CARDIOVASCULAR RISK FACTORS IN AMERICAN INDIAN AND AFRICAN AMERICAN WOMEN OF CHILD BEARING AGE AND THE RELATIONSHIP OF THESE FACTORS TO BLOOD LEPTIN CONCENTRATION, INSULIN RESISTANCE AND WAIST CIRCUMFERENCE

By

ARCHANA ELLATH

Bachelor of Science in Clinical Nutrition and Dietetics

Avinashilingam Deemed University

Coimbatore, India

1999

Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE December, 2006

CARDIOVASCULAR RISK FACTORS IN AMERICAN INDIAN AND AFRICAN AMERICAN WOMEN OF CHILD BEARING AGE AND THEIR RELATIONSHIP TO BLOOD LEPTIN CONCENTRATION, INSULIN RESISTANCE AND WAIST CIRCUMFERENCE

Thesis Approved:

Dr. Maria Spicer Thesis Advisor

Dr. Bahram Arjmandi

Dr. Nancy Betts

Dr. A. Gordon. Emslie Dean of the Graduate College

ACKNOWLEDGMENTS

I wish to express my deep appreciation to my major advisor Dr.Maria Spicer for her excellent guidance, encouragement and patience during every phase of my research. Without her guidance this research would not have been completed. I would like to extend my gratitude to her calm responses and valuable suggestions, understanding and friendship for the last two years.

My sincere appreciation extends to my committee members Dr.Bahram Arjmandi for his valuable advice and suggestions and Dr. Nancy Betts. I would also like to thank the Department of Nutritional Sciences for the financial support provided during my academic career at Oklahoma State University.

I would also like to thank Ms Fanta Toure and other friends for cheering me up whenever I put my head on my table to cry with all the corrections in my thesis.

I am grateful to my family and wish to thank my parents K.P.Krishnan and Omana Ellath, my brother Anoop Ellath and my husband, Ajith Kumaran. They have stood beside me providing me love and encouragement. Their moral support and understanding has made me get to where I am today. Their belief in my abilities helped me make this goal a reality. I wish to dedicate my work to my parents, brother and my husband.

TABLE OF CONTENTS

Chapter	Page
I. INTRODUCTION	1
Problem Statement	
Hypotheses	4
Objectives	4

II. REVIEW OF LITERATURE

Cardiovascular disease	6
Cardiovascular risk factors	12
Leptin	19
Insulin Resistance	
Waist Circumference	

III. METHODLOGY

Hypotheses	.38
Assumptions and Limitations	
Primary Data Collection Methods	
Formulas and Normal Values	
Statistical Analysis	

IV. CARDIOVASCULAR RISK FACTORS IN AMERICAN INDIAN AND AFRICAN AMERICAN WOMEN OF CHILD BEARING AGE AND THEIR RELATIONSHIP TO BLOOD LEPTIN CONCENTRATION, INSULIN RESISTANCE AND WAIST CIRCUMFERENCE

Abstract	44
Introduction	45
Material and Methods	47
Results	49
Comment	51
Sources Cited	62

V. SUMMARY, CONCLUSION AND RECOMMENDATIONS

Summary	66
Conclusions	67
Recommendations	69
BIBLIOGRAPHY	70
APPENDICES	87
Appendix A - Study Protocol Approval Form	
Appendix B – Studies showing normal values for insulin resistance Appendix C-Pearson correlations and ttest procedure among variables	90

LIST OF TABLES

Table

Table		Page
1.	Lists mean values for AI and AA women 22-45 years of age	55
2.	Descriptive Statistics for all women	56
3.	Correlation between leptin and cardiovascularrisk factors in AI and AA Women	57
4.	Correlation between waist circumference and insulin	58

LIST OF FIGURES

Figure	Page
1.	Correlation of leptin and systolic blood pressure in
2.	Correlation of waist circumference and systolic blood60 blood pressure in both ethnic groups
3.	Correlation of waist circumference and HOMA IR61 blood pressure in both ethnic groups

LIST OF ABBREVIATIONS

CDC	Centers for Disease Control and Prevention
АНА	American Heart Association
NIH	National Institute of Health
BMI	Body Mass Index
HDL-C	High Density Lipoprotein Cholesterol
LDL-C	Low Density Lipoprotein Cholesterol
CVD	Cardiovascular Disease
WHR	Waist Hip Ratio
WC	Waist Circumference
AI	American Indian
AA	African American
CRP	C Reactive Protein
TNF α	Tumor Necrosis Factor Alpha
IL-6	Interleukin 6
mTG	Intramuscular Triglycerides
HOMA IR	Homeostasis Model Assessment Insulin Resistance
CRF	Cardiorespiratory Fitness
CAC	Coronary Artery Calcification

Thesis Format

This thesis contains 5 chapters: the Introduction, literature review, methodology, a chapter in a journal article format, and summary, conclusions and recommendations. The bibliography and journal article are written in the format required by the Journal of the American Medical Association.

CHAPTER I

INTRODUCTION

Cardiovascular disease is a major public health concern in the United States¹ with an estimated health care cost of over \$300 billion annually due to disability and death 2,3 .

According to the American Heart Association, cardiovascular disease mortality accounted for up to 60% of all mortality¹. According to CDC, heart disease and stroke are the principal components of cardiovascular disease and account for up to 40% of all deaths in the nation⁴. According to American Heart Association, the death rate due to cardiovascular disease accounted for 37.3% of all deaths in 2003¹. It is estimated that over 71,300,000 adults live with some form of cardiovascular disease in the nation and 1 in 3 adults has some form of cardiovascular disease¹.

Cardiovascular disease is the leading cause of death in both genders among racial and ethnic groups². There is disproportion in death and disability due to cardiovascular disease in minority and low income populations in the nation³. Among African Americans 9.9% have heart disease, 5.3% have coronary heart disease, 31.6% have hypertension and 3.5% have had a stroke⁵. Among American Indians 13.8% have heart disease, 8.2% have coronary heart disease, 23.9% have hypertension and 3.1% have had a stroke⁵.

It is estimated that nearly twice as many women die from heart disease compared to all forms of cancer⁶. According to the AHA, cardiovascular disease caused death every minute among women in 2003 in the United States¹. Over 480,000 American women live with some form of cardiovascular disease every year¹. Heart disease is the leading killer of minority women in the United States⁷. Among American Indians aged 18 years or older, 61.4% of women have one or more risk factors such as high blood pressure, current cigarette smoking, cholesterol, obesity and diabetes for heart disease⁸.

According to the U.S Department of Health and Human Services, African American women had the highest age-adjusted death rate due to major cardiovascular disease and stroke when compared to all American females in 1997-1999. The death rate was more than 395.5 per 100,000 women⁹. High blood pressure and smoking rates are higher in African American women than all groups of women. African American women of 20 years of age or older have higher blood pressure levels (36.4 and 36.0) than white non-Hispanic women (19.7)¹⁰.

Oklahoma ranks third highest in the nation for the prevalence of cardiovascular disease and claimed 317/100,000 lives in 1999¹¹. According to the state department of health, cardiovascular disease is the leading cause of death in American Indian and African American populations in Oklahoma in 2003¹². Heart disease accounted for up to 31% of Oklahoma's deaths in 2001¹³. Coronary heart disease accounted for 1 in 5 deaths in women and was the leading cause of death among females in Oklahoma in 2003³.

The likelihood of a woman in Oklahoma to die from heart disease is 50% more than cancer¹⁴. Minority women from racial and ethnic groups face tremendous social, economic, and cultural barriers to achieving optimal health¹⁵. Minority women face

lower levels of education, higher levels of unemployment and lack public health insurance. It is estimated that nearly 13 million women live in households with income below the Federal poverty level¹⁶. Thus minority women have a high risk of death and disability from heart disease, stroke, diabetes, and chronic obstructive pulmonary disease¹⁵. Thus it is evident that minority women in rural Oklahoma also live below the poverty line and is at higher risk for heart disease.

In Oklahoma, the prevalence of health disparities varies according to race and ethnic minority groups. It was estimated that the annual age adjusted death rate due to heart disease among African Americans accounted for up to 582 and the death rate among American Indians accounted for up to 278 of all deaths between 1991-1995¹⁷.

Obesity is associated with a spectrum of cardiovascular disorders¹⁸. One of the ways by which adiposity could contribute to the development of cardiovascular disease is through increased leptin production¹⁹⁻²¹. Leptin, the ob-gene product is a protein hormone expressed in the adipose tissue²². Leptin correlates with body fat mass in obese and lean subjects^{23, 24}. Leptin levels are elevated in obese compared to lean subjects²⁵.

Insulin is a key hormone involved in glucose metabolism and induces vasodilation. Resistance to the utilization of insulin in obese subjects results in increased insulin production to maintain normal rate of glucose uptake. Thus insulin resistance can adversely affect the cardiovascular system²⁶.

Waist circumference is a measure of abdominal obesity specifically visceral fat²⁷. Abdominal obesity is associated with increased cardiovascular disease in men and women²⁸. Risk factors of cardiovascular disease such as high blood pressure, increased triglycerides, total cholesterol, HDL cholesterol and LDL cholesterol in abdominally

obese women has been associated with a waist circumference greater than 88cms in women²⁷.

However, there is a lack of sufficient data regarding the prevalence of cardiovascular disease in Oklahoma among ethnic minority groups.

Therefore, the following hypotheses were developed

1. There will be a difference between leptin levels, insulin resistance and waist circumference in American Indian and African American women.

2. Blood leptin concentration will be positively correlated with cardiovascular risk factors in American Indian and African American women.

3. Insulin resistance will be significantly correlated with cardiovascular risk factors in American Indian and African American women.

4. Waist circumference is a predictor of cardiovascular risk in American Indian and African American Women.

5. Waist circumference is positively correlated to insulin resistance in American Indian and African American women.

Based on the hypotheses, the following objectives were developed

1. To determine if there is an ethnic difference between leptin levels, insulin resistance and waist circumference in American Indian and African American Women

2. To determine the correlation of blood leptin concentration with cardiovascular risk factors in American Indian and African American Women

3. To examine the relationship of insulin resistance to cardiovascular risk factors in American Indian and African American Women 4. To investigate whether waist circumference is a predictor of cardiovascular risk in American Indian and African American Women.

5. To determine the correlation of Waist circumference and Insulin resistance in both ethnic groups

CHAPTER II

REVIEW OF LITERATURE

CARDIOVASCULAR DISEASE

Global Prevalence Of Cardiovascular Disease

Cardiovascular disease is a cluster of disorders of the heart and blood vessels which includes coronary heart disease, cereberovascular disease, hypertension, peripheral vascular disease, heart failure, rheumatic heart disease, congenital heart disease and cardiomyopathies ²⁹. It is the most common cause of death worldwide in both men and women. According to The World Health Report 2003 by the World Health Organization, cardiovascular disease accounted for up to 16.7million deaths globally with 7.2 million due to ischemic heart disease, 5.5 million due to cerebrovascular disease and 3.9 million due to hypertension and other heart conditions. Cardiovascular disease deaths accounts for one third of global deaths in low and middle-income countries³⁰. In 1999 cardiovascular disease deaths in the low and middle-income countries accounted for approximately 80% of global cardiovascular disease deaths³⁰.

Cardiovascular disease will be the leading cause of death in developing countries by 2010. In developed countries it is the leading cause of death³¹. According to World Health Report on Violence and Health, 2002, the leading causes of death among the WHO member states in 2000 were ischemic heart disease and cereberovascular disease. Ischemic heart disease accounted for up to 12.4% of total deaths and cereberovascular disease accounted for up to 9.2% of all deaths. Cardiovascular disease risk poses a global threat in developing countries and industrialized nations.

Prevalence Of Cardiovascular Disease In United States

Cardiovascular diseases are the leading cause of death among men and women of all racial and ethnic groups in the country³². According to CDC, it is estimated that almost 70.1 million Americans live with some form of cardiovascular disease³³. The principal causes of cardiovascular disease death among men and women in the United States are coronary heart disease and stroke³⁴. According to the CDC, heart disease and stroke are the principal components of cardiovascular disease and accounts for up to 40% of all deaths in the nation⁴.

Health Disparities Among Minority Populations

Health disparities among minority populations can be categorized by race, ethnicity and socioeconomic status in the United States³⁵. Racial and ethnic minority groups are growing rapidly in increasing proportions in the United States. According to the US Census Bureau 2000, 1 of every 4 U.S residents belongs to a racial and ethnic minority group³⁶. It is estimated that, in 2010 the number of racial and ethnic minorities will be 1 out of 3 U.S. residents. By 2050, the proportion will continue to increase and minority population will account for 50% of the total U.S population³⁷.

According to the 2004, National Healthcare Quality Report and National Healthcare Disparities Report, women experience socioeconomic disparities in addition to gender and racial/ethnic disparities. It is estimated that over 53 percent of all African American women receive poorer quality care than whites ³⁸. They have access to worse care by 29%. Minority women face lower levels of education, higher levels of unemployment and lack public health insurance^{15, 39}. It is estimated that nearly 13 million women live in households with income below the Federal poverty level¹⁶.

According to the CDC.1993-2004 report, it is estimated that the prevalence of cardiovascular disease among non-Hispanic white men and women is 66%. Cardiovascular disease rate among non-Hispanic black men and women is 85.8% ⁴⁰ and 58.5% in Mexican American men and women.

According to the 2000 US Census Bureau report, African Americans accounted for up to 12.9% of total population. Cardiovascular disease is the leading killer of African Americans in the United States. According to the CDC, cardiovascular disease deaths among African Americans accounts for up to 36.4% of all the other causes of deaths every year. In 2001, the death rates among African Americans due to heart disease were 30% higher than among whites. The death rates due to stroke in African Americans were 41% higher than among whites³⁴. Of all the minority groups, African Americans tend to develop high blood pressure at a younger age^{10, 41}. They are also less likely to engage in physical activity⁴².

According to the 2000 US Census Bureau, American Indians accounted for up to 1.5% of the overall population with a total of 4.1 million. Heart disease is the leading cause of death among American Indians and Alaska Natives. In a study conducted in Montana from 1991-1995 and 1996-2000 to calculate the heart disease and stroke

mortality rate of American Indians and Caucasians, it was shown that the death rates due to heart disease and stroke were higher in American Indian men and women compared to white men and women thus suggesting that American Indians are at a higher risk of developing cardiovascular disease compared to whites⁴³.

According to National Vital Statistics, in 2002, the death rate among African Americans due to cardiovascular disease accounted for up to 33.3% and death rate due to cardiovascular disease among American Indians accounted for up to 24.5% of all deaths. The prevalence of diabetes mellitus, a risk factor for heart disease was higher in American Indians which accounted for up to 6% followed by African Americans which accounted up to 4.4%⁴⁴ (National Vital Statistics Reports, Vol 53, No 17, March 7, 2005). Smoking increases the risk of cardiovascular disease. According to CDC, it is estimated that in Oklahoma, the smoking rate among racial/ethnic groups in adolescents range from 13% among African Americans to 26% among American Indians⁴⁵.

Ethnicity And Obesity

Obesity and overweight, a risk factor for cardiovascular disease in the U.S population is at a higher rate among racial/ethnic minority populations such as African Americans and American Indians compared with whites. The prevalence of obesity is high among African Americans, particularly African American women. According to CDC, between 1994 and 2000, obesity among African American men increased from 21.3% of American adults to 28.8% American adults. Between 1994 and 2000, obesity among African adults to 50.8% of American adults⁴⁶. When compared to non-Hispanic white women, 69% of AA women

are overweight or obese⁴⁷. Data obtained from National Health and Nutrition Examination Survey (NHANES) have shown that the prevalence of obesity is twice when compared to European American women⁴⁸.

American Indians suffer from obesity and overweight at younger ages. This is due to an excess accumulation of fat in childhood among American Indians⁴⁹. According to CDC, in 1999 the prevalence of overweight among children and adolescents between ages 5 to 17 was 39 percent of males and 38 percent females^{49, 50}. The 1990 American Indian School children Height and Weight Survey, conducted by the Indian Health Service, showed that 40% of 5-18 year old American Indians were overweight⁵¹. Data from other studies have observed that 22% of children were at risk for overweight among American Indians between 5- 18 years of age, while 41% of the sample were overweight⁵². The increasing prevalence of obesity and overweight among younger people poses a health challenge for American Indian communities which increased the risk of cardiovascular disease in this population.

Cardiovascular Disease And Women

Cardiovascular disease particularly coronary heart disease and stroke is the leading killer of women in the United States⁵³⁻⁵⁵. Cardiovascular disease causes about half a million deaths among women every year⁵⁶. According to the CDC, it is estimated that in 2002, 696,947 Americans died due to heart disease and this accounted for up to 51% of women⁵⁷.

Minority women experience a number of health problems with shorter life expectancy, higher incidence of chronic diseases and higher maternal and infant

mortality. Increased poverty rate, lack of education and limited medical care have an additional effect on overall health status of minority women⁵⁸.

The cardiovascular disease is linked with a number of risk factors in minority women. Cardiovascular disease is influenced by behavioral, social, cultural and economic factors. Elevated blood pressure, cigarette smoking, hypercholesterolemia, excess body weight, sedentary lifestyle and diabetes increase the likelihood of developing the disease⁵⁹.

Cardiovascular Disease In Oklahoma

The prevalence of death due to CVD in Oklahoma is the second highest in the nation with 391.6 deaths per 100,000 populations¹¹. According to officials at the Oklahoma State Department of Health (OSDH) each day 30 Oklahomans die of heart disease⁶⁰. Coronary heart disease accounts for one in five deaths in women and was also the leading cause of death among females in Oklahoma in 2003⁶⁰. The age-adjusted mortality rates for diseases of the heart and stroke are higher in Oklahoma compared to U.S⁶⁰. Heart disease accounted for approximately 32% of the state's deaths in 2002⁶¹. An overall, cardiovascular disease claims 14,500 lives in Oklahomans. This accounts for 44% of all deaths in Oklahoma⁶². The associated risk factors for cardiovascular disease in Oklahoma were higher than those in United States overall in many areas⁶².

Diseases of the heart were the leading rankable causes of deaths in Oklahoma among African Americans and American Indians in 2003. This accounted for up to 3,205 deaths in Oklahoma and 2012 deaths per 100,000 which is more than the death caused by malignant neoplasm and cereberovascular diseases⁶³.

In 1999, heart disease claimed 5,869 lives of women of Oklahoma. The likelihood of women in Oklahoma to die from heart disease is 50% more than cancer¹⁴. Smoking contributes to 25% of heart disease deaths among women in Oklahoma. Obesity accounts for 32% of heart disease deaths. And sedentary lifestyle accounts for 35% of deaths annually. High blood pressure contributes to 29% of heart disease deaths among Oklahoma women¹⁴. The use of oral contraceptives has also been found to increase a woman's risk of developing heart disease. In 2000,6% of Oklahoma adult women had diabetes and these women have a two times greater risk of coronary heart disease¹⁴.

CARDIOVASCULAR RISK FACTORS

Risk factors that increase the likelihood of developing cardiovascular disease are high blood pressure, high blood cholesterol, Type2 diabetes, overweight and obesity³⁰. According to CDC, it is estimated that 65 million Americans aged 20 or older have high blood pressure. It is also estimated that 107 million Americans aged 20 or older have elevated blood cholesterol⁶⁴. It is estimated that 30% of American adults are obese which accounts up to 60 million³⁴. According to NIH Statistics, it is estimated that 20.6 million Americans aged 20 or older have diabetes⁶⁵.

Framingham Risk Score

The Framingham Risk Score, developed by the National Cholesterol Education Program Adult Treatment Panel (III) procedures, is a multivariate statistical model that uses age, sex, high density lipoproteins cholesterol, total cholesterol, systolic blood pressure, and smoking. It predicts a person's risk of having coronary heart disease over a period of 10 years. The risk score calculator includes points for each risk factor. The 10-yr risk for coronary heart disease is high if the points are equal or greater than 30⁶⁶.

Systolic Blood Pressure

Epidemiologic studies have demonstrated the relationship between SBP and cardiovascular risk. The Framingham Study was a 14 yr biennial follow up study of 5,127 men and women. Systolic and diastolic blood pressure data was compared to the risk of developing coronary heart disease in this cohort of men and women. There was a strong association of SBP with coronary heart disease risk compared to diastolic blood pressure⁶⁷. Another study conducted in the Framingham Heart Study participants concluded that SBP was a strong predictor of congestive heart failure when compared to diastolic blood pressure⁶⁸.

The Brisighella Heart Study, a population based European study examined SBP, diastolic blood pressure, pulse pressure and its relationship to coronary heart disease. The study included men and women between the ages of 14-84. There was a 44% increased risk at SBP of 120-139 mm Hg, 76% increased risk at SBP readings of 140-159 mm Hg and 109% increased risk at SBP greater or equal to 160mm Hg. The risk increased with increasing levels of SBP but not diastolic blood pressure⁶⁹.

In a 15 yr cohort study, two independent cross-sectional random samples were investigated for subjects who participated in baseline surveys in 1972 and 1977. Men and women aged 25-64 free of myocardial infarction were studied. Isolated systolic

hypertension was defined as SBP >=160 mm Hg. The incidence of heart disease increased with an increase in SBP. In women, isolated systolic hypertension was significantly higher and increased the risk of myocardial infarction⁷⁰.

He et al.⁷¹ conducted a meta-analysis of prospective cohort studies, epidemiologic studies and randomized controlled trials to determine the association between SBP and risk of coronary heart disease and stroke. SBP was more strongly associated with coronary heart disease than diastolic blood pressure. A reduction of 12-13 mm Hg in SBP readings was associated with 21% reduction in coronary heart disease, 37% reduction in stroke and 25% reduction in total cardiovascular mortality^{71, 72}.

In the Copenhagen City Heart Study, men and women were examined to estimate the influence of blood pressure on the risk of stroke incidence. Again, SBP was more strongly associated with stroke risk than diastolic blood pressure. SBP was the best single predictor of cardiovascular events in this study⁷³.

Total Cholesterol, HDL-Cholesterol, Diabetes

Epidemiologic studies indicate that high levels of serum total cholesterol are related to coronary heart disease. The report on diet and health by the National Research Council-National Academy of Sciences cited these studies in showing a stronger link between total cholesterol and coronary heart disease⁷⁴. The most prominent studies include The Framingham Heart Study, Multiple Risk Factor Intervention Trial, Brown and Goldstein's research on low-density lipoprotein (LDL) receptors, Coronary Primary Prevention Trial and The Helsinki Heart Study.

The Framingham Heart Study investigated men and women for total cholesterol and coronary heart disease risk over a period of 14 years. The total serum cholesterol levels were between 150 and 300 mg/dl. A positive correlation between total serum cholesterol and coronary heart disease rates was found. There was an increase in coronary heart disease rate with an increase in total serum cholesterol⁷⁵.

The Mulitiple Risk Factor Intervention Trial (MRFIT) was a randomized trial on high risk middle aged men. The effects of coronary disease risk factors were tested in this cohort. There was a strong association between total serum cholesterol and coronary heart disease deaths over 6 years. The mortality rate was high for individuals with serum cholesterol levels as low as 180mg/dl⁷⁶. A reduction in serum total cholesterol by 1% decreased the risk of coronary heart disease by 2%. The Helsinki Heart Study reported that patients treated with drugs to lower the levels of total cholesterol also reduced the incidence of heart disease^{77, 78}.

A population based Italian study was conducted with a 10-yr follow up from 1983-2002. Men and women were examined and followed for elevated blood pressure, smoking, diabetes, and total cholesterol/HDL ratio and the incidence of stroke. The risk factors were independently related to incidence of stroke risk. It was shown that 80% of the population was at a high risk of stroke incidence with elevated levels of all the risk factors. In participants with only one unfavorable (not high) risk factor, the stroke rate incidence was 76% lower than high risk participants with more than one risk factor⁷⁹. These results are consistent with earlier findings which examined the relationship of lipids and risk of ischemic heart disease in middle-aged women⁸⁰⁻⁸² which found that

there was an increased risk of myocardial infarction and coronary heart disease associated with obesity, elevated blood lipids and apo lipoproteins.

In an 8-yr follow up of the MONICA Augsburg cohort study from 1984-1992, men and women were examined and followed for hypertension, total cholesterol/HDL ratio and smoking. Men had a higher systolic (137 vs.135 mm Hg) when compared to women. Smoking more than 20 cigarettes per day increased the risk of myocardial infarction by 70-80 %. The total cholesterol/ HDL cholesterol ratio greater or equal to 5.5 was a risk factor for myocardial infarction. These risk factors contributed to 65% risk for non-fatal and fatal myocardial infarction in this Augsburg population⁸³.

HDL-Cholesterol is an independent and inverse predictor of coronary heart disease as well. In the Framingham study, men and women were evaluated for lipids and lipoprotein values between 1969-1971. The major lipid risk factor was HDL- C in those subjects who developed coronary heart disease after a period of time. There was an inverse association of HDL-C with coronary heart disease⁸⁴. Further analysis of the Framingham data⁸⁵ to investigate the incidence of coronary heart disease and lipoprotein cholesterol levels found that at the 12-year follow up study, 50% of the participants with higher HDL-C were at lower risk of coronary heart disease than those with lower HDL-C. In the 12-yr follow up of the Prospective Cardiovascular Munster (PROCAM) study, men and women of mean age 15-64 years were evaluated for the incidence of coronary heart disease and its relationship with HDL-C levels. Individuals with HDL-C levels <35mg/dL had a 4-fold increased risk of coronary heart disease within 6 years when compared with levels >35mg/dL⁸⁶.

In the 10 yr follow up of the Atherosclerosis Risk Communities (ARIC) Study, men and women free of coronary heart disease were investigated. A strong association of increased coronary heart disease risk and total cholesterol, LDL-C, and triglycerides was shown. There was a decreased risk of coronary heart disease in participants with elevated HDL-C levels. High levels of lipoproteins were also associated with relative risks for heart disease in both sexes⁸⁷.

Evidence from the Coronary Primary Prevention Trial (CPPT) and Multiple Risk Factor Intervention Trial (MRFIT) showed that a 1-mg/dl increase in HDL-C was associated with a decrease in cardiovascular risk by 3% in women and 2% in men. Hence an inverse relation of HDL-C and coronary heart disease was observed in these studies.

Obesity

Obesity is a major risk factor for cardiovascular disease⁸⁸. Measurement of body mass index (BMI) has been used to define the population as normal weight $(18.5 - 24.9 \text{ Kg/m}^2)$, overweight $(25.0-29.9\text{Kg/m}^2)$ and obese $(\geq 30 \text{ Kg/m}^2)^{89}$. Obesity is associated with accelerated coronary atherosclerosis in young adults. In the Pathobiological Determinants of Atherosclerosis Youth Study (PDAY), BMI in obese young men aged 15-34 years was significantly correlated with increased fatty streaks and raised lesions in the right coronary artery. The effect of BMI on the right coronary artery was higher in men with thicker subcutaneous abdominal fat. It was also observed that the direct effects of obesity such as HDL-cholesterol concentrations, smoking levels, hypertension, and glycohemoglobin concentrations were significantly higher in this group and they accounted for up to 15% of the effect of obesity in coronary atherosclerosis⁹⁰.

The Healthy Women Study, conducted in a sample of premenopausal women from 1983-1985, assessed the relationship between BMI, insulin and cardiovascular risk factors such as blood pressure, triglycerides and HDL-C and fasting glucose. A significant correlation of BMI and blood levels of insulin with all the risk factors except cholesterol and apolipoproteins A-I and apolipoproteins A-II was observed. The interaction between insulin and BMI was not significant. Thus it was suggested that at a given level of insulin, an increase in BMI may be associated with elevated SBP and triglycerides and apolipoprotein- B^{91} .

McLaughlin et al.⁹² conducted a study in a cohort of normal, overweight, and obese individuals to determine the relationship of body fat and cardiovascular disease risk. Adiposity (BMI) and cardiovascular risk factors such as blood pressure, plasma glucose, fasting plasma lipid, lipoprotein concentrations and fasting insulin levels were measured. Elevated BMI contributed to higher low-density lipoprotein concentrations. Insulin resistance, which may not be obvious in people with elevated BMI, contributes to the development of cardiovascular disease.

Another study found that adiposity as measured by waist hip ratio (WHR) is a predictor of coronary heart disease. Waist circumference which is a measure of abdominal obesity is a marker of coronary heart disease in women. Women with a WHR of 0.76 in were twice more likely to develop coronary heat disease and women with a WHR greater than 0.88 were 3 times more likely to develop coronary heart disease. Waist circumference and WHP were independently associated with coronary heart

disease after controlling BMI. This suggests that abdominal obesity is a major risk for heart disease¹⁸.

LEPTIN

Leptin is an important regulator of food intake and energy expenditure. It is a protein hormone produced by the adipocytes which was identified in December 1994 by Friedman and co workers. It was first isolated in mice models with the sequencing of the obese gene²². The mouse ob gene now called the leptin gene derived its name from the Greek word leptos meaning thin. Leptin is a 16KDa protein product encoded from a 4.4 kilo base mRNA²² and is synthesized in white and brown adipose tissue⁹³⁻⁹⁵. Leptin plays an important role in the regulation of food intake and energy expenditure⁹⁶⁻⁹⁸. When recombinant leptin is administered to lean mice, it results in a substantial loss of body weight and fat, reduced food intake and increased energy expenditure^{97, 99}.

Martin et al.,¹⁰⁰ observed a positive correlation of leptin levels with the energy expenditure when the percentage body fat was controlled in cohort of normal weight women. Leptin levels were associated with percent body fat, fat mass and body mass index¹⁰¹.

Mechanism Of Action

The action of leptin takes place in the hypothalamus in the central nervous system^{102, 103} where leptin binds to its receptors inhibiting food intake and decrease body

weight. It has been identified that there are three distinct steps by which the leptin acts as a regulator of food intake. First, leptin is produced by the adipose cells in to the blood stream and it monitors the levels of energy stores in the body. Secondly, leptin signals the adipose stores to the hypothalamus through leptin receptors. Finally, the sympathetic nervous system controls the intake of energy and energy expenditure and maintains a balance in energy. This feedback to the hypothalamus plays an important role in maintaining body weight^{104, 105}.

Leptin receptors (OB-R) mRNA are expressed in the hypothalamus and in other tissues such as kidneys, lungs, liver, heart, small intestine, pancreas, adipose tissue, spleen, testes, and ovaries¹⁰⁶. Leptin receptor gene expression has been found to be an important regulator of leptin in the hypothalamus. The expression of receptor mRNA was higher in ob mice which do not produce leptin when compared to lean mice. The administration of recombinant murine leptin in ob type mice decreases the intake of food associated with reduced levels of receptor mRNA in arcuate region of the hypothalamus¹⁰⁵. This suggested that brain acts as an important site for the action of leptin.

Decreased circulating soluble leptin receptor levels have been associated with obesity in humans. Ogier et al.¹⁰⁷ observed that obesity in humans is associated with a decrease in circulating soluble leptin receptor levels. This study was conducted in obese and lean men and women to determine the soluble leptin receptor levels, it was observed that the soluble leptin receptor levels were lower in obese and overweight individuals when compared to lean subjects. An inverse correlation of soluble leptin receptor levels with percent body fat and leptin was observed. The ratio of circulating leptin to soluble

leptin receptor levels correlated strongly with percent body fat. After a 3-month low calorie diet, soluble leptin receptor levels in obese subjects increased with a decrease in body fat. The leptin levels were higher in women when compared to men and strongly correlated with body fat. Thus, this study suggested that soluble leptin receptor levels increase when there is a decrease in fat mass and weight loss in lean subjects.

Leptin And Obesity

Human obesity is characterized by an increase in serum leptin concentrations associated with an increase in leptin mRNA concentration in adipose tissue as well as an increase in total body fat. Serum leptin concentrations and leptin mRNA content of adipocytes are twice as high in obese subjects as in normal subjects. Serum leptin concentrations are positively correlated with percent body fat²⁵. A number of studies^{23, 24} conducted in humans has shown that the amount of body fat is the principal determinant of the circulating levels of leptin in humans.

Leptin And Body Fat Distribution

In human obesity, serum leptin concentrations are correlated to subcutaneous adiposity^{24, 108} but not to intra-abdominal fat^{109, 110}. Subcutaneous fat may be the major contributor of increased leptin concentration. Minocci et al.,²⁴ determined that subcutaneous fat and preperitoneal visceral fat was assessed. They found that the subcutaneous fat thickness, abdominal fat index and the waist hip ratio correlated independently with the serum leptin concentrations and were higher in women than men. There was no significant relationship between the preperitoneal visceral fat and leptin

concentrations. These results are in agreement with those reported by Vanessa and colleagues¹¹¹ in an earlier study. In a group of obese and non obese women, the secretion rate of leptin from subcutaneous tissue was two or three times higher than visceral adipose tissue.

