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CHAPTER I 
 
 

INTRODUCTION 

 
Eastern redcedar (Juniperus virginiana L. Cupressaceae) is a coniferous tree native to 

most of the United States east of the Rocky Mountains. Its abundance in the central 

United States, however, has increased dramatically over the past century due largely to 

anthropogenic fire suppression (Burkhardt and Tisdale 1976). The species was 

historically confined to rocky areas, mesic forests or places that otherwise rarely burned, 

but the species has now spread over many areas that used to be frequented by seasonal 

fires, such as grasslands and upland forests (Ormsbee et al. 1976, Lawson 1986). 

 As a species expanding into new habitats, redcedar has effects on the environment 

that differ from the species that once occupied regularly burned areas.  The spread of 

redcedar in native grasslands and the consequences of this on the physical environment 

(grassland structure, soils, humidity) and on the biological environment (vegetation 

composition and richness) have been well studied (Lassoie et al. 1983, McBain 1983, 

Gehring and Bragg 1992, Norris et al. 2001, Bekele et al. 2006, Linneman and Palmer 

2006, Knapp et al. 2008). The effects are not limited to vegetation, however, as redcedar 

also causes shifts in avian and mammalian species composition (Chapman et al. 2004, 

Coppedge et al. 2001, Horncastle 2004, Walker and Hoback 2007).  

 The encroachment of redcedar in forested areas is less apparent to the eye than 

incursions of this conifer into grasslands, especially in summer when the deciduous 

species that form a canopy over redcedar have leafed out. However, in spite of the 

absence of obvious changes in landscape appearance, encroachment of redcedar in 

wooded areas due to fire suppression causes important alterations in the functioning of 

forested ecosystems. In the Cross Timbers, a forested region at the edge of the prairie 

biome that extends from southern Kansas to central Texas, eastern redcedar forms dense 

midstories under a canopy dominated by post (Quercus stellata) and blackjack oaks (Q. 
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marilandica). These forests formerly only had a scattered midstory of deciduous shrubs 

and the occasional redcedar tree, interspersed with patches of prairie. Now they often 

have a dense midstory of a coniferous, evergreen species. The exact consequences of this 

redcedar midstory encroachment on the physical and biological environment have not 

been determined, but are likely important in terms of community composition and 

richness of understory vegetation and animal life.  

 For my thesis, I determined what the effects of redcedar encroachment are on both 

the physical and biological environment within Cross Timbers forests of central 

Oklahoma. This work is divided into two separate studies that both focus on species 

biodiversity.  

The first study examined the effects of redcedar on the physical environment of 

the Cross Timbers forest (i.e., soil moisture and chemistry, microclimatic attributes, and 

understory light environment, and how these changes influence the understory plant 

community). In addition to determining species richness, species composition and plant 

cover, regression analysis and partial Canonical Correspondence Analysis (pCCA) were 

used to establish relationships between vegetation variables and differences in the 

physical environment. This allowed me to determine how redcedar encroachment 

mediates changes in understory vegetation. The study design involved ten sites, each with 

four sampling points distributed over five different treatments representing a cline of 

increasing woody and redcedar cover.  

 The second study focused on the effects of the development of a redcedar 

midstory on wintering avian community in the Cross Timbers. Through mist netting, I 

was able to determine the physical condition of several wintering bird species. A body 

condition index was calculated using Principal Component Analysis (PCA) on various 

body measurements. This allowed me to compare body conditions between birds caught 

in redcedar-encroached forests and birds captured in oak-dominated Cross Timbers. I also 

performed 500 m long transect counts during two consecutive winters (2007—

2008/2008—2009) to establish the presence of temporal variation in bird community 

composition. In addition, point counts were performed to establish the relationship 

between bird species and redcedar density. 
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 Alterations in both bird and plant communities due to redcedar encroachment in 

the Cross Timbers forest are illustrative of the profound influence of fire suppression on 

community dynamics and ecosystem function. Similar effects of redcedar encroachment 

on other taxa occur as well, especially those that are ecologically linked directly to 

understory vegetation or bird life. These two studies represent an important picture of 

what happens to biodiversity in the Cross Timbers forests during redcedar encroachment 

and are important contributions to the growing knowledge base on ecological effects of 

the spread of eastern redcedar.   
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CHAPTER II 
 
 

REVIEW OF LITERATURE 

 

GENERAL CHARACTERISTICS OF JUNIPERUS VIRGINIANA 

Eastern redcedar (eastern red cedar, eastern juniper, savin, Juniperus virginiana L.) is a 

coniferous tree of the genus Juniperus (Cupressaceae) that includes 52 (Farjon 2001) to 

67 (Adams 2004) species. The species grows to 30 m high, but usually does not grow 

taller than 10 m and in places with adverse growing conditions this tree only reaches 

shrub size. At ground level, the diameter of the trunk rarely exceeds 50-100 cm (Kent 

1900). The record redcedar has a height of 37 m and a Diameter at Breast Height (DBH) 

of 122 cm (Lawson 1986). The trunk of J. virginiana is usually irregularly shaped in 

cross-section (Lawson 1986). The bark of redcedar is distinctly thin, has a light brown 

color and peels off easily (Kent 1900). Wood characteristics of redcedar include red 

heartwood and white sapwood (Lawson 1986). The heartwood is resistant to damage 

such as rot, fungi, and insects (Schmidt and Kuhns 1990). However, minor fungal 

infections can occasionally occur in the heartwood (Hepting 1971). It is a mostly 

dioecious tree, although monoecious populations of the species have been found. There 

are morphological differences between the two sexes; these include branching patterns 

(males have stiffer branches) and leaf color (males in winter russet-brown, females green 

year-round) (Kent 1900).  

 Leaves show morphological differences between juvenile and mature ages (Kent 

1900). At the juvenile stage, leaves are opposite, about 3 mm long and have a distinct 

needle-like shape. Juvenile leaves can be retained for a few years, and can even persist 

along with mature leaves (Harlow and Harrar 1969). Mature leaves are most often 

opposite or ternate; they overlap and have an acute tip. Mature leaves look like scales and 

have entire margins. They are as long as juvenile leaves and usually are a darker green 

(Van Haverbeke and Read 1976). Most authors (Kent 1900, Harlow and Harrar 1969) 
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consider Juniperus virginiana to have dimorphic leaves, but Van Haverbeke and Read 

(1976) recognize a third type of leaf, which occurs in shoots during periods of rapid 

growth and has an elongate shape. Leaves of the species usually stay on the tree for five 

to six years (Collingwood 1938). Eastern redcedar strobili are either staminate or ovulate 

(given their generally dioecious nature) and are generally produced only by trees which 

are ten years old or older. Female trees produce ovulate strobili which have a berry like 

appearance, but are in fact cones (sometimes called conelets). Non mature ovulate strobili 

usually contain two seeds, occasionally up to four or more. These strobili start to develop 

at the end of the summer or beginning of fall and ripen slowly during the winter season 

until they spread seeds from February through early spring. In June, fertilization occurs, 

and ovulate strobili turn from green, through white to a dark blue color. Male or 

staminate strobili are formed in September, when ten to 12 sporophylls are produced 

within the cone (Johnsen and Alexander 1974, Van Haverbeke 1985). 

 Seed production in eastern redcedar occurs every year, but mast years only occur 

every two or three years. Cones do not open up and stay on trees during the entire winter. 

Many cones are eaten by frugivorous birds and mammals (Halls 1977, Horncastle et al. 

2004) during the winter season and the remainder is dispersed by the tree in February and 

March (Van Haverbeke 1985).  

 The rooting behavior of redcedar has been well studied by various authors. The 

species produces a fibrous root system during its seedling stage, but upon maturing starts 

developing a taproot (Fowells 1965, Ferguson et al. 1968, Hinckley et al. 1979). This 

characteristic is variable, however, and depending on soil type redcedar retains the 

fibrous root system throughout maturity or replaces it with a tap root. On rocky soils and 

in areas with a shallow ground water level for example, taproots are often not formed 

(Mohr 1901, Bunger and Thompson 1938, Bannan 1942, Arend 1950, Williamson 1965, 

Spracking and Read 1979). Eastern redcedar is one of the most widely distributed juniper 

species of the world. Its native range spreads from the Canadian province of New 

Brunswick down along the United States East coast to northern Florida and thence to 

central Texas. In the central United States, it is found northwest to central South Dakota 

(Petrides and Wehr 1988). The species is commonly planted in many areas as a 

windbreak or ornamental tree, which has stimulated its spread, especially in the Great 
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Plains states of the United States (Van Haverbeke and Read 1976) and even outside 

North America, for example in central Asia (Rubanik and Zeronkina 1969), where the 

species is not native. In Oklahoma, redcedar spread throughout the Panhandle and 

extreme southwestern corner of the state between 1985 and 1994 (Snook 1985, Engle et 

al. 2000), areas which were formerly strongholds of other species of juniper (J. ashei, J. 

pinchotii, J. monosperma, J. scopulorum). 

 Eastern redcedar persists within its wide range in many different climatic areas. 

Annual precipitation within the range of Juniperus virginiana varies from 380 mm to 

1520 mm. Average snowfall per year within the range varies from none to 254 cm. 

Average annual temperatures range from 4°C in the north to 20°C in the south. The 

lowest average minimum temperature within the range is -43°C and the highest average 

maximum temperature is 41°C. The growing season within the range is from 120 to 250 

days (Williamson 1965, Lawson and Law 1983).  

 

J. VIRGINIANA IN THE PRAIRIE BIOME 

A large part of the distribution of eastern redcedar falls within the native North American 

grasslands, which stretch northwest from Illinois to the Canadian province of Ontario, 

and south to western Texas and central Oklahoma. Redcedar has recently invaded large 

parts of the prairie biome where the species was formerly largely absent, mainly due to a 

combination of planting as a windbreak or ornamental species and fire suppression 

(Owensby et al. 1973). The spread of J. virginiana occurs not only in native North 

American grasslands, but also in rangelands and especially abandoned fields (Ormsbee et 

al. 1976, Lawson 1986).  

 Fire is the most important factor for the natural suppression of redcedar in many 

prairie areas (Owensby et al. 1973). Redcedar naturally occurred areas within the prairie 

biome where fire was naturally absent, because of a low fine fuel (grasses) production in 

the rocky landscape surrounding rivers (Snook 1985). Poor soils and rocky ridges have 

been indicated as the major historical growth sites for the species, due to the absence of 

wildfires in these places (Harper 1912, Burkhardt and Tisdale 1976). However, in the 

absence of fire, redcedar first invaded fertile lowland sites whereas dry upland sites were 

colonized last (Bragg and Hulbert 1976). The reason that redcedar is susceptible to fire 
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damage is that the thin bark and surface roots are a good fuel (Ferguson et al. 1968) and 

redcedar does not resprout if the top is burned (Arend 1950). Moreover, volatile oils in 

the foliage are highly flammable.  

