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CHAPTER I 

 

RESEARCH PROBLEM 

 

Introduction to the Problem 

Osteoporosis is a disease of the skeletal system characterized by decreased bone 

mass and deterioration of the bone microarchitecture, resulting in increased risk of 

fracture (WHO, 2006). Adult bone regularly remodels through a sequence of events 

described as bone resorption coupled with new bone formation.  During remodeling, bone 

tissue is degraded by the actions of bone resorpting osteoclast cells followed by bone 

formation by osteoblasts.  Once peak bone mass is achieved, which occurs at 

approximately 25 to 30 years of age, bone loss continues throughout the life span 

(Cosman, 2005).  This bone loss is a consequence of the bone resorption rate exceeding 

the bone formation rate, causing bones to become thin, more fragile, and therefore 

increasing the risk of fracture.  Because bone loss can occur for years without an 

individual fracturing, osteoporosis has been described as the silent epidemic (NIH, 2006). 

Today, 10 million Americans are estimated to suffer from osteoporosis defined as 

a bone mineral density (BMD) >2.5 standard deviations below the average young adult 

(WHO, 2006).  Another 34 million Americans are estimated to have low BMD (between 

-1 to -2.5 standard deviations) or osteopenia, placing them at higher risk for osteoporosis 
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(NIH, 2006). Furthermore, it is expected that forty percent of white, postmenopausal 

women will suffer a fracture due to osteoporosis during their lifetime (NIH, 2006).  

Despite these alarming statistics, drug treatment options may be cost prohibitive (Brixner, 

2006) and accompanied with adverse side-effects (Chaiamnuay, 2006; South-Paul, 2001; 

Muff, 1999). 

While white, postmenopausal women are the most prevalent sufferers (Cauley, 

2005); there are numerous other factors that enhance the likelihood of developing 

osteoporosis.  These factors include both controllable and uncontrollable risk factors.  

Controllable factors include chronic low calcium intake, insufficient physical activity, 

cigarette smoking, and excessive alcohol consumption (NOF, 2006).  Uncontrollable risk 

factors consist of age, gender, immobilization, hormone deficiencies and a family history 

of osteoporosis (NOF, 2006).  Of the factors which individuals can control, the effects of 

weight-bearing activity on bone health have been the focus of much research (Kannus, 

1995; Jacobson, 1984; Nickols-Richardson, 1999; McDonald, 1986). 

Weight-bearing exercise is crucial in the maintenance of bone health (Aloia, 

1978; Dalsky, 1989; Krolner, 1983).  Previous studies have shown bone to be negatively 

affected by the reduction or absence of weight-bearing exercise (Kannus, 1995; Nickols-

Richardson, 1999).  For example, without gravitational or mechanical loading of the 

skeleton, there is rapid bone loss (Abram, 1988).  Bone loss has been reported in 

individuals who perform limited weight-bearing activity, including those experiencing 

prolonged bed rest (Donaldson, 1970), astronauts during space flight (Oganov, 1991) and 

the elderly population as a result of limited use or disuse (Takata, 2001).  Because 

National Aeronautic Space Association (NASA) scientists identified bone loss as one of 
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the major obstacles to extended space exploration, ground-based models of unloading 

(i.e. bed-rest studies and hindlimb unloading of rats and mice) were developed (Morey-

Holton, 1998; Donaldson, 1970; Arnaud, 1992). These models have resulted in 

significant advancements in our understanding of the skeletal response to unloading,

however, few effective countermeasures have been found to date that can prevent or 

reverse this process. 

 Dietary supplements are one possible group of countermeasures that could offer 

effective, relatively inexpensive treatment options with low risk of side-effects.  Dietary 

supplements that would either prevent bone loss due to unloading or enhance the 

recovery of bone, once the loss has occurred would be an appealing option.  Animal and 

human studies (Arjmandi, 1999; Arjmandi, 2001; Deyhim, 2005; and Franklin, 2006) 

conducted in the Nutritional Sciences laboratories at Oklahoma State University have 

demonstrated that dried plums (Prunus domestica L) have osteoprotective (Arjmandi, 

2001and Franklin, 2006) and anabolic properties which may reverse previous bone loss 

(Deyhim, 2005).  Dried plums are a rich source of antioxidants as indicated by their high 

oxygen radical absorbance capacity (ORAC) rating used to evaluate commonly 

consumed fruits and vegetables. They are also good sources of vitamin K, potassium and 

the trace element boron (Stacewicz-Sapuntzakis, 2001) which are recognized to play a 

role in bone metabolism.  

The initial dried plum studies were carried out in an animal model of 

postmenopausal osteoporosis, i.e. the ovariectomized rat.  These studies showed that 

dried plums prevented bone loss as indicated by preserving BMD and bone 

microarchitecture (Arjmandi, 2001) as well as restoring or reversing the loss of trabecular 



4

bone architectural properties (Deyhim, 2005).  Findings from these studies also suggested 

that dried plum may be a potent stimulator of bone formation (Arjmandi, 2001).  More 

recently, a study in a male animal model of gonadal hormone-induced bone loss 

(Franklin, 2006) provided evidence that dried plum prevented bone loss by depressing 

bone resorption while at the same time enhancing insulin-like growth factor (IGF)-I. If as 

this report suggests that dried plum can depress bone resorption and at the same time 

enhance bone formation, dietary supplementation with dried plum would provide a very 

promising treatment option for bone loss. 

In light of these very promising findings regarding dried plum’s potent effects on 

bone in gonadal hormone deficiency animal models, and the need for effective 

interventions that could be used as countermeasures for bone loss resulting from skeletal 

unloading, the following hypothesis and specific aims have been developed. 

 

Hypothesis 

1.  Dried plums will dose-dependently enhance the recovery of bone following hindlimb    

unloading (HLU) and have similar effects to the anabolic agent, parathyroid hormone   

(PTH). 

 

Specific Aims 

1. To establish the most effective dose of dried plum in restoring bone quality following 

HLU and to compare these effects to the positive control, intermittent PTH.  The 

effectiveness of each dose of dried plum in reversing bone loss will be evaluated 

based on the improvements of bone quality as indicated by bone density using dual 
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energy x-ray absorotometry (DXA) and bone strength using 3-point bending of the 

femur midshaft and compression testing of the vertebral body. 

2. To assess the dose-dependent effects of dried plum on trabecular and cortical bone 

microarchitecture and to compare these effects to PTH, micro-computed x-ray 

tomography (µCT) will be utilized.  µCT analysis will be used to evaluate trabecular 

bone in the distal femur metaphysis and vertebral bone and the cortical rich region of 

the femur midshaft. 

3. To investigate the dose-dependent effects of dried plum on bone metabolism in rats 

following HLU and to compare these effects to intermittent PTH.  Serum and urinary 

markers of bone metabolism will be assessed to evaluate indicators of bone 

resorption (urinary deoxypyridinoline crosslinks) and bone formation (serum alkaline 

phosphatase, osteocalcin, and IGF-I). 

 

Limitations 

The HLU rat model has been used extensively to evaluate the response to 

microgravity and limited weight-bearing activity.  This model was designed to mimic 

alterations in the skeletal loading associated with spaceflight as well as the cephalic fluid 

shift that occurs.  Although only a limited number of individuals experience space travel, 

this model has provided a valuable system to study the effects of unloading on the 

skeleton.  Despite the advantages provided by this animal model, it is not without some 

limitations.    
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1.  During the first 3-4 days of HLU, observational data (weight-loss and the 

development of pyrine around the eyes) suggests that the animals are stressed. These 

initial changes do not persist past day 7 and studies have shown that, to the contrary, 

typical physiological alterations in thymus and adrenal gland size and elevated 

corticosterone levels have not been reported (Morey-Holton, 2002). 

2.  Another limitation is the fact that we are using an animal model; not humans.  While 

this model does mimic bone response to disuse well, it can not be exactly how the human 

skeleton would respond.  The rat skeleton continues skeletal growth throughout life while 

the human skeleton reaches peak mass in early adulthood.   

3.  A further limitation in this study is that the doses of dried plum used in this study are 

not reasonable or appealing treatment or prevention options for men and women.  

