyzed for strength parameters of physiological 

force, average strain, stiffness, size independent stiffness, Von Mises stresses and average 

cross section area for understanding bone biomechanics.  

Our findings on the mechanical properties of lumbar vertebrae showed significant 

influences of dietary iron (Table 8). As the level of dietary iron increased the amount of 

physiological force required to crush the bone increased.  The iron deficient rats (6 ppm) 

required significantly less force for compressing and crushing bone than those fed the 

recommended (35 ppm) or high iron (150 ppm) diets. However no significant differences 

were observed between the rats fed recommended level of dietary iron and excess iron. A 

similar trend was also observed in other strength parameters of average strain, bone 

stiffness and size-adjusted stiffness. This indicates that as the concentration of dietary 

iron increased the bone showed increased ability to withstand stress and strain. The rats 

fed an iron deficient diet had the greatest Von Mises stress within L5 when the force was 

applied, followed by rats fed recommended level of iron and excess level of dietary iron.
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The rats fed with 35 ppm and 150 ppm showed lower stress suggesting better integrity 

and structural compensations. No significant differences were observed among 

recommended and excess iron fed groups (Table 8). Our findings were similar to the 

study of Medeiros et al. (11) despite the differences in the duration of the study and their 

lack of an excess iron fed group. Their study (11) showed the significant effect of iron 

deficiency on bone strength even when rats were fed only for 5 weeks.  

In contrast to our findings on lumbar vertebrae distal femur showed no 

statistically significant effects on any of the mechanical properties of bone (Table 8). 

Several factors might have contributed for less vertebral strength when compared to 

femur. Findings of Guo et al. (108) suggest that the trabecular tissue is 20-30 % less stiff 

than cortical bone tissue. Their experiments on fatigue resistance of trabecular and 

cortical bone suggested that cortical bone tissue has higher fatigue resistance than 

trabecular bone tissue. The authors proposed that these differences could be due to the 

differences in tissue morphology (108). In another study, loads on the rat femoral neck 

showed more withstanding ability due to cortical bone than cancellous bone (124).  

Besides, rats differ in the microstructure such as minimal Haversian systems contributing 

to less bone remodeling (184, 185). The vertebral body and femur of rat receive different 

loads and stress when compared to humans, as rats are quadrupeds.  

In summary, the trabecular bone architecture was affected by dietary iron. 

However, changes were seen more consistently in lumbar bone than in distal femur 

metaphyses, and none were seen in cortical mid-diaphyses region. Earlier studies have 

suggested that the amount of trabecular bone differs from site to site. The neck of the 

femur contains 25 % trabecular bone, whereas in a vertebral body the percentage ranges 
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from 66% to 90% (94). Therefore, loss of trabecular bone will primarily be seen first in 

the spine region or vertebral body.  Consequently in our study changes were also 

observed more significantly in the trabecular region of lumbar bone than in femur. At the 

age of 6 months in rats the distal femur metaphyses shows progressive growth in 

cancellous bone. Therefore, the loss of trabeculae or deterioration of trabeculae might 

have been prevented by the growth activity. Conversely, the DA of distal femur indicated 

that dietary iron has influenced the trabecular direction but not in lumbar bone. This 

could be due to the greater load applied on femur than lumbar bone during locomotion. 

No significant alterations were observed in the cortical bone architecture. In the lumbar 

bone, iron deficiency appears to be detrimental for trabecular bone architecture. 

The findings in our study on both lumbar and femur trabecular architectural 

parameters (Table 6) suggest poor trabecular bone quality in lumbar bone but not in 

femur in iron deficient rats. This is because vertebral bone is composed of more 

trabecular bone than femur. The strength analysis performed by µCT using FEM involves 

only the use of trabecular bone. Therefore, we would expect to see better and greater 

strength in femur but less strength in lumbar bone as suggested by trabecular micro-

architecture. Our data on strength analysis (Table 8) also confirms the same as evidenced 

by trabecular architecture (Table 6). Stress and strain were observed to be higher in 6 

ppm diet group. The physiological force was less in low iron fed group. However no 

significant differences were observed between adequate and high iron fed groups. This 

indicates that the strength parameters are affected by dietary iron in lumbar bone but not 

femoral bone and that iron deficiency is detrimental to lumbar bone. With no differences 

found for any of these variables between the recommended iron level (35 ppm) and high 
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iron level, we do not see detrimental effects of high iron intakes during periods of rapid 

growth in female rats.
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CHAPTER V 

RESULTS AND DISCUSSION 

Sham-operated and Ovariectomized Rats 

In this section, results on sham-operated and ovariectomized rats fed different 

levels of dietary iron are presented. Out of one hundred twenty-four female Sprague 

Dawley rats, forty rats or forty-four were randomly assigned to two groups: sham-operated 

and ovariectomized, respectively, and were fed with one of four levels of dietary iron (6 

ppm, 12 ppm, 35 ppm and 150 ppm). However, for this study the analyses were performed 

only on bones of those rats that were received from the first shipment and three dietary 

regimens (6 ppm, 35 ppm and 150 ppm). Thus, five samples were analyzed from each 

group except for 6 and 150 ppm OVX where the total number of rats analyzed was four. 

The effect of dietary iron on body composition, nutritional adequacy indicators and 

hematological parameters are discussed. Also effects of dietary iron on micro-architectural 

properties, strength and quality of sham-operated and ovariectomized rats are presented.  

Body Composition 

Animals in both the surgical treatments (sham-operated and OVX) initially 

weighed an average of 75 grams (Table 9). No differences were observed due to diet, 

treatment or interaction. However a tendency towards diet effect on initial body weight (p 

= 0.0882) that was actually due to randomization was observed (Table 9). Weight gain by 

the end of the experiment showed significant differences between the groups. On  
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average the sham-operated rats gained 179 grams with a final weight of 253 grams. 

Whereas, the ovariectomized rats gained 196 grams on average during the study and 

weighed on an average of 270 grams by the end of the study. These weight differences 

were due to significant effect of treatment (Table 9). No significant diet effects were 

observed on weight gain or final weight. In contrast to our findings, Stangl and 

Kirchgessner (209) observed lowest weight gain in the lowest dietary iron fed OVX rats. 

Indicators of Nutritional Adequacy 
 

Serum analyses were performed in both sham-operated and OVX animals to 

assess the nutritional status and liver function. No significant effects of dietary iron or 

diet × treatment interactions were observed for creatinine or albumin (Table 9). However, 

treatment effects were observed for serum albumin levels. Serum albumin levels were 

normal in sham. However, in OVX rats all the three iron groups showed a decrease in 

albumin levels. Studies have reported reduction in serum albumin levels after 

ovariectomy (71, 74, 172). This reduction in serum albumin levels may be associated 

with inflammation (72-74). Estrogen deficiency increases the production of pro-

inflammatory cytokines IL-1, IL-6 and TNF-α (69, 70). Therefore, increased pro-

inflammatory cytokines may result in lowered albumin levels. The lowered albumin 

levels observed in the OVX animals in the present study might be due to the estrogen 

deficiency. No significant effect of diet, treatment or interaction was observed for urinary 

hydroxyproline. 

Hematology 

Hematological indicators were used to assess the effect of diet, treatment and 

interactions in both sham-operated and ovariectomized animals. Although not significant, 
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a tendency towards diet effect (P<0.07) was observed on hemoglobin levels in both the 

experimental groups and in different iron concentrations (Table 10). The lowest 

hemoglobin levels were observed in 6 ppm groups (Table 10). However, all the three 

groups showed hemoglobin levels within the reference range (210). Our findings on 

hemoglobin levels at different iron concentrations were also supported by the findings of 

Shah and Belonje (207). Both male and female rats were used in the study but were fed 

with marginal (25 ppm), adequate (47 ppm) high (1260 ppm) or excessive iron for 6 and 

12 weeks. Despite the normal levels of hemoglobin reported in our study and theirs (207), 

animals receiving lowest dietary iron concentration exhibited lower levels of hemoglobin. 