 In Oklahoma, the grassland areas most affected by the spread of redcedar are the 

grasslands of the central western counties, such as Caddo, Comanche, and Woodward 

(Engle et al. 2000). In the absence of fire, native grassland can convert into a closed-

canopy redcedar forest within 40 years (Briggs et al. 2002a). Redcedar biomass can be 

reduced by the reintroduction of fire (Bragg and Hulbert 1976). 

 Fencing and the absence of grazing can also increase the redcedar incidence in 

grasslands, as seedling survival is more likely in these cases (Schmidt 1991). The impact 

of grazing on seedlings is twofold; grazing effects on redcedar occur through compaction 

of the soil and through direct predation of the plants. However, the invasion of redcedar 

apparently cannot be completely prevented by introducing livestock; only a reduction in 

invasion rates is possible (Owensby et al. 1973). Schmidt (1991) found no evidence of 

redcedar grazing by cattle. Sheep and goats, however, will graze redcedar seedlings 

(Fitter and Jennings 1975). Grazing can also decrease fuel stocks, thereby reducing fire, 

and increasing abundance of woody species, including redcedar (Briggs et al. 2002a, 

Briggs et al. 2002b). 

 Redcedar has been, and still is, a particularly quick colonizer of abandoned fields 

(Ormsbee et al. 1976, Lawson 1986), where, similar to native grassland in insolation and 

cover, redcedar is benefited by the prevailing microclimatic conditions. Ormsbee et al. 

(1976) observed that redcedar needles did not light saturate even at 1750 µmol m-2 .s-1 and 

the optimum photosynthetic temperature lay around 20°C. Redcedar in open situations 

can photosynthesize in winter on mild days, and in summer during periods of intense 

solar stress.  

   

J. VIRGINIANA IN CROSS TIMBERS FORESTS 

Although not as well known as the spread of redcedar in the prairie biome, the 

transitional forests between the prairie and eastern forest biomes of the Cross Timbers 

ecoregion have seen a marked increase of redcedar over recent decades. Eastern redcedar 

has always been present in small numbers and on infertile sites throughout the Cross 
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Timbers (Therrell and Stahle 1998). However, a comparison of data from as recent as 

1985 and 1994 indicates that redcedar has become more abundant in several counties 

within the Cross Timbers ecotype in Oklahoma, such as in the counties surrounding 

Oklahoma City (Logan, Lincoln, Pottawatomie, McClain) and in other counties of central 

Oklahoma such as Okmulgee (Snook 1985, Engle et al. 2000).  

 Redcedar encroachment in the Cross Timbers occurs for similar reasons as in the 

native grasslands: the absence of fire (Engle and Stritzke 1995, Therrell and Stahle 1998). 

Historically, redcedar was found within the Cross Timbers only at sites which did not 

burn, such as in isolated rocky areas (Therrell and Stahle 1998). Redcedar invasion can 

be minimized through regular use of prescribed fire. In particular, the use of fire in fall 

after natural leaf fall by overstory trees, which creates a good fuel bed, will kill redcedar. 

The combination of an herbicide (e.g., tebuthiuron) and prescribed fire seems the most 

effective combination to reduce redcedar numbers, because the herbicide increases leaf 

litter on the forest floor, which acts as a fuel bed. However, this method also kills a 

proportion of the overstory trees in a Cross Timbers forest and defeats the purpose if used 

solely to remove redcedar from a forest (Engle and Stritzke 1995).  

 Redcedar thrives in a high light environment, however trees can survive for 

decades under dense overstory cover of hardwood species or Pinus spp. on poor soils. In 

Missouri, redcedar often grows well in oak-hickory forests as an understory species under 

less than 10% of incident light (Lassoie et al. 1983). However, several authors report that 

the species is intolerant of shade (Ferguson et al. 1968, Ormsbee et al. 1976). Seedlings 

of redcedar on the contrary are tolerant to shade according to Beilmann and Brenner 

(1951), a characteristic they need to survive under dense grass or tree cover (Smith 1986).  

 In forests, hardwood species usually are taller than redcedar; the latter is generally 

restricted to subcanopy and lower forest strata. In large parts of its range, eastern redcedar 

is associated with pines (Pinus spp.), hickories (Carya spp.) and black walnut (Juglans 

nigra) (Eyre 1980). In the Cross Timbers, redcedar occurs with a variety of oak species, 

mostly post oak (Quercus stellata) and blackjack oak (Q. marilandica), but also 

chinquapin oak (Q. muehlenbergii). Other associated woody species include chittamwood 

(Sideroxylon lanuginosum) and smooth sumac (Rhus glabra). Some of the graminaceous 
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species in the prairie biome, also occur in the Cross Timbers, often in close vicinity of 

redcedar (Eyre 1980, Francaviglia 2000).  

 

EFFECTS OF J. VIRGINIANA ON SOIL PH 

Soil pH influences growth of plants as most plant species only grow within a certain 

range of pH, and any alterations in soil pH can limit growth or even exclude particular 

plant species. Changes in soil pH also can affect soil nutrient status by altering the 

chemical composition of the soil. Detritivore activity and the decay of leaf litter are also 

linked to certain pH ranges and may change with any reductions or increases of soil pH. 

Soil pH indirectly influences plant growth as soil nutrients, detritivore activity and leaf 

litter dynamics are all important factors that alter growing conditions for plants. 

 Dead leaf matter of most coniferous trees has an acidifying effect on soils 

(Hesselman 1917, Němec and Kvapil 1926, Alway et al. 1933). Conifer leaves contain 

high levels of tannic acid (Hernes and Hedges 2004) and in general have a lower pH than 

foliage of deciduous species. However, redcedar contains a large amount of cations in its 

leaves and therefore has a buffering effect on soil acidity, raising pH of acidic soils. (Lutz 

and Chandler 1946, Coile 1933, Spurr 1940, Read and Walker 1950, McBain 1983). One 

study found that soils under redcedar stands had an average pH of 6.7 compared to pH 

6.0 for soils under six other forest types (Coile 1933). In general, the capacity of litter to 

buffer soil pH is greatest in the upper soil layers whereas deeper soil layers remain fairly 

acidic (Doyne 1935). The buffering effect of redcedar was greatest in the humic layer, 

with an average of pH 7.0, compared to an overall average of pH 6.0 for seven other 

forest types. As depth increased, soil pH under redcedar decreased to 6.7 in the first 5 cm 

of the mineral soil and to 6.3 at a depth of 40-45 cm. In contrast, pH under post oak-

blackjack oak forest type ranged from 4.1 for the litter layer to 6.0 at 40-45 cm deep 

(Coile 1933). 

 The buffering effect of redcedar foliage on soil pH can be diminished by the 

presence of other trees with higher folic acid contents. In a study from eastern Nebraska, 

which included redcedar as a component of a shelterbelt with Scots pine (Pinus 

sylvestris), average soil pH values were lower than those of surrounding fields. Soil pH 

values under the shelterbelt ranged from pH 5.5 to 6.7, compared to 6.1 to 6.9 for the 
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fields. The shelterbelt values were lower than values found in other studies of soil pH 

under redcedar because Scots pine had an acidifying effect that exceeded the buffering 

effect of redcedar (Sauer et al. 2007).  

 On soils with naturally high pH, such as calcareous prairie soils, redcedar litter 

does not raise pH levels. These soils generally have higher pH values than redcedar leaf 

litter such that redcedar in this case can acidify soils. Prairies in Louisiana that were 

overgrown with redcedar had an intermediate soil pH between the high pH levels of 

calcareous prairie and forests dominated by more acidifying species (Bekele et al. 2006). 

The same is true for savannas in Pennsylvania, which occur on serpentine soils with a 

naturally high pH. Savannas that are invaded by eastern redcedar have lower soil pH 

values and exchangeable calcium than savannas where redcedar is absent (Barton and 

Wallenstein 1997). 

 A different source of acidification of soils than litter inputs is acidic stem flow 

and throughfall. It has been determined for oaks (Quercus spp.) that their leaf litter 

acidifies soils, but soil pH was also consistently lower around the tree bole than farther 

away from the tree (Leonora and Reich 1993). The effects of redcedar on stem flow and 

throughfall have yet to be determined. 

 

EFFECTS OF J. VIRGINIANA ON SOIL WATER 

Soil water status can be influenced by trees in several ways; before precipitation can enter 

the soil and become available for plant use it must first pass through the canopy and litter 

layer. Precipitation intercepted by the canopy can run down the stem of the tree (stem 

flow), run off the branches of the tree (drip, throughfall), or evaporate from the branches 

and foliage into the air (Rowe and Hendrix 1951). Stem flow has a dramatic effect on the 

spatial distribution of water because water runs from outer branches to the center of the 

tree, thus concentrating moisture around the tree bole (Martinez-Mena and Whitford 

1996, Devitt and Smith 2002). This can result in a ratio of water concentration of 21:1 

directly around the bole proportional to other areas, as in the case of Ashe juniper (J. 

ashei) on the central Texas Edwards Plateau (Moore and Owens 2006).  That which does 

not evaporate from the canopy must then pass through the litter layer which absorbs a 

portion of the precipitation, but also moderates the percolation of water into the soil and 
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prevents overland flow. Therefore, stand structure is important to water availability 

because of the influence of stand and canopy density on canopy interception (and 

evaporative losses) as well as spatial distribution of soil water. 

 Interception of water by tree canopies is species specific. Important factors are 

leaf morphology and foliage quantity (Owens 2008). Leaf area is positively correlated 

with interception and evaporative losses. Coniferous species, which generally have a 

higher Leaf Area Index (LAI), often intercept more precipitation and interception can 

reach 48% of total rainfall (Carlyle-Moses 2004). Ashe juniper, which is similar in 

morphology to eastern redcedar, intercepted large amounts of moisture because of its leaf 

morphology (scale-like leaf structure and high LAI) (Owens 2008). Interception can 

either lead to higher soil moisture through greater retention of water by branches and 

gradual leaching into the ground (throughfall), or to lower soil moisture, if water is 

evaporated that normally would have infiltrated the soil (McBain 1983). 

