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CHAPTER I 
 

INTRODUCTION 
 

Research Problem 

 Osteoporosis is a disease which is characterized by low bone mass and impaired 

trabecular structures, making bone weaker and susceptible to fractures (National 

Osteoporosis Foundation, 2004).  Osteoporosis has received increasing attention as a 

major public health threat due to the fact that in the United States, an estimated 10 

million individuals suffer from osteoporosis and about 34 million individuals tend to have 

low bone mass placing them at high risk (National Osteoporosis Foundation, 2004).  The 

health care expenditure for osteoporosis was $17 billion in 2001 (National Osteoporosis 

Foundation, 2004), and the amount of expenditure is rising rapidly due to the increased 

elderly population and longevity (National Osteoporosis Foundation, 2004; Seeman, 

2001; Gullberg et al., 1997). 

 The spotlight has always been on women and osteoporosis; however, an estimated 

2 million American men also suffer from osteoporosis and another 12 million are at risk 

of developing osteoporosis (National Osteoporosis Foundation, 2004).  While researchers 

and pharmaceuticals companies are focusing and investing billions of dollars and 

tremendous efforts in order to develop therapies for preventing bone loss in women, male 

osteoporosis remains inadequately researched (Bilezikian, 1999). 
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The pathogenesis of male osteoporosis, in part, may be due to decreased calcium 

absorption (National Institutes of Health, 2003) and bone formation (Francis, 2000).  

Moreover, age-related declines in levels of sex hormones, insulin-like growth factor 1, 

and growth hormone are believed to contribute to bone loss in men (Francis, 2000; 

Bilezikian, 1999).  Hypogonadism, e.g. low serum testosterone level, is associated with 

20% of vertebral fractures (Bailie et al., 1992) and 50% of hip fractures in men (Stanley 

et al., 1991; Jackson and Spiekerman, 1989). 

 There are limited treatment options for male osteoporosis.  Alendronate (National 

Institutes of Health, 2003; Romagnolo et al., 2003) and parathyroid hormone (PTH) 

(National Institutes of Health, 2003) are the only medications approved by the Food and 

Drug Administration (FDA) for the treatment of osteoporosis in men.  However, studies 

have shown that alendronate can contribute to side effects, such as abdominal pain, bone 

and joint pain, constipation, diarrhea, indigestion, muscle pain and nausea, more often in 

men than in women (Makins and Ballinger, 2003).  Moreover, the cost of PTH is 

unaffordable if used long term (Deal and Gideon, 2003). Other treatment such as 

testosterone replacement therapy (TRT) (Romagnolo et al., 2003), is only recommended 

for men with hypogonadism.  However, TRT treatment has negative side effects such as 

cancer, sleep apnea, and erthrocytosis (Tan and Salazar, 2004; Slater and Oliver, 2000). 

 Ideally, it would be beneficial to offer a natural supplement therapy that could be 

easily incorporated into the diet, which can also reduce the incidence and risk of 

osteoporosis in men.  

Vitamin E, a potent antioxidant (Crary and McCarty, 1984), has osteoprotective 

effects. Vitamin E has been shown to suppress the production of certain cytokines such as 
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interleukin (IL)-1, IL-6 and tumor necrosis factor-alpha (TNF-α) (Jialal et al., 2001; 

Beharka et al., 2000; van Tits et al., 2000; Wang et al., 1994) that have been linked to 

increased bone loss (Jilka et al., 1996; Jilka et al., 1995; Manolagas and Jilka, 1995).  

Vitamin E has also been found to protect bone cells from oxidative damage as a result of 

lipid peroxidation (Xu et al., 1995).  Arjmandi and colleagues (Arjmandi et al., 2002) 

also demonstrated that vitamin E improved bone quality in the aged but not in young 

adult male mice.  A recent study by Smith et al. (Smith et al., 2005) also showed the 

protective effect of high dose vitamin E on the bones of hindlimb unloaded male rats by 

preventing the loss of trabecular number (Th.N) and bone surface normalized to tissue 

volume (BS/TV).  If vitamin E could be shown to effectively reverse bone loss in a rat 

model of male osteoporosis, it would provide a relatively inexpensive alternative therapy 

for male osteoporosis. 

 The hypothesis of this study was that vitamin E, in a dose-dependent manner, 

reverses bone loss in an orchidectomized rat model of male osteoporosis. To test this 

hypothesis, there are three specific aims: 

Specific Aim 1: To examine the dose-dependent effect of vitamin E on reducing 

bone loss and maintaining bone quality in an orchidectomized rat model of male 

osteoporosis.  Bone quality was assessed by measuring bone mineral area (BMA), bone 

mineral density (BMD), and bone mineral content (BMC) using dual energy x-ray 

absorptiometry (DXA). 

Specific Aim 2: To assess the dose-dependent effect of vitamin E on bone 

turnover in an orchidectomized rat model of male osteoporosis.  Urinary excretion of 
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deoxpyridiniline (Dpd), a specific marker of bone resorption, and serum osteocalcin 

(OC), a marker of bone formation, were assessed. 

Specific Aim 3: To evaluate the dose-dependent effect of vitamin E on trabecular 

and cortical microarchitectural properties in an orchidectomized rat model of male 

osteoporosis.  Trabecular and cortical bone structures were evaluated using micro-

computerized tomography (micro-CT).
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CHAPTER II 

 
REVIEW OF LITERATURE 

 

Prevalence and Incidence of Osteoporosis in Men 

 Osteoporosis is a disease characterized by low bone mass and impaired trabecular 

structures, making bone weaker and susceptible to fractures (National Osteoporosis 

Foundation, 2004).  Currently, approximately 2 million men suffer from osteoporosis and 

another 12 million men are at risk of developing osteoporosis in the United States 

(National Osteoporosis Foundation, 2004).  Based on the National Osteoporosis 

Foundation, the total number of men diagnosed with osteoporosis and those at risk of 

developing osteoporosis is expected to increase to over 17 million by 2010 and to over 20 

million by 2020 (National Osteoporosis Foundation, 2004). 

 The prevalence of male osteoporosis in non-Hispanic white and Asian at the age 

of 50 years is 7%, in non-Hispanic black is 4% and in Hispanic is 3%. In addition, the 

prevalence of osteopenia in non-Hispanic white and Asian at the age of 50 years is 35%, 

in non-Hispanic black is 19% and in Hispanic is 23% (National Osteoporosis Foundation, 

2004).  In fact, about 30% of hip fractures occur in men (Amin and Felson, 2001; 

Seeman, 2001) and one in eight men will have an osteoporotic fracture at the age of 50 

years (Campion and Maricic, 2003).  Furthermore, since men tend to have greater peak 

bone mass and size to provide a greater protection against fracture (Seeman, 2001), they  
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get bone fractures 10 years later than the women (Amin and Felson, 2001). However, hip 

fracture mortality in men one year after incidence is 31% compared to only 17% in 

women (Amin and Felson, 2001). 