Reticulocyte counts also tended (P = 0.095) to be higher in the 6 ppm groups (Table 10). 

The combined hemoglobin concentrations and reticulocyte counts suggest that the iron 

deficiency achieved in the low iron groups was maintained even with the loss of ovarian 

hormone function (Table 10).  

A treatment effect was observed on the hematocrit and WBC (Table 10). Lowest 

hematocrit levels were observed in sham-operated animals. Similarly, leukocyte counts 

were affected by treatment but not by diet or interaction (Table 10). Lower leukocyte 

values were observed in sham-operated animals. Furthermore, leukocyte counts in both 

treatment groups were below the reference range. Elevated levels of leukocytes have 

previously been found following ovariectomy (217, 218, 210). Similar findings were 

reported on WBC count among different dietary groups by Stangl and Kirchgessner 

(209).  

 In summary, all the nutrition indicators suggest that both the sham-operated and 

and OVX animals were fed adequately. No differences in weight gain due to diet was
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observed in OVX animals.  Also, the all the three diet groups in OVX showed a decrease 

in albumin levels. This reduction in albumin levels in OVX might be due to the estrogen 

deficiency, but may not be due to dietary changes, since we observed only treatment 

effect in reducing the albumin levels significantly. Several studies have supported that 

reduction in serum albumin levels is associated with inflammation (72-74) and that 

estrogen deficiency increases pro-inflammatory cytokines, IL-1, IL-6 and TNF-α 

production (69, 70).  Thus, our findings on nutritional adequacy indicators suggest that 

were adequately fed although changes were observed in some of these parameters due to 

treatment effect. Iron deficiency was maintained in the 6 ppm rats as indicated by 

hematological parameters.  

Bone Micro-architecture 

Fifth Lumbar Vertebrae 

Significant differences were observed in the vertebra of both sham and 

ovariectomized rats. The effect of treatment and also an interaction between diet and 

treatment was observed in the trabecular region of vertebrae (Table 11). The effect of 

treatment showed a statistically significant effect on BV/TV, SMI, Tb.N, and DA. No 

significant differences due to treatment were observed in the trabecular thickness, 

trabecular separation and connectivity density. Sham-operated rats showed greater bone 

volume and greater trabecular number compared to ovariectomized (OVX) rats. Higher 

Tb.N and also higher BV/TV in sham indicate better quality of bone. The lower Tb.N and 

lower BV/TV in OVX indicating poor bone quality may be due to erosion of trabeculae 

by osteoclasts. The structural model index in sham-operated rats showed negative values 

indicating more concave trabeculae whereas the SMI of OVX rats indicated more rod-



 
T

A
B

L
E

 1
1 

Ef
fe

ct
s o

f D
ie

ta
ry

 Ir
on

, T
re

at
m

en
t, 

D
ie

t a
nd

 T
re

at
m

en
t I

nt
er

ac
tio

ns
 o

n 
L5

 B
on

e 
Ar

ch
ite

ct
ur

e 
in

 S
ha

m
 a

nd
 O

va
ri

ec
to

m
iz

ed
 

Ra
ts

1,
 2

 
A

rc
hi

te
ct

ur
al

 P
ar

am
et

er
 

Tr
ea

tm
en

t 
G

ro
up

 
B

V
/T

V
 

C
on

n.
 D

, 1
/m

m
3

SM
I 

Tb
. N

, 1
/m

m
 

Tb
.T

h,
 m

m
 

Tb
.S

p,
 m

m
 

D
A

 
 

Sh
am

-o
pe

ra
te

d 
 

 
 

 
 

 
 

6 
pp

m
 0

.3
54

 ±
 0

.0
21

 
40

.4
8 

± 
4.

56
a  

(-
) 0

.9
40

 ±
 0

.2
12

3.
68

 ±
 0

.1
5 

0.
09

2 
± 

0.
00

3 
0.

26
6 

± 
0.

01
4

1.
73

 ±
 0

.0
3 

35
 p

pm
 0

.3
77

± 
0.

02
1 

48
.6

5 
± 

4.
56

a  
(-

) 1
.1

08
 ±

 0
.2

12
3.

94
 ±

 0
.1

5 
0.

09
1±

 0
.0

03
 

0.
24

5 
± 

0.
01

4
1.

84
 ±

 0
.0

3 
15

0 
pp

m
 0

.3
36

 ±
 0

.0
21

 
62

.9
6 

± 
4.

56
b  

(-
) 0

.4
84

 ±
 0

.2
12

3.
91

 ±
 0

.1
5 

0.
08

4 
± 

0.
00

3 
0.

24
6 

± 
0.

01
4

1.
80

 ±
 0

.0
3 

O
va

rie
ct

om
iz

ed
 

 
 

 
 

 
 

 
6 

pp
m

 0
.2

88
 ±

 0
.0

21
  

51
.3

8 
± 

4.
56

ab
0.

06
8 

± 
0.

21
2 

3.
38

 ±
 0

.1
5 

0.
08

5 
± 

0.
00

3 
0.

28
8 

± 
0.

01
4

1.
80

 ±
 0

.0
3 

35
 p

pm
 0

.2
57

± 
0.

02
4 

49
.3

7 
± 

5.
10

a  
0.

44
8 

± 
0.

23
7 

3.
20

 ±
 0

.1
7 

0.
08

4 
± 

0.
00

3 
0.

30
6 

± 
0.

01
5 

1.
82

± 
0.

03
 

15
0 

pp
m

 0
.2

88
 ±

 0
.0

24
 

45
.5

2 
± 

5.
10

a  
0.

15
9 

± 
0.

23
7 

3.
26

 ±
 0

.1
7 

0.
08

9 
± 

0.
00

3 
0.

29
4 

± 
0.

01
5 

1.
84

 ±
 0

.0
3 

 
 

 
 

 
 

 
 

Tr
t 

P 
= 

0.
00

03
 

P 
= 

0.
62

23
 

P 
= 

0.
00

01
 

P 
= 

0.
00

02
 

P 
= 

0.
23

50
 

P 
= 

0.
23

50
 

P 
= 

0.
00

11
 

D
ie

t 
P 

= 
0.

92
37

 
P 

= 
0.

22
83

 
P 

= 
0.

46
76

 
P 

= 
0.

92
87

 
P 

= 
0.

84
54

 
P 

= 
0.

87
47

 
P 

= 
0.

08
84

 
D

ie
t *

 T
rt 

P 
= 

0.
27

12
 

P 
= 

0.
02

14
 

P 
= 

0.
14

74
 

P 
= 

0.
33

91
 

P 
= 

0.
13

21
 

P 
= 

0.
35

89
 

P 
= 

0.
33

77
 

1 V
al

ue
s w

ith
in

 c
ol

um
ns

 w
ith

 d
iff

er
en

t s
up

er
sc

rip
ts

 a
re

 si
gn

ifi
ca

nt
ly

 d
iff

er
en

t (
P 
≤ 

0.
05

) 
2  V

al
ue

s 
in

 ro
w

s a
re

 L
S 

m
ea

ns
 ±

 S
E,

  s
ha

m
 6

, 3
5,

 1
50

 p
pm

 a
nd

 O
V

X
 6

 p
pm

 n
 =

 5
, O

V
X

 3
5 

an
d 

15
0 

pp
m

 n
 =

 4
 

99



 100 
 

 

like than the sham. This suggests that plate-like trabeculae decreased along with a 

decrease in bone volume fraction. This is also supported by other studies (112, 219). 