 Some studies indicated that soil moisture under redcedar is greater than under 

herbaceous vegetation in native prairies, while others have shown the opposite. In a study 

from north central Mississippi (Broadfoot 1951), soil under redcedar contained 10% less 

soil moisture than under grasses or legumes. McBain (1983) found similar results on 

three different sites, one in which redcedar was present and the other two in which 

redcedar had recently been removed. In a study from Tennessee, soil moisture under 

redcedar cover varied strongly across seasons. The soil is driest in summer and restricts 

herbaceous plant growth because soil water potentials decrease below wilting point. 

Springtime is usually the wettest and there is sufficient soil water for plant growth 

(Freeman 1933). In drier regions, Juniperus spp. also may decrease soil water. Angell 

and Miller (1994) found that western juniper (J. occidentalis) was able to deplete the 

abundant spring soil water supplies, thereby reducing availability of soil water for 

herbaceous species. In contrast to the above mentioned studies, Emerson (1932) found 

that soil water was four times more available under a pinyon-juniper dominated forest 

than under adjacent grasslands. Junipers including redcedar seem to have different effects 

on soil water status, depending on site conditions and climate. 

 Compared to deciduous trees, redcedar differs in its ability to transpire during dry 

conditions and in the timing of seasonal water use. Juniperus species keep their stomata 
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open and transpire water even when soil conditions are extremely dry. Furthermore, 

because junipers are evergreen trees, they use available soil water year-round (Angell and 

Miller 1994). Redcedar is adapted to xeric conditions given the fact that the species is 

able to photosynthesize at low xylem pressure potentials (below -3.2 MPa) (Ormsbee et 

al. 1976, Bahari 1981, Lassoie et al. 1983). Redcedar saplings have lower leaf 

conductance than most angiosperms, which results in lower rates of leaf-specific water 

loss (Bahari 1981). Only during the hottest days in late summer did redcedar close 

stomata, reducing water loss and photosynthesis to 30% of the levels found during other 

times of the year (Lassoie et al. 1983). Other species in comparative studies show 

stomatal closure during cold weather and sooner than redcedar during the warm season 

dry-periods (e.g. Sassafras albidum, Ulmus alata, Diospyros virginiana (Ormsbee et al. 

1976). Redcedar, unlike most species of angiosperms, has the ability to store water in 

apoplastic spaces in the xylem when the tree is experiencing water stress, delaying the 

decline in leaf water potential. In most angiosperms, this happens through storage of 

water in leaf intercellular spaces (Bahari 1981). 

 In a study comparing soil water potential around redcedar at two different depths 

(15 cm, 90 cm) (Ginter-Whitehouse et al. 1983), soil water potential was especially low 

in the upper 15 cm of the soil, indicating that redcedar uses mostly water from upper soil 

layers. Two other species in the study, black walnut (Juglans nigra) and white oak 

(Quercus alba), extracted more water from the soil than redcedar due to more extensive 

root systems and higher transpiration rates. Emerson (1932) found that transpirational 

losses from a pinyon-juniper community are about equal to those from a grama 

dominated community when the woody species are immature. However, when the 

woodland community gets older and has more leaf area, transpirational losses increase 

compared to grasslands and can be up to four times greater. Furthermore, it has been 

shown that redcedar in open stands (e.g. in a savanna) transpire more than those under a 

canopy of other species or older specimens, because of a combination of increased LAI in 

open stands and more influence from wind and sun (Owens 2008). 

 Tree cover can also reduce soil moisture through root systems. Root systems 

create soil macropores, and leave a permeable soil structure after decay. This increases 

soil hydraulic conductivity, as larger pores more easily let water flow to greater soil 
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depths. A study for redcedar specifically shows that average macro-pore volume 

increases in soils under redcedar compared to soils under herbaceous cover or pines 

(Read and Walker 1950). This means that water can more easily enter soils under 

redcedar and more easily penetrate deeper soil layers. Even though some mature redcedar 

individuals develop tap roots, the species’ root systems are generally shallow and they 

take up most soil water from upper soil layers. However, in case of drought, redcedar 

seedlings develop a quick-growing tap root, which is able to take up water from deep soil 

layers, often at the expense of aboveground growth (Kramer 1949). 

 

EFFECTS OF J. VIRGINIANA ON SOIL TEMPERATURE 

Soil temperature is important to consider in relation to productivity of trees and 

herbaceous vegetation. With higher soil temperatures during the cold season, plants are 

able to start growth earlier in spring (spring annuals), whereas during the summer, lower 

temperatures may reduce soil moisture limitations through lower evapotranspiration. Soil 

temperature may also have an important effect on mineralization and decomposition rates 

through changes in detritivore activity. All studies show a decline in soil temperature 

with increased cover of trees, due to less incoming solar radiation (Tiedemann and 

Klemmedson 1977, Everett and Sharrow 1985, Pierson and Wight 1991, Breshears et al. 

1998, Chambers 2001). Soil temperature is also consistently lower on the north side of a 

tree than on the south side of the tree (all studies being from the northern hemisphere), 

due to southern sun exposure and shading on the north side of the tree. Lower solar 

radiation at the soil surface reduces evaporation and increases soil moisture which further 

moderates soil temperature. Also, due to lower temperatures, litter accumulation is 

higher, which also further decreases solar radiation reaching the mineral soil (Tiedemann 

and Klemmedson 1977, Breshears et al. 1998). Throughout the soil profile, soil 

temperature is highest in areas without tree cover, intermediate with only shrub cover and 

lowest with tree cover (Tiedemann and Klemmedson 1977, Everett and Sharrow 1985, 

Breshears et al. 1998, Chambers 2001). However, at greater soil depths (15 cm and 30 

cm) seasonal and daily temperature fluctuations are less marked. In one case under honey 

mesquite (Prosopis glandulosa), differences between wooded and grassland ecosystems 

occurred during the summer, but not the winter (Tiedemann and Klemmedson 1977). 
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 A study from Japan found that underneath trees with an erect-type canopy, which 

include most coniferous trees, maximum and minimum temperatures are on average more 

extreme than underneath trees with prostrate-type canopies, which include most 

deciduous trees. This is true regardless of differences in LAI (Duangpaeng et al. 2002). 

Given the variable morphology of eastern redcedar crowns, it is unclear what effects 

redcedar canopy cover has on soil temperature when compared to deciduous forest.  

 

EFFECTS OF J. VIRGINIANA ON SOIL NITROGEN 

Nutrient availability, in particular nitrogen availability, is important for ecosystem 

functioning, because it is a major determinant of plant growth and productivity. Species 

like eastern redcedar can have a profound effect on soil nutrient status through rapid 

growth and subsequent accumulation of tree biomass. The maintenance of higher biomass 

accumulation rates in redcedar is accompanied by higher nutrient uptake from the soil, 

leading to comparatively less availability for competing species (Chapin 1980, Vitousek 

1982). Changes in plant litter quantity or quality also affect soil nutrient status because 

litter is a key component of the nutrient cycle. Much of the plant available nitrogen is 

associated with foliar litter inputs and root turnover or exudates (McClaugherty et al. 

1982). Soil nitrogen levels are for this reason intimately linked to activity of the soil O 

horizon. In one study from the Flint Hills of Kansas, redcedar produced on average 504 

g.m-2. y-1 litter. Of this litter about 4.11 g.m-2 was nitrogen resulting in annual inputs of 

25-56 g N.m-2 (Norris et al. 2001a, McKinley 2006). Sauer et al. (2007) reported that 

74% of the litter nitrogen found in a redcedar-Scots pine shelterbelt was located both in 

the deeper duff layer, characterized by fine texture (47.4 kg N.ha-1) and in the shallow 

duff layer, characterized by coarse texture (16.7 kg N.ha-1), with an additional 26% on 

top of the duff in fresh leaf litter.  

Average nitrogen concentration in the aboveground biomass of redcedar was 

0.40%. Concentrations by component were 1.09% for foliage, 0.65% for bark, and 0.25-

0.34% for live branches (Norris et al. 2001a). Temporally, the highest concentrations of 

nitrogen were found in redcedar foliage in mid-growing season (July) with C:N ratios 

measured of 37:1. This is similar for other plant species, such as grasses, which had a 

average C:N ratio of 56:1. Just before senescence these two numbers increased to 52:1 
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and 70:1 respectively, as nitrogen was translocated (McKinley et al., 2008). In a study 

focusing on a mixed redcedar-Scots pine system, soil nitrogen was approximately 350 

g.m-2 (Sauer et al. 2007). 

 In a comparative study between native North American grasslands and redcedar 

forests, the concentration of nitrogen in redcedar fine roots was 0.74% versus 0.51% in 

fine roots of mixed species in grasslands (McKinley 2006). However, another study 

comparing these numbers for eastern redcedar and big bluestem shows the opposite 

(Norris et al. 2001a). This difference may be attributed to temporal or site-specific 

variation or may even be due to selection of different sized roots in the two studies 

according to McKinley et al. (2008). Norris et al. (2001b) found that redcedar roots decay 

35% slower than roots of big bluestem. This means that redcedar contributes more to the 

accumulation of soil organic matter than big bluestem which increases soil nitrogen 

levels, but may reduce plant available nitrogen. Net immobilization rates in this study 

were high in both redcedar and bluestem litter, thus preventing most N from being 

accessible to plants. Root inputs of N in redcedar have not been well studied and there 

may be an important role for belowground litter inputs in nitrogen cycling (McKinley et 

al. 2008). If we consider the ecosystem as a whole, 85% of the nitrogen found 

belowground in a native prairie remained belowground in a redcedar invaded prairie 

(Smith and Johnson 2003, McKinley 2006). 

 As discussed above, the inputs of plant available nitrogen are important for plant 

growth. However, in the short run, the net release of nitrogen (mineralization) from 

decomposing redcedar litter is slow. No mineralization of nitrogen was detected from 

redcedar litter in a two-year study period (Norris et al. 2001a). McKinley (2006) found 

similar results over a shorter period of time. There are no data available for root 

decomposition (McKinley et al. 2008). 

 There are several comparative studies that contrast redcedar soil nutrients with 

soil nutrients under a native North American grassland. Some of these (Norris et al. 