 

Risk Factors for Osteoporosis in Men 

The development of osteoporosis in men is primarily related to aging (i.e., bone 

loss due to increase in age), ethnicity (i.e., non-Hispanic white has higher risk of 

osteoporosis than other races), and genetic factors (Conde and Aronson, 2003).  

However, statistics show that 30 to 60 percent of osteoporosis in men is associated with 

one or more of the secondary risks factors (Klibanski et al., 2000). 

The most common secondary risk factors for male osteoporosis are excessive use 

of glucocorticoid, hypogonadism, smoking, and alcohol over consumption. 

Glucocorticoids are steroids that are widely used by the elderly to treat inflammatory 

diseases (Rackoff and Rosen, 1998).  Studies have shown that long-term glucocorticoid 

therapy is associated with bone loss due to decreases in osteoblast proliferation and 

biosynthetic activity, as well as increase in bone resorption (Canalis et al., 2003), sex-

steroid deficiency, decreased intestinal calcium absorption and secondary 

hyperparathyroidism (Lafague-Proust et al., 2003).  A clinical study conducted by 

Dykman et al. (1985) on 161 ambulatory patients, who had rheumatic disease and 

received long-term treatment with prednisone, showed that patients with cumulative 

prednisone dose of less than 10 g, 10 to 30 g, and over 30 g had 23%, 40% and 78% 

incidence of osteopenia, respectively.  These patients also developed 22%, 33% and 53% 

incidence of fracture, respectively (Dykman et al., 1985).  LoCascio et al. (1990) also 
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showed that patients receiving glucocorticoid therapy for 5 to 7 months or an average of 

5 years developed an estimate 20% or 63% of trabecular volume bone loss.  The findings 

of these two studies (LoCascio et al., 1990; Dykman et al., 1985) supported the theory of 

Wolinsky-Friedland (Wolinsky-Friedland, 1995) that glucocortocoid-induced bone loss is 

associated with total cumulative dose of glucocorticoid and the duration of such therapy. 

Hypogonadism is defined as the reduction or absence of secretion of hormones 

from the sex glands (National Institutes of Health, 2003).  In fact, hypogonadism is found 

in an estimated 30% of men with vertebral fractures (National Institutes of Health, 2003), 

and 50% of men with hip fractures (Francis, 1999).  Francis et al. (1986) investigated the 

pathogenesis of osteoporosis in men and found that hypogonadism-induced bone loss is 

due to the reduction of plasma 1, 25-dihydroxyvitamin D (1,25[OH]2D), estrogen and 

calcitonin which lead to malabsorption of calcium and reduced bone formation.  They 

also concluded that hypogonadism causes both cortical and trabecular loss and alters 

trabecular architecture (Francis et al., 1986). 

Smoking is considered one of the risk factors for osteoporosis, although its 

mechanism of action on bone remains in question (National Osteoporosis Foundation, 

2004; National Institutes of Health, 2003).  However, the findings of several studies have 

(Tanaka et al., 2005; Walker et al., 2001; Fang et al., 1991) suggested that nicotine and 

other chemicals found in cigarettes may cause bone loss due to their direct toxic effects 

on osteoblast cells, the cells that stimulate bone formation, or the inhibition of calcium 

absorption.  A study showed that smoking was associated with a reduction in BMD, 

which can lead to fracture (Nelson et al., 2002).  A study conducted by Kanis et al. 

(2005) from ten prospective cohorts found that the smoking history was associated with a 
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significantly increased risk of fractures compared to individuals with no history of 

smoking. In addition, the risk ratios of fractures were also significantly higher in men 

than in women, except the hip fracture. 

Excessive alcohol intake is another well-recognized cause of secondary 

osteoporosis in men (National Osteoporosis Foundation, 2004; National Institutes of 

Health, 2003).  Excessive alcohol intake can result in testosterone deficiency in men and 

women (Isidori and Lenzi, 2005; Kim et al., 2003). Studies (Kasperk, 1997; Francis et al., 

1986) have demonstrated that low testosterone levels are linked to decreased activity of 

osteoblasts and calcium absorption. Moreover, alcoholics have also been shown to have a 

high level of cortisol (Kim et al., 2004) which has been linked to decreased bone 

formation and increased bone resorption (Medras and Jankowska, 2000).  Several studies 

have demonstrated that excessive consumption of alcohol is associated with the increased 

risk of fractures, especially in hip (Hoidrup et al., 1999; Fujiwara et al., 1997; Felson et 

al., 1988). Increased incidence of osteoporosis due to excessive intake of alcohol is more 

obvious in men than in women (Hoidrup et al., 1999; Felson et al., 1988). 

 

Treatment Options for Male Osteoporosis 

 Limited medical treatment options are available for male osteoporosis.  

Bisphosphonates that include alendronate, risedronate and etidronate are medications that 

inhibit osteoclast-mediated bone resorption and prevent bone loss (Ebeling, 2004; 

Mathoo et al., 2004; McClung, 2003). Among these medications, alendronate and 

risedronate have been approved by the FDA as treatment options for glucocortocoid-



9

induced osteoporosis (National Osteoporosis Foundation, 2004; National Institutes of 

Health, 2003). 

 Orwoll et al. (2000) conducted a two-year placebo-controlled trial study on 241 

men with osteoporosis.  Patients treated with 10 mg alendronate/day had increased BMD 

in the lumbar spine and the femoral neck by 7.1% and 2.5%, respectively, compared to 

the 1.8% and 0.1% increase in those patients treated with placebo.  Ringe et al. (2001) 

also demonstrated from a two-year prospective study on 134 men with osteoporosis that 

patients treated with 10 mg alendronate/day increased their BMD of the lumbar spine by 

10.1% and the femoral neck by 5.2%.  However, patients treated with alfacalcidol at 1 

µg/day only showed an increased BMD in the lumbar spine by 2.8% and the femoral 

neck by 2.2% (Ringe et al., 2001).  These two studies clearly documented that daily oral 

intake of 10 mg alendronate is an effective treatment for osteoporosis in men. 

Reid et al. (2001) conducted placebo-controlled study to demonstrate the positive 

effect of risedronate.  Risedronate at a dose of 5 mg/day was found to significantly 

increase the BMD of the lumbar spine, femoral neck, and femoral trochanter by 4.8%, 

2.1% and 2.6%, respectively.  However, the BMD decreased significantly by 3.4%, 3.3%, 

and 3.4% in the lumbar spine, femoral neck, and trochanter, respectively for individuals 

in the placebo group.  Therefore, daily intake of risedronate increased bone density and 

decreased vertebral fracture risk in men receiving corticosteroid therapy (Reid et al., 

2001). 