Hildrebrand et al. (6) proposed a negative correlation between SMI and BV/TV. 

However, a recent study Van Ruijven et al. (112) suggested that as bone volume fraction 

decreases, the number of plates also decreases. This bone volume fraction decrease would 

also be associated with a 40 % reduction in the thickness of trabeculae with an increase in 

the number of rods. The authors concluded that the effect of bone loss on plate-like 

trabeculae was opposite to its effect on rod-like trabeculae.   

Further, the DA was significantly affected by treatment. Higher DA values were 

observed in OVX when compared to sham. This indicates that OVX rats show poorer 

bone quality than sham (151, 152). These higher DA values suggests that the structure is 

more anisotropic, and, therefore, some of the trabeculae providing resistance to stress in 

preferential directions might be deleted (150). The loss of the preferentially oriented 

trabeculae results in lower quality bone (150). The loss of trabeculae in preferential 

direction affects the mechanical properties of bone (111). Similar to the findings in the 

current study, earlier studies have established that estrogen deficiency is detrimental to 

bone architecture (76-79).  

No significant dietary iron effects were observed for any L5 bone architecture 

variables (Table 11). Nevertheless, a trend towards a significant effect of iron on DA (P = 

0.0884) was observed. The trend supported the iron deficient state (6 ppm) was less 

anisotropic than the other diets. The presence of rod-like properties exhibited by 

trabeculae in OVX and the trend observed in DA due to diet indicates poorer bone quality 
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in the recommended and high iron diets. Nonetheless, other indicators of architectural 

properties were not affected by dietary iron.  

On the other hand, diet and treatment interactions exhibited a significant effect on 

connectivity density (Table 11). The connectivity density increased in sham-operated rats 

with an increase in dietary iron concentration. Greater connectivity density may be good 

if other architectural properties are in agreement with connectivity density. However, 

when lower bone volume fraction and greater DA are observed, greater connectivity 

density may also indicate poor bone quality. Greater connectivity density observed in the 

150 ppm sham in spite of poor architectural properties suggest that the connections 

between trabeculae may be numerously broken. These broken trabeculae might have 

contributed for greater amount of trabeculae per millimeter when counted numerically.  

In the present study, significant increase in connectivity density was observed in 

sham150 ppm iron group when compared to 6 ppm and 35 ppm sham and 35 and 150 

ppm OVX. This suggests that excess iron is detrimental to sham-operated rats and that 

deficiency or adequate levels of iron may be beneficial. Also the connectivity density in 

150 ppm sham was significantly higher than 150 ppm OVX suggesting that ovarian 

hormone presence along with high iron after rapid growth achievement is not protective. 

There were no differences found between sham 150 ppm and 6 ppm OVX. No significant 

diet and treatment interactions were observed in other architectural parameters.  

Distal Femur 

Treatment showed a significant effect on the micro-architectural properties in 

distal femur (Table 12). The BV/TV, connectivity density, SMI and trabecular number 

were significantly greater with less trabecular separation in sham-operated rats than
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OVX. A trend towards significant effect was observed in trabecular thickness. The SMI 

of sham-operated rats exhibited more plate-like properties than OVX rats indicating 

poorer trabecular properties in OVX. The distal femur DA of OVX was also greater 

indicating poorer bone structure. No significant diet effects or diet and treatment 

interactions were observed in distal femur (Table 12). Based on these architectural 

variables BV/TV, connectivity density, SMI, trabecular number, trabecular separation 

and DA, it can be concluded that estrogen deficiency is detrimental to trabecular bone 

architecture in the femur as confirmed by several studies (76-79). The sham-operated rats 

showed better bone quality than ovariectomized rats, which could be due to the inhibition 

of osteoclasts by the estrogen present in sham-operated rats preventing bone resorption. It 

is reported that estrogen inhibits the bone resorbing cells by inducing apoptosis (66). 

Femur Midshaft 

 The treatment effect on cortical bone of femur showed no significant 

effect on total volume, bone volume, cortical thickness, cortical porosity, cortical area 

and medullary area (Table 13). No significant differences were observed in rats fed with 

different dietary iron concentrations (Table 13). Similarly, no significant differences were 

observed in diet and treatment interactions on any of the micro-architectural parameters 

(Table 13). These results suggest that cortical bone is less sensitive to ovariectomy and 

dietary iron due to the slower remodeling rate of cortical bone as compared to trabecular 

bone (94). This slower remodeling rate of cortical bone may be due to several 

contributing factors. Cortical bone has less remodeling surface than trabecular bone 

(108). Also cortical bones possess fewer number of bone remodeling cells when 

compared to trabecular bone. More importantly, cortical bone has less blood supply than
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trabecular bone. This makes it possible for less exposure to hormones and systemic 

factors that affect bone remodeling. In addition, minimal Haversian systems in rat cortical 

bone (186) also might have contributed for lack of cortical bone response towards diet or 

treatment or both.  

Biomechanical Testing 

Biomechanical properties of bone were assessed using finite element modeling. 

Finite element models were generated using the µCT analyses and the material properties 

of the bone in response to compression were predicted. Both fifth lumbar vertebrae and 

distal femora were analyzed for strength parameters of physiological force, average 

strain, stiffness, size independent stiffness, Von Mises stresses and average cross section 

area. 

Fifth Lumbar Strength 

Our findings on the mechanical properties of lumbar vertebrae showed significant 

influence of treatment (Table 14). The physiological force required for compression of 

vertebra were significantly greater in sham compared to OVX. Similarly, average strain, 

stiffness, and size independent stiffness were also greater in sham compared to OVX. Yet 

no significant differences were observed in average cross section area of sham and OVX 

rats. This suggests that the size of the bone was not changed due to ovariectomy. No 

significant diet effects were observed in the biomechanical indicators of physiological 

force, strain, stiffness, average cross section area except Von Mises stresses in sham-

operated and OVX rats. The Von Mises stresses were significantly lower in 150ppm 

group when compared to 6 and 35 ppm iron levels. However, no significant differences 

were observed between 6 and 35 ppm groups. Similarly, the diet and treatment  
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interactions affected Von Mises stresses significantly. 

Von Mises stresses, an indicator of the amount of stress within a bone when a 

force is applied. Diet and treatment interactions showed significant effects such that the 

35 ppm OVX showed significantly greater stress than any other diet and treatment group. 

The 150 ppm OVX showed the lowest stress compared to the 6 and 35 ppm OVX and the 

150 ppm sham. This suggests that, with the increase in iron levels, stress with in the bone 

also increased in sham-operated rats, thus altering the internal structure of the bone. The 

findings on sham mechanical properties are in agreement with the architectural 

properties. However, the OVX rats showed lower stress in high iron group indicating 

lower stress and internal structural compensations. In contrast the architectural properties 

of OVX (connectivity density, DA and SMI) suggest that high iron was detrimental.  This 

suggests that with estrogen deficiency, structural compensations occur internally, thereby, 

reducing the stress in bone. Although, 35 ppm OVX showed greater stress and 150 ppm 

OVX lower stress than other groups, other architectural properties suggest no significant 

differences in both the groups (BV/TV, DA and connectivity density). Studies have 

suggested that a bone with greater BV/TV, distributes stress uniformly. Uniform 

distribution of stress damages the tissue uniformly rather than at one specific point.  Also, 

unevenness of the stress occurs if there is a decrease in the connectivity and BV/TV 

(219). In our study, we observed deceased connectivity density and lower BV/TV in 

150ppm and 35 ppm OVX animals. However, the present study did not determine the 

stress distribution in the vertebral bone. Nonetheless, studies have suggested that lower 

stress can cause loss of cortical bone and more specifically the trabecular bone and 

thereby, affecting the homeostasis of normal bone mass maintenance (220). In the present 
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study, we observed greater loss of trabecular bone and lower stress in 150 ppm OVX 

when compared to other groups. This suggests that, Von Mises stresses alone cannot be 

considered as an indicator of the over all bone quality. Because, all the architectural 

parameters and strength parameters indicate that, OVX had poor bone quality when 

compared to sham and that greater levels of iron was detrimental to sham and OVX. 