However, in order to evaluate the effectiveness of this natural alternative treatment, a 

wide range of doses should be tested. 
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CHAPTER II 
 

REVIEW OF THE LITERATURE 
 

Osteoporosis 
 

Osteoporosis is a condition of the bone characterized by decreased bone mass and 

deterioration of the bone microarchitecture, leading to enhanced risk of fracture, typically 

of the spine, hip and wrist (WHO, 2006).  According to the World Health Organization 

(WHO) osteoporosis is defined as a bone mineral density (BMD) 2.5 or more standard 

deviations below the average young adult (WHO, 2006).  In general, peak bone mass is 

achieved between 25 to 30 years of age, followed by continuous bone loss throughout the 

remainder of the lifespan (Cosman, 2005). Because an individual can live with 

osteoporosis for years without symptoms of fracture, osteoporosis is often described as 

the silent disease (NIH, 2006).  This loss of bone results in thinner, more fragile bones, 

and consequently increases the risk of fracture.  

 Today, osteoporosis is the most common bone disease in America and is a health 

threat for approximately 44 million Americans (NIH, 2006).  It is estimated that nearly 10 

million of those Americans suffer from osteoporosis, with 68% of those affected being 

women (NIH, 2006).  The remaining 34 million are estimated to have low BMD or 

osteopenia and are at increased risk for osteoporosis (NIH, 2006).  Current estimates 

indicate that one in two women and one in four men over age 50 will have an 
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osteoporosis-related fracture in their lifetime (NIH, 2006). In 2006, it was estimated that 

nearly $14 billion dollars a year are spent on fractures due to osteoporosis, costing 

approximately $38 million per day (NIH, 2006).   

Numerous factors increase the risk of developing osteoporosis, and may be 

considered as either uncontrollable or controllable risk factors.  Examples of 

uncontrollable risk factors include age, gender, and a family history of osteoporosis 

(NOF, 2006).  Controllable risk factors for osteoporosis on the other hand include 

insufficient weight-bearing physical activity, estrogen deficiency due to menopause, 

cigarette smoking, habitually low calcium intake and excessive alcohol consumption 

(NOF, 2006).  Of the risk factors that are considered controllable, weight-bearing activity 

and its effect on bone has been extensively studied. 

 

Weight-Bearing Exercise and Bone Health 

Weight-bearing activity has bee defined by the CDC as any physical activity that 

imparts a load or impact on the skeleton (CDC, 2006).  The effects of weight-bearing 

exercise on bone health have been the focus of numerous studies and adequate skeletal 

loading has proven to be essential in the development and maintenance of bone health 

(Kannus, 1995; Nickols-Richardson, 1999; Dalsky, 1989; Schoutens, 1989).  In general, 

physical activity may reduce the risk of fracture by enhancing bone strength and BMD 

and by improving balance, leading to decreased risk of falls (Srivastava, 2002). It is 

estimated that more that 50% of American adults do not get the recommended physical 

activity of 30 minutes a day despite its known health benefits (CDC, 2006).  Furthermore 
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the amount of physical activity performed tends to decrease with age and is less in 

females compared to males (CDC, 2006). 

Numerous studies have evaluated the osteoprotective effects of various physical 

activity regimens on the skeleton.  A recent study (Srivastava, 2002) showed that weight-

bearing exercise has an effect on both lumbar spine and femoral neck bone density while 

non-weight bearing exercise only positively affects lumbar spine bone density.  Findings 

by Nelson and others (1994), demonstrated the effectiveness of high-intensity resistance 

training in maintaining femoral neck BMD as well as improving muscle mass, strength 

and balance in postmenopausal women.  In contrast, Bemben and others (2004) showed 

that in postmenopausal women neither high-load nor high-repetition (HR) resistance 

training for 6 months combined with 1500 mg of supplemental calcium produced a 

significant increase in spine or hip BMD.  An additional study evaluated the effect of 

resistance training and calcium supplementation (600 mg/day) on BMD (Kerr, 2001).  A 

significant increase was reported at the hip site following 2 years of resistance training in 

postmenopausal women suggesting that long-term resistance training combined with 

calcium supplementation is beneficial.  Going and colleagues (2002), assessed the effects 

of exercise, including both aerobic weight-bearing activity and weightlifting 3 times a 

week and hormone replacement therapy (HRT) with exercise on BMD in postmenopausal 

women given calcium supplementation (800 mg/day).  They showed that improvements 

in BMD at the femoral neck, lumbar spine, and total body occurred with exercise, but not 

to the level of HRT with exercise.  These findings related to resistance training alone and 

in combination with calcium supplementation demonstrate the importance of weight-

bearing and bone health. 
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Skeletal Unloading and the Human Skeleton 

 Bone loss occurs rapidly in individuals such as astronauts, individuals who are 

immobilized, and the elderly, who perform limited weight-bearing activity.  In adults, the 

absence of weight-bearing activity reduces bone mass (Martin, 1990), produces 

hypercalcemia (Zerath, 1998), decreases osteoblast number (Vico, 1987) and increases 

osteoclast numbers (Zerwekh, 1998).  These alterations in osteoblasts and osteoclasts 

result in a depressed rate of bone formation and increased bone resorption.  Decreased 

bone mass results from the microgravity environment of space.  Smith and others (1999) 

reported that during space-flight, male astronauts experience a 50% decrease in calcium 

absorption and greater than a 50% increase in bone resorption.  During spaceflight, 

astronauts have lost as much bone mass in 1 month as a postmenopausal women would in 

1 year (Cavanaugh, 2005).  These alterations in bone metabolism induced during 

spaceflight appear to persist for an extended period, as a significant elevation in bone 

resorption markers has been shown 4-6 months following space-flight (Smith, 2005). 

Bone loss attributable to space flight is an enormous concern that could hinder 

extended stays at the International Space Station and long-term space exploration, such as 

expeditions to Mars (Bikle, 1997).  Upon return to earth, the effects of weightlessness 

have been shown to render the musculoskeletal system incapable of enduring the stress of 

normal gravity (Bikle, 1997).  Because of this concern, the National Aeronautic Space 

Association (NASA) developed ground-based research models such as bed-rest studies 

with humans (Arnaud, 1992) and hindlimb unloading of rodents to simulate the effects of 

weightlessness on the skeleton (Morey-Holton, 1998).  This model has shown similar 



11

results to spaceflight by creating a negative calcium balance, decreasing bone mass and 

producing the coinciding cephalic fluid shifts associated with microgravity (Zerwekh, 

1998). 

 To better understand the potential early responses of bone to spaceflight, Arnaud 

et al. (1992) carried out a one-week study on 8 healthy men restricted to bed rest with 

head down tilt of 6° to mimic the acute response unloading of the skeletal system.  By the 

sixth and seventh days of bed rest, serum parathyroid hormone and 1,25-

dihydroxyvitamin D were decreased significantly.  Donaldson et al. (1970) showed that 

restricting healthy males to complete bed rest for 30-36 weeks, increased urinary calcium 

and phosphorous excretion which started to normalize within 3 weeks of re-ambulation.  

A more recent study of male volunteers showed that following 14 days of 6 degrees head-

down bed rest, bone resorption was increased and bone formation remained either normal 

or was reduced (Kim, 2003).  Collet and others (1997) collected data on 2 men before and 

after spaceflight.  After 6 months of spaceflight, they reported a significant loss of both 

trabecular and cortical bone in the tibia and following a 6 month recovery period, there 

was still a significant decrease in trabecular bone while cortical bone had recovered.  An 

additional study focusing on recovery reported an incomplete recovery of BMD 1 year 

after a 4-6 month spaceflight (Lang, 2006).      

Studies evaluating countermeasures to prevent bone loss due to spaceflight have 

been conducted using a variety of modalities. For example, a lower body negative 

pressure chamber (LBNP) was used to study the effects of exercise in identical twins 

(Smith, 2003).  Following 30 days, markers for bone resorption were increased in the 

sedentary group, leading to the conclusion that weight-bearing exercise may counteract 
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the negative effects of weightlessness.  Schneider et al. (2003) compared the effects of an 

interim elastomer-based resistive exercise device (iRED) to free weight training in adult 

males experiencing a weightless environment.  They reported that although iRED training 

produced similar muscle responses to the free weight group, it was unable prevent bone 

loss.   

 While preventing bone loss is one approach to counter the deleterious effects of 

the skeletal unloading, enhancing the recovery of bone would also prove to be beneficial. 

To look at enhancing recovery, Carvalho and others (2006), evaluated male quadriplegics 

(n=21) and the effect of treadmill gait training.  Following the 6 month treatment period, 

81.8% of subjects showed a significant increase in bone formation and 66.7% presented a 

significantly decreased rate of bone resorption.  These studies have allowed us to further 

understand the effects of skeletal unloading and recovery. 

 

Skeletal Unloading and the Rat Skeleton 

 In addition to bed-rest studies, researchers at NASA also developed an animal 

model of unloading the hindlimbs of rats and mice to mimic the alterations in loading that 

occur during space flight.  This model of skeletal unloading rats has proven to closely 

resemble the skeletal response observed in humans in terms of bone loss in the hindlimbs, 

changes in calcium metabolism and biochemical markers (Giangregorio, 2002).    