Although intakes of aledronate and risedronate were shown to significantly reduce 

the risk of vertebral fracture, such treatments can contribute to common side effects e.g. 
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abdominal pain, bone and joint pain, constipation, diarrhea, indigestion, muscle pain and 

nausea more often in men than in women (Makins and Ballinger, 2003). 

Serum levels testosterone decline gradually and progressively with aging in men. 

However, such hypogonadism-induced osteoporosis in men can be improved by TRT 

treatment (Kaufman et al., 2000). Francis et al. (1986) reported that hypogonadism 

patients treated with testosterone had significant increases in total and free plasma 

(1,25[OH]2D), and an improved calcium absorption which can potentially lead to 

reduction on bone resorption.  Katznelson et al. (1996) examined the effect of TRT 

treatment on bone structure in 29 hypogonadal men.  Such treatment at a dose of 100 

mg/week for 6 to 18 months increased spinal and trabecular BMD by 5% and 14%, 

respectively.  Kenny et al. (2001) in another study showed that treatment with 

testosterone at 5 mg/day prevented bone loss at the femoral neck compared to the control 

group that had a 1.6% decrease in femoral neck BMD.  However, Snyder et al. (1999) 

noticed increases of BMD values in both the testosterone treated and placebo groups in a 

three-year clinical study, although the increase was not significantly greater in subjects 

treated with testosterone. 

Although TRT is shown to have a positive effect against bone loss and vertebral 

fracture, it also has many side effects in men.  The most alarming risk associated with 

TRT is prostate cancer development.  Holmang et al. (1993) reported that patients treated 

with testosterone at 160 mg/day for 8 months had increased mean prostate volume by 

12%.  Other disorders that may accompany TRT in men include sleep apnea (Snyder et 

al., 1999) and erthrocytosis (Clague et al., 1999; Snyder et al., 1999; Jockenhovel et al., 

1997; Sih et al., 1997; Drinka et al., 1995).  In most studies, between 6% and 25% of the 
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treatment subjects developed elevated hematocrit readings ranging from 2.5% to 5% over 

the baseline value (Ferrando et al., 2002; Clague et al., 1999; Synder et al., 1999; 

Tenover, 1992).  Therefore, men with prostate cancer should not take testosterone 

replacement therapy (Morales, 2005).  TRT cannot be recommended for older men with 

normal or low normal testosterone levels, either, although it may be warranted in older 

men with mildly or markedly decreased testosterone levels (Gruenewald and Matsumoto, 

2003).  All men considering testosterone replacement therapy should undergo a thorough 

prostate cancer screening prior to starting this therapy and consider the long-term safety 

of the treatment. 

Recently, teriparatide (recombinant human PTH 1-34) has been approved by FDA 

for the treatment of osteoporosis in men (National Osteoporosis Foundation, 2004).  PTH 

is the major regulator of calcium and phosphate metabolism, mainly through activation of 

the PTH/PTHrP receptor (Hodsman et al., 2005).  Several studies (Dempster et al., 

2001a; Parisien et al., 1990; Eriksen et al., 1986) have shown that PTH is responsible for 

increased rate of bone turnover.  An 18 month placebo-controlled trial done by Kurland 

et al. (2000) on 23 men with idiopathic osteoporosis had demonstrated that the BMD of 

the lumbar spine and femoral neck of patients treated with 400 IU PTH were increased by 

13.5% and 2.9%, respectively. Another 11 month clinical trial done by Orwoll et al. 

(2003) on 437 men had also demonstrated that patients treated with 20 µg and 40 µg of

teriparatide significantly increased the BMD of lumbar spine by 5.9% and 9.5%, 

respectively.  Teriparatide treatment has not only been shown to increase lumbar spine 

BMD, but also to increase trabecular connectivity of iliac crest as assessed by micro-

computed tomography (Dempster et al., 2001b).  
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However, PTH should only be considered as treatment for men with high risk of 

fracture and severe osteoporosis due to the high cost of treatment, which is approximately 

$600 per month; drug delivery method administered by injection (Deal and Gideon, 

2003); and the development of osteosarcoma (Orwoll et al., 2003; Neer et al., 2001; 

Kurlan et al., 2000).  Several teriparatide trials were terminated prematurely because of 

the findings of induced osteosarcoma in an ongoing carcinogenicity study in rats (Orwoll 

et al., 2003; Neer et al., 2001; Kurlan et al., 2000).  Others undesirable adverse effects 

such as marrow fibrosis, tunneling resorption, nausea, and headache have also been 

encountered in clinical trials (Orwoll et al., 2003). 

 

Biochemical Markers of Bone Metabolism  

 Bone formation markers are the direct or indirect expression products of active 

osteoblasts during different phases of osteoblast development and reflecting different 

aspects of osteoblast function and bone formation.  For clinical purposes, biomakers of 

bone formation can be assessed using bone-specific alkaline phosphatase (ALP), 

osteocalcin (OC), carboxy-terminal propeptide of type-1 collagen (PICP) and amino-

terminal propeptide of type-1 collagen (PINP).  However, the majority of bone resorption 

biomarkers are degradation products of bone collagen.  Biomarkers of bone resorption 

can be assessed by measuring urinary hydroxyproline, free and total pyridinolines (Pyd), 

free and total deoxypyridinolines (Dpd), N-telopeptide of collagen cross-links (NTx), and 

serum C-telopeptide of collagen cross-links (CTx), cross-linked C-telopeptide of type-I 

collagen (ICTP), and tartrate-resistant acid phosphatase (TRAP). 
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Several studies have examined the correlation between biochemical markers of 

bone turnover and bone mineral density. A study done by Kenny et al. (1998) showed 

that NTx and CTx, the biomarkers of bone resorption, have negative correlation with 

BMD of the whole body, femur, and spine (Kenny et al., 1998).  Krall et al. (1997) also 

demonstrated that serum OC and urinary NTx had negative correlation with BMD value 

of all skeletal sites except spine.  Additionally, Khosla et al. (1998), and Szulc et al. 

(2001) suggested that biochemical markers are appropriate tools to assess bone 

metabolism and to predict the status of current osteoporosis in men.  

Biochemical markers can also be used to predict fracture for osteoporotic men.  

Studies done by Luukinen et al. (2000) in 300 men of over 70 year old and Resch et al. 

(1992) in 27 men with spinal fracture, reported that PICP (Luukinen et al., 2000) and 

ALP (Resch et al., 1992), tend to be lower in men with osteoporotic related fractures. 

