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CHAPTER I 
 
 

INTRODUCTION 

 

Even with advances in modern medicine, osteoporosis and cardiovascular 

diseases (CVD) are still considered major public health threats.  By definition, 

osteoporosis is a disease characterized by low bone mass, as indicated by bone mineral 

density (BMD) measures, and structural deterioration of bone microarchitecture to the 

point that fracture risk is increased.  Recent estimates indicate that over 43 million 

Americans have been diagnosed with osteoporosis or low bone mass (i.e. osteopenia) (1).  

By comparison, CVD include a wide range of conditions that involve the myocardium 

and/or vascular system.  One of the most common CVD, coronary artery disease, is a 

contributing factor in approximately 29% of all American deaths (2).  Both osteoporosis 

and CVD are considered age-related diseases in that they evolve over time and age is 

considered a major risk factor.  This is demonstrated by the fact that osteoporosis is more 

common in individuals over the age of 50, and CVD increases significantly after the age 

of 50 (2). The predicted demographic shift toward an older society in the U.S. would 

suggest that the prevalence of these diseases will only increase unless better prevention 

and treatment strategies are developed (1).  

 Clinical observations suggest that chronic activation of the immune system is 

likely involved in the development of osteoporosis and CVD (3).  In recent years, studies 
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have shown that in postmenopausal women, a population in which bone loss and 

increased risk for CVD are well documented, a marked increase in the pro-inflammatory 

cytokines occurs (4).  Additionally, patients with chronic inflammatory conditions such 

as systematic lupus erythematosus (SLE) and rheumatoid arthritis (RA), often experience 

complications of bone loss and CVD (5-8).  Women with SLE have been shown to be at 

greater risk of having developing osteoporosis (6) and autopsy studies indicate a high 

incidence of atherosclerotic lesions (9).  Likewise, patients with RA experience bone loss 

throughout the skeleton as well as in the affected  joints, and have reduced life-

expectancy due in part to increased CVD mortality (7).  Elevated levels of circulating 

pro-inflammatory mediators such as interleukin (IL)-1 and IL-6, tumor necrosis factor 

(TNF)-α, and macrophage colony stimulating factor (M-CSF) are common in many of 

these inflammatory conditions as well as in postmenopausal women as estrogen levels 

decline (10). 

At the tissue level, chronic inflammation creates a bone catabolic and vascular 

pro-atherosclerotic environment.  In the bone, increased bone resorption by osteoclasts 

and decreased bone formation by osteoblasts are likely due to the increase in cytokines 

and growth factors that up-regulate osteoclast development and  activity, and suppress 

osteogenesis (4).  If such alterations in bone metabolism persist, deterioration of bone 

tissue and bone loss will result.  Within the vascular walls, immune cells such as 

monocytes and macrophages produce cytokines which have been identified in all stages 

artheromatous lesions.  Several of the same inflammatory mediators that play a role in 

bone loss such as IL-1, IL-6, interferon (IFN)-γ, TNF-α, several growth factors, are also 

involved in vascular disease (11).  Both male and female patients with CVD exhibit much 
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higher serum IL-6 and TNF-α than those without CVD (12).  Continued research is 

focused on establishing a better understanding the role of these mediators in osteoporosis 

as well as CVD. 

Accumulating evidence over the past six decades has suggested that the 

pathophysiology of both osteoporosis and CVD may be related (13-18).  Individuals with 

low BMD have been shown to have a higher incidence of CVD (19).  Hyder et al., found 

an inverse relationship between  patient’s lumbar spine BMD and aortic calcification 

(18).  Postmenopausal women that have been diagnosed with osteoporosis tend to have 

elevated arterial stiffness, predisposing them to a higher risk of developing CVD (20). 

Based on the role of inflammation in the pathophysiology of osteoporosis and CVD, it 

seems reasonable that chronic elevation of pro-inflammatory mediators may provide a 

link between these two conditions.   

Recently, an animal model of chronic low grade inflammation was developed for 

the purpose of studying the effects of low grade inflammation on bone (21).  This model 

was first developed in 3 month-old Sprague Dawley rats that received lipopolysaccharide 

(LPS) over 90 days via a slow release pellet implanted on the dorsal region of the neck 

(21).  Chronic inflammation was verified by increased monocyte and neutrophil counts in 

the peripheral blood over the 90 day study period.  This chronic inflammatory state was 

associated with a decrease in femur BMD and loss of trabecular bone at the proximal 

tibia (21).  Further investigation revealed that chronic exposure to LPS also produced a 

cardiovascular pathology characterized by vascular fibrosis and disruption of the intimal 

layer of the smaller intramural arteries and arterioles of the myocardium (22).  

Subsequent studies in mice revealed a similar bone and vascular pathology in the 
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C57BL/6 mouse after 30 and 90 days (23, 24).  Evidence from these initial studies 

demonstrated that this model provided a system to study the role of chronic inflammation 

in concurrent bone loss and vascular disease. 

 Theoretically, if inflammatory pathways are the primary mediators of bone loss 

and vascular disease, therapeutic agents which have anti-inflammatory properties would 

serve as an ideal treatment.  Statins are a group of drugs commonly prescribed because of 

their efficacy in lowering serum cholesterol.  This class of drugs primarily acts by 

inhibiting the enzyme HMG-CoA  reductase, which catalyzes the conversion of HMG-

CoA to the cholesterol precursor, mevalonate (25).  More recent studies have suggested 

that these lipid lowering drugs also have  anti-inflammatory properties that may protect 

against both osteoporosis and CVD (26, 27).  In terms of osteoporosis, statin therapy has 

been associated with an increase in BMD and has positive effects on fracture healing (26) 

and bone resorption (28).  Statins have also been shown to increase bone formation in 

vitro by stimulating bone morphogenetic protein 2 (BMP2), a growth factor that 

promotes osteoblast differentiation (29).  In terms of CVD, pro-inflammatory cytokines 

participate in atherothrombotic events and it has been suggested that statins may reduce 

the risk of CVD not only through their positive effects on the lipid profile, but also by 

their effects on these cytokines (30).  While statins provide a potential therapeutic option 

that could be beneficial in the treatment of both cardiovascular and skeletal health, they 

are not without some undesirable side effects (e.g. muscle pain/weakness, liver damage).  

Therefore, natural treatment options that could be incorporated into the diet may provide 

a more desirable alternative for many individuals. 
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Plant-based foods such as fruits and vegetables and their bioactive components, 

are of particular interest due to their ability to reduce the occurrence of bone loss and 

cardiovascular disease.  Dried plums are of particular interest due to their rich source of 

several nutrients (i.e. potassium, boron, and magnesium) and their polyphenolic 

compound content (31).  Dietary supplementation with dried plum has been shown to 

prevent and, to some extent, reverse the loss of bone mass (i.e., BMD) in ovariectomized 

young adult rats (32, 33).  Dried plum’s osteoprotective effects were also studied in male 

orchidectomized rats and were found to down-regulate the gene expression of both 

osteoprotegerin (OPG) and receptor activator for NF-κB ligand (RANKL), and prevent 

the gonadal hormone deficiency-induced deterioration of trabecular bone 

microarchitecture (34).  In vitro studies using polyphenols extracted from dried plum 

indicated that these compounds may enhance osteoblastic activity (35), and suppress 

osteoclastogenesis (36).  In addition to its effects on bone, dried plum has also been 

shown to impact risk factors for CVD.  Tinkerand colleagues., (37) administered dried 

plums to men with mild hypercholesterolemia, and found that they were able to reduce 

total cholesterol.  Dried plums have also been shown to protect against the ovariectomy-

induced elevation of total cholesterol in rats fed a high dried plum diet (25% w/w) had 

lower levels of total liver lipids (38).  These findings suggest that dietary supplementation 

with dried plum is able to exert beneficial effects both on both the skeletal and vascular 

system. 

One particular group of compounds found in fruits and vegetables, polyphenols, 

have been of particular interest due to their anti-inflammatory and antioxidant properties 

(39).  Polyphenols are a class of phytochemicals found in high concentrations in plant-
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based foods which are responsible for a fruit/vegetable’s vibrant color and offer a natural 

defense mechanism for plants (39).  Red wine, a rich source of the polyphenolic 

compound resveratrol has been shown to reduce the incidence of CVD and at the same 

time stimulate proliferation and differentiation of osteoblasts (40).  The polyphenolic 

compound found in high concentrations in green tea, (-) –epigallocatechin-3-gallate 

(EGCG), has been shown to dramatically decrease the number of osteoclasts in vitro (41) 

and is inversely related to mortality due to CVD (42).  The mechanism by which green 

tea exerts its positive effects appear to be anti-oxidative, anti-inflammatory, and anti-

atherosclerotic (43).  Furthermore, soy, another rich source of polyphenols (e.g. genistein 

and daidzine), has been shown to have protective effects on bone (44), and prevent the 

formation of atherosclerotic lesions (45).  Therefore, it is reasonable to expect that dried 

plum’s polyphenols may offer protection and perhaps could even reverse the detrimental 

effects on the skeletal and cardiovascular systems. 

In this study, we propose to induce bone loss and vascular pathology due to 

chronic low grade inflammation, and that dried plum’s polyphenols will be able to 

attenuate this response.  The following hypothesis will be tested and the objectives 

carried out to accomplish this purpose.  

 

Hypothesis:  Polyphenol extract from dried plums will reverse the bone loss and vascular 

pathology induced by low grade chronic inflammation by reducing key inflammatory 

mediators (e.g. TNF-α and Il-6) involved in the pathophysiology of osteoporosis and 

CVD.   
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Objective 1:  X-ray microcomputed tomography (μCT) and dual-energy x-ray 

absorptiometry (DXA) will be used to assess the alterations in trabecular and cortical 

bone microarchitecture and bone mineral content and density in response to inflammation 

and dried plum’s polyphenols.  The effects of dried plums’ polyphenols will be compared 

to those of the whole dried fruit and the cholesterol-lowering drug simvastatin (25 mg/kg 

diet) will be used as a positive control. 

 

Objective 2:  To determine the extent to which dried plum’s polyphenols reverse the 

pathological changes occurring in the myocardium and vasculature in response to 

inflammation, histological evaluation will be performed.  The influence of dried plums’ 

polyphenols on cardiovascular pathology will be compared to that of similar doses of 

dried plum and simvastatin. 

 

Objective 3:  To assess the local and systemic effects of dried plum’s polyphenols on 

genes involved in the regulation of bone formation and resorption.  The effects of dried 

plum’s polyphenols on these indicators of bone resorption (TRAP, RANKL, OPG) and 

formation (ALP, IGF-1) will be compared to that of dried plum and simvastatin.  

 

Objective 4:  To determine the extent to which polyphenols extracted from dried plums 

transcriptionally alter local and systemic inflammatory mediators.  TNF-α, IL-6 and IL-

10 gene expression will be assessed to determine the effect different treatment options 

have on these two inflammatory-induced conditions, using of real time PCR.  The effects 
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of the polyphenols on these inflammatory mediators will be compared to that of dried 

plum and simvastatin.  

 

Study Limitations: 
 
 Our laboratory has developed the animal model proposed in this study to examine  

the effects of chronic low grade inflammation (21-23, 46).  Previously this model has 

been shown to closely mimic some of the effects of chronic inflammation on the skeletal 

and vascular system in humans.  Although the use  of in vivo  model has advantages 

compared to cell or tissue culture systems, results from this study cannot be directly 

extrapolated to humans.  It is well documented that effects observed in rodent animal 

models may vary to some extent with the responses observed in humans.  Animal models 

are also convenient means for researchers to perform initial studies of various dietary 

regimens, however in humans, adherence to study protocol may be problematic.   

 Another potential limitation to this study is the fact that total polyphenols were 

extracted from dried plums.  While the extract was analyzed for its polyphenolic, 

carbohydrate, fat and proetin content, other components may remain in this sample and 

potentially influence the results.  Polyphenol content of dried plum may vary by season 

and other harvesting techniques, which may alter potency of the dried plum’s 

polyphenols.  This study used a single lot of dried plum powder provided by California 

Dried Plum Board to account for this possible confounding factor.  

 



CHAPTER II 
 
 

REVIEW OF LITERATURE 

 

Introduction to Osteoporosis and Cardiovascular Diseases 
 

Mounting clinical evidence and epidemiological studies suggest a link between 

osteoporosis and CVDs such as atherosclerosis, cerebral vascular incidence, peripheral 

arterial disease (PAD), and coronary heart disease (17, 18, 47-49).  Both conditions are 

major public health problems for developed countries such as the United States and many 

European countries (50).  Coronary artery disease is the leading cause of death for both 

men and women in the U.S. (51), and osteoporosis affects an estimated is 10 million 

Americans, with another 34 million at risk (i.e. osteopenia or low BMD) (1).  European 

countries have the highest prevalence of osteoporosis.  For example Denmark has a 

population of approximately 5.46 million people and 29.3%  (1.6 million) are affected by 

osteoporosis (52).  CVD is an even greater public health concern in that an estimated 17.5 

million people die from cardiovascular disease per year worldwide, representing 30% of 

all deaths globally (50).   