The decrease in bone mass resulting from skeletal unloading in the HLU model 

results from bone resorption becoming uncoupled with bone formation (Bikle, 2003). 

Initial studies related to hindlimb unloading were performed using young growing male 

animals and showed that bone loss resulted primarily from decreased periosteal bone 
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formation (Morey, 1978 and Wronski, 1983).  However, later studies using older male 

rats (i.e. 6-months in age) indicated that mature animal may more closely mimic the 

uncoupling of bone remodeling that occurs with humans during unloading (Dehority, 

1999 and Shackelford, 2004).  For example, evidence from some studies with older 

animals indicates that based on bone histomorphometry and biochemical maker data, 

increased bone resorption may be the primary culprit inducing bone loss (Hefferan, 2003 

and Smith, 2002).  Dehority and others (1999) showed that up to 5 weeks of HLU in the 

mature male rat resulted in diminished serum 1,25-dihydroxyvitamin D and decreased 

vertebral bone mass. An additional study by Bloomfield (2002) demonstrated that mature 

male rats HLU for 28 days experienced a 20-21% decrease in cancellous BMD at the 

proximal tibia and femoral neck while no significant differences were found in cortical.  

To compare the gender differences in the response to HLU, Hefferan and 

colleagues (2003) exposed 6-month-old male and female rats to 2 weeks of unloading.  

They reported that aside from the gender differences observed at baseline, the alterations 

in bone induced by HLU were similar in both males and females. A longer term study by 

Allen and colleagues (2003) focused on mature female rats indicated that 28 days of HLU 

resulted in a decrease in bone mineral content, cortical bone area and cortical bone 

formation rate, but no loss of trabecular bone.  The fact that bone loss occurred in the 

cortical bone compartment as compared to the trabecular bone compartment may have 

resulted from the use of retired breeders that had lost considerable trabecular bone as a 

result of multi-gravida and multiple lactation cycles.  More recently Lecog and 

colleagues (2006) conducted a study to compare the effects of HLU to ovariectomy and 
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concluded that the degree of bone loss due to HLU was greater than that induced by 

estrogen deficiency.   

Once bone loss has occurred during a period of decreased weight bearing activity, 

restoration of bone is critical.  Studies have shown that the recovery of bone may not be 

complete and may take longer than the time of the original loss of bone (Giangregorio, 

2002).  Animal studies evaluating the recovery of bone following unloading, have shown 

that after 3 weeks of unloading, partial bone recovery was seen within 2 weeks of normal 

activity (Abram, 1988).  A study by Wan and colleagues (2000) observed that the bone 

mass changes following 21 days of HLU in young growing rats (i.e. 7-week-old) were 

restored by day 21 of re-ambulation.  In contrast, Weinreb and others (1997) reported the 

rate of bone loss during HLU is more rapid than its recovery during reloading in 4 week 

old rats. Both the human and animal studies suggest that recovery from skeletal 

unloading can be accomplished to a certain degree; however, studies have shown that 

bone loss was not completely recovered with up to six months of weight-bearing activity 

(LeBlanc, 1990). 

 

Pharmaceutical Agents 

 Over the past 20 years, several pharmaceutical agents have been approved for the 

treatment of osteoporosis.  Among the most prescribed are the potent antiresorptive 

agents, bisphosphonates (Close, 2006).  Bisphosphonates have shown to be effective in 

preventing bone loss associated with estrogen deficiency (McClung, 1998), 

glucocorticoid treatment (de Nijs, 2006), and immobilization (Yang, 2005).  

Bisphosphonates act by binding to the hydroxyapatite crystals on the bone surface and 
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inhibiting osteoclastic activity, which decreases bone resorption (Chapurlat, 2006).  The 

three Food and Drug Adminstration (FDA) approved bisphosphonates for the treatment 

of osteoporosis are alendronate, risedronate, and ibandronate that can be consumed daily, 

weekly or even monthly for convenience (Chapurlat, 2006).   

The advent of bisphosphonates has had a tremendous impact on the prognosis of 

treating osteoporosis and/or osteopenia. Alendronate, a now weekly treatment for 

osteoporosis, was approved by the FDA in 1995.  The Fracture Intervention Trial first 

demonstrated alendronate’s ability to reduce risk of hip fracture by 51% in women with 

osteoporosis (Black, 2000).  LeBlanc and colleagues (2002) showed that alendronate 

protected against bone loss during 17 weeks of bed-rest.  Risedronate has also been 

approved for the prevention and treatment of osteoporosis and has been shown to prevent 

bone loss in postmenopausal women (Chapurlat, 2006) and reduce the risk of fractures in 

women with osteoporosis (Durchschlag, 2006).  In 2001, the Hip Intervention Program 

(HIP), showed that risedronate significantly reduced risk of hip fracture in elderly women 

with osteoporosis (McClung, 2001).  Mosekilde and colleagues (2000), showed that both 

risendronate and alendronate protected against loss of bone density induced by 28 days of 

HLU.  The newest bisphosphonate, ibandronate, has also been shown to prevent bone 

loss (Tanko, 2003) and reduce risk of fracture (Chestnut, 2004).  Bisphosphonates are 

generally well tolerated, however, side effects such as myalgia, esophagitis and uveitis 

have been reported (Chapurlat, 2006).  Additionally, there are no trials comparing 

bisphosphonates with regard to fracture efficacy or with any other drug with a fracture 

point (Nelson, 2003). 



16

Another treatment option for osteoporosis is the group of agents known as 

selective estrogen receptor modulators (SERMs).  These compounds bind to and activate 

estrogen receptors.  The concept of SERMs comes from the observation that tamoxifen, 

an effective therapy of breast cancer, has estrogen-like effects on the skeleton (Turken, 

1989).  Researchers found tamoxifen (20 mg/day) in postmenopausal women with breast 

cancer to prevent loss of bone in the lumbar spine (Love, 1992). Another SERM, 

raloxifene, now approved for prevention and treatment of osteoporosis, was the first 

SERM to be studied for the primary purpose of treatment of osteoporosis.  Raloxifene 

blocks estrogen in a similar manner as tamoxifen and inhibits bone resorption in both 

trabecular and cortical bone by blocking the activity of cytokines (South-Paul, 2001).  

Kanis and colleagues (2003) reported that treatment with 60 mg/day raloxifene 

significantly reduced the risk of vertebral fractures in postmenopausal women after 3 

years.  However, similar to estrogen, raloxifene is associated with increased risk of 

venous thromboembolic disease (SERMs). 

 Calcitonin, an endogenous hormone secreted by the thyroid gland, aids in calcium 

homeostasis and is also used as a treatment for osteoporosis (Woolf, 2003).  Its main 

skeletal effect is to inhibit osteoclastic bone resorption by shrinking osteoclast size within 

minutes of administration (Inserillo, 2002).   Previous studies have shown calcitonin to 

increase bone density and reduce vertebral fractures (Prestwood, 2000).  The PROOF 

study demonstrated that 200 IU salmon calcitonin nasal spray per day significantly 

reduced the risk of vertebral fractures by up to 36% in postmenopausal women with 

previous fractures (Chestnut, 2000).  However, the potency of calcitonin is significantly 

less than bisphosphonates or estrogen (South-Paul, 2001) and once treatment is 
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discontinued, gains in BMD are quickly reversed (Prestwood, 2000).  Additionally, Muff 

and colleagues (1999) reported 40% of patients developed antibodies during the first six 

months of treatment with salmon calcitonin which renders it ineffective. 

 Estrogen replacement therapy (ERT) has also been considered a treatment for 

osteoporosis.  Numerous studies have shown ERT, started within 10 years of menopause, 

to prevent loss of bone at the hip and spine (Prestwood, 2000).  In the Postmenopausal 

Estrogen/Progestin Intervention (PEPI) trial, women treated with HRT had increased hip 

and spine BMD (Marcus, 1999).  The Bone, Estrogen, and Strength Training (BEST) 

Study showed a significant increase in BMD at the femoral neck, trochanter, lumbar 

spine, and total body when exercise and HRT were combined during the early 

postmenopausal period.  ERT has been associated with a 30% rate of endometrial 

hyperplasia per year and endometrial cancer at a lower rate (Prestwood, 2000).  Today 

the primary concern with regard to ERT is whether the potential benefit on bone health is 

worth the potential risk of breast and endometrial cancer (Sharma, 2003 and South-Paul, 

2001).   