Ohishi et al. (2000) also reported that ICTP, a specific bone resorption marker, was 

positively correlated to fracture incidence. 

 

Micro-computed Tomography (micro-CT) 

 The common clinical approach for osteoporosis diagnosis today is to measure 

BMD using DXA.  To understand the mechanical strength of a bone structure and the 

evolution of age-related progression of the disease, it is necessary to further study the 

bone structure using a method such as the 3-dimensional (3D) micro-CT.  The use of 

micro-CT allows the 3D assessment of structural characteristics of trabecular and 

improves our ability to understand the pathophysiology of osteoporosis; to test the 

efficacy of pharmaceutical intervention; and to estimate bone biomechanical properties.  
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The technique used to determine the microstructure can only provide 2-dimensional (2D) 

histomorphometric information.  However, the 3D micro-CT will allow for 

nondestructive 3-dimension evaluation of bone structures.  Moreover, the structure can be 

quantitatively evaluated with various parameters including the orientation, connectivity, 

and shape of trabecular. 

Barou et al. (2002) completed a study to determine bone loss and changes in 

trabecular architecture on a rat model of disuse osteoporosis by using a 3D micro-CT, 

and also to compare the results with those by using DEXA and bone histomorphometry 

for bone mass.  The results showed that DEXA and 3D micro-CT detected bone loss 

earlier than standard bone histomorpometry.  In addition, all bone mass and architectural 

parameters measured with these three techniques correlated significantly except the 

trabecular thickness.  Another study conducted by Muller et al. (1998) on 63 cylindrial 

human transiliac bone specimens also showed highly significant correlations between the 

2D conventional histology and 3D micro-CT method.  The findings of these two studies 

(Barou et al., 2002; Muller et al., 1998) confirmed that the 3D micro-CT is a 

nondestructive, fast, and very precise procedure that allows for the measurement of 

cancellous and compact bone in unprocessed biopsies or small bones, as well as a fully 

automatic determination of 3D morphometric indices. 

The structure model type and trabecular thickness are two important 

characteristics that describe cancellous bone architecture.  The structure model type can 

be assessed by calculating the structure model index (SMI). The SMI is calculated by 

means of the 3D image analysis based on a differential analysis of the triangulated bone 

surface. It has been described that trabecular structure changes radically from plate-like 
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to rod like during aging (Grote et al., 1995; Vogel et al., 1993) or remodeling (Kinne et 

al., 1995).  For an ideal plate and rod structure the SMI value is 0 and 3, respectively 

(David et al., 2003).  Ding and colleague (2000) evaluated age-related changes in the 

structure model type in human tibial cancellous bone.  The results showed that SMI was 

significantly higher in old-age group compared with middle- and young-age groups.  This 

finding supported the theory of Grote et al. (1995) and Vogel et al. (1993) that the 

structure model type changed towards more rod-like in the elderly. 

McCalden et al. (1997) and Dempster et al. (1993) showed that human trabecular 

thickness decreased with age for femoral and lumbar cancellous bone.  However, 

trabecular thickness did not decrease with age in iliac cancellous bone (Dempster et al., 

1993) or vertical trabeculae from vertebral cancellous bone (Bergot et al., 1988). 

 

Orchidectomized (Orx) Rat Model of Male Osteoporosis 

 The Orx adult male rat model for studying bone has been widely used (Lerouxel 

et al., 2004; Audran et al., 2001; Libouban et al., 2001).  It is well established that 

androgens withdrawal induced by Orx results in decreased bone mass in experimental 

animals (Vanderschueren et al., 1993; Wink and Felts, 1980) and also in humans 

(Daniell, 1997; Stepan et al., 1989).  Androgen deficiency is associated with accelerated 

bone turnover and imbalance between bone resorption and bone formation, which results 

in bone loss (Libouban et al., 2002; Vanderschueren et al., 1993; Wink and Felts, 1980).  

Several studies also reported that Orx results in decreased BMC (Morear et al., 2001), 

BMD (Gunness and Orwoll, 1995), bone strength (Danielsen et al., 1992), whole body 

weight and lean body mass (Morear et al., 2001). 
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Hypogonadism is one of the risk factors for male osteoporosis. Hypogonadal men 

with lower BMD (Devogelaer et al., 1992; Finkelstein et al., 1987), lean body mass 

(Wang et al., 2004) and higher bone turnover (Szulc et al., 2003) had also been reported.  

The Orx model has been characterized as a representative model for bone studies of 

androgen replacement in hypogonal men (Venken et al., 2005; Vanderschueren et al., 

2000).  Moreau et al. (2001) measured whole body weight, lean and fat mass, whole 

BMC in the Orx rat model by DXA and showed that, except for the fat mass, the other 

three parameters had significantly decreased in Orx rats.  Vanderschueren et al. (2000) 

conducted a study to evaluate the effects of androgen replacement on body composition 

and bone in an aged male Orx rat model.  They found that Orx rats had significantly 

lower BMC and BMD than the control animals.  These decreases in BMC and BMD were 

prevented by testosterone administration.  As to the body composition measurements, 

Orx induced a decrease in lean body mass, but not in body weight and fat mass.  

Erben et al. (2000) investigated the effects of androgen deficiency on bone and 

hormonal status in aged Orx rats for nine months.  The results showed that Orx induced a 

decrease in serum testosterone and estradiol.  Gill et al. (1998) also demonstrated Orx 

caused fall in serum testosterone levels by 80% in male rats.  Such reduction in 

testosterone levels could be prevented by testosterone replacement therapy (Gill et al., 

1998).  Wakley et al. (1991) demonstrated that the dosing of testosterone at 10 mg per 

day could result in the prevention of bone loss in Orx rats.  Vanderput et al. (2002) also 

showed that trabecular bone loss in aged Orx rats was prevented by administering 

estradiol and 5 α dihydrotestosterone (DHT) for four months.  These finding suggested 
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that the Orx adult male rats can serve as a model to examine the effects of both 

testosterone and estrogen deficiency on bone structure and metabolism. 

