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CHAPTER I 
 
 

INTRODUCTION 

  

 According to the most recent survey by the American Heart Association (1), 

cardiovascular disease (CVD) accounts for 37.3 percent of all deaths in the United States.  

CVD is the leading cause of mortality and a major contributing factor of women’s 

disability all over the world (1); (2); (3). Ovarian hormone deficiency puts 

postmenopausal women at an increased risk of CVD (4). Hormone replacement therapy 

(HRT) is used to relieve menopausal symptoms and is thought to reduce the risk of CVD 

in postmenopausal women. However recent findings from the Women’s Health Initiative 

indicate that the risks for HRT outweigh its health benefits. HRT is associated with 

increased risk of endometrial cancer, breast cancer, hypertension, hyperlipidemia, and 

gallbladder disease (5);  (6). In order to avoid the risks associated with HRT 

postmenopausal women and their practitioners are in search for alternative regimens. 

 Many functional foods with potential health benefits have been recently 

investigated for their role in reducing CVD. Flaxseed is one functional food which has 

the potential for reducing CVD risks. Flaxseed is a very rich source of lignans, α-

linolenic acid (ALA) and soluble fiber mucilage, all of which individually or collectively 

may play a significant role in reducing women’s CVD risk (7;) (8);  (9); (10);   
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(11); (12); (13); (14);  (15; 16);  (17). Clinical studies (18); (11; 19) have demonstrated 

that the consumption of approximately 40 to 50g of flaxseed resulted in 5 to 9% 

reduction in total cholesterol. Animal findings support the hypocholesterolemic property 

of flaxseed (7); (8); (9); (10); (11); (12);  (13);  (14);  (15); (16). However, the mode of 

action by which whole flaxseed modulates cholesterol and lipid profiles is relatively 

unknown. Moreover, what component(s) of flaxseed are responsible for this cholesterol 

lowering effect needs further investigation.  

 Earlier findings have shown the hypocholesterolemic and anti-atherosclerotic 

properties of flaxseed in ovarian hormone deficiency in hamsters (20). The purpose of 

this study has to determine whether flaxseed oil exerts the same cholesterol lowering 

effect as does whole flaxseed and to elucidate the mode of action by which whole 

flaxseed and its oil modulates serum and liver lipid profiles in ovariectomized hamsters.  

 Cholesterol metabolism is greatly influenced by levels of LDL receptor, SRB-

1, HMGR , and 7-α hydroxylase. Hepatic levels of some key enzymes important in 

cholesterol metabolism, namely, 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA),  

Microsomal cytochrome P-450 cholesterol 7-α hydroxylase (7-α hydroxylase), LDL 

receptor and scavenger receptor B1 (SRB-1) will be assessed. HMGR is an enzyme 

catalyzing the rate limiting step of cholesterol biosynthesis, i.e. conversion of HMG-CoA 

to mevalonic acid. Regulation of HMGR activity is the primary means for controlling the 

level of cholesterol biosynthesis. 7-α hydroxylase is an enzyme involved in the rate 

limiting step in bile acid synthesis from cholesterol. Scavenger receptor B1, a HDL 

receptor, plays an important role in metabolism of cholesterol by mediating cholesterol 

uptake in the liver in a process known as reverse cholesterol transport. LDL receptor is 
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involved in endocytosis of LDL and other lipoproteins by cells and in the release of free 

cholesterol into liver. By looking at the levels of these key regulatory proteins in liver 

microsomes, we can gain insight into the mechanism by which flaxseed and its oil is able 

to exert hypocholesterolemic action.  

 The hypothesis of this study is that flaxseed exerts its hypocholesterolemic 

action by modulating the levels of one or more of the key enzymes important in 

cholesterol metabolism, namely, SRB-1, HMGR, LDL receptor, and 7-α hydroxylase. 

 To test our hypothesis, we have the following specific aims;  

1) To determine the effect of whole flaxseed and its oil on serum and liver lipid 

profiles in ovariectomized Golden Syrian hamsters  

2) To determine the effect of whole flaxseed and its oil on protein levels of key 

enzymes involved in cholesterol metabolism, namely, SRB-1, HMGR, LDL- 

receptor, and 7-α hydroxylase. 
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CHAPTER II 
 
 

REVIEW OF LITERATURE 

 

Cardiovascular disease in women 

Despite advances in the treatment of CVD, it remains the leading killer of women 

in the United States and in most developed areas of the world (2); (21).  In the United 

States alone, more than half a million women die due CVD each year, exceeding the 

number of deaths in men and the next 7 causes of death in women combined. This 

translates into approximately 1 death every minute (3). Coronary heart disease (CHD) 

accounts for the majority of CVD deaths in women and is a prime target for prevention 

(22); (2). Because CHD is often fatal and nearly two thirds of women who die suddenly 

have no previously recognized symptoms, it is essential to prevent CHD  (23). Other 

forms of atherosclerotic/thrombotic CVD, such as cerebrovascular disease and peripheral 

arterial disease, are critically important in women. While the incidence of heart disease is 

considerably lower among premenopausal women in comparison to men of the same age, 

it increases following menopause placing them at an equal risk for CVD as their male 

counterparts (4). Therefore, CVD is a major public health concern particularly due to the 

rapidly increased number of women reaching menopause , expected to exceed 45 million 

by the year 2020. 
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Health concerns in postmenopausal women 

 

Obesity  

Due to changing ways of life in modern society and sedentary lifestyle, obesity 

has become a serious growing problem worldwide. Elderly (≥70 yrs) and postmenopausal 

women are among the most sedentary and obese segments of the U.S. population and 

there is strong relationship between obesity and risk for CVD (24). Obesity in women has 

been associated with a variety of factors, including genetic predisposition, social class, 

early age of menarche, lack of physical activity excessive alcohol consumption and diet 

low in fruits and vegetables (25). Most women become overweight during and after 

menopause in the fourth and fifth decade of life. These changes in body composition may 

be due to reduced levels of circulating estrogen, and an increase in the androgen-estrogen 

ratio which is a likely factor for shifting fat distribution (26). 

In postmenopausal years, women develop a central pattern of fat distribution and 

an increased risk of developing CVD (27); (28). In a cross-sectional study, Gower and 

colleagues (1998) recruited 141 healthy pre- and postmenopausal women aged 35-65 

years to investigate if menopause-related differences in lipids are associated with greater 

estimated intra-abdominal adiposity. The results of this study indicated that 

postmenopausal women had greater total body fat, central skinfolds and intra abdominal 

fat and also had higher plasma concentrations of total and  LDL-cholesterol and 

triglycerides than premenopausal women (27). 
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Diabetes 

 CVD is the major cause of morbidity and mortality in patients with diabetes. 

According to the recent report of the American Diabetes Association, 18.2 million people 

in the United States have diabetes. Although an estimated 13 million have been 

diagnosed, 5.2 million people are unaware that they have the disease (29). Heart disease 

strikes people with diabetes twice as often as people without diabetes. Deaths from heart 

disease in women with diabetes have increased 23% over the past 30 years (29). Type 2 

or adult onset diabetes has long been known as a risk factor for CVD and is 

conservatively estimated to increase the risk of a fatal event by twofold. The association 

between diabetes and CVD has been suggested to be stronger in women than in men, 

indicating that diabetes eliminates the advantages of being female. 

 

Ovarian hormone deficiency 

 Estrogen has a protective effect in women but in postmenopausal women ovarian 

hormone deficiency is the primary cause of problems associated with menopause. 

Hormone deficiency affects all parts of the body, and so, all tissues dependent on the 

hormone such as breast, ovaries, uterus, bones and heart are compromised. Hormonally 

dependent tissues cannot and do not function optimally or maintain their integrity when 

the required hormone is absent. Hormone deficiency causes an increase in the incidence 

of coronary artery disease, strokes, osteoporosis and possibly Alzheimer's disease. The 

primary effects of hormone deficiency are hyperlipidemia and hypercholesterolemia 

increasing their risk for CVD.  
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Hyperlipidemia/ hypercholesterolemia 

 Hyperlipidemia is an elevation of lipids in the bloodstream. These lipids 

include cholesterol, cholesterol esters, phospholipids and triglycerides which are 

transported in the blood as part of large molecules called lipoproteins. 

Hypercholesterolemia is defined as an increase in total cholesterol and low density 

lipoprotein levels. 

Although hyperlipidemia is a risk factor for the development of CVD in both men 

and women, there are several important ways in which women differ from men. 

Cholesterol levels change over time differently in men and women. Men reach their peak 

cholesterol level at about age 50 which women peak a little later, at about age 60, after 

which the level declines gradually. HDL levels are higher in women than in men at all 

ages (30). LDL is less predictive and HDL cholesterol is more predictive of CVD risk in 

women. Postmenopausal women often experience hypercholesterolemia because of 

ovarian hormone deficiency, which puts them at a high risk of CVD.  

 

Cholesterol 

There are close to 100 genes devoted to the synthesis, transport, metabolism, and 

regulation of cholesterol. Cholesterol, cholesterol metabolites, and its immediate 

biosynthetic precursors play essential roles in cellular membrane physiology, dietary 

nutrient absorption, reproductive biology, maintenance of nerve cells, stress responses, 

salt and water balance and calcium metabolism. Cholesterol is a tetracyclic molecule 

(Figure 1) which has roles in membrane structure as well as being a precursor for the 

synthesis of the steroid hormones such as estrogens, androgens, sterols and bile acids. 

http://web.indstate.edu/thcme/mwking/steroid-hormones.html


Steroid hormones play a key role in regulation of metabolism. These hormones act 

primarily by protein- receptor mechanism to control gene expression in the appropriate 

target tissue. In the nervous system, it is needed for myelin sheath formation in neuronal 

cells and also as neurotransmitters. Cholesterol is also a very important component of cell 

membrane where it maintains appropriate membrane fluidity. A large amount of 

cholesterol is also found in brain tissues. 