 

 Osteoporosis and CVD are debilitating conditions that affect a patients “physical” 

health, as well as having a significantly economic impact on the healthcare system. The 

annual costs associated with CVDs and osteoporosis in the United States have been
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estimated at $403.1 billion (53) and $16.9 billion, respectively (54).  Combined, these 

two age-related chronic conditions contribute approximately $420 billion to the total U.S. 

healthcare expenditures (53, 54).  The total direct costs of osteoporosis in European 

countries was estimated at $41 billion per year (€31.7 billion/year) (55), and overall CVD 

is estimated to cost Europeans $248.3 billion (€192 billion/year) per year (56).  The 

debilitating nature of the age-related conditions as well as the economic burden to 

healthcare systems has motivated researchers and healthcare professionals to improve the 

prevention and treatment strategies.   

To date, patients diagnosed with osteoporosis have the option of anti-resorptive 

bisphosphonate drugs or anabolic parathyroid hormone (PTH) therapy, which are focused 

on altering bone metabolism.  Treatment for CVD is dependent on the specific disease 

pathology (e.g., coronary artery disease, hypertension, or stroke), and effective treatments 

usually include lifestyle behavior modifications.  For example, patients diagnosed with 

atherosclerosis may be prescribed a variety of medications, one of the most commonly 

prescribed drug classes is the cholesterol loweringc statins.  A single patient diagnosed 

with both a CVD and osteoporosis will most likely be prescribed separate drugs (e.g., an 

anti-resorptive drug combined with lipid-lowering and anti-hypertensive agents) which 

ultimately lead to polypharmacy.  This scenario is quite common due to the tendency for 

these conditions occur simultaneously (57).   

Populations at Risk for Osteoporosis and CVDs 

Increased risk for osteoporosis and CVD occurs in populations such as the 

elderly, postmenopausal women, and people with chronic inflammatory conditions.  For 

instance, as individuals age, skeletal deterioration and the risk for CVD increase.  In fact 
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55% of the people 50 years of age and older have osteoporosis in America and about 84% 

of cardiovascular disease deaths occur in people age 65 and older (1, 2).  Mussolino et 

al., (1) reported that in a cohort of Caucasian men, phalangeal BMD was inversely 

associated with cardiovascular-related deaths.  Farhat and colleagues (2) found that the 

incidence of CVD in older men and women (i.e. aged 68-80 years) was also inversely 

related to BMD of the hip, femoral neck, trochanter, and spine with CVD (2).  Browner 

and colleagues (3) also studied women aged 65 years and older to determine how stroke 

risk would coincide with skeletal deterioration.  They determined that osteopenia was 

correlated with increased risk of stroke, but indicated that they did not believe the low 

BMD was causal (3).  

In addition to aging, diminished estrogen, associated with natural or surgical 

menopause, is also a major risk factor for osteoporosis and CVD.  Uyama and colleagues 

(4) found a negative correlation between carotid atherosclerosis and total BMD in 

postmenopausal women aged 67-85.  Von der Recke et al., (5) identified that low bone 

mineral content (BMC) in postmenopausal women as a risk factor for increased 

mortality, particularly from cardiovascular disease.  Low femoral neck BMD has been 

specifically associated with the incidence of PAD in postmenopausal women (6).  

Sumino et al., (7) showed that postmenopausal women with osteoporosis have elevated 

arterial stiffness, which may increase the risk of developing CVDs.  Sennerby and 

colleagues (8) designed a study to establish a common link between CVDs and 

osteoporosis.  They observed a significant increase in the incidence of hip fractures after 

the diagnosis of cardiovascular disease in postmenopausal women (8).  Hence, these 

studies indicate that in addition to the elderly, postmenopausal women are also a 

population at risk for concurrent osteoporosis and CVD.   

 Interestingly, aging and ovarian hormone deficiency are both associated with 

immunological changes (9, 10).  These changes include increased levels of pro-
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inflammatory cytokines, as well as a decrease in levels of anti-inflammatory cytokines 

(9,10).  Thus, as detailed in the following section a potential role of the immune system 

in the concurrent development of osteoporosis and CVD may be suggested by the fact 

that bone loss and vascular disease are common complications of chronic inflammatory 

conditions.   

 

CVD and Osteoporosis: Common Complications of Chronic Inflammatory 

Conditions 

 Conditions such as RA, COPD, periodontal disease, HIV and SLE are classified 

as chronic inflammatory diseases, and have been shown to have detrimental effects on 

both bone and vascular health.  One of the first inflammatory states in which bone 

deterioration was observed was RA.  Bone loss in RA occurs locally in the affected joints 

and systemically as pro-inflammatory cytokines (e.g., IL-1 and TNF-α) and proteinases 

are released resulting in cartilage and bone destruction (8).  Due to this relationship, RA 

disease activity is considered an independent risk factor for osteoporosis (58).  Attempts 

aimed at identifying the mechanism of RA associated bone loss have resulted in the TNF-

α superfamily molecule RANKL, also known as osteoclast differentiation factor, to be 

the focus of much research (59).  In addition to bone loss, RA patients are also at 

increased risk of developing CVD (60).  Kao et al., (61) found a higher prevalence of 

asymptomatic coronary artery calcium and CRP in women with RA.  A cohort study of 

1,010 patients with RA indicated the most frequent cause of death in this patient 

population was ischemic heart disease and myocardial infarction (7).  These observations 

are likely attributed to the fact that patients with RA have higher circulating pro-
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inflammatory cytokines which can have deleterious consequences on the skeletal and 

cardiovascular systems. 

 COPD is another chronic inflammatory condition in which osteoporosis and CVD 

are common complications (62).  As many as 72% of patients with COPD have been 

reported to be osteopenic, and estimates ranging from 36-60% of patients with COPD 

have osteoporosis (63). Nuti and colleagues (64) identified a strong association between 

the severity of COPD and fractures in men.  Sabit et al., (65) documented that increased 

arterial stiffness is related to the severity of airflow obstruction and may be a factor in the 

excess risk for CVD in COPD patients.  This same study revealed an increased aortic 

pulse wave velocity in patients with osteoporosis and the authors concluded that age-

related bone and vascular changes occur prematurely in COPD patients (65).  Moreover, 

Anthonisen et al., (66) found that CVD accounted for 42% of the first hospitalizations 

and 48% of second hospitalization in patients with mild COPD.  The results of these 

studies demonstrate that COPD is a disease in which the pro-inflammatory cytokines 

originating from the airways dramatically increase the risk of osteoporosis and CVDs. 

 Another chronic inflammatory condition in which bone loss and CVD 

complications are often observed are the periodontal diseases.  This group of infectious 

diseases results primarily from gram negative bacteria (such as, E. coli and S. shigella)  

Periodontitis is characterized by the destruction of connective tissue and dental bone 

support after an inflammatory host response secondary to infection by periodontal 

bacteria (67).  Severe periodontitis may result in tooth loss due to the loss of bone and 

other supporting tissues (67).  Kribbs and colleagues (68) were the first to report on the 

relationship between systemic BMD and mandibular density.  In this study, the 
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osteoporotic group had less mandibular bone mass and density in a thinner cortex then 

the control group (68).  Tezal and et al,. (69)  showed a strong correlation between the 

clinical severity of periodontal disease and BMD of the trochanter, Ward's triangle, and 

femur in postmenopausal women (69).  Furthermore, postmenopausal women with 

osteoporosis and low educational levels have a greater chance of having periodontal 

disease than do those without osteoporosis (70).  The major mechanism of periodontal 

diseases is the observed destruction of bone and cartilage, which has also been linked to 

increased risk of for CVD.  Inverse relationships have been shown in men between the 

number of teeth, coronary heart disease (71) and myocardial infarction (72).   

Bone demineralization and cardiovascular disease are also common complications 

among HIV infected patients, which is a relatively recent observation due to the dramatic 

improvement in life expectancy in this patient population.  Women with HIV have been 

shown to have a lower BMD of the lumbar spine and hip than women without HIV (73).  

In HIV-infected patients, alterations of both bone resorption and formation markers have 

been observed.  A relationship between CD4+ cell counts, low bone formation and 

elevated bone resorption have been proposed as the underlying pathophysiology of this 

bone deterioration (74).  With regard to cardiovascular health, the overall rate of  

incidence of PAH among HIV-infected individuals is 25-fold higher than in the general 

population (75).  Currier et al., (76) showed that the incidence of coronary heart disease 

among young men and women with HIV infection was significantly higher than in non-

HIV-infected individuals.  Hence data from HIV patients lend further support to the 

inflammation, osteoporosis, and CVD connection. 
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As a final example of a clinical condition in which immune dysfunction is 

associated with bone loss and vascular disease is evident in patients with SLE.  Studies 

suggest that women with SLE exhibit a lower BMD than healthy female population (74).  

Many factors contribute to this predisposition, including the systemic inflammatory 

response associated with the disease.  Almehed et al., (6) reported that in SLE patients 

(n=163) more than half had a lower BMD of the radius, lumbar spine or hip than 

expected and 23% were osteoporotic at one site or more (6).  The number of SLE patients 

experiencing osteopenia has drastically increased within the past decade, supporting that 

patients with SLE are at greater risk for developing osteoporosis and have a greater 

fracture risk (6).  In addition to bone loss, CVDs such as atherosclerosis, ischemic 

cerebral vascular event, and coronary heart disease are common in patients with SLE 

(77).  In a case-control study, Svenungsson and colleagues (5) showed a greater 

occurrence of atherosclerotic plaque among SLE cases compared with controls.  Not only 

was the incidence of plaque higher in this populations, but patients with SLE were more 

vulnerable for plaque rupture (78).  Pre-menopausal women with SLE are 50 times more 

likely to have a myocardial infarction compared with healthy women (79).  The more 

frequent incidence of CVDs and osteoporosis that occur in SLE patients may be due to 

on-going elevation of pro-inflammatory cytokines. 

Treatment options commonly used to in many of these chronic inflammatory 

conditions make it more difficult to discern the etiology of the skeletal and vascular 

pathology.  For example many RA, COPD, and SLE patients are treated with 

corticosteroids, such as glucocorticoid, due to their ability to suppress the immune 

response.  However, glucocorticoids have been shown to induce significant bone loss, 
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reduce bone strength, and ultimately increase the risk for osteoporotic fractures (80).  

Other undesirable side-effects of glucocorticoids potentially affecting the cardiovascular 

system include hyperglycemia and weight gain (80).  Another example of a class of drugs 

that may complicate interpreting the connection between chronic inflammatory 

conditions, CVD and osteoporosis are the highly active antiretroviral therapy (HAART) 

used to treat HIV-infected patients.  HAART have been associated with accelerated bone 

loss (81), but recently this concept has been brought into question (82).  Antiretroviral 

drugs have been associated with several metabolic side effects, such as dyslipidemia, 

impaired glucose metabolism and abnormal body fat distribution that may increase the 

risk of CVD in this patient population (83).  Hence, glucocorticoids and HAART are two 

examples of drugs used in the treatment of inflammatory conditions that may complicate 

our understanding of this relationship between inflammation, bone, and vascular health. 

 

Inflammation in Osteoporosis and CVD 

 Osteoporosis and CVD not only tend to occur simultaneously, but also share some 

very common features within their initiation and progression.  For decades it has been 

observed that patients with CVD have elevated pro-inflammatory cytokines and that 

CVDs can be classified as chronic inflammatory conditions.  The role of cytokines in the 

pathogenesis of cardiovascular disease has become increasingly evident as advances in 

our understanding of the role of the immune system in atherosclerosis and heart failure 

has evolved (84).  It was not until recently that osteoporosis which was traditionally 

considered a condition resulting from gonadal hormone deficiency was considered an 

immunological disorder (4).  However now many of the pro-inflammatory cytokines are 
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recognized as playing a critical role in normal bone remodeling and persistent increases 

in many of these cytokines is involved in the pathogenesis of osteoporosis in  peri- and 

postmenopausal women (85) and the elderly (84).   

The skeleton is a very complex system in which coupling of osteoblast activity or 

bone formation and osteoclast activity or bone resorption) is required to maintain strong 

bones that are resistant to fractures.  Uncoupling of bone resorption and formation can 

have a significant impact on bone quality and strength, thereby increasing the risk of 

fracture.  Pro-inflammatory cytokines are involved in the regulation of bone metabolism.  