 

Previous Studies of Vitamin E and Bone  

Vitamin E is a free-radical scavenger with anti-inflammatory properties (Crary 

and McCarty, 1984).  Vitamin E has been shown to suppress the production of certain 

cytokines such as IL-1, IL-6, and TNF-α (Jialal et al., 2001; Beharka et al., 2000; van Tits 

et al., 2000; Wang et al., 1994) that are linked to increased bone loss (Jilka et al., 1996; 

Jilka et al., 1995; Manolagas and Jilka, 1995).  Xu et al. (1995) showed that vitamin E 

protects bone cells in chick cartilage from damages caused by lipid peroxidation, and 

helps maintain normal bone modeling.  They also suggested that the supplemental 

vitamin E increases bone mass by lowering the concentration of free radicals that would 

stimulate bone resorption.  Arjmandi et al. (2002) reported that vitamin E 

supplementation at 500 mg/kg diet enhanced the synthesis of bone matrix proteins in old 

mice as evidenced by higher levels of osteocalcin mRNA, a bone matrix protein, and 

IGF-I, an important local regulator of bone metabolism.  Furthermore, vitamin E was 

demonstrated to have a pronounced effect on the bones of aged male mice by increasing 

the mRNA level of type-1 alpha-collagen, a predominant bone matrix protein, and total 

protein content (Arjmandi et al., 2002).  A recent study by Smith et al. (2005) 

investigated the effects of three different doses of vitamin E (15, 75, and 500 IU/kg diet) 

on bones in hindlimb unloaded (HU) and normal loading (AMB) male rats.  The HU 

animals fed 15 IU vitamin E diet and the AMB animals fed 500 IU vitamin E had 

decreased bone surface normalized to tissue volume (BS/TV) and trabecular number 
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(Tb.N).  However, both 75 IU and 500 IU vitamin E had protective effects on bones in 

HU animals by preventing the loss of trabecular number (Tb.N) and bone surface 

normalized to tissue volume (BS/TV). 

These findings suggest that vitamin E protects bone integrity with its antioxidant 

properties.  However, no study has determined if vitamin E supplementation can reverse 

bone loss in men or animal models of male osteoporosis.  Male osteoporosis is a major 

public health concern which has hardly been investigated with limited treatment options.  

If it is found that vitamin E could effectively reverse bone loss in a rat model of male 

osteoporosis, it can potentially provide a relatively inexpensive alternative therapy for 

osteoporosis.
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CHAPTER III 
 

RESEARCH DESIGN AND METHODS 

 

Animals and Diets 
Forty 12-month old male Sprague-Dawley rats (Harlan, Indianapolis, IN) were 

housed and kept in an environmentally controlled laboratory (the Oklahoma State 

University Laboratory for Animal Research, Stillwater).  After three days of acclimation, 

the rats were either sham-operated (Sham; 1 group) or orchidectomized (Orx; 3 groups) 

with 10 rats in each group.  Initially after the surgery, all rats were fed an AIN-93M 

casein-based control diet (Harlan, Madison, WI) for 120 days to establish bone loss in 

these animals.  One hundred-twenty days from the date that bone loss was established, 

the Sham group and one Orx group, which served as the control group, received 75 IU 

supplemental vitamin E per kg diet.  The remaining two Orx groups received diets 

containing either 250 or 500 IU supplemental vitamin E per kg diet (Table 1) for 90 days.  

The rats were pair-fed to the mean food intake of the group that was consuming the least 

but all rats had free access to deionized water. Food intake was determined every three 

days and body weight was determined every week.  These rats were fed for 90 days and 

then sacrificed at the end of the treatment. 
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Collection of Urine and Blood Samples 

At the end of the 90 day treatment period, rats were fasted and placed in 

metabolic cage.  Urine was collected in acid-washed tube for 12 hours.  Prior to necropsy, 

rats were anesthetized with a mixture of ketamine and xylazine at 70 mg and 3 mg/kg 

body weight, respectively.  After whole body DXA (QDR-4500A Elite, Hologic 

Waltham, MA) scans were performed, the animals were bled from their abdominal aortas 

for blood sample collection.  Urine and serum were centrifuged at 4000 rpm for 20 

minutes at 4 oC, aliquotted and stored at -20 oC until analysis. 

 

Serum and Urine Biomarkers of Bone Metabolism 

Bone biochemical markers that were measured included urinary excretion of Dpd, 

a specific marker of bone resorption, and serum OC as a marker of bone formation.  Dpd 

was measured by utilizing a competitive enzyme immunoassay in a microtiter stripwell 

format (Metra DPD EIA Kit, Quidel Corporation, CA) and a microplate reader (ELx808 

Ultra Microplate Reader, Bio-Tek Instrument Inc, VT).  Urinary creatinine concentration 

was determined colorimetrically by utilizing ACE Clinical Analyzer (Alfa Wassermann, 

West Caldwell, NJ).  Serum OC was assessed by utilizing two site immunoradiometric 

assay (IRMA) (Immunotropics, Inc., San Clemente, CA). 

 

Bone Density Assessment 

Whole body scanning was conducted on under anesthetized rats by using DXA 

before the first surgery and 120 days after the first surgery to confirm bone loss. 120 days 

after bone loss was established, whole body BMC and BMD were assessed prior to 
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necropsy.  After necropsy, the fourth lumbar vertebrae and right femurs were scanned to 

determine BMC, BMD and BMA for final evaluation. 

 

Assessment of the Trabecular and Cortical Bone Structures 

The microarchitectural trabecular and cortical bone structures in distal femur and 

femoral midshaft were evaluated using micro-CT (Micro-CT40, Scanco Medical, 

Switzerland). The distal femur was scanned from the growth plate in the proximal 

direction, beginning and ending at 330 slices with a thickness of about 16µm/slice.  The 

trabecular bone morphometric parameters assessed with the micro-CT included the bone 

volume over total volume (BV/TV), trabecular number (Tb.N), trabecular separation 

(Tb.Sp), and trabecular thickness (Tb.Th).  Non-metric parameters included structural 

model index (SMI), and connectivity density (Conn.D).  To analyze cortical bone 

volume, thickness (Co.Th), porosity (Co.P) and medullary area (M.Area), contours were 

also placed on 34 slices (480 µm) in the midshaft region from the growth plate.  

 

Biomechanical Testing of Distal Femur Using Finite Element Analysis 

Three-dimensional finite element (FE) analysis is one of the best ways to assess 

stress and strain distribution in trabecular bone structures (Cattaneo et al., 2001; Muller 

and Ruegsegger, 1995).  The distal femur was scanned using mirco-CT to determine 3D 

geometry, the apparent density and the elastic properties using FE analysis (Shefelbine et 

al., 2005).  The FE modeling and calculations were performed in order to determine the 

mechanical properties of the bone specimen such as the average strain, total force, 
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physiological force, stiffness of the trabecular cores, size of independent stiffness, and 

average von miss stress (MPa). 

Statistical Analysis 

 Analysis of variance (ANOVA) was conducted using SAS Version 8.2 (SAS 

Institute, Cary, NC) with PROC GLM MIXED to determine the treatment effects. Data 

analysis involved computation of mean and standard error for each the treatment group.