Bile acids are the primary degradation products of cholesterol. The bile acids are 

made in liver, stored in the gall bladder, and secreted into the small intestine. They aid in 

solubilization of lipids, facilitating digestion by intestinal lipases in the small intestine.  

 

Figure 1. Structure of cholesterol 

The general structure of cholesterol consists of two six-membered rings side-by-

side, a third six-membered ring off the top corner of the right ring, and a five-membered 

ring attached to the right side ( Figure 1). The central core of this molecule, consisting of 

four fused rings, is shared by all steroids, including estrogen (estradiol), progesterone, 

corticosteroids such as cortisol (cortisone), aldosterone, testosterone, and Vitamin D.  
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Cholesterol metabolism 

 A relatively constant level of cholesterol in the body (150 - 200 mg/dL) is 

maintained by various controlling mechanisms. The level of cholesterol synthesis is 

regulated based on the dietary intake of cholesterol. The cholesterol levels are maintained 

at a steady level by a number of mechanisms:  

1)  Regulation of HMGR activity and levels.  

2)  Regulation of plasma cholesterol levels via LDL receptor-mediated uptake and 

HDL-mediated reverse transport.  

3) Regulation of hepatic rates of sterol biosynthesis. 

4) Regulation by conversion to bile acids through 7-α hydroxylase activity.  

5)  Regulation of excess intracellular free cholesterol through the activity of acyl-  

CoA:cholesterol acyltransferase, ACAT.  

 While normal cholesterol level is essential to life, its involvement in 

atherosclerosis has been associated with CVD and stroke. In a healthy organism, an 

intricate balance is maintained between the biosynthesis, utilization, transport, 

degradation and reabsorption of cholesterol.  

 There are two sources of cholesterol in the body. One is the de novo 

synthesis of cholesterol by the liver and second is from dietary cholesterol. Both dietary 

cholesterol and that synthesized de novo are transported through the circulation in 

lipoprotein particles. The same is true of cholesteryl esters, the form in which cholesterol 

is stored in cells.  

  Cholesterol is transported in the plasma predominantly as cholesteryl 

esters associated with lipoproteins. All of the plasma lipids are associated with proteins to 

http://web.indstate.edu/thcme/mwking/lipoproteins.html
http://web.indstate.edu/thcme/mwking/lipoproteins.html
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form water-miscible lipoprotein complexes. Classification of lipoproteins is generally 

based on density gradient ultracentrifugation. Each lipoprotein contains different 

proportions of protein, phospholipids, triglyceride, and cholesterol, thereby giving rise to 

the different densities of each class (31); (32). Lipoproteins are made up of a neutral lipid 

core composed of triacylglycerol and/or cholesterol esters. Around this core is a coat of 

apoprotein, phospholipids and cholesterol (31). Five major classes of lipoproteins have 

been sequentially separated based on their molecular weights by ultra-centrifugation, and 

are designated as chylomicrons, very low density lipoproteins (VLDL), intermediate 

density lipoproteins (IDL), low density lipoproteins (LDL), and high density lipoproteins 

(HDL). An accepted view of lipoprotein structure suggests the existence of an outer shell 

of polar phospholipid and protein groups, with an inner hydrophobic core of primarily 

triglycerides and cholesteryl esters (31). 

 

Chylomicrons 

The chylomicrons, which are derived from intestinal absorption of 

triglycerides, have densities of less than 0.95 g/ml and diameters ranging from 750 to 

6000 Ǻ. Their primary composition is triglyceride (80-90% by weight), free and 

esterified cholesterol (2-7%), phospholipid (3-6%), and protein (1-2%) (31); (33). Since 

chylomicrons transport exogenous triglycerides from the intestinal mucosa via the 

thoracic duct to the circulation, their formation fluctuates with the load of absorbed 

triglycerides. 

Chylomicrons are cleared rapidly from the blood. Therefore, their presence in 

the post-absorptive state, approximately 12 to 16 hours after the last meal, is indicative of 
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defective handling of dietary fat. The composition of chylomicrons is altered in the 

circulation, with the action of endothelial lipoprotein lipase facilitating triglyceride 

hydrolysis by extra hepatic tissues. The activity of this enzyme in individual tissues 

varies with nutritional and physiological states, such as fasting, exercise, pregnancy, and 

lactation, thereby affecting triglyceride uptake and plasma levels (34). Chylomicron 

remnants, with 80% less triglyceride, are then taken up by the parenchymal cells of the 

liver via receptor-mediated endocytosis after binding to specific remnant receptors (33; 

35; 36). 

 

Very low density lipoproteins (VLDL) 

 VLDLs are of endogenous origin and are synthesized and secreted primarily 

by liver and intestine. They are isolated from chylomicron-free plasma at densities less 

than 1.006 g/ml; and their particles vary in diameter between 300 and 800 Ǻ. They are 

composed of 55-65% triglyceride, 10-15% free and esterified cholesterol, 15-20% 

phospholipid, and 5-10% protein. Triglycerides carried in VLDL are transported in 

plasma to utilization sites such as heart, muscle, mammary gland and storage sites such as 

adipocytes. Following lipoprotein lipase action, the triglyceride-depleted particles are 

released into the bloodstream, and are then the primary source of circulating LDL 

cholesterol. As VLDLs undergo de-lipidation, the particles change their composition, 

structure, and biological properties. As VLDL become smaller and denser, percent 

contribution from the proteins, phospholipids, and cholesterol increases the proportion of 

triglyceride decreases. Thus, the heterogeneity of VLDL represents a dynamic 

equilibrium of particles from several sources (37; 38). 
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After VLDLs (and possibly chylomicrons) have interacted with lipoprotein lipase 

at multiple sites, particles of density greater than 1.006 g/ml are formed. These remnant 

particles are operationally defined as IDL and has a density range of 1.006-1.019 g/ml 

and a diameter of about 250 Ǻ. Triglycerides contribute only 20% of the mass of IDL and  

it is still regarded as triglyceride-rich and may be further reduced to LDL and even HDL 

(37). 

Some of the circulating VLDL remnants are removed directly by the liver in a 

process mediated by Apo E. The surface of liver cells contains receptors that recognize 

and bind to the Apo E; the remnant lipoprotein is then internalized and removed from the 

circulation (39). However, another fraction of VLDL-remnants remains in the circulation 

and this is the fraction that is converted to LDL. Usually, about two-thirds of IDL is taken 

up by the liver, and one-third goes to LDL. Thus, the proportion of VLDL fraction 

converted to IDL and then to LDL greatly influences the concentrations of serum LDL 

(35).  

 

Low density lipoprotein (LDL) 

Low density lipoprotein, a spherical particle, contains mostly cholesteryl ester in 

its nonpolar core; its surface apolipoprotein consists almost exclusively of one Apo B-

100 molecule.  Low density lipoproteins are the end product of a chain of de-lipidation 

steps of VLDL and chylomicron particles involving lipoprotein lipase, hepatic lipase, and 

lecithin:cholesterol acyltransferase (LCAT). Studies suggest that direct hepatic secretion 

of LDL is a normal process,  its magnitude varies from species to species and may be 

markedly heightened in disease states, as in familial hypercholesterolemia (31; 35; 40). 
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Low density lipoproteins normally transport 60 to 75% of the total plasma 

cholesterol. They are isolated from chylomicron-free plasma in the density range 1.019-

1.063 g/ml and have a diameter of about 220 Ǻ. They are composed of about 50% free 

and esterified cholesterol, 20% phospholipid, 20% protein, and 10% triglyceride (31). 

The small size and high cholesterol content of LDL-cholesterol may be the reason for its 

high atherogenic property. Apolipoprotein-B serves as a marker for LDL-cholesterol 

turnover as it is the only protein found on the surface of LDL. 

Serum LDL concentration is affected by the fractional removal rate of LDL-

cholesterol from the circulation, and this rate is determined in large part by the 

availability of cell-surface receptors for LDL-cholesterol (41). In normal cells, the LDL is 

internalized via endocytosis. The endocytotic vesicle containing LDL then fuses with a 

primary lysosome, where the protein moiety is degraded completely to amino acids and 

the cholesteryl esters are hydrolyzed by cholesterol esterase. Re-esterification of excess 

cholesterol for storage is catalyzed by acyl CoA:cholesterol acyltransferase (ACAT). 

Endogenous cholesterol synthesis within the cells is suppressed by HMGR when 

exogenous cholesterol is delivered via LDL to the tissues. The need for cellular 

cholesterol for membrane and steroid hormone synthesis regulates the number of LDL 

membrane receptors (35; 38). 

 

High density lipoprotein (HDL) 

High density lipoproteins are isolated in the density range 1.063-1.21 g/ml and are 

the smallest of the lipoproteins, with a diameter of 70-120 Ǻ (42; 43)They normally 

account for 20-25% of total plasma cholesterol and are composed of about 50% protein, 
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25% phospholipid, 20% free and esterified cholesterol, and 5% triglyceride. The greater 

density of HDL compared with other lipoproteins reflects its greater protein and lesser 

lipid content. Their cholesteryl ester to free cholesterol ratio is approximately 3:1 (43). 

HDLs have been divided into two classes:  HDL2 (density range 1.063-1.125 g/ml) is 

composed of about 60% lipid and 40% protein and HDL3 (density range 1.125-1.21 g/ml) 

contains about 55% proteins (43).  