Distal Femur Strength 
 

Treatment showed significant effect on the strength of distal femur (Table 15). 

The physiological force was significant due to treatment. Greater force was required to 

compress or crush the bone of sham compared to OVX indicating poor bone quality in 

OVX. Similarly, the strain and size adjusted stiffness required to deform the bone in 

sham is greater as compared to OVX. But the Von Mises stress is lower in sham 

compared to OVX. This again confirms the poor bone quality in OVX than sham. 

However, no significant changes were observed in the average cross section area 

indicating that the size of the bone was not altered.  

Although, treatment showed a significant effect on the strength of distal femur, 

the effect of diet and diet by treatment interactions on distal femur was not significant.  

However, lumbar vertebrae showed significant effect due to diet and diet by treatment 

interactions. This suggests that effect of diet and diet by treatment interactions will be 

more prominently observed with high amounts of trabecular region. Studies have 

suggested that vertebral bodies have greater trabecular region when compared to femoral 

neck and distal femur. And the loss of trabecular bone will primarily be seen first in the 

spine region or vertebral body (94). Therefore, this difference in the skeletal sites might 
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have contributed to less dietary iron effect on the femur trabecular bone than vertebrae. 

Besides, several factors might have contributed for less vertebral strength when compared 

to femur. Findings of Guo et al. (108) suggest that the trabecular tissue is 20-30 % less 

stiff than cortical bone tissue. Their experiments on fatigue resistance of trabecular and 

cortical bone suggested that cortical bone tissue has higher fatigue resistance than 

trabecular bone tissue. The authors proposed that these differences could be due to the 

differences in tissue morphology (108). In another study, loads on the rat femoral neck 

showed more withstanding ability due to cortical bone than cancellous bone (124).  

Besides, rats differ in the microstructure such as minimal Haversian systems contributing 

to less bone remodeling (184, 185). The vertebral body and femur of rat receive different 

loads and stress when compared to humans, as rats are quadrupeds.  

The effect of treatment on the architectural parameters in L5 bone on BV/TV, 

Tb.N, and DA suggests that sham-operated rats had better bone quality than OVX.  Poor 

bone quality in OVX may be due to erosion of trabeculae by osteoclasts. The SMI of 

OVX rats indicated more rod-like properties than the sham. This suggests that plate-like 

trabeculae decreased along with a decrease in bone volume fraction. No significant 

changes were observed in connectivity density due to treatment. However diet and 

treatment interactions influenced connectivity density. Although, greater connectivity 

density was observed in sham-operated rats with an increase in dietary iron 

concentration, other architectural parameters suggested high iron was detrimental. This 

suggests that the greater connectivity density might be due to the numerously broken 

trabeculae. These broken trabeculae might have contributed for more amounts of 

trabeculae per millimeter when counted numerically. This is also confirmed by the 
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increase in trabecular number and less bone volume fraction in high iron groups. 

Similarly, the trend in DA (P = 0.0884) due to diet effect also suggested that with 

increase in iron levels anisotropy increased.  This higher DA values suggests that some of 

the trabeculae might be deleted in preferential directions affecting the mechanical 

properties of bone (150). Findings on human bones also suggest that, the extra load 

applied on the vertebral bone would result in the removal of horizontal trabeculae, 

affecting the mechanical properties of bone as well as the architectural properties (113). 

Similar findings due to treatment were observed in distal femur but no diet or diet 

by treatment interactions were observed. The treatment effects on architectural as well as 

strength parameters indicated better bone quality in sham-operated rats than 

ovariectomized rats. This could be due to the inhibition of osteoclasts by the estrogen 

present in sham-operated rats and thus, preventing bone. Based on these findings it can be 

concluded that estrogen deficiency is detrimental to trabecular bone architecture. This is 

also supported by several studies (76-79). No treatment or diet or diet × treatment effects 

were observed in the architectural properties of cortical bone. This suggests that cortical 

bone may be less affected by dietary iron or treatment.  

However, the diet as well as diet by treatment interactions on mechanical stress of 

bone (Von Mises stresses) showed greater stress with increase in iron levels in sham-

operated rats although no significant differences were observed between 6 and 35 ppm 

sham. This suggests that with the increase in iron levels, stress with in the bone also 

increased in sham-operated rats, thus altering the internal structure of the bone. In 

contrast, the OVX showed greater stress in 35 ppm and lower stress in 150 ppm groups. 

In spite of the differences in the stresses the architectural parameters suggest no 
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significant differences between 35 and 150 ppm OVX groups. The present study 

observed decrease in connectivity and bone volume fraction in 35 and 150 pm OVX 

animals. This might have contributed for a variation in stress (219). Studies have also 

suggested that lower stress can cause loss of cortical bone and more specifically the 

trabecular bone and thereby affecting the homeostasis of normal bone mass maintenance 

(220). In the present study, we observed greater loss of trabecular bone and lower stress 

in 150 ppm OVX when compared to other groups. The findings of this study suggest that 

sham had better bone quality than OVX in terms of architectural parameters and strength 

parameters. The study also suggests that greater levels of iron (35 and 150 ppm) was 

detrimental to sham and OVX.  However, in the growing rats 6 ppm was detrimental. 

Therefore, dietary iron restriction in sham operated or ovariectomized rats would be 

beneficial for trabecular bone, since we found significant effects in lumbar bone where 

greater trabecular bone is present compared to distal femur that has lower trabecular 

bone.
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CHAPTER VI 

SUMMARY AND CONCLUSIONS 

Summary 
 

One hundred twenty-four female Sprague Dawley rats were fed diets of varying 

levels of dietary iron to examine the effect of iron during growth and following 

ovariectomy on bone micro-architecture and strength. Forty or forty four rats were 

randomized to the growing, sham or OVX groups; only those in the first shipment and in 

diet groups 6, 35 and 150 ppm were included in this study.  

Our findings in the rapidly growing rats on nutritional adequacy indicators as well 

as hematological indicators suggest that rats were adequately fed for growth and that iron 

deficiency was induced in the 6 ppm fed rats. No significant differences were observed in 

weights and albumin level, and the lowest iron fed group was made iron deficient as 

indicated by HB, HCT, RBC and RTC number. Hence, our goal to produce iron 

deficiency without affecting growth was met.  