During the process of normal bone resorption and formation, osteoclasts resorb bone 

within a bone remodeling unit (BMU) and osteoblasts then migrate to the site. The 

process of bone remodeling is mediated by signaling that occurs between stromal cell 

derived osteoblasts and osteoclasts which originate from a mesenchymal lineage.  For 

instance, osteoblasts express RANKL which promotes osteoclast differentiation and bone 

resorption.  The receptor for RANKL, RANK, is expressed on pre-osteoclasts and the 

RANKL-RANK interaction can promote pre-osteoclasts to differentiate into mature, bone 

resorbing cells.  In addition to RANKL, osteoblasts also secret a protein called OPG 

which acts as a decoy receptor for RANKL (86) and interferes with RANKL/RANK 

interaction therefore repressing osteoclastogenesis (86).  Hence the ratio of  RANKL to 

OPG is of importance in the regulation of bone resorption during normal remodeling and 

during states of chronic inflammation (i.e., ovarian hormone deficiency, and 

periodontitis, RA and ageing) (87, 88).  Similarly, OPG-deficient mice exhibit an 

osteoporotic phenotype due to the inability to suppress RANKL and osteoclastogenesis 

(89).   
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The mechanism responsible for the up-regulation of RANKL in response to 

inflammation may be explained in part by its relation to TNF-α.  TNF-α is a pleiotropic 

cytokine that induces cellular proliferation, production of inflammatory mediators, and 

cell death (90).  TNF-α exerts its biological actions by interacting with two membrane 

receptors: TNFR1, activated by the soluble TNF-  and TNFR2, activated by membrane-

bound TNF-α.  TNFR2 exclusively activates pro-inflammatory pathways, but does not 

induce apoptosis (91).  TNF-α has also been observed to stimulate the production of other 

inflammatory cytokines, such as RANKL and IL-1, which can enhance osteoclast 

differentiation (92, 93).  Furthermore it should also be noted that TNF-α has been shown 

to impact osteoblasts by inhibiting the maturation of pre-osteoblast cells (94), decreasing 

osteoblast activity (35) and stimulating osteoblast apoptosis (10).  Elevated TNF-α by 

peripheral blood monocytes has been positively correlated with bone resorption and 

vertebral bone loss in healthy pre- and post-menopausal women (95).  Increasing 

evidence suggests that the role of pro-inflammatory cytokines in respect to skeletal health 

is critical and has provided novel insight into their specific action on bone metabolism. 

Another family of cytokines that have been observed to have an impact on bone 

metabolism is the interleukins (IL).  Wei et al., (93) established that IL-1 is a potent 

stimulator of bone resorption and exerts this effect by enhancing stromal cell expression 

of RANKL.  Elevated IL-1  has been linked to the acceleration of bone loss as seen in 

idiopathic and postmenopausal osteoporosis (96).  Likewise, IL-6 is also involved in bone 

pathophysiology by promoting the differentiation and activation of osteoclasts (97).  

Recently, a longitudinal study documented  a strong negative correlation between 
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circulating IL-6 and total body BMD in elderly men and women suggesting an important 

role of IL-6 in age-related bone loss (98).   

Inflammation plays a significant role in atherosclerosis, the most common form of 

CVD.  The development of atherosclerosis is believed to be initiated by vascular injury or 

stress which may elicit an immune response, but in some cases may be initiated by 

persistent elevation of pro-inflammatory mediators (99).  In response to these factors, 

endothelial cells express adhesion molecules (e.g., intracellular adhesion molecule or 

ICAM-1 or vascular adhesion molecule or VCAM-1) that attract monocytes and 

subsequently other immune cell populations to the site (99).  Monocytes interact with the 

endothelium by the chemoattractant proteins (e.g. monocyte chemotactic protein-1 or 

MCP-1) and are translocated into the intima where they differentiate into macrophages 

(99). These macrophages may secrete inflammatory cytokines and take-up oxidized low 

density lipoprotein (LDL) and eventually differentiate into foam cells.  Foam cells will 

continue to secrete pro-inflammatory cytokines (i.e., TNF-α, IL-1β, and IL-8) (100), 

while simultaneously promoting the proliferation of smooth muscle cells.  Thus, these 

events highlight just a few of the key immunological aspects in the pathophysiology of 

atherosclerosis.  

Recently, RANKL and OPG have been recognized as having important roles on 

the vascular system, even though their initial function  was associated with the bone 

metabolism (101).  McGonigle et al., (102) observed that RANKL regulates endothelial 

cell proliferation, apoptosis, and signaling. OPG-deficient mice exhibit calcification of 

the aorta and renal arteries in addition to an osteoporotic phenotype (89).  Morony and 

colleagues (103) found that low density lipoprotein receptor knockout (ldlr-/-) mice 
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developed significant progression of atherosclerosis, but OPG administration reduced 

aortic osteocalcin, a marker of calcification.  Furthermore, stimulation of endothelial cells 

with TNF-α and IL-1 results in increased OPG is secretion that may represent the cells 

attempt to counter an increase in RANKL (104).  OPG is also beneficial by its ability to 

promote leukocyte adhesion to endothelial cells (105).  The impact that RANKL and 

OPG have on the vascular system may provide one potential link between the 

simultaneous bone loss and vascular pathology that are associated with inflammation.   

In addition to RANKL and OPG, substantial evidence supports a pro-atherogenic 

role for TNF-α and some of the interleukins.  TNFR1 expression  in the arterial wall, 

greatly contributes to early and late-stage atherosclerosis in mice by enhancing arterial 

wall chemokine and adhesion molecule expression, as well as by augmenting medial 

smooth muscle cell proliferation and migration (106).  Evidence suggests that TNF-α 

impairs endothelium-dependent and nitric oxide (NO)-mediated vasodilation in various 

vascular beds (e.g. mouse coronary arterioles) (107) and rat coronary arterioles (108).  

Expression of IL-1 and their receptors has been demonstrated in atheromatous tissue, and 

serum levels of IL-1-cytokines have been correlated with various aspects of 

cardiovascular disease and their outcome (109).  Furthermore, in stroke patients, elevated 

IL-6 at baseline seemed to be an independent predictor of further deterioration (110).  In 

both men and women serum IL-6 and TNF-α are significantly higher in patients with 

cardiovascular pathology and have been suggested to play a critical role in the 

progression of CVDs (111).   
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Animal Models of Chronic Inflammation, Bone Loss and Vascular Disease 

 To advance our understanding of the role of many of these inflammatory 

mediators in the development of osteoporosis and CVDs, it important to have an animal 

model that closely mimics the pathophysiology of human conditions.  Some of the more 

common models of chronic inflammation used in animals are the LPS-injection model 

(112), the collagen-induced arthritis model (113), and the colitis model (114, 115).  

Although all of these models have been shown to activate the immune response by up-

regulating inflammatory mediators, they were not ideal to examine the simultaneous 

development of skeletal and vascular pathology.  Confounding factors such as the stress 

of chronic handling with injection models, lack of weight-bearing on an inflamed foot 

pad in collagen-induced arthritis models, or alterations in nutrient absorption associated 

with colitis make these models less than ideal.   

Preferably, an animal model used to study chronic inflammation-induced bone loss 

and vascular pathology would induce a low-grade inflammatory response without 

significantly altering weight gain and normal animal behavior (i.e., physical activity, food 

intake, and grooming).  Our laboratory developed an animal model to study the effects of 

a low grade chronic inflammatory state on bone mass and metabolism that involved the 

use of a slow release pellet containing LPS (21).  In the initial study, adult 3-month old 

male Sprague Dawley rats were surgically implanted with LPS or placebo pellets 

designed to deliver 0.0, 3.3 or 33.3 μg LPS/day for 90 days (21).  The doses were based 

on the previous work of Jarvelainen et al., (116) in which LPS delivered via an osmotic 

pump for 4 weeks up-regulated hepatic TNF-α , IL-1β, IL-10, IL-4, and TGF- β, without 

inducing tolerance or significant weight loss.  In this study, both doses of LPS induced a 
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significant decrease in femoral BMD compared to the controls (21).  Histological cross-

sections of the myocardium indicated the inflammation not only induced changes in bone 

mass, but also  produced small vessel disease characterized by fibrosis surrounding the 

arterioles and a roughened intimal border within the intramural vessels (21, 22).  At the 

end of the 90 day study period, inflammatory mediators, cyclooxygenase (COX)-2, TNF-

α , and IL-1β, were up-regulated in the bone and myocardium which suggested this novel 

model  may provide an acceptable means of studying  inflammation-induced bone and 

cardiovascular pathology (21, 22).  In a subsequent study, eight-week old C57BL/6 

female mice were used to establish the dose of LPS that would induce similar bone loss 

and vascular disease in the mouse, and then to determine if soy-isoflavones could 

attenuate this response (24).  In this study it was determined that 1.33 μg LPS per day 

(~0.1 mg of LPS/kg/d) produced the greatest decrease in lymphocytes and increase in 

neutrophils, and decreased trabecular bone volume (BV/TV) and number (TbN), and 

increased separation (TbSp).  Moreover, TNF-α was up-regulated in the endothelium of 

small myocardial arteries and metaphyseal region of the bone, however soy isoflavones 

were able to attenuate this response (24).  Taken together, these studies suggest that this 

model provides a system to study how low level inflammation induces simultaneous 

development of bone loss and vascular disease and to explore potential interventions.   

 

Pharmacological Treatment Options for Osteoporosis and CVD 

A number of different drug therapies are available for the treatment of 

osteoporosis and CVDs that generally offer specific relief for one or the other conditions 

depending on the patient’s gender, lifestyle, and co-morbidities.  Most of the available 
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therapies for osteoporosis target either bone resorption or formation, and thus exert 

suppression on the loss of bone or stimulate new bone formation. 

The most commonly prescribed therapies for osteoporosis for osteoporosis have 

anti-resorptive properties.  Bisphosphonates (i.e. alendronate and risedronate) are the 

most commonly prescribed pharmacological treatment for osteoporosis (117).  Silverman 

et al.,  (117) demonstrated that patients receiving risedronate have lower rates of hip and 

nonvertebral fractures during their first year of therapy than patients receiving 

alendronate.  Oral bisphosphonates are relatively poorly absorbed and are associated with 

esophagitis, which make them poorly tolerated.  Due to these gastrointestinal issues, strict 

adherence to therapeutic protocols must be followed (e.g., drugs must be taken first thing 

in the morning, consume no other food or medications and take with a full glass of tap 

water).  Intravenous bisphosphonates are available, however, these potent anti-resorptive 

agents have been associated with increased incidence of osteonecrosis of the jaw (118).  

In addition to bisphosphonates, other anti-resorptive treatment options include calcitonin 

and hormone replacement therapy (HRT).  Calcitonin has been shown to decrease the 

loss of bone in the spine, but is by far the least potent of all of the anti-resorptive 

treatment options (119).  HRT remains a reasonable option for the prevention of 

osteoporosis, but is not recommended unless there are other indications for use (120).   

Another more recently FDA-approved drug available for the treatment of 

osteoporosis is teriparatide or intermittent PTH therapy.  Teriparatide (i.e. recombinant 

PTH peptide 1-34) is the only anabolic agent that can reverse bone loss in patients with 

established osteoporosis, and is administered by injection once a day in the thigh or 

abdomen (121).  In most cases, teriparatide is approved for treatment when 
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bisphosphonates have failed, and should be avoided in the young and in patients with 

previous radiation therapy and Paget’s disease (122).  Intermittent PTH has been 

demonstrated to increase bone mass and reduce vertebral and nonvertebral fractures, and 

has been approved for use in the US and Europe (122).  The most common side-effects of 

teriparatide are dizziness and leg cramps and elevations of blood calcium and urinary 

calcium can occur.  To date, the safety and benefits of teriparatide have not been 

evaluated beyond two years, so treatment for longer than two years is not recommended.    

Treatment of cardiovascular disease is dependent on the specific form of the 

disease, but is usually combined with lifestyle behavior modification (e.g. weight loss, 

altered nutrition, physical activity).  Patients at risk for or diagnosed with atherosclerosis 

may be on medications such as cholesterol lowering statins, blood pressure lowering 

drugs, or anti-platelet or anticoagulant drugs.  Over 11 million Americans are estimated 

to be on statin therapy which act by inhibiting HMG-CoA reductase, an essential enzyme 

in mevalonate formation and cholesterol biosynthesis (25).  In the late 1990’s, evidence 

emerged that statins may also have anti-inflammatory properties (29).  In 1999, Mundy 

and colleagues (29) reported that of the more than 30,000 compounds screened, 

lovastatin, stimulated BMP-2, a potent regulator of osteoblast differentiation and activity.  

This finding was significant due to the fact that most FDA-approved drugs for the 

treatment of osteoporosis have anti-resorptive properties, but that lovastatin could 

potentially stimulate bone formation.  The findings by Mundy and colleagues led other 

investigators to evaluate the relationship between statins, BMD, and fracture.  Chung and 

et al., (123) found that patients (n=69) on 3 commonly prescribed statins (i.e. lovastatin, 

pravastatin and simvastatin) for at least 15 months had increased BMD compared to the 
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control group after adjustment for age and body mass index.  These data suggest that 

HMG-CoA reductase inhibitors may increase femoral BMD in males.  Similar results 

have also been demonstrated in elderly women with increased hip BMD and reduced 

fracture risk (124).  Given that these initial studies demonstrated a positive association 

between statin use and BMD, other studies followed in attempt to identify the mechanism 

by which statins exert these beneficial skeletal effects. 