The liver is the primary site for HDL biosynthesis and secretion while the 

intestine is considered secondary site of secretion. Nascent HDL (HDL precursor 

complexes) formed in vivo may be transformed in the plasma to mature spherical 

particles. The nascent HDL particles are converted to mature spherical circulating HDL 

through the action of plasma Lecithin cholesterol acyltransferase (LCAT). This enzyme is 

responsible for removing phospholipids from HDL and replacing them with cholesteryl 

esters, as well as facilitating the loss of Apo E from nascent HDL. The end result of these 

processes appears to be the net movement of cholesterol from peripheral tissues to 

hepatic tissue for removal and breakdown (31; 42).   

LCAT is an extra cellular enzyme that is synthesized and secreted by the liver, 

circulates in the plasma, and acts on plasma HDL. This enzyme also promotes non-

enzymatic transfer of cholesteryl esters from HDL to VLDL and LDL. The cholesteryl 

esters formed by the LCAT reaction are distributed among HDL, VLDL, and LDL, which 

increases their total cholesterol content. This process may serve to increase the rate of 

cholesterol removal by a receptor-mediated process, and may in addition provide a 

mechanism for directing cholesterol transport toward specific tissues. Patients with 
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familial LCAT deficiency show an accumulation of plasma unesterified cholesterol, with 

all lipoproteins having an abnormal lipid and apolipoprotein composition.  

 

Removal of cholesterol 

The liver and intestine are the only organs with the capacity to effectively 

remove cholesterol from the circulation. The transfer of HDL cholesteryl esters to the 

liver for elimination could theoretically be achieved by:  1) the uptake and catabolism of 

whole HDL particles; 2) selective removal of cholesteryl esters from mature HDL, with 

its subsequent recycling; and/or 3) initial transfer of cholesteryl ester to lower density 

lipoprotiens, with subsequent hepatic removal (44).  The transfer of cholesteryl esters 

from HDL to LDL is facilitated by the cholesteryl ester transfer protein. The increased 

net transfer of cholesteryl esters by the cholesteryl ester transfer protein results in 

decreased HDL concentration (44).  

 Cholesterol is excreted in the bile as free cholesterol or as bile salts. Most of 

the cholesterol in the liver is converted to bile salts and excreted via bile duct. The end 

products of cholesterol utilization are the bile acids which are synthesized in the liver. 

Synthesis of bile salts is one of the predominant mechanisms for the excretion of excess 

cholesterol. Bile salts are synthesized from cholesterol by the liver with the help of 

enzyme 7α-hydroxylase which hydroxylates cholesterol to 7-hydroxycholesterol (45). 

This substrate undergoes several transformations to form bile salts, cholyl Co-A and 

chenodeoxycholyl Co-A. The most abundant bile acids in human bile are 

chenodeoxycholic acid (45%) and cholic acid (31%). These are referred to as the primary 

bile acids. Within the intestines, the primary bile acids are acted upon by bacteria and 
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converted to the secondary bile acids, deoxycholate (from cholate) and lithocholate (from 

chenodeoxycholate). Both primary and secondary bile acids are reabsorbed by the 

intestines and delivered back to the liver via the portal circulation. Within the liver, the 

carboxyl group of primary and secondary bile acids is conjugated via an amide bond to 

either glycine or taurine before being resecreted into the bile canaliculi. These 

conjugation reactions yield glycoconjugates and tauroconjugates, respectively (45). Bile 

acids are carried from the liver to the gallbladder where they are stored for future use. 

The ultimate fate of bile acids is secretion into the intestine, where they aid in the 

emulsification of dietary lipids. In the gut the glycine and taurine residues are removed 

and the bile acids are either excreted (only a small percentage) or reabsorbed by the gut 

and returned to the liver. This process of secretion from the liver to the gallbladder, to the 

intestines and finally reabsorbtion is termed the enterohepatic circulation.  

Bile acids have physiologically significant functions such as 1) their synthesis and 

excretion in the feces is the significant mechanism for the elimination of excess 

cholesterol, 2) the bile acids deoxycholate and lithocholate and phospholipids solubilize 

cholesterol in the bile, thereby preventing the precipitation of cholesterol in the 

gallbladder, 3) bile acids facilitate digestion of triacylglycerols by acting as emulsifying 

agents which makes fats accessible to pancreatic lipases, and 4) also bile acids facilitate 

absorption of fat soluble vitamins due to their emulsifying property. 

 

HMG CoA reductase (HMGR) 

 HMGR is an enzyme involved in cholesterol biosynthesis. The reaction 

catalyzed by HMGR is the rate limiting step of cholesterol biosynthesis, and this enzyme 
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is subject to complex regulatory controls. Regulation of HMGR activity is the primary 

means for controlling the level of cholesterol biosynthesis.  The enzyme is controlled by 

four distinct mechanisms: feed-back inhibition, control of gene expression, rate of 

enzyme degradation and phosphorylation- dephosphorylation. The first three control 

mechanisms are exerted by cholesterol itself. Cholesterol acts as a feed-back inhibitor of 

pre-existing HMGR as well as inducing rapid degradation of the enzyme. The latter is the 

result of cholesterol-induced polyubiquitination of HMGR and its degradation in the 

proteosome. Regulation of HMGR through covalent modification occurs as a result of 

phosphorylation and dephosphorylation. The enzyme is most active in its unmodified 

form. Phosphorylation of the enzyme decreases its activity. Hormones such as glucagon 

and epinephrine negatively affect cholesterol biosynthesis by increasing the activity of 

the inhibitor of phosphoprotein phosphatase inhibitor-1. Conversely, insulin stimulates 

the removal of phosphates and, thereby, activates HMGR activity. Additional regulation 

of HMGR occurs through an inhibition of its activity as well as of its synthesis by 

elevation in intracellular cholesterol levels. 

 

7-α hydroxylase 

 Microsomal cytochrome P-450 cholesterol 7-α hydroxylase (7-α hydroxylase) 

is an enzyme involved in bile acid synthesis from cholesterol. The rate-limiting step in 

bile acid biosynthesis is catalyzed by 7-α hydroxylase. The expression of this enzyme is 

subject to feedback regulation by sterols. Bile acids play two opposing roles in the 

maintenance of cholesterol homeostasis. In one role, they are the end products of 

cholesterol catabolism, and their biosynthesis and excretion serve to decrease the levels 
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of cholesterol in the liver. In the second role, their presence in the intestine facilitates the 

solubilization of dietary fats and cholesterol and the subsequent uptake of these essential 

nutrients. In this manner, bile acids increase whole body cholesterol levels (46). 

 

 Scavenger receptor B 1 (SRB1) 

 HDL can pick up the cholesterol deposited on arteries by LDL and deliver it 

to the liver for disposal in bile (42). More cholesterol can be disposed when HDL levels 

are high. One of the ways in which HDL acts is through the action of Scavenger Receptor 

B1. SRB1 is an HDL receptor in the liver and plays an important role in the metabolism 

of cholesterol by mediating cholesterol uptake in the liver in a process known as reverse 

cholesterol transport. 

 SRB-I may facilitate both uptake and efflux of cholesterol down the 

cholesterol-concentration gradient over the plasma membrane, in the hepatocytes, 

cholesterol is used for VLDL-synthesis, converted to bile acids, or secreted directly into 

the bile. Hepatic SRB-I is negatively regulated by 17 β-estradiol (47); (48), vitamin E 

(49), and cholesterol. Polyunsaturated fatty acids increases hepatic SRB-I levels in 

hamster, whereas the saturated fatty acid myristic acid suppresses hepatic SRB-I 

expression (50); (51).  

 

Hepatic LDL receptor  

 LDL and HDL are serum cholesterol transporting molecules. When cells 

require cholesterol, cells increase cholesterol synthesis and often up-regulate LDL 

receptors to obtain lipoprotein cholesterol. LDL receptor facilitates cellular uptake of 
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cholesterol rich low density lipoprotein. LDL receptor is involved in endocytosis of LDL 

and other lipoproteins. It is also engaged in the release of free cholesterol into the liver. 

LDL receptor functions by mechanisms such as incorporation into plasma membrane, 

inhibition of new LDL receptors and inhibition of cholesterol synthesis. 

 The concentrations of these lipoprotein particles are influenced by nutritional 

and hormonal stimuli. For example, dietary cholesterol and saturated fat can separately 

and together elevate LDL-cholesterol in humans, and alteration of hepatic LDL receptor 

activities is one way that dietary lipids can change plasma LDL concentrations. Dietary 

cholesterol decreases hepatic LDL-receptor protein and activity by transcriptional 

mechanisms in vivo. 

 Despite of all these complex regulatory processes to control cholesterol levels, 

hypercholesterolemia is a major determinant of CVD risks and is very frequently seen in 

both men and women especially postmenopausal women. The reasons for elevated 

cholesterol levels could vary greatly among individuals depending on diet, lifestyle, 

smoking, disease condition, genetics, and other factors.  

 

Hormone Replacement Therapy (HRT) 

 Postmenopausal women often experience hypercholesterolemia due to ovarian 

hormone deficiency putting them at increased risk for CVD. Hormone replacement 

therapy is being used to reduce the increased risk of CVD. A number of studies have 

confirmed that women who use HRT are more likely to have healthier lifestyle and health 

behaviors that may reduce their susceptibility to some diseases.  
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 Hormone replacement therapy (HRT) or estrogen replacement therapy (ERT) 

may prevent cardiovascular disease in postmenopausal women by reducing serum 

cholesterol. Estrogen therapy has been shown to improve lipid profiles, bone quality due 

to action of estrogen receptor-linked calcium transport in the intestine (52), blood 

pressure through direct action on vascular endothelium and also slowing the buildup of 

atherosclerotic plaque (53).  