2001a, McKinley 2006) point out that grassland total N stores are much lower than stores 

in redcedar stands due to fire. Fire volatilizes a portion of total system nitrogen and 

grasslands in general burn more frequently than forests. Frequent fires can reduce system 

nitrogen in the long run through repeated volatilization losses combined with relatively 
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low fixation rates. Redcedar stands are on average 2.5 times more productive in terms of 

aboveground net primary productivity (NPP) than grasslands and show double the 

nitrogen use efficiency (NUE) compared to native grasslands (Norris et al. 2007). Given 

that redcedar aboveground biomass continues to increase each year while aboveground 

biomass of herbaceous plants either dies each year and/or burns, much more nitrogen 

accumulates in biomass of a redcedar stand than in biomass of a grassland. This means 

that in the absence of fire, which is usually the case for a redcedar stand, more nitrogen is 

held in biomass, whereas in grasslands which are frequently burned, nitrogen is regularly 

released and does not have a chance to accumulate in biomass (Norris et al. 2001a, 

McKinley 2006).  

 Variations in soil nitrogen within juniper stands also have been established, with 

subcanopy sites having greater nitrogen turnover and greater plant available nitrogen 

content than intercanopy sites (Padien and Lajtha 1992). Contrastingly, McBain (1983) 

found no significant differences in total soil nitrogen between redcedar subcanopy, edge 

of canopy and native grassland sites. A significant buildup of organic matter was found 

around the tree bole. Klopatek (1987) showed that a 35-year-old pinyon-juniper forest 

had lower soil nitrogen availability than an old-growth forest of 300-400 years of age. 

This difference is probably due to greater disturbance in the younger sites, coupled with 

nitrogen stores disappearing from the ecosystem. Interestingly, this author also found no 

difference in soil nitrogen availability between subcanopy and intercanopy sites. 

However, nitrogen mineralization rates were higher in intercanopy than in subcanopy 

sites, yielding higher levels of plant available nitrogen in intercanopy sites. 

 

EFFECTS OF J. VIRGINIANA ON LEAF LITTER ACCUMULATION 

Litter accumulation has a profound effect on soil attributes and understory plant 

dynamics. As discussed above, the soil mineral nutrient status can be altered by litter. 

This is particularly important for soil nitrogen and phosphorus. Also, leaf litter in some 

plant species has the ability to change the soil pH as well as the potential to change soil 

water status through various mechanisms. Litter reduces light intensity and light quality 

(more light from far red spectra than red spectra (Vázquez-Yanes et al. 1990)) reaching 

the mineral soil to and may have an important negative effect on seed germination. Leaf 



 18

litter also acts as a mechanical barrier for plants and especially recently germinated 

seedlings. Small seeds in some cases have energy reserves that are too low to break 

through a thick litter layer. Larger seeds can be inhibited from germinating by increased 

fungal infections or herbivory under a think layer of dead leaf matter. Other seeds do not 

receive sufficient energy to transition from the dormant phase (Facelli and Pickett 1991). 

The mechanical barrier effect of leaf litter is greater in species that produce leaves that 

grow vertically through the litter layer than for species that grow from a basal meristem 

(Sydes and Grimes 1981). Lastly, litter can have an effect on soil and plant life through 

phytotoxins present in the leaf matter of certain plant species that have an allelopathic 

effect. The exact mechanisms by which this happens have not been well studied in the 

field and presumed phytotoxic effects are often confounded with other factors that limit 

plant germination or growth (Facelli and Pickett 1991). 

 One study focusing on xeric longleaf pine woodlands (Pinus palustris) with a 

developed Quercus sp. midstory in Florida found that litter accumulation was the primary 

driver behind reductions in understory plant productivity and diversity. In absence of a 

fire, litter accumulation was higher than in pine woodlands (that were regularly subjected 

to fire) and was negatively related to herbaceous productivity and diversity. While light 

reaching the understory also decreased with the development of the midstory, irradiance 

was not directly related to the understory (Hiers et al. 2007). Other studies also show that 

fire can have an important effect on understory vigor through litter depth reductions (e.g. 

Facelli and Pickett 1991).  

 Compared to other species redcedar produces large amounts of relatively decay 

resistant litter. Redcedar produces about 500 g.m-2.y-1 litter (Norris et al. 2001b), whereas 

this number for native grasslands is almost 10 times smaller (52 g.m-2.y-1). Most of this 

litter is produced during late summer and fall, when water availability is lowest. During 

spring, little litter is produced by redcedar. Redcedar litter contains little woody 

components, due to the fact that redcedar does not self-prune. Redcedar does, however, 

have fairly high lignin content. Lignin to nitrogen ratio for redcedar leaf litter is 10:11. 

The decay rate of redcedar litter in forest habitat is 32.1% per year. The decay rate for the 

prairie grass Andropogon gerardii is 41.5% (Norris et al. 2001a). This higher number can 

be explained by the higher lignin to nitrogen ratio in redcedar. Also, needles generally 
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need a longer time to decay than leaves of deciduous trees, due to the effect of higher 

lignin content in the structurally smaller but tougher conifer needles, as well as a possible 

effect of tannins that deter folivores (Cornelissen 1996). Dye II et al. (1995) found that 

Juniperus pinchotii litter covered almost the entire forest floor directly around the base of 

the tree (92-97%) whereas this number is lower, but still fairly high halfway between 

trunk and crown edge (82-90%). The mass of accumulated redcedar leaf litter (including 

duff layer) in redcedar stands in the Flint Hills, southeastern Kansas, was approximately 

1628.2 g.m-2, whereas litter in nearby grasslands was nearly absent    (Norris et al. 2001a).  

 Various authors have shown than redcedar leaf litter has the potential to raise pH 

of the top soil (Coile 1933, Spurr 1940, Read and Walker 1950, McBain 1983). Because 

of its almost neutral pH (average pH of 6.4; (Coile 1933), redcedar leaf litter creates 

favorable conditions for soil invertebrates such as earthworms, which rapidly turn leaf 

litter into soil organic matter with a lower weight per volume and a higher pore space 

(Read and Walker 1950). The sharp demarcation line that usually exists between humus 

of other coniferous trees (with more acidic leaf matter) and the mineral soil is absent in 

soils under redcedar, because of increased mixing of the two due to increased soil 

invertebrate activity (Coile 1933).  

 Decreased herbaceous production beneath redcedar could be caused by 

allelopathic effects of leaves or roots (McBain 1983, Engle et al. 1987). A related species 

(J. osteosperma) (Jameson 1966, 1970a) contains allelopathic substances. One 

experimental study indicated that there were no significant allelopathic effects on grass 

growth related to redcedar duff. Four native North American prairie grasses were 

subjected to redcedar duff applications. Rather than a negative effect of the duff, grass 

grew faster in winter and summer due to the application of redcedar duff and had higher 

than normal weights. However, germination was slightly reduced in long-lived perennial 

species (Smith 1986). In a study with five herbaceous species, one showed reductions in 

germination success after being planted in soil collected around redcedar. The authors of 

the study add that it is yet to be confirmed whether or not allelochemicals from redcedar 

prevent seed germination of herbaceous species or if allelopathy just delays germination 

(Stipe and Bragg 1988).   



 20

EFFECTS OF J. VIRGINIANA ON VAPOR PRESSURE DEFICIT 

Atmospheric water vapor is usually referred to as humidity. Humidity can be described in 

absolute or relative terms. Absolute humidity describes the actual weight of water per 

unit volume of air. Relative humidity is the percentage of water present in the air relative 

to the maximum water holding capacity of the air. The water holding capacity of air 

increases exponentially with temperature. Vapor pressure deficit (VPD) is used to 

standardize the evaporative demand that drives evapotranspiration. Vapor pressure deficit 

(measured in Pascals) is the difference between the vapor pressure in the intercellular air 

space (assumed to be fully saturated) and the vapor pressure of the ambient air (Spurr and 

Barnes 1980).  

 VPD in forests influences different ecosystem components. Firstly, there is a link 

between VPD and stomatal opening or closure in plants. If stomatal conductance does not 

change, transpiration is a direct function of VPD.  However, stomata respond to VPD and 

generally decrease as VPD increases, perhaps to limit water loss. When the air is 

saturated with moisture, however, vapor pressure in the intercellular air space may be 

lower than the surrounding air and may cause water to enter the plant through the 

stomata. In these ways, humidity, and resultant VPD can have both a positive and a 

negative effect on plants (Spurr and Barnes 1980). It has been shown for Ashe juniper (J. 

ashei) on the Edwards Plateau of central Texas that high humidity after rains reduce 

transpiration, but that levels of transpiration similar to before the rain event were reached 

again only 90 minutes after the rain stopped (Owens 2008).  

 The reduction in transpiration caused by higher atmospheric humidity has positive 

effects on plant growth. Low VPD contributes to greater fruit weight and water content in 

tomatoes (Lycopersicon esculentum) grown in greenhouses (Leonardi et al. 2000). 

Summer and its more intense solar radiation cause VPD to go up, and fruit weight to go 

down. Likewise, lowered VPD and reductions in transpiration and resultant water stress 

could positively affect understory plants in a redcedar-dominated area.  

 There are several factors that contribute to higher humidity in forest understories. 

Evaporation from soils and transpiration from understory plants are important factors in 

raising air humidity under canopies (Powell and Bork 2007). Precipitation and water 

conductance by stems and branches also add to understory water vapor. Forest canopies 
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retain humidity in the understory atmosphere. The denser forest canopies, the more water 

is held in the understory atmosphere, due to a combination of retention of humidity in the 

understory and a lack of air perturbations. Coniferous trees because of their high LAI 

usually have lower VPD in the understory compared to deciduous trees or open 

conditions (Molga 1962). Porte et al. (2004) observed a strong effect of forest cover on 

relative humidity and VPD. However, significant differences between different aged 

stands and humidity or VPD were not found. Edge-effects exist as well; areas farther 

away from edge have lower VPD. Harvesting of trees and the subsequent creation of 

clearings increases VPD. This is partly due to exposure to sunshine, which increases 

temperature and VPD. 

 VPD within forests fluctuates in time. At night, forest clearings have lower VPD 

than closed forest understory due to greater cooling in the gaps. During a drought, such as 

often occurs in summer in many areas, VPD is lower under full or partial cover of trees. 

With precipitation, there is generally no difference between clearings and closed canopy 

areas (Powell and Bork 2007). MacHattie (1966) found that the influence of precipitation 

on relative humidity in mountainous forests of southern Canada lasted only a day on 

average (MacHattie 1966).  

 

EFFECTS OF J. VIRGINIANA ON THE LIGHT ENVIRONMENT 

Light energy, (i.e. photosynthetically active radiation), is an essential for growth in all 

green plants. Photosynthetically active radiation (PAR) is defined as light in the spectral 

range of 400-700 nm. Absence or reduction of light levels underneath a dense tree 

canopy can reduce or even exclude herbaceous plant species. Smith (1986) reported an 

85% reduction of PAR under redcedar compared to under grasses in a nearby native 

grassland in Nebraska. This sharp reduction in light levels is caused by the greater LAI of 

redcedar relative to that of the grasslands and due to the planophile canopy arrangement 

of redcedar. Redcedar as a midstory component in combination with a hickory-dominated 

overstory in a forest in Missouri let through only 10% of the above canopy light levels 

(Hinckley et al. 1981).   