In human studies, serum leptin concentrations have been reported to correlate with the percentage of body fat ^{25, 112}. A study conducted in normal and obese men and women assessed the percentage of body fat by bioelectric impedance analysis. This showed that elevated serum leptin concentrations were associated with an increase of percent body fat in obese individuals. Decreased serum leptin was also observed due to reduction in body weight. This study also found that the amount of ob mRNA in adipocytes was higher in obese subjects when compared to normal subjects.

Leptin And Systolic Blood Pressure

In rats, high doses of leptin have been shown to increase mean arterial pressure and hypertension ^{113, 114}. It was suggested that a possible mechanism that may be involved in elevated arterial pressure may be due to the activation of central nervous system. These results are in agreement with a later study conducted by Marcelo and his colleagues ¹¹⁵ who showed a positive correlation of leptin with arterial pressure. But the effect of leptin administration on blood pressure has not yet been studied in humans.

Guagnano et al.¹¹⁶ have shown the association of serum leptin levels with casual blood pressure and 24-hour ambulatory blood pressure in obese Italian women. In a cohort of 40 women with android type obesity and 30 women with gynoid type obesity, ambulatory blood pressure was monitored for 24 hours with an interval of 15 minutes

during the day and 30 minutes during the night and compared with 20 nonobese healthy women. Casual blood pressure was measured 3 times at 5 minute intervals in the morning. Waist hip ratio (WHR) was used to differentiate between android (abdominal) and gynoid (peripheral) fat distribution. The WHR greater or equal to 0.86 was defined as android obesity and a WHR lesser or equal to 0.86 was defined as gynoid obesity¹¹⁷. It was found that the serum leptin levels were significantly higher in women with android obesity than women with gynoid obesity. There was a strong positive correlation between leptin levels and 24-hr ambulatory blood pressure in women with android obesity.

Schutte et al.¹¹⁸ conducted a study in a cohort of hypertensive obese/overweight African and normotensive obese/overweight women. The effect of leptin on blood pressure and arterial compliance was investigated. Arterial compliance was measured by stroke volume over pulse pressure. Stroke volume is the volume of blood ejected from the ventricle with each beat of the heart. Pulse pressure is the change in blood pressure during the contraction of the heart. It was observed that leptin levels were higher in obese/overweight hypertensive and normotensive women when compared to lean women but similar in the normotensive and hypertensive obese overweight groups. It was observed that leptin positively correlated with SBP and pulse pressure only in the obese/overweight hypertensive group. Leptin levels also correlated negatively with arterial compliance thus suggesting a positive role of leptin in the development of cardiovascular disease.

Suter et al.¹¹⁹ conducted a study in a group of overweight subjects with hypertension and healthy non-hypertensive subjects. The effect of plasma leptin levels

on blood pressure and heart rate in these subjects was investigated. There was a significant correlation of plasma leptin levels with systolic blood pressure in all women, after adjusting for body weight. Heart rate correlated significantly with leptin levels in all subjects. It was suggested that the relationships were statistically not very strong and may be due to the heterogeneity of study population.

Cardiovascular Disease And Leptin

Leptin is a novel, independent risk factor for the progression of disease of the heart¹²⁰. Soderberg et al.¹⁹ observed that higher leptin levels, total cholesterol and Apo-I predicted acute myocardial infarction in a cohort of obese Swedish men. High leptin levels were positively associated with high BMI, high blood pressure and high insulin levels. In the 5 yr follow up West of Scotland Coronary Prevention Study, leptin levels were examined in subjects who experienced coronary events and compared with controls. It was observed that with an increase in leptin levels, the relative risk of a future coronary event increased²⁰.

Ciconne et al.²¹ showed that the concentration of human plasma leptin is independently associated with the intima-media thickness of the common carotid artery. This was studied in a cross-sectional sample of obese men and women aged 18-45 years of age. Intima media thickness of the common carotid artery was quantified by high resolution B-mode ultrasound imaging was positively correlated with leptin, age, BMI and waist circumference and negatively correlated with insulin sensitivity in men and women.

A cross-sectional study was conducted in a cohort of men and women with type-2 diabetes to determine the levels of plasma leptin and its association with coronary atherosclerosis. Coronary artery calcification (CAC), which is a measure of atherosclerosis, was measured in these subjects using ultra fast computed tomography. Plasma leptin levels were significantly associated with coronary artery calcification after controlling age,gender,BMI and CRP levels suggesting a positive role of plasma leptin levels in the progression of cardiovascular events¹²¹. In The Atherosclerosis Risk in Communities (ARIC) study¹²², the incidence of coronary heart disease was higher at higher carotid intima media thickness. Thus, it is possible that leptin through its effects on calcification and carotid intima media thickness, is a predictor of coronary heart disease incidence.

Schulze et al.¹²³ conducted a study in a group of 53 patients with chronic heart failure. Serum leptin concentrations and serum concentration of soluble leptin receptor was measured in these subjects. It was shown that the leptin concentrations and concentrations of leptin receptor were higher in patients with congestive heart failure when compared with the healthy controls. It was also found that there is a strong positive correlation of serum leptin and TNF- α in patients with severe exercise intolerance. This study suggests that increased concentrations of leptin and soluble leptin receptor in patients with congestive heart failure may be due to increased levels of proinflammatory cytokines.

Interrelationship Of Inflammation, Cardiovascular Disease And Leptin

Inflammation is involved in the etiology of cardiovascular diseases particularly atherosclerosis, ischemic heart disease and heart failure¹²⁴⁻¹²⁶. C-reactive protein, a marker of inflammation and an important indicator of cardiovascular risk¹²⁷⁻¹³¹ is associated with a sequence of cardiovascular events in patients with acute coronary artery disease, angina pectoris and myocardial infarction in healthy men and women. Increased levels of leptin are associated with increased CRP¹³². In a random sample of Finnish men and women, associations of CRP, IL-6 and TNF α factor with coronary heart disease incidence events and cardiovascular disease events were analyzed. The cohort was followed up for a period of 10 years. Increased CRP levels and TNF α factor were significantly associated with the risk factors for the incidence of coronary heart disease and cardiovascular disease such as total cholesterol, hypertension and triglycerides in men when compared to women¹³³.

Inflammation And Atherosclerosis

Atherosclerosis is an inflammatory disease¹³⁴. Coronary atherosclerosis is a disease of the coronary arteries characterized by a combination of changes in the intima of arteries. Fatty granulomatous lesions develop in the arterial wall and lead to the hardening of vessels. The lesions, known as atheroma derived its name from the Greek word meaning "gruel", are characterized by thickening of the intimal wall, deposition of lipid, deformation and fragmentation of the internal elastic membrane. In advanced cases, it results in fibrosis and calcification. Atheromas have 2 major constituents namely, fat and fibrous tissue which gives rise fatty plaques and pearly plaques. As a

result of the formation of atheroma, it can erode the wall of the artery and diminish the elasticity of the artery. Thus thrombosis or blockage of the arteries takes place. Hence, the symptoms and signs of ischemic heart disease occurs¹³⁵. According to the National Cholesterol Education Program, increased low density lipoprotein (LDL) results in the storage of lipids which are involved in an ongoing inflammatory response¹³⁶.

Ross et al.¹³⁷ proposed that endothelial dysfunction leads to atherosclerotic lesions. The possible causes of this dysfunction are due to hypertension, cigarette smoking, elevated LDL levels and diabetes mellitus. Endothelial dysfunction results in the alteration of the homeostatic properties of endothelium. At the point of injury, when the inflammatory response does not remove the offending agents effectively, then these responses stimulates the proliferation of the smooth muscle cells that becomes intermixed at the area of inflammation and forms an intermediate lesion. When these responses continue, the formation of lesions leads to further enlargement that thickens the artery wall. The artery wall prevents the thickening by the process of dilation, so that up to a point the lumen remains unaltered. During worse conditions, the lesion may then intrude in to the lumen and alter the flow of blood when the artery wall can no longer dilate.

Van Dielen et al.¹³⁸ in a cohort of morbidly obese individuals examined the association of obesity, leptin and the development of an inflammatory state. Inflammatory markers such as soluble TNF- α receptors, acute phase proteins, and lip polysaccharide binding protein, serum amyloid, CRP, and plasminogen activator inhibitor-1 (PAI-1) were measured. Leptin concentrations significantly correlated with BMI in these subjects. It was observed that there was a significant correlation of leptin with TNF α receptors such as TNFr55 and TNFr75. Thus it was concluded that in obese

subjects, an increase in leptin concentrations was associated with the increase in inflammatory markers suggesting a positive role of leptin in the regulation of inflammation^{139, 140}.

INSULIN RESISTANCE

Insulin Resistance And Body Fat

Insulin resistance is a condition in which the peripheral target tissues are unable to respond properly to normal circulating concentrations of insulin leading to hypersecretion of insulin by the pancreas¹⁴¹. The process by which insulin action takes place is by binding to insulin receptors on target cells. This results in the uptake of glucose through the glucose transport mechanism and its subsequent metabolism in insulin sensitive tissues^{142, 143}. So in insulin resistant condition, there is a substantial increase of insulin production in the attempt to maintain a normal rate of glucose uptake.

Abdominal body fat is closely associated with insulin resistance. Carey et al.¹⁴⁴ conducted a study in normal and obese women to determine the relationship of insulin resistance and abdominal obesity in these groups. Obese women with abdominal subcutaneous fat as opposed to peripheral non-abdominal fat showed a stronger relationship with insulin sensitivity. These results were consistent with other cross sectional studies conducted in humans that demonstrated a positive correlation of insulin resistance with abdominal adiposity. Researchers observed the association between race, sex, abdominal obesity, hyperlipidemia and fasting insulin levels in black males and

white males with hypertension. The fasting insulin levels were higher in black males when compared to white males. Abdominal obesity and hyperlipidemia significantly correlated with fasting insulin levels in black males when compared to white males. Abdominal obesity was also associated with insulin sensitivity in black males. Hence it was suggested that abdominal obesity or hyperlipidemia doubled the risk of hyperinsulinemia¹⁴⁵. But the mechanisms of insulin resistance in obesity are not fully understood.

Abdominal fat can accumulate either viscerally or subcutaneously. Many investigators¹⁴⁶⁻¹⁴⁹ have found that excess accumulation of subcutaneous fat is more strongly associated with insulin resistance than visceral fat. Kelley et al.¹⁴⁷ partitioned abdominal subcutaneous adipose tissue in to depots of fat namely, superficial subcutaneous adipose tissue (posterior half of the abdominal wall) and deep subcutaneous adipose tissue (anterior half of the abdominal wall). A cross sectional abdominal computed tomography was performed in a cohort of lean and obese men and women. There was a strong positive correlation between insulin resistance and deep subcutaneous adipose tissue. Insulin resistance was also strongly related to visceral adipose tissue. Similarly, researchers found that central abdominal fat in obese early postmenopausal women is a strong correlate of insulin resistance. Intraabdominal fat and subcutaneous fat was inversely and independently related to insulin sensitivity after adjusting for total fat¹⁵⁰.

The accumulation of visceral fat contributes to insulin resistance. Ross et al.¹⁵¹ investigated the relationship of insulin resistance between visceral and total abdominal adipose tissue and muscle composition in a cohort of 40 abdominally obese

premenopausal women. Abdominal fat, which includes visceral and subcutaneous adipose tissue, was measured using magnetic resonance imaging. Insulin mediated glucose disposal rate was measured by hyperinsulinemic euglycemic clamp. It was observed that abdominally obese subjects had higher visceral adiposity when compared to abdominal adiposity. There was also a strong association of glucose disposal rate to visceral adipose tissue when compared to abdominal adipose tissue when compared to abdominal adipose tissue. Additionally, the association of visceral adipose, subcutaneous adipose tissue, total fat mass, physical activity expenditure, and peak VO₂ with glucose uptake in obese postmenopausal women was examined. Visceral adipose tissue levels at lower glucose disposal per Kg lean body mass¹⁵².

Upper body fat is associated with insulin resistance due to its relationship with non-esterified fatty acids from adipose tissue. Several studies suggest that upper body obesity is associated with increased free fatty acids release¹⁵³⁻¹⁵⁶. In a study of upper body obese women, lower body obese women and non obese women. It was shown that insulin resistance was associated more with upper body fat than lower body fat. The difference in body fat distribution was associated with abnormalities in the release of free fatty acids metabolism. Palmitate turnover, which is a measure of lipolysis in adipose tissue, was observed to be higher in upper body obese women than lower body obese women¹⁵⁶. A decline in glucose uptake is associated with an increase in free fatty acid concentration. Decreased glycogen synthesis and carbohydrate oxidation was also observed with reduced glucose uptake. The possible mechanism for decreased glucose uptake is suggested to be due to lowered glucose transport or phosphorlyation in subjects with increased free fatty acids¹⁵⁷.

Roden et al.¹⁵⁸ observed plasma concentrations of free fatty acids, increased by an infusion of a triglyceride emulsion combined with heparin to activate lipoprotein lipase using carbon-13 and phosphorus NMR spectroscopy techniques in 9 healthy subjects. A decreased rate of muscle glycogen synthesis by 50% and a decreased rate of glucose uptake by the whole body by 46% of control values were observed. Elevated plasma free fatty acids inhibited glucose uptake with a reduction in glucose oxidation rate and muscle glycogen synthesis. This suggested that free fatty acids play an important role in insulin resistance. However, the mechanism for this is uncertain.

A study was conducted in a group of obese and lean Caucasian women to investigate the relationship between insulin sensitivity and intra-muscular triglycerides (mTG) and saturated free fatty acids. There was a negative correlation of mTG and insulin mediated glucose uptake in obese women when compared to controls. Saturated fatty acids were higher in obese women than in controls. Increased mTG with saturated fat decreased the rate of glucose uptake in obese women¹⁵⁹.

Deposition of fat in the thigh region is also a marker of insulin resistance in obese subjects with type-2 diabetes¹⁴⁶. Mid thigh adipose tissue measured by tomography was divided in to three compartments in obese and lean subjects. They were subcutaneous adipose tissue (SCAT), adipose tissue beneath fascia (SFAT), adipose tissue infiltrating muscle groups. Adipose tissue around and between the skeletal muscle strongly correlated to insulin resistance along with adipose tissue beneath the fascia¹⁶⁰.

Insulin Resistance And Cardiovascular Disease Risk

Insulin resistance measured by euglycemic insulin clamp glucose disposal rate is predictive of congestive heart failure²⁶. The severity of coronary heart failure was assessed by peak (VO_{2max}), an index of cardiopulmonary function derived from maximal exercise test in men with chronic heart failure, coronary heart disease and in controls¹⁶¹. Chronic heart failure progressed with a marked increase in insulin resistance and reduced peak Vo_2 .

In the San Antonio Heart Study which was in conducted in Mexican-Americans and Non-Hispanic white women for a period of four years, HOMA-IR was positively associated with anthropometric measures and cardiovascular risk factors such as HDL, cholesterol, triglycerides, systolic and diastolic blood pressure¹⁶².

In the Strong Heart Study of American-Indian communities, the relation of insulin resistance to echocardiographic markers of cardiovascular disease was studied. Simone et al.¹⁶³ measured insulin resistance by HOMA IR, left ventricular mass, left Ventricular functioning, stroke volume/pulse pressure ratio and arterial compliance. Insulin resistance was significantly associated with decreased arterial compliance in both men and women.

The Framingham study of women free of myocardial infarction was examined for the relationship between insulin resistance and echocardiogaraphic left ventricular measurements. It was observed that left ventricular mass and left ventricular wall thickness correlated positively with HOMA-IR in women when compared with men. This is due to an increase in HOMA-IR with increased obesity in women¹⁶⁴.

The study on women was conducted by Folsom et al.¹⁶⁵ in a cohort of middle aged women from four U.S communities. Fasting insulin levels were measured in these groups. The subjects developed coronary heart disease after 4-7 years of their study. There was a positive correlation between coronary heart disease and fasting insulin. Fasting insulin was a risk factor for coronary heart disease in black and non-black middle aged women.

In addition, a study was conducted in a group of 15,000 men and women to investigate the relationship between elevated fasting insulin levels and incidence of ischemic stroke. The subjects were for 6-8 years for the incidence of ischemic stroke. Fasting insulin levels and waist to hip ratios were determined in this cohort. The incidence of ischemic stroke correlated with elevated levels of insulin and higher waist to hip ratios¹⁶⁶. This study agrees with an earlier report by Laakso¹⁶⁷ who reported that fasting insulin levels is a good marker of insulin resistance in non-diabetic subjects.

Some studies have also not shown any significant correlation of insulin resistance measured by euglycemic/hyperinsulinemic clamp and oral glucose tolerance test with the development of cardiovascular disease^{168, 169}.

Relationship Between Leptin And Insulin Resistance

In population based studies, serum leptin concentrations have been observed to correlate with insulin sensitivity. De Courten et al.¹⁷⁰ in his study of western Samoans observed that serum leptin concentrations positively correlated with insulin resistance as measured by oral glucose tolerance test clamp, BMI, fasting insulin and mean blood pressure.

Doehner et al.¹⁷¹ conducted a study to investigate the relationship between insulin resistance, norepinephrine, TNF-alpha and hyperleptinaemia. The study compared patients with chronic heart failure with healthy subjects. There was an inverse correlation of insulin sensitivity and leptin levels in subjects with chronic heart failure. Thus it is suggested that elevated leptin levels would directly and independently predict insulin resistance in subjects with ischemic heart disease.

WAIST CIRCUMFERENCE

Waist Circumference

The sex-specific waist circumference cutoff points used by the NIH are a WC of 102 cm (40 inches) in men and 88 cm (35 inches) in women. Patients are categorized according to their cut off points to be normal when WC is below 102 cm and high above 102 cm for men. Women are categorized to be normal with a WC of 88cm and high when the WC is above 88 cm 172 .

In the Third National Health and Nutrition Survey(1988-1994), subjects were classified by BMI and waist Circumference in accordance with NIH guidelines, Subjects with WC values greater than the cut off points(WC >102 for men and WC >88cm for women) had hypertension, diabetes, dyslipidemia and metabolic syndrome compared with normal subjects with WC values below the cutoffs. Subjects with increased WC values showed greater health risk for heart disease¹⁷³.

Some authors have suggested a graded system for the assessment of health risk using WC. Han et al.²⁸ determined the frequency of cardiovascular risk factors in a random sample of men and women and proposed that WC values less than 94cm in men and of less than 80 cm in women were at low health risk. Those ranging from 94 to 102 cm in men and 80 to 88 cm in women were of moderate health risk. Those greater than 102 cm in men and greater than 88 cm in women have a health risk for cardiovascular disease. When cardiovascular risk factors such as systolic and diastolic blood pressure, total plasma cholesterol concentration were measured, men and women with waist circumferences exceeding 94 cm and 80 cm respectively had one cardiovascular risk factor.

Waist circumference is correlated with obesity and cardiovascular disease risks more than BMI. Obesity related risks such as low HDL, high LDL, high blood pressure, and high glucose values were more strongly associated with WC than BMI in a cohort of white men and women. A WC of 90 cm for men and 83 cm for women corresponded to an equivalent in risk of BMI of 25, whereas a WC of 100 cm for men and 93 cm for women was equivalent in risk to BMI of 30^{174} .

Lofgren and his colleagues²⁷ conducted a study in a cohort of overweight or obese premenopausal women. The association of biomarkers for coronary heart disease with waist circumference and BMI was evaluated. Plasma biomarkers such as lipids, apolipoproteins, LDL peak diameter, LDL susceptibility to oxidation, glucose, leptin and insulin were measured. A strong positive correlation between BMI and WC was observed. A majority of the subjects who had a BMI < 30 Kg/m² had a WC>88 cm (92.6 \pm 3.7 cm). The subjects with WC > 88cm had higher diastolic pressure, higher plasma

TG and apo C-III concentrations which are associated with coronary heart disease. Although, BMI also showed a positive correlation with all the risk factors in these subjects, WC in these subjects showed stronger association with coronary heart disease. This suggest that WC can be used as reliable tool to assess the risk for coronary heart disease²⁷. This finding is consistent with another study conducted by Janssen and colleagues¹⁷⁵ who found that WC alone was a better predictor of cardiovascular disease. Thus for a given value of Waist circumference in overweight and obese person and normal weight persons, there is an increase risk for cardiovascular disease.

Waist circumference is an indirect measurement of abdominal fat which includes both visceral and subcutaneous fat. In the 1981 Canada Fitness Survey, the relationship of cardiorespiratory fitness (CRF) with waist circumference, sum of trunk skin folds (an index of central adiposity) and sum of five skinfolds, (an index of abdominal adiposity) was examined. Cardio respiratory fitness was measured by maximal oxygen uptake (VO_{2max}) during an exercise test. Higher cardio respiratory fitness was strongly associated with lower waist circumference for a given BMI. Lower sum of trunk skinfolds and sum of five skinfolds were observed in groups with high CRF¹⁷⁶. Janssen et al.¹⁷⁷ determined the correlation of abdominal and non-abdominal fat to waist circumference and BMI in a cohort of white men and women. Waist circumference was independently correlated with abdominal fat, non-abdominal fat and visceral fat in obese men and women. It was observed that an increase in waist circumference with increasing abdominal fat is specifically contributed by visceral fat. The ability of waist circumference to predict obesity related health risk is explained by visceral fat.

According to Mosca et al.¹⁷⁸ WC can be used as a surrogate measurement for cardiovascular disease risk in women because it is highly correlated with the global Framingham risk score, cardiovascular disease and diabetes. These findings are consistent with the findings of Kato et al.¹⁷⁹, who conducted a study in a cohort of 62 female patients with schizophrenia. An increased waist circumference was associated with cardiovascular risk factors such as hypertension, dyslipidemia, abdominal serum glucose. Waist circumference is a non-invasive, economical and practical tool for the identification of women with risk for cardiovascular risk.

CHAPTER III

METHODOLOGY

Hypothesis

The following hypotheses were formulated for this study:

- 1. There is an ethnic difference between leptin levels, insulin resistance and waist circumference in American Indian an African American women.
- 2. Blood leptin concentration is positively correlated with age, systolic blood pressure and total cholesterol in American Indian and African American women.
- 3. Insulin resistance (Homa-IR) is positively correlated with age, systolic blood pressure and total cholesterol in American Indian and African American women.
- 4. Waist circumference is positively correlated with age, systolic blood pressure and total cholesterol in American Indian and African American Women.
- Waist circumference will be positively correlated with Insulin resistance (Homa-IR) in both ethnic groups.

Assumptions And Limitations

Several assumptions have been made in order to proceed with this analysis. The first assumption is that subjects were truthful with the information they provided. The second assumption is that HOMA IR is a valid measure of insulin resistance in AI and and AA women. The third assumption is that the subjects in the study were truly fasting when blood samples were taken. The fourth assumption is that all the subjects were

similar in that they did not have any underlying condition or health problem that might confound the outcomes. The final assumption is that results of lab analysis were accurate.

Potential limitations for this design include missing data because not all values for each subject may have been obtained. In addition, the sample is a convenience sample based on their availability and willingness to participate. Therefore, this is not a random selection of subjects. This sample is a not a representative sample of the whole American Indian and African American population but is a good representation of American Indian and AA women from rural Oklahoma.

Primary Data Collection Methods

Data was collected by researchers and trained staff at local community centers, clinics and tribal complexes between May, 2001 to Spetember, 2002.

Eighty one women were recruited from the local communities of Binger, Boley, Anadarko, Langston, Wewoka, El reno and Lawton . Local contact persons such as tribal leaders, community center staff, extension specialists and medical clinic workers assisted with distributing information regarding the health study eligibility requirements and with recruiting of participants. Written consent to participate in the study was obtained in accordance with the guidelines of the Institutional Review Board for Human Research at Oklahoma State University and Langston University.

Inclusion And Exclusion Criteria

Women of child bearing age were included in the study. Subjects who were missing more than 25% of data were excluded. After consent was obtained, fasting

venous blood samples were drawn by licensed phlebotomists. Anthropometric measurements include weight, height, triceps skin fold thickness, and bioelectric impedance assessment (BIA) of body compositions were done by the same person to maintain precision. Finally, the women were interviewed by research staff to obtain information on diet, lifestyle habits, and socioeconomic background.

Anthropometric Measurements And Body Composition Determination

Standing barefoot height was obtained for each participant using a portable stadiometer, Seca model 214 Road Rod, (Seca Corporation, Hanover, MD). Weight and body composition were then measured utilizing a bioimpedance scale(Tanita Body Composition Analyzer/Scale Model TBF-310, Tanita Corporation of America, Inc., Arlington Heights, IL). Body mass Index was calculated as Kg/m². Midarm circumference was measured using nonstretch tape on the non-dominant arm midway between the acromion process and tip of olecranon. Triceps skin fold measurement was done on the posterior side of the non-dominant arm. It was measured over the triceps muscle and the midway between the acromion of scapula and olecranon of the ulna. On the lateral side of the arm, the midpoint of acromion and olecranon was marked with the elbow placed at 90 degrees. The skinfold was grasped by the measurer with the thumb and index finger of the left hand. The tip of the caliper was about 1cm or 0.5 in. from the thumb and finger. The caliper was placed perpendicularly to the long axis of the cylinder and 3 readings were noted down from the dial and averaged (Lange skin fold caliper operation manual, Beta technology Inc., Santacruz, CA, U.S.A). Waist

circumference was measured by locating the navel and a non stretch tape was placed around the abdomen without compression on the skin.

Biochemical Analysis

Leptin concentrations were determined using an enzyme linked immunoassay (ELISA) Kit (Linco Research, St.Charles, Missouri). Human leptin molecules from samples were captured on the pretreated plates. These molecules are transferred to a microtiter plate coated by polyclonal rabbit anti-human leptin molecules. Unbound materials from the samples were removed by washing with the buffer. Biotinylated monoclonal antibodies were added to bind the captured human leptin, after which alkaline phosphatase was added to the biotinylated antibodies. The immobilized antibody enzyme conjugates were quantified by monitoring alkaline phosphatase activity in the presence of substrate p-nitrophenyl phosphate. The enzyme activity was measured spectrophotometrically by the increased absorbency at 405 nm. Increased absorbency is proportional to the amount of captured human leptin in the participants' samples.

Serum insulin concentrations were determined by radioimmunoassay (RIA) kit (Linco Inc). A fixed concentration of labeled tracer antigen was added to the samples taken from participants. The antiserum was then added and incubated with a mixture of sample antigen and radio-labeled antigen. Due to limited binding sites on the antibody, the unknown antigen reduces the amount of available tracer antigen that may bind to the antibody. The fractions of bound and free labeled antigen (insulin) were measured to determine the amount of insulin in the unkown sample. In this assay I-labeled human insulin and human insulin anti-serum was used. The calculation for the amount of human

insulin present in each sample was automatically performed by gamma counter at Oklahoma state University's Human Nutrition Laboratory.

Colorimetric assays of fasting serum glucose, total cholesterol, HDL cholesterol, and triglycerides were performed on a Roche Cobas Fara Centrifugal Analyzer (Roche,) using commercially available kits.

Estimation Of Insulin Resistance By HOMA (Homeostasis Model Assessment)

Matthews et al.¹⁸⁰ developed a mathematical model to predict the homeostatic concentrations of glucose and insulin beta-cell deficiency in varying states of insulin resistance. The quantitative assessment of insulin resistance was done utilizing fasting insulin and glucose concentrations (HOMA) using the following mathematical formula:

(HOMA IR) = Ln (Fasting Insulin * Fasting Glucose /22.5)

Fasting Insulin units are in μ U/mL and Fasting Glucose in mg/mL.

HOMA has been validated as a reliable predictor of insulin resistance in humans. The estimation of insulin sensitivity by HOMA is significantly and highly correlated with other measures of insulin sensitivity such as hyperglycemic and euglycaemic clamps and intravenous glucose tolerance test. It must be noted that HOMA is merely an estimation of insulin resistant state and not as sensitive or precise as the clamp technique. It is however, less invasive, less time consuming, less costly, requires less personnel and equipment¹⁸⁰⁻¹⁸⁵.

Normal Values

Normal leptin levels for lean women ranges from 7.4 ± 3.7 ng/ml. Normal blood pressure is 120/80 mm Hg. HDL-C ranges from 40-60 mg/dL. Normal total cholesterol is expected to be less than 200 mg/dL. Normal fasting insulin levels are expected to be between $6.0-27.0\mu$ U/ml and normal fasting glucose levels at 70-110mg/dL. Normal HOMA IR values are expected to range from 1.45-2.8.

Statistical Analysis

Statistical Analysis Software for Windows (SAS 9.1.3 Version, Cary, and N.C) was used to analyze all data. Proc GLM was used to compare differences between American Indian and African American groups. The GLM procedure was used because there are unequal numbers of observations in both groups.

Pearson's Correlation coefficients were used to determine the relationship of cardiovascular risk factors with leptin insulin resistance and waist circumference using PROC CORR procedure of SAS.

The chi-square statistic was used to compare the frequency counts of number of smokers with non smokers in both the groups.

CHAPTER IV

CARDIOVASCULAR RISK FACTORS IN AMERICAN INDIAN AND AFRICAN AMERICAN WOMEN OF CHILD BEARING AGE AND THE RELATIONSHIP OF THESE FACTORS BLOOD LEPTIN CONCENTRATION, INSULIN RESISTANCE AND WAIST CIRCUMFERENCE

Context

Prevalence of health disparities among racial/ethnic groups especially the prevalence of cardiovascular diseases is a major concern in the nation. Leptin concentrations, insulin resistance, and waist circumference are predictors of cardiovascular disease incidence in American Indian and African American women.

Objectives

To determine if there is an ethnic difference in leptin levels, insulin resistance and waist circumference between AI and AA women and to examine the relationship of these variables with cardiovascular risk factors in this cohort.

Design, Setting and Participants

Prospective epidemiologic study of 81 women (48 AI, 33 AA) of child bearing age from rural Oklahoma. Participants were recruited by convenience sampling from the local communities of Andarko, Binger, Boley, El Reno, Langston, Lawton and Wewoka in Oklahoma between May, 2001 to September, 2002.

Main Outcome Measures

Differences in leptin levels, insulin resistance (HOMA IR), and waist circumference in this cohort and correlation of these variables with age, systolic blood pressure, waist circumference and total cholesterol.

Results

Ninety percent of the women were overweight or obese with a mean BMI of 33 Kg/m^2 . Of the AI women, 58% were obese and of the AA women, 61% were obese. Leptin levels were significantly different between the two ethnic groups. Leptin concentrations were significantly higher for AA women when compared to AI women. There was no significant difference in waist circumference and insulin resistance measures between these groups. There was a positive correlation of leptin with systolic blood pressure in both groups (r=0.33, p= 0.004) and waist circumference with systolic blood pressure (r=0.26, p=0.02) in both groups.

Conclusion

African American women had greater leptin concentrations when compared to AI women. Obesity and overweight were prevalent in this cohort. Blood leptin concentration and waist circumference were correlated with cardiovascular risk factors in AI and AA women of child bearing age. Insulin resistance estimated by HOMA IR was not correlated with cardiovascular risk factors. However HOMA IR correlated with waist circumference and waist circumference correlated with SBP.

Introduction

Cardiovascular disease is major public health concern in the United States with an estimated health care cost of over \$300 billion annually due to disability and death¹. It is estimated that over 71 million adults in the U.S, or 1 in 3 live with some form of cardiovascular disease ¹. According to the CDC, heart disease and stroke are the principal components of cardiovascular disease and accounts for up to 40% of all deaths in the nation². Cardiovascular disease is the leading cause of death in both genders among racial and ethnic groups³. Heart disease is the leading killer of minority women in the United States⁴. According to the Framingham risk score, risk factors that increase the likelihood of developing cardiovascular disease are age, gender, systolic blood pressure, HDL cholesterol, total cholesterol, and smoking ⁵.

Of all the minority groups, African American women tend to develop high blood pressure at a younger age⁶. They are also less likely to engage in physical activity resulting in obesity and diabetes. The prevalence of obesity is high among AA women. A Montana study has shown that American Indians are at a higher risk of developing cardiovascular disease compared to whites⁷. American Indian women develop obesity and overweight at a very earlier stage. This is due to an excess accumulation of fat in childhood among AI's⁸.