Nanda et al. (53) reported that estrogen reduces serum LDL-C levels and increase 

serum HDL-C levels. Estrogen replacement therapy have also been shown to increase 

triglyceride levels through increase in VLDL particles (54); (55). VLDL particles are 

known to be atherogenic but those produced due to use of exogenous estrogen are low in 

cholesterol concentration and are believed to be less likely to enter the arterial walls 

because of their buoyancy (55). Estrogen also increases all major cholesterol transport 

pathways and up-regulate LDL receptors thus allowing for more LDL uptake by the liver 

for production of steroids or bile salts. Estrogen also increases Apo-A and HDL-C levels 

possibly due to decrease in hepatic lipase activity. Though ERT was shown to have 

promising results in alleviating postmenopausal symptoms, the results from recent follow 

up studies have been surprising and all together unexpected. The Women’s Health 

Initiative (WHI) study started in 1993 had two components, the estrogen only treatment 

arms (0.625 mg/day of conjugated equine estrogen) which enrolled 10,739 

postmenopausal women, aged 50-79 years, with prior hysterectomy, and the estrogen 

plus progestin component (0.625 mg/day conjugated equine estrogens plus 2.5 mg/day 

medroxyprogesterone acetate) in which 16,608 postmenopausal women aged 50-79 years 

with an intact uterus at baseline were recruited by 40 US clinical centers in 1993-1998. 
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Both treatments were stopped in 2002 after only a 5-6 yr follow-up as neither of the 

treatments reduced the incidence of CVD in postmenopausal women but were increasing 

the risk of stroke in the estrogen only group and invasive breast cancer in the estrogen 

plus progestin group (5); (6). 

The Heart and Estrogen/Progestin replacement (HERS) therapy which gave the 

same dose of hormones as WHI study to 2763 postmenopausal women with CHD and 

followed them for 4 yrs found no advantage of the therapy for these women. The HERS 

trial found that taking estrogen plus progestin for up to 4 years did not prevent further 

heart attacks or death from previous heart disease in postmenopausal women who already 

had a previous heart attack or known heart disease.  

Less than 30% of postmenopausal women in the United States receive HRT and 

of these women most discontinue use after one year (56). Most women stop taking HRT 

after severe symptoms of menopause such as hot flashes are relieved and some stop due 

to financial reasons. The main reasons for stopping estrogen therapies by most women is 

due to side-effects such as irregular and break out bleedings, and the increased incidence 

of cancers and thrombosis. Hormone replacement therapy is now recommended only for 

women who have osteoporosis and severe menopausal symptoms such as hot flushes and 

mood swings (56). Postmenopausal women all over the world are searching for alterative 

treatments to reduce the risk of CHD without the increased risk and side effects. Dietary 

modifications are an important option to reduce lipid profile without the associated side 

effects.  
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Dietary Modifications Beneficial in Improving Lipid Profile 

 The increased awareness of the role that diet plays in human health has led to 

the recognition of the importance of food components in preventing chronic diseases. The 

rates of death due to heart disease, cancers especially colon cancers, have been shown to 

be reduced due to incorporation of fiber in the diet (57). The American Heart Association 

endorses Step I and Step II diets created by the National Heart, Lung, and Blood 

Association’s National Cholesterol Education Program (NCEP) to reduce risk of CVD by 

reducing high blood cholesterol levels. 

The Step I diet restricts total fat to no more than 30 percent of total calories, 

saturated fat to no more than 10 percent of total calories, and cholesterol to less than 300 

mg/day.  This diet is intended as the starting point for patients who have high cholesterol 

levels. The Step II diet goals are lower for saturated fat (less than 7 percent) and 

cholesterol (less than 200 mg/day).  They are intended for people who had attained Step I 

diet goals and still has a high cholesterol level ( ≥240 mg/dL) or who had a heart attack 

(57). 

For people at high risk or who have known CVD the Therapeutic Lifestyle 

Changes (TLC) diet is preferred.  This is the “next generation” of the Step II diet 

recommended in May 2001. The dietary goals for TLC similar to Step II diet but it 

provides therapeutic options for LDL-lowering such as intake of plant sterols at least 2 

g/day and increased intake of soluble fiber to at least 10-25 g/day. Along with the caloric 

restriction it also includes moderate exercise to expend at least 200 kcal/day (57). All 

these dietary recommendations emphasize the importance of diet in reducing or 

preventing CVD. 
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Fiber 

Dietary fiber refers to the fraction of the edible part of plants or their extracts, or 

synthetic analogues that (i) are resistant to digestion and absorption in the small intestine, 

usually with complete or partial fermentation in the large intestine; and (ii) promote one 

or more of the following beneficial physiological effects, namely, laxation, reduction in 

blood cholesterol, and modulation of blood glucose. Person who consume foods high in 

dietary fiber (whole grain cereals, fruits and vegetables) have a lower prevalence of risk 

factors for CVD including hypertension, obesity, and type 2 diabetes mellitus (58; 59);  

(60). Recent large, prospective studies also show a direct inverse association between 

high fiber food intake and the development of coronary heart disease and stroke (61). 

While several etiologies have been considered, the biologic mechanisms whereby a high-

fiber diet exerts beneficial cardiovascular effects are not entirely known. 

 Fiber has been widely accepted to play a significant role in reducing total 

blood cholesterol particularly LDL (62); (11) thereby decreasing the risk of coronary 

heart disease. Studies done in both humans (9); (10); (11); (12) and animals (13);  (14); 

(15; 16) suggest that dietary fiber lowers cholesterol by enhancing bile acid synthesis and 

their fecal excretion which results in increased hepatic cholesterol synthesis. Also, gut 

bacteria ferment soluble fiber to form short chain fatty acids (SCFA) which are readily 

absorbed and at concentrations of 15-30 mmol/L inhibit in vivo hepatic cholesterol and 

fatty acid synthesis (16). 

Researchers (63); (9)  have reported moderate, but significant, reductions in 

plasma cholesterol when subjects consumed increased amounts of mixed vegetables and 

fruits for long periods of time. Perhaps the beneficial effects of soluble fiber can be seen 

http://www.healingdaily.com/conditions/heart-disease.htm


 24

most clearly when it is consumed as part of a balanced diet. A recent comprehensive 

meta-analysis suggests that 3 g soluble fiber from oats (three servings of oatmeal, 28 g 

each) can decrease total cholesterol and LDL by 5 mg/dL (64). A clinical study in 59 

subjects with elevated LDL (131–191 mg/ dL) already on a step I cholesterol-lowering 

diet (1) showed that daily intake of 20 g of fiber, predominantly as water-soluble guar 

gum and pectin, lowered LDL by 9% over 1 year of treatment (65); (66). These studies 

demonstrate the well-known effects of fiber consumption on lipids, particularly LDL.  

 A study by Jenkins and colleagues (67) compared the cholesterol-lowering 

potential of food with that of a statin. Thirty-four hyperlipidemic participants underwent 

three 1-month treatments in random order, a very-low-saturated fat diet, the same diet 

plus 20 mg lovastatin (statin diet), and a diet high in plant sterols (1.0 g/1000 kcal), soy-

protein foods (21.4 g/1000 kcal), almonds (14 g/1000 kcal), and viscous fibers from oats, 

barley, psyllium, and the vegetables okra and eggplant (10 g/1000 kcal). LDL-C 

concentrations decreased by 8.5%, 33.3%, and 29.6% after 4 wk of the control, statin, 

and vegetable diets, respectively. The statin and the vegetable diets did not differ 

significantly (P=0.288) in their ability to reduce LDL-C. Hence, the authors concluded 

that dietary combinations are similar in potency to statin drugs in improving the lipid 

profile (67).  

Thus increased fiber consumption also lowers the risk of developing heart disease 

and help fight obesity. High-fiber foods help reduce starving and move waste through the 

digestive tract faster and easier reducing the contact of harmful substances with the 

gastrointestinal tract. A diet adequate in fiber-containing foods is also usually rich in 

micronutrients and nonnutritive ingredients that have additional health benefits. Dietary 

http://en.wikipedia.org/wiki/Obesity
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intervention programs are necessary to educate people about dietary modifications to 

reduce the risk of CVD and other nutrition-related disorders.  

 

Omega-3 fatty acids and omega-6 fatty acids 

Omega 6-polyunsaturated fatty acids and omega 3-polyunsaturated fatty acids 

(PUFA) are necessary for proper growth and development and are therefore of nutritional 

importance. Omega-3 fatty acids are long-chain polyunsaturated fatty acids (18-22 

carbon atoms in length) with the first of many double bonds beginning with the third 

carbon atom from the methyl end of the fatty acid molecule. The fish-based and fish-oil-

based omega-3 polyunsaturated fatty acids (also referred to as n-3 PUFA) consist of 

eicosapentanoic acid (EPA) (20 carbon atoms, 5 double bonds) and docosahexanoic acid 

(DHA) (22 carbon atoms, 6 double bonds). Whereas plant foods and vegetable oils lack 

EPA and DHA, some do contain varying amounts of the n-3 PUFA alpha-linolenic acid 

(ALA), which has 18 carbon atoms and 3 double bonds. Many vegetable oils are greatly 

enriched in omega-6 fatty acids (mainly as linoleic acid in corn, safflower, sunflower and 

soybean oils), but canola oil (nonhydrogenated), ground flaxseed and walnuts are rich 

sources of ALA. The typical North American diet consists of very high intake of n-6 

PUFA, mostly as linoleic acid (LA) (12-15 g/day) and 1-3 g of ALA per day but only 

0.10-0.15 g of EPA plus DHA per day.  