 The last pharmaceutical treatment option for osteoporosis is PTH.  PTH, known 

for its ability to alter gene expression of the osteoblast, is essential for the maintenance of 

calcium homeostasis through direct influence on bone and kidney, and indirect actions on 

the gastrointestinal tract (Jüppner, 2000).  PTH assists release of calcium from the bone 

by stimulating bone resorption, promotes calcium reabsorption in the kidneys, and 

enhances calcium absorption in the gastrointestinal tract. In young growing animals, PTH 

was shown to have a potential role in skeletal development (Kronenberg, 2006), accretion 

of peak bone mass (Hock, 1992), and increased bone formation (Dempster, 1993).  
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Clinical studies of the effects of intermittent PTH therapy have been very 

promising.  PTH has been reported to decrease the incidence of vertebral fracture in 

postmenopausal women compared to those on placebo (Srivastava, 2002).  There was 

also a reduced rate of new or worsening back pain with those on PTH when compared to 

those receiving a placebo.  Hadsman and others (2003) conducted a clinical trial on 

postmenopausal, osteoporotic women with daily injections of PTH.  Following a 12 

month treatment period, significant increases were seen in both vertebra and hip BMD.  

An additional study investigating PTH and alendronate in postmenopausal osteoporosis 

reported PTH to significantly enhance BMD when compared to alendronate (Body, 

2003).  Researchers also reported fracture rates to be significantly lower in those 

receiving PTH compared to those on alendronate.   

Previous studies conducted on animals have found PTH to prevent bone loss 

induced by HLU.  Moriyama and colleagues (2002) concluded that intermittent 

administration of human PTH (1-34) may prevent cancellous bone loss and increase 

BV/TV in hindlimb unloaded rats.  Similar results were reported in six month old male 

rats (Bloomfield, 2002) in which PTH produced a significant increase in total and 

cancellous bone BMD and cancellous BV/TV following 28 days of HLU.  In a more 

recent study, Turner and colleagues (2006) reported intermittent PTH to prevent bone 

loss by increasing bone formation rate in HLU male rats. Although some of these 

pharmaceutical treatments may prevent and even reverse bone loss, they still have a 

possible risk of adverse side effects.  Finding a natural treatment to restore and prevent 

bone loss could possibly be safer, more convenient and less expensive. 

 



19

Nutritional Supplements, Functional Foods and Bone 
 

Numerous studies have been conducted on dietary supplements and functional 

foods with antioxidant and anti-inflammatory properties to find a natural alternative for 

the prevention and treatment of osteoporosis.  For instance, calcium, the principal cation 

of bone mineral (Heaney, 2003) is required for the bone formation phase of bone 

remodeling (Dawson-Hughes, 2003).  Inadequate intake of calcium results in reduced 

calcium absorption and an increased secretion of PTH which leads to a loss in bone 

(Dawson-Hughes, 2003).  Long-term (i.e. 4 year) effects of calcium supplementation 

(~670 mg/calcium/day) on bone in young women increased bone accretion during the 

pubertal growth spurt only (Matkovic, 2005).  A comprehensive review of clinic trials 

(Dawson-Hughes, 1991) revealed that in the early postmenopausal period when bone loss 

is accelerated, calcium supplementation (500-2000 mg/day) slows bone loss in the radius, 

but has no effect on the spine.  Another 4 year study demonstrated that calcium 

supplementation (750 mg/day) prevented loss of BMD, secondary hyperparathyroidism 

and bone turnover in elderly men and women (Peacock, 2000).  To date, no studies have 

shown calcium supplementation to reverse bone loss. 

 In addition to calcium, the ability of vitamin D to prevent and reverse bone loss 

has been investigated extensively.  Vitamin D, recognized for its role in calcium 

homeostasis, is a secosteroid that is activated in the skin when exposed to sunlight.  

During bone mineralization, active vitamin D (1,25-dihydroxyvitamin D) maintains 

calcium and phosphorous in a supersaturated state, resulting in passive bone 

mineralization (Holick, 2003).  Vitamin D deficiency may have a role in osteopenia, 

worsen osteoporosis and increase muscle weakness, leading to increased risk of fall and 



20

fracture (Holick, 2006).  Deficiency can be prevented with adequate sunlight and 

supplementation if needed.  Ruohola and colleagues (2006), measured serum 25-

hydroxyvitamin D concentrations as a risk factor for bone stress fracture in 756 military 

recruits and found that 22 recruits had stress fractures and low serum 25(OH)D, 

concluding that low serum concentrations of vitamin D may be predisposing for stress 

fractures.  Supplementation of both vitamin D and calcium in adult women over 45 years 

old significantly reduced loss of BMD over 30 months when compared to placebo (Di 

Daniele, 2004).  Vitamin D analogs may also be suitable for the treatment of osteoporosis 

due to their ability to increase intestinal absorption of calcium and have an antiresorptive 

effect on bone (Erben, 2001). 

 In addition to research on vitamin D, many studies have focused on the effects of 

vitamin K on bone.  Vitamin K supplementation has been reported to improve bone 

turnover profile (Bugel, 2003).  Supplementation of vitamin K for as little as 6 weeks has 

shown to increase markers of bone formation during spaceflight (Vermeer, 1998).  

Iwamoto and colleagues (2003) evaluated the effects of supplementation of both vitamins 

D and K in 6 week old female rats on a low-calcium diet and found increased intestinal 

calcium absorption, renal calcium reabsorption, and cancellous bone, and reduced 

hypocalcemia.  Vitamin K analogs have also been investigated for their potential to 

reduce osteoporotic fractures by significantly increasing BMD in postmenopausal women 

(Iwamoto, 2001). 

 Vitamin E, a fat-soluble vitamin, functions to protect the membrane of cells by 

preventing the oxidation of unsaturated fatty acids in the phospholipids of cellular 

membranes (Knight, 2000).  Arjmandi and colleagues (2002) reported that aged mice 
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receiving 30 days of vitamin E supplementation (500 mg/day) experienced enhanced 

bone quality as well as increased bone dry weight, osteocalcin, and IGF-1 compared to 

animals consuming an adequate vitamin E diet.  Vitamin E has also been shown to 

protect against reductions in trabecular thickness, double-labeled surface, and rate of 

bone formation to bone volume in animals following HLU (Smith, 2005).  Although, 

vitamin E has been shown to have osteoprotective properties in experimental models such 

as the aged mouse and HLU rat, vitamin E supplementation may not be beneficial in 

control animals. 

 Aside from individual nutrient supplementation, functional foods, such as soy, 

green tea, pomegranates and dried plums, have also been the focus of much research.  To 

evaluate the effects of soy protein and its isoflavones on postmenopausal women, 

subjects were randomly assigned to consume soy-containing foods or kept on a control 

diet (Arjmandi, 2005).  Following 1 year, both groups positively enhanced alkaline 

phosphatase, IGF-1, and osteocalcin, however, both groups experienced significant 

decreases in whole body and lumbar BMD.  Soy and its isoflavones have been shown to 

enhance tibial BMC and BMD in 9 month old osteopenic ovariectomized rats 

(Devareddy, 2006) by stimulating bone formation (Soung, 2006).  Recent human studies 

have also shown that oral consumption of green tea may increase BMD (Cabrera, 2006).  

As for pomegranates, Mori-Okamoto and others (2004) reported pomegranate extract to 

reverse OVX-induced loss of BMD after only 2 weeks.  While these dietary supplements 

and functional foods have the focus of numerous studies for the prevention and reversal 

of bone loss, it seems that the most promising data has been seen in dried plums.      
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Dried Plum and Bone 

 Dried plums (Prunus domestica L.) contain significant amounts of phenolic 

compounds that contribute to their color and taste (Raynal, 1989).  Dried plums are a 

known rich source of antioxidants as indicated by their high oxygen radical absorbance 

capacity (ORAC) rating used to evaluate commonly consumed fruits and vegetables 

(Kayano, 2003).  In addition, dried plums contain a significant amount of micronutrients 

such as boron, vitamin K and potassium (Anderson, 1994). 