Cardiovascular disease is the leading rankable cause of deaths in Oklahoma among AI and AA women. Overall, this accounts for 40% all deaths in United States and 44% of all deaths in Oklahoma⁹. In Oklahoma, the age adjusted death rate due to heart disease was higher in African Americans when compared to American Indians between 1991-1995. The likelihood of women in Oklahoma dying from heart disease is 50%

higher than from cancer¹⁰. Coronary heart disease accounts for one in five deaths in women in Oklahoma and was also the leading cause of death among females in Oklahoma in 2003¹¹. In addition, risk factors such as smoking, high blood pressure, obesity and inactive lifestyle are a problem in Oklahoma. It was calculated that of heart disease deaths among women in Oklahoma smoking accounted for 25%, obesity accounted for 32%, sedentary lifestyle accounted for 35% and high blood pressure accounted for 29% of heart disease deaths¹².

Human obesity is characterized by an increase in serum leptin concentrations associated with an increase in leptin mRNA concentration in adipose tissue as well as an increase in total body fat¹³⁻¹⁵. Leptin has been shown to increase arterial pressure and blood pressure in obese subjects^{16, 17}. Furthermore, it has been reported that leptin is positively correlated systolic blood pressure (SBP) and pulse pressure in hypertensive obese/overweight African women¹⁸. In addition, in women with android type of obesity serum leptin levels were significantly higher¹⁹ than women with gynoid obesity. Researchers have proposed that the heredity and genetics influence the propensity for developing heart disease in AI and AA²⁰.

Insulin resistance is predictive of congestive heart failure and is associated with more severe disease and prognosis²¹. Abdominal body fat is closely associated with insulin resistance and decreased glucose disposal rate in obese patients^{22, 23}. Waist circumference which is a measure of abdominal obesity is a predictor of coronary heart disease in women^{24, 25}.

In this study, it was hypothesized that differences existed in leptin levels, insulin resistance and waist circumference exist between AI and AA women and that these

variables were correlated with cardiovascular risk factors in this cohort of women of child bearing age.

Methods

Design and Study Cohort

A community based sample of AI and AA of child bearing age, were recruited from rural Oklahoma communities of Anadarko, Binger, Boley, El Reno, Langston, Lawton, and Wewoka, Oklahoma. Written consent to participate in the study was obtained in accordance with the guidelines of the Institutional Review Board for Human Research at Oklahoma State University and Langston University. Data was collected by researchers and trained staff at local community centers ,clinics and tribal complexes between May,2001 to September,2002. Inclusion criteria were AI or AA women with age between 22 and 45 with children. Subjects with a BMI greater than 52 (outliers) were excluded in this study and subjects who were missing more than 25% of data were excluded.

Anthropometric Measurements and Body Composition Determination:

Standing barefoot height was obtained for each participant using a portable stadiometer, Seca model 214 Road Rod, (Seca Corporation,Hanover,MD). Weight and body composition were then measured utilizing a bioimpedance scale(Tanita Body Composition Analyzer/Scale Model TBF-310,Tanita Corporation of America,Inc.,Arlington Heights,IL). Body mass Index (Kg/m²) was calculated. Waist circumference was measured in the location of the navel with a non stretch tape placed around the abdomen without compressing the skin.

Biochemical Analysis:

Fasting blood samples were drawn, placed on ice, transported to the lab, processed, and stored on the same day. Leptin concentrations were determined using an enzyme linked immunoassay (ELISA) Kit (Linco Research, St..Charles, Missouri). Serum insulin concentrations were determined by radioimmunoassay (RIA) (Linco Inc). Colorimetric assays of fasting serum glucose, total cholesterol, HDL cholesterol, and triglycerides were performed using a Roche Cobas Fara Centrifugal Analyzer (Roche) and commercially available kits.

Formula and normal values

The normal fasting range of leptin for lean women ranges with BMI of 18-25 is 7.4 \pm 3.7ng/ml (Linco Kit). Normal fasting insulin levels are expected to be between 6.0-27.0 μ U/ml and normal fasting glucose levels between 70-110mg/dL. Waist circumference cutoff is 88 cm (35 inches) in women²⁶ (NIH). Normal blood pressure is 120/80 (AHA). Normal HDL- cholesterol level ranges from 40-50mg/dL (AHA). Glucose and insulin concentrations were used in calculating the HOMA-IR, as an index of insulin sensitivity which was calculated as follows²⁷.

HOMA IR=ln [insulin(µU/mL)*glucose(mg/mL)/22.5] Normal expected values for HOMA –IR ranges from 1.45-2.8. As HOMA-IR value increase, insulin resistance increases.

Statistical Analysis:

Statistical Analysis Software for Windows (SAS 9.1.3 Version, Cary NC) was used to analyze all data. Proc GLM was used to compare differences between AI and AA women. Pearson's Correlation coefficients were used to determine the relationship of cardiovascular risk factors with leptin insulin resistance and waist circumference. The chi-square statistic was used to compare smoking frequency between both the groups.

Results

Of the 81 subjects, there were 33 AA and 48 AI women. Table 1 lists values for the variables from each ethnic group. No significant difference was observed between the groups for age, BMI, waist circumference, total cholesterol, HDL cholesterol, systolic blood pressure, HOMA IR, and, percent body fat listed in (Table.2). Mean age was $34 \pm$ 5 years (Table.2).Mean BMI was 33.2 ± 7.3 . Mean waist circumference was $107.2 \pm$ 17.3 (centimeters). Mean total cholesterol was 195.9 ± 40.8 mg/dL. Mean HDL cholesterol was 49.9 ± 16.4 mg/dL. Mean SBP was 125.9 ± 12 mmHg. Mean HOMA IR was 5.0 ± 0.9 . Mean percent body fat is 42.8 ± 7.5 (Table 1)

Leptin levels were significantly different between the two ethnic groups. Concentrations were significantly higher for AA women when compared to AI women (Table.1). No significant difference was observed in waist circumference and insulin resistance (HOMA IR) between the ethnic groups although fasting glucose levels were significantly higher in the AI women. Leptin concentrations correlated with indices of body fatness including waist circumference in both ethnic groups. More noticeably, HOMA IR and leptin concentration were significantly correlated in both groups (AI, r=0.56, p=<0.01, AA, r=0.57, p= 0.01). HOMA IR was also significantly correlated with BMI, waist circumference (r=0.45, p=<0.01), and percent body fat in both groups but not with systolic blood pressure. HOMA IR significantly correlated with serum triglycerides in both groups (r= 0.26, p=0.02).

Correlations between leptin concentrations and age, systolic BP, HDL, total cholesterol are in Table.3. In both AI and AA women, leptin concentrations had significant positive correlation with systolic blood pressure (r=0.33, P=0.01) (fig.1). There was no significant correlation of leptin with age, HDL-C and total cholesterol in these women.

No significant differences in waist circumference and insulin resistance were observed between both groups. Table.4 gives the bivariate correlation coefficients for waist circumference and insulin resistance with age, SBP, HDL C and total cholesterol in both groups. There was no significant correlation between HOMA IR and HDL-C or total cholesterol. The relationship of waist circumference with HDL-C and total cholesterol was not statistically significant in both groups. Waist circumference was significantly correlated with systolic blood pressure (r=0.27, p=0.02) (fig.2). Significantly more AI women smoked than AA women. Fifty one percent of AI women and eighteen percent of AA women were smokers.

Comment

This study was designed to determine differences in leptin levels, insulin resistance and waist circumference between AI and AA women of child bearing age from rural Oklahoma and to determine the relationship of these variables to cardiovascular risk factors such as age, SBP, HDL-C and total cholesterol. It must be noted that, the number of smokers in AI women were higher when compared to AA women and places these women at high risk for cardiovascular disease. Serum leptin and insulin concentrations were above normal values for both groups as well.

This study highlights an important difference in the levels of leptin concentration between AI and AA women of Oklahoma. Despite similarities in waist circumference, BMI and percent body fat, the leptin levels were higher for AA women when compared to AI women. Studies have shown an association between serum leptin concentrations with percent body fat as a major contributor to increased leptin concentration^{14, 15, 28}. Increased subcutaneous fat²⁹ is also associated with increased leptin concentrations. In AA women, the midarm circumference and triceps skinfold measurements was also greater compared to AI women. The Tanita scale may not have been sensitive to body fat in these women. In our group, it is possible that AA women had more subcutaneous fat than AI women. We found positive correlations between SBP and leptin in both the groups. But the correlation was low and there was no difference between SBP among AI and AA women. Schutte et al.¹⁸ found a significant relationship between leptin levels and SBP in hypertensive obese African women when compared to normotensive lean controls. Elevated plasma leptin levels have been shown to exist in women with android obesity and positively correlated with ambulatory 24-hour systolic blood pressure¹⁹. In our study, correlation outcome may be because AI and AA women were more sensitive to the action of leptin in their response to sympathetic nervous system response. The possible mechanism that links leptin levels and SBP in obesity may be the action of leptin on the central nervous system $activity^{30}$.

In this study, HOMA IR (insulin resistance) was significantly correlated with indices of body fatness such as BMI, WC, and percent body fat in both groups. Insulin resistance in obesity is characterized by a strong correlation between insulin levels and degree of obesity ³¹. Abdominal body fat is closely associated with insulin resistance²³.

Carey et al.²² have shown that abdominal subcutaneous fat as well as visceral body fat is positively correlated with insulin resistance in obese women. The majority of women in this study had waist circumference greater than 88 cm with a mean WC of 107 cm. Despite differences in leptin concentrations in AI and AA women, HOMA IR and leptin positively correlated in both groups. Doehner et al.³² observed an inverse correlation of leptin levels and insulin sensitivity in subjects with chronic heart failure. Elevated levels of leptin directly predict insulin resistance in ischemic heart disease³³. Thus it is suggested that an interrelationship of body fatness, leptin levels and HOMA IR may result in the development of heart disease in our cohort.

There were no associations between insulin resistance and age, SBP, HDL-C and total cholesterol. However there was significant correlation between HOMA IR and serum triglycerides. In a study conducted in obese and lean Caucasian women, elevated triglycerides were negatively correlated with intramuscular triglycerides and insulin mediated glucose uptake in obese women when compared to controls³⁴.

In the present study, waist circumference (WC) positively correlated with SBP in both groups which are in agreement with the finding of Third National Health and Nutrition Survey (1988-1994)³⁵. Han et al.²⁵ observed women with a WC greater than 80 cm was a predictor of cardiovascular risk factors such as high blood pressure, total cholesterol, high LDL, low HDL and high glucose values than BMI alone. Waist circumference is correlated to obesity and is a strong predictor of cardiovascular risk in obesity^{35, 36}. Results of this present study are in agreement with Lofgren et al.²⁴ who observed a positive association of waist circumference with coronary biomarkers such as high blood pressure and serum triglycerides in overweight or obese premenopausal

women suggested that waist circumference is a more reliable tool to assess risk for coronary heart disease than BMI. However, in our cohort there was no association between waist circumference and age, HDL-C or total cholesterol. Thus, it may be suggested that waist circumference is a non-invasive, economical and practical tool for the identification of subjects with risk for cardiovascular risk.

Strengths And Limitations

This is a study of the differences between two ethnic minority groups for leptin, insulin resistance and waist circumference and the relationship of these variables to cardiovascular risk factors in these groups who face major health challenges. We only examined women of child bearing age with a similar ethnic and socio-economic background within the state of Oklahoma. In addition, this study is a convenience sample based on participant's willingness and availability to participate. It is not a representative sample of the whole American Indian and African American population but is a good representation of AI and AA women from rural Oklahoma.

Conclusions

Ninety percent of women in this cohort were overweight or obese. Leptin concentrations were significantly greater in AA women. But blood leptin concentration was correlated with SBP in both AA and AI women suggesting a phenotypic difference in the etiology of and the involvement of leptin in the development of cardiovascular disease. Mean waist circumference places this cohort at risk for heart disease. Waist circumference was correlated with SBP in both AI women and AA women. As well, mean SBP was above normal and in the pre-hypertensive classification with mean waist circumference above the cut off of 88 cm. The AI and AA women of child bearing age in

this study were already at high risk for cardiovascular disease. Interventions to reduce BMI and waist circumference in these women are imperative especially since the onset menopause further increases the risk for heart disease.

Variable	AA Women	AI Women	
	N=33	N=48	
	mean±std.deviation	mean±std.deviation	
Age	34.4±5.7 (26-45)	34±5.9 (22-45)	
Height	64.7±2.4 (61-71)	64.8±1.6 (61-67)	
Weight	206.9±54.7 (111-346)	193±38.7 (107-300)	
Body Mass Index	34.6±8.2 (18-50)	32.3±6.5 (18-52)	
*MAMC	37.1±7.1 (27-59)	33.1±4.4 (24-46)	
*Tricep Skin Fold	36.5±9.7 (17-54)	32.2±7.8 (13-48)	
Hip	119.7±18.4 (83-150)	117.1±13.1 (92-150)	
Waist	108.7±21.6 (69-150)	106.2±13.9 (77-145)	
FFM	111.8±14.7 (88-145)	109.4±12.7 (83-138)	
Percent body fat	43.9±8.5 (20-58)	42±6.6 (22-54)	
Systolic	128.5±13.8 (100-160)	124.2±12 (97-145)	
Diastolic	83.3±8.3 (60-100)	80.7±9.4 (58-100)	
*Serum glucose	98.6±17.4 (60-161)	112.5±33.1 (63-262)	
Serum total cholesterol	194.7±35.5 (105-272)	196.7±44.4 (70-274)	
Serum HDL	52.9±16.5 (18-87)	47.9±16.1 (17-87)	
*Serum triglycerides	95.5±56.6 (1-283)	145.6±91.7 (12-476)	
*Leptin	35.6±17.3 (5-79)	28±12.3 (4-60)	
Insulin	55.3±58.8 (4-269)	41.6±34 (5-171)	
HOMA IR	4.9±1 (2-7)	5±0.79 (3-6)	
Waist hip	0.8±0.08 (0.6-1.4)	0.9±0.06 (0.75-1.08)	

Table 1: Mean values for AI and AA women 22-45 years of age

*p<0.05, Significant difference between AI and AA women

Variables	Mean N=81	Std.deviation N=81	Min	Max	Mode
Age	34	5.79	22	45	30
BMI	32	7.3	18	52	29.75
Waist Circum(cm)	107.2	17.3	69	150	106
Total Chol(mg/dL)	196	41	70	274	175
HDL Chol(mg/dL)	50	16	17	88	45.7
SBP(mm/Hg)	126	13	97	160	120
HOMA IR	5	0.92	3	7	-
Percent body fat	43	7	20	58	40.9

 Table: 3 Correlation between leptin and cardiovascular risk factors in AI and AA women

Variables	r value	P value
Age	-0.13931	0.40490
Systolic blood pressure	0.33492	0.0043
HDL	0.01886	0.8682
Total Cholesterol	0.02460	0.8286

	Waist Circumference		HOMA IR	
Variables	r value	p value	r value	p value
Age	0.12741	0.2570	-0.01052	0.9267
Systolic blood	0.26887	0.0224	0.12076	0.3194
pressure				
HDL	-0.14742	0.1896	-0.07365	0.5189
Total cholesterol	-0.06140	0.5861	0.06008	0.5989

Table: 4 Correlation between waist circumference and insulin resistance in AI and AA women

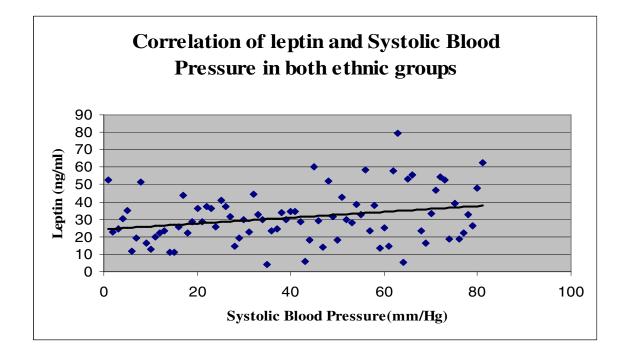


Figure 1: Correlation of Leptin and Systolic Pressure in both ethnic groups

r=0.32266 p=0.0327

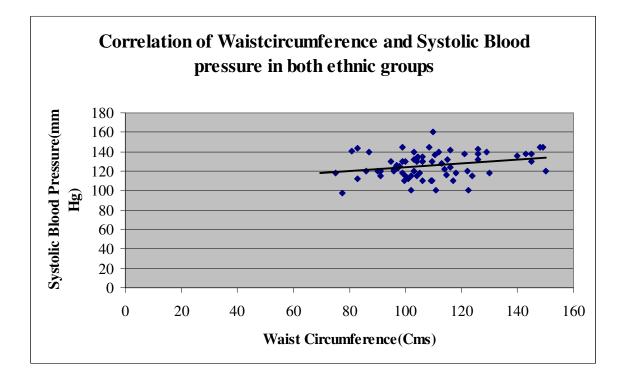


Figure 2: Correlation of Waist Circumference and Systolic Blood Pressure in both ethnic groups

r=0.26887 p=0.0224

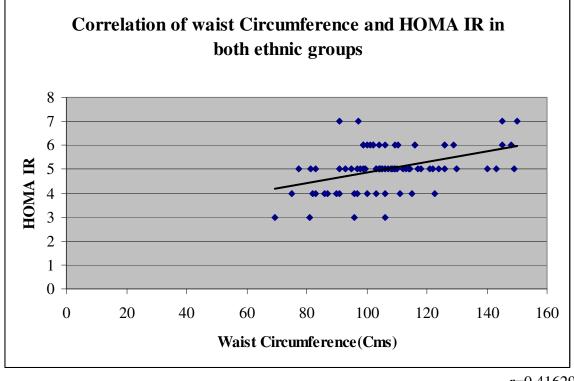


Figure 3: Correlation of waist Circumference and HOMA IR in both ethnic groups

r=0.41629 p=0.0004

Sources Cited

- 1. Heart disease and Stroke statistics, 2006 update, American Heart Association.
- Center for Disease Control and Prevention. Division for Heart Disease and Stroke Prevention. Heart Disease and Stroke: The Nation's Leading Killers. Addressing the Nation's Leading Killers [http://www.cdc.gov/nccdphp/publications/aag/cvh.htm. Accessed February 10, 2006.
- **3.** National center for chronic Disease prevention and health promotion, 2002.
- 4. US department of Health and Human Services. The Health of minority women, Washington D.C:HHS,Public Health Service(PHS).Office on Women's Health(OWH).2000.
- **5.** Willett WC, Manson JE, Stampfer MJ, et al. Weight, weight change, and coronary heart disease in women. Risk within the 'normal' weight range. *Jama*. Feb 8 1995;273(6):461-465.
- 6. Delgado JL, Trevino FM. The state of Hispanic health in the United States. In the State of Hispanic America Vol. II. Oakland, CA: National Hispanic Center for Advanced Studies and Policy Analysis. 1985.
- 7. Harwell TS, Oser CS, Okon NJ, Fogle CC, Helgerson SD, Gohdes D. Defining disparities in cardiovascular disease for American Indians: trends in heart disease and stroke mortality among American Indians and whites in Montana, 1991 to 2000. *Circulation*. Oct 11 2005;112(15):2263-2267.
- **8.** Ogden. National Health and Nutrition Examination Survey. *The Journal of the American Medical Association*. 2002;288:1728-1732.
- **9.** Chronic disease service winter 2001;2(1).
- **10.** Oklahoma BRFSS, Oklahoma Vital records, American heart Association, Centers for disease control and Prevention, Victoria, Canada and the National heart, Lung and Blood Institute. 2000.

- 11. Oklahoma state department of health. http://www.health.state.ok.us/program/hpromo/news/heartattack.html Accessed March 30,2006.
- **12.** Oklahoma BRFSS, Oklahoma Vital records, American heart Association, Centers for disease control and Prevention, Victoria, Canada: 2000.
- **13.** Considine RV, Sinha MK, Heiman ML, et al. Serum immunoreactive-leptin concentrations in normal-weight and obese humans. *N Engl J Med.* Feb 1 1996;334(5):292-295.
- 14. Tai ES, Lau TN, Ho SC, Fok AC, Tan CE. Body fat distribution and cardiovascular risk in normal weight women. Associations with insulin resistance, lipids and plasma leptin. *Int J Obes Relat Metab Disord*. Jun 2000;24(6):751-757.
- **15.** Minocci A, Savia G, Lucantoni R, et al. Leptin plasma concentrations are dependent on body fat distribution in obese patients. *Int J Obes Relat Metab Disord*. Sep 2000;24(9):1139-1144.
- **16.** Haynes WG, Sivitz WI, Morgan DA, Walsh SA, Mark AL. Sympathetic and cardiorenal actions of leptin. *Hypertension*. Sep 1997;30(3 Pt 2):619-623.
- **17.** Shek EW, Brands MW, Hall JE. Chronic leptin infusion increases arterial pressure. *Hypertension*. Jan 1998;31(1 Pt 2):409-414.
- **18.** Schutte R, Huisman HW, Schutte AE, Malan NT. Leptin is independently associated with systolic blood pressure, pulse pressure and arterial compliance in hypertensive African women with increased adiposity: the POWIRS study. *J Hum Hypertens*. Jul 2005;19(7):535-541.
- **19.** Guagnano MT, Manigrasso MR, Ballone E, et al. Association between serum leptin levels and 24-hour blood pressure in obese women. *Obes Res.* Apr 2003;11(4):549-555.
- **20.** Cossrow N, Falkner B. Race/ethnic issues in obesity and obesity-related comorbidities. *J Clin Endocrinol Metab.* Jun 2004;89(6):2590-2594.

- **21.** Ingelsson E, Sundstrom J, Arnlov J, Zethelius B, Lind L. Insulin resistance and risk of congestive heart failure. *Jama*. Jul 20 2005;294(3):334-341.
- 22. Carey DG, Jenkins AB, Campbell LV, Freund J, Chisholm DJ. Abdominal fat and insulin resistance in normal and overweight women: Direct measurements reveal a strong relationship in subjects at both low and high risk of NIDDM. *Diabetes*. May 1996;45(5):633-638.
- **23.** Kelley DE, Thaete FL, Troost F, Huwe T, Goodpaster BH. Subdivisions of subcutaneous abdominal adipose tissue and insulin resistance. *Am J Physiol Endocrinol Metab.* May 2000;278(5):E941-948.
- 24. Lofgren I, Herron K, Zern T, et al. Waist circumference is a better predictor than body mass index of coronary heart disease risk in overweight premenopausal women. *J Nutr*. May 2004;134(5):1071-1076.
- **25.** Han TS, van Leer EM, Seidell JC, Lean ME. Waist circumference action levels in the identification of cardiovascular risk factors: prevalence study in a random sample. *Bmj.* Nov 25 1995;311(7017):1401-1405.
- **26.** Janssen I, Katzmarzyk PT, Ross R. Body mass index, waist circumference, and health risk: evidence in support of current National Institutes of Health guidelines. *Arch Intern Med.* Oct 14 2002;162(18):2074-2079.
- 27. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. *Diabetologia*. Jul 1985;28(7):412-419.
- **28.** Takahashi M, Funahashi T, Shimomura I, Miyaoka K, Matsuzawa Y. Plasma leptin levels and body fat distribution. *Horm Metab Res.* Dec 1996;28(12):751-752.
- **29.** Hube F, Lietz U, Igel M, et al. Difference in leptin mRNA levels between omental and subcutaneous abdominal adipose tissue from obese humans. *Horm Metab Res.* Dec 1996;28(12):690-693.
- **30.** Rayner DV, Trayhurn P. Regulation of leptin production: sympathetic nervous system interactions. *J Mol Med.* 2001;79(1):8-20.

- **31.** Caro JF. Insulin resistance in obese and non-obese man. *J Clin Endocrinol Metab.* 1991;73:691-695.
- **32.** Doehner W, Rauchhaus M, Godsland IF, et al. Insulin resistance in moderate chronic heart failure is related to hyperleptinaemia, but not to norepinephrine or TNF-alpha. *Int J Cardiol.* Apr 2002;83(1):73-81.
- **33.** Laakso M. How good a marker is insulin level for insulin resistance? *Am J Epidemiol.* May 1 1993;137(9):959-965.
- **34.** Goodpaster BH, Thaete FL, Simoneau JA, Kelley DE. Subcutaneous abdominal fat and thigh muscle composition predict insulin sensitivity independently of visceral fat. *Diabetes*. Oct 1997;46(10):1579-1585.
- **35.** Zhu S, Wang Z, Heshka S, Heo M, Faith MS, Heymsfield SB. Waist circumference and obesity-associated risk factors among whites in the third National Health and Nutrition Examination Survey: clinical action thresholds. *Am J Clin Nutr*. Oct 2002;76(4):743-749.
- **36.** Mosca L, Edelman D, Mochari H, Christian AH, Paultre F, Pollin I. Waist c circumference predicts cardiometabolic and global Framingham risk among women screened during National Woman's Heart Day. *J Womens Health* (*Larchmt*). Jan-Feb 2006;15(1):24-34.

CHAPTER V

SUMMARY, CONCLUSIONS, AND RECOMMEDNATIONS

Summary

This study was designed to determine if ethnic differences exist between AI and AA women in leptin levels, insulin resistance and waist circumference in ethnic groups. The correlation of leptin levels, insulin resistance and waist circumference with cardiovascular risk factors such as SBP, age, HDL and total cholesterol was also determined. Finally, the correlation of waist circumference and insulin resistance was determined for this population.

Similarities were observed between the two ethnic groups for age, body mass index, waist circumference, percent body fat, HDL cholesterol, total cholesterol and SBP. Leptin levels were significantly higher in AA women when compared to AI women. There were no significant differences between the groups for insulin resistance and waist circumference. Leptin levels positively correlated with systolic blood pressure in both groups, although leptin levels were higher in AA women. Since no significant differences were observed for insulin resistance and waist circumference, both groups were combined and correlated with cardiovascular risk factors. Waist circumference positively correlated with SBP. Waist circumference increased with increased in SBP.

67

The relationship between waist circumference and insulin resistance was statistically significant. Insulin resistance increased with increased in waist circumference.

Conclusions

The objectives of this study to determine ethnic differences between AI and AA women and the relationship of leptin, insulin resistance and waist circumference to cardiovascular risk factors. The following hypotheses were tested with related with outcome.

Hypothesis I:

There is an ethnic difference between leptin levels, insulin resistance and waist circumference in American Indian and African American women.

Outcome I:

In this study, there was a significant difference (p < .05) between American Indian and African American women for leptin levels when compared to insulin resistance and waist circumference.

Hypothesis II:

Blood leptin concentration is positively correlated with age, systolic blood pressure and total cholesterol in American Indian and African American women.

Outcome II:

Although African American women had significantly greater serum leptin concentrations when compared to American Indian women, a significant relationship (p=0.03) between SBP and American Indian and African American women was exhibited.

Hypothesis III:

Insulin resistance (Homa-IR) is positively correlated with age, systolic blood pressure and total cholesterol in American Indian and African American women.

Outcome III:

Insulin resistance did not correlate with any of the cardiovascular risk factors in American Indian and African American women.

Hypothesis IV:

Waist circumference is positively correlated with age, systolic blood pressure and total cholesterol in American Indian and African American Women.

Outcome IV:

There was a significant relationship between waist circumference and SBP in both groups

Hypothesis V:

Waist circumference will be positively correlated with Insulin resistance (Homa-IR) in both ethnic groups.

Outcome V:

The relationship between insulin resistance and waist circumference was statistically significant for both ethnic groups. An increase in insulin resistance marked an increase in waist circumference.

It may be suggested that leptin concentrations in American Indian and African American women induce an increase in SBP due its effect on activation of sympathetic nervous system causing vasoconstriction and increasing renal tubular sodium reabsorption and inducing insulin resistance in obese subjects with increased body fat distribution through its effect on insulin. It may also be hypothesized that waist circumference is a better predictor of insulin resistance which is a major risk factor for metabolic syndrome and related diseases of the heart rather than HOMA IR. In these voluntary groups of participants greater BMI and SBP placed them at higher risk for cardiovascular disease. Lack of physical activity among the ethnic groups is evident in this cohort. This study gives an insight about the low socio-economic status strata in rural Oklahoma. It is evident that these cohorts of women are high risk for heart disease even before menopause.

Recommendations

Further studies should be conducted to determine the relationship of adipocytokines products of adipose tissue such as adinopectin, resistin, tumor necrosis factor (TNF- α) with cardiovascular risk factors in minority women who are more likely to be overweight or obese.

In this study, although leptin concentrations were higher in AA women when compared to AI women, body fat content was similar. Difference in subcutaneous and visceral fat between both groups should be studied. Further studies to determine the subcutaneous and visceral fat and its association with risk factors for heart disease in

70

minority women are recommended. Culturally appropriate interventions are highly recommended to decrease smoking, promote exercise and healthy eating to control body weight in AI and AA women especially Oklahoma. Waist circumference is a non invasive, economical, and practical tool for the identification of women with risk for cardiovascular risk. Further studies to investigate the relationship of leptin with cardiovascular disease in various ethnic groups are recommended.

BIBLIOGRAPHY

- 1. Heart disease and Stroke statistics, 2006 update, American Heart Association.
- 2. National center for chronic Disease prevention and health promotion, 2002.
- **3.** <u>http://www.health.state.ok.us/program/hpromo/news/heartattack.html</u>. Accessed March 14, 2006.
- Center for Disease Control and Prevention. Division for Heart Disease and Stroke Prevention. Heart Disease and Stroke: The Nation's Leading Killers. Addressing the Nation's Leading Killers [http://www.cdc.gov/nccdphp/publications/aag/cvh.htm. Accessed February 10, 2006.
- 5. *CDC/NCHS*, *Vital and health statistics*, *Series 10*, *No 225* July, 2005.
- 6. Women, Heart disease and Stroke Statistics, American Heart Association. 2006.
- 7. US department of Health and Human Services. The Health of minority women, Washington D.C:HHS,Public Health Service(PHS).Office on Women's Health(OWH).2000.
- 8. OWH, Health information for Minority women. 2002.
- **9.** Center for Disease Control and Prevention, National Centre for Health Statistics, Healthy Women: State Trends in Health and Mortality. 2001.
- **10.** Delgado JL, Trevino FM. The state of Hispanic health in the United States. In the State of Hispanic America Vol. II. Oakland, CA: National Hispanic Center for Advanced Studies and Policy Analysis. 1985.
- 11. Coronary Heart Disease Prevalence, American Heart Association. 2005.
- **12.** Oklahoma State Department of Health, Health care information division. July, 2005.
- **13.** National center for chronic Disease prevention and health promotion.
- 14. Oklahoma BRFSS, Oklahoma Vital records, American heart Association, Centers for disease control and Prevention, Victoria, Canada and the National heart, Lung and Blood Institute. 2000.

- **15.** Office of Women's Health. 2003.
- 16. Health Resources and Services Administration, Maternal and Child Health Bureau. Women's Health USA 2003. Rockville, MD: Department of Health and Human Services, Health Resources and Services Administration. 2003.
- Oklahoma State Department Of Health. Vital Statistics Data. Smoothed County Heart Disease Death Rates, 1991-1995
 [http://www.health.state.ok.us/datapubs.html. Accessed July 6, 2006.
- **18.** Rexrode KM, Carey VJ, Hennekens CH, et al. Abdominal adiposity and coronary heart disease in women. *Jama*. Dec 2 1998;280(21):1843-1848.
- **19.** Soderberg S, Ahren B, Jansson JH, et al. Leptin is associated with increased risk of myocardial infarction. *J Intern Med.* Oct 1999;246(4):409-418.
- **20.** Wallace AM, McMahon AD, Packard CJ, et al. Plasma leptin and the risk of cardiovascular disease in the west of Scotland coronary prevention study (WOSCOPS). *Circulation*. Dec 18 2001;104(25):3052-3056.
- **21.** Ciccone M, Vettor R, Pannacciulli N, et al. Plasma leptin is independently associated with the intima-media thickness of the common carotid artery. *Int J Obes Relat Metab Disord*. Jun 2001;25(6):805-810.
- **22.** Yiying zhang RP, Margherita Maffei, Marisa Barone, Lori Leopold, Jeffrey M.Friedman Positional Cloning of the mouse obese gene and its human homologue *Nature*. December 01 2002;372:425-432.
- **23.** Tai ES, Lau TN, Ho SC, Fok AC, Tan CE. Body fat distribution and cardiovascular risk in normal weight women. Associations with insulin resistance, lipids and plasma leptin. *Int J Obes Relat Metab Disord*. Jun 2000;24(6):751-757.
- 24. Minocci A, Savia G, Lucantoni R, et al. Leptin plasma concentrations are dependent on body fat distribution in obese patients. *Int J Obes Relat Metab Disord*. Sep 2000;24(9):1139-1144.
- **25.** Considine RV, Sinha MK, Heiman ML, et al. Serum immunoreactive-leptin concentrations in normal-weight and obese humans. *N Engl J Med.* Feb 1 1996;334(5):292-295.
- **26.** Ingelsson E, Sundstrom J, Arnlov J, Zethelius B, Lind L. Insulin resistance and risk of congestive heart failure. *Jama*. Jul 20 2005;294(3):334-341.
- 27. Lofgren I, Herron K, Zern T, et al. Waist circumference is a better predictor than body mass index of coronary heart disease risk in overweight premenopausal women. *J Nutr*. May 2004;134(5):1071-1076.