 Greenland Eskimos have a low mortality rate from CHD (68); (69); (70) 

despite a high intake of fat (about 40% of their total caloric intake). This so-called 

‘Eskimos paradox’ led to a series of epidemiological studies in the late 1970s by Danish 

investigators Bang and Dyerberg, which suggested a close correlation between the 
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observed low incidence of CHD amongst the Inuit and their high consumption of fish and 

fish-eating mammals (including seal, walrus, whale), resulting in a diet rich in the long 

chain n-3 PUFAs (71); (72). These PUFAs include EPA and DHA which are scarce or 

absent in land animals and plants. The Greenland Inuits’ intake of saturated fat was low 

(9% of total calories), whereas their dietary intake of n-3 PUFAs was high (4.2% of total 

calories). These observations are in marked contrast to the much higher rates of CVD 

among Danish, whose diet had a comparable amount of total fat (42% of total calories) 

but a much lower intake of n-3 PUFAs (< 1% of total calories) and a much higher intake 

of saturated fat (approximately 22% of total calories) (71); (72). Since then, several cross-

cultural epidemiological studies among the coastal population of Japan and Alaskan 

Natives have produced broadly similar data, showing an inverse relationship between n-3 

PUFAs from fish intake and CHD death rates, thus suggesting a potential role of marine 

n-3 PUFAs in the prevention of CHD (72);  (73); (74). 

This increased interest has resulted in a large number of epidemiological, animal 

and clinical studies investigating the potential role of the intake of fish, fish oils or the 

specific n-3 fatty acids EPA and DHA in prevention and therapy. The combined results 

from these studies suggest that n-3 fatty acids may be a beneficial factor in the 

development of CVD some forms of cancer and diseases with an immunoinflammatory 

component. Today, there is little doubt that n-3 fatty acids are important and play a role 

in the modulation and prevention of human diseases, in particular CVD.   

Walnut, almonds, olives and flaxseed are also good plant sources of n-3 fatty 

acids (75). Good health requires a ratio of 2:1 for omega-3 to omega-6 fatty acid where as 

the average American diet has an average ratio of 1:20 to 1:50. Flaxseed has a ratio of 4:1 
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for omega-3 to omega-6 fatty acid and studies have shown this ratio to be ideal for 

cholesterol lowering and in turn reducing the risk factors for CVD (76). Since flaxseed is 

a rich source of n-3 fatty acids, it should increase the ratio between n-3 versus n-6 fatty 

acid intakes which would be considered a positive influence on maintaining CVD health. 

 

Flaxseed  

Flax (Lignum usitatissimum) is an economically important oilseed crop, 

especially for Canada, which produces about 40 % of the world’s flaxseed. Flaxseed 

consumption in various forms as a food ingredient and for its medicinal properties dates 

from 5000 BC since its cultivation. Flaxseed is the most prominent oilseed studied to date 

as a functional food, since it is a leading source of the omega-3 fatty acid ALA (52 % of 

total fatty acids) and the phenolic compounds known as lignans (>500 µg/g). It is also a 

very rich source of soluble fiber known as mucilage.  

Flaxseed is also a rich source of dietary fibers, which are known to reduce in 

diabetes, coronary heart disease risk, preventing colon and rectal cancer and reduce the 

incidence of obesity. Flaxseed gum behaves like typical viscous fibers with ability to 

reduce blood glucose response and improve blood glucose profile (18). 

Whole flaxseed consumed either raw or defatted reduces total and LDL 

cholesterol in humans, confirming the multicomponent cardioprotective effect of flaxseed 

(18); (19). Studies in women show the vital role of flaxseed in mediating bone health (11) 

and its strong phytoestrogenic and therapeutic effect in reducing the risk of hormone 

related cancers (77); (78); (79); (80).  
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The most researched biologic activities of flaxseed have been relegated to ALA, 

lignans, and soluble polysaccharides (gum) since flaxseed is the most abundant source of 

these components. A case in point is the reduced risk of cancer that has been attributed to 

the biological effects of both ALA and the lignan secoisolariciresinol diglycoside (SDG), 

and protection against cardiovascular disease attributable to ALA, flaxseed gum and 

proteins. Accurate documentation of the therapeutic effects of flaxseed and its 

components that contribute uniquely to disease prevention, health protection and as a 

deterrent to degenerative diseases will increase its potential for use as a functional food. 

It could be highly beneficial to postmenopausal women instead of undergoing HRT and 

having to face risks associated with it. Flaxseed can provide postmenopausal women with 

the source of phytoestrogens to combat menopausal symptoms at the same time reduce 

risks of CVD, cancer and a number of other diseases.  

 

Alpha linolenic acid  

A number of studies involving humans (11), rabbits (81) and hamsters (82); (17); 

(20) have shown the hypocholesterolemic effects of ALA from flaxseed. Lucas et al (20) 

have shown that flaxseed reduces plasma cholesterol and atherosclerotic plaque 

formation in ovariectomized Golden syrian hamsters (20). A number of studies confirm 

the hypocholesterolemic effects of flaxseed in various experimental models (17); (83); 

(84); (85); (86).  

ALA can be easily converted to cardioprotective n-3 fatty acids namely EPA and 

DHA in the body. Harper and colleagues (87) studied the effects of daily supplementation 

with 3 g of ALA on plasma concentration of long-chain (n-3) fatty acids in a 
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predominantly African-American population with chronic illness. They found that ALA 

increases the EPA concentration by 60% and DPA levels by 25%. Thus, flaxseed oil 

increases the plasma concentrations of cardioprotective (n-3) fatty acids in humans (87); 

(88). 

Another study assessed the effects of ALA and LA on inflammatory markers and 

lipids and lipoproteins in hypercholesterolemic subjects (89). Participants (n = 23) were 

fed 2 diets low in saturated fat and cholesterol, and high in PUFA varying in ALA (ALA 

Diet) and linoleic acid (LA Diet) compared to the average American diet (AAD). The 

two high-PUFA diets decreased serum total cholesterol, LDL cholesterol and 

triglycerides similarly (P < 0.05); the ALA Diet decreased HDL cholesterol and 

apolipoprotein AI compared with the AAD (P < 0.05). ALA reduced the inflammatory 

markers vascular cell adhesion molecule-1 (VCAM-1), E- selectin and C-reactive protein 

(CRP) significantly. ALA appears to decrease CVD risk by inhibiting vascular 

inflammation and endothelial activation beyond its lipid-lowering effects (89) which 

confirms its role as an anti inflammatory agent.  

 

Lignans 

Phytoestrogens are naturally occurring plant compounds which have estrogenic and/or 

anti-estrogenic activity. They are heterocyclic phenols with structural similarities to 

estrogenic steroids and are constituents of many foods including beans, sprouts, cabbage, 

spinach, soyabeans, grains and hops. There are three main groups of phytoestrogens, the 

isoflavones, coumestans and lignans. Phytoestrogens share several features in common 

with estradiol, including a pair of hydroxyl groups separated by a similar distance and the 
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presence of a phenolic ring which is a prerequisite for binding to the estrogen receptor. 

Based on structure considerations alone, it is not surprising that these compounds bind to 

estrogen receptors (ER); however, their apparent action as both partial estrogen agonists 

and antagonists makes it hard to predict how interaction of phytoestrogens with ER will 

modify the activity of endogenous estrogens.  

Lignans are naturally occurring plant components that are structurally similar to 

the mammalian estrogen and exhibit estrogenicity. Enterodiol (Figure 2) and 

enterolactone are formed in the gastrointestinal tract from the plant lignan precursors 

namely matairesinol and seco-isolariciresinol. Few studies have been initiated to 

thoroughly address factors affecting the absorption, metabolism and excretion of these 

compounds. Evidence from an in vitro fermentation model suggests that, in a way similar 

to the isoflavones, the conversion of lignan precursors to their metabolites is enhanced in 

the presence of high-carbohydrate substrate (90); (91). This suggests that a high-fiber diet 

may well speed up the conversion of the lignan precursors to the metabolites enterodiol 

and enterolactone. 

Flaxseed is by far the richest dietary source of plant lignans (92). Lignans are not 

associated with the oil fraction so flaxseed oils do not typically provide lignans. A variety 

of factors may affect the lignan contents of plants, including geographic location, climate, 

maturity, and storage conditions (92). The main lignan in flaxseed is secoisolariciresinol 

diglycoside (SDG) (Figure 2). When flaxseed is eaten, SDG is converted by bacteria in 

the colon to mammalian lignans: enterolactone and enterodiol. The amount of 

enterolactone and enterodiol found in the blood and urine of humans and animals is 

related to the amount of plant lignans eaten (92).  
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Lignans have both estrogenic and anti estrogenic effects depending on the doses. 

Supplementation with flaxseed alters estrogen metabolism in postmenopausal women to a 

greater extent than does supplementation with an equal amount of soy (93). A number of 

studies support the anti carcinogenic and antioxidant effects of flaxseed lignan i.e. SDG 

or enterodiol and enterolactone (94); (92); (95); (96). 

Prasad et al (7) have shown that flax lignan complex is able to reduce the 

atherosclerosis plaque formation by 40% , LDL by 14 % and increase HDL by 30 % in 

hypocholesterolemic rabbits. Lignan complex isolated from flaxseed may, therefore, be 

beneficial in preventing hypercholesterolemic, atherosclerosis and reducing risk factors 

for coronary artery disease. It has also been shown to reduce oxidative stress, delay the 

development of type 2 diabetes in rats and possess potent antioxidant activity, (97);  (8). 

Lignans have also been shown to  inhibit established human breast cancer growth and 

metastasis in a nude mice model (98). Hence, along with its cardiovascular benefits 

lignans also show anticancer and antioxidant properties which make them component of 

the diet.  