Van Pelt and Franklin (2000) found that for old-growth coniferous forests there 

was no correlation between understory light conditions and the canopy structure directly 
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above. This is probably caused by the constantly changing sun angle which causes 

horizontal shifts between light penetration and canopy position. The authors therefore 

conclude that LAI is a poor predictor of light conditions in the lower strata of the forest. 

However, these authors use data from old-growth forests of the Pacific Northwest of the 

United States, which are probably of higher stature than most redcedar stands, and the 

horizontal shifts probably do not play a similarly important role in redcedar. 

 An additional light reducing effect can be attributed to the litter layer. In North 

American grasslands, litter can intercept between 95 and 99% of incoming radiation 

(Knapp and Seastedt 1986). Litter also changes the quality of light because different 

types of litter have different types of extinction coefficients (Facelli and Pickett 1991). 

This may have an important impact on seed germination and seedling survival below the 

litter layer.   

 

EFFECTS OF J. VIRGINIANA ON HERBACEOUS VEGETATION 

Redcedar influences herbaceous species in a number of ways. Dense cover associated 

with redcedar and many other coniferous trees can prevent light and precipitation from 

reaching the forest floor. Junipers are known to reduce light availability on the forest 

floor level by up to 80% (Jameson 1970b). The relatively high amount of leaf litter 

produced by dense canopies can cover the forest floor and prevent seedlings from 

germinating and young plants from reaching light (Anderson et al. 1969). Redcedar can 

also affect herbaceous vegetation by altering the soil characteristics (pH, nutrient 

availability) where the species grows (Bekele and Hudnall 2005). Redcedar increases soil 

pore volume through root die-off.  Because it has larger diameter roots than those of forb 

or grass species, soil water movement to deeper soil layers may increase and water 

availability in the upper soil may decrease (Kittredge 1938). Redcedar roots compete 

directly with roots of forbs and grasses for available water and soil space (Jameson 

1970b).  

 There are several studies of redcedar effects on herbaceous vegetation in the 

prairie ecosystem (Engle 1985, McPherson and Wright 1990, Gehring and Bragg 1992). 

Gehring and Bragg (1992) found that redcedar alters the herbaceous species composition 

by preventing precipitation from reaching soil. They concluded that the native herbaceous 
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vegetation was reduced in favor of the non-native Kentucky bluegrass (Poa pratensis) 

and Carex spp. These both showed an increase in cover under redcedar compared to areas 

without redcedar cover. At the crown-edge of redcedar, little bluestem (Schizachyrium 

scoparium) and big bluestem (Andropogon gerardii) increased compared to directly 

underneath the tree; however Kentucky bluegrass was still present. Outside of the direct 

shade area of redcedar, native grasses such as little and big bluestem dominated, and 

native forbs such as white aster (Symphyotrichum ericoides) and compact stiffstem flax 

(Linum rigidum var. compactum) formed a much greater component of the herbaceous 

vegetation than under redcedar. Some species were completely absent under redcedar 

cover, e.g. junegrass (Koeleria pyramidata). 

 Most forb and grass species that are common on native prairie in southern 

Wisconsin were excluded under redcedar through increased shading by the tree. Shade 

tolerant species such as Anemone virginiana, Amorpha canescens and Physalis 

virginiana however, were present under redcedar. The same was true for grasses. Most 

grass species were excluded from redcedar invaded areas, however the shade tolerant 

Panicum oligosanthes was present. Smooth sumac (Rhus glabra) was the only species in 

this study that was more common under or around redcedar than in native prairie without 

cedars (McBain 1983). Linneman and Palmer (2006) found that seedlings of woody 

species were more common under redcedar in encroached grasslands than in prairies 

without redcedar. A study on the flora of the cedar glades of Tennessee found that 

herbaceous species occurring in glades dominated by redcedar are more generalist than 

species occurring in glades without redcedar (Quarterman 1950). In Nebraska, mixed-

prairies that were invaded by redcedar retained few of their original flora. Littleseed 

ricegrass (Oryzopsis micrantha) was the only species left. Complete redcedar canopy 

closure could eventually lead to the full elimination of all native prairie herbaceous 

species (Kaul and Keeler 1983).  

 Oneseed juniper (J. monosperma) in Arizona has four different influence zones 

extending from the tree bole outward. In the first zone, which is situated in the direct 

vicinity of the tree bole, no herbaceous species were found, probably due to shading. In 

the second zone, which is still underneath the tree canopy, but outside of the direct tree 

bole area, some herbaceous growth was found, with species typical of mesic conditions 
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but probably restricted by shading. The third zone, around the canopy and partly shaded 

by the canopy, represented an area with species typical of xeric conditions, because, as 

the author argues, this is where the competition for water is greatest. The fourth zone, 

outside the influence of the tree showed a richer herbaceous community than in the inner 

three zones (Arnold 1964). In the Oklahoma prairie-forest ecotone, woody species and 

shade-tolerant species were more common on the northern side of redcedar trees than on 

more sun-exposed other aspects (Linneman and Palmer 2006).   

 Similar results have been found for J. pinchotii on the Edwards plateau of Texas. 

Species richness for both graminoids and forbs was lowest directly around the tree bole 

and underneath the tree canopy. However, at the canopy edge (drip line) and beyond, 

species richness was higher. This study found the opposite for woody shrubs and 

succulent species, with most representatives of these two functional groups occurring 

underneath the juniper canopy and in the direct vicinity of the tree bole (Dye II et al. 

1995). 

 Gehring and Bragg (1992) found differences in herbaceous biomass between 

areas with and without a cedar canopy that were dependent on species life histories. 

Shade tolerant species such as Carex spp. increase underneath the canopy, whereas shade 

intolerants such as Andropogon gerardii, Schizachyrium scoparium and Symphyotrichum 

ericoides decrease under similar conditions. Jameson (1970b) pointed out that among 

herbaceous species, forbs declined most in the shady conditions created by redcedar. 

Older and larger redcedars host little to no herbaceous vegetation below their canopies. 

However, the vegetation consisted of both C3 and C4 species indicating that other 

ecological or ecophysiological factors than photosynthetic pathway were of importance 

(Gehring and Bragg 1992). 

 Eastern redcedar reduces herbaceous biomass underneath its canopy when it 

invades grasslands. Reductions of biomass were similar under redcedar of different 

heights (2 m or 6 m) (Engle et al. 1987). In the case of redberry juniper (J. pinchotii), the 

density of forbs and grasses increases with increasing distance from the tree bole. Total 

biomass increased up to 3 m beyond the canopy influence zone of this juniper species 

(Dye II et al. 1995).  
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 Sun angle and location under the canopy of juniper influence the herbaceous 

community. In Oklahoma, herbaceous biomass differed between locations stretching out 

in four cardinal directions from the tree bole. Northern and eastern sectors generally had 

lower biomass production due to lower light conditions than those south and west of the 

main tree stem (Gehring and Bragg 1992). 

 In one study from a redcedar invaded tall-grass prairie in Nebraska, herbaceous 

biomass under redcedar was 83% lower than in areas without redcedar cover. Light may 

have been a driving factor behind this reduction in biomass, because this PPFD decreased 

in proportion to the increase in redcedar canopy cover. Soil water also decreased under 

redcedar (11.5%) and it was suggested as a second important factor controlling biomass 

production (Smith and Stubbendieck 1990). Arnold (1964) suggested that competition for 

soil water was greatest at the outer fringe of juniper rooting zone where the density of 

fine roots is greatest. This coincides more or less with the area surrounding the drip line 

of the tree crown. Closer to the trunk of the tree, light is probably more of a limiting 

factor. Juniperus litter also may be a major factor in the reduction of herbaceous 

biomass. In conjunction with pinyon pine (Pinus edulis), juniper litter caused declines in 

blue grama (Bouteloua gracilis). This was even the case when other factors that could 

lead to decline of the species, such as shading, root competition or root allelopathic 

substances were eliminated after multiple regression analysis (Jameson 1966). With no 

litter influence (one year after removal of redcedar) blue grama increased 23% (Jameson 

1970b). Redcedar leaf litter also impacts woody shrub species. Even though a study 

revealed that seedling density of several woody species declined farther away from the 

redcedar bole, the higher number of seedlings near the tree showed low rates of 

emergence compared to those farther away from the tree. This effect was ascribed to 

deeper litter layers and lower soil temperatures in the direct vicinity of redcedar (Meiners 

and Gorchov 1998).  

 Interestingly, herbaceous biomass production under oak cover (Quercus 

macrocarpa, Q. ellipsoidalis x velutina) showed similar patterns as under redcedar. 

Under cover of oaks, in spite of sufficient soil moisture and nutrients, herbaceous plant 

biomass is lower than outside of the canopy influence area. Oaks must therefore also 

slow understory growth due to factors such as lower light conditions or allelopathic 
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effects. Most of the species that occurred outside the canopy influence area of the oak 

species involved in the study also occurred inside this area. However, some species were 

distributed only under oaks while they were not found in open areas surrounding the trees 

(Ko and Reich 1993). 

 

EFFECTS OF J. VIRGINIANA ON WINTERING BIRDS 

Similar to the situation for vegetation response, there are more studies examining the 

effects of redcedar on the ecology of prairie birds than the ecology of forest birds. As 

redcedar invades the prairie, it produces suitable breeding habitat for many shrubland and 

woodland birds (Chapman et al. 2004), including uncommon species such as the 

Loggerhead Shrike (Lanius ludovicianus, Tyler 1992, Chabot et al. 2001). However, the 

patchy habitat created by the invasion of redcedar of the prairies is mostly favored by 

generalist species such as Eastern Bluebird (Sialia sialis) and Cedar Waxwing 

(Bombycilla cedrorum), whereas grassland specialists such as Grasshopper Sparrow 

(Ammodramus savannarum), Cassin’s Sparrow (Aimophila cassinii), and Western 

Meadowlark (Sturnella neglecta) decline with a higher redcedar incidence (Chapman et 

al. 2004, Coppedge et al. 2001, Chapman et al. 2004). The conversion of agricultural land 

to grassland in the Conservation Reserve Program (CRP) benefits many grassland 

species, even if the restored grasslands consist mainly of non-native grasses. The 

presence of woody species on CRP land, notably Juniperus virginiana, is not tolerated by 

typical grassland birds (Coppedge et al. 2001, 2006). These specialists show a rapid 

decline with a redcedar cover of as little as 3% (Chapman et al. 2004). The reasons that 

these specialists do not tolerate low rates of invasion of Juniperus virginiana are not 

clearly understood, but it is suggested that redcedar cover might be perceived by the birds 

as habitat for predators or that redcedar obstructs vision (Winter et al. 2000).  