 These observational studies suggest a connection between statin therapy and bone 

metabolism; however, the effects of statins on bone resorption and mineralization remain 

unknown.  Tikiz et al., (125) observed that after three months of simvastatin treatment, 

postmenopausal women had increased serum markers of bone formation (i.e. ALP and 

osteocalcin) and a negative correlation was demonstrated between TNF-α and these bone 

markers.  These findings suggested that the anti-inflammatory effects of simvastatin may 

be involved in the bone remodeling process. While statins seemed to benefit bone 

forming osteoblast activity, they were also shown to have a substantial effect on 

osteoclasts activity via the inhibition of isoprenylated protein production, which are 

needed for osteoclast activity (28).  These data suggest that statins may have potent anti-

inflammatory effects and are both anti-resorptive and anabolic in terms of bone 

metabolism. 

 Although the mechanism by which statins reduce the risk of CVDs is associated 

with the inhibition of the rate-limiting enzyme, HMG-CoA reductase, in cholesterol 

synthesis, recent research suggests statin’s anti-inflammatory properties are contributing 

to the lower incidence of CVDs.  Studies (110, 126, 127) have shown that serum C-

reactive protein (CRP) is highly correlated with CVDs and patients receiving statin 
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therapy have lower serum CRP compared to controls.  Statins have also been shown to 

suppress the monocyte secretion of pro-inflammatory cytokines, such as IL-1β, IL-6, and 

IL-8 (128-130).  Wolfrum et al., (131) demonstrated that statins confer their beneficial 

effects by modulating endothelium-derived NO bioactivity, which attenuates endothelial 

dysfunction and atherosclerotic disease progression.  Recent studies recognize 

simvastatin’s role as an anti-inflammatory agent on human peripheral blood monocyte-

macrophages, including up-regulation of the atheroprotective factor Kruppel-like factor 2 

(KLF-2).  This observation may explain in part statins’ ability to reduce inflammation in 

the vessel wall (132).   

 
Natural Treatment Options for Osteoporosis and CVD 
 

Although there are therapeutic agents available for treatment of the individual 

symptoms associated with CVDs and osteoporosis, many of these treatments are 

associated with undesirable side-effects.  Additionally, some patients may prefer a more 

natural treatment option.  To date there has been no therapeutic agent developed to target 

both osteoporosis and CVD occurring simultaneously and as a result many patients end 

up taking multiple medications.  A number of dietary supplements are known to have 

anti-inflammatory effects such as fish oils and phytochemicals found in fruits and 

vegetables.  Specifically in fruits and vegetables, compounds known as polyphenols are 

one of the components that may be responsible for the anti-inflammatory qualities of the 

plant-based foods.   

Polyphenols are a group of chemical substances found in plants, characterized by 

the presence of more than one phenol unit or building block per molecule, this unique 

chemical structure allows for these compounds to have potent anti-inflammatory 
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capacity.  Dietary polyphenols have the ability to scavenge free-radicals, which can have 

devastating effects on our biological systems.  For example, rutin, a glycoside of 

quercetin found mainly in onions but is also in plums, was able to prevent OVX-induced 

bone loss in rats and reduced urinary excretion of deoxypyridinoline (Dpd) and calciuria 

(133).  EGCG, one of the primary polyphenols in green tea, appears to induce 

osteoclastic cell death (41), and enhance osteoblastic differentiation by up-regulating 

runt-related transcription factor 2 (Runx2) and osterix gene expression (134).  

Resveratrol, commonly found in red wines, has been shown to enhance the proliferation 

and differentiation of human osteoblastic cells (135).  Both the consumption of tea (136) 

and red wine (137) are associated with a lower the risk of myocardial infarction in both 

case-control and cohort studies.  Chlorogenic acid is the most abundant polyphenol in 

dried plum, and in vitro has been shown to have positive effects on oxidative stress, 

which is responsible for deterioration of cardiovascular health (138).  Polyphenols have 

also been shown to improve endothelial dysfunction, which is an early event in 

atherosclerosis (139, 140).  Endothelial-dependant vasorelaxing activity has been 

demonstrated with wine anthocyanins (141) soy isoflavones (142) and quercetin (143) in 

animal studies.  Droke et al., (24) found that dietary supplementation with soy 

isoflavones in mice protected against the inflammation-induced effects on skeletal 

microarchitecture and reduced TNF-α protein in endothelium of small myocardial arteries 

and arterioles (24).  Therefore dietary polyphenolic compounds appear to protect against 

inflammation-induced osteoporosis and CVDs and may offer consumers an easily 

obtainable treatment with fewer side-effects.   
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Dried plums are known to have a very high content of polyphenolic compounds.  

These characteristics make this fruit an ideal candidate for the possible reversal of the 

pathology observed in osteoporosis and CVDs.  Arjmandi et al., (33) were the first to 

report that 25% dried plum (w/w) was able to prevent the ovariectomy-induced bone loss, 

and enhance serum IGF-1 in rats.  Subsequently, a clinical study with postmenopausal 

women designed to assess the effect of dried plum supplementation (compared to dried 

apples) on bone biochemical markers revealed that women consuming the dried plums 

(i.e. ~100 g/d) experienced an increase in serum IGF-1 and BAP (144).  Dried plum, in 

doses as low as 5% of total diet, has been shown to reverse the loss of tibial and femoral 

bone density in ovariectomized rats (32).  Further studies have led to the conclusion that 

some component(s) of dried plum are able to suppress bone resorption (145) and also 

increase bone formation (32).  In a male model of osteoporosis, orchidectomized rats 

were fed dried plum (5%, 15%, or 25%), the 15% dried plum diet had an increased 

femoral and lumbar spine BMD, and the 25% dried plum diet has completely prevented 

the decrease in BMD, this trend was also observed in microarchitectural parameters of 

the spine (34).  Through the use of orchidectomized rats, conclusions were drawn that 

dried plum was able to restore bone similar to that of the pharmacological treatment PTH, 

however it seems likely that a different mechanism is involved (146).  Bu et al., (35) 

showed that dried plum’s polypehnols were able to increase phosphatase ALP activity 

under normal and inflammatory conditions, and increased the gene expression of Runx2, 

Osterix, IGF-1 and nodule formation, while simultaneously down-regulating RANKL 

expression.  Bu and colleagues (36) also determined dried plum’s polyphenols 

significantly reduced nitrite production in LPS treated pre-osteoclast and osteoclast cells, 
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and decreased TRAP positive cells (36).  These in vitro studies suggest that the whole 

fruit dried plum is able to exert anabolic and anti-resorptive effects on bone by the action 

of its polyphenols.  In terms of cardiovascular system, dried plum has also been shown to 

suppress OVX-induced hypercholesteremia in rats by decreasing serum total cholesterol, 

triacylgycerides, and non-HDL cholesterol (38).  Since it is known that dried plums 

contain such a high amount of polyphenols and based on in vitro studies, it is reasonable 

to attribute the skeletal and vascular protective properties of dried plum in part to their 

phenolic compounds. 

 In short, osteoporosis and CVDs are a major health concern in the U.S as well as 

many other developed countries.  With the demographic shift towards an older society in 

such countries, these trends will only increase.  Accumulating evidence from clinical and 

pre-clinical studies identified the pathophysiology of osteoporosis and CVD, and 

established a working premise that inflammation may play a central role in the 

development and progression of each condition (21).  Our previous work suggests that 

dried plum’s polyphenols may be an ideal candidate to explore as a single strategy for the 

treatment of concurrent CVDs and osteoporosis due to their potent anti-inflammatory 

abilities.  Therefore the purpose of this study is to assess the effects of dried plum and its 

polyphenols on low grade chronic inflammation-induced changes in bone 

microarchitecture and vascular histology, and to determine the underlying mechanisms 

involved. 

 

 

 



 
 
 
 
 

CHAPTER III 
 
 

METHODOLOGY 

 

Animal Care 

Three-month old female C57BL/6 mice (n=192) were obtained (Jackson Labs, 

Bar Harbor, ME) and housed in environmentally controlled conditions.  Following a 

seven day acclimation period, animals were randomly assigned to treatment groups 

(Table 1) and were surgically implanted with either a placebo (n=36) or LPS pellet 

(Innovative Research of America, Sarasota, FL) designed to deliver 0.1 mg LPS/kg bw 

/day (n=156).  Treatments included AIN-93M control diet (147), control diet with low 

(LDP) or high (HDP) dose dried plum added (low dose = 5% or high dose = 25%, w/w), 

control diet with comparable dose of polyphenolic compounds as low (LPP) and high 

(HPP) dose dried plum, or simvastatin (25 mg/kg diet) as a positive control.  All animals 

were maintained on the control diet for an initial 4 week period to allow the bone and 

vascular pathology to develop in the animals receiving LPS.  At the end of 4 weeks, two 

groups of mice (i.e. a placebo and an LPS group) were sacrificed and data were collected 

for baseline characterization of bone mass and microarchitecture, gene expression from 

femoral RNA, and histological evaluation of the myocardium and aorta.  The remaining 

animals were immediately started on their respective treatments fortreatment period food 

intake was monitored and animals were match fed to the group consuming the least 
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amount of diet (i.e. adjusted once a week).  All animals had free access to  deionized 

water and were weighed weekly.   

At necropsy (i.e., baseline, 2 weeks, or 6 weeks), mice were anesthetized with an 

intramuscular injection of ketamine/xylazine cocktail 100.0/10.0 mg/kg bw and 

exsanguinated by the carotid artery.  Bone (i.e. femurs and tibias), heart, aorta and liver 

specimens were harvested for future analyses.  The femurs and tibias were cleaned of all 

adhering soft tissue and either snap frozen for RNA extraction or fixed in 10% neutral 

buffered formalin for μCT analyses.  The heart and aorta were removed, fixed in10% 

neutral buffered formalin for histological examination.  Portions of the liver were snap 

frozen for protein analyses, while the remainder of the liver was fixed in 10% neutral 

buffered formalin.  All procedures were strictly adhered to the guidelines set for by the 

University of Oklahoma Health Sciences Center IACUC. 

 

Implantation of Pellets 

Time release pellets (Innovative Research of America, Sarasota, FL) were 

designed to deliver 0 or 0.1 mg LPS/kg bw /d for 90 days.  The doses were selected based 

on the results from our previous study in which bone loss and vascular pathology 

developed (21, 22, 46).  Surgical placement of the pellet required animals to be 

anesthetized with an intramuscular injection of ketamine/xylazine cocktail 10.0 mg/kg 

and the dorsal back of the mice was shaved.  A small incision was made (~2 cm from the 

site of placement) and forceps were used to tunnel to the interscapular region where the 

pellet was placed.  The incision site was closed with a single suture. 
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Extraction of Polyphenols from Dried Plum Powder 
 
 Polyphenols were extracted from 10 g batches of dried plum powder.  This was 

accomplished by adding 100 mL of 80% ethanol to dried plum powder in an Erlenmeyer 

flask and sonicating the mixture in an ice cold (~4°C) water bath for 20 min, while being 

exposed to a continuous flow of N2 gas to ensure polyphenol integrity.  Once sonication 

was completed, the liquid was vacuum filtered using a chilled Buchner funnel lined with 

filter paper (8μm particle size).  The flask was rinsed twice with 50 mL of 100% ethanol.  

The remaining dried plum powder was scraped from the filter paper and the extraction 

procedure repeated.  Upon the completion of the extraction, approximately 400 mL of 

ethanol-extracted polyphenols were transferred to a round-bottom flask and the volume 

reduced to about 40% (~10 mL remaining) by roto-evaporation at 35°C and 60 rpm.  The 

extract was then collected and stored in -80°C before being freeze dried (VirTis, 

Gardiner, NY).  

 

Total Polyphenolic Analysis and Diet Formulation 

To analyze the total phenolic content of the extract was determined by the Folin-

Ciocalteu assay.  First, 15 mL of ethanol was added to 150 mg of powder extract, 

sonicated for 30 min, and then filtered.  About 1 mL of filtered extract was added to 100 

mL volumetric flask with 60-70% HPLC grade water and 5 mL of Folin-Ciocalteu’s 

phenol reagent was added and mixed.  After two hours the absorption was measured at 

760 nm.  The same solution without extract was used as a blank.  Calculation of the 

percent of total phenolics was determined based on a standard curve.  The polyphenolic 

content of the diets (i.e. low and high) were based on the amount of  polyphenolic 

 32



compounds provided in the 5% dried plum and 25% (w/w) dried plum diet.  Diets were 

formulated to be isocaloric and have similar carbohydrate, fat, protein, calcium and 

phosphorous content (Table 2).   

 

BMD Assessment Using DXA 

 Excised tibias were used for DXA scans (GE Medical Systems,LunarPIXI, 

Madison, WI) performed on specimens harvested at baseline, 2 and 6 weeks post dietary 

treatments to determine the bone mineral area (BMA), bone mineral content (BMC), and 

bone mineral density (BMD).  All DXA scans were performed using PIXImus Series 

Software version 1.4x. 