- **28.** Han TS, van Leer EM, Seidell JC, Lean ME. Waist circumference action levels in the identification of cardiovascular risk factors: prevalence study in a random sample. *Bmj.* Nov 25 1995;311(7017):1401-1405.
- **29.** World Health Organization. http:/<u>www.who.int/cardiovascular_diseases/priorities/en/</u>, Accessed March 30,2006.
- **30.** World Health Organization. <u>http://www.who.int/dietphysicalactivity/publications/facts/cvd/en/</u>. Accessed March 15, 2006.
- **31.** Neal B, Chapman N, Patel A. Managing the global burden of cardiovascular disease. *European Heart Journal Supplements*. 2002;4(Supplement F):F2- F6.
- **32.** Chronic Service Disease, Oklahoma state department of health. Winter 2001 2(1).
- **33.** US department of Health and Human Services, center for disease control and prevention. Chronic disease and their risk factors: The nation's leading causes of death 1999.
- **34.** Center for Disease Control and Prevention. http://www.cdc.gov/nccdphp/dnpa/obesity/. Accessed June 15, 2006.
- **35.** Health, United States. 2004.
- **36.** US Census Bureau. US summary: 2000, Census 2000 Profile. Washington, DC: US Department of Commerce, Economics and Statistics Administration, US Census Bureau, 2002. Available at <u>http://www.census.gov/prod/2002pubs</u>.
- **37.** US Census Bureau. Current population reports. Series P25-1130. Population projections of the United States by age, sex, race, and Hispanic origin: 1995 to 2050. Washington, DC: US Government Printing Office, 1996 Available at http://www.census.gov/prod/1/pop/p25-1130.
- **38.** The 2004 National Healthcare Quality Report(NHQR) and National Healthcare Disparities Report (NHDR) document continuing deficiencies in care, particularly for poor and minority women. Available at http://www.ahrq.gov/qual/nhqrwomen/nhqrwomen.htm.
- **39.** Winkleby MA, Kraemer HC, Ahn DK, Varady AN. Ethnic and socioeconomic differences in cardiovascular disease risk factors: findings for women from the Third National Health and Nutrition Examination Survey, 1988-1994. *Jama*. Jul 22-29 1998;280(4):356-362.
- **40.** National center for chronic Disease prevention and health promotion. 1993-2004.

- **41.** High Blood Pressure in African American Women, National Women's Health Information Center. Available at <u>http://www.nowfoundation.org/issues/health/whp/whp_fact12.html</u>.
- **42.** Cardiovascular Diseases, American Heart Association.
- **43.** Harwell TS, Oser CS, Okon NJ, Fogle CC, Helgerson SD, Gohdes D. Defining disparities in cardiovascular disease for American Indians: trends in heart disease and stroke mortality among American Indians and whites in Montana, 1991 to 2000. *Circulation*. Oct 11 2005;112(15):2263-2267.
- 44. National Vital Statistics Report March 7 2005.
- **45.** Oklahoma State Department Of Health. Chronic Disease Service. <u>http://www.health.state.ok.us/program/cds/cvdsurveillance.htm</u>. Accessed April 10, 2006.
- **46.** CDC, National Center for Health Statistics, National Health and Nutrition Examination Survey. Health, United States (Table 70) 2002.
- **47.** Klauer J, Aronne L. Managing Overweight and Obesity in Women. *Clinical Obstetrics & Gynecology*. 2002;45(4):1080-1088.
- **48.** Flegal KM, Carroll MD, Ogden CL, Johnson CL. Prevalence and trends in obesity among US adults, 1999-2000. *Jama*. Oct 9 2002;288(14):1723-1727.
- **49.** Ogden. National Health and Nutrition Examination Survey. *The Journal of the American Medical Association*. 2002;288:1728-1732.
- **50.** Statistics NCfH. Center for Disease Control and Prevention. <u>http://www.obesity.org/subs/fastfacts/obesity_youth.shtml</u>, Accessed June 17, 2006.
- **51.** Broussard BA, Johnson A, Himes JH, et al. Prevalence of obesity in American Indians and Alaska Natives. *Am J Clin Nutr.* Jun 1991;53(6 Suppl):1535S-1542S.
- **52.** Smith C, Rinderknecht K. Obesity correlates with increased blood pressures in urban Native American youth. *Am J Hum Biol.* Jan-Feb 2003;15(1):78-90.
- **53.** Lori Mosca JEM, Susan E.Sutherland, Robert D.Langer, Teri Manolio, Elizabeth Barrett-Connor. Cardiovascular disease in women A statement of healthcare professionals from the American heart association. 1997;96:2468-2482.
- **54.** American Heart Association. <u>www.Americanheart.org/statistics/2001</u>, Accessed Feb 10. 2006.
- **55.** American Heart Association.Heart disease and Stroke Statistics, 2006 update.

- **56.** Eaker ED CJ, Sacks FM, Wengner NK, Whistant JP, Winston M. Cardiovascular disease in women. *Circulation*. 1993;88:1999-2001.
- **57.** CDC. Deaths: Leading Causes for 2002. National Vital Statistics Reports 2005;53(17).
- **58.** Position of the American Dietetic Association and the Canadian Dietetic Association: Women's Health and Nutrition, ADA Reports. March 1995;3:362.
- **59.** Willett WC, Manson JE, Stampfer MJ, et al. Weight, weight change, and coronary heart disease in women. Risk within the 'normal' weight range. *Jama*. Feb 8 1995;273(6):461-465.
- 60. Oklahoma state department of health. <u>http://www.health.state.ok.us/program/hpromo/news/heartattack.html</u> Accessed March 30,2006.
- **61.** National Vital Statistics Report 2004;53(5).
- **62.** Chronic disease service winter 2001;2(1).
- **63.** Oklahoma state department of health, Health Care information division.
- **64.** National Vital Statistics Report. March 2005;53(17).
- **65.** National Institute of Health. <u>http://diabetes.niddk.nih.gov/dm/pubs/statistics/index.htm#9</u>. Accessed June 15, 2006.
- **66.** National Cholesterol Education Program. Second report on expert panel on detection, evaluation and treatment of high blood pressure in adults (Adult Treatment Panel II) *Circulation*. 1994;89:1333-1345.
- **67.** Kannel WB, Gordon T, Schwartz MJ. Systolic versus diastolic blood pressure and risk of coronary heart disease. The Framingham study. *Am J Cardiol*. Apr 1971;27(4):335-346.
- **68.** Haider AW, Larson MG, Franklin SS, Levy D. Systolic blood pressure, diastolic blood pressure, and pulse pressure as predictors of risk for congestive heart failure in the Framingham Heart Study. *Ann Intern Med.* Jan 7 2003;138(1):10-16.
- **69.** Borghi C, Dormi A, L'Italien G, et al. The relationship between systolic blood pressure and cardiovascular risk--results of the Brisighella Heart Study. *J Clin Hypertens (Greenwich).* Jan-Feb 2003;5(1):47-52.
- **70.** Antikainen R, Jousilahti P, Tuomilehto J. Systolic blood pressure, isolated systolic hypertension and risk of coronary heart disease, strokes, cardiovascular

disease and all-cause mortality in the middle-aged population. *J Hypertens*. May 1998;16(5):577-583.

- 71. He J, Whelton PK. Elevated systolic blood pressure and risk of cardiovascular and renal disease: overview of evidence from observational epidemiologic studies and randomized controlled trials. *Am Heart J.* Sep 1999;138(3 Pt 2):211-219.
- **72.** He J, Whelton PK. Elevated systolic blood pressure as a risk factor for cardiovascular and renal disease. *J Hypertens Suppl*. Jun 1999;17(2):S7-13.
- **73.** Lindenstrom E, Boysen G, Nyboe J. Influence of systolic and diastolic blood pressure on stroke risk: a prospective observational study. *Am J Epidemiol*. Dec 15 1995;142(12):1279-1290.
- 74. National Research Council, Committee on Diet and Health: Diet and Health Implications for Reducing Chronic Disease Risk. Washington DC, National Academy Press. 1989.
- **75.** Kannel WB, Castelli WP, Gordon T, McNamara PM. Serum cholesterol, lipoproteins, and the risk of coronary heart disease. The Framingham study. *Ann Intern Med.* Jan 1971;74(1):1-12.
- **76.** Multiple risk factor intervention trial. Risk factor changes and mortality results. Multiple Risk Factor Intervention Trial Research Group. *Jama*. Sep 24 1982;248(12):1465-1477.
- 77. Frick MH, Elo O, Haapa K, et al. Helsinki Heart Study: primary-prevention trial with gemfibrozil in middle-aged men with dyslipidemia. Safety of treatment, changes in risk factors, and incidence of coronary heart disease. *N Engl J Med.* Nov 12 1987;317(20):1237-1245.
- **78.** The Lipids Research Clinics Coronary Primary Prevention Trial Results. I. Reduction in Incidence of Coronary Heart Disease. *JAMA*. 1984;251(3):351-364.
- **79.** Giampaoli S, Palmieri L, Panico S, et al. Favorable cardiovascular risk profile (low risk) and 10-year stroke incidence in women and men: findings from 12 Italian population samples. *Am J Epidemiol*. May 15 2006;163(10):893-902.
- **80.** Coleman MP, Key TJ, Wang DY, et al. A prospective study of obesity, lipids, apolipoproteins and ischaemic heart disease in women. *Atherosclerosis*. Feb 1992;92(2-3):177-185.
- **81.** Walldius G, Jungner I, Kolar W, Holme I, Steiner E. High cholesterol and triglyceride values in Swedish males and females: increased risk of fatal myocardial infarction. First report from the AMORIS (Apolipoprotein related MOrtality RISk) study. *Blood Press Suppl.* 1992;4:35-42.

- **82.** Wild SH, Fortmann SP, Marcovina SM. A prospective case-control study of lipoprotein(a) levels and apo(a) size and risk of coronary heart disease in Stanford Five-City Project participants. *Arterioscler Thromb Vasc Biol*. Feb 1997;17(2):239-245.
- **83.** Keil U, Liese AD, Hense HW, et al. Classical risk factors and their impact on incident non-fatal and fatal myocardial infarction and all-cause mortality in southern Germany. Results from the MONICA Augsburg cohort study 1984-1992. Monitoring Trends and Determinants in Cardiovascular Diseases. *Eur Heart J.* Aug 1998;19(8):1197-1207.
- **84.** Gordon T, Castelli WP, Hjortland MC, Kannel WB, Dawber TR. High density lipoprotein as a protective factor against coronary heart disease. The Framingham Study. *Am J Med.* May 1977;62(5):707-714.
- **85.** Castelli WP, Garrison RJ, Wilson PW, Abbott RD, Kalousdian S, Kannel WB. Incidence of coronary heart disease and lipoprotein cholesterol levels. The Framingham Study. *Jama*. Nov 28 1986;256(20):2835-2838.
- **86.** Assmann G, Schulte H, von Eckardstein A, Huang Y. High-density lipoprotein cholesterol as a predictor of coronary heart disease risk. The PROCAM experience and pathophysiological implications for reverse cholesterol transport. *Atherosclerosis.* Jul 1996;124 Suppl:S11-20.
- **87.** Sharrett AR, Ballantyne CM, Coady SA, et al. Coronary heart disease prediction from lipoprotein cholesterol levels, triglycerides, lipoprotein(a), apolipoproteins A-I and B, and HDL density subfractions: The Atherosclerosis Risk in Communities (ARIC) Study. *Circulation*. Sep 4 2001;104(10):1108-1113.
- **88.** Poirier. Obesity and cardiovascular disease. *Curr.Atherosclerosis.* 2002;Rep 4:448-453.
- **89.** Clinical Guidelines on the Identification, Evaluation, and Treatment of Overweight and Obesity in Adults--The Evidence Report. National Institutes of Health. *Obes Res.* Sep 1998;6 Suppl 2:51S-209S.
- **90.** McGill HC, Jr., McMahan CA, Herderick EE, et al. Obesity accelerates the progression of coronary atherosclerosis in young men. *Circulation*. Jun 11 2002;105(23):2712-2718.
- **91.** Wing RR, Bunker CH, Kuller LH, Matthews KA. Insulin, body mass index, and cardiovascular risk factors in premenopausal women. *Arteriosclerosis*. Jul-Aug 1989;9(4):479-484.
- **92.** McLaughlin T, Allison G, Abbasi F, Lamendola C, Reaven G. Prevalence of insulin resistance and associated cardiovascular disease risk factors among normal weight, overweight, and obese individuals. *Metabolism.* Apr 2004;53(4):495-499.

- **93.** Magetic S GC, GG Pegg and RA Hill. Leptin:a review of its peripheral actions and interactions. *International Journal of obesity*. 2002;26:1407-1433.
- **94.** Moinat M DC, Muzzin P,Assimacopoulos-Jeannet F,Seydoux J,Dulloo AG,Giacobino JP,. Modulation of obese gene expression in rat brown and white adipose tissue. *FEBS Lett.* October 9 1995;373(2):131-134.
- **95.** Siegrist-Kaiser CA, Pauli V, Juge-Aubry CE, et al. Direct effects of leptin on brown and white adipose tissue. *J Clin Invest*. Dec 1 1997;100(11):2858-2864.
- **96.** Brunner L, Nick HP, Cumin F, et al. Leptin is a physiologically important regulator of food intake. *Int J Obes Relat Metab Disord*. Dec 1997;21(12):1152-1160.
- **97.** Pellymounter MA CM, Baker MB,Hecht R,Winters RD,Boone T,Collins F. Effects of the obese gene product on body weight regulation in ob/ob mice. *Science*. 1995;269:540-543.
- **98.** Collins S, Kuhn CM, Petro AE, Swick AG, Chrunyk BA, Surwit RS. Role of leptin in fat regulation. *Nature*. Apr 25 1996;380(6576):677.
- **99.** Halaas JL, Gajiwala KS, Maffei M, et al. Weight-reducing effects of the plasma protein encoded by the obese gene. *Science*. Jul 28 1995;269(5223):543-546.
- **100.** Martin LJ, Jones PJ, Considine RV, Su W, Boyd NF, Caro JF. Serum leptin levels and energy expenditure in normal weight women. *Can J Physiol Pharmacol*. Feb 1998;76(2):237-241.
- **101.** Salbe AD, Nicolson M, Ravussin E. Total energy expenditure and the level of physical activity correlate with plasma leptin concentrations in five-year-old children. *J Clin Invest.* Feb 15 1997;99(4):592-595.
- **102.** Schwartz MW, Baskin DG, Kaiyala KJ, Woods SC. Model for the regulation of energy balance and adiposity by the central nervous system. *Am J Clin Nutr*. Apr 1999;69(4):584-596.
- **103.** Woods SC, Seeley RJ, Porte D, Jr., Schwartz MW. Signals that regulate food intake and energy homeostasis. *Science*. May 29 1998;280(5368):1378-1383.
- **104.** Considine RV, Caro JF. Leptin and the regulation of body weight. *Int J Biochem Cell Biol.* Nov 1997;29(11):1255-1272.
- **105.** Julian G M, Kim M, Moar D, Vernon Rayner, Paul Trayhurn, Nigel Hoggard. Regulation of leptin receptor and NPY gene expression in hypothalamus of leptintreated obese (ob/ob) and cold exposed lean mice. *FEBS Lett.* 1997;402:185-188.

- **106.** Lee GH PR, Montez JM,Carroll KM,Darvishzadeh JG,Lee JI,Friedman JM. Abnormal spicing of the leptin receptor in diabetic mice. Nature 1996:379:632-635. *Nature*. 1996;379(632-635).
- **107.** Ogier V, Ziegler O, Mejean L, Nicolas JP, Stricker-Krongrad A. Obesity is associated with decreasing levels of the circulating soluble leptin receptor in humans. *Int J Obes Relat Metab Disord*. Apr 2002;26(4):496-503.
- **108.** Takahashi M, Funahashi T, Shimomura I, Miyaoka K, Matsuzawa Y. Plasma leptin levels and body fat distribution. *Horm Metab Res.* Dec 1996;28(12):751-752.
- **109.** Hube F, Lietz U, Igel M, et al. Difference in leptin mRNA levels between omental and subcutaneous abdominal adipose tissue from obese humans. *Horm Metab Res.* Dec 1996;28(12):690-693.
- **110.** Montague CT, Prins JB, Sanders L, Digby JE, O'Rahilly S. Depot- and sexspecific differences in human leptin mRNA expression: implications for the control of regional fat distribution. *Diabetes*. Mar 1997;46(3):342-347.
- **111.** Van Harmelen V, Reynisdottir S, Eriksson P, et al. Leptin secretion from subcutaneous and visceral adipose tissue in women. *Diabetes*. Jun 1998;47(6):913-917.
- **112.** Gomez-Ambrosi J, Salvador J, Paramo JA, et al. Involvement of leptin in the association between percentage of body fat and cardiovascular risk factors. *Clin Biochem.* Jun 2002;35(4):315-320.
- **113.** Haynes WG, Sivitz WI, Morgan DA, Walsh SA, Mark AL. Sympathetic and cardiorenal actions of leptin. *Hypertension*. Sep 1997;30(3 Pt 2):619-623.
- **114.** Shek EW, Brands MW, Hall JE. Chronic leptin infusion increases arterial pressure. *Hypertension*. Jan 1998;31(1 Pt 2):409-414.
- **115.** Correia ML, Morgan DA, Sivitz WI, Mark AL, Haynes WG. Leptin acts in the central nervous system to produce dose-dependent changes in arterial pressure. *Hypertension.* Mar 2001;37(3):936-942.
- **116.** Guagnano MT, Manigrasso MR, Ballone E, et al. Association between serum leptin levels and 24-hour blood pressure in obese women. *Obes Res.* Apr 2003;11(4):549-555.
- **117.** Crepaldi G, Belfiore F, Bosello O, et al. [Italian Consensus Conference; overweight, obesity and health (ICC S.O.S. 1991)]. *Recenti Prog Med.* Jul-Aug 1991;82(7-8):417-434.
- **118.** Schutte R, Huisman HW, Schutte AE, Malan NT. Leptin is independently associated with systolic blood pressure, pulse pressure and arterial compliance in

hypertensive African women with increased adiposity: the POWIRS study. *J Hum Hypertens*. Jul 2005;19(7):535-541.

- **119.** Suter PM, Locher R, Hasler E, Vetter W. Is there a role for the ob gene product leptin in essential hypertension? *Am J Hypertens*. Nov 1998;11(11 Pt 1):1305-1311.
- **120.** Soderberg S, Stegmayr B, Ahlbeck-Glader C, Slunga-Birgander L, Ahren B, Olsson T. High leptin levels are associated with stroke. *Cerebrovasc Dis.* 2003;15(1-2):63-69.
- **121.** Reilly MP, Iqbal N, Schutta M, et al. Plasma leptin levels are associated with coronary atherosclerosis in type 2 diabetes. *J Clin Endocrinol Metab.* Aug 2004;89(8):3872-3878.
- 122. Chambless LE, Heiss G, Folsom AR, et al. Association of coronary heart disease incidence with carotid arterial wall thickness and major risk factors: the Atherosclerosis Risk in Communities (ARIC) Study, 1987-1993. Am J Epidemiol. Sep 15 1997;146(6):483-494.
- **123.** Schulze PC, Kratzsch J, Linke A, et al. Elevated serum levels of leptin and soluble leptin receptor in patients with advanced chronic heart failure. *Eur J Heart Fail.* Jan 2003;5(1):33-40.
- **124.** Marroquin OC, Kip KE, Mulukutla SR, et al. Inflammation, endothelial cell activation, and coronary microvascular dysfunction in women with chest pain and no obstructive coronary artery disease. *Am Heart J.* Jul 2005;150(1):109-115.
- **125.** Schaumberg DA, Glynn RJ, Jenkins AJ, et al. Effect of intensive glycemic control on levels of markers of inflammation in type 1 diabetes mellitus in the diabetes control and complications trial. *Circulation*. May 17 2005;111(19):2446-2453.
- **126.** Libby P, Ridker PM, Maseri A. Inflammation and atherosclerosis. *Circulation*. Mar 5 2002;105(9):1135-1143.
- **127.** Ridker PM, Buring JE, Cook NR, Rifai N. C-reactive protein, the metabolic syndrome, and risk of incident cardiovascular events: an 8-year follow-up of 14 719 initially healthy American women. *Circulation.* Jan 28 2003;107(3):391-397.
- **128.** Ridker PM. Clinical application of C-reactive protein for cardiovascular disease detection and prevention. *Circulation.* Jan 28 2003;107(3):363-369.
- **129.** Jialal I, Devaraj S. Role of C-reactive protein in the assessment of cardiovascular risk. *Am J Cardiol.* Jan 15 2003;91(2):200-202.
- **130.** Clearfield MB. C-reactive protein: a new risk assessment tool for cardiovascular disease. *J Am Osteopath Assoc*. Sep 2005;105(9):409-416.

- **131.** Ridker PM. C-reactive protein, inflammation, and cardiovascular disease: clinical update. *Tex Heart Inst J.* 2005;32(3):384-386.
- **132.** Shamsuzzaman AS, Winnicki M, Wolk R, et al. Independent association between plasma leptin and C-reactive protein in healthy humans. *Circulation*. May 11 2004;109(18):2181-2185.
- **133.** Tuomisto K, Jousilahti P, Sundvall J, Pajunen P, Salomaa V. C-reactive protein, interleukin-6 and tumor necrosis factor alpha as predictors of incident coronary and cardiovascular events and total mortality. A population-based, prospective study. *Thromb Haemost.* Mar 2006;95(3):511-518.
- **134.** Ross R. Atherosclerosis is an inflammatory disease. *Am Heart J.* Nov 1999;138(5 Pt 2):S419-420.
- **135.** Wills Hurst J BLR. *The Heart*. Newyork: The Blakiston division, McGraw Hill Book Company; 1966.
- **136.** Bethesda. National Cholesterol Education Program.Second report of the Expert Panel on Detection,Evaluation and Treatment of High Blood Cholesterol in Adults(Adult Treatment Panel II),National Heart,Lung and Blood Institute,Publication 93-3095. 1993.
- **137.** Ross R, Glomset JA. Atherosclerosis and the arterial smooth muscle cell: Proliferation of smooth muscle is a key event in the genesis of the lesions of atherosclerosis. *Science*. Jun 29 1973;180(93):1332-1339.
- **138.** van Dielen FM, van't Veer C, Schols AM, Soeters PB, Buurman WA, Greve JW. Increased leptin concentrations correlate with increased concentrations of inflammatory markers in morbidly obese individuals. *Int J Obes Relat Metab Disord*. Dec 2001;25(12):1759-1766.
- **139.** Gualillo O, Eiras S, Lago F, Dieguez C, Casanueva FF. Elevated serum leptin concentrations induced by experimental acute inflammation. *Life Sci.* Oct 6 2000;67(20):2433-2441.
- **140.** Sarraf P, Frederich RC, Turner EM, et al. Multiple cytokines and acute inflammation raise mouse leptin levels: potential role in inflammatory anorexia. *J Exp Med.* Jan 6 1997;185(1):171-175.
- 141. Vasudevan AR, Garber AJ. Insulin resistance syndrome. A review. *Minerva Endocrinol.* Sep 2005;30(3):101-119.
- **142.** Morris F WC, Kahn CR, Weir GC. *Diabete Mellitus*. 13 ed: Philadelphia:Lippincott Williams & Wilkins; 1994.
- **143.** Braunwald E FA, Kasper DL, Hauser SL, Longo DL, Jameson JL. *Harrison's Principles of Internal medicine*. 15 ed. New York: McGraw-Hill; 2001.

- 144. Carey DG, Jenkins AB, Campbell LV, Freund J, Chisholm DJ. Abdominal fat and insulin resistance in normal and overweight women: Direct measurements reveal a strong relationship in subjects at both low and high risk of NIDDM. *Diabetes*. May 1996;45(5):633-638.
- 145. Spangler JG, Bell RA, Summerson JH, Konen JC. Hyperinsulinemia in hypertension: associations with race, abdominal obesity, and hyperlipidemia. *Arch Fam Med.* Jan-Feb 1998;7(1):53-56.
- **146.** Goodpaster BH, Thaete FL, Simoneau JA, Kelley DE. Subcutaneous abdominal fat and thigh muscle composition predict insulin sensitivity independently of visceral fat. *Diabetes.* Oct 1997;46(10):1579-1585.
- 147. Kelley DE, Thaete FL, Troost F, Huwe T, Goodpaster BH. Subdivisions of subcutaneous abdominal adipose tissue and insulin resistance. *Am J Physiol Endocrinol Metab.* May 2000;278(5):E941-948.
- **148.** Abate N, Garg A, Peshock RM, Stray-Gundersen J, Adams-Huet B, Grundy SM. Relationship of generalized and regional adiposity to insulin sensitivity in men with NIDDM. *Diabetes*. Dec 1996;45(12):1684-1693.
- **149.** Sites CK, Calles-Escandon J, Brochu M, Butterfield M, Ashikaga T, Poehlman ET. Relation of regional fat distribution to insulin sensitivity in postmenopausal women. *Fertil Steril.* Jan 2000;73(1):61-65.
- **150.** Ross R, Aru J, Freeman J, Hudson R, Janssen I. Abdominal adiposity and insulin resistance in obese men. *Am J Physiol Endocrinol Metab.* Mar 2002;282(3):E657-663.
- **151.** Ross R, Freeman J, Hudson R, Janssen I. Abdominal obesity, muscle composition, and insulin resistance in premenopausal women. *J Clin Endocrinol Metab.* Nov 2002;87(11):5044-5051.
- **152.** Brochu M, Starling RD, Tchernof A, Matthews DE, Garcia-Rubi E, Poehlman ET. Visceral adipose tissue is an independent correlate of glucose disposal in older obese postmenopausal women. *J Clin Endocrinol Metab.* Jul 2000;85(7):2378-2384.
- **153.** Grundy SM, Cleeman JI, Daniels SR, et al. Diagnosis and management of the metabolic syndrome: an American Heart Association/National Heart, Lung, and Blood Institute scientific statement. *Curr Opin Cardiol.* Jan 2006;21(1):1-6.
- **154.** Perseghin G, Ghosh S, Gerow K, Shulman GI. Metabolic defects in lean nondiabetic offspring of NIDDM parents: a cross-sectional study. *Diabetes*. Jun 1997;46(6):1001-1009.

- **155.** Abate N, Chandalia M, Snell PG, Grundy SM. Adipose tissue metabolites and insulin resistance in nondiabetic Asian Indian men. *J Clin Endocrinol Metab.* Jun 2004;89(6):2750-2755.
- **156.** Jensen MD, Haymond MW, Rizza RA, Cryer PE, Miles JM. Influence of body fat distribution on free fatty acid metabolism in obesity. *J Clin Invest*. Apr 1989;83(4):1168-1173.
- **157.** Boden G, Chen X, Ruiz J, White JV, Rossetti L. Mechanisms of fatty acidinduced inhibition of glucose uptake. *J Clin Invest*. Jun 1994;93(6):2438-2446.
- **158.** Roden M, Price TB, Perseghin G, et al. Mechanism of free fatty acid-induced insulin resistance in humans. *J Clin Invest.* Jun 15 1996;97(12):2859-2865.
- **159.** Manco M, Mingrone G, Greco AV, et al. Insulin resistance directly correlates with increased saturated fatty acids in skeletal muscle triglycerides. *Metabolism*. Feb 2000;49(2):220-224.
- **160.** Goodpaster BH, Thaete FL, Kelley DE. Thigh adipose tissue distribution is associated with insulin resistance in obesity and in type 2 diabetes mellitus. *Am J Clin Nutr.* Apr 2000;71(4):885-892.
- **161.** Swan JW, Anker SD, Walton C, et al. Insulin resistance in chronic heart failure: relation to severity and etiology of heart failure. *J Am Coll Cardiol*. Aug 1997;30(2):527-532.
- **162.** Hanley AJ, Williams K, Stern MP, Haffner SM. Homeostasis model assessment of insulin resistance in relation to the incidence of cardiovascular disease: the San Antonio Heart Study. *Diabetes Care*. Jul 2002;25(7):1177-1184.
- **163.** de Simone G, Devereux RB, Palmieri V, et al. Relation of insulin resistance to markers of preclinical cardiovascular disease: the Strong Heart Study. *Nutr Metab Cardiovasc Dis.* Jun 2003;13(3):140-147.
- **164.** Rutter MK, Parise H, Benjamin EJ, et al. Impact of glucose intolerance and insulin resistance on cardiac structure and function: sex-related differences in the Framingham Heart Study. *Circulation.* Jan 28 2003;107(3):448-454.
- **165.** Folsom AR, Szklo M, Stevens J, Liao F, Smith R, Eckfeldt JH. A prospective study of coronary heart disease in relation to fasting insulin, glucose, and diabetes. The Atherosclerosis Risk in Communities (ARIC) Study. *Diabetes Care*. Jun 1997;20(6):935-942.
- 166. Folsom AR, Rasmussen ML, Chambless LE, et al. Prospective associations of fasting insulin, body fat distribution, and diabetes with risk of ischemic stroke. The Atherosclerosis Risk in Communities (ARIC) Study Investigators. *Diabetes Care.* Jul 1999;22(7):1077-1083.

- **167.** Laakso M. How good a marker is insulin level for insulin resistance? *Am J Epidemiol.* May 1 1993;137(9):959-965.
- 168. Kuusisto J, Mykkanen L, Pyorala K, Laakso M. Hyperinsulinemic microalbuminuria. A new risk indicator for coronary heart disease. *Circulation*. Feb 1 1995;91(3):831-837.
- **169.** Ferrara A, Barrett-Connor EL, Edelstein SL. Hyperinsulinemia does not increase the risk of fatal cardiovascular disease in elderly men or women without diabetes: the Rancho Bernardo Study, 1984-1991. *Am J Epidemiol*. Nov 15 1994;140(10):857-869.
- **170.** de Courten M, Zimmet P, Hodge A, et al. Hyperleptinaemia: the missing link in the, metabolic syndrome? *Diabet Med.* Mar 1997;14(3):200-208.
- **171.** Doehner W, Rauchhaus M, Godsland IF, et al. Insulin resistance in moderate chronic heart failure is related to hyperleptinaemia, but not to norepinephrine or TNF-alpha. *Int J Cardiol.* Apr 2002;83(1):73-81.
- **172.** National Institutes of Health, National Heart, Lung, and Blood Institute. Clinical guidelines on the identification, evaluation, and treatment of overweight and obesity in adults: the evidence report. *Obes Res.* 1998;6(Suppl 2):S51-S210.
- **173.** Janssen I, Katzmarzyk PT, Ross R. Body mass index, waist circumference, and health risk: evidence in support of current National Institutes of Health guidelines. *Arch Intern Med.* Oct 14 2002;162(18):2074-2079.
- 174. Zhu S, Wang Z, Heshka S, Heo M, Faith MS, Heymsfield SB. Waist circumference and obesity-associated risk factors among whites in the third National Health and Nutrition Examination Survey: clinical action thresholds. *Am J Clin Nutr*. Oct 2002;76(4):743-749.
- **175.** Janssen I, Katzmarzyk PT, Ross R. Waist circumference and not body mass index explains obesity-related health risk. *Am J Clin Nutr*. Mar 2004;79(3):379-384.
- **176.** Ross R, Katzmarzyk PT. Cardiorespiratory fitness is associated with diminished total and abdominal obesity independent of body mass index. *Int J Obes Relat Metab Disord*. Feb 2003;27(2):204-210.
- **177.** Janssen I, Heymsfield SB, Allison DB, Kotler DP, Ross R. Body mass index and waist circumference independently contribute to the prediction of nonabdominal, abdominal subcutaneous, and visceral fat. *Am J Clin Nutr.* Apr 2002;75(4):683-688.
- **178.** Mosca L, Edelman D, Mochari H, Christian AH, Paultre F, Pollin I. Waist circumference predicts cardiometabolic and global Framingham risk among women screened during National Woman's Heart Day. *J Womens Health* (*Larchmt*). Jan-Feb 2006;15(1):24-34.