 There are few studies on the effects of eastern redcedar on breeding bird 

assemblages in forested areas. There are indications that there is a parallel with native 

grasslands, because specialized species do not do well in forests with a well developed 

redcedar midstory. Redcedar has been shown to reduce the availability of suitable 

breeding habitat for the endangered Black-capped Vireo (Vireo atricapillus), which is 

largely restricted to oak scrub of central Texas (Grzybowski et al. 1994). 
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 Wintering birds have different mechanisms to cope with low temperatures. One of 

them is the use of sheltered habitats. Coniferous trees are for this reason often preferred 

over more open deciduous habitats by wintering birds. During cold or rainy weather, 

birds move from deciduous habitats to coniferous stands, whereas during warm or dry 

weather, birds are randomly distributed over both types of forest. In a study from 

southeastern Ohio, this was true for species such as Downy Woodpecker (Picoides 

pubescens), Carolina Chickadee (Poecile carolinensis), White-breasted Nuthatch (Sitta 

carolinensis), Brown Creeper (Certhia americana), Tufted Titmouse (Baeolophus 

bicolor), and Golden-crowned Kinglet (Regulus satrapa) (Petit 1989). In certain cases, 

coniferous trees do not offer a better protection against the elements than do deciduous 

trees. In a study from New Jersey a young, uniform stand of eastern redcedar in a field 

was compared to a mature oak forest with heavy undergrowth and many cavities for 

winter avian species richness and equitability. The oak forest scored higher for both 

values than the redcedar stand. Also, in the oak forest, mixed species flocks were more 

common than in the redcedar stand, where flocks generally consisted of one species. 

During cold weather some retraction from the redcedar field was observed and this was 

ascribed to increased exposure to low temperatures relative to the deciduous forest 

(Kricher 1975). During extremely cold weather, retraction from the entire winter range 

occurs due to food shortages (Lack 1968) and mortality is higher than usual (Lack 1966).  

 Birds not only seek to maintain a higher body temperature by staying in 

coniferous trees, they also use the dense cover to hide from potential predators. A study 

from Finland showed that Willow (Poecile montanus) and Crested Tits (Lophophanes 

cristatus) preferred the densest, interior parts of coniferous trees when predation risk was 

high. This occurred in winters when voles (Microtus spp.), an important prey item of 

Eurasian Pygmy-Owl (Glaucidium passerinum), were scarce, and the owls preyed solely 

on parids (Suhonen 1993).  

 Conelets of the genus Juniperus, which resemble berries because of their 

fleshiness, are a good source of food for many animal species. Mammals such as 

Raccoons (Procyon lotor) and Gray Fox (Urocyon cinereoargentus) readily eat redcedar 

conelets. However, the bulk of the consumption of redcedar conelets occurs by birds. 

About 60% of redcedar conelets are eaten by birds in open areas, whereas in forested 
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areas, this number can be 90-100% (Phillips 1910). Seeds in plant species that do not 

produce a fruit or berry are mostly digested by birds and having passed through the 

digestive tract, no longer germinate (McAtee 1947). However, in the case of redcedar, 

which does produce a protective conelet around the seed, seeds pass the digestive tract 

unharmed (Phillips, 1910). Redcedar is often found growing along fence lines (Phillips 

1910, McAtee 1947, Holthuijzen and Sharik 1984) because birds that consume redcedar 

conelets leave droppings when the perch on the fence. The species is also frequently 

found under tall trees, due to the preference of birds to roost in tall trees. This, in 

combination with the fact that forest soils are more stable than grassland soils, causes 

redcedar seeds to germinate easily after being dropped by birds (Phillips 1910).  

 Fruits and berries form an especially important food source for birds during 

migration and winter, due to the fact that protein-rich insects are mostly absent during 

this time in temperate climates (Parrish 2000). Redcedar conelets are available from early 

fall through late spring. They have a purple color, and fruits have a whitish bloom, which 

increases visibility to birds. Moreover, conelets remain available even with heavy 

snowfall, when most seeds from herbaceous plants and seeds that have fallen on the 

ground are invisible. Conelets are also relatively large proportional to other seeds and 

berries (0.4–0.6cm) which increases visibility further. The protein content of redcedar 

conelets is 4–6%, sugar content is 10–30% and starch/cellulose content is 12–20%. In 

addition to this, conelets also contain nutritious volatile oils, acids, and minerals (Phillips 

1910). For birds, which have high metabolic rates compared to mammals, it is important 

to take in large amounts of energy-rich foods. Bohemian Waxwings (Bombycilla 

garrulus) have been found to ingest over 900 conelets of J. scopulorum in five hours 

(Phillips 1910). A study from Rhode Island showed that there were generally two types 

of seeds, those that were high in energy (with plenty of carbohydrates and fats) and those 

with high levels of protein. Intake of large amounts of one type usually had to be 

supplemented by ingestion of smaller amounts of the other type, to satisfy both the high 

energy demands of fast metabolism in birds and longer term essential nutritional 

demands. Redcedar conelets combine high energy content with high levels of protein and 

are therefore often preferred food by birds (Smith et al. 2007). Phillips (1910, p. 13) 

concludes that ‘the lines of bird migration and numbers of birds, prevalence of juniper 
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berries and scarcity of other bird food are undoubtedly factors which affect the 

distribution of the juniper.’. Phillips also provides a short list of species that have been 

found consuming redcedar conelets. Central Oklahoma wintering birds included in this 

list are: 

-Downy Woodpecker (Picoides pubsecens) 

-Yellow-bellied Sapsucker (Sphyrapicus varius) 

-Northern Flicker (Colaptes auratus) 

-Cedar Waxwing (Bombycilla cedrorum) 

-American Crow (Corvus brachyrhynchos) 

-Northern Mockingbird (Mimus polyglottos) 

-Hermit Thrush (Catharus guttatus) 

-Eastern Bluebird (Sialia sialis) 

-Yellow-rumped Warbler (Dendroica coronata) 

-Fox Sparrow (Passerella iliaca) 

-Purple Finch (Carpodacus purpureus) 

 

 Protein-rich insects are often an important addition to avian diets to compensate 

for the intake of seeds low in proteins (Smith et al. 2007). In summer, insects are 

abundant in northern hemisphere temperate climates, but in winter this is not the case. 

However, insectivorous birds are often still able to find sufficient food during this time in 

temperate areas, especially in southern areas within the northern hemisphere such as the 

southwestern U.S (Morse 1970, Austin and Smith 1972) where insects are active during 

the winter in areas with increased shelter and a warm microclimate. Evergreen trees with 

a high LAI, such as conifers, form an especially important winter habitat for insects 

(Danks 1991). In Sweden, Picea abies is host to at least 19 arachnids and several insect 

species during winter. The insects and spiders form a substantial part of the diet of small 

passerines such as Goldcrest (Regulus regulus), three species of tit (Paridae) and 

Eurasian Treecreeper (Certhia familiaris). These species all have their ecological 

equivalents in North America (Ruby-crowned Kinglet (Regulus calendula), chickadees 

and titmice (Poecile spp. and Baeolophus spp.), and American Creeper (Certhia 

americana). No preference for a particular species of insect or arachnid was shown. 
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Nutritional value of spiders declined with the progression of winter months (Norberg 

1978). 
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CHAPTER III 

 
 

CHANGES IN FOREST UNDERSTORY ASSOCIATED WITH JUNIPERUS 

ENCROACHMENT IN OKLAHOMA, U.S.A.: THE IMPORTANCE OF LEAF 

LITTER 

 ABSTRACT 

I studied changes in understory vegetation due to encroachment of Juniperus virginiana 

resulting from anthropogenic fire suppression into the midstory of Cross Timbers forests 

dominated by Quercus spp. in Payne County, north-central Oklahoma, U.S.A. I 

hypothesized that the J. virginiana alters its physical environment such that plant species 

composition change and vegetation cover and richness decline along a gradient as the 

influence of the J. virginiana midstory increases. I compared vegetation in forest gaps, 

forests without J. virginiana, at the inner and outer edge of J. virginiana and near trunks 

(200 plots total). Species richness (11 to 6 spp. m-2) and cover (53.3 to 12.7%) declined 

with proximity to J. virginiana trunks. Regression analysis indicated that richness 

(R²=0.08) and cover (R²=0.18) were best explained by J. virginiana litter mass. Partial 

canonical correspondence analysis (pCCA) revealed two strong canonical axes, one 

related to litter/light and the other to cover of Quercus spp. versus J. virginiana. Tree 

seedlings and woody vines dominated near J. virginiana trunks. Forbs, graminoids and 

Quercus spp. seedlings were more common in areas without J. virginiana. My study 

indicates that litter is the main determinant of understory vegetation declines associated 

with midstory juniper encroachment in these fire-suppressed forests. Decreases in 

herbaceous litter loads, which historically contributed to the accumulation of fuel beds, 

will have a positive feedback effect for further midstory encroachment. Declines in 

recruitment of Quercus spp. that were related to increasing abundance of J. virginiana 

and consequent increases in litter loads may lead to changes in overstory composition. 
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INTRODUCTION   

Anthropogenic fire exclusion can have a profound effect on forest structure and 

density. Fire-sensitive woody species encroach with fire suppression and often form a 

dense midstory (Waldrop & Lloyd 1991; Glitzenstein et al. 1995; Grice 1997; 

Blankenship & Arthur 2006). Fire suppression in North America has led to marked 

increases of Juniperus spp. (Cupressaceae), notably J. virginiana L. (Bragg & Hulbert 

1976; Briggs et al. 2002; Sheley & Bates 2008). While most Juniperus spp. of the 

North American West and Southwest are encroaching in semiarid, and open 

landscapes, J. virginiana is a widespread eastern species that is spreading in prairies 

but also in forests throughout the Great Plains (Bidwell et al. 2000). 