 
Microcomputed Tomography Analyses 

The tibia was scanned using μCT (MicroCT40, SCANCO Medical, Switzerland) 

to assess trabecular and cortical bone microarchitecture.  The proximal tibia was the site 

of trabecular bone analyses while the tibial mid-diaphysis was analyzed for cortical bone 

parameters.  Tibia scans were performed at high resolution (2048 x 2048 pixels).  The 

proximal tibia metaphysis was analyzed by acquiring 175 slices and evaluating 100 slices 

(600 μm) in the volume of interest (VOI).  Semi-automated contours were placed starting 

5 slices (30 μm) distal to the growth plate to assess secondary spongiosa within the VOI.  

Trabecular bone volume expressed per unit of total volume (BV/TV), trabecular number 

(TbN), separation (TbSp), and thickness (TbTh), were determined and connectivity 

density (ConnDens) and structural model index (SMI) were calculated. The midshaft of 

the tibia was evaluated by acquiring 27 slices at the midpoint, and analyzing 20 slices 

(120 μm).  Cortical porosity, thickness, area and medullary area were assessed to 
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determine the alterations in cortical bone associated with inflammation and the dietary 

treatments. 

 
Finite Element Analysis 

Images acquired with μCT allowed for further evaluation of the biomechanical 

parameters on trabecular bone structures using finite element analysis (FE) software 

(SCANCO Medical).  A micromechanical FE model was constructed by converting bone 

voxels from the VOI into 8-node brick elements (148).  The elements in this FE model 

have been shown to have a linear, elastic and isotropic material properties described by a 

Poisson’s ratio of 0.3 and a Young’s modulus of 10 GPa (149).  Compression testing was 

simulated on the reconstructed 3-D images of the proximal tibia, total force and size-

independent stiffness was determined (150).   

 

RNA Extraction and Quantitative Real-Time PCR 

Whole femurs were pulverized (Spex 6770 freezer mill) and homogenized-bone 

powder was immediately placed in 1 mL of Trizol Reagent (Life Technology, Rockville, 

MD, USA).  Trizol and bone were centrifuged at 4°C for ~5 min at 12,000 x g.  The top 

phase was then removed and transferred to a clean, RNase-free microfuge tube and 

allowed to incubate at ~25°C for 5 min.  Next, 200 μL of chloroform was added and 

vigorously shaken for 15 sec.  The mixture was allowed to incubate for 3 min followed 

by centrifugation at 12,000 x g for 10 min at 4°C.  The clear aqueous phase was then 

transferred to a clean tube and 250 μL isopropanol and 250 μL high salt solution (1.2 M 

NaCl and 0.8 M Na3C3H5O(COO)3) were added and allowed to precipitate on ice for 30 

min.  To pellet the RNA, the solution was centrifuged at 4°C for 15 min at 12,000 x g and 
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the RNA pellet was observed.  The supernatant was removed, and the pellet was washed 

with 75% ethanol and centrifuged again at 7,500 x g for 5 min at 4°C.  The RNA pellet 

was resuspended in 20 μL of diethylpyrocarbonate (DEPC) H2O.  To determine quantity 

and quality of RNA, the concentration and A260/A280 ratio was obtained using a Nanodrop 

Spetrophotometer (Rockland, DE).   

Quantitative real time PCR was performed using 2 μg of total RNA pre-treated 

with DNase I and subjected to reverse-transcription (Superscript II, Invitrogen, Carlsbad, 

CA).  Fifty ng of cDNA were used for each qRT-PCR reaction and all reactions were 

assayed in duplicate using SYBR green chemistry (Roche, Penzberg, Germany) on the 

Applied Biosystems 7300 Real Time PCR (Foster City, CA).  The primer sequences for 

genes of interest were designed based on Genebank database or published species-

specific sequences (Table 3).  The criteria used for primer design/validation is the 

amplicon must span an intron, template titration must have an efficiency slope of -3.3, 

and demonstrate the formation of a single dissociation curve.  All qRT PCR results were 

evaluated by the comparative cycle number at threshold (CT) method using hypoxanthine 

guanine phosphoribosyltransferase 1 (HPRT1) as the invariant control.   

 

Histology 

Cross-sections of the aorta and heart were paraffin-embedded and cut into 5-μm 

sections.  Sections were then stained with hemotoxylin and eosin (H&E) for analysis of 

cellular and tissue pathology.  All slides were graded using a scoring system by the study 

pathologist.  The arteries and arterioles were scored based on the degree of narrowing:  0, 

no observed narrowing of vessel through 3, severe narrowing of vessel.  Within the 
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myocardium, inflammatory infiltrate such as lymphocytes and polymorphonuclear cells 

(PMN) along with mast cells were graded as such: 0, no visible infiltration through 3, 

severe infiltration.  The aorta scores were totaled from three parameters of thickening of 

the wall (0-3), thinning of the wall (0-3) and artheromatous plaque (0-3), so the highest 

possible score is 9.  Infarction was graded as either 0, no observed event or 1, in the event 

of a myocardial infarction. 

 

Statistical Analyses 

Descriptive statistics were calculated for all variables and included means and 

standard error.  Data were analyzed using ANOVA (SAS Version 9.1; SAS Institute, 

Cary NC).  Bone and vascular structure and calcification were investigated through linear 

correlation coefficients.  Categorical data derived from the pathology scoring were 

compared using Chi-squared test followed by Fisher’s Exact Test to confirm significance. 

Values were expressed as means ± standard error (SE), and p<0.05 was considered to be 

statistically significant for all analyses. 



Table 1.  Treatment Groups 
 

 

Baseline 2 weeks 6 weeks 

Placebo + Control Diet Placebo + Control Diet Placebo + Control Diet 

LPS + Control Diet LPS + Control Diet LPS + Control Diet 

  LPS + High Dose Dried Plum (HDP) LPS + High Dose Dried Plum (HDP) 

  LPS + Low Dose Dried Plum (LDP) LPS + Low Dose Dried Plum (LDP) 

  LPS + High Dose Polyphenols (HPP) LPS + High Dose Polyphenols (HPP) 

  LPS + Low Dose Polyphenols (LPP) LPS + Low Dose Polyphenols (LPP) 

  LPS + Statin LPS + Statin 

Slow release pellets delivered 0 (Placebo) or 0.1 mg LPS/kg bw/d (LPS). Baseline animals received only AIN-93M (control) diet.  
Dietary treatments were: control diet, control diet with low (LDP) or high (HDP) dose dried plum added (low = 5% or high = 25%, 
w/w), control diet with comparable dose of polyphenolic compounds as low (LPP) and high (HPP) dose dried plum, or simvastatin 
(Statin) as a positive control (25 mg/kg diet).  Dietary treatments started after the baseline sacrifice (4 weeks post pellet implantation) 
and were maintained for 2 or 6 weeks.  
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Table 2.  Formulation of Diet  
 
Ingredients Control LDP HDP LPP HPP 
 g/ kg Diet 

Dried Plum ₋ 50 250 ₋ ₋
Polyphenol Extract ₋ ₋ ₋ 32.1 160.7 
Carbohydrate      
    Cornstarch 466 425.7 265.7 439.4 334 
    Sucrose 100 100 100 100 100 
    Dextrinized Cornstarch 155 155 155 155 155 
Protein      
    Casein 140 138.5 132.5 138.9 134.6 
Fat      
    Soybean Oil 40 39.75 38.75 39.8 38.9 
Fiber      
    Cellulose 50 45.5 55 50 50 
      
Vitamin Mix 10 10 10 10 10 
Mineral Mix (Ca-P Def) 13.4 13.4 13.4 13.4 13.4 
Sucrose 2.2 2.6 4.6 2.4 4.0 
Calcium Carbonate 12.5 12.4 12.1 12.4 12 
Sodium Phosphate, 
    Monobasic 

5.6 5.5 4.8 5.6 5.2 

Potassium Phosphate, 
    Monobasic 

2.4 2.4 2.4 2.4 2.4 

Choline Bitartrate 2.5 2.5 2.5 2.5 2.5 
L-cysteine 1.8 1.8 1.8 1.8 1.8 
Tert-butylhydroquinone 0.008 0.008 0.008 0.008 0.008 
      
Dietary treatments were: control diet, control diet with low (LDP) or high (HDP) dose 
dried plum added (low = 5% or high = 25%, w/w), control diet with comparable dose of 
polyphenolic compounds as low (LPP) and high (HPP) dose dried plum, or simvastatin 
(Statin) as a positive control (25 mg/kg diet).
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Table 3.  List of Primer Sequences Used for Real Time-PCR 

Symbol Name Accession # Sequence 
 

ALP Alkaline phosphatase  QF 5'- GGT ATG GGC GTC TCC ACA GT -3' 
NM_007431.2 QR 5'- GCC CGT GTT GTG GTG TAG CT -3' 

HPRT1 Hypoxanthine guanine phosphoribosyltransferase 1  QF 5'- GCC TAA GAT GAG CGC AAG TTG -3' 
NM_013556.2 QR 5'- TAC TAG GCA GAT GGC CAC AGG -3' 

IGF-1 Insulin-like growth factor 1  QF 5'- CCA CAC TGA CAT GCC CAA GA -3' 
NM_184052.2 QR 5'- CTC CTT TGC AGC TTC GTT TTC T -3' 

IL-6 Interleukin 6  QF 5'- GAG GAT ACC ACT CCC AAC AGA CC -3' 
NM_031168.1 QR 5'- AAG TGC ATC ATC GTT GTT CAT ACA -3' 

IL-10 Interleukin 10  QF 5'- GGT TGC CAA GCC TTA TCG GA -3' 
NM_010548.1 QR 5'- ACC TGC TCC ACT GCC TTG CT -3' 

OPG Osteoprotegerin  QF 5'- TCC TGG CAC CTA CCT AAA ACA GCA -3' 
NM_008764.3 QR 5'- ACA CTG GGC TGC AAT ACA CA -3' 

RANKL Receptor activator for nuclear factor κ B ligand  QF 5'- CTG ATG AAA GGA GGG AGC AC -3' 
NM_011613.3 QR 5'- GAA GGG TTG GAC ACC TGA ATG -3' 

TNF-α Tumor necrosis factor-alpha  QF 5'- CTG AGG TCA ATC TGC CCA AGT AC -3' 
NM_013693.2 QR 5'- CCT CAC AGA GCA ATG ACT CCA AAG -3' 

TRAP Tartrate resistant acid phosphatase  QF 5'- CTG CAC AGA TTG CAT ACT CTA AGA TCT-3' 
NM_007388.3 QR 5'- TTT GAA GCG CAA ACG GTA GTA A -3' 

The criteria used for primer design/validation is the amplicon must span an intron, template titration must have an efficiency 
slope of -3.3, and demonstrate the formation of a single dissociation curve. 
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Figure 1.  Experimental design 

 

 

Placebo or LPS pellets were implanted on day 0 and baseline sacrifice was performed 4 weeks later on one Placebo and one LPS 
group. During the first 4 weeks all  animals received  AIN-93M (control) diet.  Dietary treatments were: control diet, control diet with 
low (LDP) or high (HDP) dose dried plum added (low = 5% or high = 25%, w/w), control diet with comparable dose of polyphenolic 
compounds as low (LPP) and high (HPP) dose dried plum, or simvastatin (Statin) as a positive control (25 mg/kg diet).  Dietary 
treatments started after the baseline sacrifice (4 weeks) and was maintained for 2 or 6 weeks. 
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CHAPTER IV 
 
 

FINDINGS 

 

Bone Mass and Densitometry  

 To determine the alterations in bone density in response to LPS and treatment, 

excised tibias were scanned using dual-energy X-ray absorptiometry.  There was no 

significant difference in tibial BMC, BMA (Table 4), or BMD (Figure 2) between the 

placebo or LPS pellet group’s tibia on control diet at baseline.  After 2 and 6 weeks on 

dietary treatments, no differences were observed in tibial BMC, BMA (Table 4), or BMD 

(Figure 2) in any of the treatment groups or between the placebos versus LPS treated 

groups on control diet.  These findings suggest that no alterations occurred in tibial bone 

mass and density in response to LPS or treatment over the course of the study.  

 

Proximal Tibia Trabecular and Cortical Bone Microarchitecture 

 Analysis of trabecular bone of the proximal tibia at baseline revealed that though 

there were no alterations in BV/TV (Figure 3A), but there was a significant increase in 

trabecular separation (TbSp) in the mice exposed to LPS compared to the placebo group 

(Figure 3D).  No other alterations in trabecular bone morphometric parameters at the 

proximal tibia were observed at baseline, including trabecular number (TbN) and 

trabecular thickness (TbTh) (Figure 3B and 3C).  Trabecular bone connectivity density, 
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which indicates the number of trabecular connections in a given volume of interest, 

tended to be lower in the LPS group compared to placebo group (Table 5).  As expected, 

LPS did not significantly alter any of the cortical parameters at the tibial midshaft at 

baseline (Table 6).  At 2 weeks and 6 weeks no trabecular (Figures 4 & 5) or cortical 

bone parameters (Table 7) were altered by LPS or dietary treatments. 