 

 

 

 

 

 

 

 



Secoisolariciresinol diglycoside (SDG)   

 

 

                    Enterolactone                                                                         Enterodiol          

Figure 2. Structure of enterolactone, entrodiol, and Secoisolariciresinol diglycoside 

 

In a prospective cohort study of 1,889 Finnish men followed for an average of 12 

years, those with the highest serum enterolactone levels (a marker of plant lignan intake) 

were significantly less likely to die from coronary heart disease or cardiovascular disease 

than those with the lowest levels  (99).  Flaxseed lignans thus have a number of health 
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benefits including antioxidant, anticarcinogenic, hypocholesterolemic and 

antiinflammatory properties (94); (92);  (95); (96); (89).   

 

Hamsters as a suitable model for postmenopausal hypercholesterolemia 

A suitable and economical animal model of ovarian hormone deficiency can 

greatly enhance the understanding of postmenopausal-elevated risk of coronary heart 

disease. The male golden Syrian hamster is a small animal model that is frequently used 

for studying cholesterol metabolism and atherogenesis (100);  (101); (102). The rate of 

cholesterol synthesis in male golden Syrian hamsters can be easily altered in response to 

changes in cholesterol intake  (103). Low doses of dietary cholesterol inhibit synthesis of 

cholesterol in the hamster, allowing a considerable influx and efflux of cholesterol and 

bile acids independently from cholesterol synthesis (103). The hamster liver reacts more 

sensitively than that of the rat in response to a negative sterol balance, with an increase in 

LDL receptor activity and a less robust alteration in hydroxymethylglutaryl coenzyme A 

(HMG-CoA) reductase activity. Overall, the plasma lipoprotein profile, bile acid pool 

composition, and metabolic responses to dietary changes make the hamster more 

comparable to humans than other frequently used animal models such as the rat or rabbit 

(103).  

However, diet-induced hypercholesterolemia does not model the postmenopausal-

associated rise in cholesterol in humans. Arjmandi et al (103) used twenty-two 90-day-

old female Golden Syrian hamsters and divided them into two groups. The hamsters were 

either ovariectomized or sham-operated and given free access to a standard cholesterol-

free laboratory diet for 65 days. Ovariectomized hamsters had significantly (P < 0.05) 
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elevated serum total cholesterol concentrations (16.6%) as well as abdominal fat mass 

(56%; P< 0.01) despite equal food intake compared with the sham-operated group. The 

observed increase in serum total cholesterol concentrations of ovariectomized hamsters 

resembles those reported in postmenopausal women (104). These findings, coupled with 

the known similarities in lipid metabolism between humans and hamsters qualifies the 

hamster as a model for studying cholesterol metabolism in ovarian hormone deficiency. 

Ovariectomized hamsters undergo changes in serum cholesterol and fat distribution 

similar to those experienced by postmenopausal women, and thus may serve as an 

appropriate model for postmenopausal hypercholesterolemia.  

 

 

 

 

 

 

 

 

 



CHAPTER III 

MATERIAL AND METHODS 

 

Animals and treatment groups 

 Forty eight, 6 month old female Golden Syrian hamsters (Harlan Sprague-

Dawley, Indianapolis, IN, USA) were housed three per cage and kept in an 

environmentally controlled laboratory. Hamsters were acclimatized for three days and 

were given a semi-purified casein based and cholesterol free powdered diet. Guidelines 

for the ethical care and treatment of animals from the Animal Care and Use Committee at 

Oklahoma State University were strictly followed. After acclimation, hamsters 

(n=12/group) were either ovariectomized (OVX; three groups) or sham- operated (sham; 

one group). After surgery, hamsters were given one of three dietary treatments for 90 

days: control diet (SHAM and one OVX group), diet supplemented with 15% of whole 

flaxseed (OVX + WF); or diet supplemented with flaxseed oil (OVX + FO). 

Experimental groups are shown in Table 1. Hamsters were pair fed to the mean food 

intake of the SHAM operated group and had free access to deionized water. Food intake 

and body weights were monitored routinely and a twelve hour light: twelve hour dark 

cycle was followed.  
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Composition of experimental diets 

 Compositions of the various dietary treatments are shown in Table 2. Diets had 

similar carbohydrate, fiber, protein, and fat content and were a modification of the 

formulation by Terpstra et al. (105). The flaxseed oil group (OVX + FO) had equivalent 

amount of flaxseed oil to that of 15 % WF. This will determine the contribution of 

flaxseed oil to the hypocholesterolemic effect of whole flaxseed.  

 

Animal necropsy and processing of tissue samples 

 After 90 days of dietary treatment, hamsters were anesthetized with a mixture of 

ketamine hydrochloride (100 mg/kg body weight) and xylazine (5 mg/kg body weight) 

and bled from the abdominal aorta.  The collected blood samples and serum were 

separated by centrifugation at 1500 x g for 20 min at 4 ◦C. Aliquots of serum were frozen 

and kept at −80 ◦C for later analyses. The liver was immediately removed, rinsed with 

ice-cold saline. The total weight of the liver was recorded. The liver was kept in a sealed 

container and stored at −80 ◦C until analyzed. Small intestine was flushed of its contents 

using saline, blotted and weighed. Uterus was removed and weighed to confirm the 

success of ovariectomy. Spleen was weighed and discarded.  

 

Serum and liver lipid parameters 

 Serum triglycerides (TG) and total- and HDL-cholesterol concentrations were 

determined enzymatically using commercially available kits from Alfa Wassermann Inc. 

(West Caldwell, NJ). These tests were performed using the Alfa Wassermann Clinical 

Analyzer (West Cadwell, NJ) following the manufacturer’s instructions. The clinical 
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analyzer was calibrated using Gemcal reference serum (Alfa Wassermann, Inc; West 

Caldwell, NJ) before each test. Alfa Wassermann quality control (QC-1 and QC-2) were 

used as control in all tests. Non-HDL cholesterol concentrations were calculated by 

subtracting HDL-cholesterol from the total cholesterol.  

The reagent for measuring total cholesterol concentrations contains cholesterol 

esterase, which releases cholesterol from its esters. This released cholesterol and 

endogenous free cholesterol are both oxidized by cholesterol esterase to produce 

hydrogen peroxide which forms a red colored quinoneimine complex when combined 

with 4-aminoantipyrine (AAP) and p-hydroxybenzoic acid. The intensity of the red 

complex was measured photometrically at 505nm and is directly proportional to 

cholesterol concentration.  

The triglyceride reagent works similarly to the cholesterol assay. The triglycerides 

are converted to produce H2O2 through a series of enzymatic reactions. Hydrogen 

peroxide produced reacts with p-chlorophenol and AAP in a reaction catalyzed by 

peroxidase to produce a red colored quinoneimine complex which absorbs strongly at 505 

nm and is directly proportional to the triglyceride concentration.  

 The HDL-C assay uses a unique detergent which solubilizes only the HDL 

lipoprotein particles, thus releasing HDL cholesterol to react with cholesterol esterase and 

cholesterol oxidase, in the presence of a chromogen to produce color. The detergent also 

inhibits the reaction of the cholesterol enzymes with LDL, VLDL and chylomicron 

lipoproteins by adsorbing to their surfaces. The amount of chromogen formed, 

determined by measuring the increase in absorbance bichromatically at 592/692nm, is 

directly proportional to the HDL cholesterol concentration.  
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 Total liver lipids were determined using the Folch gravimetric method (106). 

Approximately 2 g liver sample was homogenized with 25 ml chloroform: methanol (2:1) 

mixture, mixed thoroughly and the solution was filtered into 50 ml centrifuge tube. 

Sodium chloride solution (0.73 %) was added to the chloroform: methanol mixture and 

shaken well. After the two phases are distinctly separated, the top aqueous layer was 

completely aspirated. The organic layer was transferred to 25 ml volumetric flask and 

made upto the mark with chloroform. An aliquot of the organic layer was used for 

cholesterol analysis and remainder of the solution was poured into a pre-dried and pre-

weighed aluminium pan. The solvent was evaporated off under fume hood overnight then 

dried in an oven at 100 0C for 1 hour. The aluminium pan was cooled in a dessicator for 

30 minutes and weighed. The amount of liver lipid was expressed as mg lipid/ g liver.  

 Liver total cholesterol was determined using a color reagent of glacial acetic acid–

FeSO4–H2SO4 (107). The solvent of the aliquot of the liver extract was evaporated to 

dryness using nitrogen gas under fume hood and then 15 ml saponification solution (30% 

KOH and 6% pyrogallol in ethanol) was added to all tubes and heated in shaking water 

bath for 10 minutes at 88 °C. After cooling 5 ml of distilled water and 10 ml hexane were 

added and shaken vigorously. After the phases were separated, 5 ml of supernatant was 

evaporated to dryness in culture tube under nitrogen gas. Four hundred µl of acetone: 

ethanol (1:1), 6 ml saturated FeSO4.7H2O in glacial acetic acid, and 2 ml concentrated 

H2SO4 was added into each tube. The solution was vortexed and allowed to stand for 10 

minutes and absorbance was measured at 490 nm. The cholesterol concentrations were 

determined based on the standard curve.  
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Western blotting analyses 

 To get SRB1, HMGR, LDL receptor, and 7 α hydroxylase levels in liver, 

microsomes were prepared for western blot analysis. To prepare liver microsomes, liver 

was cut in small pieces with scissors in ice cold TEDK-S buffer and then homogenized in 

cold Teflon glass homogenizer. Homogenate was centrifuged at 10000 rpm for 10 

minutes and then the supernatant was ultracentrifuged at 38000 rpm for 60 minutes using 

a Beckman 50.2 Ti ultracentrifuge (Beckman Coulter, CA). The pellet containing 

microsomes were resuspended in 1.0 mL TEDK buffer and aliquots were stored at -80 ◦C.  