 In many cases, the overall structure of fire-suppressed forests is characterized 

by high stem density, relative young stand age and high litter accumulation 

(Covington & Moore 1994; Kaufmann et al. 2003; Rogers et al. 2007; Vanhaa-

Majamaa et al. 2007). These features can reduce understory light conditions which 

negatively affects shade-intolerant understory species (Thomas et al. 1999; Pagès et 

al. 2003). Moreover, the buildup of a deep litter layer can alter the chemical, physical 

and hydrological environment in the soil which often results in lower understory 

recruitment (Anderson et al. 1969; Facelli & Pickett 1991). There are several 

documented examples of understory decline related to fire suppression from the 

southeastern United States where Quercus spp. and other hardwoods cause understory 

vegetation to decline in Pinus taeda L. and P. palustris Mill. ecosystems (Blair & 

Feduccia 1977; Provencher et al. 2001a; Hiers et al. 2007). Similar reductions in 

understory vegetation caused by the development of midstories of encroaching woody 

species through land use changes such as increased urbanization and associated fire 

frequency changes and alterations in climate (atmospheric CO2 increases) are 

observed in other parts of the world, such as in riparian forests in the southern United 

States (Ostrom & Loewenstein 2006) or in systems dominated by Eucalyptus 

camaldulensis Dehnh. in southern Australia (Price & Morgan 2008). 

 With fire suppression in the Cross Timbers forest of central Oklahoma, J. 

virginiana often forms dense midstories under a canopy of broadleaved trees 

including two dominant Quercus species, Q. stellata Wangenh. and Q. marilandica 
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Münchh. (Engle & Stritzke 1995) and drastically alters the open character of the 

forest. Understanding how J. virginiana alters the understory environmental 

conditions in Cross Timbers forests may have important implications for understory 

plant diversity and productivity. In prairies, J. virginiana encroachment has the 

potential to increase litter depth (Norris et al. 2001a), raise soil pH through litter 

depositions (McBain 1983), decrease soil carbon stores (Norris et al. 2001a) and 

lower understory light conditions (Linneman & Palmer 2006).  

While there may be some similarities in the response of understory vegetation in 

prairies and the Cross Timbers forest, there are several distinctions. The structure of 

the forest ecosystem differs from prairies through the presence of an arboreal 

overstory layer. The combination of an overstory of Quercus spp. and a midstory 

layer of J. virginiana may exacerbate environmental conditions such as light 

environment, understory temperature and precipitation throughfall relative to prairies 

invaded by J. virginiana. J. virginiana in forests is subject to competition with 

overstory trees, which may lead to differences in stem growth, crown depth and foliar 

biomass compared to mature J. virginiana in prairies, which mainly compete with 

grassland species for belowground resources. Additionally, understory communities 

in native grasslands are compositionally different from understory communities in 

forest ecosystems. Though they share some species, North American prairies are 

generally dominated by C4 grass species that are physically adapted to warm, high 

light growing conditions, while forest understories tend to be dominated by C3 shade-

tolerant forbs and woody species.  

 Understanding the changes in understory productivity, richness, and 

composition relative to an increase in J. virginiana midstory is important, as these 

changes have the potential to alter biodiversity and dynamics of the vegetation in 

Cross Timbers forests and alter habitat for taxa other than vascular plants. Cross 

Timbers forests generally have an open character. Lack of disturbance can lead to 

canopy closure which lessens the vulnerability to fire due to reduced production of 

fine fuels (Johnson & Risser 1975). The development of a midstory of J. virginiana 

may further alter the production of fine fuels and regeneration of the dominant 

Quercus species leading to the ‘mesophication’ (Nowacki & Abrams 2008) of this 

otherwise open, fire-dependent ecosystem. Understanding the effects of J. virginiana 

encroachment in the Cross Timbers is directly applicable to a large area (~79,000 

km²; Kuchler 1964) of similar fire suppressed forest in Oklahoma, Kansas, and Texas. 
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On a broader scale, this understanding provides general insight into the effects of 

midstory development caused by anthropogenic fire suppression on forest understory 

vegetation.      

 The objectives of this study were to determine the effects of J. virginiana 

encroachment on the understory physical environment and plant communities of 

Quercus-dominated Cross Timbers forests of Oklahoma. I hypothesized that 

understory species richness and cover decrease with increasing J. virginiana 

encroachment. Furthermore, I hypothesized that changes in understory composition 

will be more pronounced closer to redcedar trunks. Of the changes in the physical 

environment related to J. virginiana encroachment, I predicted that leaf litter 

accumulation is the major factor related to changes in understory vegetation. 

 

METHODS 

Study sites 

During 2008, I conducted research at ten 1 ha sites approximately 15 km west of 

Stillwater, Oklahoma.  Five sites were located around Lake Carl Blackwell (LCB) 

(36.12˚, -97.21˚) and five were on and around the Oklahoma State University Cross 

Timbers Experimental Range (CTER) (36.04˚, -97.21˚). The research area is located 

at the western edge of the Cross Timbers forest which forms a transition zone between 

the tallgrass prairie and eastern North American forests. The sites were dominated by 

Quercus stellata, Q. marilandica and Sideroxylon lanuginosum Michx. All sites were 

characterized by a variable J. virginiana component in the midstory. Additional 

frequent tree species included Quercus muehlenbergii Engelm., Celtis occidentalis L., 

C. laevigata Willd. and Ulmus americana L. Soils were predominantly Stephenville-

Darnell-Niotaze associations that are ustalfs of a fine, sandy loam texture (USDA, 

NRCS 2008c). Three sites near LCB and two at CTER were burned three to ten years 

before the study. It was not possible to determine the spatial pattern of previous fires 

or fire intensity within sites in relation to individual plots. However, to minimize 

potential effects of recent fire history on environmental conditions in my research 

plots, I selected sites where burns had no lasting visual effects on canopy cover of J. 

virginiana or other tree species. 
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Sampling design 

At every site, I included four blocks of five different environmental conditions or 

‘categories’ in 1 m² plots (20 plots at each site, 200 plots total). The first category 

(open) consisted of a forest gap, with minimal light interception from Quercus or J. 

virginiana canopies and a negligible amount of tree leaf litter. The remaining four 

categories were located under an overstory of Quercus spp. with varying levels of J. 

virginiana influence. The second category (oak) consisted of closed-canopy forest of 

Quercus spp. with litter of Quercus spp. and canopy light interception by Quercus 

spp. only. The third category (outer edge) extended outward from the edge of J. 

virginiana drip line such that J. virginiana contributed little to the litter layer and had 

some influence on light interception. The fourth category (inner edge) consisted of the 

area from the J. virginiana drip line inwards towards the trunk of the tree such that J. 

virginiana had both an influence on litter and light interception. The fifth category 

(trunk) abutted the trunk of J. virginiana trees such that light levels were reduced and 

J. virginiana leaf material was the major litter layer component.  

 I sampled understory vegetation during early May and again in mid-August to 

account for both spring ephemerals and cool-season as well as warm-season species. I 

determined the relative cover of all vascular plants within the 1 m2 plots using ocular 

estimation and a Daubenmire scale modified to the midpoint of the cover range 

(Towne et al. 2005). I identified all herbaceous species, as well as seedlings and 

saplings of all woody species less than 1.37 m tall. I assessed total understory cover 

during the spring and summer vegetation sampling periods using regular digital 

photographs taken from above the maximum height of understory vegetation (1.37 

m). I quantified canopy openness, direct photosynthetic photon flux density (PPFD) 

and diffuse PPFD directly above the top of understory vegetation for each plot using a 

digital camera with a hemispherical lens. I took all pictures on overcast days during 

early July to reduce sunshine glare. I used WinScanopy and XlScanopy software 

(Régent Instruments 2006) for analysis of regular and hemispherical photographs. I 

determined which trees around each plot influenced light interception and litter inputs 

using a Basal Area Factor 10 (BAF; number of units of cross sectional area 

represented by each tree stem) angle gauge. In addition to basal area of each species, I 

recorded Diameter at Breast Height (DBH; diameter measured at 1.37 m) of sampled 

trees with calipers (±0.1 cm) to estimate overstory size class distribution.  
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 Leaf litter type and quantity were measured in June/July in two areas adjacent 

to each plot (0.04 m²). After collection, I separated litter into the categories deciduous 

tree (primarily of Quercus spp.), J. virginiana and herbaceous. Litter of each category 

was then dried to constant weight (60oC) and weighed to the nearest gram. At the 

same time, I collected and bulked soil samples (0 - 15 cm depth) from two opposite 

corners of each plot. The Oklahoma State University Soil, Water and Forage 

Analytical Lab then performed analyses for NH4 and NO3 concentration using 1 M 

KCl extraction on a latchet flow-injection analyzer. For determining NO3 

concentration, cadmium reduction was used and for NH4 concentration the salicylate 

procedure. I determined soil pH for each sample using 1:1 soil-H2O solutions (USDA, 

2008b) and a scientific pH meter (Thermo Fisher Scientific, Waltham, Massachusetts) 

(±0.01 pH).   

 On July 27th and 28th, which were characterized by the absence of cloud cover 

and wind < 5 km.h-1, I measured soil temperature, air temperature and relative 

humidity at each plot. I measured soil temperature using a probe thermometer (±1°C) 

and air temperature (±0.1°C) and relative humidity (±0.1%) above the understory 

vegetation level using a Kestrel 3000 weather meter (Nielsen-Kellerman Inc., 

Boothwyn, Pennsylvania). I sampled volumetric soil moisture (0-20 cm depth) on 

August 30th and September 1st (both days were at least 48 hours since the last rainfall) 

using a Mini Trase soil moisture system (±0.1%) with time-domain reflectometry 

technology (Soilmoisture Equipment Corp., Santa Barbara, California).   

 

Statistical analyses 

I performed ANOVA and Duncan’s post hoc multiple comparison (SAS 9.1 statistical 

software package; SAS Institute Inc., 2003) to test for differences in environmental 

variables as well as in understory vegetation richness and cover among categories of 

varying J. virginiana influence. Before conducting ANOVA, I tested variables for 

normality and heteroscedasticity and transformed the data using logarithmic or arc-

sine transformations as needed. I used a series of simple regressions (α=0.05) to 

determine which environmental variables were related to summer understory cover 

and total species richness (total species richness was calculated as the total number of 

species found in a plot during both the spring and summer sampling periods). I chose 

summer understory cover and total species richness because these variables 
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represented a more complete sample of understory plant productivity and overall 

species richness than spring vegetation variables. I determined covariance among 

variables included in the regression analysis. Results for regressions including and 

excluding the ‘open’ plots yielded similar relationships. Therefore, I present data from 

tests excluding the ‘open’ plots to focus on changes and processes within the Cross 

Timbers forest. I performed partial canonical correspondence analysis (pCCA, Ter 

Braak 1986) on my species data to determine compositional structure among plots. I 

used categories (excluding ‘open’) as nominal variables. To determine the 

relationships between the environmental variables and my categories and to establish 

correlational structure between the environmental variables I included environmental 

variables as (passive) supplemental variables. I performed partial analysis because it 

included my sites (defined as blocks) as covariables. I included only species that 

occurred more than 10 times (5% occurrence), because the growing conditions in 

plots where species were found that were rare in my study may not have been typical 

for these species given their small sample size. I used CANOCO for Windows 4.5 

(Ter Braak & Šmilauer 2002) for all ordination analyses.   