 

Biomechanical Properties of Trabecular Bone 

 Due to the lack of an effect on trabecular bone microarchitecture, finite element 

analysis revealed that there were no differences in total force or size independent stiffness 

between groups at baseline or after 2 weeks and 6 weeks of treatments (Table 8). 

 

Gene Expression of Whole Femurs 

 In contrast to our expectation, at baseline there were no statistically significant 

differences in gene expression of the pro-inflammatory mediators TNF-α and IL-6, or in 

the anti-inflammatory mediator IL-10 (Figure 6A-C).  There was also no observed 

difference (P<0.05) in genes associated with bone resorption including RANKL, OPG, 

TRAP, and the RANKL/OPG ratio (Figure 7A-D).  Likewise, at baseline there were no 

alterations in the bone ALP, which is an indicator of bone formation (Figure 8).  

Following two weeks of treatment, there continued to be no statistically 

significant differences in TNF-α, IL-6, and IL-10 gene expression in the femur of the 

LPS group compared to the placebo (Figure 9A-C). No alterations bewteen any of the 

treatment groups were observed in IL-6 or IL-10, but the high dose of dried plum 

polyphenols (HPP) did down-regulate (P<0.05) the relative gene expression of TNF-α, 

 42



compared to the placebo and LPS control groups (Figure 9A).  Expression of other target 

genes involved in bone resorption, RANKL, TRAP, OPG and the RANKL/OPG ratio 

were not statistically altered by the LPS compared to placebo, or within any of the 

treatment groups at 2 weeks (Figure 10A-D).  At two weeks post dietary treatment, ALP 

gene expression had not been significantly altered, by LPS or any of the treatment groups 

(Figure 11A).  IGF-1 gene expression was significantly decreased in the LPS cohort on 

control diet compared to the placebo group, however, none of the dietary treatments were 

able to increase IGF-1 expression (Figure 11B).  

After 6 weeks of treatment, there were no statistically significant differences 

observed in bone TNFα, IL-6, or IL-10 relative gene expression (Figure 12A-C).  

RANKL gene expression was significantly up-regulated by LPS in the group on the 

control diet compared to the placebo group (Figure 13A).  HPP and LDP down-regulated 

RANKL gene expression in mice with the LPS pellet similar to that of the mice 

implanted with the placebo pellet (Figure 13A).  However, there was no statistically 

significant difference in gene expression associated with bone resorption (Figure 13D) or 

bone formation (Figure 14) at six weeks.  

 Our positive control, simvastatin had no significant effect on any parameters 

tested other than IGF-1 at 2 weeks (Figure 11B) and RANKL at 6 weeks (Figure 13A).  

Statin therapy was able to down-regulate IGF-1 compared to placebo and LPS controls 

after 2 weeks on dietary treatment.  RANKL gene expression was also significantly 

lowered compared to LPS control group after 6 weeks of treatment.  Based on previous 

reports that statin drugs have anti-inflammatory and potential anabolic effects on bone, 

simvastain was included in the study designed as a positive control.  After 2 and 6 weeks 
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of statin treatment, animals exhibited no response in the expression of TNF-α, IL-6 or IL-

10 mRNA (Figure 9 and 13).  

 

Histological Evaluation of the Myocardium and Aorta 

Representative micrographs of the heart (Figure 15) and aorta (Figure 16) are 

shown.  After 2 weeks of treatment the LPS pellet had not altered narrowing of large or 

small artery or arterioles compared to the placebo group (Table 9).  Lymphocyte 

infiltration of the heart had significantly increased in the LPS control group compared to 

the placebo after 2 weeks dietary treatment, the high dose of dried plum and statin 

therapy were able to decrease this response (Table 10).  Mast cell and PMN infiltration 

frequency were not statistically altered by the LPS after 2 weeks of dietary treatment (6 

weeks after pellet implantation) (Table 10).  

At 6 weeks post dietary treatment (10 weeks after placebo or LPS pellet 

implantation), the LPS group on control diet had a significantly higher degree of large 

and small artery narrowing, however, all of the dietary treatments were able to reverse 

these vascular changes (Table 11).  All treatment groups with exception of the low dose 

of dried plum,were ble to decrease the f narrowing of large arterioles.  No treatments 

were able to impact the frequency of small arteriole narrowing (Table 11).  The LPS 

pellet increased the degree of lymphocyte infiltrate of the heart, and all of the treatments 

attenuated this cellular response to a similar degree (Table 12).  Although PMN 

infiltration was observed in 83% of the LPS treated heart specimens, this was not 

observed in any of the LPS groups on the dietary treatments (Table 12).  The LPS group 

on control diet had a statistically higher number of mast cells in the heart compared to 
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placebo and the high dose of dried plum (Table 12).  At 9 weeks post dietary treatments 

or control diets, no animals had an observed infarction (Table 12).  There were no 

statistical differences in aortas at 2 weeks post dietary treatment (Table 13).  After 6 

weeks of dietary treatment, the LPS had induced vascular changes leading to higher 

pathology scores in the aorta compared to the placebo control.  All treatments were able 

to reduce these negative effects on the aorta (Table 13). 



Table 4.  Bone Mineral Area (BMA) and Content (BMC) of the Tibia at Baseline and Following 2 and 6 Weeks of Dietary Treatments 
 

 

 Placebo LPS LPS/LPP LPS/HPP LPS/LDP LPS/HDP LPS/Statin 
Baseline       

BMA (cm2) 0.480 ± 0.01 0.470 ± 0.01     

BMC (g) 0.0242 ± 0.001 0.0238 ± 0.001     

2 weeks       
BMA (cm2) 0.456 ± 0.04 0.490 ± 0.01 0.502 ± 0.01 0.510 ± 0.01 0.511 ± 0.01 0.501 ± 0.01 0.488 ± 0.010 

BMC (g) 0.0267 ± 0.001 0.0263 ± 0.001 0.0273 ± 0.001 0.0285 ± 0.001 0.0284 ± 0.001 0.0276 ± 0.001 0.0263 ± 0.001 

6 weeks       
BMA (cm2) 0.512 ± 0.01 0.527 ± 0.01 0.512 ± 0.01 0.513 ± 0.01 0.520 ± 0.01 0.519 ± 0.01 0.499 ± 0.01 

BMC (g) 0.0289 ± 0.0007 0.0305 ± 0.001 0.0291 ± 0.001 0.0283 ± .001 0.0301 ± 0.001 0.0299 ± 0.001 0.0271 ± 0.001 

Slow release pellets delivered 0 (Placebo) or 0.1 mg LPS/kg bw/d (LPS). Baseline animals received only AIN-93M (control) diet.  Dietary treatments were: 
control diet, control diet with low (LPS/LDP) or high (LPS/HDP) dose dried plum added (low = 5% or high = 25%, w/w), control diet with comparable dose of 
polyphenolic compounds as low (LPS/LPP) and high (LPS/HPP) dose dried plum, or simvastatin (LPS/Statin) as a positive control (25 mg/kg diet). Dietary 
treatments started after the baseline sacrifice (4 weeks post pellet implantation) and were maintained for 2 or 6 weeks.  
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Table 5.  Tibia Trabecular Bone Microarchitectural Parameters at Baseline and Following 2 or 6 Weeks of Dietary Treatments  
 

 

 Placebo  LPS  LPS/LPP  LPS/HPP  LPS/LDP  LPS/HDP  LPS/Statin  

Baseline         

ConnDens   341.09 ± 23.2 276.92 ± 22.3      

SMI 1.39 ± 0.1 1.63 ± 0.1      

2 weeks        

ConnDens  304.28 ± 21.4 377.49 ± 25.9 281.13 ± 21.2 270.59 ± 31.3 293.00 ± 15.6 301.72 ± 27.9 349.17 ± 34.8 

SMI 1.24 ± 0.2 1.30 ± 0.1 1.28 ± 0.2 1.41 ± 0.1 1.34 ± 0.1 1.28 ± 0.2 1.22 ± 0.2 

6 weeks        

ConnDens  272.6 ± 32.6 274.4 ± 41.5 369.9 ± 93.4 248.3 ± 6.1 241.7 ± 32.7 281.6 ± 12.2 226.5 ± 18.6 

SMI 0.87±0.2 1.00 ± 0.2 0.85 ± 0.2 1.04 ± 0.2 0.92 ± 0.2 0.77 ± 0.2 0.94 ± 0.2 

Connectivity density (ConnDens) and structural model index (SMI) as assed by μCT.  Slow release pellets delivered 0 (Placebo) or 0.1 mg LPS/kg bw/d (LPS). 
Baseline animals received only AIN-93M (control) diet.  Dietary treatments were: control diet, control diet with low (LPS/LDP) or high (LPS/HDP) dose dried 
plum added (low = 5% or high = 25%, w/w), control diet with comparable dose of polyphenolic compounds as low (LPS/LPP) and high (LPS/HPP) dose dried 
plum, or simvastatin (LPS/Statin) as a positive control (25 mg/kg diet). Dietary treatments started after the baseline sacrifice (4 weeks post pellet implantation) 
and were maintained for 2 or 6 weeks.  
  

 47



Table 6.  Cortical Bone Morphometry at the Tibial Mid-diaphysis. 
 

 

 Placebo  LPS  

Baseline    
Cortical Thickness (mm)  0.239 ±0.001 0.241±0.01 
Cortical Area (mm2)  0.82 ±0.04  0.83 ±0.02  
Medullary Area (mm2)  0.0117 ±0.00 0.0109±0.00 
Porosity (%)  1.39 ±0.07                                   1.31 ±0.03 

Baseline animals had either placebo pellet (0.0 μg LPS/day) or an LPS pellet delivering 0.1 mg LPS/kg/d, and maintained on 
control diet for 4 weeks.   
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Table 7.  Cortical Bone Morphometry at the Tibial Mid-diaphysis After 2 or 6 Weeks of Dietary Treatments 
 

 

 Placebo  LPS  LPS/LPP  LPS/HPP  LPS/LDP  LPS/HDP  LPS/Statin  

2 weeks        

Cortical Thickness (mm)  0.236 ± 0.00  0.240 ± 0.01  0.257 ± 0.01  0.246 ± 0.01  0.248 ± 0.01 0.251 ± 0.01 0.243 ± 0.01  
Cortical Area (mm2)  0.815 ± 0.02 0.796 ± 0.03  0.914 ± 0.03  0.837 ± 0.03  0.865 ± 0.03  0.874 ± 0.04  0.860 ± 0.03  
Medullary Area (mm2)  1.071 ± 0.01  1.070 ± 0.07  1.190 ± 0.06  1.143 ± 0.09  1.219 ± 0.13  1.083±0.05  1.131 ± 0.02  
Porosity (%)  1.31 ± 0.04  1.36 ± 0.13 1.31± 0.07 1.36 ± 0.08  1.42 ± 0.14 1.25 ± 0.064 1.32 ± 0.08  
6 weeks        

Cortical Thickness (mm)  0.254 ± 0.01  0.259 ± 0.01  0.268 ± 0.00  0.246 ± 0.01  0.258 ± 0.01  0.256 ± 0.01  0.238 ± 0.01  
Cortical Area (mm2)  0.844 ± 0.05  0.935 ± 0.11  0.952 ± 0.08  0.804 ± 0.05  0.864 ± 0.07  0.939 ± 0.01  0.862 ± 0.04  
Medullary Area (mm2)  1.035 ± 0.10  1.060 ± 0.11  1.039 ± 0.11  1.062 ± 0.06  0.897 ± 0.07  1.29 ± 0.06  1.19 ± 0.14  
Porosity (%)  0.55 ± 0.02  0.53 ± 0.01  0.52 ± 0.01  0.57 ± 0.01  0.54 ± 0.02  0.51 ± 0.01  0.58 ± 0.02  

Slow release pellets delivered 0 (Placebo) or 0.1 mg LPS/kg bw/d (LPS).  Baseline animals received only AIN-93M (control) diet.  Dietary treatments were: 
control diet, control diet with low (LPS/LDP) or high (LPS/HDP) dose dried plum added (low = 5% or high = 25%, w/w), control diet with comparable dose of 
polyphenolic compounds as low (LPS/LPP) and high (LPS/HPP) dose dried plum, or simvastatin (LPS/Statin) as a positive control (25 mg/kg diet).  Dietary 
treatments started after the baseline sacrifice (4 weeks post pellet implantation) and were maintained for 2 or 6 weeks.  
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Table 8. Biomechanical Properties of the Tibia as Assessed by Finite Element (FE) Analysis at Baseline and Following 2 or 6 Week 
of Dietary Treatments 
 

 

 Placebo  LPS  LPS/LPP  LPS/HPP  LPS/LDP  LPS/HDP  LPS/Statin  

Baseline         

Total Force (N)  5.83 ± 0.9 4.97 ±0.5      

Size 
Independent 
Stiffness (N/m) 

714.71 ±94.5 601.35 ±67.7      

2 weeks 
 

       

Total Force (N)  6.07 ±0.7 6.78 ±1.0 6.49 ±0.8 5.09 ±0.5 5.83 ±0.7 6.03 ±0.9 5.99 ±0.8 

Size 
Independent 
Stiffness (N/m) 

727.57 ±69.9 841.56 ±132.7 814.92 ±98.9 650.08 ±62.2 732.90 ±81.8 816.42 ±118.9 724.62±93.1 

6 weeks        

Total Force (N)  7.48 ±0.4 9.22 ±1.2 10.65 ±2.7 8.09 ±1.3 8.46 ±1.7 10.45 ±1.8 9.33 ±1.4 

Size 
Independent 
Stiffness (N/m) 

819.45±48.2 1023.32±129.4 1146.34±235.1 956±170.5 1006±206.9 1154.23±203.0 963±134.0 

Slow release pellets delivered 0 (Placebo) or 0.1 mg LPS/kg bw/d (LPS).  Baseline animals received only AIN-93M (control) diet.  Dietary treatments were: 
control diet, control diet with low (LPS/LDP) or high (LPS/HDP) dose dried plum added (low = 5% or high = 25%, w/w), control diet with comparable dose of 
polyphenolic compounds as low (LPS/LPP) and high (LPS/HPP) dose dried plum, or simvastatin (LPS/Statin) as a positive control (25 mg/kg diet).  Dietary 
treatments started after the baseline sacrifice (4 weeks post pellet implantation) and were maintained for 2 or 6 weeks.  