- **179.** Kato MM, Currier MB, Villaverde O, Gonzalez-Blanco M. The relation between body fat distribution and cardiovascular risk factors in patients with schizophrenia: a cross-sectional pilot study. *Prim Care Companion J Clin Psychiatry*. 2005;7(3):115-118; quiz 119-120.
- **180.** Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. *Diabetologia*. Jul 1985;28(7):412-419.
- **181.** Emoto M, Nishizawa Y, Maekawa K, et al. Homeostasis model assessment as a clinical index of insulin resistance in type 2 diabetic patients treated with sulfonylureas. *Diabetes Care*. May 1999;22(5):818-822.
- **182.** Matsuda M, DeFronzo RA. Insulin sensitivity indices obtained from oral glucose tolerance testing: comparison with the euglycemic insulin clamp. *Diabetes Care*. Sep 1999;22(9):1462-1470.
- **183.** Bonora E, Kiechl S, Willeit J, et al. Prevalence of insulin resistance in metabolic disorders: the Bruneck Study. *Diabetes*. Oct 1998;47(10):1643-1649.
- **184.** Bonora E, Targher G, Alberiche M, et al. Homeostasis model assessment closely mirrors the glucose clamp technique in the assessment of insulin sensitivity: studies in subjects with various degrees of glucose tolerance and insulin sensitivity. *Diabetes Care.* Jan 2000;23(1):57-63.
- **185.** Katsuki A, Sumida Y, Gabazza EC, et al. Homeostasis model assessment is a reliable indicator of insulin resistance during follow-up of patients with type 2 diabetes. *Diabetes Care.* Feb 2001;24(2):362-365.
- **186.** Kanauchi M, Akai Y, Hashimoto T. Validation of simple indices to assess insulin sensitivity and pancreatic Beta-cell function in patients with renal dysfunction. *Nephron.* 2002;92(3):713-715.
- **187.** Ascaso JF, Romero P, Real JT, Priego A, Valdecabres C, Carmena R. [Insulin resistance quantification by fasting insulin plasma values and HOMA index in a non-diabetic population]. *Med Clin (Barc)*. Nov 3 2001;117(14):530-533.

APPENDICES

APPENDIX A

Oklahoma State University Institutional Review Board

Protocol Expires: 11/30/2001

Date : Friday, December 01, 2000

IRB Application No HE0116

Proposal Title:

PREVALENCE OF AND FACTORS INFLUENCING CHILDHOOD OBESITY IN AFRICAN AMERICANS AND NOTIVE AMERICANS OF OKLAHOMA

Principal Investigator(s) :

Saiguetha Sangiah 425 HES Stillwater, OK 74078 Maria Spicer 425 HES Stillwater, OK 74078

Reviewed and Full Board Processed as:

Approval Status Recommended by Reviewer(s) : Approved

Signature :

wolds Carol Olson, Director of University Research Compliance

Friday, December 01, 2000 Date

Approvals are valid for one calendar year, after which time a request for continuation must be submitted. Any modifications to the research project approved by the IRB must be submitted for approval with the advisor's signature. The IRB office MUST be notified in writing when a project is complete. Approved projects are subject to monitoring by the IRB. Expedited and exempt projects may be reviewed by the full Institutional Review Board.

APPENDIX B

Studies showing the normal values for insulin resistance calculation by HOMA IR^{180, 184, 186, 187}

Authors (Year)	Normal Values	Diabetes or IGT
	Mean ± SD	
	(Range)	
Matthews (1985)	1.45	2.61
Kanauchi (2002)	1.69 ± 0.84	3.19 ± 1.43
		1.89 ± 1.50
Bonora (2000)	2.06 ± 0.14	5.98 ± 0.48
	(0.7 - 6.0)	(1.1-13.9)
Ascaso (2001)	≤3.8	-
Yeni-Komshan (2000)	2.7 ± 0.1	-
	0.2-14.6	

APPENDIX C

					The S	SAS Sys	tem	10:0	9 Tuesd	ay, Fel	bruary 28	, 2006 197
Obs	Participant ID	Ethnicity	Age	Height	Weight	MAMC	Tricep SF	нір	Waist	FFM	percbod FAT	systolic
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 8 19 20 21 22 23	GP108 P108 P11 P18 P19 P193 P23 P24 P26 P27 P29 P31 P34 P34 P39 P42 P43 P45 P60 P62 P63 P66 P67 P68		41 26 37 30 30 34 42 44 34 42 44 30 44 28 30 44 28 32 45 42 31 27	$\begin{array}{c} 66.0\\ 65.5\\ 61.5\\ 63.6\\ 63.6\\ 63.5\\ 63.0\\ 63.5\\ 69.0\\ 64.5\\ 65.0\\ 65.0\\ 65.0\\ 65.0\\ 65.5\\ 664.5\\ 65.0\\ 64.5\\ 664.5\\ 667.5\\ 62.0\\ \end{array}$	218.5 165.5 263.0 217.0 190.0 166.5 172.5 227.0 218.0 215.5 168.0 255.0 164.0 255.0 164.0 292.5 111.0 219.5 284.5 129.5 167.5 232.5 183.0 191.5	40.0 30.5 45.0 38.5 34.0 38.0 31.0 39.0 31.0 37.0 45.0 37.0 45.0 31.0 37.0 31.0 37.0 32.0 37.0 31.0 37.0 31.0 37.0 31.0 37.0 31.0 37.0 31.0 37.0 31.0 37.0 31.0 37.0 31.0 37.0 31.0 37.0 32.0 37.0 32.0 37.0 32.0 37.0 32.0 37.0 32.0 37.0 32.0 37.0 32.0 37.0 32.0 37.0 32.0 37.0 37.0 37.0 37.0 37.0 37.0 37.0 37	40.3 29.6 49.3 42.0 41.3 46.0 38.0 29.0 42.7 38.3 27.0 43.0 54.3 17.5 41.0 46.7 18.7 32.0 33.0 33.3 30.3	$124.0 \\ 103.0 \\ 150.0 \\ 117.0 \\ 150.0 \\ 112.0 \\ 110.0 \\ 130.0 \\ 124.0 \\ 103.0 \\ 126.0 \\ 103.0 \\ 126.0 \\ 103.0 \\ 150.0 \\ 83.5 \\ 125.0 \\ 142.0 \\ 92.0 \\ 110.0 \\ 130.0 \\ 104.0 \\ 119.0 \\ 119.0 \\ 119.0 \\ 103.0 \\ 119.0 \\ 104.0 \\ 119.0 \\ 104.0 \\ 119.0 \\ 104.0 \\ 119.0 \\ 104.0 \\ 119.0 \\ 104.0 \\ 119.0 \\ 104.0 \\ 119.0 \\ 104.0 \\ 119.0 \\ 100.0 \\ 119.0 \\ 100.0 \\ 119.0 \\ 100.0 \\ 119.0 \\ 100.0 \\ 119.0 \\ 100.0 $	$\begin{array}{c} 121.0\\ 87.0\\ 149.0\\ 109.5\\ 93.0\\ 99.5\\ 114.0\\ 97.0\\ 122.5\\ 83.0\\ 112.0\\ 106.0\\ 104.0\\ 148.0\\ 69.5\\ 116.0\\ 143.0\\ 81.0\\ 103.0\\ 118.0\\ 103.0\\ 104.0\\ \end{array}$	$\begin{array}{c} 109.0\\ 103.0\\ 125.0\\ 117.0\\ 96.5\\ 103.0\\ 112.0\\ 104.5\\ 106.5\\ 121.0\\ 95.0\\ 122.5\\ 131.0\\ 88.5\\ 131.0\\ 97.5\\ 133.0\\ 97.5\\ 115.0\\ 107.5\\ 107.0\\ \end{array}$	50.0 37.9 52.4 46.2 40.9 42.1 40.4 50.7 44.0 43.6 51.6 55.2 20.3 49.1 53.3 28.9 41.7 50.5 41.3 44.0	138 140 145 110 122 10 122 10 144 140 110 133 145 124 138 141 120 118 130 130 130 130 130 130 130 130
Obs	diastolic s	erglucose	stotch	se nol HD	r L sertr	riglyc		insuli	n wais	thip	bmi	homair
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 9 20 21 22 23	90 84 100 80 	$ \begin{array}{r} 115 \\ 101 \\ 112 \\ 108 \\ 95 \\ 102 \\ 73 \\ 84 \\ 161 \\ 94 \\ 109 \\ 60 \\ 93 \\ 92 \\ 111 \\ 79 \\ 91 \\ 119 \\ 77 \\ 99 \\ 84 \\ 105 \\ 94 \\ 94 \end{array} $	175 122 204 175 215 215 255 255 255 255 211 105 192 248 203 203 203 203 204 244 204 204 204 204 204 204 204 204	2 35. 4 47. 5 63. 5 87. 5 87. 5 87. 5 87. 5 87. 5 54. 5 54. 5 54. 5 54. 5 54. 5 54. 5 54. 5 54. 5 54. 5 54. 5 54. 5 54. 5 54. 5 54. 5 54. 5 54. 5 54. 5 56. 60. 45. 5 60. 45. 50.	3 1 1 9 3 7 9 9 1 9 7 1 8 3 6 8 2 5 6 6 7 1 7 7 1 7 7 1 7 7	77 69 87 71 99 94 95 78 19 72 87 226 56 1 30 76 48 52 226 48 226 49	31.85 17.85 42.60 29.61 27.76 38.60 32.44 58.56 23.42 37.76 13.73 25.17 14.75 58.10 79.65 5.29 52.97 55.49 .23.12 16.51 33.22 46.73	29.1 7.8 23.5 36.4 24.5 52.8 45.3 23.9 17.1 29.8 47.2 4.4 43.1 88.1 88.1 9 30.7 4.0 9.7 118.1 160.8	0235847672728667865 00.9988998 00.99984 00.88998 00.88998 00.88079 00.88079 00.88079 00.88079 00.998 00.998 00.999 00.9908 00.999 00.999 00.999 00.999 00.990 00.998 00.999 00.999 00.998 00.999 00.999 00.998 00.999 00000000	4466 9333 3590 3750 0455 2906 8790 0583 8889 0583 8889 7037 7037 78667 3234 2800 0952 2800 0952 7037 8667 8234 2800 0704 8043 3636 0769 6154	27.1767 48.9876 37.9134 29.8184 29.0903 30.6189 39.6606 32.2581 35.7382 28.2075 35.3872 28.0133 44.9077 48.7731 19.7026 36.0440 45.3231 22.2736 28.3646 38.7683 28.2960	5.00284 3.55573 4.76283 5.16401 4.64514 4.71339 5.14421 5.13215 5.14427 4.27294 4.27294 4.27294 4.27294 4.27294 5.17365 6.07517 3.18164 5.80370 5.09247 2.63147 3.75887 6.31240 6.51050
	Participant						tem Tricep	10:0	9 Tuesd	ay, Fel	bruary 28 percbod	, 2006 198
Obs 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42	ID P69 P74 P76 P80 P81 P82 P83 P92 P94 P97 GP38 P1 P10 P100 P100 P101 P103 P105 P106 P113	Ethnicity 1 1 1 1 1 1 1 1 1 1 3 3 3 3 3 3 3 3 3 3 3 3 3	Age 34 33 29 32 37 44 30 44 31 26 33 38 23 39	Height 62.0 68.0 62.5 68.0 61.0 66.0 61.5 64.0 71.5 64.5 64.5 64.5 64.5 64.5 64.5 65.0 65.0 65.5 65.5	Weight 264.5 304.5 152.5 237.5 141.0 160.0 231.0 127.5 216.0 346.5 282.5 206.0 171.5 217.0 171.0 149.0 245.5 236.0 172.5		SF 42.00 42.70 42.30 33.00 27.00 20.00 28.70 50.00 50.70 30.00 35.30 27.00 27.00 27.30 41.70 33.00 34.70	Hip 146.0 150.0 101.0 131.0 104.5 104.0 122.0 91.0 122.5 136.0 121.0 109.0 126.0 113.5 102.0 130.5 136.0 100.0	Waist 129.0 150.0 91.0 110.0 82.0 91.0 118.0 75.0 113.0 145.0 105.0 95.0 115.0 108.5 90.0 126.0 116.0 100.0	FFM 122.0 140.0 97.0 129.5 93.0 126.5 93.0 112.0 145.5 129.0 138.5 99.5 99.5 99.5 95.5 118.5 99.5 91.5 0 115.0 115.5 102.0	FAT 53.9 54.1 36.4 45.4 33.9 37.4 45.3 27.1 48.2 58.0 54.4 32.7 42.0 45.4 41.9 36.4 41.9 36.4 41.9 36.4 40.9	systolic 140 120 160 120 160 120 118 128 138 143 130 132 145 120 138 142 115

43 44 45 46	P114 P115 P12 P13	3 3 3 3	30 35 31 40	65.0 64.0 64.0 67.0	157.0 32.0 163.0 30.0 235.0 35.6 188.0 31.5	34.00 30.30 48.00 27.30	95.0 109.0 134.6 106.0	86.0 103 96.0 97 110.5 135 98.0 110	.0 39.6 .0 41.2	137
Obs	diastolic	serglucose	stotch	ser ol HDL	sertriglyc	leptin	insulin	waisthip	bmi	homair
24 25 26 27 28 30 31 32 33 34 35 36 37 8 39 40 41 42 43 44 45 46	90 80 82 70 70 76 84 95 95 78 90 98 76 88 90 80 80 80 80 88 88 88 82	$103 \\ 94 \\ 115 \\ 95 \\ 91 \\ 100 \\ 91 \\ 85 \\ 110 \\ 114 \\ 106 \\ 114 \\ 106 \\ 114 \\ 106 \\ 114 \\ 103 \\ 101 \\ 103 \\ 101 \\ 103 \\ 101 \\ 103 \\ 101 \\ 103 \\ 101 \\ 103 \\ 101 \\ 103 \\ 101 \\ 103 \\ 101 \\ 103 \\ 101 \\ 103 \\ 104 \\ 135 \\ 101 \\ 103 \\ 103 \\ 101 \\ 103$	176 178 191 271 205 210 190 197 239 252 208 183 155 189 216 186 2366 2368 185 107 274	42.0 35.6 31.0 39.2 63.7 560.9 69.2 42.5 51.5 56.4 18.8 32.9 52.1 40.3 36.3 33.4 59.1 56.3 50.2 29.3 67.4	127 92 87 88 49 283 65 61 76 96 132 204 224 64 144 93 182 101 65 68 84 177 12	54.32 52.44 18.60 39.30 18.77 22.29 32.88 26.02 47.99 62.26 52.57 22.90 24.42 30.54 11.43 19.45 51.44 16.43 19.45 51.44 16.43 10.03 22.43 23.56	78.89174.8945.0632.1016.46269.5853.088.9149.16130.6081.0235.4728.0719.5320.2211.5919.6161.9518.411.5524.6242.6030.21	$\begin{array}{c} 1.00000\\ 0.90099\\ 0.83969\\ 0.78469\\ 0.87500\\ 0.96721\\ 0.82418\\ 0.92245\\ 0.92245\\ 0.92647\\ 0.86777\\ 0.87156\\ 0.91270\\ 0.95595\\ 0.88235\\ 0.96552\\ 0.85294\\ 0.94340\\ 0.90526\\ 0.88073\\ 0.82095\end{array}$	$\begin{array}{c} 48.4756\\ 46.3928\\ 27.5037\\ 36.1849\\ 26.6956\\ 25.8770\\ 37.3598\\ 23.7488\\ 37.1514\\ 47.7499\\ 46.3892\\ 34.8842\\ 29.0419\\ 35.0956\\ 29.8765\\ 24.8451\\ 35.9337\\ 39.9644\\ 28.3261\\ 26.1791\\ 28.0355\\ 40.4193\\ 29.5046\\ \end{array}$	5.88927 6.59394 5.43941 4.90922 4.19828 7.08852 5.36914 3.51631 5.48205 6.49482 5.94462 5.19137 4.80615 4.47356 4.52789 3.98102 4.76780 5.62793 4.35326 4.23844 4.44675 5.70724 5.10684
	Do até dénom				The SAS Sys		10:09	Tuesday, I		8, 2006 199
Obs	Participan ID	Ethnicity	Age H	Height N	veight MAMC	Tricep SF	Нір	Waist FF	percbo M FAT	a systolic
47 48 50 52 53 54 55 56 57 58 50 61 62 63 66 66 66 68 9	P14 P16 P22 P28 P3 P38 P44 P5 P51 P52 P59 P6 P61 P65 P7 P70 P71 P73 P75 P77	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	35 30 310 48 22 48 44 40 38 27 31 39 32 86 31 39 32 86 31	$\begin{array}{c} 62.0\\ 63.0\\ 62.0\\ 63.5\\ 66.0\\ 65.5\\ 67.0\\ 66.5\\ 67.0\\ 66.5\\ 67.0\\ 67.5\\ 64.0\\ 63.5\\ 64.0\\ 63.5\\ 64.0\\ 65.5\\ 65.5\\$	$\begin{array}{cccccc} 149.0 & \\ 162.0 & 30.0 \\ 166.5 & 32.0 \\ 269.5 & 35.0 \\ 196.5 & 31.8 \\ 189.5 & 33.0 \\ 205.0 & 38.5 \\ 174.5 & 28.0 \\ 192.0 & 33.5 \\ 200.5 & 34.5 \\ 264.0 & 39.0 \\ 218.0 & 33.0 \\ 210.0 & 34.5 \\ 264.0 & 39.0 \\ 218.0 & 33.0 \\ 210.0 & 34.5 \\ 264.5 & 35.0 \\ 177.5 & 28.0 \\ 145.0 & 26.0 \\ 176.5 & 32.0 \\ 166.5 & 35.0 \\ 190.0 & 30.0 \\ 226.5 & 39.0 \\ 168.5 & 33.0 \\ 236.5 & 41.0 \\ 107.5 & 25.0 \\ 221.0 & 33.0 \end{array}$	$\begin{array}{c} 32.00\\ 30.30\\ 27.70\\ 47.70\\ 30.00\\ 41.00\\ 41.30\\ 23.00\\ 34.00\\ 38.00\\ 30.70\\ 29.30\\ 38.50\\ 29.30\\ 38.50\\ 29.70\\ 16.00\\ 29.70\\ 27.75\\ 22.00\\ 44.70\\ 34.00\\ 45.30\\ 13.70\\ 40.00\\ \end{array}$	145.0 119.4 115.6 109.0 114.0 117.2 112.0 129.0 129.0 123.0 112.0 100.0 116.0 108.0 115.0 131.0 115.0 127.0 92.0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	122 100 120 135 115 130
Obs	diastolic	serglucose	stotch	ser ol HDL	sertriglyc	leptin	insulin	waisthip	bmi	homair
47 48 50 52 53 54 55 56 57 58 60 61 62 63	92 58 86 80 80 83 72 80 82 72 70 98 70 100 72	106 95 91 116 94 89 98 107 176 111 99 90 105 110 71 111 178	196 225 179 235 181 165 152 153 267 230 262 192 175 212	75.6 67.7 54.0 32.2 40.1 37.8 46.1 56.0 542.5 39.9 54.2 47.7 711 53.4 57.7 45.7	118 224 152 108 193 99 15 84 203 177 105 201 77 117 94 53 286	$\begin{array}{c} 11.33\\ 11.36\\ 25.51\\ 43.64\\ 21.96\\ 28.38\\ 36.22\\ 28.65\\ 37.63\\ 36.49\\ 25.96\\ 40.64\\ 37.13\\ 31.27\\ 14.57\\ 19.01\\ 29.73\end{array}$	25.79 5.47 67.90 28.21 37.03 59.27 30.67 89.34 32.20 30.18 28.36 27.90 63.47 25.51 22.93 79.14	$\begin{array}{c} 0.98969\\ 0.94444\\ 0.84138\\ 0.87353\\ 0.89965\\ 0.97248\\ 0.93860\\ 0.82935\\ 0.97321\\ 1.08527\\ 0.96124\\ 0.93089\\ 0.88393\\ 0.91000\\ 0.91379\end{array}$	$\begin{array}{c} 27.3076\\ 28.7551\\ 30.5149\\ 47.0861\\ 31.7801\\ 31.5983\\ 35.8169\\ 27.3859\\ 30.5871\\ 31.9413\\ 41.4319\\ 33.7078\\ 34.4840\\ 30.0580\\ 24.9396\\ 30.8374\\ 30.5149 \end{array}$	4.79991 3.13964 5.61538 5.26681 4.76946 4.98685 5.55356 4.98260 6.54942 5.06798 4.88878 4.73127 4.86907 5.73753 4.38824 4.72846 6.43949

64 65 66 67 68 69	72 83 94 72 68	97 123 152 93 97 262	151 198 273 202 224 150	27.1 71.4 87.9 47.9 38.0 35.0	45 146 151 148 147 154	22.97 44.45 32.97 29.52 4.20 23.09	48.81 115.69 27.31 15.19 8.18 16.69	 0.96183 0.93913 0.83465 0.90217 	29.8184 36.6321 28.0966 38.8356 18.2041 38.0114	5.34913 6.44958 5.21762 4.13972 3.56289 5.26964
					The SAS Sys	tem	10:09) Tuesday, F	ebruary 2	8, 2006 200
Obs	Participant ID	Ethnicity	Age	Height W	veight MAMC	Tricep SF	Нір	Waist FFM	percbo FAT	d systolic
70 71 72 73 74 75 76 77 78 79 80 81	P79 P8 P84 P85 P87 P9 P90 P91 P95 P96 P98 P99	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	32 41 45 29 34 43 30 37 38 29 29 30	62.0 62.5 67.5 66.0 67.5 61.5 67.5 63.5 63.5 63.5 63.5 63.0 64.5 64.0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 31.70\\ 24.00\\ 25.00\\ 28.00\\ 24.70\\ 27.00\\ 27.70\\ 24.30\\ 43.00\\ 38.30\\ 27.00\\ 35.00 \end{array}$	$\begin{array}{c} 121.0\\ 116.0\\ 119.5\\ 96.0\\ 115.0\\ 119.0\\ 113.0\\ 113.0\\ 150.0\\ 115.0\\ 103.0\\ 139.5 \end{array}$	$\begin{array}{ccccccc} 111.0 & 102.\\ 99.0 & 128.\\ 103.0 & 119.\\ 77.5 & 94.\\ 103.0 & 107.\\ 106.0 & 106.\\ 101.0 & 104.\\ 117.0 & 94.\\ 145.0 & 136.\\ 103.0 & 110.\\ 97.0 & 89.\\ 109.5 & 121.\\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	130 120 97 140 130 112 110 130 132 126
Obs	diastolic	serglucose	stotch	ser ol HDL	sertriglyc	leptin	insulir	n waisthip	bmi	homair
70 71 72 73 74 75 76 77 78 79 80 81	78 82 70 82 84 78 74 60 84 82 84 88	105 108 178 104 85 63 103 93 123 103 98 114	139 243 212 177 176 70 182 239 160 158 209 263	34.5 35.7 45.7 60.0 48.6 17.2 40.1 80.7 48.5 54.6 69.0 20.5	202 476 286 47 55 25 237 360 154 118 80 304	$\begin{array}{c} 24.47\\ 34.15\\ 29.73\\ 34.72\\ 34.21\\ 28.48\\ 6.02\\ 17.97\\ 60.32\\ 29.38\\ 14.23\\ 52.30\end{array}$	15.57 73.19 23.31 26.99 46.40 142.21 171.18 26.77 8.89 52.80	<pre>0 0.85345 0.86192 0.80729 0 0.89565 0 0.89076 1 0.89381 1 03540 3 0.96667 7 0.89565 9 0.94175</pre>	$\begin{array}{c} 33.9971\\ 33.7258\\ 31.3884\\ 23.1275\\ 28.0640\\ 36.4148\\ 27.8321\\ 25.6167\\ 52.5023\\ 31.1814\\ 23.0303\\ 40.3333 \end{array}$	4.28579 5.86167 4.67976 4.62460 4.86692 6.47852 5.13777 6.84138 4.80850 3.65638 5.58919

Differences between ethnic groups

The SAS System

10:09 Tuesday, February The SAS System

21:43 Thursday, July 6, 2006 182

The GLM Procedure Class Level Information Class Levels Values Ethnicity 2 1 3 Smoke 2 1 2 2 1 2 bp Data for Analysis of Height Weight bmi Waist serglucose totchol HDL triglyc Number of Observations Read Number of Observations Used 81 80 Data for Analysis of MAMC Number of Observations Read Number of Observations Used 81 77

Data for Analysis of TricepSF

Number of Observations R Number of Observations U	
--	--

Data for Analysis of Wrist					
Number of Observations Read Number of Observations Used	81 77				
Data for Analysis of Hip waisthip)				
Number of Observations Read Number of Observations Used	81 79				
Data for Analysis of FFM percbFAT	г				
Number of Observations Read Number of Observations Used	81 79				
The SAS System	21:43	Thursday,	July 6,	2006	183
The SAS System The GLM Procedure	21:43	Thursday,	July 6,	2006	183
,		Thursday,	July 6,	2006	183
The GLM Procedure		Thursday,	July 6,	2006	183
The GLM Procedure Data for Analysis of diastolic syste Number of Observations Read	olic 81	Thursday,	July 6,	2006	183
The GLM Procedure Data for Analysis of diastolic syste Number of Observations Read Number of Observations Used	olic 81	Thursday,	July 6,	2006	183

Data for Analysis of insulin homair

Number of Observations Read81Number of Observations Used78

NOTE: Variables in each group are consistent with respect to the presence or absence of missing values.

The SAS System	21:43 Thursday, July 6, 2006 184
The GLM Procedure	

Dependent Variable: Height

Source Model Error Corrected Total	DF 1 78 79	Sum of Squares 0.2684256 311.1534494 311.4218750	Mean Square 0.2684256 3.9891468	F Value 0.07	Pr > F 0.7960
R-Square 0.000862		ff Var Root 083122 1.997	- J -		
Source	DF	Type I SS	Mean Square	F Value	Pr > F
Ethnicity	1	0.26842561	0.26842561	0.07	0.7960
Source	DF	Type III SS	Mean Square	F Value	Pr > F
Ethnicity	1	0.26842561	0.26842561	0.07	0.7960

The SAS System 21:43 Thursday, July 6, 2006 185 The GLM Procedure Dependent Variable: Weight Sum of Squares Source DF Mean Square F Value Pr > FMode1 1 3421.5459 3421.5459 1.61 0.2083 165796.0509 2125.5904 Error 78 Corrected Total 79 169217.5969 Weight Mean R-Square Coeff Var Root MSE 0.020220 199.0438 23.16281 46.10413 Source DF Type I SS Mean Square F Value Pr > FEthnicity 3421.545940 3421.545940 1 1.61 0.2083 Source DF Type III SS Mean Square F Value Pr > F Ethnicity 1 3421.545940 3421.545940 1.61 0.2083 The SAS System 21:43 Thursday, July 6, 2006 186

The GLM Procedure

Dependent Variable: bmi					
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	1	90.963982	90.963982	1.70	0.1967
Error	78	4185.445240	53.659554		
Corrected Total	79	4276.409222			
R-Square		eff Var Root			
0.021271	2	1.95779 7.32	5268 33.36	5069	
Source	DF	Type I SS	Mean Square	F Value	Pr > F
Ethnicity	1	90.96398197	90.96398197	1.70	0.1967
Source	DF	Type III SS	Mean Square	F Value	Pr > F
Ethnicity	1	90.96398197	90.96398197	1.70	0.1967
		The SAS System	21:43	Thursday,	July 6, 2006 187
		The GLM Procedur	e		
Dependent Variable: Waist					
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	1	122.84008	122.84008	0.40	0.5301
Error	78	24089.01380	308.83351		

24211.85388

79

Corrected Total

	R-Square	Coe	ff Var	Root	MSE	Waist M	Mean		
	0.005074	16	.38131	17.57	366	107.2	2788		
Source		DF	Type]	r 55	Mean	Square	F Value	Pr > F	
Ethnicity		1	122.8400			400775	0.40	0.5301	
Lennercy		-	12210100		11110	100115	0110	010001	
Source		DF	Type III	I SS	Mean	Square	F Value	Pr > F	
Ethnicity		1	122.8400)775	122.8	400775	0.40	0.5301	
			The SAS	System		21:43	Thursday,	July 6, 2006 1	88
			The GLM Pr	rocedure					
Dependent Variable	: serglucose								
Source		DF		n of ares	Mean	Square	F Value	Pr > F	
Model		1	3272.91	L348	3272	.91348	4.27	0.0421	
Error		78	59807.88	3652	766	.76778			
Corrected To	tal	79	63080.80	0000					
	R-Square	Coeff	Var F	Root MSE	se	rglucose	e Mean		
	0.051884	26.04		27.69057		÷	5.3000		
Source		DF	Туре 1	E SS	Mean	Square	F Value	Pr > F	
Ethnicity		1	3272.913	3475	3272.	913475	4.27	0.0421	
Source		DF	Type III	t ss	Mean	Square	F Value	Pr > F	
Ethnicity		1	3272.913	3475	3272.	913475	4.27	0.0421	
			The SAS	System		21:43	Thursday,	July 6, 2006 1	89
			The GLM Pr	rocedure					
Dependent Variable	: totchol								
Source		DF		n of ares	Mean	Square	F Value	Pr > F	
Model		1	2.2	2383		2.2383	0.00	0.9706	
Error		78	127392.7	7492	163	3.2404			
Corrected To	tal	79	127394.9	9875					
	R-Square	Coef	f Var	Root M	SF	totchol	Mean		
	0.000018		72613	40.413			.9875		
	0.000020	201				2011			
Source		DF	Туре 1	I SS	Mean	Square	F Value	Pr > F	
Ethnicity		1	2.23830)593	2.23	830593	0.00	0.9706	
Source		DF	Type III	I SS	Mean	Square	F Value	Pr > F	
Ethnicity		1	2.23830)593	2.23	830593	0.00	0.9706	
			The SAS	System		21:43	Thursday,	July 6, 2006 1	90
			The GLM Pr	rocedure					