 Eighty micrograms of liver protein from microsomes was separated on an 8% 

SDS polyarcylamide gel using electrophoresis and transferred onto a PVDF membrane 

(Immobilon, Millipore) using semi-dry transfer. The immunoblot was blocked for one 

hour in a TBS solution containing 5% non-fat milk at room temperature. This was 

followed by over night incubation at room temperature with primary antibodies.  

  Antibodies for scavenger receptor B1 (Novus Biologicals, Littleton, CO), LDL 

receptor (Cortex Biochemi, Inc., Davis, CA, USA), 7-α hydroxylase (generously 

provided by Southwestern Medical Center, Dallas, TX), and HMG CoA reductase 

(Upstate Cell Signalling solutions, Lake Placid, NY) were diluted in TBS solution with  

5 % milk at a dilution of 1:2000, 1:5000, 1:1000 and 1:600, respectively.  

 Blots were washed with 10 ml TBS and TBS/Tween for 10 minutes three times 

and then incubated for another two hours at room temperature in a TBS solution 

containing 5% non-fat milk with secondary antibody anti-rabbit HRP conjugate (Upstate 

Cell Signalling Solutions, Lake Placid, NY) at a dilution of 1:2000. Membranes were 

washed with TBS and TBS/Tween as earlier and developed by adding 1 ml each of 
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chemilumenesent immunostar HRP peroxide buffer and enhancer (Bio-Rad, Hercules, 

CA) , shaked for 1 min and visualised using the Versadoc system (Bio-Rad,Hercules, 

CA).  

 

Statistical Analyses 

 Statistical analyses involved computation of least square means and standard error 

(SE) of the means for each of the treatment groups using SAS version 9.11 (SAS 

Institute, Cary, NC). Analysis of variance and least square means were calculated using 

the general linear model procedure and the means were compared using Fisher’s least 

significant difference for comparing groups. Differences were considered significant at P 

< 0.05.  
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CHAPTER IV 

RESULTS 

 

Food intake, body and tissue weights 

 There were no significant differences in initial body weight as hamsters were 

randomly assigned to the various treatment groups based on their initial body weights. 

After 90 days of treatment, body weights among the group were still similar. Hamsters 

from each group consumed approximately 7 grams of food per day. This food intake was 

similar among animals as they were pair fed to the mean food intake of the sham group. 

Ovariectomy caused atrophy of uterine tissue, indicating the success of the surgical 

procedure. There were no significant differences in liver and small intestine weights 

among any of the treatment groups (Table 3). 

 

Serum and liver lipid parameters 

 Figure 1 shows the effects of ovariectomy and diet on serum total cholesterol 

concentrations. As we have previously observed, ovariectomy significantly increased 

serum total cholesterol concentrations. Whole flaxseed brought down the OVX- induced 

increase in serum total cholesterol to the sham level. Flaxseed oil has an intermediate 

effect on serum total cholesterol concentration. Serum cholesterol was reduced by 

approximately 12 and 4 % by WF and FO, respectively.  

 41



 

The effects of ovariectomy and diet on other lipid parameters are shown in Table 

4. There were no significant differences in serum triglycerides and non-HDL cholesterol 

concentrations among the groups. Similar to total cholesterol, HDL cholesterol was 

increased due to ovariectomy. Similar to serum total cholesterol concentrations, HDL- 

cholesterol was increased (P=0.0212) due to ovariectomy. This increase in HDL 

concentration was neutralized by FO while WF had an intermediate effect. There were no 

significant differences in liver total lipids and cholesterol among the groups.  

 

Protein levels of some key enzymes involved in cholesterol metabolism 

              Protein levels of SRB1, a receptor associated with HDL cholesterol, were 

slightly (P=0.0591) reduced in ovariectomized hamsters compared to the sham-operated 

hamsters (Figure 4). Whole flaxseed caused a significant (P=0.0093) decrease in the 

SRB1 protein levels in comparison to the sham animals but flaxseed oil had an 

intermediate effect.    

              Ovariectomy caused an increase in the protein level of LDL receptor compared 

to sham. WF and FO maintained the OVX-induced increase in protein levels of LDL 

receptor (Figure 5).  

              Protein level of 7-α hydroxylase, an enzyme involved in synthesis of bile acids 

and HMGR, the rate limiting enzyme in cholesterol synthesis was not affected by 

ovariectomy. However, OVX hamsters fed either WF or FO had higher protein levels of 

both 7-α hydroxylase and HMGR compared to the sham and OVX animals fed the 

control diet (Figures 5 and 6). 
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CHAPTER V 

DISCUSSION 

 This study investigated whether flaxseed oil was as effective as whole flaxseed in 

lowering serum cholesterol in hamster model of postmenopausal hypercholesterolemia. 

Our findings show that whole flaxseed was more effective in reducing serum cholesterol 

levels than flaxseed oil. This may be due to the other components in whole flaxseed that 

may contribute to its cholesterol-lowering properties. Whole flaxseed contains other 

components aside from the oil content, which have been shown to have 

hypocholesterolemic effect, e.g. lignans (7); (8), and fiber (9); (10; 11); (12); (13); (14); 

(15; 16).   

 Flaxseed is one of the richest sources of alpha linolenic acids which have also 

been shown to reduce cholesterol in hamsters (17). Apart from ALA, flaxseed is one of 

the richest edible source of the lignan precursor’s, secoisolariceresinol diglycoside (SDG) 

and materesinol, which are converted to enterolactone and enterodiol, respectively. 

Evidence suggests that SDG isolated from flaxseed directly lowers serum cholesterol (7). 

Flax lignan complex isolated from flaxseed exerts hypocholesterolemic action in 

hypercholesterolemic rabbits (108). Fiber has been widely accepted as playing a 

significant role in reducing total blood cholesterol particularly LDL-cholesterol (62); 

(11). Studies done in both humans (9); (11); (12) and animals (13); (14); (15) suggest that 

dietary fiber lowers cholesterol by enhancing bile acid synthesis and their fecal excretion 

which results in increased hepatic cholesterol synthesis. 
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         Effects of whole flaxseed or its powder on lipid parameters in hypercholesterolemic 

and non-hypercholesterolemic patients have not been consistent although majority of the 

results indicate it can modestly reduce total cholesterol and LDL by 1.6% to 18%. 

Flaxseed reduces plasma total and HDL concentrations to levels similar to the sham 

groups and it increases the plasma triglyceride levels compared to those treated with 

control diet (20). Neither liver total lipid cholesterol nor total lipid levels are significantly 

affected by WF (20). FO has been shown to have inconsistent results with a few studies 

finding a modest reduction in TG with large doses, but most with no effects (11). In the 

present study, we observe that WF reduced the ovariectomy induced rises in total serum 

cholesterol similar to the sham levels while FO has intermediate effect. This indicates 

that alpha linolenic acid is not the only component involved in hypocholesterolemic 

properties of WF but other components such as lignans and soluble fiber mucilage may 

also contribute to its cholesterol lowering properties. Ovariectomy significantly increased 

HDL levels. WF brought HDL- concentration down although not to the sham levels and 

FO has no effect on HDL cholesterol. HDL is an important lipoprotein involved in 

picking up cholesterol deposited by the arteries and delivering it to the liver, thereby 

reducing the risk of atherosclerosis. Lower HDL levels may be due to the lower levels of 

total cholesterol in WF treated hamsters compared to sham operated. Levels of non HDL 

cholesterol and TG are unaffected by WF and FO although triglyceride levels in WF and 

FO tended to be higher than that of sham which is consistent with our earlier findings 

(20) . 

 In this study, we also investigated the effect of whole flaxseed and its oil on some 

key regulators of cholesterol metabolism: 7-alpha hydroxylase, HMG CoA reductase, 
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LDL receptor, and SRB1. In the present study, we observe that SRB1 protein levels 

tended (P=0.0591, P=0.2969) to reduce in ovariectomized hamsters fed control and FO 

diet. Whole flaxseed further reduced SRB1 protein levels. SRB1 helps in the uptake of 

cholesterol in the liver which can be removed through the formation of bile acids (50). 

Reduction of SRB1 levels may be one of the mechanisms by which OVX causes 

hypercholesterolemia. WF or FO does not increase the levels of SRB1 indicating that 

flaxseed doesn’t exert its hypocholesterolemic effect through modulation of SRB1.  

 The protein levels of LDL receptors were found to be significantly higher in 

ovariectomized hamsters and it was not affected by diet. Hepatic LDL receptors bind 

LDL and release cholesterol in the liver. Higher levels of LDL receptor levels in 

ovariectomized hamsters may be a response to the increased circulating levels of 

cholesterol, which may increase the uptake of cholesterol in the liver at least on the 

tansitory basis. LDL-receptor levels remained unaffected by the incorporation of flaxseed 

in the diet, indicating that this is not the mechanism by which the hypercholesterolemic 

action is exerted.   

 7-α hydroxylase levels were similar between the sham operated and ovariectomized 

hamsters fed the control diet. OVX hamsters fed WF or FO showed significantly higher 

7-α hydroxylase protein levels. 7-α hydroxylase is the key enzyme involved in bile acid 

synthesis (31; 35), thus it has a very important role in getting rid of excess cholesterol. In 

ovariectomized hamsters fed control diet, lower levels of 7-α hydroxylase may indicate 

less clearance through the liver which can lead to elevated circulating cholesterol levels. 