In summary, the trabecular bone architecture of growing rats was affected by 

dietary iron. The findings in our study on both lumbar and femur trabecular architectural 

parameters (Table 6) suggest poor trabecular bone quality in iron deficient rats. However, 

changes were seen more consistently in lumbar bone than in distal femur metaphyses, and 

none were seen in cortical mid-diaphyses region. Earlier studies have suggested that the 

amount of trabecular bone differs from site to site. The neck of the femur contains 25 % 
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trabecular bone, whereas in a vertebral body the percentage ranges from 66% to 90% 

(94). Therefore, loss of trabecular bone will primarily be seen first in the spine region or 

vertebral body.  Consequently in our study changes were also observed more 

significantly in the trabecular region of lumbar bone than in femur. Another contributing 

factor for less significant effect in femur could be due to the growth observed in distal 

femur metaphyses. Studies have suggested that rats show progressive growth in 

cancellous bone at the age of six months or 24 weeks. Since our rats were 18 weeks old 

we would expect growth in the region, and, therefore, the loss of trabeculae or 

deterioration of trabeculae might have been prevented by the growth activity. Conversely, 

the DA of distal femur indicated that dietary iron has influenced the trabecular direction 

but not in lumbar bone. This could be due to the greater load applied on femur than 

lumbar bone during locomotion. No significant alterations were observed in the cortical 

bone architecture. In the lumbar bone as well as femur iron deficiency appears to be 

detrimental for trabecular bone architecture and trabecular orientation respectively. 

The strength analyses in growing rats, significantly affected the lumbar bone but 

not femur. This is because vertebral bone is composed of more trabecular bone than 

femur. The strength analysis performed by µCT using FEM involves only the use of 

trabecular bone. Therefore, we would expect to see better and greater strength in femur 

but less strength in lumbar bone as suggested by trabecular micro-architecture. Our data 

on strength analysis (Table 8) also confirms the same as evidenced by trabecular 

architecture (Table 6). Stress and strain were observed to be higher in 6 ppm diet group 

indicating the structural modifications of bone internally. The physiological force at 

which a bone completely breaks was less in low iron fed group indicating poor strength. 
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However no significant differences were observed between adequate and high iron fed 

groups. This indicates that the strength parameters are affected by dietary iron in lumbar 

bone but not femoral bone and that iron deficiency is detrimental to lumbar bone. With 

no differences found for any of these variables between the recommended iron level (35 

ppm) and high iron level, we do not see detrimental effects of high iron intakes during 

periods of rapid growth in female rats. 

 In the sham-operated and ovariectomized rats the nutrition indicators suggest that 

both the sham-operated and OVX animals were fed adequately (Table 9). No significant 

differences in weight gain due to diet were observed. Treatment significantly affected final 

weights. However, in all the three diet groups in OVX albumin concentrations were lower 

than shams. This lower albumin levels in OVX might be due to the estrogen deficiency 

but may not be due to dietary changes (69-71, 74, 172). Thus, our findings on nutritional 

adequacy indicators suggest that rats were adequately fed although changes were observed 

in some of these parameters due to treatment effect. There was a diet trend for both 

hemoglobin and reticulocyte counts suggesting that the 6 ppm fed rats were iron deficient 

(Table 10). Thus, we conclude that the iron deficiency produced during growth was not 

reversed due to ovariectomy and time. 

Treatment effects on the architectural parameters in L5 bone suggest that sham-

operated rats had better bone quality than OVX.  The SMI of OVX rats indicated more 

rod-like properties than the sham. This suggests that plate-like trabeculae decreased along 

with a decrease in bone volume fraction. No significant changes were observed in 

connectivity density due to treatment. However diet and treatment interactions influenced 

connectivity density. Although, greater connectivity density was observed in sham-
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operated rats with an increase in dietary iron concentration, other architectural parameters 

suggested high iron was detrimental. This suggests that the greater connectivity density 

might be due to the numerously broken trabeculae. These broken trabeculae might have 

contributed for more amounts of trabeculae per millimeter when counted numerically. 

This is also confirmed by the increase in trabecular number and less bone volume fraction 

in high iron groups. Similarly, the trend in DA (P = 0.0884) due to diet effect also 

suggested that with increase in iron levels anisotropy increased.  This higher DA values 

suggests that some of the trabeculae might be deleted in preferential directions affecting 

the mechanical properties of bone (150). Findings on human bones also suggest that, the 

extra load applied on the vertebral bone would result in the removal of horizontal 

trabeculae, affecting the mechanical properties of bone as well as the architectural 

properties (113). 

Similar findings due to treatment were observed in distal femur but no diet or diet 

by treatment interactions were observed. The treatment effects on architectural as well as 

strength parameters indicated better bone quality in sham-operated rats than 

ovariectomized rats. This could be due to the inhibition of osteoclasts by the estrogen 

present in sham-operated rats and thus, preventing bone. Based on these findings it can be 

concluded that estrogen deficiency is detrimental to trabecular bone architecture. This is 

also supported by several studies (76-79). No treatment or diet or diet × treatment effects 

were observed in the architectural properties of cortical bone. This suggests that cortical 

bone may be less affected by dietary iron or treatment.  

However, the diet as well as diet by treatment interactions on mechanical stress of 

bone (Von Mises stresses) showed greater stress with increase in iron levels in sham-
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operated rats although no significant differences were observed between 6 and 35 ppm 

sham. This suggests that with the increase in iron levels, stress with in the bone also 

increased in sham-operated rats, thus altering the internal structure of the bone. In 

contrast, the OVX showed greater stress in 35 ppm and lower stress in 150 ppm groups. 

In spite of the differences in the stresses the architectural parameters suggest no 

significant differences between 35 and 150 ppm OVX groups. The present study 

observed a decrease in connectivity and bone volume fraction in 35 and 150 pm OVX 

animals. This might have contributed for a variation in stress (219). Studies have also 

suggested that lower stress can cause loss of cortical bone and, more specifically, the 

trabecular bone and, thereby, affecting the homeostasis of normal bone mass maintenance 

(220). In the present study, we observed greater loss of trabecular bone and lower stress 

in 150 ppm OVX when compared to other groups. The findings of this study suggest that 

sham had better bone quality than OVX in terms of architectural parameters and strength 

parameters. The study also suggests that greater levels of iron (35 and 150 ppm) was 

detrimental to sham and OVX.  

The cortical bone architecture in growing rats as well as sham and ovariectomized 

rats did not show any effect due to diet (Tables 7 and 13). This suggests that cortical bone 

is less metabolically active than trabecular bone. Similarly no effects due to treatment or 

diet by treatment interactions were observed in sham-operated and ovariectomized rats. 

These results suggest that cortical bone is less sensitive to ovariectomy and 

dietary iron due to the slower remodeling rate of cortical bone as compared to trabecular 

bone (94). This slower remodeling rate of cortical bone may be due to several 

contributing factors. Cortical bone has less remodeling surface than trabecular bone 
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(108). Also cortical bones possess fewer number of bone remodeling cells when 

compared to trabecular bone. More importantly, cortical bone has less blood supply than 

trabecular bone. This makes it possible for less exposure to hormones and systemic 

factors that affect bone remodeling. In addition, minimal Haversian systems in rat cortical 

bone (186) also might have contributed for lack of cortical bone response towards diet or 

treatment or both.  

Results of Hypotheses Testing 

This study proceeds with the following hypotheses: 

1. There will be no statistically significant differences in L5 trabecular architecture. 

a. There will be no statistically significant effect of iron in growing rats. 

Hypothesis 1a was rejected because the L5 architectural parameters 

showed that 6 ppm iron fed animals showed poor bone quality when compared to 

35 ppm and 150 ppm iron fed animals. No significant differences were observed 

between 35 ppm and 150 ppm iron fed animals (Table 6). 

b. There will be no statistically significant effect of iron in sham-operated or 

ovariectomized rats. 

Hypothesis 1b was not rejected because the L5 architectural parameters 

showed that there were no significant differences due to diet in the older animals, 

sham-operated or ovariectomized groups (Table 11). 

c. There will be no statistically significant differences between sham-

operated and ovariectomized rats. 

Hypothesis 1c was rejected because the L5 architectural parameters 

showed that BV/TV, SMI, Tb.N. and DA were significantly affected. Sham-
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operated animals exhibited better bone quality than ovariectomized animals. 