Dependent Variable: HDL

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	1	657.10571	657.10571	2.64	
Error	78	19450.80629	249.36931	2.01	0.1000
Corrected Total	79	20107.91200	243.30331		
	15	20107.91200			
R-Square	Co	eff Var Roo	t MSE HDL I	Mean	
0.032679	33	1.89544 15.	79143 49.5	1000	
Source	DF	Type I SS	Mean Square	F Value	Pr > F
Ethnicity	1	657.1057073	657.1057073	2.64	0.1086
Source	DF	Type III SS	Mean Square	F Value	Pr > F
Ethnicity	1	657.1057073	657.1057073	2.64	0.1086
		The SAS Syste	m 21:43	Thursday,	July 6, 2006 193
		The GLM Procedu	re		
Dependent Variable: triglyc					
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	1	48383.7873	48383.7873	7.56	
Error	78	498881.7627	6395.9200		
Corrected Total	79	547265.5500			
	_				
R-Square			MSE triglyc		
R-Square 0.088410			_	Mean .9250	
			7450 124	.9250	Pr > F
0.088410	64	.01801 79.9	7450 124	.9250	Pr > F 0.0074
0.088410 Source	64 DF	.01801 79.9 Type I SS	7450 124 Mean Square 48383.78727	.9250 F Value 7.56	0.0074
0.088410 Source Ethnicity	64 DF 1	.01801 79.9 Type I SS 48383.78727	7450 124 Mean Square 48383.78727 Mean Square	.9250 F Value 7.56 F Value	0.0074
0.088410 Source Ethnicity Source	64 DF 1 DF	.01801 79.9 Type I SS 48383.78727 Type III SS	7450 124 Mean Square 48383.78727 Mean Square 48383.78727	.9250 F Value 7.56 F Value 7.56	0.0074 Pr > F
0.088410 Source Ethnicity Source	64 DF 1 DF	.01801 79.9 Type I SS 48383.78727 Type III SS 48383.78727	7450 124 Mean Square 48383.78727 Mean Square 48383.78727 m 21:43	.9250 F Value 7.56 F Value 7.56	0.0074 Pr > F 0.0074
0.088410 Source Ethnicity Source	64 DF 1 DF	.01801 79.9 Type I SS 48383.78727 Type III SS 48383.78727 The SAS Syste	7450 124 Mean Square 48383.78727 Mean Square 48383.78727 m 21:43	.9250 F Value 7.56 F Value 7.56	0.0074 Pr > F 0.0074
0.088410 Source Ethnicity Source Ethnicity	64 DF 1 DF	.01801 79.9 Type I SS 48383.78727 Type III SS 48383.78727 The SAS Syste The GLM Procedu Sum of	7450 124 Mean Square 48383.78727 Mean Square 48383.78727 m 21:43	.9250 F Value 7.56 F Value 7.56	0.0074 Pr > F 0.0074
0.088410 Source Ethnicity Source Ethnicity Dependent Variable: MAMC	64 DF 1 DF 1	.01801 79.9 Type I SS 48383.78727 Type III SS 48383.78727 The SAS Syste The GLM Procedu	7450 124 Mean Square 48383.78727 Mean Square 48383.78727 m 21:43 re	.9250 F Value 7.56 F Value 7.56 Thursday,	0.0074 Pr > F 0.0074 July 6, 2006 192
0.088410 Source Ethnicity Source Ethnicity Dependent Variable: MAMC Source	64 DF DF 1	.01801 79.9 Type I SS 48383.78727 Type III SS 48383.78727 The SAS Syste The GLM Procedu Sum of Squares	7450 124 Mean Square 48383.78727 Mean Square 48383.78727 m 21:43 re Mean Square	.9250 F Value 7.56 F Value 7.56 Thursday, F Value	0.0074 Pr > F 0.0074 July 6, 2006 192 Pr > F
0.088410 Source Ethnicity Source Ethnicity Dependent Variable: MAMC Source Model	64 DF 1 DF DF 1	.01801 79.9 Type I SS 48383.78727 Type III SS 48383.78727 The SAS Syste The GLM Procedu Sum of Squares 294.869292	7450 124 Mean Square 48383.78727 Mean Square 48383.78727 m 21:43 re Mean Square 294.869292	.9250 F Value 7.56 F Value 7.56 Thursday, F Value	0.0074 Pr > F 0.0074 July 6, 2006 192 Pr > F
0.088410 Source Ethnicity Source Ethnicity Dependent Variable: MAMC Source Model Error Corrected Total	64 DF 1 DF 1 75 76	.01801 79.9 Type I SS 48383.78727 Type III SS 48383.78727 The SAS Syste The GLM Procedu Sum of Squares 294.869292 2437.137721 2732.007013	7450 124 Mean Square 48383.78727 Mean Square 48383.78727 m 21:43 re Mean Square 294.869292 32.495170	.9250 F Value 7.56 F Value 7.56 Thursday, F Value 9.07	0.0074 Pr > F 0.0074 July 6, 2006 192 Pr > F
0.088410 Source Ethnicity Source Ethnicity Dependent Variable: MAMC Source Model Error Corrected Total	64 DF 1 DF 1 75 76 Core	.01801 79.9 Type I SS 48383.78727 Type III SS 48383.78727 The SAS Syste The GLM Procedu Squares 294.869292 2437.137721 2732.007013 eff Var Roo	7450 124 Mean Square 48383.78727 Mean Square 48383.78727 m 21:43 re Mean Square 294.869292 32.495170 t MSE MAMC 1	.9250 F Value 7.56 F Value 7.56 Thursday, F Value 9.07	0.0074 Pr > F 0.0074 July 6, 2006 192 Pr > F
0.088410 Source Ethnicity Source Ethnicity Dependent Variable: MAMC Source Model Error Corrected Total	64 DF 1 DF 1 75 76 Core	.01801 79.9 Type I SS 48383.78727 Type III SS 48383.78727 The SAS Syste The GLM Procedu Squares 294.869292 2437.137721 2732.007013 eff Var Roo	7450 124 Mean Square 48383.78727 Mean Square 48383.78727 m 21:43 re Mean Square 294.869292 32.495170	.9250 F Value 7.56 F Value 7.56 Thursday, F Value 9.07	0.0074 Pr > F 0.0074 July 6, 2006 192 Pr > F
0.088410 Source Ethnicity Source Ethnicity Dependent Variable: MAMC Source Model Error Corrected Total	64 DF 1 DF 1 75 76 Core	.01801 79.9 Type I SS 48383.78727 Type III SS 48383.78727 The SAS Syste The GLM Procedu Squares 294.869292 2437.137721 2732.007013 eff Var Roo	7450 124 Mean Square 48383.78727 Mean Square 48383.78727 m 21:43 re Mean Square 294.869292 32.495170 t MSE MAMC 1	.9250 F Value 7.56 F Value 7.56 Thursday, F Value 9.07	0.0074 Pr > F 0.0074 July 6, 2006 192 Pr > F

Source		DF	Type III SS	Mean Square	F Value	Pr > F
Ethnicity		1	294.8692921	294.8692921	9.07	
			The SAS System	21:43	Thursday,	July 6, 2006 193
			The GLM Procedure		2	
Dependent Variab	le: TricepSF					
Source		DF	Sum of Squares	Mean Square	F Value	Pr > F
Model		1	353.585299	353.585299	4.68	0.0336
Error		76	5736.867169	75.485094		
Corrected ⁻	Total	77	6090.452468			
	R-Square	Coef	f Var Root MS	SE TricepSF	Mean	
	0.058056		59169 8.68821	16 33.9	94936	
Source		DF	Type I SS	Mean Square	F Value	Pr > F
Ethnicity		1	353.5852991	353.5852991	4.68	0.0336
Source		DF	Type III SS	Mean Square	F Value	Pr > F
Ethnicity		1	353.5852991	353.5852991	4.68	0.0336
			The SAS System	21:43	Thursday,	July 6, 2006 194
			The GLM Procedure	e		
Dependent Variab	le: Wrist					
Source		DF	Sum of Squares	Mean Square	F Value	Pr > F
Model		1	3.39228797	3.39228797	2.76	0.1009
Error		75	92.22946528	1.22972620		
Corrected ⁻	Fotal	76	95.62175325			
	R-Square	Co	eff Var Root	MSE Wrist M	Mean	
	0.035476	6	.832923 1.108	8930 16.22	2922	
Source		DF	Type I SS	Mean Square	F Value	Pr > F
Ethnicity		1	3.39228797	3.39228797	2.76	0.1009
Source		DF	Type III SS	Mean Square	F Value	Pr > F
Ethnicity		1	3.39228797	3.39228797	2.76	0.1009
			The SAS System	21:43	Thursday,	July 6, 2006 195
			The GLM Procedure	e		
Dependent Variab	le: Hip					
Source		DF	Sum of Squares	Mean Square	F Value	Pr > F
Model		1	131.77567	131.77567	0.54	0.4634
Error		77	18685.65522	242.67085		
Corrected ⁻	rotal	78	18817.43089			
	R-Square	Co	eff Var Root	MSE Hip M	lean	

	0.007003	1	3.17574	15.57790	118.2	2316	
Source		DF	Туре I S	SS Mean	Square	F Value	Pr > F
Ethnicity		1	131.775666	57 131.7	756667	0.54	0.4634
_					_	7	
Source		DF	Type III S		Square	F Value	Pr > F
Ethnicity		1	131.775666		756667	0.54	0.4634
			The SAS Sy The GLM Proc		21.45	mui suay,	July 6, 2006 196
Dependent Variable	• waisthin			Leuure			
	i naro en rp		Sum c	of			
Source		DF	Square		Square	F Value	Pr > F
Model		1	0.0019900	0.00	199002	0.39	0.5361
Error		77	0.3966083	31 0.00	515076		
Corrected To	tal	78	0.3985983	33			
	R-Square	Coef	f Var Ro	ot MSE w	aisthip	Mean	
	0.004993	7.9	50381 0.	.071769	0.90	02709	
Course				C Maan	Causas		
Source		DF 1	Type I 5		Square 199002	F Value	Pr > F
Ethnicity		T	0.0019900	0.00	199002	0.39	0.5361
Source		DF	Type III S	SS Mean	Square	F Value	Pr > F
Ethnicity		1	0.0019900	0.00	199002	0.39	0.5361
			The SAS Sy	/stem	21:43	Thursday,	July 6, 2006 197
			The GLM Proc	cedure			
Dependent Variable	: FFM						
Source		DF	Sum o Square		Square	F Value	Pr > F
Model		1	99.2232	25 99	.22325	0.53	0.4683
Error		77	14380.2261	L2 186	5.75618		
Corrected To	tal	78	14479.4493	37			
	R-Square	60	eff Var	Root MSE		100n	
	0.006853		2.36448	13.66588	FFM N 110.		
	0.0000355	1	2.30440	13.00300	110.	5255	
Source		DF	Туре I S	SS Mean	Square	F Value	Pr > F
Ethnicity		1	99.2232471	L9 99.22	324719	0.53	0.4683
Source		DF	Type III S	SS Mean	Square	F Value	Pr > F
Ethnicity		1	99.2232471	L9 99.22	324719	0.53	0.4683
			The SAS Sy	/stem	21:43	Thursday,	July 6, 2006 198
			The GLM Proc	cedure			
Dependent Variable	: percbFAT						
Source		DF	Sum o Square		Square	F Value	Pr > F

Model	1	63.006800	63.006800	1.10	0.2970
Error	77	4399.601555	57.137683		
Corrected Total	78	4462.608354			
R-Square	Coeff	Var Root	MSE percbFAT	Mean	
0.014119	17.6	3606 7.558	947 42.8	36076	
				_	
Source	DF	Type I SS	Mean Square	F Value	Pr > F
Ethnicity	1	63.00679975	63.00679975	1.10	0.2970
Source	DF	Type III SS	Mean Square	F Value	Pr > F
Ethnicity	1	63.00679975	63.00679975	1.10	0.2970
		The SAS Syste	m 21:43	Thursday,	July 6, 2006 199
		The GLM Procedu	re		
Dependent Variable: diastolic					
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	DF 1	322.91558	322.91558	1.99	0.1627
				1.99	0.1027
Error	70	11354.58442	162.20835		
Corrected Total	71	11677.50000			
R-Square	Coeff	Var Root	MSE diastolio	Mean	
0.027653	10.1	1471 12.73	610 125	5.9167	
Source	DF	Type I SS	Mean Square	F Value	Pr > F
Ethnicity	1	322.9155844	322.9155844	1.99	0.1627
Source	DF	Type III SS	Mean Square	F Value	Pr > F
Ethnicity	1	322.9155844	322.9155844	1.99	0.1627
		The SAS Syste		Thursday,	July 6, 2006 200
		The GLM Procedu	re		
Dependent Variable: systolic		_			
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	1	116.307540	116.307540	1.44	0.2348
Error	70	5668.678571	80.981122		
Corrected Total	71	5784.986111			
R-Square	Coeff	Var Root	MSE systolic	Mean	
0.020105	11.0			76389	
0.020103	11.0	0.550			
Source	DF	Type I SS	Mean Square	F Value	Pr > F
Ethnicity	1	116.3075397	116.3075397	1.44	0.2348
Source	DF	Type III SS	Mean Square	F Value	Pr > F
Ethnicity	1	116.3075397	116.3075397	1.44	0.2348
	-			±•••	0.2010

The SAS System

21:43 Thursday, July 6, 2006 201

The GLM Procedure

Dependent Variable: leptin

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	1	1125.07438	1125.07438	5.29	0.0241
Error	77	16373.99149	212.64924		
Corrected Total	78	17499.06587			
R-Squ	are Coef	f Var Root	MSE leptin	Mean	
0.064	293 46.	95997 14.5	31.0	5304	
				_	
Source	DF	Type I SS	Mean Square		Pr > F
Ethnicity	1	1125.074383	1125.074383	5.29	0.0241
Source	DF	Type III SS	Mean Square	F Value	Pr > F
Ethnicity	1	1125.074383	1125.074383	5.29	0.0241
		The SAS Syste	em 21:43	Thursday,	July 6, 2006 202
		The GLM Procedu	ire		
Dependent Variable: insulin					
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	1	3370.3652	3370.3652	1.59	0.2106
Error	76	160684.1380	2114.2650		
Corrected Total	77	164054.5031			
R-Squ	are Coef	f Var Root	: MSE insulin	Mean	
0.020				41500	
0.020	511 50.	57555 151		11500	
Source	DF	Type I SS	Mean Square	F Value	Pr > F
Ethnicity	1	3370.365163	3370.365163	1.59	0.2106
Source	DF	Type III SS	Mean Square	F Value	Pr > F
Ethnicity	1	3370.365163	3370.365163	1.59	0.2106
		The SAS Syste	em 21:43	Thursday,	July 6, 2006 203
		The GLM Procedu	ire		
Dependent Variable: homair					
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	1	0.02325180	0.02325180	0.03	0.8705
Error	76	66.03676713	0.86890483	0.05	0.07.05
Corrected Total	77	66.06001893			
		20100001033			
R-Squ	are Coef	f Var Root	MSE homair	Mean	
0.000	352 228	.2188 0.93	32151 0.40	8446	

Source	DF	Type I SS	Mean Square	F Value	Pr > F
Ethnicity	1	0.02325180	0.02325180	0.03	0.8705
Source	DF	Type III SS	Mean Square	F Value	Pr > F
Ethnicity	1	0.02325180	0.02325180	0.03	
Lennerey	±	The SAS System			July 6, 2006 204
	-	he GLM Procedure		mur suay,	July 0, 2000 204
		s Level Informat			
	Class	Levels	Values		
	Ethnicit		1 3		
	Smoke	2	1 2		
	bp	2	1 2		
	Бþ	L	1 2		
	Data for Ana Waist sergl	lysis of Height ucose totchol HE	Weight bmi DL triglyc		
		servations Read servations Used	81 80		
	Data	for Analysis of	MAMC		
		servations Read servations Used	81 77		
	Data fo	r Analysis of Tr	ricepSF		
		servations Read servations Used	81 78		
	Data f	or Analysis of W	Vrist		
		servations Read	81		
	Number of Ob	servations Used	77		
	Data for	Analysis of Hip	waisthip		
		servations Read servations Used	81 79		
	Data for	Analysis of FFM	percbFAT		
	Number of Ob	servations Read servations Used	81 79		
		The SAS System	21:43	Thursdav.	July 6, 2006 205
	т	he GLM Procedure			54.9 0, 2000 200
		lysis of diastol			
		servations Read	81		
		servations Used	72		
	Data f	or Analysis of 1	leptin		
		servations Read servations Used	81 79		
	Data for A	nalysis of insul	lin homair		

NOTE: Variables in each group are consistent with respect to the presence or absence of missing values.

	The SAS	S System	21:43 Thursday,	July 6, 2006 206
	The GLM I	Procedure		
Dependent Variable: Height				
Source		um of uares Mean Sq	juare F Value	Pr > F
Model	3 3.48	64130 1.162	.29	0.8348
Error	76 307.93	54620 4.051	7824	
Corrected Total	79 311.42	18750		
R-Square	Coeff Var	Root MSE He	eight Mean	
0.011195	3.107232	2.012904	64.78125	
Source	DF Type	I SS Mean So	uare F Value	Pr > F
Ethnicity	1 0.268			0.7976 0.7415
bp Ethnicity*bp	1 0.444 1 2.773	02197 0.4440 96546 2.7739		0.7415 0.4106
Source	DF Type I	II SS Mean So	uare F Value	Pr > F
Ethnicity	1 0.319 1 0.898			0.7797 0.6391
bp Ethnicity*bp	1 2.773	96546 2.7739		0.4106
	The SAS	S System	21:43 Thursday,	July 6, 2006 207
	The GLM I	Procedure		
Dependent Variable: Weight				
Source		um of uares Mean So	uare F Value	Pr > F
Model	3 27960	.2856 9320.	0952 5.01	0.0032
Error	76 141257	.3113 1858.	6488	
Corrected Total	79 169217	.5969		
R-Square	Coeff Var	Root MSE We	eight Mean	
0.165233	21.65958	43.11205	199.0438	
Source	DF Type	I SS Mean So	uare F Value	Pr > F
Ethnicity bp	1 3421. 1 23445.			0.1789 0.0007
Ethnicity*bp	1 1093.0			
Source	DF Type I	II SS Mean So	uare F Value	Pr > F
Ethnicity bp	1 3239.1 1 24505.9			0.1908 0.0005
Ethnicity*bp	1 1093.0			
	The SA	S System	21:43 Thursday,	July 6, 2006 208
	The GLM I	Procedure		

Dependent Variable: bmi

	Source		DF	Sum Squa		Mean	Square	F Value	Pr > F	
	Model		3	751.716			.572274	5.40	0.0020	
	Error		76	3524.692			. 377532	5.40	0.0020	
	Corrected Total		79	4276.4092		40.	. 577 552			
			15	4270.405						
		R-Square	Coe	ff Var	Root M	MSE	bmi	Mean		
		0.175782	20	.41356	6.810	105	33.3	6069		
;	Source		DF	Туре І	SS	Mean	Square	F Value	Pr > F	
	Ethnicity		1	90.9639			9639820	1.96	0.1654	
	bp Ethnicity*bp		1 1	641.8896 18.8631		641.8 18.8	8896467 8631920	13.84 0.41	0.0004 0.5256	
:	Source		DF	Type III	SS	Mean	Square	F Value	Pr > F	
	Ethnicity bp Ethnicity*bp		1 1 1	86.6020 660.7261 18.8631	198	660.7	6020038 7261198 8631920	1.87 14.25 0.41	0.1758 0.0003 0.5256	
				The SAS	System		21:43	Thursday,	July 6, 2006	209
				The GLM Pro	ocedure				, ,	
Depend	ent Variable: W	laist								
-	Source		DF	Sum Squa		Mean	Square	F Value	Pr > F	
1	Model		3	2256.90	215	752	2.30072	2.60	0.0579	
	Error		76	21954.95	172	288	8.88094			
	Corrected Total		79	24211.85	388					
		R-Square	Coe	ff Var	Root M	MSE	Waist	Mean		
		0.093215	15	.84330	16.990	650	107.	2788		
	Source		DF	Туре І	SS	Mean	Square	F Value	Pr > F	
	Ethnicity bp		1 1	122.840 1968.425			.840077	0.43 6.81	0.5163 0.0109	
	Ethnicity*bp		ī	165.636			.636995	0.57	0.4513	
:	Source		DF	Type III	SS	Mean	Square	F Value	Pr > F	
	Ethnicity bp		1 1	111.092 2110.084			.092995 .084892	0.38 7.30	0.5370 0.0085	
	Ethnicity*bp		1	165.636		165	.636995	0.57	0.4513	
				The SAS	System		21:43	Thursday,	July 6, 2006	210
				The GLM Pro	ocedure					
Depend	ent Variable: s	erglucose			-					
:	Source		DF	Sum Squa		Mean	Square	F Value	Pr > F	
I	Model		3	3614.07	014	1204	4.69005	1.54	0.2111	
	Error		76	59466.72	986	782	2.45697			
	Corrected Total		79	63080.80	000					
	-	Causas	Cocff		oot MCC		nalucas	o Moor		
		R-Square	Coeff		00t MSE	se	erglucos			
	l	0.057293	26.31	.401 Z	7.97243		10	6.3000		

Source		DF	Туре І		Mean	Square	F Value	Pr > F	
Ethnicity		1	3272.913			.913475	4.18	0.0443	
bp		1	106.620)428	106	.620428	0.14	0.7131	
Ethnicity*bp		1	234.536	0237	234	.536237	0.30	0.5856	
Source		DF	Type III	: SS	Mean	Square	F Value	Pr > F	
Ethnicity		1 1	3311.978			.978818	4.23	0.0431	
bp Ethnicity*bp		1	55.987 234.536			.987076 .536237	0.07 0.30	0.7898 0.5856	
			The SAS	Syste	m	21:43	Thursday,	July 6, 2006	5 211
			The GLM Pr	ocedu	re				
Dependent Variable:	totchol								
Source		DF	Sum Squa	1 of ares	Mean	Square	F Value	Pr > F	
Model		3	8245.4	216	274	48.4739	1.75	0.1633	
Error		76	119149.5	659	150	67.7574			
Corrected Tota	1	79	127394.9	875					
	P. Causas	Coo	ff Var	Deet	MCE	totchol	Maan		
	R-Square				MSE	totchol			
	0.064723	20	. 30639	39.5	9492	194	.9875		
Source		DF	Туре І	SS	Mean	Square	F Value	Pr > F	
Ethnicity bp		1 1	2.238 3768.783			.238306 .783259	0.00 2.40	0.9700 0.1252	
Ethnicity*bp		1	4474.400			.400025	2.85	0.0952	
Source		DF	Type III	: ss	Mean	Square	F Value	Pr > F	
Ethnicity		1	0.308			. 308283	0.00	0.9888	
bp Ethnicity*bp		1 1	5207.299 4474.400			.299767 .400025	3.32 2.85	0.0723 0.0952	
			The SAS	Syste	m	21:43	Thursday,	July 6, 2006	5 212
			The GLM Pr	ocedu	re				
Dependent Variable:	HDL								
Source		DF	Sum Squa	n of ares	Mean	Square	F Value	Pr > F	
Model		3	1448.92	553	482	2.97518	1.97	0.1260	
Error		76	18658.98	3647	24	5.51298			
Corrected Tota	1	79	20107.91	200					
	R-Square	Co	eff Var	Roo	t MSE	HDL 1	Mean		
	0.072057		1.64786		66885	49.5			
	01012001			201					
Source		DF	Туре І	: SS	Mean	Square	F Value	Pr > F	
Ethnicity bp		1 1	657.1057 76.9577			1057073 9577117	2.68 0.31	0.1060 0.5772	
Ethnicity*bp		1	714.8621			8621088	2.91	0.0920	
Source		DF	Type III	: ss	Mean	Square	F Value	Pr > F	
Ethnicity		1	695.6103			6103927	2.83	0.0964	
bp		1	177.4709	862	177.4	4709862	0.72	0.3979	

	Ethnicity*bp		1	714.862108	88	714.8	621088	2.91	0.0920	
				The SAS S	ystem		21:43	Thursday,	July 6, 2006 21	3
			т	he GLM Prod	cedure					
Depen	dent Variable: t	riglyc								
	6			Sum o			.	- 1/- 1	.	
	Source		DF	Square			Square	F Value	Pr > F	
	Model		3	48542.144			80.7150	2.47	0.0686	
	Error		76	498723.40		656	52.1501			
	Corrected Total		79	547265.550	00					
		R-Square	Coeff	Var I	ROOT MS	ε	triglyc	Mean		
		0.088699	64.8	4459 8	81.0071	0	124.	9250		
	Source		DF			Moon	Squaro	F Value		
				Type I 9			Square		Pr > F	
	Ethnicity bp		1 1	48383.7872	38	138	.78727 .18438	7.37	0.0082 0.8850	
	Ethnicity*bp		1	20.1732	25	20	.17325	0.00	0.9559	
	Source		DF	Type III S	SS	Mean	Square	F Value	Pr > F	
	Ethnicity		1 1	48378.183			.18357 .34409	7.37 0.02	0.0082 0.8944	
	bp Ethnicity*bp		1	20.1732			17325	0.00	0.9559	
				The SAS S	ystem		21:43	Thursday,	July 6, 2006 21	4
			т	he GLM Proc	cedure					
Depen	dent Variable: M	AMC								
	Source		DF	Sum o Square	of es	Mean	Square	F Value	Pr > F	
	Model		3	828.7480		276.	249357	10.60	<.0001	
	Error		73	1903.25894	42	26.	072040			
	Corrected Total		76	2732.00702	13					
		D	6 6	C 1/2 - 2						
		R-Square		f Var	Root M		MAMC N			
		0.303348	14.	70942	5.1060	079	34.71	1299		
	Source		DF	Туре I S	SS	Mean	Square	F Value	Pr > F	
	Ethnicity bp		1 1	294.869292			692921 362492	11.31 19.51	0.0012 <.0001	
	Ethnicity*bp		1	25.342530			425300	0.97	0.3274	
	Source		DF	Type III S	SS	Mean	Square	F Value	Pr > F	
	Ethnicity		1	260.769474	40	260.7	694740	10.00	0.0023	
	bp Ethnicity*bp		1 1	533.66758 25.342530			675850 425300	20.47 0.97	<.0001 0.3274	
				The SAS Sy	ystem		21:43	Thursday,	July 6, 2006 21	5
			т	he GLM Prod	cedure					
Depen	dent Variable: T	ricepSF								
	Source		DE	Sum (Moan	Sauara			
	Source		DF	Square			Square	F Value	Pr > F	
	Model		3	785.75182	ζŢ	201.	917274	3.65	0.0163	

	Error		74	5304.70064	17	71.685144			
	Corrected Tota	1	77	6090.45246	58				
						_			
		R-Square	Coeff		ot MSE	TricepSF	Mean		
		0.129014	24.9	3923 8	.466708	33.	94936		
	Source		DF	Туре I S	SS Me	an Square	F Value	Pr > F	
	Ethnicity		1	353.585299		3.5852991	4.93	0.0294	
	bp Ethnicity*bp		1 1	425.512418 6.654104		5.5124183 6.6541040	5.94 0.09	0.0172 0.7615	
	Source		DF	Type III S	SS Me	an Square	F Value	Pr > F	
	Ethnicity		1	317.366742		7.3667423	4.43	0.0388	
	bp Ethnicity*bp		1 1	428.935784	47 42	8.9357847 6.6541040	5.98 0.09	0.0168 0.7615	
				The SAS S	/stem	21:43	Thursday,	July 6, 2006	216
				The GLM Prod	cedure				
Depen	dent Variable: N	Wrist							
	_			Sum o		_	7		
	Source		DF	Square		an Square	F Value	Pr > F	
	Model		3	7.2633078		.42110262	2.00	0.1214	
	Error	_	73	88.3584453		.21038966			
	Corrected Tota	1	76	95.6217532	25				
		R-Square	Coe	ff Var	Root MSE	Wrist	Mean		
		0.075959	6.	778989	1.100177	16.2	2922		
	Source	0.075959						Dr N E	
	Source	0.075959	DF	Туре I S	SS Me	an Square	F Value	Pr > F	
	Ethnicity bp	0.075959	DF 1 1	Type I 5 3.3922879 3.7856173	5S Me 97 3 33 3	an Square .39228797 .78561733	F Value 2.80 3.13	0.0984 0.0812	
	Ethnicity	0.075959	DF 1	Type I 9 3.3922879	5S Me 97 3 33 3	an Square .39228797	F Value 2.80	0.0984	
	Ethnicity bp	0.075959	DF 1 1	Type I 5 3.3922879 3.7856173	5S Me 97 3 33 3 57 0	an Square .39228797 .78561733	F Value 2.80 3.13	0.0984 0.0812	
	Ethnicity bp Ethnicity*bp Source Ethnicity	0.075959	DF 1 1 DF	Type I 9 3.3922879 3.785617 0.0854029 Type III 9 3.3241809	55 Me 97 3 33 3 57 0 55 Me 97 3	an Square .39228797 .78561733 .08540257 an Square .32418097	F Value 2.80 3.13 0.07 F Value 2.75	0.0984 0.0812 0.7913 Pr > F 0.1018	
	Ethnicity bp Ethnicity*bp Source	0.075959	DF 1 1 1 DF	Type I 9 3.3922879 3.785617 0.0854029 Type III 9	55 Me 97 3 33 3 57 0 55 Me 97 3 05 3	an Square .39228797 .78561733 .08540257 an Square	F Value 2.80 3.13 0.07 F Value	0.0984 0.0812 0.7913 Pr > F	
	Ethnicity bp Ethnicity*bp Source Ethnicity bp	0.075959	DF 1 1 DF 1	Type I 9 3.3922879 3.785617 0.0854029 Type III 9 3.3241809 3.8694260	55 Me 97 3 33 3 57 0 55 Me 97 3 05 3 57 0	an Square .39228797 .78561733 .08540257 an Square .32418097 .86942605 .08540257	F Value 2.80 3.13 0.07 F Value 2.75 3.20 0.07	0.0984 0.0812 0.7913 Pr > F 0.1018 0.0779	217
	Ethnicity bp Ethnicity*bp Source Ethnicity bp	0.075959	DF 1 1 1 DF 1 1	Type I 9 3.3922879 3.785617 0.0854029 Type III 9 3.3241809 3.8694260 0.0854029	55 Me 97 3 33 3 57 0 55 Me 97 3 95 3 57 0 75 0	an Square .39228797 .78561733 .08540257 an Square .32418097 .86942605 .08540257	F Value 2.80 3.13 0.07 F Value 2.75 3.20 0.07	0.0984 0.0812 0.7913 Pr > F 0.1018 0.0779 0.7913	217
Depen	Ethnicity bp Ethnicity*bp Source Ethnicity bp		DF 1 1 1 DF 1 1	Type I 9 3.3922879 3.785617 0.0854029 Type III 9 3.3241809 3.8694260 0.0854029 The SAS Sy	55 Me 97 3 33 3 57 0 55 Me 97 3 95 3 57 0 75 0	an Square .39228797 .78561733 .08540257 an Square .32418097 .86942605 .08540257	F Value 2.80 3.13 0.07 F Value 2.75 3.20 0.07	0.0984 0.0812 0.7913 Pr > F 0.1018 0.0779 0.7913	217
Depen	Ethnicity bp Ethnicity*bp Source Ethnicity bp Ethnicity*bp		DF 1 1 1 DF 1 1	Type I 9 3.3922879 3.785617 0.0854029 Type III 9 3.3241809 3.8694260 0.0854029 The SAS Sy	55 Me 97 3 33 3 57 0 55 Me 97 3 57 0 75 0 75 tem 57 0 75 tem 57 0 75 tem 57 0 75 tem 57 0 75	an Square .39228797 .78561733 .08540257 an Square .32418097 .86942605 .08540257	F Value 2.80 3.13 0.07 F Value 2.75 3.20 0.07	0.0984 0.0812 0.7913 Pr > F 0.1018 0.0779 0.7913	217
Depen	Ethnicity bp Ethnicity*bp Source Ethnicity bp Ethnicity*bp		DF 1 1 0F 1 1	Type I 9 3.3922879 3.785617 0.0854029 Type III 9 3.3241809 3.8694260 0.0854029 The SAS Sy The GLM Proo	55 Me 97 3 33 3 57 0 55 Me 97 3 57 0 75 3 57 0 75 0	an Square .39228797 .78561733 .08540257 an Square .32418097 .86942605 .08540257 21:43	F Value 2.80 3.13 0.07 F Value 2.75 3.20 0.07 Thursday,	0.0984 0.0812 0.7913 Pr > F 0.1018 0.0779 0.7913 July 6, 2006	217
Depen	Ethnicity bp Ethnicity*bp Source Ethnicity bp Ethnicity*bp dent Variable: P		DF 1 1 DF 1 1 1	Type I 9 3.3922879 3.785617 0.0854029 Type III 9 3.3241809 3.8694260 0.0854029 The SAS Sy The GLM Proc	55 Me 97 3 33 3 57 0 55 Me 97 3 57 0 75 me 25 Me 87	an Square .39228797 .78561733 .08540257 an Square .32418097 .86942605 .08540257 21:43 an Square	F Value 2.80 3.13 0.07 F Value 2.75 3.20 0.07 Thursday, F Value	0.0984 0.0812 0.7913 Pr > F 0.1018 0.0779 0.7913 July 6, 2006 7	217
Depen	Ethnicity bp Ethnicity*bp Source Ethnicity bp Ethnicity*bp dent Variable: H Source Model	Нір	DF 1 1 DF 1 1 1 2 5	Type I 9 3.3922879 3.785617 0.0854029 Type III 9 3.3241809 3.8694260 0.0854029 The SAS 59 The GLM Proo Square 1814.7703	55 Me 97 3 33 3 57 0 55 Me 97 3 95 3 57 0 vstem cedure 95 Me 87 52	an Square .39228797 .78561733 .08540257 an Square .32418097 .86942605 .08540257 21:43 an Square 604.92346	F Value 2.80 3.13 0.07 F Value 2.75 3.20 0.07 Thursday, F Value	0.0984 0.0812 0.7913 Pr > F 0.1018 0.0779 0.7913 July 6, 2006 7	217
Depen	Ethnicity bp Ethnicity*bp Source Ethnicity bp Ethnicity*bp dent Variable: H Source Model Error	Нір	DF 1 1 1 DF 1 1 1 1 75 78	Type I 9 3.3922879 3.785617 0.0854029 Type III 9 3.3241809 3.8694260 0.0854029 The SAS Sy The GLM Proc Square 1814.7703 17002.6609	55 Me 97 3 33 3 57 0 55 Me 97 3 95 3 57 0 vstem cedure 95 Me 87 52	an Square .39228797 .78561733 .08540257 an Square .32418097 .86942605 .08540257 21:43 an Square 604.92346 226.70214	F Value 2.80 3.13 0.07 F Value 2.75 3.20 0.07 Thursday, F Value 2.67	0.0984 0.0812 0.7913 Pr > F 0.1018 0.0779 0.7913 July 6, 2006 7	217
Depen	Ethnicity bp Ethnicity*bp Source Ethnicity bp Ethnicity*bp dent Variable: H Source Model Error	Нір 1	DF 1 1 1 DF 1 1 1 DF 3 75 78 Coe	Type I 9 3.3922879 3.785617 0.0854029 Type III 9 3.3241809 3.8694260 0.0854029 The SAS Sy The GLM Proo Square 1814.7709 17002.6609 18817.4308	55 Me 97 3 33 3 57 0 55 Me 97 3 97 3 97 3 97 3 97 3 97 0 97 3 97 0 97 9 97 0 97 9 97 9	an Square .39228797 .78561733 .08540257 an Square .32418097 .86942605 .08540257 21:43 an Square 604.92346 226.70214 Hip H	F Value 2.80 3.13 0.07 F Value 2.75 3.20 0.07 Thursday, F Value 2.67 Mean	0.0984 0.0812 0.7913 Pr > F 0.1018 0.0779 0.7913 July 6, 2006 7	217
Depen	Ethnicity bp Ethnicity*bp Source Ethnicity bp Ethnicity*bp dent Variable: H Source Model Error Corrected Tota	Hip 1 R-Square	DF 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Type I 9 3.3922879 3.785617 0.0854029 Type III 9 3.3241809 3.8694260 0.0854029 The SAS Sy The GLM Proo Square 1814.7709 17002.6609 18817.4308 eff Var	55 Me 97 3 33 3 57 0 58 Me 97 3 95 30 95 30 95 30 95 30 95 30 95 Me 97 32 93 Me 93 Me 93 Me 93 Root MSE 15.05663 Me	an Square .39228797 .78561733 .08540257 an Square .32418097 .86942605 .08540257 21:43 an Square 604.92346 226.70214 Hip H 118.1	F Value 2.80 3.13 0.07 F Value 2.75 3.20 0.07 Thursday, F Value 2.67 Mean 2316	0.0984 0.0812 0.7913 Pr > F 0.1018 0.0779 0.7913 July 6, 2006 7 Pr > F 0.0537	217
Deper	Ethnicity bp Ethnicity*bp Source Ethnicity bp Ethnicity*bp dent Variable: H Source Model Error	Hip 1 R-Square	DF 1 1 1 DF 1 1 1 DF 3 75 78 Coe	Type I 9 3.3922879 3.785617 0.0854029 Type III 9 3.3241809 3.8694260 0.0854029 The SAS 59 The GLM Proof Square 1814.7709 17002.6609 18817.4308	55 Me 97 3 357 0 55 Me 97 3 57 0 97 3 57 0 97 3 57 0 vstem 0 56 Me 97 3 57 0 vstem 0 52 Me 37 52 39 Root MSE 15.05663 55	an Square .39228797 .78561733 .08540257 an Square .32418097 .86942605 .08540257 21:43 an Square 604.92346 226.70214 Hip H	F Value 2.80 3.13 0.07 F Value 2.75 3.20 0.07 Thursday, F Value 2.67 Mean	0.0984 0.0812 0.7913 Pr > F 0.1018 0.0779 0.7913 July 6, 2006 7	217