 50



Table 9.  Histological Scoring of the Myocardium 2 Weeks Post Dietary Treatment of the Large and Small Arteries and Arterioles 
 

Large Artery  Small Artery Large Arteriole Small Arteriole 
Scoring Category  0  1  2  3    0  1  2  3     0  1  2  3    0  1  2  3  

Treatment Groups 
Placebo (%)  100  ₋  ₋  ₋ 100  ₋  ₋  ₋         100     ₋   ₋              100   ₋  ₋         ₋

LPS (%)  100  ₋  ₋  ₋ 100  ₋ ₋ ₋ 100  ₋  ₋ ₋ 100  ₋ ₋ ₋

LPS+LPP (%)  100  ₋  ₋  ₋ 100  ₋  ₋  ₋  100  ₋  ₋  ₋  100  ₋  ₋  ₋  

LPS+HPP (%)  100  ₋  ₋  ₋ 100  ₋  ₋  ₋  100  ₋  ₋  ₋  100  ₋  ₋  ₋  

LPS+LDP (%)  100  ₋  ₋  ₋ 100  ₋ ₋ ₋ 100  ₋  ₋ ₋ 100  ₋ ₋ ₋

LPS+HDP (%)  100  ₋  ₋  ₋ 100  ₋ ₋ ₋ 100  ₋  ₋ ₋ 100  ₋ ₋ ₋

LPS+Statin (%)  100  ₋  ₋  ₋ 100  ₋ ₋ ₋ 100  ₋  ₋ ₋ 100  ₋ ₋ ₋

 
Large and small arteries and arterioles (n=6) were scored 0 through 3 based on severity of narrowing of the vessel (0 indicated no observed narrow and 3 was 
severe). 
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Table 10. Histological Scoring of the Myocardium 2 Weeks Post Dietary Treatment for Cellular Infiltration and Infarction 
 

Lymphocyte Infiltration PMN Infiltration  Infarction   Mast Cells  
Scoring Category 0 1 2 3   0 1 2 3   0 1   0 1 2 3 

Treatment Groups 

Placebo (%) 100 

₋ 

₋ ₋ ₋ 100 ₋ ₋ ₋ 100 ₋ 67 33 ₋ ₋ 

LPS (%) 67 33 ₋ 100 ₋ ₋ ₋ 100 ₋ 17 50 33

₋

 ₋

LPS+LPP (%) ₋ 83 17 ₋ 100 ₋ ₋ ₋ 100 ₋ 17 83 ₋

LPS+HPP (%) ₋ 33 67 ₋ 100 ₋ ₋ ₋ 100 ₋ ₋ 67 33 ₋

LPS+LDP (%) 17 50 33 ₋ 100 ₋ ₋ ₋ 100 ₋ 17 83 ₋ ₋

LPS+HDP (%) 67 33 ₋ ₋ 100 ₋ ₋ ₋ 100 ₋ 50 50 ₋ ₋ 

LPS+Statin (%) 67 33 ₋ ₋ 100 ₋ ₋ ₋ 100 ₋ 33 67 ₋ ₋

Infiltration was scored based on a 0-3 scale with 0 indicating no infiltration and 3 significant infiltration of lymphocytes and polymorphonuclear cell 
PMN.  Infarction was scored based on the absence (0) or presence (1) of incident (n=6). 
 
Lymphocyte Infiltration: 
Placebo vs. LPS (p=0.0025) 
LPS vs. HDP (p=0.0357); LPS vs. Statin (p=0.0357) 
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Table 11. Histological Scoring of the Myocardium 6 Weeks Post Dietary Treatment of the Large and Small Artery and 
Arteriole 
 

 Large and small arteries and arterioles (n 6) we e scored 0 through 3 ased on se erity of narrowing o the ve sel (0 ndicated no observed narro
and 3 was severe). 

= r b  v f s  i w 

Large Artery   Small Artery    Large Arteriole Small Arteriole  

Scoring Category 0 1 2 3   0 1 2 3   0 1 2 3   0 1 2 3 

Treatment Groups 

    Placebo (%) 100 

₋ 

₋ ₋ ₋ 1 0 0

₋

₋ ₋ ₋ 1 0 0

₋ 

₋ ₋ ₋ 1 0 0

₋

₋ ₋ ₋ 

    LPS (%) 1 0 0

₋ 

₋ ₋ 1 0 0

₋ 

₋ ₋ 50 50 ₋ 50 33 17

₋ 

 

    LPS/LPP (%) 100 ₋ ₋ 100 ₋ ₋ 66 17 17

₋

 ₋ 50 33 17

₋

 

    LPS/HPP (%) 100 ₋ ₋ ₋ 100 ₋ ₋ ₋ 66 33 ₋ 17 83 ₋

    LPS/LDP (%) 100 ₋ ₋ ₋ 100 ₋ ₋ ₋ 17 8

₋ 

3 ₋ ₋ ₋ 100 ₋ ₋ 

    LPS/HDP (%) 100 ₋ ₋ ₋ 100 ₋ ₋ ₋ 100 ₋ ₋ 50 50 ₋ ₋ 

    LPS/Statin (%) 100 ₋ ₋ ₋ 100 ₋ ₋ ₋ 100 ₋ ₋ ₋ 50 50 ₋ ₋ 

 
Large and Small Artery: 
Placebo vs. LPS (p=0.0025) 
LPS vs. LPP (p=0.0025); LPS vs. HPP (p=0.0025); LPS vs. LDP (p=0.0025); LPS vs. HDP (p=0.0025); LPS vs. Statin (p=0.0025) 
Large Arteriole: 
Placebo vs. LPS (p=0.0025) 
LPS vs. LPP (p=0.0498); LPS vs. HPP (p=0.0273); LPS vs. HDP (p=0.0025); LPS vs. Statin (p=0.0025) 
Small Arteriole: 
Placebo vs. LPS (0.0025) 
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Table 12. Histological Scoring of the Myocardium 6 Weeks Post Dietary Treatment for Cellular Infiltration and Infarction 
Lymphocyte Infiltration PMN Infiltration Infarction   Mast Cells 

Scoring Category 0 1 2 3   0 1 2 3   0 1   0 1 2 3 

Treatment Groups 

    Placebo (%) 1

₋ 

00 ₋ ₋ ₋ 100 ₋ ₋ ₋ 100 ₋ 1

₋ 

00 ₋ ₋ ₋ 

    LPS (%) ₋ 17 8

₋ 

3 17 8

₋ 

3 ₋ ₋ 100 ₋ ₋ 100 ₋ 

    LPS+LPP (%) 17 50 33 100 ₋ ₋ 100 ₋ ₋ 50 50 ₋ 

    LPS+HPP (%) 1

₋ 

7 50 33 ₋ 100 ₋ ₋ ₋ 100 ₋ 1

₋ 

7 17 66 ₋

    LPS+LDP (%) 67 33 ₋ 100 ₋ ₋ ₋ 100 ₋ 67 33 ₋ 

    LPS+HDP (%) 3

₋ 

3 50 17 ₋ 100 ₋ ₋ ₋ 100 ₋ 1

₋ 

7 66 17 ₋ 

    LPS+Statin (%) 17 83 ₋ 100 ₋ ₋ ₋ 100 ₋ 33 67 ₋ 

Infiltration was scored based on a 0-3 scale with 0 indicated no observed infiltration and 3 indicative of many cells.                 Infarction was scored 
based on the absence (0) or presence (1) of incident (n=6). 
Lymphocyte Infiltration: 
 
Placebo vs. LPS (p=0.0025) 
LPS vs. LPP (p=0.0252); LPS vs. HPP (p=0.0252); LPS vs. LDP (p=0.0094); LPS vs. HDP (p=0.0112); LPS vs. Statin (p=0.0131) 
Mast Cells: 
Placebo vs. LPS (p=0.0025) 
LPS vs. HDP (p=0.0138) 
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Table 13. Histological Scoring of the Aorta Following 2 or 6 Weeks of Dietary Treatment 
 
Aorta Mean Score 

2 weeks 6 weeks 

   Placebo  0.00 ± 0.00 0.00 ± 0.00a 

   LPS 0.17 ± 0.17 6.83 ± 0.75b 

   LPS+LPP 0.00 ± 0.00 2.17 ± 0.40c 

   LPS+HPP 0.00 ± 0.00 1.50 ± 0.62c 

   LPS+LDP 0.00 ± 0.00 2.33 ± 0.42cd 

   LPS+HDP  0.00 ± 0.00 0.83 ± 0.48ac 

   LPS+Statin 0.00 ± 0.00 0.00 ± 0.00ac 
Scores of the aorta (n=6) were calculated by taking the mean of 3 parameters; thickening of the wall (0-3), thinning of the wall (0-3), and arthermatous plaque (0-3).  
In all cases 0 indicated no observed event and 3 indicated the severity of observed event.  Within a column, values that do not share the same superscript are 
significantly different (p<0.05) from each other. 
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Figure 2.  Bone mineral density (BMD) of excised tibia. Baseline animals had either placebo pellet (0.0 μg LPS/day) or an LPS pellet 
delivering 0.1 mg LPS/kg/d, and maintained on control diet for 4 weeks.  Dietary treatments started after baseline and were 
maintained on control AIN-93 (Control), control diet with low (LDP) or high dose dried plum (HDP) added (low = 5% or high = 25%, 
w/w), control diet with comparable dose of polyphenolic compounds as low (LPP) and high dose dried plum (HPP), or simvastatin 
(Statin) as a positive control (25 mg/kg diet) for 2 or 6 weeks.  
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Figure 3. Baseline microarchitectural parameters of trabecular bone in the proximal tibial metaphysis. Parameters assessed by micro-
CT were (A) bone volume/total volume (BV/TV), (B) trabecular number (TbN), (C) thickness (TbTh), and (D) separation.  Bars 
represent the mean + SE for each treatment group.  Bars that share the same superscript letter are not statistically different from each 
other (p<0.05). 
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 Figure 4.  2 week microarchitectural parameters of trabecular bone in the proximal tibial metaphysic.  Trabecular bone parameters 
include (A) bone volume/total volume (BV/TV), (B) trabecular number (TbN), (C) trabecular thickness (TbTh) and (D) trabecular 
separation.   
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Figure 5.  6 week microarchitectural parameters of trabecular bone in the proximal tibial metaphysisSix week microarchitecture 
parameters of trabecular bone observed in the proximal tibia including (A) bone volume/total volume (BV/TV), (B) trabecular number 
(TbN), (C) thickness (TbTh), and (D) separation.   