However, no significant differences were observed in Conn. D, Tb.Th and Tb.Sp 

(Table 11). 

d. There will be no statistically significant diet by treatment interactions in 

sham-operated and ovariectomized rats. 

Hypothesis 1d was rejected because there were significant interactions in 

connectivity density. The 150 ppm in sham was significantly greater than 6 ppm 

and 35 ppm sham and 35 and150 ppm OVX. No significant differences were 

observed between 6 ppm and 35 ppm iron fed OVX animals (Table 11). 

2. There will be no statistically significant differences in distal femur trabecular 

architecture. 

a. There will be no statistically significant effect of iron in growing rats. 

Hypothesis 2a was rejected because dietary iron significantly affected DA 

in distal femur. The DA was significantly greater in 35 ppm and 150 ppm when 

compare to 6 ppm iron fed animals. No significant differences were observed in 

35 ppm and 150 ppm iron fed animals. All other architectural parameters were 

not affected by dietary iron (Table 6). 

b. There will be no statistically significant effect of iron in sham-operated or 

ovariectomized rats. 

Hypothesis 2b was not rejected because the distal femur showed no 

significant differences in any of the dietary iron groups (Table 12). 

c. There will be no statistically significant differences between sham-

operated and ovariectomized rats on distal femur trabecular architecture. 
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 Hypothesis 2c was rejected because the distal femur on BV/TV, Conn.D, 

SMI, Tb.N, Tb.Sp, and DA were significantly affected. No significant effect 

was observed in Tb.Th. architectural parameters. Sham-operated animals 

exhibited better bone quality than ovariectomized animals (Table 12). 

d. There will be no statistically significant diet by treatment interactions in 

sham-operated and ovariectomized rats. 

Hypothesis 1d was not rejected because the distal femur showed no 

significant interactions between any of the dietary iron and treatment groups 

(Table 12). 

3. There will be no statistically significant differences in femur cortical bone 

architecture. 

a. There will be no statistically significant effect of iron in growing rats. 

Hypothesis 3a was not rejected because the architectural parameters in 

femur midshaft cortical bone showed no differences between in any of the 

dietary iron groups (Table 7). 

b. There will be no statistically significant effect of iron in sham-operated or 

ovariectomized rats. 

Hypothesis 3b was not rejected because the architectural parameters in 

femur midshaft cortical bone showed no significant differences in any of the 

dietary iron groups and also between sham-operated and ovariectomized 

animals (Table 13). 

c. There will be no statistically significant differences between sham-

operated or ovariectomized rats. 
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Hypothesis 3c was not rejected because the architectural parameters in 

femur midshaft cortical bone showed no significant differences (Table 13). 

d. There will be no statistically significant diet by treatment interactions in 

sham-operated or ovariectomized rats. 

Hypothesis 3d was not rejected because the architectural parameters in 

femur midshaft cortical bone showed no significant differences (Table 13). 

4. There will be no statistically significant differences in L5 strength. 

a. There will be no statistically significant effect of iron in growing rats. 

Hypothesis 4a was rejected because the architectural parameters showed 

significant effect of iron on bone strength. The strength of bone in 6 ppm iron 

fed animals was significantly lower than 35 ppm and 150 ppm iron fed animals. 

No significant differences were observed between 35 ppm and 150 ppm iron fed 

animals (Table 8). 

b. There will be no statistically significant effect of iron in sham-operated or 

ovariectomized rats. 

Hypothesis 4b was rejected because the Von Mises Stresses were 

significantly greater in 150 ppm sham than 35 ppm and 6 ppm sham and also 

150 ppm OVX. No significant differences were observed between 35 ppm and 

150 ppm. All the three dietary iron concentrations in OVX are significantly 

different. However low stress was observed in 150 ppm OVX. No significant 

changes were observed in average cross section area (Table 14). 

c. There will be no statistically significant differences between sham-

operated and ovariectomized rats. 
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Hypothesis 4c was rejected because all the strength parameters showed 

significant differences except Von Mises stresses and average cross section 

area. Sham showed better bone strength when compared to OVX (Table 14). 

d. There will be no statistically significant diet by treatment interactions in 

sham-operated or ovariectomized rats. 

Hypothesis 1d was rejected because the Von Mises Stresses were 

significantly greater in 35 ppm OVX than 6, 35 ppm 150 ppm sham and 6, 150  

ppm OVX. No significant differences were observed among all the three dietary 

iron levels in sham. All the three dietary iron concentrations in OVX are 

significantly different. However low stress was observed in 150 ppm OVX due 

to diet and treatment interactions. No significant changes were observed in 

average cross section area (Table 14). 

5. There will be no statistically significant differences in distal femur strength. 

a. There will be no statistically significant effect of iron in growing rats. 

Hypothesis 5a was not rejected because the distal femur strength analyses 

indicated no significant differences in all the dietary iron concentrations (Table 

8). 

b. There will be no statistically significant effect of iron in sham-operated 

and ovariectomized rats. 

 Hypothesis 5b was not rejected because the distal femur strength analyses 

indicated no significant differences in all the dietary iron concentrations (Table 

15). 
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c. There will be no statistically significant differences between sham-

operated or ovariectomized rats. 

Hypothesis 5c was rejected because all the architectural parameters on 

strength analyses except the average cross section area indicated significant 

effect of treatment. Sham-operated animals exhibited better bone strength than 

ovariectomized animals (Table 15). 

d.  There will be no statistically significant diet by treatment interactions in 

sham-operated or ovariectomized rats. 

Hypothesis 5d was not rejected because the distal femur strength analyses 

indicated no significant differences in diet by treatment interactions (Table 15). 

Conclusion 

In conclusion, the trabecular architecture and strength properties of this study 

suggests that iron deficiency is detrimental to growing rats and that adequate or high iron 

levels may be beneficial during rapid growth periods. On the other hand, sham-operated 

and ovariectomized animals showed better bone quality with iron deficiency. Adequate or 

high iron level appears to be detrimental to sham-operated or ovariectomized rats. This 

suggests that after rapid growth is achieved and when estrogen levels are lowered, iron 

deficiency may be beneficial and adequate or excess levels of iron may be harmful to 

bone. Our findings also suggest that the effect of iron changes with skeletal site since we 

found significant effects in lumbar bone but not on distal femur or midshaft. 

Recommendations 

Recommendations for further research include the following changes in the 

experiment. The results of animal studies are limited, as they cannot be applied to 
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humans. Therefore, studies on pre and postmenopausal women might be ideal to explore 

the effects of adequate, inadequate and excess intake of iron on bone micro-architecture. 

Bone tissue biopsies can be taken for assessing the micro-architecture. 

The rats could be fed ad libitum with normal diet excepting iron. All the animals 

can be fed the amount of those eating the least ad libitum that would equalize protein, 

energy, vitamin and mineral except for iron. Iron could be given by gavage.  
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APPENDIX B 

PROCEDURES FOR MICRO-COMPUTED TOMOGRAPHY ANALYSES 

Procedures for Bone Scanning  

Fifth Lumbar Vertebrae 

The previously cleaned fifth lumbar vertebrae were removed from-20oC 

freezer and placed in a 20mm tube for scanning in micro-CT. The following 

procedure was used for scanning the bone using micro-CT. Use an appropriate sized 

tube based on the largest vertebrae. Use the same tube for all analyses. 

1. Place five vertebrae in the tube aligning through the foramen using a toothpick to 

position the bone. Vertebral processes will be in the natural direction. 

2. The empty space inside the tube should be covered with foam by wrapping the 

column of vertebrae in foam such that the vertebrae do not move within the tube 

during scanning. 