Animal and human studies have indicated that dried plums have osteoprotective 

properties (Arjmandi, 1999; Arjmandi, 2001; Franklin, 2006; Deyhim, 2005; Smith, 

2005).  Previous studies found that dried plums protected against (Arjmandi, 2001; 

Franklin, 2006) and even reversed (Arjmandi, 1999; Deyhim, 2005) bone loss in animal 

models of osteopenia associated with gonadal hormone deficiency.  High dose dried plum 

(25%, w/w) completely prevented loss of vertebral and femoral BMD from occurring 

following OVX (Arjmandi, 2001). Deyhim and colleagues (2005) reported that 

osteopenic OVX animals on a dried plum diet as low as 5% recovered lost femoral and 

vertebral bone density to that of sham operated animals.  Improvements were also seen in 

overall yield and ultimate force and dried plum was able to significantly enhance 

trabecular microarchitecture when compared to controls.  In males, dried plum prevented 

orchidectomy (ORX)-induced decrease in femoral and vertebral BMD, and trabecular 

bone loss (Franklin, 2006).  The protective effects of dried plum appeared to be mediated 

via an increase in IGF-1 and decrease in bone resorption. Most recently, Smith and 

colleagues (2005) reported dried plum to enhance recovery of bone mass and 

microarchitecture similar to PTH treatment in male rats following ORX. These studies 



23

provide strong support of the efficacy of dried plum in preventing and reversing bone loss 

in animal models of gonadal hormone deficiency. 

 To date, one short-term clinical trial has reported on the efficacy of dried plum on 

bone metabolism (Arjmandi, 1999).  Postmenopausal women consuming either 100 g 

dried plums or 75 g dried apples a day for 3 months experienced an increase in serum 

bone-specific alkaline phosphatase (BSAP) and insulin-like growth factor-I. These 

findings indicate that dried plum may have potential anabolic effects on bone.   

 While the dried plum studies to date have all examined the effects of dried plum 

on bone loss induced gonadal by hormone deficiency, no studies have focused on the 

ability of dried plum to reverse bone loss in other models of osteopenia or osteoporosis.  

Therefore, the purpose of this study is to evaluate the effects of dried plum on bone mass, 

microarchitecture, strength and bone metabolism during re-ambulation following HLU. 
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CHAPTER III 
 

MATERIALS AND METHODS 

 

Animals and Diets 

 Seventy-two, 6-month old female Sprague-Dawley rats (Harlan, Indianapolis, IN) 

were individually housed in an environmentally controlled laboratory upon arrival.  After 

five days of acclimation, rats were divided into eight groups of 10-12 rats each.   Animals 

were either hind limb unloaded (HLU=6 groups) or kept as ambulatory controls (AMB=2 

groups) for 3 weeks. During the HLU period, all groups were fed a semi-purified powder 

casein-based AIN-96M control diet (Reeves, 1993).  Ambulatory rats were matched-fed 

to the mean food intake of the HLU animals to minimize potential group differences in 

body weight.  At the end of 3 weeks of HLU, 1 AMB and 1 HLU group was anesthetized 

with a ketamine/xylazine cocktail (70 and 3 mg/kg body weight), scanned using DXA 

(Hologic QDR 4500-A Elite DXA, Hologic Waltham, MA) and necropsied.  Bone 

specimens were harvested for analysis of the changes in trabecular and cortical bone 

microarchitecture.  Following the unloading period, the HLU animals were returned to 

normal ambulation (i.e. re-ambulation) for 12 weeks.  During the re-ambulation period 

animals were either fed diets supplemented with one of three doses of dried plums (5%, 

15% or 25% w/w) or the control diet.  An additional group was fed the control diet and 
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received daily subcutaneous PTH injections (80 µg/kg bw; 3 x wk; Bachem, Inc.) to serve 

as a positive control.   The dried plum diets were adjusted for total energy, carbohydrate, 

protein, fat, fiber, calcium and phosphorus concentrations (Table 1).  Animals had free 

access to deionized water and were weighed weekly throughout both the HLU and re-

ambulation periods. 

 At the end of the 12-week treatment period, twelve-hour urine was collected.  

Animals were anesthetized for whole body DXA scans and bled through the abdominal 

aorta.  Blood samples were collected and serum was separated by centrifugation and 

stored at -20°C.  The femurs, tibiae and lumbar vertebrae were removed, cleaned of 

adhering soft tissue and appropriately stored for analysis.  All procedures associated with 

the project adhered to the Oklahoma State University Institutional Animal Use and Care 

guidelines.   

 

DXA Assessment 

DXA scans on whole body and excised bone were evaluated to compare the 

influence of HLU and the effectiveness of dried plum in reversing bone loss.  BMD, 

BMC, and BMA were assessed using DXA at initial, post-HLU and final time points.  

Bone density of the excised femur and lumbar vertebra were further evaluated using the 

Regional High Resolution software package (Hologic QDR 4500-A Elite DXA, 

Waltham, MA) designed for studying small animal bones.   
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Micro-computed Tomography 

 The vertebra and femur were scanned using high resolution micro-computed 

tomography (Micro CT40 Scanner, SCANCO, Medical Switzerland). Trabecular bone 

parameters including bone volume expressed as a percentage of total bone volume 

(BV/TV), trabecular number (Tb.N.), separation (Tb.Sp.), and thickness (Tb.Th.), 

structure model index (SMI) and trabecular connectivity were evaluated using µCT 

scanner.  Medullary area, cortical area, porosity and thickness were assessed to determine 

the structural integrity of the cortical-rich femoral midshaft.  All scans were performed 

using a 1024 X 1024 matrix resulting in an isotropic voxel resolution of 22 um³.  An 

integration time of 70 milliseconds per projection was used with a rotational step of 0.36 

degrees resulting in total acquisition time of approximately 150 minutes/sample. 

Trabecular bone was assessed at both the distal femur metaphysis and the 

vertebral body.  The distal femur was scanned from the growth plate in the proximal 

direction to acquire 350 slices (~16 µm/slice) for the assessment of the microarchitecture 

of trabecular bone.  Contours were semi-automatically placed to incorporate the 

secondary spongioso beginning 25 slices (400 µm) from the growth plate and 150 images 

in the volume of interest (VOI).  Trabecular parameters were analyzed with a scan of the 

lumbar vertebra in a cranial-caudal direction.  A total of 530 transverse slices were 

acquired of the vertebral body.  The region of interest (ROI) included all secondary 

spongiosa in the vertebral body with the exception of the last 25 slices from either growth 

plate (~300 slices).  To assess cortical bone, the midshaft was assessed by scanning 34 

slices at the midpoint and then 30 slices analyzed in the VOI. 
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Three-point Bending Test of the Femur 

Femurs, which were stored in phosphate-buffered saline (PBS), were tested using 

a three-point bending apparatus (TA.XT2i, Stable Microsystems, Inc.) to evaluate 

mechanical properties of cortical bone.  Samples were allowed to equilibrate to room 

temperature prior to testing.  Femur length was measured with a Vernier caliber from the 

proximal end to the distal chondyles.  The external diameter of the femur was measured 

at the midshaft by taking two measurements 90° apart (i.e. medial - lateral and anterior - 

posterior).  Each femur was positioned on the 3-point bending apparatus so that the 

posterior surface rests on the lower supports and anterior surface touches the upper 

supports.  During this test, the anterior surface was under compression at a displacement 

rate of 3 mm/min and the posterior surface is under tension.  The load displacement curve 

was recorded in real time throughout the test so that break load and modulus could be 

determined from the curve.  Following the test, cortical thickness was assessed by taking 

four measurements, 90° apart, at the point of fracture.  The ultimate load, yield load and 

the stiffness of the specimen was measured from the load-displacement curve.   

 

Biochemical Markers of Bone Resorption and Formation 

 Serum indicators of bone formation, osteocalcin, alkaline phosphatase (ALP) and 

insulin growth factor-1 (IGF-1), were measured to determine the alterations in osteoblast 

activity induced by HLU and treatments.  Serum osteocalcin, a noncollagenous protein 

secreted by ostesoblasts and indicator of matrix mineralization, was assessed by double 

antibody immunoradiometric assay (IRMA – Immunotropics, Inc., San Clemente, CA) 
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specific for rats.  The intra- and inter-assay coefficients of variation were 2.0% and 5.0%, 

respectively.  In addition, ALP, an indicator of matrix maturation, was measured using a 

COBAS Fara II clinical analyzer by a colorimetric method using a kit from Roche 

Diagnostics (Roche Diagnostic Systems, Indianapolis, IN).  The intra- and inter-assay 

coefficients of variation were 2.0%  and 1.9%.  Serum IGF-1, known to be involved in 

osteoblast proliferation, was also determined using a commercially available radioactive 

immunoassay (RIA) (Nichols Institute Diagnostics, San Clemente, CA).  IGF-1 was 

extracted from serum samples by an acid-ethanol extraction overnight and then analyzed 

the following day.  The intra- and inter-assay coefficients of variation were 8.4% and 

3.0%. 