If post hoc analysis showed statistical significance, Fisher's least square means separation 

test was used to determine and compare the significant differences among the means of 

various treatment groups.  In all statistical comparisons, differences with P < 0.05 were 

considered significant. 
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Table 1: Composition of the experimental diets 

 Sham Orx 
Vitamin E (IU/kg diet) 75 75 250 500 
Ingredients (g/kg mix) 
Corn Starch 466 466 466 466 
Casein  140 140 140 140 
Dextrinized Corn Starch 155 155 155 155 
Sucrose 100 100 100 100 
Soybean Oil 40 40 40 40 
Fiber 50 50 50 50 
Mineral Mix‡ 35 35 35 35 
Vitamin Mix† 10 10 10 10 
Additional Vitamin E --- --- 0.117 0.283 
I-Cystine 1.80 1.80 1.80 1.80 
Choline Bitartrate 2.50 2.50 2.50 2.50 
Tert-butylhydroquinone 0.008 0.008 0.008 0.008 

The composition of these experimental diets was based on the AIN-93M (Harlan Teklad; 
Madison, WI). Vitamin E levels were adjusted using alpha-tocopherol.  
†The vitamin mixture (TD #94047) obtained from Harlan Teklad (Madison, WI) 
consisted of (g/kg): nicotinic acid, 3.0; calcium pantothenate, 1.6; pyridoxine HCl, 0.7; 
thiamin HCl, 0.6; riboflavin, 0.6; folic acid, 0.2; D-biotin, 0.02; vitamin B-12 (0.1% in 
mannitol), 2.5; DL-α-tocopheryl acetate (500 IU/g), 15; vitamin A palmitate (500,000 
IU/g), 0.8; cholecalciferol (500,000 IU/g), 0.2; phylloquinone, 0.075; and sucrose, 
974.705. 
‡The mineral mixture (TD #79055) obtained from Harlan Teklad (Madison, WI) was a 
modification of the AIN 76 lacking calcium and phosphorus but with sucrose as a diluent. 
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Figure 1: Experimental Design. Sham; Sham operated, Orx; Orchidectomized. Rats were 
feed an AIN-93M diet for 120 days to establish bone loss. Thereafter, rats were assigned 
to their corresponding treatment groups for 90 days. 

Sham + 75 IU vit E 

Orx + 75 IU vit E 

Orx + 250 IU vit E 

Orx + 500 IU Vit E 

 

n = 10
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120 d
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CHAPTER IV 
 

RESULTS 

 

Food Intake, Body Weight, and Coagulating Gland Weight 

 The effects of Orx and supplemental doses of vitamin E on food intake, body and 

coagulating gland weights of male rats are presented in Table 2. Food intake and body 

weight gain were similar among all treatment group. The mean coagulating gland weights 

in the Orx groups were significantly lower than that of the Sham group (P < 0.001), 

which indicated the success of surgery and the lack of effects of vitamin E on coagulating 

gland. 

 

Bone Mineral Content (BMC), Density (BMD) and Area (BMA) 

 The effects of Orx and supplemental doses of vitamin E on the whole body, right 

femur, and the fourth lumbar BMC, BMD and BMA are presented in Table 3.  The four 

test groups did not show difference in BMA readings for the whole body (P = 0.417), 

right femur (P = 0.4715) and the fourth lumbar (P = 0.0958).  However, the Orx groups 

had significantly (P < 0.05) lower BMD and BMC values for these three regions than the 

Sham group, although the three Orx groups showed no differences in the values.  

Therefore, the significant losses of BMD and BMC in the whole body, right femur and 4th 

lumbar due to orchidectomy were not prevented by vitamin E treatments. 
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Serum Osteocalcin and Urinary Deoxypyridinoline (Dpd) 

 No differences in the levels of serum osteocalcin, a marker of bone formation, 

were noted among the four treatment groups (Table 4). Similarly, neither orchidectomy 

nor vitamin E supplementation had any effect on urinary Dpd, a specific marker of bone 

resorption.  

 

Trabecular Microarchitectural Properties in Distal Femur 

 The effects of Orx and supplemental doses of vitamin E on trabecular 

microarchitectural parameters on distal femurs are presented in Table 5. Orchidectomy 

caused decreases in the values of BV/TV (Figure 2), Tb.N (Figure 3), Tb.Th (Figure 4) 

and Conn.D (Figure 6) by 55.9%, 38.3%, 11.9% and 46.87%, respectively.  However, the 

value of Tb.Sp (Figure 5) increased by 34.3% due to Orx. Since the three Orx groups 

showed no differences in the values of BV/TV, Tb.N, Tb.Th, Conn.D and Tb.Sp, it is 

concluded that supplemental doses of vitamin E have no effect in preventing Orx-induced 

unfavorable alterations of these parameters.  The results showed that there was no Orx-

induced changes in SMI (P = 0.0906). 

 

Cortical Microarchitectural Properties in Femoral Midshaft  

The effects of Orx and supplemental doses of vitamin E on cortical 

microarchitectural parameters in femoral midshaft of male rats are presented in Table 6.  

Orchidectomy did not cause changes in Co.P (P = 0.0925) and M.Area (P = 0.9108) in 

test animals, but significantly reduced Co.Th (Figure7) and Co.Area (Figure8) by 14.1% 

and 12.3%, respectively.  Vitamin E treatment had no effect on Orx-induced reduction of 
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Co.Th and Co.Area except for the 250 IU treatment group that slightly improved the 

Co.Area. 

 

Finite Element Analysis (FE) of Distal Femur 

The effects of Orx and supplemental doses of vitamin E on the biomechanical 

properties of the distal femur of male rats by finite element analysis (FE) are shown in 

Table 7.  Orx caused significant reduction in the values of average strain, total force, 

stiffness, physiological force and size independent stiffness by 55.3%, 83.9%, 62.8%, 

83.9%, 81.8%, respectively.  MPa increased by 68.8% due to Orx.  The von mises force 

represents the amount of stress within the bone when a force is applied.  Vitamin E had 

no effect on any of the FE parameters. The Orx groups with higher doses of vitamin E 

tended to have greater stress within them when this force was applied.