 59



 
 
Figure 6. Gene expression of inflammatory mediators gene expression of the pro-inflammatory mediators (A) tumor necrosis factor 
(TNF)-α, and (B) interleukin (IL)-6, as well as the anti-inflammatory cytokine (C) IL-10 at baseline. Bars represent the mean SE for 
each treatment group.   
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Figure 7.  Relative gene expression of key genes involved in bone resorption; (A) receptor activator of NF-κB ligand (RANKL), the 
decoy of RANKL, (B) osteoprotegerin (OPG), the ratio of (C) RANKL/OPG, and (D) tartrate resistant acid phosphatase (TRAP).  
Bars represent the mean SE for each treatment group.   
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Figure 8. Bone formation was analyzed at baseline by assessing the gene expression of alkaline specific phosphatase (ALP).  Bars 
represent the mean SE for each treatment group.   
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Figure 9.  Inflammatory mediators at 2 weeks post dietary treatments, gene expression of common mediators involved in 
inflammation, (A) tumor necrosis factor (TNF)-α, and (B) interleukin (IL)-6, and (C) IL-10. Bars represent the mean SE for each 
treatment group.  Bars that share the same superscript letter are not statistically different from each other (p<0.05). 
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Figure 10.  Alterations in gene expression following 2 weeks of  dietary treatment; (A) receptor activator of NF-κB ligand (RANKL), 
the decoy of RANKL, (B) osteoprotegerin (OPG), the ratio of (C) RANKL/OPG, and (D) tartrate resistant acid phosphatase (TRAP).  
Bars represent the mean SE for each treatment group.  Bars that share the same superscript letter are not statistically different from 
each other (p<0.05). 
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Figure 11.  Expression of key genes in bone formation at 2 weeks following dietary treatments by assessing the gene expression of 
(A) alkaline specific phosphatase (ALP) and (B) insulin like growth factor (IGF)-1.  Bars represent the mean SE for each treatment 
group.  Bars that share the same superscript letter are not statistically different from each other (p<0.05). 
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Figure 12.  Inflammatory mediators at 6 weeks post dietary treatments, gene expression of common mediators involved in 
inflammation, (A) tumor necrosis factor (TNF)-α, and (B) interleukin (IL)-6, and (C) IL-10. Bars represent the mean SE for each 
treatment group 
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Figure 13.  Alterations in gene expression following 6 weeks of dietary treatment; (A) receptor activator of NF-κB ligand (RANKL), 
the decoy of RANKL, (B) osteoprotegerin (OPG), the ratio of (C) RANKL/OPG, and (D) tartrate resistant acid phosphatase (TRAP).  
Bars represent the mean SE for each treatment group.  Bars that share the same superscript letter are not statistically different from 
each other (p<0.05). 
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Figure 14.  Gene expression of alkaline phosphatase (ALP) following 6 Weeks of dietary treatment.  Bars represent the mean SE for 
each treatment group.   
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Figure 15.  Histological evaluation of cellular infiltration of the myocardium 6 weeks after dietary treatments  
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Figure 16.  Histological evaluation of the aorta 6 weeks after dietary treatments. 



CHAPTER V 
 
 

DISCUSSION 

 

The purpose of the current study was to determine if dried plum’s polyphenols are 

able to reverse the skeletal and vascular pathology previously observed  in a model of 

chronic low-grade inflammation (21, 22).  We have demonstrated that this model of 

chronic low grade inflammation induces bone loss of the tibia and femur, as indicated by 

decreased BMD, and compromised trabecular bone microarchitecture (21, 46).  In the 

present study, however, we were unable to reproduce these changes in tibial BMD, or 

trabecular microarchitectural parameters at baseline, and 2 and 6 weeks after dietary 

treatments.  Based on these results, we conclude that the LPS pellet did not produce 

inflammation-induced bone loss at the skeletal site tested as previously indicated.  A 

potential explanation for this is the fact that in this study only one skeletal site (i.e. the 

tibia), was used for the assessment of bone quality, as compared to the other studies 

where multiple sites had been used (21, 46).  Based on the results of previous studies (21, 

46), we anticipated that the tibia was a reasonable site to assess the skeletal changes, and 

had allocated other long bone specimens for other analyses.  By limiting ourselves to this 

one site, we may have induced an inflammatory more apparent responses at other sites 

(i.e. femur or vertebra), but were unable to evaluate. 

 In the current study one of the objectives was to determine the mechanism by
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which chronic low grade inflammation induces bone loss and cardiovascular pathology.  

In a prior study (23), 30 days after pellet implantation produced a significant increase in 

the pro-inflammatory cytokine, TNF-α protein expression of the tibia. Therefore, we 

expected that in the current study that LPS-treated animals’ TNF-α expression would be 

increased in the bone at the transcriptional level.  However, at baseline (i.e. 4 weeks post 

LPS pellet implant) there was no change in the relative TNF-α RNA abundance 

compared to the placebo group.  Gene expression of IL-6 was also assessed, given that 

this pro-inflammatory cytokine is up-regulated during states of inflammation and may 

remain up for extended periods of time (84), however, no differences were observed in 

groups receiving the LPS compared to the placebo pellets.  At 2 weeks post dietary 

treatment, the placebo and LPS control did not have different levels of TNF-α gene 

expression.  Even though similar levels of TNF-α in the placebo and LPS group was not 

expected, the high dose of polyphenols was able to attenuate TNF-α expression compared 

to placebo and LPS controls.  Both doses of dried plum decreased the gene expression of 

TNF-α compared to the placebo control.  Due to dried plum’s high polyphenol content 

(31) and the fact that polyphenols are known to possess potent anti-inflammatory 

properties (151), the dietary treatment’s ability to down-regulate TNF-α production 

seems in line with previous findings (23).   

 This trend did not continue at 6 weeks as there was no difference in TNF-α 

expression, or any other cytokines.  Although we did not observe the expected results 

with regards to the LPS pellet, dried plum’s polyphenols and the whole fruit were able to 

down-regulate TNF-α to some extent, which further supports the potential potency of this 

dietary intervention. 
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To determine if dried plum’s polyphenols were acting via anti-resorptive 

pathways, RANKL gene expression was studied at 2 weeks post treatment.  The placebo 

and LPS groups on the control diet demonstrated no alterations in RANKL gene 

expression.  However, the low and high dose of dried plum’s polyphenols and the low 

and high doses of whole fruit dried plum tended to decrease RANKL expression 

compared to the placebo control.  Although this observation did not reach the level of 

statistical significance, it seemed as though dried plum and its polyphenols were able to 

exert some beneficial effect on RANKL gene expression.  After 6 weeks of dietary 

treatment dried plum and its polyphenols did exert beneficial effects on RANKL gene 

expression.  In the LPS-control cohort, RANKL gene expression was up-regulated 

compared to the placebo controls.  The groups receiving the high dose of dried plum’s 

polyphenols and the low dose of dried plum were able down-regulate this response.  

Previous studies have suggested that dried plum’s polyphenols can attenuate RANKL 

gene expression (34, 36), and our results not only support this conclusion, but also 

indicate the possibility that dried plum’s polyphenols are able to suppress bone 

resorption.   

In addition to the lack of an effect of LPS on bone structural properties and gene 

expression and the limited response to dried plum and its polyphenols, it should also be 

noted that alterations at the tissue level were not observed with the pharmacological 

agent, simvastatin.  We had chosen to use simvastatin as a positive control in this study 

based on evidence that this pharmacological agent has known anti-inflammatory 

properties (27) and exerts beneficial effects on the skeletal (26) and cardiovascular 

systems.  There were no alterations observed in the statin group other than its ability to 
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down-regulate IGF-1, which was not expected based on previous studies (27).  We 

anticipated that simvastatin would  increase BMD or BV/TV, and up-regulated ALP 

which is associated with  bone formation (29).  At the very least we expected simvastatin 

to down-regulate TNF-α and IL-6 (27, 30), however this was not observed.  Due to the 

lack of response by the inflammatory mediators, TNF-α and IL-6, it seems as though we 

were unable to induce chronic-low grade inflammation in the bone to the extent we had 

in prior studies. 

A potential issue that should be addressed is the composition of the bone 

specimen (i.e. whole bone vs flushed bone or bone marrow) used for the evaluation of  

mRNA may have impacted the real time-PCR results (152).  In the present study we used 

whole femurs to extract RNA.  Some studies (152, 153) have used either the distal 

metaphyseal region of the femur or flushed bone, while others have used whole bone 

specimens.  Although the same bone is used, it is apparent that the presence of bone 

marrow may dilute the findings relative to genes expressed specifically by osteoclasts and 

osteoblasts.  However, the fact that gene expression levels for TNF-α and IL-6 were not 

altered combined with the fact that skeletal changes were not observed suggests that this 

may not be the case. 

Although the skeletal system did not seem to respond as expected, vascular 

pathology was observed in the aorta and hearts of these specimens.  Histological staining 

of the myocardium after 2 weeks of dietary treatment showed that the high dose of dried 

plum and statin therapy were able to decrease the frequency of lymphocyte infiltration, 

which is indicative of microvascular disease.  After 6 weeks of treatment all dietary 

interventions were able to totally prevent the large and small artery narrowing induced by 

 74



LPS of such vessels and reduced PMN infiltration.  Lymphocyte infiltration was 

decreased in LPS model after 6 weeks of treatment with all dietary treatments.  These 

results suggest that in this study the cardiovascular system was more responsive to the 

LPS and thus the dietary treatments compared to the skeletal system 
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CHAPTERVI 

 

CONCLUSIONS  

 

Summary of Findings 

Several population-based studies have indicated that a relationship exists between 

the pathophysiology of osteoporosis and cardiovascular disease.  Chronic elevation of 

inflammatory mediators, such as tumor necrosis factor (TNF)-α and members of the TNF 

receptor superfamily of proteins such as the RANKL and its soluble decoy receptor, 

OPG, have been proposed as playing a pivotal role in concurrent osteoporosis and 

atherosclerosis.  Previously, our laboratory has shown that dietary supplementation with 

dried plum and its polyphenols down-regulate inflammatory mediators such as TNF-α 

and RANKL in vitro and in models of gonadal hormone deficiency (35, 36).  The aim of 

the current study was to induce simultaneous occurrence of bone loss and vascular 

pathology by chronic low grade inflammation, and to determine the protective effect 

dried plum’s polyphenols exert in vivo.  This study utilized 12-wk-old C57BL/6 male 

mice (n=192) that were implanted with pellets designed to deliver either 0.0 or 0.1 mg 

LPS/kg bw/d and randomly assigned to one of the following dietary treatments:  Placebo-

control (AIN-93M) diet, LPS Control , control diet supplemented with low (LDP) or high 

dose dried plum (HDP) (low = 5% or high = 25%, w/w DP added), control diet with 
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comparable dose of polyphenolic compounds as low (LPP) and high dose dried plum 

(HPP), or simvastatin (Statin) as a positive control (25 mg/kg diet).  All dietary 

treatments initiated after the 4 week period to induce bone loss and vascular disease and 

were maintained for either 2 or six weeks.  We have reported that no inflammation-

induced changes in bone mass, trabecular or cortical microarchitecture, and bone 

biomechanical properties at baseline, 2 or 6 weeks were observed in this study.  

However, in the cardiovascular system we did observe vascular changes indicative of 

microvascular disease and that after 6 weeks of dietary intervention dried plum’s 

polyphenols were able to protect from observed pathology.  

 

Conclusions 

Hypothesis:  Polyphenols extracted from dried plum will reverse the bone loss and 

vascular pathology induced by chronic low grade inflammation by reducing key 

inflammatory mediators involved in the pathophysiology of osteoporosis and CVD.   

Based on the results of this study we reject our proposed hypothesis due to the 

fact that we were unable to observe bone loss in any of our time points using the LPS 

pellet model.  Our results do suggest, however, that the LPS pellet did induce vascular 

pathology, and histology revealed that all of our treatment groups were able to protect 

against this induction.  These findings suggest that in this study the cardiovascular system 

was more responsive to the LPS and thus the dietary treatments compared to the skeletal 

system. 
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Recommendations for Further Research 

Although we were unable to demonstrate that dried plum’s polyphenols reversed 

skeletal deterioration in response to chronic inflammation in vivo, this model may have 

induced bone loss at another site.  A similar study should be designed to test multiple 

sites at which bone loss may occur (i.e. spine, femur), and could therefore truly determine 

the degree dried plum’s polyphenols had an effect.  Furthermore, there remains the 

possibility that the pellet preparation did not allow for the appropriate delivery of the 

dose of LPS. This statement is made based on the fact that there was not response in the 

bone and even the cardiovascular changes were not as pronounced as we have previously 

observed.  However, we are unable to determine if the pellets were problematic at this 

point.  If in fact, there have been alterations in LPS (or other contaminate) dose, this 

would have dramatically affected our results.  A method to pre-test the response may 

prevent this from occurring in the future.  One of the important features of an animal 

model system is that it provides reproducible results.  

The possibility that dried plum’s polyphenols are able to protect against vascular 

pathology may open many doors for additional research to begin to assess the practicality 

of such alternative treatment options.  Different combinations of foods rich in 

antioxidants, combined with lower doses of pharmacological agents may be achievable, 

and offer patients the same beneficial effects without undesirable side-effects.  Such 

studies evaluating the efficacy of dried plums and their bioactive components alone and 

in combination with low dose pharmacological interventions warrant further 

investigation. 
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Figure 16. The bone turnover mediator TRAP was assessed using Elisa kit on mouse 
serum (R&D Systems and IDS Dianostics) at baseline (A), 2 weeks (B), and 6 weeks (C) 
 

 

 96



Figure 17. A portion of the liver was used to extract protein to be used to asses any 
observable alterations in HMG-CoA Reductase.  A small portion of the liver was 
homogenized using a VWR Power MAX homogenizer and lysis buffer.  Microsomal 
protein was isolated by centrifugation.  The Beckman Coulter DU800 spectrophotometer 
was used to determine protein concentration and SDS-PAGE and Immunoblot was 
performed.  Anti-HMG CoA reductase antibody (Millipore, Temecula, CA) was used for 
incubations to determine protein level of HMG-CoA reducatse among groups (B), anti-
actin antibody was used as the control (A). 
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