 To examine the effects of HLU and dried plum on bone resorption, urinary 

excretion of deoxypyridinoline (DpD), a product of collagen degradation, were assessed 

and expressed per unit of creatinine and total per 12 hours. Urinary creatinine 

concentrations were measured based on a colormetric assay (Roche Diagnostic Systems, 

Indianapolis, IN).  The intra- and inter-assay coefficients of variation were 1.0% and 

2.6%, respectively. Urinary DpD was assessed utilizing a competitive enzyme 

immunoassay (Pyrilinks-D, Metra Biosystems, Mountain View, CA).  The the intra- and 

inter-assay variability were 8.4% and 4.8%, respectively.   

 

Statistical Analysis 

 Data analysis involved computation using PC SAS statistical software (version 

8.02; SAS Institute Inc., Cary, NC) and were presented as means + standard error.  

ANOVA model was performed using the generalized linear model (GLM).  When F 
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values were significant, post hoc analysis using Fisher's least square means separation 

tests were preformed to determine differences between groups.  Differences of P<0.05 

were considered significant in all statistical analysis. 
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Table 1.  Diet Composition (g/kg diet) for the Control (AIN-93M), Low Dose (LD=5%), 
Medium Dose (MD=15%), and High Dose (HD=25%) Dried Plum Diets 

Ingredients Control 
(AIN-93M) 
(g/kg diet) 

LD (5%) 
dried plum 
(g/kg diet) 

MD (15%) 
dried plum 
(g/kg diet) 

HD (25%) 
dried plum 
(g/kg diet) 

Carbohydrates  
Cornstarch 465.7 425.7 345.7 265.7 
Maltodextrin 155.0 155.0 155.0 155.0 
Sucrose 100.0 100.0 100.0 100.0 
Dried plum -- 40.0 120.0 200.0 
Total 720.7 720.7 720.7 720.7 

Protein 
 

Casein 140.0 138.5 135.50 132.5 
Dried plum -- 1.5 4.5 7.5 
Total 140.0 140.0 140.0 140.0 

Fat 
 

Soybean oil 40.0 39.75 39.25 38.75 
Dried plum -- 0.25 0.75 1.25 
Total 40.0 40.0 40.0 40.0 

Fiber 
 

Cellulose 50.0 45.5 36.5 27.5 
Dried plum -- 4.5 13.5 22.5 
Total 50.0 50.0 50.0 50.0 

Vitamin Mix 10.0 10.0 10.0 10.0 

Mineral Mix 
 

Mineral mix   
 (Ca-P deficient) 

13.4 13.4 13.4 13.4 

Ca carbonate 9.88 9.79 9.6 9.43 
Ca (dried plum) -- 0.036 0.108 0.18 
K phosphate 5.6 5.48 5.24 5.0 
Na phosphate 3.44 3.32 3.08 2.84 
P (dried plum) -- 0.054 0.162 0.27 
K citrate 0.9 0.9 0.9 0.9 
Sucrose 1.78 2.02 2.78 2.98 
Total 35.0 35.0 35.0 35.0 

L-cysteine 1.8 1.8 1.8 1.8 

Caloric density 
 (kJ/g diet) 

17.6 17.5 17.5 17.4 

.
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CHAPTER IV 

 

RESULTS AND DISCUSSION 

 

Alterations in Bone Mass, Structure, Strength, and Biochemical Markers Induced by 

HLU 

 The primary focus of this project was to evaluate the ability of dried plum to 

enhance bone recovery following skeletal unloading.  Understanding the influence of 

HLU on bone mass, structure, biomechanical properties and bone metabolism in 6-month 

old female rats is first required. Therefore, data on the alterations on bone parameters are 

presented to establish the baseline changes in bone induced by HLU.  

Following 3 weeks of HLU, body weight was significantly reduced in the HLU 

group compared to the AMB control group (Table 2).  Tibial and vertebral BMC and 

BMD were significantly decreased by HLU (Table 2).  Trabecular bone volume (BV/TV) 

and thickness (TbTh) were reduced in the distal femur metaphysis and vertebral body (p< 

0.0001) and femoral trabecular separation (TbSp) was increased (p< 0.05) (Table 3).  

Significant increases in SMI were observed in both the distal femur and vertebral body 

after HLU resulting in a more rod-like structure and vertebral connectivity density (Conn 

Density) was significantly higher in HLU when compared to AMB (Table 3).  Cortical 

bone strength as demonstrated by ultimate and yield load based on femur 3-pointing 

bending was decreased by HLU (Table 4).  Vertebral trabecular bone compressive  
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strength was also reduced as indicated by ultimate and yield load and stress (Table 4). 

Bone formation was not altered by HLU based on OC, ALP and IGF-I, but a significant 

increase in total 12 hour urinary DpD excretion, a marker for bone resorption was 

observed (Table 2). 

 

Body Weight and DXA 

 Over the course of the 90 day treatment period there were no significant 

differences observed in body weight between the groups (Table 5).  No differences were 

noted in food intake due to animals being match-fed to the mean intake of the group with 

the lowest intake adjusted weekly (data not shown). 

 Following the 90 day treatment, the higher dose of dried plum enhanced the 

recovery of BMC (Table 5) and BMD (Figure 1).  In particular, BMC and BMD at both 

the tibia and vertebra were increased to a greater extent (p< 0.05) in those receiving dried 

plum than the HLU group consuming the control diet. BMD of the tibia was by enhanced 

by 7.6% in HD compared to 5.5% in the HLU-control group at the end of re-ambulation 

and was similar to that observed in the PTH-treated group (Figure 1). The HD of dried 

plum also increased the recovery of vertebral BMC (Table 5) and BMD (Figure 1) as 

well.  The LD and MD treatments did not provide any additional benefit on tibial BMC 

or BMD above that of the control diet, but the MD diet enhanced the recovery of 

vertebral BMD (Figure 1).  HD and PTH treatments were significantly increased beyond 

that of the AMB control, suggestive of an anabolic effect with HD dried plum (Figure 1).  
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Microarchitecture of Trabecular and Cortical Bone 

 Dried plum also had positive effects on trabecular bone microarchitecture of the 

distal femur and lumbar vertebra.  Femur BV/TV was significantly enhanced by both HD 

and PTH when compared to HLU (Figure 2A).  Vertebral BV/TV was also improved by 

MD dried plum compared to animals on the control diet (HLU-control) and similar to the 

PTH treated group (Figure 2a).   TbTh, assessed at the femoral metaphysis, was not 

improved by any dose of dried plum and only PTH treatment significantly improved 

TbTh (Figure 2B).  Increases in vertebral TbTh were observed in MD, and HD 

treatments, over and above that of the animals consuming the control diet, but not to the 

extent of the PTH.  TbSp decreased in both MD and HD dried plum however, no group 

was significantly different from HLU control (Figure2C).  There were no changes in 

TbN in the femur or vertebra in response to either dried plum or PTH. (Figure 2D). 

 SMI and Conn density were also analyzed using µCT in trabecular rich regions of 

the distal femur and vertebra (Table 6).  HD dried plum resulted in a more plate-like 

structure as indicated by the decrease in SMI of the femur, however, these alterations 

were not to the level of PTH treated group (Table 6).  No other treatments were able to 

significantly alter femur SMI or reverse the increase in vertebral SMI (Table 5).  Femoral 

and vertebral bone Conn Density was not altered by dried plum, but PTH decreased Conn 

Density of the femur (Table 5).  

Microarchitecture of the cortical bone was assessed in the femoral mid-diaphysis 

using µCT.  No significant differences between groups were demonstrated in response to 

either the dried plum or PTH treatment on cortical porosity, thickness, area or medullary 
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area (Table 6).  These results indicate that the primary effect of dried plum following 

HLU was on trabecular bone. 

 

Biomechanical Effects on Femur and L4 Vertebra 

 Three-point testing of the femur demonstrated that cortical bone strength recovery 

was unaltered by dried plum and PTH.  There were no significant differences in ultimate 

and yield load, ultimate and yield stress and modulus of elasticity in HLU-control and 

HLU groups on dried plum diets at 90 days of re-ambulation (Table 7). Stiffness was the 

only biomechanical parameter of cortical bone that tended (p<0.055) to be increased by 

HD and PTH. 

 In addition to assessment of cortical bone strength, compression testing was 

preformed on the trabecular bone of the lumbar vertebra.  The ultimate load the 

trabecular bone could withstand was comparable in the HD and PTH-treated groups, 

although the effect was not significantly greater than the animals consuming the control 

diet (Table 8).  Similar results were observed with regard to ultimate stress.  Yield load 

tended to be enhanced by MD, HD and PTH (p<0.0627), but there were no significant 

changes in compressive stiffness, yield stress, or modulus of elasticity (Table 8). 