Table 2: Effects of orchidectomy (Orx) and supplemental doses of vitamin E on food intake, body and coagulating gland weights
Sham Orx

Vitamin E (IU/kg diet) 75 75 250 500 P value

Average food intake (g/day) 16.5±0.21 16.0±0.21 16.0±0.21 16.1±0.21 0.2734

Body weights (g)

Initial 488.6±10.1 486.7±9.54 487.7±9.54 488.2±9.54 0.9992

Final 481.7±15.2 464.7±14.4 484.4±14.4 502.8±14.4 0.3351

Coagulating gland (g) 1.34±0.11a 0.18±0.11b 0.22±0.14b 0.18±0.10b 0.0001

Values are means ± standard errors of the mean, n = 10/group.
a,bWithin a row, values that do not share the same superscript letters are significantly (P < 0.05) different from each other.
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Table 3: Effects of orchidectomy (Orx) and supplemental doses of vitamin E on bone mineral density (BMD), bone mineral content
(BMC), and bone mineral area (BMA)

Sham Orx
Vitamin E (IU/kg diet) 75 75 250 500 P value
BMD (g/cm2)

Whole body 0.187±0.002a 0.177±0.002b 0.174±0.002b 0.174±0.002b 0.001
Right femur 0.277±0.004a 0.249±0.004b 0.252±0.004b 0.242±0.004b <0.0001
4th lumbar 0.256±0.004a 0.223±0.004b 0.224±0.004b 0.219±0.004b <0.0001

BMC (g)
Whole body 15.863±0.26a 14.548±0.25b 14.709±0.25b 14.432±0.25b 0.001
Right femur 0.717±0.017a 0.625±0.017b 0.635±0.017b 0.608±0.017b 0.0003
4th lumbar 0.203±0.005a 0.173±0.005b 0.166±0.005b 0.163±0.005b <0.0001

BMA (cm2)
Whole body 84.80±1.25 82.29±1.18 84.33±1.18 82.84±1.18 0.417
Right femur 2.584±0.042 2.507±0.040 2.505±0.040 2.508±0.040 0.4715
4th lumbar 0.794±0.015 0.777±0.014 0.741±0.014 0.746±0.014 0.0958

Values are means ± standard errors of the mean, n = 10/group.
a,bWithin a row, values that do not share the same superscript letters are significantly (P < 0.05) different from each other.
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Table 4: Effect of orchidectomy (Orx) and supplemental doses of vitamin E on serum osteocalcin, and urinary deoxypyridinoline
Sham Orx

Vitamin E (IU/kg diet) 75 75 250 500 P value
Serum (ng/mL)

Osteocalcin 13.0±1.65 17.9±1.57 18.4±1.57 16.0±1.57 0.0992
Urine (nmol/mmolcreatinine)

Deoxypyridinoline 22.8±6.08 38.3±5.76 28.9±5.76 32.3±5.76 0.3197

Values are means ± standard errors of the mean, n = 10/group.
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Table 5: Effects of orchidectomy (Orx) and supplemental doses of vitamin E on trabecular microarchitectural parameters in distal
femur

Sham Orx
Vitamin E (IU/kg diet) 75 75 250 500 P value
Distal Femur

BV/TV (1) 0.137±0.008a 0.061±0.008b 0.056±0.008b 0.054±0.008b <0.001
Tb.N (1/mm) 2.095±0.151a 1.293±0.151b 1.281±0.151b 1.438±0.151b 0.0029
Tb.Th (mm) 0.085±0.002a 0.075±0.002b 0.073±0.002b 0.071±0.002b 0.0013
Tb.Sp (mm) 0.521±0.069b 0.793±0.069a 0.823±0.069a 0.737±0.069a 0.0233
Conn.D (1/mm3) 26.625±2.032a 14.147±2.032b 14.659±2.032b 13.987±2.032b 0.0005
SMI 1.668±0.126 1.903±0.126 1.818±0.125 2.141±0.126 0.0906

Values are means ± standard errors of the mean, n = 6/group.
a,bWithin a row, values that do not share the same superscript letters are significantly (P < 0.05) different from each other.
Bone volume as percentage of tissue volume (BV/TV), trabecular thickness (Tb.Th), trabecular number (Tb.N) and trabecular
separation (Tb.Sp), connectivity density (Conn.D), and structure model index (SMI).
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Table 6: Effects of orchidectomy (Orx) and supplemental doses of vitamin E on cortical microarchitectural parameters in femoral
midshaft

Sham Orx
Vitamin E (IU/kg diet) 75 75 250 500 P value
Femoral midshaft

Co.Th (mm) 0.737±0.018a 0.633±0.018b 0.610±0.018b 0.602±0.020b 0.0001
Co.Area (mm2) 2.039±0.064a 1.789±0.064b 1.871±0.064ab 1.716±0.071b 0.0165
Co.P (%) 1.010±0.428 1.348±0.428 2.517±0.428 2.042±0.469 0.0925
M.Area (mm2) 11.113±0.461 11.331±0.461 11.580±0.461 11.265±0.505 0.9108

Values are means ± standard errors of the mean, n = 6/group.
a,bWithin a row, values that do not share the same superscript letters are significantly (P < 0.05) different from each other.
Cortical thickness (Co.Th), cortical area (Co.Area), cortical porosity (Co.P), and medullary area (M.Area).
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Table 7: Effects of orchidectomy (Orx) and supplemental doses of vitamin E on biomechanical properties in distal femur by finite
element analysis (FE)

Sham Orx ANOVA
Vitamin E (IU/kg diet) 75 75 250 500 P value
Average Strain, (mm) 0.238±0.02a 0.106±0.02b 0.093±0.02b 0.061±0.02b <0.0001
Total Force, (N) 5539±632a 891±632b 667±632b 447±632b <0.0001
Stiffness, (N/m x 103) 21697672±

1441571a
8070482±
1441571b

6945527±
1441571b

6737329±
1441571b

<0.0001

Physiological Force, (N) 16.617±1.90a 2.674±1.90b 2.001±1.90b 1.342±1.90b <0.0001
Size Independent Stiffness, (N/m) 361.819±6.72a 65.983±6.72b 50.418±6.72b 33.577±6.72b <0.0001
Corr. Von Mises Stresses
Average, (MPa)