3. Place vertebrae in the tube such that the interior facets are placed in the downward 

direction and the superior facet is lined up, to match the line on the tube. Place 

tube in micro-CT and close the door. 

4. Scan bones using the computer connected to the micro-CT. 

5. The monitor in the computer shows three screens: operator name/uct40, session�s 

manager and dec term. 

6. Register the operator name for the first time, using the operator name/uct40 

screen. The same operator name can be used later while working with micro-CT 
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            for scanning and analyzing the bones.  

7. Enter sample name and number by clicking the first button in the operator 

name/uct40 screen. Save the data after entering the sample name. Note down the 

sample number and instrument number in a lab notebook. 

8. Click the second button in the operator name/uct40 screen. 

9. Enter the sample number of rat. 

10. Click �rat vertebrae L4 20mm�. Although a different vertebra may be analyzed the 

program name remains the same. 

11. Click �scout view� twice. 

12. Click �reference line�. Use shift for adjusting the region of reference line. 

13. Place the reference line such that one vertebra in the tube was in between the two 

lines of the reference line. Then click on the image. 

14. Click �save scout� and then �batch measurement�.  

15. Press �other� in the main screen and enter again the sample number for the next 

vertebrae scanning (measurement). Then repeat the procedure from step 12. 

16. Complete selecting and saving scout of all vertebrae in the tube and then close the 

window so that the machine starts scanning.  

17. For every 300 slices it takes approximately one hour 30 minutes to scan. 

18. After completing the scanning the bones were analyzed for trabecular region 

Distal Femur Metaphyses 

The right femur was removed from -20oC freezer and placed in a 16mm tube 

for scanning in micro-CT.  Unlike vertebra, each femur was scanned separately.  Both 

the metaphyses and cortical mid-diaphyses were measured separately while scanning. 
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1. Similar to vertebrae, the right femur should be placed vertically such that the line 

on the tube was aligned with the anterior side of the femur patellar surface at the 

bottom of the tube and neck of the femur at the top of the tube. 

2. The empty space was covered with foam by wrapping the bone prior to insertion 

such that the femur does not move within the tube during scanning. 

3. Enter the operator name in the operator name/uct40 screen.  

4. Enter sample name and number by clicking the first button in the operator 

name/uct40 screen. Save the data after entering the sample name. Note down the 

sample number and instrument number in a lab notebook. 

5. Click the second button in the operator name/uct40 screen. 

6. Enter the sample number of rat. 

7. Click rat femur 16mm. 

8. Click scout view twice. 

9. Click reference line. Use shift for adjusting the region of reference line. 

10. Identify the distal growth plate. 

11. Place the reference line such that the bottom line matches with the growth plate. 

12. From the growth plate measure proximally 350 slices using reference line. 

13. Click save scout and then batch measurement. 

14. Now start the procedure for scanning mid-diaphyses.  

15. If mid-cortical shaft analyses will be done, proceed to the next section before 

beginning analyses. 
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Femur Cortical Mid-diaphyses 

 Femur mid-diaphyses measurement should be taken on the same scout view that 

was used to measure distal femur metaphyses. The same sample number should be used. 

However, the machine automatically generates a different measurement number for mid-

diaphyses. 

1. Click reference line.  

2. Calculate the length of the bone. Use reference line to the top end of the bone and 

note down the number.  

3. Move the reference line to the bottom end of the scout view picture such that the 

bottom line of the reference line matches with lower end of the bone. Note down 

the number on bottom end of the bone.   

4.  Calculate the average of the top and bottom end of the bone. Note down all the 

values in a lab notebook. 

5. Move the reference line to find the center of the bone based on the average 

number calculated.  

6. Find the distance in millimeters for 17 slices by using the reference line. 

7.  Subtract the distance of 17 slices from the average number that was calculated 

and take the measurement at this number. (This enables to take the measurement 

exactly at the midpoint such that 17 slices would be above and 17 slices below the 

mid-point). 

8. Using shift adjust reference line for 34 slices. 
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9. Click save scout and then batch measurement. Now close the window and the 

machine starts scanning for both metaphyseal and mid-diaphyseal region of right 

femur. 

10. After completing the scanning the bones were analyzed for trabecular and cortical 

region of the metaphyseal and mid-diaphyseal region of the bone respectively. 

Procedure for Bone Analyses 

1. Go to the operator name/uct40 screen and click third button. 

2. A small window will pop-up. Click the sample number of the bone in the sample 

column.  

3. Select the measurement number on the right hand side of the screen based on the 

type of bone that needs to be analyzed. (For example: trabecular or cortical bone 

needs to be selected while analyzing femur bone). This step allows opening a 

window that shows the images of the bone scanned. 

4.  Click on the first image and then go to the task bar to select zoom. Click zoom 2x 

or 3x. This step allows magnifying the first image that was selected previously. 

5. Identify the growth plate and start contouring the slices as described below for 

each bone separately.  

Fifth Lumbar Vertebrae Analyses 

1. The trabecular region was analyzed by identifying the growth plate from both the 

cranial and caudal regions.  

2. The analyses were done starting from the cranial to the caudal region of the 

growth plates.  
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3. The start slice was taken as growth plate plus 25 slices from the cranial region and 

stop slice was taken as growth plate minus 25 slices from the caudal region. 

4. Beginning from the start slice to every 15th slice, the slices were contoured. The 

slices between the first and each 15th slice were morphed in a semi-automated 

fashion. 

5. Contour (draw a line) the first slice in anti-clock wise direction with the help of 

the mouse such that all the trabecular area was included. Care should be taken that 

no cortical bone was included while analyzing for trabecular region. 

6. After contouring the first slice, click on to go to the 15th slice and repeat 

contouring similar to the first slice. 

7. Select range and morph on the small window located on the right hand bottom 

corner. 

8. Repeat the procedure for every 15th slices and click morph for every 15th slice. 

9. After contouring the stop slice click cancel on the small window located on the 

right hand bottom corner. Then select click evaluation 3D, select default VOI and 

then click start evaluation. (The machine will automatically evaluate the 

trabecular region of the bone and generates the print out. Save these printouts in a 

folder). 

10. Go to file, click exit and start again with new sample analyses. 

Distal Femur Metaphyses Anlayses   

1. The trabecular region was analyzed by identifying the growth plate. 

2. Contours were then placed in a semi-automated fashion to produce a trabecular 

core. 
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3.  The metaphyseal trabecular region was analyzed by identifying the growth plate 

from the distal part of the femur and included all distal trabecular bone.  

4. The start slice was taken as the 25th slice proximal to the distal femur growth 

plate. 

5. The stop slice was taken as the distal growth plate plus 150 slices towards the 

proximal femur. 

6. Analyses of the distal femur trabecular region were performed from the start slice 

to the stop slice. 

7. The procedure from step five in vertebra analysis was followed to analyze the 

distal femur trabecular region. 

8.  The trabecular region was prepared for analysis by drawing contours for the first 

slice and every 15 slices to produce a trabecular core. 

9. The slices between the first and the15th slice were morphed in a semi-automated 

fashion.  

Cortical Mid-diaphyses Analyses 

1. Before starting for the cortical mid-diaphyses analyses, go to the �dec term� 

screen. 

2. Type in decterm, �eval_Midshaft.� 

3. This step allows a small window to pop-up in which the sample number and 

measurement number should be selected. 

4. Click on the third slice for cortical mid-diaphyses analyses. 

5. Contour the outer edge of the slice selected using mouse in anti-clock wise 

selection. 
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6. Again contour the inner part of the bone in clock-wise direction.  