bp Ethnicity*bp	1 1	1649.474409 33.520295	1649.474409 33.520295	7.28 0.15	0.0086 0.7017	
				_		
Source	DF	Type III SS	Mean Square	F Value	Pr > F	
Ethnicity bp Ethnicity*bp	1 1 1	140.484454 1678.922342 33.520295	140.484454 1678.922342 33.520295	0.62 7.41 0.15	0.4336 0.0081 0.7017	
		The SAS Syste	m 21:43	Thursday,	July 6, 2006 218	
		The GLM Procedu	re			
Dependent Variable: waisthip						
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F	
Model	3	0.00320769	0.00106923	0.20	0.8941	
Error	75	0.39539064	0.00527188			
Corrected Total	78	0.39859833				
R-Square	Coeff	Var Root	MSE waisthip	Mean		
0.008047		3313 0.072		02709		
Source	DF	Type I SS	Mean Square	F Value	Pr > F	
Ethnicity bp	1 1	0.00199002 0.00089233	0.00199002 0.00089233	0.38 0.17	0.5408 0.6819	
Ethnicity*bp	1	0.00032534	0.00032534	0.06	0.8045	
Source	DF	Type III SS	Mean Square	F Value	Pr > F	
Ethnicity bp	1 1	0.00197571 0.00107260	0.00197571 0.00107260	0.37	0.5423 0.6532	
Ethnicity*bp	1	0.00032534 The SAS Syste	0.00032534	0.06	0.8045 July 6, 2006 219	
		The GLM Procedu		mur suay,	July 0, 2000 215	
Dependent Variable: FFM						
		Sum of				
Source	DF	Squares	Mean Square	F Value	Pr > F	
Model	3	1683.11615	561.03872	3.29	0.0252	
Error	75	12796.33322	170.61778			
Corrected Total	78	14479.44937				
R-Square	Coe	ff Var Roo	t MSE FFM M	Mean		
0.116242	11	.81817 13.	06207 110.	5253		
Source	DF	Type I SS	Mean Square	F Value	Pr > F	
Ethnicity	1	99.223247	99.223247	0.58	0.4481	
bp Ethnicity*bp	1 1	1530.826534 53.066364	1530.826534 53.066364	8.97 0.31	0.0037 0.5787	
Source	DF	Type III SS	Mean Square	F Value	Pr > F	
Ethnicity	1	98.960271	98.960271	0.58	0.4487	
bp Ethnicity*bp	1 1	1583.306075 53.066364	1583.306075 53.066364	9.28 0.31	0.0032 0.5787	
		The SAS Syste	m 21:43	Thursday,	July 6, 2006 220	
		The GLM Procedu	re			

Dependent Variable: percbFAT

	Source		DF	Sum of Squares	Mean Square	F Value	Pr > F
	Model		3	694.777976	231.592659	4.61	0.0051
	Error		75	3767.830379	50.237738		
	Corrected Tota	1	78	4462.608354			
		R-Square	Coeff	Var Root	MSE percbFAT	Mean	
		0.155689	16.5	3694 7.087	42.8	36076	
	Source		DF	Type I SS	Mean Square	F Value	Pr > F
	Ethnicity bp		1 1	63.0067998 624.0785616	63.0067998 624.0785616	1.25 12.42	0.2663 0.0007
	Ethnicity*bp		1	7.6926143	7.6926143	0.15	0.6967
	Source		DF	Type III SS	Mean Square	F Value	Pr > F
	Ethnicity		1	63.9270878	63.9270878	1.27	0.2629
	bp Ethnicity*bp		1 1	629.9131487 7.6926143	629.9131487 7.6926143	12.54 0.15	0.0007 0.6967
				The SAS Syste		Thursday,	July 6, 2006 221
				The GLM Procedu	ire		
Depen	dent Variable: (diastolic		- 6			
	Source		DF	Sum of Squares	Mean Square	F Value	Pr > F
	Model		3	8003.17326	2667.72442	49.37	<.0001
	Error		68	3674.32674	54.03422		
	Corrected Tota	1	71	11677.50000			
		R-Square	Coeff	Var Root	MSE diastolio	Mean	
		0.685350	5.83	7827 7.350	797 12	5.9167	
	Source		DF	Type I SS	Mean Square	F Value	Pr > F
	Ethnicity bp		1 1	322.915584 7651.108137	322.915584 7651.108137	5.98 141.60	0.0171 <.0001
	Ethnicity*bp		1	29.149540	29.149540	0.54	0.4652
	Source		DF	Type III SS	Mean Square	F Value	Pr > F
	Ethnicity		1 1	133.217475 7430.630803	133.217475 7430.630803	2.47 137.52	0.1210 <.0001
	bp Ethnicity*bp		1	29.149540	29.149540	0.54	0.4652
				The SAS Syste	em 21:43	Thursday,	July 6, 2006 222
				The GLM Procedu	ire		
Depen	dent Variable:	systolic					
	Source		DF	Sum of Squares	Mean Square	F Value	Pr > F
	Model		3	2256.265211	752.088404	14.49	<.0001
	Error		68	3528.720900	51.892954		
	Corrected Tota	1	71	5784.986111			

		R-Square	Coeff	Var I	ROOT MSE	sy	stolic	Mean		
		0.390021	8.810	340	7.203676	i	81.7	6389		
	Source		DF	Туре І	SS	Mean S	quare	F Value	Pr > F	
	Ethnicity bp Ethnicity*bp		1 1 1	116.307 2051.032 88.9254	227	2051.0	07540 32227 25445	2.24 39.52 1.71	0.1390 <.0001 0.1949	
	Source		DF	Type III	SS	Mean S	quare	F Value	Pr > F	
	Ethnicity bp Ethnicity*bp		1 1 1	89.8687 1738.0847 88.9254	758	1738.0	68771 84758 25445	1.73 33.49 1.71	0.1926 <.0001 0.1949	
				The SAS S	System		21:43	Thursday,	July 6, 2006	223
			т	he GLM Pro	ocedure					
Depen	dent Variable:	leptin								
	Source		DF	Sum Squai		Mean S	quare	F Value	Pr > F	
	Model		3	4772.749	901	1590.	91634	9.38	<.0001	
	Error		75	12726.310	586	169.	68422			
	Corrected Tota	l	78	17499.06	587					
		R-Square	Coeff	Var	Root MS	E 1	eptin M	lean		
		0.272743	41.9	4852	13.0262	9	31.05	304		
	Source		DF	Туре І	SS	Mean S	quare	F Value	Pr > F	
	Ethnicity bp Ethnicity*bp		1 1 1	1125.0743 3148.3500 499.324	094	1125.0 3148.3 499.3		6.63 18.55 2.94	0.0120 <.0001 0.0904	
	Source		DF	Type III	SS	Mean S	quare	F Value	Pr > F	
	Ethnicity bp Ethnicity*bp		1 1 1	1151.4140 3520.0200 499.324	025	1151.4 3520.0 499.3		6.79 20.74 2.94	0.0111 <.0001 0.0904	
				The SAS S	System		21:43	Thursday,	July 6, 2006	224
			т	he GLM Pro	ocedure					
Depen	dent Variable:	insulin								
	Source		DF	Sum Squai		Mean S	quare	F Value	Pr > F	
	Model		3	5370.83	306	1790	.2769	0.83	0.4790	
	Error		74	158683.62	726	2144	.3740			
	Corrected Tota	l	77	164054.50	031					
		R-Square	Coeff	Var	Root MS	E i	nsulin	Mean		
		0.032738	97.6	6400	46.3073	9	47.4	1500		
	Source		DF	Туре І	SS	Mean S	quare	F Value	Pr > F	
	Ethnicity		1	3370.365		3370.3		1.57	0.2139	
	bp Ethnicity*bp		1 1	1927.4644 73.0009		1927.4 73.0	64451 00975	0.90 0.03	0.3462 0.8541	
	Source		DF	Type III	SS	Mean S	quare	F Value	Pr > F	

bp	nicity nicity*bp		1 1 1	3366.56 1733.90 73.00	3346	1733.	561187 903346 000975		1.57 0.81 0.03	0	.2142 .3715 .8541	
				The SAS	System		21:43	Thurs	sday,	July	6, 2006	5 225
			٦	The GLM P	rocedure							
Dependent	Variable: h	ıomair										
Sour	rce		DF		m of ares	Mean	Square	FΙ	/alue	Р	r > F	
Mode			3	2.3379			7932831		0.91		.4429	
Erro	or		74	63.7220	3399	0.86	5110857					
Corr	rected Total		77	66.0600	1893							
				_								
		R-Square	Coeff		Root M		homair M					
		0.035392	227.	.1927	0.9279	59	0.408	3446				
Sour	rce		DF	Туре	I SS	Mean	Square	F۱	/alue	Р	r > F	
Ethr bp	nicity		1 1	0.0232			2325180 L050390		0.03		.8699 .1308	
	nicity*bp		1	0.3042)422924		0.35		.5541	
Sour	rce		DF	Type II	I SS	Mean	Square	F۱	/alue	Р	r > F	
	nicity		1	0.0382			829401		0.04		.8336	
bp Ethr The SAS Sy	nicity*bp	10:09 Tuesc	1 1 1	2.2325 0.3042	2924	0.30	3257755)422924		2.59 0.35		.1116 .5541	
The SAS Sy	y s celli	10.05 10230	iay, rei		NS Proce							
Variahl		Мс	an				Error		Mini	mum		Maximum
Ethnici Age Height Weight MAMC TricepS Hip Waist FFM percboc systoli diastol sergluc stotchc serHDL sertrig leptin insulir waisthi bmi homair	fffffffffffffff ity 81 81 81 81 85F 79 80 81 80 dFAT 80 ic 72 lic 72 cose 81 bl 81 91yc 81 91yc 81 80 1 79	Me 2.18518 34.23456 64.78395 198.66666 34.69102 33.95000 118.19125 107.28765 110.41875 42.81875 42.81875 125.91666 81.76388 106.86419 195.95061 49.98395 125.24691 31.07700 47.16050 0.90316 33.29569 5.01619 ffffffffffffffffffffffffffffffffffff	52 779 06 67 56 000 43 000 67 67 89 75 73 06 63 300 63 339 770 85	0.9888 5.7971 1.9731 46.1165 5.9597 8.8364 15.4378 17.3969 13.5717 7.5252 12.8246 9.0265 28.5358 40.8359 16.4177 82.7599 14.8846 45.9170 0.0711 7.3346 0.9205 fffffffff	ffffffff 265 364 610 643 173 448 066 709 605 839 571 540 341 221 911 738 598 933 486 587 705	ffffff 0.10 0.21 0.21 5.12 0.67 0.99 1.72 1.95 1.51 0.84 1.51 1.08 3.17 4.55 1.82 9.16 5.16 0.00 0.81 0.10 ffffff	098696 141263 192401 240627 748051 041777 259992 329968 173689 114003 037896 706482 373247 241990 055526 0541556 050766 079547 149621 035723 ffffffffff	1 22 61 107 24 13 83 85 85 20 97 58 60 70 70 70 17 12 2 2 55 55 55 55 55 55 55 55 55 55 55 5	L.0000 2.0000 4.5000 3.5000 3.5000 3.5000 3.5000 3.5000 3.5000 3.5000 3.5000 3.5000 3.5000 3.0000 7.2000 2.0000 4.2000 4.2000 4.2000 4.2000 4.2000 3.2041 2.6314 fffff	ffff. 00000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000	3 45. 71. 346. 59. 54. 150. 150. 150. 150. 160. 160. 262. 274. 87. 476. 79. 269. 269. 269. 1. 52. 7. ffffffff	0000000 000000 500000 500000 000000 000000 500000 000000 000000 000000 000000 000000
					SAS Syst ST Proce		10.0	is rue	.suay,	Feb	iuaiy 20	, 2000 202
				THE TIE	ST Proce	uure						

Statistics

Variable	Ethnicity	N	Lower CL Mean	Mean	Upper CL Mean	Lower CL Std Dev	Std Dev	Upper CL Std Dev	Std Err
Age Age Age Height Height	Diff (1-2) 1 3	33 48 33 48	32.467 32.343 -2.202 63.858 64.359	34.485 34.063 0.4223 64.712 64.833	36.503 35.782 3.0464 65.566 65.308	4.5763 4.9307 5.0455 1.9363 1.3612	5.6906 5.9229 5.8299 2.4078 1.6352	7.5269 7.4189 6.9054 3.1847 2.0482	0.9906 0.8549 1.3183 0.4191 0.236

Height Weight Weight Weight	Diff (1-2) 1 3 Diff (1-2)	33 48	-1.015 -0.121 187.44 206.85 181.79 193.04 -6.851 13.807	0.7721 226.26 204.29 34.465	1.7177 44.017 32.251 39.721	1.9847 54.735 38.741 45.896	2.3508 72.398 48.526 54.363	0.4488 9.5282 5.5918 10.379
bmi bmi	1 3	33 48	31.705 34.633 30.472 32.376 -1.026 2.2571	37.561 34.281 5.5407	6.6408 5.4603 6.3135	8.2577 6.5592 7.295	10.922 8.2159 8.6407	1.4375 0.9467 1.6496
bmi MAMC MAMC	Diff (1-2)	31 47	34.473 37.097 31.804 33.104	39.721 34.404	5.7165 3.6796	7.1536 4.428	9.562 5.5615	1.2848 0.6459
MAMC TricepSF TricepSF	Diff (1-2) 1 3	31 48	1.3829 3.9925 32.993 36.571 29.982 32.257	6.6021 40.149 34.532	4.8881 7.7956 6.5222	5.6628 9.7553 7.8347	6.7317 13.04 9.8136	1.3102 1.7521 1.1308
TricepSF Hip Hip	Diff (1-2) 1 3	32 48	0.3523 4.3137 113.14 119.8 113.3 117.12	8.2751 126.45 120.94	7.4594 14.8 10.946	8.6339 18.46 13.149	10.251 24.543 16.47	1.9894 3.2634 1.8979
Hip Waist Waist	Diff (1-2) 1 3	33 48	-4.357 2.676 101.09 108.76 102.23 106.28	9.7092 116.42 110.32	13.385 17.388 11.604	15.48 21.622 13.939	18.357 28.599 17.46	3.5327 3.7639 2.0119
Waist FFM FFM	Diff (1-2)	33 47	-5.38 2.4805 106.64 111.85 105.66 109.41	10.341 117.06 113.17	15.114 11.812 10.633	17.463 14.689 12.796	20.685 19.429 16.072	3.949 2.557 1.8665
FFM percbodFAT percbodFAT	Diff (1-2) 1 3	33 47	-3.718 2.4336 40.877 43.915 40.085 42.049	8.5848 46.953 44.013	11.764 6.8898 5.5574	13.604 8.5674 6.6878	16.133 11.332 8.3998	3.0897 1.4914 0.9755
percbodFAT systolic	Diff (1-2) 1	28	-1.532 1.8662 123.22 128.57	5.2645 133.93	6.4992 10.916	7.516 13.807	8.913 18.793	1.707 2.6092
systolic systolic diastolic	3 Diff (1-2) 1	44 28	120.57 124.23 -1.797 4.3442 80.147 83.357	127.88 10.485 86.567	9.9273 10.931 6.5452	12.015 12.736 8.2786	15.224 15.26 11.268	1.8114 3.0789 1.5645
diastolic diastolic serglucose	3 Diff (1-2) 1	44 33	77.885 80.75 -1.732 2.6071 92.471 98.667	83.615 6.946 104.86	7.7857 7.7237 14.051	9.4232 8.999 17.473	11.939 10.783 23.111	1.4206 2.1755 3.0416
serglucose serglucose stotchol	3 Diff (1-2) 1	48 33	102.88 112.5 -26.38 -13.83 182.18 194.79	122.12 -1.285 207.4	27.592 24.128 28.595	33.144 27.879 35.557	41.516 33.022 47.031	4.784 6.3043 6.1897
stotchol stotchol serHDL	3 Diff (1-2) 1	48 33	183.84 196.75 -20.45 -1.962 47.048 52.93	209.66 16.529 58.812	37.005 35.555 13.34	44.452 41.082 16.589	55.68 48.66 21.942	6.4162 9.29 2.8877
serHDL serHDL sertriglyc	3 Diff (1-2)	48 33	43.266 47.958 -2.381 4.972 75.472 95.576	52.651 12.325 115.68	13.453 14.137 45.596	16.16 16.335 56.698	20.242 19.349 74.994	2.3325 3.6939 9.8698
sertriglyc	1 3	48	118.99 145.65	172.3	76.417	91.796	114.98	13.25

The TTEST Procedure

Statistics

variable	Ethnicity	N	Lower CL Mean	Mean	Upper CL Mean	Lower CL Std Dev	Std Dev	Upper CL Std Dev	Std Err
sertriglyc leptin leptin insulin insulin insulin homair homair waisthip waisthip waisthip	Diff (1-2) Diff (1-2) Diff (1-2) Diff (1-2) Diff (1-2) 1 3 Diff (1-2) 1 3 Diff (1-2)	32 48 32 47 32 47 32 47 32 48	-85.84 29.392 24.468 0.9947 34.064 31.619 -7.186 4.5989 4.7987 -0.462 0.8664 0.8896 -0.043	-50.07 35.627 28.044 7.5826 55.296 41.621 13.675 4.9929 5.0321 -0.039 0.8966 0.9075 -0.011	$\begin{array}{r} -14.3\\ 41.861\\ 31.62\\ 14.17\\ 76.528\\ 51.624\\ 34.536\\ 5.3869\\ 5.2654\\ 0.3836\\ 0.9269\\ 0.9254\\ 0.0215\end{array}$	68.777 13.863 10.253 12.538 47.213 28.308 39.493 0.8761 0.6604 0.8003 0.0673 0.0514 0.0617	79.469 17.292 12.316 14.5 58.89 34.066 45.711 1.0928 0.7947 0.9263 0.084 0.0617 0.0714	94.129 22.989 15.427 17.195 78.293 42.787 54.273 1.4529 0.9981 1.0998 0.1116 0.0773 0.0847	$17.971 \\ 3.0568 \\ 1.7777 \\ 3.3091 \\ 10.41 \\ 4.9691 \\ 10.476 \\ 0.1932 \\ 0.1159 \\ 0.2123 \\ 0.0148 \\ 0.0089 \\ 0.0163 \\ \end{array}$

T-Tests

Variable	Method	Variances	DF	t Value	Pr > t
Age Age Height Weight Weight bmi bmi MAMC MAMC	Pooled Satterthwaite Pooled Satterthwaite Pooled Satterthwaite Pooled Satterthwaite Pooled Satterthwaite	Equal Unequal Equal Unequal Equal Unequal Unequal Unequal Unequal	79 70.7 79 52 79 53.5 79 58.3 76 45.2	$\begin{array}{c} 0.32 \\ 0.32 \\ -0.27 \\ -0.25 \\ 1.33 \\ 1.25 \\ 1.37 \\ 1.31 \\ 3.05 \\ 2.78 \end{array}$	$\begin{array}{c} 0.7495\\ 0.7478\\ 0.7878\\ 0.8020\\ 0.1872\\ 0.2168\\ 0.1751\\ 0.1949\\ 0.0032\\ 0.0080 \end{array}$

TricepSF TricepSF Hip Waist Waist FFM percbodFAT percbodFAT systolic systolic diastolic diastolic serglucose serglucose	Pooled Satterthwaite Pooled Satterthwaite Pooled Satterthwaite Pooled Satterthwaite Pooled Satterthwaite Pooled Satterthwaite Pooled Satterthwaite	Equal Unequal Equal Equal Unequal Equal Unequal Equal Unequal Equal Unequal Equal Unequal Equal Unequal	$\begin{array}{c} 77\\ 54.2\\ 78\\ 51.6\\ 79\\ 50.1\\ 78\\ 62.8\\ 78\\ 57.9\\ 70\\ 51.7\\ 70\\ 63\\ 79\\ 74.7\\ 70\\ 72\\ 70\\ 74.7\\ 70\\ 72\\ 70\\ 74.7\\ 70\\ 72\\ 70\\ 74.7\\ 70\\ 74.7\\ 70\\ 74.7\\ 70\\ 70\\ 74.7\\ 70\\ 70\\ 74.7\\ 70\\ 70\\ 74.7\\ 70\\ 70\\ 74.7\\ 70\\ 70\\ 74.7\\ 70\\ 70\\ 70\\ 74.7\\ 70\\ 70\\ 74.7\\ 70\\ 70\\ 70\\ 74.7\\ 70\\ 70\\ 70\\ 70\\ 70\\ 70\\ 70\\ 70\\ 70\\ 7$	$\begin{array}{c} 2.17\\ 2.07\\ 0.76\\ 0.71\\ 0.63\\ 0.58\\ 0.79\\ 0.77\\ 1.09\\ 1.05\\ 1.41\\ 1.37\\ 1.20\\ 1.23\\ -2.19\\ -2.44\end{array}$	0.0332 0.0434 0.4510 0.5317 0.5637 0.4333 0.4449 0.2776 0.2994 0.1627 0.1773 0.2348 0.2219 0.0312 0.0171

The TTEST Procedure

T-Tests

Variable	Method	Variances	DF	t Value	Pr > t
serHDL sertriglyc sertriglyc leptin leptin insulin insulin homair waisthip waisthip	Pooled Satterthwaite Pooled Satterthwaite Pooled Satterthwaite Pooled Satterthwaite Pooled Satterthwaite Pooled Satterthwaite	Equal Unequal Equal Unequal Equal Unequal Equal Unequal Equal Unequal Equal Unequal	79 67.7 78.2 78 51.6 77 45.2 77 52.7 78 52.8	$\begin{array}{c} 1.35\\ 1.34\\ -2.79\\ -3.03\\ 2.29\\ 2.14\\ 1.31\\ 1.19\\ -0.18\\ -0.17\\ -0.67\\ -0.63\end{array}$	$\begin{array}{c} 0.1822\\ 0.1849\\ 0.0067\\ 0.0033\\ 0.0246\\ 0.0367\\ 0.1957\\ 0.2420\\ 0.8542\\ 0.8628\\ 0.5056\\ 0.5318 \end{array}$
•		·			

Equality of Variances

	Variable	Method	Num DF	Den DF	F Value	Pr > F		
	Age Height Weight bmi MAMC TricepSF Hip Waist FFM percbodFAT systolic diastolic serglucose stotchol serHDL sertriglyc leptin insulin homair waisthip	Folded F Folded F	30 31 32 32 27 43 47 47 47 32 47 31 31	32 47 47 46 47 47 47 46 46 43 27 32 47 32 47 46 46 47	1.08 2.17 2.00 1.58 2.61 1.97 2.41 1.32 1.64 1.32 1.64 1.32 1.64 1.30 3.60 1.56 1.05 2.62 1.97 2.99 1.89 1.85	0.8227 0.0154 0.0304 0.1479 0.0033 0.1742 0.0347 0.0061 0.3859 0.1220 0.4074 0.4074 0.4074 0.4003 0.1854 0.8562 0.0051 0.0347 0.0008 0.0487 0.0555		
	p	. oraca r		System		esday, Feb	ruary 28	2006 205
				-			•	
			The CORR P					
20 Variables:	Age FFM sertriglyc	percbodFAT	Weight systolic insulin	bmi diastolic homair	MAMC serglucose waisthip	TricepSF stotchol	Hip serHDL	Waist

Simple Statistics

Variable	Ν	Mean	Std Dev	Sum	Minimum	Maximum
----------	---	------	---------	-----	---------	---------

Age Height weight bmi MAMC TricepSF Hip Waist FFM percbodFAT systolic diastolic serglucose stotchol serHDL sertriglyc	33 33 31 31 32 33 33 28 28 33 33 33 33 33 33	$\begin{array}{r} 34.48485\\ 64.71212\\ 206.84848\\ 34.63326\\ 37.09677\\ 36.57097\\ 119.79688\\ 108.75758\\ 111.84848\\ 43.91515\\ 128.57143\\ 83.35714\\ 98.66667\\ 194.78788\\ 52.93030\\ 95.57576\end{array}$	5.69057 2.40777 54.73508 8.25771 7.15358 9.75528 18.46045 21.62179 14.68869 8.56742 13.80668 8.27855 17.47260 35.55696 16.58867 56.69768	$1138 \\ 2136 \\ 6826 \\ 1143 \\ 1150 \\ 1134 \\ 3834 \\ 3589 \\ 3691 \\ 1449 \\ 3600 \\ 2334 \\ 3256 \\ 6428 \\ 1747 \\ 3154 \\ \end{cases}$	$\begin{array}{c} 26.00000\\ 61.00000\\ 111.00000\\ 19.70257\\ 27.00000\\ 17.50000\\ 83.50000\\ 69.50000\\ 88.50000\\ 20.30000\\ 100.00000\\ 60.00000\\ 60.00000\\ 105.00000\\ 18.80000\\ 1.00000\\ \end{array}$	$\begin{array}{c} 45.00000\\ 71.50000\\ 346.50000\\ 48.98764\\ 59.000000\\ 54.30000\\ 150.00000\\ 150.00000\\ 145.50000\\ 145.50000\\ 160.00000\\ 160.00000\\ 160.00000\\ 161.00000\\ 272.00000\\ 87.90000\\ 283.00000\end{array}$
stoťchol	33	194.78788	35.55696	6428	105.00000	272.00000
sertriglyc leptin insulin homair waisthip	33 32 32 32 32 32	95.57576 35.62656 55.29625 4.99292 0.89663	56.69768 17.29197 58.89027 1.09282 0.08396	3154 1140 1769 159.77330 28.69203		

----- Ethnicity=1 -----

The CORR Procedure

Pearson Correlation Coefficients Prob > |r| under H0: Rho=0 Number of Observations

	Age	Height	Weight	bmi	MAMC	TricepSF	Нір
Age	1.00000 33	-0.09327 0.6057 33	-0.07184 0.6911 33	-0.03980 0.8259 33	-0.11129 0.5511 31	-0.05245 0.7793 31	-0.02960 0.8723 32
Height	-0.09327 0.6057 33	1.00000 33	0.48427 0.0043 33	0.19187 0.2848 33	0.34751 0.0554 31	0.08950 0.6321 31	0.23086 0.2036 32
weight	-0.07184 0.6911 33	0.48427 0.0043 33	1.00000 33	0.94824 <.0001 33	0.82814 <.0001 31	0.73537 <.0001 31	0.90862 <.0001 32
bmi	-0.03980 0.8259 33	0.19187 0.2848 33	0.94824 <.0001 33	1.00000 33	0.81391 <.0001 31	0.79026 <.0001 31	0.89852 <.0001 32
MAMC	-0.11129 0.5511 31	0.34751 0.0554 31	0.82814 <.0001 31	0.81391 <.0001 31	1.00000 31	0.72844 <.0001 30	0.79604 <.0001 30
TricepSF	-0.05245 0.7793 31	0.08950 0.6321 31	0.73537 <.0001 31	0.79026 <.0001 31	0.72844 <.0001 30	1.00000 31	0.74395 <.0001 30
Нір	-0.02960 0.8723 32	0.23086 0.2036 32	0.90862 <.0001 32	0.89852 <.0001 32	0.79604 <.0001 30	0.74395 <.0001 30	1.00000 32
Waist	0.05356 0.7672 33	0.30520 0.0841 33	0.90930 <.0001 33	0.91361 <.0001 33	0.77253 <.0001 31	0.78921 <.0001 31	0.84493 <.0001 32
FFM	-0.09275 0.6077 33	0.57240 0.0005 33	0.95608 <.0001 33	0.87122 <.0001 33	0.80821 <.0001 31	0.64481 <.0001 31	0.84530 <.0001 32
percbodFAT	-0.03996 0.8253 33	0.34562 0.0488 33	0.91825 <.0001 33	0.92166 <.0001 33	0.71875 <.0001 31	0.77942 <.0001 31	0.87064 <.0001 32
systolic	-0.11159 0.5718 28	0.30797 0.1109 28	0.34062 0.0761 28	0.29205 0.1316 28	0.50670 0.0059 28	0.03598 0.8558 28	0.29989 0.1286 27
			The SAS	SVSTOM		Eebruary 28	2006 207

The SAS System 10:09 Tuesday, February 28, 2006 207

------ Ethnicity=1 ------

The CORR Procedure

Pearson Correlation Coefficients Prob > |r| under H0: Rho=0 Number of Observations

	Age	Height	Weight	bmi	MAMC	TricepSF	Нір
diastolic	0.09547	0.05000	0.34266	0.36337	0.34114	0.26995	0.27236
	0.6289	0.8005	0.0743	0.0573	0.0756	0.1648	0.1693
	28	28	28	28	28	28	27
serglucose	-0.04044	0.34454	0.30543	0.23648	0.38411	0.22508	0.17197
	0.8232	0.0496	0.0839	0.1852	0.0329	0.2235	0.3466
	33	33	33	33	31	31	32
stotchol	0.22416	0.01350	-0.03118	-0.03563	-0.16101	-0.10857	-0.00110
	0.2098	0.9406	0.8632	0.8439	0.3869	0.5610	0.9952
	33	33	33	33	31	31	32
serHDL	0.12024	-0.11095	-0.16635	-0.14959	-0.21502	-0.24718	-0.03595
	0.5051	0.5388	0.3548	0.4060	0.2454	0.1801	0.8451
	33	33	33	33	31	31	32
sertriglyc	-0.00990	0.12429	-0.01255	-0.03308	-0.13303	-0.16229	-0.00439
	0.9564	0.4907	0.9447	0.8550	0.4756	0.3831	0.9810
	33	33	33	33	31	31	32
leptin	-0.32733	0.15270	0.77995	0.81641	0.75711	0.75984	0.72116
	0.0674	0.4041	<.0001	<.0001	<.0001	<.0001	<.0001
	32	32	32	32	30	30	31
insulin	-0.15265	0.31044	0.31515	0.24279	0.15836	0.05477	0.17457
	0.4042	0.0838	0.0789	0.1806	0.4033	0.7738	0.3476
	32	32	32	32	30	30	31
homair	-0.15701	0.33961	0.58533	0.54246	0.46242	0.45353	0.47185
	0.3908	0.0572	0.0004	0.0013	0.0101	0.0118	0.0074
	32	32	32	32	30	30	31
waisthip	0.22637	0.05079	0.37361	0.37273	0.32481	0.51888	0.14120
	0.2128	0.7825	0.0352	0.0356	0.0799	0.0033	0.4408
	32	32	32	32	30	30	32