 

Biomarkers of Bone Metabolism 

 Serum osteocalcin, ALP and IGF-1 and urinary DpD were assessed as markers of 

bone formation and resorption (Table 9).  Neither osteocalcin nor IGF-I were 

significantly affected by any of the doses of dried plum or PTH.  Serum ALP, associated 

with bone formation, was increased (p<0.05) in the HD diet group following 90 days of 
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treatment, while all other groups were not significantly different.    Bone resorption, as 

assessed by urinary DpD per unit of creatinine, was not altered by either dried plum or 

PTH at the end of the study. 

 
Discussion 
 

The objective of this study was to evaluate the dose-dependent effects of dietary 

dried plum supplementation on bone recovery following hindlimb unloading (HLU). 

Skeletal unloading using the HLU model has been shown to induce significant bone loss 

in both young and adult male and female rats (Perrien, 2006; Hefferan, 2003; Bloomfield, 

2002).  In our study, 3 weeks of HLU induced a significant decrease in body weight, 

bone mineral content (BMC) and density (BMD), and bone volume (BV/TV) and an 

increase in trabecular separation (TbSp).  Similar results were found in 6-month-old male 

rats (Bloomfield, 2002) with significantly reduced BMC and BMD following up to 28 

days of HLU, but 6-month-old female retired breeders lost primarily cortical as opposed 

to trabecular bone (Allen, 2003).  Hefferan and colleagues (2003) reported significant 

decreases in BV/TV and TbN and increased TbSp in both male and female rats (6-

months-old) after only 2 weeks of HLU.  Others observed decreases in BV/TV, TbTh and 

TbN in as little as 13 days of HLU (Barou, 2002).  

In terms of bone recovery during re-ambulation, we observed that dried plum 

enhanced recovery of bone mass and trabecular bone microarchitecture in both the 

hindlimbs and the vertebra.  Several studies evaluating the effects of dried plum on bone 

in models of gonadal hormone deficiency have been reported in the literature (Arjmandi, 

2001; Deyhim, 2005; Franklin, 2006); however, this is the first to determine its 

effectiveness in enhancing bone recovery in HLU female rats.  Previous animal and 
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human studies have shown dried plum to prevent (Arjmandi, 2001; Franklin, 2006; 

Deyhim, 2005) and even reverse bone loss (Arjmandi, 1999) in part by increasing the rate 

of bone formation.  We have reported similar results here supporting the beneficial 

properties of dried plum on bone following recovery from HLU.   

Dried plum at the high dose significantly enhanced the recovery of femoral and 

vertebral BMD, as well as vertebral BMC.  These findings are similar to reports from 

Deyhim and colleagues (2005) in which 60 days of dried plum reversed the loss of 

femoral and vertebral BMD in osteopenic OVX rats but even doses as low as 5% (w/w) 

were effective in reversing bone loss in OVX.  An additional study in osteopenic 

orchidectomized (ORX) male rats demonstrated that dried plum diet at the highest dose 

increased BMD of the femur and vertebra compared to ORX animals consuming the 

control diet (Smith, 2005).  These findings in male and female gonadal hormone deficient 

rats combined with our observations following HLU indicate that dried plum can reverse 

the detrimental effects on BMD. 

To further evaluate the ability of dried plum to reverse bone loss, we compared 

the effects of dried plum on BMC and BMD to that of the anabolic agent PTH.  We 

found that while the higher dose of dried plum enhanced the recovery of BMD in both the 

tibia and the vertebra, the vertebra was the only site in which BMD was enhanced to the 

point of the PTH.  Cranney and colleagues (2006) reported significant increases in 

lumbar spine, femoral neck and total hip BMD following 1 year PTH treatment in 

postmenopausal women.  An additional study with ovariectomized (OVX) rats also found 

PTH to reverse lost BMD to the level of sham (Fox, 2006).  Other agents such as 

bisphosphonates have been used in the treatment of osteoporosis due to their ability to 
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increase BMD but may have limited ability to restore bone once the loss has occurred 

(Watts, 2003).  Mosekilde and colleagues (2000), reported both risedronate and 

alendroante prevent BMD loss in immobilized female rats.  Additionally, raloxifene, has 

been shown to increase both femoral and lumbar BMD in postmenopausal women 

(D’Amelio, 2003).  However, currently the only FDA approved agent with anabolic 

potential to restore bone is PTH, making the similarities between dried plum and PTH’s 

effect on BMD remarkable. 

 As we have reported, dried plum enhanced BV/TV and tended to improve TbTh 

and TbSp during the re-ambulation following HLU.  Similar findings were reported in 6-

month-old male rats following ORX (Smith, 2005) in that the HD dried plum induced an 

increase in BV/TV and decrease TbSp.  In contrast to our findings, dried plum did 

increase TbN while reversing bone loss due to ORX, but these differences may have 

resulted more from the model than the effect of dried plum.  The influence of dried plum 

on trabecular bone microarchitecture was similar but, in cases perhaps not as pronounced 

as PTH.   PTH, has been shown to normalize BV/TV in OVX rats over a 12 month 

treatment period (Fox, 2006) and significantly enhance BV/TV after 15 days of HLU 

(Moriyama, 2002).  Additionally, Ma and colleagues (1995) demonstrated that in 6-

month-old female rats PTH to significantly increased TbTh and TbN following 30 days 

of HLU.   

 Cortical bone strength appeared to be unaltered by the dried plum diet.  There 

were no significant differences in ultimate and yield load, ultimate and yield stress and 

modulus elasticity on dried plum diets at 90 days of re-ambulation. Stiffness was the only 

biomechanical parameter of cortical bone that tended (p<0.055) to be increased by HD 
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and PTH.  This differs from previous dried plum research in which Deyhim and 

colleagues (2005) reported an improvement in femoral yield and ultimate force in OVX 

animals on a dried plum diet.  Additionally, in a prevention study, Franklin (2006) 

observed that MD and HD prevented the decrease in ultimate load in the femur of ORX 

rats.  These researchers also reported that 90 days of dried plum consumption improved 

vertebral force and stiffness.  Compared to PTH, previous studies have shown 5 weeks of 

PTH increased cortical thickness and improved ultimate force in animals with OVX 

induced bone loss (Rhee, 2004).  Collectively, these studies are suggestive that dried 

plum’s primary effect is on trabecular bone and not on cortical bone. 

 In terms of bone metabolism, our findings indicate that at 90 days, dried plum 

enhanced bone formation and had no effect on bone resorption.  No changes were 

observed in osteocalcin and IGF-I in our study; however, there was a significant increase 

in serum ALP.  It should be mentioned that the ALP assay available for the rodent does 

not assess bone-specific ALP.  Therefore, these results should be confirmed by further 

analyses at the tissue level. Other studies by Arjmandi and colleagues (1999) in OVX 

animals and Franklin et al (2006) in ORX animals have shown that dried plum diet 

increased serum IGF-I, which is associated with bone formation.  In terms of bone 

resorption, urinary DpD was unchanged in our study at the end of the re-ambulation 

period.  Similar results were reported in a 3 month clinical trial with postmenopausal 

women consuming 10-12 dried plums per day (Arjmandi, 2002).  In that study, both IGF-

I and ALP, indicators of increased bone formation, were significantly increased and 

markers of bone resorption were unaffected. These findings indicate that dried plum may 

increase bone formation and have no effect on bone resorption.  Since PTH treatment 
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tends to increase bone resorption but have a greater effect on enhancing bone formation, 

the mechanism which dried plum improves bone may be somewhat different than that of 

PTH. 