WF and FO showed significantly higher levels of 7-α hydroxylase than Sham and OVX 

groups. Significantly higher levels of 7-α hydroxylase in both WF and FO indicate that it 
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may be the major reason behind the cholesterol lowering effect of WF and FO. Up 

regulation of 7-α hydroxylase may be one of the key mechanism by which flaxseed and 

its oil can bring about reduction in serum cholesterol.  

 In the results, we observed that HMGR levels were significantly higher in WF and 

FO groups than in Sham and OVX group. HMGR is the rate controlling enzyme in 

cholesterol biosynthesis. It has been shown earlier (35) that HMGR levels are modulated 

by the cholesterol levels in the body in a negative manner. That explains the lower levels 

of HMGR in ovariectomized hamsters since they have significantly higher levels of 

cholesterol. In case of WF and FO they had lower levels of cholesterol; hence in order to 

meet the cholesterol demand HMGR was up regulated. This finding points towards the 

possibility that flaxseed per se has no effect on HMGR levels rather this enzyme levels 

are modulated based on the cholesterol levels in the body.  

 In summary, the findings after present study show that WF as a whole is more 

potent in reducing circulating levels of cholesterol than FO. The cholesterol lowering 

effect of whole flaxseed cannot be totally attributed to its oil content but there are other 

components that may be responsible such as lignans and fiber. Our findings indicate that 

the main pathway in cholesterol metabolism involved in cholesterol lowering property of 

flaxseed is by increasing the protein levels of 7-α hydroxylase which is involved in the 

conversion of cholesterol to bile.  
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Table 1 

Treatment groups and experimental diets 

 
 

 
 
 

 

Treatment Groups (n=12/group) Experimental Diets 

Sham Semi purified casein based and cholesterol 

free powdered diet (control) 

OVX Control 

OVX + WF Control supplemented with 15 % (w/w) 

whole flaxseed (WF) 

OVX + FO Control supplemented with flaxseed oil 

(FO) equivalent to the oil content provided 

by 15 % WF  

 
WF = Whole flaxseed  
FO = Flaxseed oil 
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Table 2 
 

Composition of experimental diets 
 

Ingredient 
 

Control 
Diet 

15% Whole 
Flaxseed (WF) 

g/kg diet 

Flaxseed Oil 
equivalent to 15% 

(WF) 
Carbohydrates (total) 395.6 395.6 395.6 
      Rice Floura 395.6 344.4 395.6 
      Flaxseedb 0.0 51.2 0.0 
 
Fiber (total) 144.4 144.4 144.4 
     Wheat branc 72.2 72.2 72.2 
     Cellulosed 72.2 59.3 72.2 
     Flaxseedb 0.0 12.9 0.0 
 
Protein (total) 240.6 240.6 240.6 
    Caseinc 240.6 205.6 240.6 
    Flaxseedb 0.0 35.1 0.0 
 
Fats (total) e 154.0 154.0 154.0 
    Hydrogenated coconut oild 96.3 96.3 96.3 
    Safflower oil d 19.3 2.3 2.3 
    Soybean oil d 38.5 4.6 4.6 
    Flaxseed b 0.0 50.8 50.8 
 
Choline chloride d 2.9 2.9 2.9 
Potassium bicarbonate g 19.3 19.3 19.3 
Vitamin mix h 9.6 9.6 9.6 
Mineral mixture i 33.7 33.7 33.7 
a  California Natural Products (Lathrop, CA, USA). 
b  Flaxseed is of the variety NORBI and from Agriculture and 
    Agri-Food Canada, Saskatoon, Sask., Canada. 
c  Natural Ovens of Manitowoc (Manitowoc, WI, USA). 
d  Harlan-Teklad (Madison, WI, USA). 
e  Of the total dietary fat, approximately 57.2% is saturated fat, 11.4% 
    is monounsaturated fat, and 26.8% is polyunsaturated fat for all dietary 
    treatments. 
f  Flaxseed oil from Barleans ( WA, USA) 
g  Sigma Chemicals (St. Louis, MO, USA). 
h Vitamin mixture, (TD #40060, Harlan Teklad, Madison, WI, USA, 

g/kg): p-aminobenzoic acid, 11.0132; ascorbic acid, coated (97.5%), 101.664; biotin, 0.0441;          folic 
acid, 0.1982; Vitamin B12 (0.1% in mannitol), 2.9736; calcium panthothenate, 6.6079; choline 
dihydrogen citrate, 349.6916; inositol, 11.0132; menadione, 4.9559; niacin, 9.9119; pyridoxine HCl, 
2.2026; riboflavin, 2.2026; thiamine HCl, 2.2026; dry Vitamin A palmitate (500,000 U/g), 3.9648; dry 
Vitamin D3 (500,000 U/g), 0.4405; dry Vitamin E acetate (500 U/g), 24.2291; corn starch, 466.6878. 

i  Mineral mixture (TD #170911, Harlan Teklad, Madison, WI, USA, 
g/kg): Ca, 6.232; P, 3.993; K, 3.829; Na, 2.109; Cl, 3.472; S, 0.644; Mg, 0.465; I, 0.0006; Fe,   0.0252; 
Cu, 0.0052, Mn, 0.0501; Zn, 0.0118. 
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Table 3 

Effects of ovariectomy (OVX), whole flaxseed (WF), and flaxseed oil (FO) on food 

intake, body and tissue weights 

Measures SHAM OVX OVX + WF OVX + FO 

Food intake, 
g/day 

7.3 ± 0.2 6.7 ± 0.2 6. 7 ± 0.2 6.4 ± 0.2 

Body weight, g 

Initial  161 ± 4 162 ± 4 162 ± 4 163 ± 4 

Final 162 ± 4 169 ± 4 166 ± 4 160 ± 4 

Tissue weights, g 

Uterus 0.505 ± 0.027a 0.153 ± 0.026b 0.173 ± 0.026b 0.167± 0.028 b

Liver 4.36 ± 0.18 4.64 ± 0.17 4.48 ± 0.17 4.32 ± 0.19 

Small Intestine 2.20 ± 0.15 2.08 ± 0.14 2.19 ± 0.14 2.45 ± 0.15 

Values are mean ± SE, n=12;means that don’t share the same letters are different at P<0.05. 
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Table 4 

Effects of ovariectomy (OVX), whole flaxseed (WF), and flaxseed oil (FO) on serum 

and liver lipid parameters 

 

 

 

 
 
 
 
 
 
 
 
 
 
 

Values are mean ± SE, n=12;means that don’t share the same letters are different at P<0.05. 

Measures SHAM OVX OVX+WF OVX+FO 

Serum lipid, mg/dL 

HDL cholesterol 82.1 ±4.2b   97.0 ±4.1a 86.9±3.9ab 94.2±4.1a

Non-HDL cholesterol 49.2±2.8     53.1±2.7 45.3±2.6 49.6±2.7 

Triglycerides 53.2±9.8 74.2±9.4 82.3±9.0 74.3±9.4 

Liver lipids, mg/g liver 

Total lipids 48.8±2.6 49.9±2.5 47.2±2.5 46.3±2.7 

Cholesterol 4.72±0.32 4.75±0.31 4.50±0.31 4.90±0.34 
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Figure 3 
 
Effects of ovariectomy (OVX), whole flaxseed (WF), and flaxseed oil (FO) on serum 

total cholesterol concentrations of Golden Syrian hamsters 
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Values are mean ± SE, n=12;bars that don’t share the same letters are different at P<0.05. 
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Figure 4 
 

Effects of ovariectomy (OVX), whole flaxseed (WF), and flaxseed oil (FO) on protein 

levels of Scavenger receptor B1 (SRB1) levels in liver microsomes of Golden Syrian 

hamsters 
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Values are mean ± SE, n=3;bars that don’t share the same letters are different at P<0.05. 
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Figure 5 
 

ffects of ovariectomy (OVX), whole flaxseed (WF), and flaxseed oil (FO) on protein 

levels of LDL receptor in liver microsomes of Golden Syrian hamsters 
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Figure 6 
 
Effects of ovariectomy (OVX), whole F), and flaxseed oil (FO) on protein 
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Figure 7 
 
Effects of ovariectomy (OVX), whole F), and flaxseed oil (FO) on protein 
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Values are mean ± SE, n=3,bars that don’t share the same letters are different at P<0.05.
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Scope and Method of Study: The health benefits of functional foods, such as flaxseed in 
lowering cholesterol and lowering the risks of atherosclerosis have already been 
discovered. Our earlier findings indicate that flaxseed reduced plasma cholesterol 
induced by ovarian hormone deficiency in Golden Syrian hamsters. This study was 
designed to investigate whether flaxseed oil (FO) exerts the same hypocholesterolemic 
effect as whole flaxseed (WF) and to gain insights into the hypocholesterolemic 
mechanism of action. Forty eight, 6-month-old female, Golden Syrian hamsters were 
either sham-operated (sham) or ovariectomized (OVX) and randomly assigned to four 
groups: sham, ovx, ovx plus either WF [15% diet] or FO [equivalent oil content to that of 
WF diet] and fed for 90 days. 
 
Findings and Conclusions:  OVX elevated plasma total cholesterol concentrations in 
Golden Syrian Hamsters and WF was more effective than FO in reducing the increase in 
circulating cholesterol. To elucidate the hypocholesterolemic action, we quantified some 
key regulators of cholesterol metabolism in the liver microsomes using western blot 
analysis. Results indicate that flaxseed does not exert its hypocholesterolemic action by 
modulating either of scavenger receptor BΙ (SRBΙ), HMG CoA reductase or LDL 
receptor instead flaxseed and its oil upregulated 7-α hydroxylase, an enzyme involved in 
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