The SAS System

10:09 Tuesday, February 28, 2006 208

------ Ethnicity=1 -----

The CORR Procedure

	Waist	FFM	percbod FAT	systolic	diastolic	serglucose	stotchol
Age	0.05356	-0.09275	-0.03996	-0.11159	0.09547	-0.04044	0.22416
	0.7672	0.6077	0.8253	0.5718	0.6289	0.8232	0.2098
	33	33	33	28	28	33	33
Height	0.30520	0.57240	0.34562	0.30797	0.05000	0.34454	0.01350
	0.0841	0.0005	0.0488	0.1109	0.8005	0.0496	0.9406
	33	33	33	28	28	33	33
Weight	0.90930	0.95608	0.91825	0.34062	0.34266	0.30543	-0.03118
	<.0001	<.0001	<.0001	0.0761	0.0743	0.0839	0.8632
	33	33	33	28	28	33	33
bmi	0.91361	0.87122	0.92166	0.29205	0.36337	0.23648	-0.03563
	<.0001	<.0001	<.0001	0.1316	0.0573	0.1852	0.8439
	33	33	33	28	28	33	33
MAMC	0.77253	0.80821	0.71875	0.50670	0.34114	0.38411	-0.16101
	<.0001	<.0001	<.0001	0.0059	0.0756	0.0329	0.3869
	31	31	31	28	28	31	31
TricepSF	0.78921	0.64481	0.77942	0.03598	0.26995	0.22508	-0.10857

	<.0001 31	<.0001 31	<.0001 31	0.8558 28	0.1648 28	0.2235 31	0.5610 31
Нір	0.84493 <.0001 32	0.84530 <.0001 32	0.87064 <.0001 32	0.29989 0.1286 27	0.27236 0.1693 27	0.17197 0.3466 32	-0.00110 0.9952 32
Waist	1.00000 33	0.81041 <.0001 33	0.90817 <.0001 33	0.17929 0.3613 28	0.31965 0.0973 28	0.23668 0.1848 33	-0.06395 0.7237 33
FFM	0.81041 <.0001 33	1.00000 33	0.81045 <.0001 33	0.44967 0.0164 28	0.28961 0.1350 28	0.30554 0.0838 33	-0.06032 0.7388 33
percbodFAT	0.90817 <.0001 33	0.81045 <.0001 33	1.00000 33	0.16328 0.4064 28	0.30251 0.1177 28	0.30392 0.0855 33	-0.01259 0.9446 33
systolic	0.17929 0.3613 28	0.44967 0.0164 28	0.16328 0.4064 28	1.00000 28	0.45860 0.0141 28	0.21177 0.2793 28	-0.31220 0.1058 28
			The SAS	S System	10:09 Tuesd	ay, February	28, 2006 209

----- Ethnicity=1 -----The CORR Procedure

Pearson Correlation Coefficients Prob > |r| under H0: Rho=0 Number of Observations

	Waist	FFM	percbod FAT	systolic	diastolic	serglucose	stotchol
diastolic	0.31965 0.0973 28	0.28961 0.1350 28	0.30251 0.1177 28	0.45860 0.0141 28	1.00000 28	0.20723 0.2900 28	-0.27689 0.1537 28
serglucose	0.23668 0.1848 33	0.30554 0.0838 33	0.30392 0.0855 33	0.21177 0.2793 28	0.20723 0.2900 28	1.00000 33	0.31340 0.0757 33
stotchol	-0.06395 0.7237 33	-0.06032 0.7388 33	-0.01259 0.9446 33	-0.31220 0.1058 28	-0.27689 0.1537 28	0.31340 0.0757 33	1.00000 33
serHDL	-0.25341	-0.15610	-0.19238	-0.14843	-0.15145	0.02622	0.65316
	0.1547	0.3857	0.2835	0.4510	0.4417	0.8848	<.0001
	33	33	33	28	28	33	33
sertriglyc	0.04784	-0.03272	0.11287	-0.19319	-0.17169	-0.03194	-0.04765
	0.7915	0.8565	0.5317	0.3246	0.3823	0.8599	0.7923
	33	33	33	28	28	33	33
leptin	0.74213	0.67253	0.77223	0.29269	0.23077	0.13328	-0.08609
	<.0001	<.0001	<.0001	0.1385	0.2468	0.4671	0.6394
	32	32	32	27	27	32	32
insulin	0.27219	0.30263	0.27909	-0.04163	-0.18658	0.03614	0.08829
	0.1318	0.0923	0.1219	0.8367	0.3514	0.8443	0.6309
	32	32	32	27	27	32	32
homair	0.49609	0.57875	0.57969	0.08624	-0.03101	0.29365	0.04024
	0.0039	0.0005	0.0005	0.6689	0.8780	0.1028	0.8269
	32	32	32	27	27	32	32
waisthip	0.64313	0.23388	0.44275	-0.26418	0.07979	0.11834	-0.12812
	<.0001	0.1976	0.0112	0.1830	0.6924	0.5189	0.4847
	32	32	32	27	27	32	32

The SAS System 10:09 Tuesday, February 28, 2006 210

----- Ethnicity=1 -----

The CORR Procedure

Pearson Correlation Coefficients Prob > |r| under H0: Rho=0

		(unit)		10115		
	serHDL	sertriglyc	leptin	insulin	homair	waisthip
Age	0.12024	-0.00990	-0.32733	-0.15265	-0.15701	0.22637
	0.5051	0.9564	0.0674	0.4042	0.3908	0.2128
	33	33	32	32	32	32
Height	-0.11095	0.12429	0.15270	0.31044	0.33961	0.05079
	0.5388	0.4907	0.4041	0.0838	0.0572	0.7825
	33	33	32	32	32	32
Weight	-0.16635	-0.01255	0.77995	0.31515	0.58533	0.37361
	0.3548	0.9447	<.0001	0.0789	0.0004	0.0352
	33	33	32	32	32	32
bmi	-0.14959	-0.03308	0.81641	0.24279	0.54246	0.37273
	0.4060	0.8550	<.0001	0.1806	0.0013	0.0356
	33	33	32	32	32	32
MAMC	-0.21502	-0.13303	0.75711	0.15836	0.46242	0.32481
	0.2454	0.4756	<.0001	0.4033	0.0101	0.0799
	31	31	30	30	30	30
TricepSF	-0.24718	-0.16229	0.75984	0.05477	0.45353	0.51888
	0.1801	0.3831	<.0001	0.7738	0.0118	0.0033
	31	31	30	30	30	30
Нір	-0.03595	-0.00439	0.72116	0.17457	0.47185	0.14120
	0.8451	0.9810	<.0001	0.3476	0.0074	0.4408
	32	32	31	31	31	32
Waist	-0.25341	0.04784	0.74213	0.27219	0.49609	0.64313
	0.1547	0.7915	<.0001	0.1318	0.0039	<.0001
	33	33	32	32	32	32
FFM	-0.15610	-0.03272	0.67253	0.30263	0.57875	0.23388
	0.3857	0.8565	<.0001	0.0923	0.0005	0.1976
	33	33	32	32	32	32
percbodFAT	-0.19238	0.11287	0.77223	0.27909	0.57969	0.44275
	0.2835	0.5317	<.0001	0.1219	0.0005	0.0112
	33	33	32	32	32	32
systolic	-0.14843	-0.19319	0.29269	-0.04163	0.08624	-0.26418
	0.4510	0.3246	0.1385	0.8367	0.6689	0.1830
	28	28	27	27	27	27

Number of Observations

The SAS System 10:09 Tuesday, February 28, 2006 211

----- Ethnicity=1 -----

The CORR Procedure

	serHDL	sertriglyc	leptin	insulin	homair	waisthip
diastolic	-0.15145 0.4417 28	-0.17169 0.3823 28	0.23077 0.2468 27	-0.18658 0.3514 27	-0.03101 0.8780 27	0.07979 0.6924 27
serglucose	0.02622 0.8848 33	-0.03194 0.8599 33	0.13328 0.4671 32	0.03614 0.8443 32	0.29365 0.1028 32	0.11834 0.5189 32
stotchol	0.65316 <.0001 33	-0.04765 0.7923 33	-0.08609 0.6394 32	0.08829 0.6309 32	0.04024 0.8269 32	-0.12812 0.4847 32
serHDL	1.00000 33	-0.43385 0.0117 33	-0.13593 0.4582 32	-0.16167 0.3767 32	-0.15988 0.3821 32	-0.43767 0.0122 32
sertriglyc	-0.43385 0.0117 33	1.00000 33	-0.03893 0.8325 32	0.49626 0.0039 32	0.27484 0.1279 32	0.14440 0.4304 32
leptin	-0.13593	-0.03893	1.00000	0.31670	0.56995	0.29037

	0.458	2 0.83	325 32	32	0.0826 31	0.0008 31	0.1130 31
insulin	-0.1616 0.376	7 0.496 7 0.00	526 0 039 (.31670 0.0826 31	1.00000 32	0.82634 <.0001 32	0.14597 0.4333 31
homair	-0.1598 0.382	1 0.12	484 0 279 0 32	.56995 0.0008 31	0.82634 <.0001 32	1.00000 32	0.16430 0.3771 31
waisthip	-0.4376 0.012	2 0.43	440 0 304 0 32	.29037 0.1130 31	0.14597 0.4333 31	0.16430 0.3771 31	1.00000 32
							uary 28, 2006 212
				Procedure			
20 Variables:	Age FFM sertr	Height percbodF4 iglyc leptin	Weight AT systolic insulin	bmi diastolio homair	MAMC serglucos waisthip	TricepSF e stotchol	Hip Waist serHDL
			Simple S [.]	tatistics			
Variable		N Mea	an Sto	d Dev	Sum	Minimum	Maximum
Age Height Weight bmi TricepSF Hip Waist FFM percbodFAT systolic diastolic serglucose stotchol serHDL sertriglyc leptin insulin homair waisthip		Pearso	33 1.6 57 38. 13 6.2 26 4.2 29 7.3 33 13.2 34 6.1 27 12.2 30 3.2 30 16.1 33 16.2 33 16.1 33 16.1 52 0.1 52 0.1 52 0.1 52 0.1 54 CORR The CORR Correlat	63516 74121 55918 42802 83474 14876 93907 79619 68778 01523 42319 14443 45246 16023 79568 31622 06625 79468 23 06173 24	ients	22.00000 61.50000 107.50000 18.20413 24.50000 13.70000 92.00000 77.50000 83.50000 97.00000 58.00000 63.00000 17.20000 17.20000 12.00000 4.20000 5.47000 3.13964 0.75278	45.00000 67.50000 300.50000 52.50226 46.00000 150.00000 145.00000 145.00000 145.00000 262.00000 274.00000 87.90000 476.00000 60.32000 171.18000 6.84138 1.08527 uary 28, 2006 213
	4.50		Number of (Observations	5	MC Trico	
Age	Age 1.00000	Height 0.20651	Weight 0.20862	bm1 0.14871		MC Trice	
5-	48	0.1591 48	0.1547 48	0.3131	L 0.84		
Height	0.20651 0.1591 48	1.00000 48	0.11968 0.4178 48	-0.12848 0.3842 48	2 0.26		903 0.03421 902 0.8175 48 48
Weight	0.20862 0.1547 48	0.11968 0.4178 48	1.00000 48	0.96856 <.0001 48	L <.00		978 0.91700 001 <.0001 48 48
bmi	0.14871 0.3131 48	-0.12848 0.3842 48	0.96856 <.0001 48	1.00000 48	<.00		275 0.90985 001 <.0001 48 48

MAMC	0.02977 0.8426 47	-0.16599 0.2648 47	0.77323 <.0001 47	0.80177 <.0001 47	1.00000 47	0.73208 <.0001 47	0.64711 <.0001 47
TricepSF	-0.00780 0.9580 48	-0.05903 0.6902 48	0.70978 <.0001 48	0.72275 <.0001 48	0.73208 <.0001 47	1.00000 48	0.64330 <.0001 48
Нір	0.13276 0.3684 48	0.03421 0.8175 48	0.91700 <.0001 48	0.90985 <.0001 48	0.64711 <.0001 47	0.64330 <.0001 48	1.00000 48
Waist	0.20528	0.10681	0.82956	0.79933	0.65955	0.53359	0.84382
	0.1616	0.4700	<.0001	<.0001	<.0001	<.0001	<.0001
	48	48	48	48	47	48	48
FFM	0.20410	0.08215	0.86204	0.83784	0.62627	0.58052	0.77715
	0.1688	0.5830	<.0001	<.0001	<.0001	<.0001	<.0001
	47	47	47	47	46	47	47
percbodFAT	0.13321	0.16208	0.83730	0.79685	0.69509	0.63473	0.78406
	0.3720	0.2764	<.0001	<.0001	<.0001	<.0001	<.0001
	47	47	47	47	46	47	47
systolic	0.06306	0.03463	0.42638	0.40922	0.42402	0.27246	0.40422
	0.6842	0.8234	0.0039	0.0058	0.0041	0.0736	0.0065
	44	44	44	44	44	44	44
			The SAS	System	10:09 Tuesday,	February 2	8, 2006 214

----- Ethnicity=3 -----

The CORR Procedure

	Age	Height	Weight	bmi	MAMC	TricepSF	Нір
diastolic	-0.14368	-0.08552	0.31719	0.33302	0.39160	0.37555	0.24561
	0.3521	0.5810	0.0359	0.0272	0.0086	0.0120	0.1081
	44	44	44	44	44	44	44
serglucose	-0.03593	0.01983	0.18441	0.18152	0.03836	0.27663	0.25802
	0.8084	0.8936	0.2096	0.2169	0.7979	0.0570	0.0766
	48	48	48	48	47	48	48
stotchol	0.15457	0.22246	-0.04217	-0.10314	-0.18024	-0.06201	-0.02734
	0.2942	0.1286	0.7760	0.4854	0.2254	0.6755	0.8536
	48	48	48	48	47	48	48
serHDL	-0.09236	0.13935	-0.23254	-0.27387	-0.07873	-0.07151	-0.21541
	0.5324	0.3449	0.1117	0.0596	0.5988	0.6291	0.1415
	48	48	48	48	47	48	48
sertriglyc	0.19199	-0.13386	0.03974	0.07110	-0.07912	-0.08994	0.15501
	0.1911	0.3644	0.7886	0.6311	0.5970	0.5432	0.2928
	48	48	48	48	47	48	48
leptin	0.04870	0.04606	0.71515	0.70786	0.65763	0.47562	0.68908
	0.7424	0.7559	<.0001	<.0001	<.0001	0.0006	<.0001
	48	48	48	48	47	48	48
insulin	0.14755	0.00718	0.43984	0.44646	0.45054	0.21789	0.40467
	0.3223	0.9618	0.0020	0.0017	0.0017	0.1412	0.0048
	47	47	47	47	46	47	47
homair	0.12302	0.02795	0.50096	0.50031	0.45940	0.32135	0.50853
	0.4100	0.8521	0.0003	0.0003	0.0013	0.0276	0.0003
	47	47	47	47	46	47	47
waisthip	0.13475	0.12691	0.08631	0.04615	0.16064	-0.02143	-0.01599
	0.3612	0.3900	0.5597	0.7554	0.2807	0.8850	0.9141
	48	48	48	48	47	48	48

----- Ethnicity=3 -----

The CORR Procedure

Pearson Correlation Coefficients Prob > |r| under H0: Rho=0 Number of Observations

	Waist	FFM	percbod FAT	systolic	diastolic	serglucose	stotchol
Age	0.20528 0.1616 48	0.20410 0.1688 47	0.13321 0.3720 47	0.06306 0.6842 44	-0.14368 0.3521 44	-0.03593 0.8084 48	0.15457 0.2942 48
Height	0.10681 0.4700 48	0.08215 0.5830 47	0.16208 0.2764 47	0.03463 0.8234 44	-0.08552 0.5810 44	0.01983 0.8936 48	0.22246 0.1286 48
Weight	0.82956 <.0001 48	0.86204 <.0001 47	0.83730 <.0001 47	0.42638 0.0039 44	0.31719 0.0359 44	0.18441 0.2096 48	-0.04217 0.7760 48
bmi	0.79933 <.0001 48	0.83784 <.0001 47	0.79685 <.0001 47	0.40922 0.0058 44	0.33302 0.0272 44	0.18152 0.2169 48	-0.10314 0.4854 48
МАМС		0.62627 <.0001 46	0.69509 <.0001 46	0.42402 0.0041 44	0.39160 0.0086 44	0.03836 0.7979 47	-0.18024 0.2254 47
TricepSF	0.53359 <.0001 48	0.58052 <.0001 47	0.63473 <.0001 47	0.27246 0.0736 44	0.37555 0.0120 44	0.27663 0.0570 48	-0.06201 0.6755 48
нір	0.84382 <.0001 48	0.77715 <.0001 47	0.78406 <.0001 47	0.40422 0.0065 44	0.24561 0.1081 44	0.25802 0.0766 48	-0.02734 0.8536 48
Waist	1.00000 48	0.61578 <.0001 47	0.80004 <.0001 47	0.33381 0.0268 44	0.12723 0.4105 44	0.22131 0.1306 48	-0.06254 0.6728 48
FFM	0.61578 <.0001 47	1.00000 47	0.48219 0.0006 47	0.43050 0.0040 43	0.29431 0.0554 43	0.20524 0.1664 47	0.00841 0.9552 47
percbodFAT	0.80004 <.0001 47	0.48219 0.0006 47	1.00000 47	0.38035 0.0119 43	0.31096 0.0424 43	0.13279 0.3736 47	-0.10614 0.4777 47
systolic	0.33381 0.0268 44	0.43050 0.0040 43	0.38035 0.0119 43	1.00000 44	0.71017 <.0001 44	-0.01223 0.9372 44	-0.02238 0.8853 44
						sday, February	28, 2006 216
			Ethni	city=3			
				Procedure			
		Pear	son Correlat	ion Coeffici	ents		

	Waist	FFM	percbod FAT	systolic	diastolic	serglucose	stotchol
diastolic	0.12723 0.4105 44	0.29431 0.0554 43	0.31096 0.0424 43	0.71017 <.0001 44	1.00000 44	-0.14737 0.3398 44	-0.00817 0.9580 44
serglucose	0.22131 0.1306 48	0.20524 0.1664 47	0.13279 0.3736 47	-0.01223 0.9372 44	-0.14737 0.3398 44	1.00000 48	0.08890 0.5479 48
stotchol	-0.06254 0.6728 48	0.00841 0.9552 47	-0.10614 0.4777 47	-0.02238 0.8853 44	-0.00817 0.9580 44	0.08890 0.5479 48	1.00000 48

serHDL	-0.06582	-0.32150	-0.09936	-0.00489	0.05165	-0.03529	0.40375
	0.6567	0.0276	0.5064	0.9749	0.7392	0.8118	0.0044
	48	47	47	44	44	48	48
sertriglyc	0.10458	0.17555	-0.06337	-0.09579	-0.21959	0.24902	0.35936
	0.4793	0.2379	0.6722	0.5362	0.1521	0.0879	0.0121
	48	47	47	44	44	48	48
leptin	0.56432	0.54761	0.66557	0.32266	0.27794	0.08427	0.12212
	<.0001	<.0001	<.0001	0.0327	0.0677	0.5691	0.4083
	48	47	47	44	44	48	48
insulin	0.36265	0.37431	0.35968	0.09966	-0.06512	0.11948	0.01932
	0.0122	0.0104	0.0141	0.5249	0.6782	0.4238	0.8974
	47	46	46	43	43	47	47
homair	0.40403	0.49196	0.39892	0.14893	-0.09357	0.37557	0.07723
	0.0049	0.0005	0.0060	0.3405	0.5507	0.0093	0.6059
	47	46	46	43	43	47	47
waisthip	0.51952	-0.09809	0.25549	-0.03453	-0.15958	-0.00683	-0.05292
	0.0002	0.5118	0.0830	0.8239	0.3008	0.9632	0.7209
	48	47	47	44	44	48	48

----- Ethnicity=3 -----

The CORR Procedure

	serHDL	sertriglyc	leptin	insulin	homair	waisthip
Age	-0.09236	0.19199	0.04870	0.14755	0.12302	0.13475
	0.5324	0.1911	0.7424	0.3223	0.4100	0.3612
	48	48	48	47	47	48
Height	0.13935	-0.13386	0.04606	0.00718	0.02795	0.12691
	0.3449	0.3644	0.7559	0.9618	0.8521	0.3900
	48	48	48	47	47	48
Weight	-0.23254	0.03974	0.71515	0.43984	0.50096	0.08631
	0.1117	0.7886	<.0001	0.0020	0.0003	0.5597
	48	48	48	47	47	48
bmi	-0.27387	0.07110	0.70786	0.44646	0.50031	0.04615
	0.0596	0.6311	<.0001	0.0017	0.0003	0.7554
	48	48	48	47	47	48
MAMC	-0.07873	-0.07912	0.65763	0.45054	0.45940	0.16064
	0.5988	0.5970	<.0001	0.0017	0.0013	0.2807
	47	47	47	46	46	47
TricepSF	-0.07151	-0.08994	0.47562	0.21789	0.32135	-0.02143
	0.6291	0.5432	0.0006	0.1412	0.0276	0.8850
	48	48	48	47	47	48
Нір	-0.21541	0.15501	0.68908	0.40467	0.50853	-0.01599
	0.1415	0.2928	<.0001	0.0048	0.0003	0.9141
	48	48	48	47	47	48
Waist	-0.06582	0.10458	0.56432	0.36265	0.40403	0.51952
	0.6567	0.4793	<.0001	0.0122	0.0049	0.0002
	48	48	48	47	47	48
FFM	-0.32150	0.17555	0.54761	0.37431	0.49196	-0.09809
	0.0276	0.2379	<.0001	0.0104	0.0005	0.5118
	47	47	47	46	46	47
percbodFAT	-0.09936	-0.06337	0.66557	0.35968	0.39892	0.25549
	0.5064	0.6722	<.0001	0.0141	0.0060	0.0830
	47	47	47	46	46	47
systolic	-0.00489	-0.09579	0.32266	0.09966	0.14893	-0.03453
	0.9749	0.5362	0.0327	0.5249	0.3405	0.8239
	44	44	44	43	43	44

----- Ethnicity=3 -----

The CORR Procedure

Pearson Correlation Coefficients Prob > |r| under H0: Rho=0 Number of Observations

	serHDL	sertriglyc	leptin	insulin	homair	waisthip	
diastolic	0.05165 0.7392 44	-0.21959 0.1521 44	0.27794 0.0677 44	-0.06512 0.6782 43	-0.09357 0.5507 43	-0.15958 0.3008 44	
serglucose	-0.03529 0.8118 48	0.24902 0.0879 48	0.08427 0.5691 48	0.11948 0.4238 47	0.37557 0.0093 47	-0.00683 0.9632 48	
stotchol	0.40375 0.0044 48	0.35936 0.0121 48	0.12212 0.4083 48	0.01932 0.8974 47	0.07723 0.6059 47	-0.05292 0.7209 48	
serHDL	1.00000 48	-0.08327 0.5736 48	0.01854 0.9005 48	0.04613 0.7582 47	0.00696 0.9630 47	0.21101 0.1500 48	
sertriglyc	-0.08327 0.5736 48	1.00000 48	0.06137 0.6786 48	0.26609 0.0706 47	0.29016 0.0479 47	-0.02871 0.8464 48	
leptin	0.01854 0.9005 48	0.06137 0.6786 48	1.00000 48	0.47323 0.0008 47	0.56351 <.0001 47	-0.04455 0.7637 48	
insulin	0.04613 0.7582 47	0.26609 0.0706 47	0.47323 0.0008 47	1.00000 47	0.87311 <.0001 47	0.01296 0.9311 47	
homair	0.00696 0.9630 47	0.29016 0.0479 47	0.56351 <.0001 47	0.87311 <.0001 47	1.00000 47	-0.07175 0.6318 47	
waisthip	0.21101 0.1500 48	-0.02871 0.8464 48	-0.04455 0.7637 48	0.01296 0.9311 47	-0.07175 0.6318 47	1.00000 48	
			The SAS System	10:09	Tuesday, Februa	ry 28, 2006 219)
The CORR Procedure							

7 Variables: systolic Age stotchol sertriglyc homair Waist serHDL Simple Statistics Variable Std Dev Minimum Maximum Ν Mean Sum 107.28765 125.91667 34.23457 49.98395 195.95062 125.24691 5.01620 17.39697 12.82466 5.79714 16.41779 40.83592 82.75997 0.92057 69.50000 97.00000 22.00000 17.20000 70.00000 1.00000 2.63147 150.00000 160.00000 45.00000 87.90000 274.00000 476.00000 7.08852 81 8690 Waist_ 8090 9066 2773 4049 15872 10145 396.27968 systolic 72 81 81 Age serHDL stotchol 81 81 79 sertriglyc homair

	Waist	systolic	Age	serHDL	stotchol	sertriglyc	homair
Waist	1.00000 81	0.26887 0.0224 72	0.12741 0.2570 81	-0.14724 0.1896 81	-0.06140 0.5861 81	0.04981 0.6588 81	0.45538 <.0001 79
systolic	0.26887	1.00000	-0.01263	-0.04765	-0.13391	-0.15742	0.12076

	0.0224 72	72	0.9161 72	0.6910 72	0.2621 72	0.1866 72	0.3194 70
Age	0.12741 0.2570 81	-0.01263 0.9161 72	1.00000 81	-0.00147 0.9896 81	0.17678 0.1144 81	0.11439 0.3092 81	-0.01052 0.9267 79
serHDL	-0.14724 0.1896 81	-0.04765 0.6910 72	-0.00147 0.9896 81	1.00000 81	0.48046 <.0001 81	-0.21833 0.0502 81	-0.07365 0.5189 79
stotchol	-0.06140 0.5861 81	-0.13391 0.2621 72	0.17678 0.1144 81	0.48046 <.0001 81	1.00000 81	0.25065 0.0240 81	0.06008 0.5989 79
sertriglyc	0.04981 0.6588 81	-0.15742 0.1866 72	0.11439 0.3092 81	-0.21833 0.0502 81	0.25065 0.0240 81	1.00000 81	0.26082 0.0203 79
homair	0.45538 <.0001 79	0.12076 0.3194 70	-0.01052 0.9267 79	-0.07365 0.5189 79	0.06008 0.5989 79	0.26082 0.0203 79	1.00000 79

Smoking levels among ethnic groups

chi analysis for smoking The FREQ Procedure Table of ethnicity by smoke Total 33 41.25 47 58.75 80 100.00

Frequency Missing = 1

chi analysis for smoking

The FREQ Procedure

Statistics for Table of ethnicity by smoke

Statistic	DF	Value	Prob
ffffffffffffffffffffffffffff	fffffff	ffffffffff	fffffff
Chi-Square	1	8.9439	0.0028
Likelihood Ratio Chi-Square	1	9.4224	0.0021
Continuity Adj. Chi-Square	1	7.5960	0.0058
Mantel-Haenszel Chi-Square	1	8.8321	0.0030
Phi Coefficient		-0.3344	
Contingency Coefficient		0.3171	
Cramer's V		-0.3344	

Fisher's Exact Test fffffffffffffffffffffffff Cell (1,1) Frequency (F) Left-sided Pr <= F Right-sided Pr >= F	ffffff 6 0.0025 0.9995
Table Probability (P)	0.0020
Two-sided Pr <= P	0.0045

Effective Sample Size = 80 Frequency Missing = 1

chi analysis for smoking

The FREQ Procedure

Summary Statistics for ethnicity by smoke

Cochran-Mantel-Haenszel Statistics (Based on Table Scores)

Statistic Alternative Hypothesis DF Value Prob

1	Nonzero Correlation	1	8.8321	0.0030
2	Row Mean Scores Differ	1	8.8321	0.0030
3	General Association	1	8.8321	0.0030

Estimates of the Common Relative Risk (Row1/Row2)

Type of Study fffffffffffffffff Case-Control (Odds Ratio)	Method ffffffffffffffffffffff Mantel-Haenszel Logit	Value fffffffffff 0.2130 0.2130 0.2130	95% Confiden ffffffffffff 0.0743 0.0743	
Cohort	Mantel-Haenszel	0.3561	0.1639	0.7736
(Coll Risk)	Logit	0.3561	0.1639	0.7736
Cohort	Mantel-Haenszel	1.6719	1.1979	2.3335
(Col2 Risk)	Logit	1.6719	1.1979	2.3335

Effective Sample Size = 80 Frequency Missing = 1

VITA

Archana Ellath

Candidate for the Degree of

Master of Science

Thesis: CARDIOVASCULAR RISK FACTORS IN AMERICAN INDIAN AND AFRICAN AMERICAN WOMEN OF CHILD BEARING AGE AND THEIR RELATIONSHIP TO BLOOD LEPTIN CONCENTRATION, INSULIN RESISTANCE, AND WAIST CIRCUMFERENCE

Major Field: Nutritional Sciences

Education:

Graduate from Christhu Jyothi Convent, Erode, India in April 1996; received Bachelor of Science degree in Clinical Nutrition and Dietetics, Avinashilingam Deemed University, Coimbatore, India in May 1999; received Masters in International Business from Bharathiyar University, Coimbatore, India in May 2001.

Experience:

Worked as a Trainee Dietitian in a hospital; employed by Oklahoma State University department of Nutritional Sciences as a teaching assistant and research assistant.

Awards and Honors Scholarship recipient, Study Abroad Travel Grant, PFIZER Inc., New York, U.S.A Fellowship award, International Food and Nutrition Conference Global Fellow Student, 2006

Professional Memberships: Institute of Food Technologists (IFT), Kappa Omicron Nu Name: Archana Ellath

Date of Degree: December, 2006

Institution: Oklahoma State University

Location: Stillwater, Oklahoma

Title of Study: CARDIOVASCULAR RISK FACTORS IN AMERICAN INDIAN AND AFRICAN AMERICAN WOMEN OF CHILD BEARING AGE AND THEIR RELATIONSHIP TO BLOOD LEPTIN CONCENTRATION, INSULIN RESISTANCE AND WAIST CIRCUMFERENCE

Pages in Study: 126Candidate for the Degree of Master of ScienceMajor Field: Nutritional Sciences

Scope and Method of Study: Health disparities and cardiovascular diseases are major concerns in the nation. Cardiovascular disease is the leading cause of death among American Indian (AI) and African American (AA) women. Leptin concentrations, insulin resistance, and waist circumference have been found to be predictors of cardiovascular disease in American Indians and African Americans but little is known about AI and AA women of child bearing age. This study was designed to compare leptin levels, insulin resistance and waist circumference in AI and AA women and to determine the relationship of these variables with systolic blood pressure, HDL cholesterol and total cholesterol.

This is a prospective epidemiological study of 81 women (48 AI, 33 AA women) of child bearing age from rural Oklahoma. Anthropometric, blood pressure and biochemical data were collected from this cohort and analyzed using SAS (Version 9.1.3).

Findings and Conclusions: Ninety percent of the women were overweight to obese with a mean BMI of 33.2 ± 7.3 kg/m². Fifty eight percent of the AI women and 61% of the AA women were obese. Leptin concentrations were significantly higher for AA women when compared to AI women. Waist circumference (107 ± 17 cm) and insulin resistance (5 ± 0.9) were not significantly different between the groups but are alarmingly morbid. There was a positive but weak correlation between leptin and systolic blood pressure (SBP, r=0.335, p<0.005) and between waist circumference and SBP (r=0.269, p<0.05) but not insulin resistance with SBP. The mean SBP in this cohort was 126 ± 12 mm Hg, within the borderline high range. Although leptin concentrations were significantly different between not. This suggests that there is a phenotypic difference in the etiology of CVD and the involvement of leptin in the development of heart disease.