 We conclude that recovery of bone is enhanced by the higher doses of dried plum 

in the HLU rat to a greater extent than observed in animals on the control diet and is 

comparable to PTH treatment.  In this study, it appears that dried plum’s primary effect is 

on trabecular bone rather than cortical bone and that dried plum enhances bone formation 

and has no effect on bone resorption.   
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Table 2.  Alterations in Body Weight, Bone Mineral Content (BMC) and Density (BMD), 
and Biochemical Markers in Response to Hindlimb Unloading in 6-month-old Female 
Rats 

Parameters 
 

AMB HLU P-Value 

Body Weight 
 

Pre-HLU (g) 293 + 3 292 + 5 0.8987

Post-HLU (g) 303 + 4 272 + 5 0.0002

Tibia 
 

BMC (g) 0.3454 + 0.0086 0.3215 + 0.0059 0.0352 
 

BMD (g/cm2) 0.2176 + 0.0030 0.2093 + 0.0016 0.0233 
 

Vertebra 
 

BMC (g) 0.1626 + 0.0053 0.1468 + 0.0028 0.0146 
 

BMD (g/cm2) 0.2654 + 0.0044 0.2444 + 0.0029 0.0007 
 

Serum 
 

Osteocalcin (ng/ml) 106.53 + 8.86 135.27 + 14.47 0.1216 
 

Alkaline Phosphatase 
(ukat/L) 

 

1.35 + 0.19 1.38 + 0.13 0.9066 

Urinary  
Deoxypyridinoline 

 (nmol/12hr) 
 

75.31 + 25.01 571.11 + 162.25 0.0374 

 
AMB—ambulatory control rats; HLU—hindlimb unloaded rats; BMC- bone mineral 
content; BMD- bone mineral density 
Data are means + SE.  Parameters with P<0.05 indicates a significant difference between 
AMB and HLU groups.  (n=9 rats/group)
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Table 3.  Alterations in Trabecular and Cortical Bone Parameters as Assessed by µCT at 
the Distal Femur Metaphysis and Vertebral Body in Response to Hindlimb Unloading in 
6-month-old Female Rats 

Parameters AMB HLU P-Value 
Distal Femur 
 

BV/TV (%) 38.48 + 1.87 22.68 + 1.77 
 

0.0001 
 

TbN (1/mm3) 5.41 + 0.16 4.95 + 0.15 0.0538 
 

TbTh (mm) 0.082 + 0.002 0.07 + 0.002 0.0001 
 

TbSp (mm) 0.17 + 0.007 0.20 + 0.007 0.0199 
 

Conn Density (1/mm3) 149.85 + 9.76 140.95 + 9.26 0.5172 
 

SMI 0.82 + 0.17 1.44 + 0.16 0.0003 
 

Vertebra 
 

BV/TV (%) 
 

39.43 + 2.54 31.22 + 2.41 0.0314 

 TbN (1/mm3) 4.43 + 0.14 4.20 + 0.13 0.2432 
 

TbTh (mm) 0.09 + 0.003 0.08 + 0.003 0.0085 
 

TbSp (mm) 0.22 + 0.01 0.24 + 0.01 0.2445 
 

Conn Density (1/mm3) 59.86 + 4.07 80.56 + 3.86 0.0018 
 

SMI 
 

-1.21 + 0.34 -0.05 + 0.33 0.0255 

AMB—ambulatory control rats; HLU—hindlimb unloaded rats;  
Data are means + SE. Parameters with P<0.05 indicate a significant difference between 
AMB and HLU groups (n=9 rats/group) 
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Table 4. Effects of HLU on Cortical and Vertebral Bone Strength Assessed by 3-point 
Bending and Compression Testing in 6-month-old Female Rats 

Parameters AMB HLU P-Value 
Femur 
 

Ultimate Load (N) 135.27 + 3.80 124.33 + 1.21 0.0464 
 

Yield Load (N) 110.50 + 6.70 93.41 + 2.23 0.0226 
 

Stiffness (N/mm) 134.23 + 1.46 134.24 + 1.92 0.9953 
 

Ultimate Stress (N/mm2) 200.64 + 5.26 198.39 + 9.26 0.9307 
 

Yield Stress (N/mm2) 170.22 + 9.74 148.82 + 7.21 0.1145 
 

Modulus Elasticity (1/mm2) 5667.14 + 236.24 6052.87 + 375.05 0.3875 
 

Vertebra 
 

Ultimate Load (N) 234.64 + 12.12 166.40 + 4.45 0.0001 
 

Yield Load (N) 167.34 + 15.04 120.14 + 5.86 0.0111 
 

Stiffness (N/mm) 709.17 + 68.75 597.33 + 48.31 0.2044 
 

Ultimate Stress (N/mm2) 35.14 + 1.65 26.56 + 0.79 0.0003 

 Yield Stress (N/mm2) 25.08 + 2.21 19.12 + 0.77 0.0229 

 Modulus Elasticity (1/mm2) 684.34 + 59.32 627.91 + 043.91 0.4572 
AMB—ambulatory control rats; HLU—hindlimb unloaded rats; 
Data are means + SE.  Biomechanical parameters with P<0.05 indicate a significant 
difference between AMB and HLU groups (n=9 rats/group) 
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Figure 1.  Alterations in Tibial and Vertebral Bone Mineral Density (BMD) in Response to Low 
Dose (LD=5%), Medium Dose (MD=15%), High Dose (HD=25%) Dried Plum or Parathyroid 
Hormone (PTH=80µg/kg) 
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Data are means + SE.  Parameters with P<0.05 indicate a significant difference between groups. 
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Figure 2.  Alterations in the (A) Trabecular Bone Volume (BV/TV), (B) Trabecular Thickness 
(TbTh), (C) Trabecular Separation (TbSp) and (D) Trabecular Number (TbN) at the Distal Femur 
Metaphysis and the Lumbar Vertebra in Response to Low Dose (LD=5%), Medium Dose 
(MD=15%), High Dose (HD=25%) Dried Plum or Parathyroid Hormone (PTH=80 µg/kg) 
during a 90 Day Re-ambulation Period. 
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CHAPTER V 

 

SUMMARY AND CONCLUSIONS 
 

Summary 

 Recent studies have shown dried plum to prevent and reverse bone loss in animal 

models of gonadal hormone deficiency-induced osteoporosis.  The objectives of this 

study were to determine: 1) if dried plums could enhance bone recovery following 

hindlimb unloading (HLU); 2) the most effective dose  (5%, 15%, or 25%; w/w) of dried 

plum; and 3) how the effects of dried plum on bone compare to the anabolic effects of 

parathyroid hormone (PTH).  Six month old female virgin Sprague-Dawley rats were 

either HLU (n=70) to induce bone loss or remained ambulatory (n=16) for 3 weeks.  

Following the HLU period and the confirmation of bone loss, the remaining groups were 

randomly assigned to treatments for 90 days: standard semi-purified (control) diet with 

either LD=5%, MD=15% or HD=25% (w/w) dried plum added or control diet plus 

parathyroid hormone administration (80 µg PTH/kg bw; 3 x wk Bachem, Inc).  We 

reported that the higher doses of dried plum enhanced the recovery of BMD and BMC of 

both the tibia and vertebra compared to animals on the control diet, although only the 

vertebral site responded to the level of the PTH group.  Trabecular bone volume (BV/TV) 

was enhanced in the HD group and was similar to the group 
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receiving intermittent PTH.  Trabecular thickness (TbTh) of the vertebra increased in the 

MD and HD dried plum groups, although not to the level of PTH.  Bone formation as 

indicated by serum alkaline phosphatase (ALP) was significantly higher in the HD group, 

but bone resorption was unaltered.  These findings suggest that dried plum enhances bone 

recovery in osteopenic female rats perhaps by up-regulating bone formation.  These 

effects appear to be somewhat similar to PTH in restoring trabecular bone, but perhaps 

acting through a different mechanism.  

 

Conclusions 

Hypothesis: Dried plums will dose-dependently enhance the recovery of bone following 

hindlimb unloading and have similar effects to the anabolic agent, parathyroid hormone 

(PTH). 

 We reject this hypothesis because dried plum did not have a dose-dependent 

response in the recovery on bone following HLU.  Although, dried plum did enhance 

recovery positively, it was not a true dose-dependent response.  High dose dried plum 

provided the greatest enhancement of bone recovery when compared to animals on the 

control diet and was often comparable to the effects of PTH.  Significant increases were 

seen in BMC, BMD and bone microarchitecture in animals on HD dried plum while LD 

and MD dried plum provided no benefit.  HD dried plum also aided in the recovery of 

trabecular bone as assessed by compression testing and significantly increased serum 

ALP. 
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Recommendations 

 Considering the findings of this study, future research should be continued in this 

area related to the effects of dried plum on bone.  We have demonstrated that dried plum 

can enhance the recovery of bone, especially trabecular bone, even after significant 

deterioration has occurred.  Future studies should be designed to determine how dried 

plum positively effects bone formation, including studies using dynamic bone 

histomorphometry.  Recent findings demonstrated that in males, bone loss is prevented 

by up-regulating IGF-I and down-regulating the RANK pathway (Franklin, 2006).  

Further studies are needed to better understand how these effects are mediated and 

whether they are actually similar to PTH or present a novel pathway by which dried plum 

impacts bone metabolism. 

 Additionally, clinical trials are necessary to evaluate dried plum’s effect in men 

and women.  Studies are needed to determine:  1) the dose-dependent effects of dried 

plum on BMD and BMC in both postmenopausal women as well as age-related bone loss 

in both men and women; 2) the most efficacious dose of dried plum for each of the study 

populations; 3) the alterations in bone metabolism corresponding to the changes in BMD; 

and 4) if there are any possible adverse side effects in human subjects. 
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