7. Care should be taken that all the cortical bone is included. 

8. Select the 32nd slice. Contour the slice similar to the third slice. 

9. After contouring the third and 32nd slice click on �contouring� on the small 

window located on the right hand bottom corner. 

10. Click on �range.� 

11. Click on �iterate backwards.� 

12. Once the iteration is complete, click �cancel.� 

13.  Click on �evaluation 3D� 

14. Click on �start evaluation.� 

a. The machine will automatically evaluate the cortical region of the bone 

and generates the print out.  

b. Save these printouts in a folder.  

c. Check the print outs for the symbol �~� in front of the values reported. 

This symbol indicates that only cortical region was evaluated by 

machine.   

15. Go to file, click exit and start again with new sample analyses. 

Data Generation 

1. Go to dec term 

2. Type �uct_list� 

3. Press enter key 

4. Enter measurement number from �________�(The measurement number of the 

sample whichever is the first one in the analyses need to be entered). 
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5. Press enter key 

6. Enter measurement number to �________�(The measurement number of the 

sample whichever is the first one in the analyses need to be entered). 

7.  Press enter key. 

8. The machine will start processing the measurement numbers for data generation. 

9. Once the symbol  �$� is generated, go to the normal computer that has 

WSFTP/Smart FTP program for micro-CT data. 

10. Open the micro-CT scratch file using WSFTP/Smart FTP program and save the 

data. (The data generated will be saved in a note pad by default). 

11. Import the data from notepad into an excel sheet. 

12. Save data in the excel sheet. 
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APPENDIX C 

PROCEDURES FOR FINITE ELEMENT ANALYSES 

Fifth Lumbar Vertebrae and Distal Femur Metaphyses 

 The trabecular region of both lumbar vertebrae and distal femur metaphyses were 

used to assess the bone mechanical properties using finite element models generated 

through micro-CT. The following procedures were adopted for generating the data 

through FE models. 

1. Analyze the trabecular region of the bone. 

2. Go to the sessions manager screen and click views. 

3. Click micro-CT data. 

4. Search instrument number of the sample that needs to be analyzed for FEM 

5. Highlight the latest �seg aim� file on the sessions manager screen. 

6. Go to the dec term screen and type �fem � (Type one �space� after fem) 

7. Right click the mouse in the dec term to paste the �seg aim� file 

8. Press enter key. 

9. Note down the entry number in the lab book. 

This procedure enables the machine to generate the FEM data. Approximately it 

takes one day to complete the data generation for one bone. To check if the FEM is 

completed the following procedure should be followed. 

10. Go to dec term 

11. Type �que� and then press �enter� key
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12. Check if the �que� generated has the entry number. If the number is not found 

then the FEM is completed. 

After the FEM is completed, the FEM data should be saved. The following 

procedure should be used to save the FEM data. 

13. Go the screen sessions manager. 

14. Click views. 

15. Click micro-CT 

16. Search for instrument number and then sample number 

17. Double click the file post list (This step allows one to see the data generated in a 

separate window. This data should be saved as a text file. The procedure is as 

follows). 

18. In the window, click on edit. Click �select all.� 

19. Again click on edit. Click �copy.� 

20. Go to file and click exit. 

21. Now go to the screen sessions manager and click on the button �applications.� 

Select note pad (This step allows one to paste the data copied from the window). 

22. In the note pad, click on �file� and select �save as.� This step generates a small 

window. Delete the existing file in this small window. Do not close the window. 

23. After deleting the existing file go to sessions manager, click on views, click on 

�micro-CT scratch.� Highlight the file name on the task bar and paste this file on 

the small window generated from the notepad (step 22). Next to the copied file 

type the study name and rat number. Click �ok� and close the note pad. 



 

 160 
 

24. The file will be saved in scratch file of micro-CT.  Using the WS FTP/Smart FTP 

program, the data from the micro-CT scratch can be imported. Print data from the 

scratch file and calculate all the strength parameters. 

   The following parameters are generated for the assessment of mechanical 

properties of bone. All these parameters should be inserted into excel sheet for automatic 

calculation of values. However, the data from the micro-CT pint outs should be manually 

entered into the excel sheet. 

1. X dimension = generated from the machine 

2. Y Dimension = generated from the machine 

3. Z Dimension = generated from the machine 

4. Voxel Size = generated from the machine 

5. Total Voxels = generated from the machine 

6. Total Elements = generated from the machine 

7. Voxel Volume = generated from the machine 

8. Number of Nodes = generated from the machine 

9. Average strain = generated from the machine, correct entry for exponent 

10. Apparent strain = generated from the machine 

11. Average/Apparent Stress Ratio = calculated  
 

                                                  = Average strain/apparent strain 
 
 

12. Displacement, mm (100%) = generated from the machine 

13. Total Force, N = generated from the machine, correct entry for exponent 

14. Extrinsic Stiffness, N/m = calculated 
 
                                             = (Total force/displacement) x 1000  
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15. Physiological Force, N = calculated 

                                            = (Total force x 0.003) 

16. Trabecular Core Volume, mm3 = data taken from micro-CT print outs 

17. Trabecular core height, mm = z dimension x voxel size  

18. Average Cross Section Area, mm2  = calculated 

                                                                            =  Trabecular core volume/ Trabecular core height 

19. Intrinsic stiffness, N/mm2 or Size Independent Stiffness = calculated 

                                                    =  Total force/ Average cross sectional area                                        

20. Average Von Mises Stresses = generated from the machine, correct entry for       

exponent 

21. Von Mises Stresses, Standard Deviation = generated from the machine, correct 

entry for exponent 

22. Minimum Von Mises = generated from the machine, correct entry for exponent 

23. Maximum Von Mises = generated from the machine, correct entry for exponent  

24. Skewness = generated from the machine, correct entry for exponent. 

25. Curtosis = = generated from the machine, correct entry for exponent          

26. Force Adjustment Constant = calculated 

                 = (Lowest total force, a constant/ total force for each bone) ÷ 100 

                  The constant is determined by taking the lowest mean value for the total 

force within the treatment group. 

27. Corrected Von Mises Stresses, Average = calculated 

                = Force adjustment constant x Von Mises stresses for each bone
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lumbar (L5) vertebrae were used for analyzing the bone micro-architecture and 
strength using micro-computed tomography (µCT-40, SCANCO MEDICAL AG, 
Zurich, SW). 

 
Findings: Iron deficiency significantly decreased L5 architecture (Tb.N, Tb.Sp) and 

strength (Phy_fce, Strain, Stiffness, SIS) and increased Von Mises in growing 
rats. Femur architecture indicated by degree of anisotropy (DA) but not strength 
was affected by diet.  Sham L5 architecture (BV.TV, Tb.N) was significantly 
greater and DA was lower indicating better quality bone than in OVX. A diet x 
treatment interaction was found for connectivity density with greater density in 
the 150 ppm sham rats.  Shams had significantly greater L5 strength (Phy_fce, 
Strain, Stiffness, SIS) with a diet x treatment interaction for Von Mises (35 ppm 
OVX greater than all others and 150 ppm OVX less than 6 and 35 ppm sham and 
OVX).  No diet, treatment or interactions were found in any group in femur mid-
shaft cortical architecture. Our findings suggest that dietary iron affects bone 
micro-architecture and strength in low iron fed growing animals but not in sham 
and OVX. The diet by treatment interactions suggests that high iron may be 
detrimental to some. However, it was not clear what levels of iron when 
combined with estrogen deficiency would be detrimental with aging. Our findings 
also suggest that the effect of iron changes with skeletal site since we found 
significant effects in lumbar bone but not on distal femur or midshaft. 
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