17.925±13.44b 57.446±13.44a b 75.010±13.44a 76.243±13.44a <0.0001

Values are means ± standard errors of the mean, n = 6/group.
a,bWithin a row, values that do not share the same superscript letters are significantly (P < 0.05) different from each other.
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Figure 2: Effects of Orx and supplemental doses of vitamin E on cancellous bone 
volume as a percentage of tissue volume (BV/TV) in distal femur. Bars represent mean ± 
SE; n = 6 rats per group. Bars with different letters are significantly different (P < 0.05)
from each other. 
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Figure 3: Effects of Orx and supplemental doses of vitamin E on trabecular number 
(Tb.N) in distal femur. Bars represent mean ± SE; n = 6 rats per group. Bars with 
different letters are significantly different (P < 0.05) from each other. 
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Figure 4: Effect of Orx and supplemental doses of vitamin E on trabecular thickness 
(Tb.Th) in distal femur. Bars represent mean ± SE; n = 6 rats per group. Bars with 
different letters are significantly different (P < 0.05) from each other. 
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Figure 5: Effects of Orx and supplemental doses of vitamin E on trabecular separation 
(Tb.Sp) in distal femur. Bars represent mean ± SE; n = 6 rats per group. Bars with 
different letters are significantly different (P < 0.05) from each other. 
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Figure 6: Effects of Orx and supplemental doses of vitamin E on connectivity density 
(Conn.D) in distal femur. Bars represent mean ± SE; n = 6 rats per group. Bars with 
different letters are significantly different (P < 0.05) from each other. 
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Figure 7: Effect of Orx and supplemental doses of vitamin E on cortical thickness 
(Co.Th) in femoral midshaft. Bars represent mean ± SE; n = 6 rats per group. Bars with 
different letters are significantly different (P < 0.05) from each other.
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Figure 8: Effect of Orx and supplemental doses of vitamin E on cortical area (Co.Area) 
in femoral midshaft. Bars represent mean ± SE; n = 6 rats per group. Bars with different 
letters are significantly different (P < 0.05) from each other.
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CHAPTER V 
 

DISCUSSION 

 

Previous studies have demonstrated that vitamin E has some osteoprotective 

effects in male tail-suspended rat model of osteoporosis (Smith et al., 2005) as well as 

aged male mice (Arjmandi et al., 2002). However, the findings of this study indicate that 

vitamin E is unable to restore bone mass once the loss has occurred in Orx rat model of 

male osteoporosis. Among all analyzed parameters, vitamin E supplementation only 

provides modest bone protective effects on the cortical area (Co.Area) in femoral mid-

shaft of Orx rats. These findings are inconsistent with previous observations by Smith et 

al. (2005) and Arjmandi et al. (2002) that had shown the bone-protective effects of 

vitamin E in male osteoporosis. 

Although we cannot explain these paradoxical findings, a reasonable explanation 

could be because of the uses of different animal models of bone loss and the different 

experimental designs. Previous studies had utilized other animal models of osteopenia, 

such as HU male rats (Smith et al., 2005) and aged (i.e., 24-month-old) male mice 

(Arjmandi et al., 2002). To our knowledge, the present study is the first study that has 

examined if vitamin E supplementation can reverse bone loss in an Orx rat model of male 

osteoporosis. To conduct this study, we used Orx rat model of male osteoporosis. Initially 

after the surgery, all rats were fed an AIN-93 casein-based diet to establish bone loss and   
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the treatments with vitamin E supplementation were given after confirming that bone loss 

has occurred. However, in the study done by Smith et al. (2005), vitamin E treatments 

were initiated 9 weeks prior to unloading and continued during the 4 weeks of unloading 

period.  In the study by Arjmandi et al. (2002), vitamin E treatments were initiated for 30 

days on aged male mice (i.e., 24-month-old) in order to examine the short term influence 

of vitamin E treatments. 

 In the present study, the significant losses of BMD and BMC in the whole body, 

right femur and 4th lumbar due to orchidectomy were not prevented by vitamin E 

treatments. Serum OC, a marker of bone formation, tended to be increased by vitamin E 

supplementation, albeit not significantly (P = 0.0992). Urinary Dpd, a marker of bone 

resorption, was not significantly altered by Orx or vitamin E treatments. Though we 

cannot offer an explanation for this observation, we can say that vitamin E does have a 

modest bone protective effect by reducing bone resorption as seen by the Dpd values. For 

cortical microarchitectural parameters in femoral midshaft, vitamin E treatment had no 

effect on Orx-induced reduction of Co.Th and Co.Area except for the 250 IU treatment 

group that slightly improved the Co.Area. Unfavorable alterations of trabecular 

microarchitectural parameters in distal femur such as BV/TV, Tb.N, Tb.Th, Conn.D and 

Tb.Sp due to orchidectomy were also not prevented by vitamin E treatments. 

 On the contrary, Smith et al. (2005) demonstrated that vitamin E supplemented 

diets at both 500 IU and 75 IU had protective effects on bone in HU male rats by 

preventing the loss of trabecular number (Tb.N) and bone surface normalized to tissue 

volume (BS/TV). Besides the positive results in Tb.N and BS/TV, vitamin E showed no 

effect on any parameter of bone histomorphometry. The only finding by Smith et al. 
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(2005) that was consistent with this study was that serum ALP, a nonspecific marker of 

bone formation, which also tended to increase, though not to a level of statistical 

significance (P = 0.0990). 

 The study done by Arjmandi et al. (2002) demonstrated that high dose of vitamin 

E supplementation at 500 mg has a pronounced effect on the bones of aged male mice by 

increasing the mRNA level of type-1 alpha-collagen, a predominant bone matrix protein, 

and total protein content. By comparing the findings of this study with those of the 

previous studies by Smith et al. (2005) and Arjmandi et al. (2002), it is likely that the use 

of different animal models of bone loss could be the reason for not seeing the positive 

effects of vitamin E on bone. 

Another possible reason to explain why the findings of the present study are 

inconsistent with those of the previous studies may be related to the amount of vitamin E 

added in AIN-93M diet. The AIN-93M is a formulated diet for rodents recommended by 

the American Institute of Nutrition with adequate vitamin E level. In this study, the AIN-

93M diet was used as a control diet that already contained 75 IU/kg of vitamin E. It is 

reasonable to assume that vitamin E supplementation at 75 IU/kg had already reached a 

level to exert beneficial effects on bone. Therefore, feeding additional vitamin E in 

excess of 75 IU/kg may not result in further improvement of bone in Orx rats. 

Vitamin E is one of the most commonly consumed vitamin supplements in the 

United States today due to the fact that a number of studies (Keaney et al., 1999; Pratico 

et al., 1998; Sigounas et al., 1997) have indicated an association between vitamin E 

supplementation and a lower risk of incidents of atherosclerosis and cancer in human. 

However, the studies by Micheletta et al. (2004), Simons et al. (1999), and Elliott et al. 
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(1995), also showed that vitamin E supplementation could have beneficial effects on 

cardiovascular disease in a high risk population only at the appropriate dose. Based on 

the findings of this study that vitamin E is unable to restore bone mass once the loss has 

occurred in Orx rat model of male osteoporosis, and also those of the other previously 

described studies (Micheletta et al., 2004; Simons et al., 1999; Elliott et al., 1995), it is 

clear that vitamin E supplementation should only be recommended for certain population. 

Furthermore, the appropriate dose of vitamin E treatment needs to be determined in order 

to achieve maximal benefits. An inappropriate or excessive consumption of vitamin E 

may most likely result in unnecessary expenditure in the already high medical cost today. 
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