 

RESULTS 

Stand characteristics  

Across all ten sites, total basal area of trees ranged from 8.9 to 28.0 m².ha-1. Q. 

stellata contributed on average 54.5% to total BA; J. virginiana 26.9%; Q. 

marilandica 10.3%, and other hardwoods 8.3%. Sites also varied in regards to average 

tree DBH ranging between 16.6 and 25.8 cm. However, when compared across 

categories, mean BA and DBH showed minimal variation (Table 1). Q. stellata had 

the greatest mean DBH (24 cm), followed by J. virginiana (22 cm) and Q. 

marilandica (18 cm). Canopy openness ranged from 22.5% to 31.1% between sites 

and did not significantly vary among the four categories with forest cover. Mean 

canopy openness across all plots was 25.7%. 

 

Environmental variation between categories 

Micrometeorological variables showed a consistent pattern with increasing J. 

virginiana (category effect P<0.01; Table 1). Air temperature was highest in the open 

plots and declined somewhat towards the J. virginiana trunk. The difference in mean 
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temperature between open and trunk plots was 1.9°C. Relative humidity increased by 

1.5% from open plots to plots close to J. virginiana trunks. Similar to air temperature, 

soil temperature decreased 4°C from the open to the trunk plots. Volumetric soil 

moisture decreased 2.2% with increasing distance from the J. virginiana trunk. 

 Total PPFD (Fig. 1) was greatest in the open plots, intermediate in oak plots 

and at the outer edge of J. virginiana, and lowest at the inner edge of J. virginiana and 

near the trunk (category effect P<0.01). Because direct PPFD contributed 85.9% of 

total PPFD, the pattern of direct PPFD change among categories was similar to total 

PPFD. Diffuse PPFD levels in the forested categories were lower than the open 

category. The pattern of diffuse PPFD among categories was similar to direct and 

total PPFD. 

 Total nitrogen concentration in soils of all forest categories was similar and 

higher than ‘open’ categories. Ammonium (Table 1) composed the majority of total 

nitrogen and had a pattern among categories similar to total nitrogen. Nitrate 

concentration in the open plots was lower than the oak and trunk plots. Soil pH 

increased under J. virginiana with values of the trunk plots greater than plots not 

under J. virginiana canopies (Table 1).    

 Total litter mass generally increased from the open to the trunk categories, 

with the exception of the outer edge category (Fig. 1). Grass litter was highest in open 

plots but negligible in forest plots. Hardwood litter was greatest in the oak plots and J. 

virginiana litter increased with proximity to J. virginiana trunks. On average, total 

litter comprised 57.3% J. virginiana litter, 38.5% hardwood litter, and 4.2% 

herbaceous litter.  

 

Species richness and vegetation cover   

Understory plant species richness for both spring and summer sampling periods 

decreased along the gradient towards the trunk of J. virginiana. Mean spring species 

richness decreased from 8.0 m-2 to 4.6 m-2 and mean summer species richness 

decreased from 7.3 m-2 to 3.7 m-2 between the open and trunk categories, respectively. 

When spring and summer measurements were combined, total species richness 

decreased from 10.8 m-2 to 5.8 m-2 along the same gradient (Fig. 2). While mean total 

richness was greatest in the open plots (Fig. 2), maximum species richness for an 

individual plot was 17 m-2 and measured in an oak plot. Total vegetation cover in both 
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spring and summer increased about fourfold between the trunk plots and open plots 

(Fig. 2).  

 

Environmental variables related to vegetation changes  

Regression revealed significant (α=0.05) correlations between total richness and J. 

virginiana litter mass, grass litter mass and diffuse PPFD (Fig. 5). For summer 

vegetation cover, there were significant correlations with J. virginiana litter mass, 

total litter mass, and direct PPFD. J. virginiana litter mass predicted the largest 

amount of variation in both summer cover and total richness. While relationships with 

PPFD and grass litter were statistically significant, these variables had little 

explanatory value. There was little covariance among the independent variables 

representing litter and light; J. virginiana litter and diffuse PPFD (r=-0.083, P=0.297), 

grass litter and diffuse PPFD (r=0.020, P=0.800), direct PPFD and J. virginiana litter 

(r=-0.112, P=0.160), and direct PPFD and total litter (r=0.147, P=0.064). J. 

virginiana litter and grass litter had minimal covariance (r=-0.149, P=0.060). Total 

litter and J. virginiana litter covaried (r=0.662, P<0.001), which is expected since J. 

virginiana litter comprises 85.9 % of total litter. This covariance indicates that the 

relationship between summer vegetation cover and total litter was largely a function 

of the J. virginiana component. Given fairly low R2 values, a large portion of 

variation remained unexplained. When variation among sites was included in an 

analysis of covariance, R2 values increased substantially.  For instance, when site 

variation was included in the model, J. virginiana litter explained 40.9% of variation 

in total species richness and 44.9% of the variation in summer vegetation cover.   

 

Species composition 

I found that open plots were dominated by species mostly absent in the four forest 

categories. Also, herbaceous vegetation cover was consistently much higher in open 

plots. These results are expected given the large environmental differences between 

forest gaps and forest understory. Since my objectives related to understanding 

changes in understory composition with J. virginiana encroachment within the forest, 

I restricted my analysis of vegetation changes to the forest plots (omitted the open 

plots).  
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 Partial canonical correspondence analysis (pCCA), including sites as blocks, 

identified two strong canonical axes (Fig. 6a). The first axis indicated a gradient of (J. 

virginiana) influence, with decreasing light and increasing litter. The second axis 

explained less than half of variability in species composition relative to the first axis 

and was related to the effects of Quercus spp. versus J. virginiana on the understory 

plant community. When this division in my pCCA with the environmental variables 

was plotted against the categories (Fig. 6b), the majority of the second axis explained 

variability related to Quercus spp. litter effects or direct PPFD.   

 Species were mostly found in the central area of the pCCA diagram, away 

from the categorical centroids. This area lies between the inner edge/outer edge and 

oak categories, confirming that most species are generalists, without a distinct 

preference for environmental differences in any of the categories. However, 

conditions found directly around the J. virginiana trunk were unfavorable for 

herbaceous vegetation given the distance between the trunk centroid and the species 

points. There was, however, a number of species that were centered at the inner edge 

or tended to occur most in areas close to the trunk. These include the vines Smilax 

bona-nox L., Vitis rotundifolia Michx. and Parthenocissus quinquefolia (L.) Planch. 

Only a small number of forbs such as Galium circaezans Michx., Parietaria 

pensylvanica Muhl ex Willd. and Myosotis verna Nutt. occurred fairly frequently in 

areas relatively close to J. virginiana. However, a number of tree species were well 

represented in the area between the J. virginiana trunk and the inner edge, including 

seedlings of Ulmus americana, U. rubra, Celtis occidentalis, C. laevigata, and 

Sideroxylon lanuginosum. J. virginiana seedlings also were associated with J. 

virginiana adults. In contrast, seedlings and saplings of Quercus stellata, Q. 

marilandica and especially Q. muehlenbergii, were mostly centered closer to the oak 

centroid. The clonal shrub Symphoricarpos orbiculatus Moench. was best represented 

closer to oak centroid, as were a small number of forest forbs including Geum 

canadense Jacq. and Sanicula canadensis L. Some species typical of grasslands such 

as Schizachyrium scoparium (Michx.) Nash., Elymus canadensis L. and 

Dichanthelium oligosanthes Gould were centered in the area between the outer edge 

of J. virginiana and in oak plots. Species that were represented in areas with higher 

PPFD in my study include two sedges and three species of grass, including C3 species 

such as Dichanthelium oligosanthes and Elymus canadensis. In addition, the forb 

Gamochaeta purpurea (L.) Cabrera and the legume Lespedeza virginica (L.) Britton 
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were concentrated in this area; both species are more typical of open conditions. 

Frequencies of understory species in the four categories (Table 2) revealed similar 

results to the pCCA analysis, with tree seedlings and vines generally common in trunk 

categories, and Quercus spp., forbs and grasses more common in oak and outer edge 

categories. All species found under J. virginiana were also observed in oak plots, 

where they were often more common.   

 

Environmental variables 

Environmental variables were passively included in the pCCA. This illustrated how 

environmental variables were distributed over the four forest categories (Fig. 4b) and 

it revealed that J. virginiana litter comprised an important part of total litter mass. J. 

virginiana litter was also the strongest environmental factor in the diagram. 

Furthermore, total litter mass and litter cover were strongly related given their 

proximity and shared direction in the diagram. Light variables tended to be higher in 

oak plots and at the outer edge of J. virginiana. Diffuse PPFD was the strongest light 

related factor. Variables related to soil nitrogen and soil pH showed no specific 

relationship with any category.   

 

DISCUSSION 

Declines in vegetation cover and species richness that were related to increasing 

proximity to Juniperus virginiana trunks were mainly associated with changes in litter 

dynamics and, to a lesser extent, changes in light environment. In as much as litter 

and light variables did not covary, the stronger relationship with litter than light 

indicates that J. virginiana litter was probably the most important factor explaining 

understory changes in response to the development of a J. virginiana midstory. 

Similar evidence was found by other studies on midstory encroachment (Provencher 

et al. 2001a; Wearne and Morgan 2004; Hiers et al. 2007; Price and Morgan 2008). 

The accumulation of leaf litter can have a detrimental effect on plants through a 

variety of mechanisms including the formation of a mechanical barrier that inhibits 

germination, alterations in the chemical environment of the upper soil layer and 

reductions of light available to germinating seeds (Sydes & Grime 1981; Facelli & 

Pickett 1991). Based on my data, growing conditions were particularly unfavorable to 

understory plants close to the trunk and below the inner edge. There were similar 



 52

declines in species richness and cover with increasing proximity to J. virginiana 

trunks in prairies encroached by the J. virginiana (McBain 1983; Engle et al. 1987; 

Linneman & Palmer 2006).  

J. virginiana had a greater effect on plant cover than on species richness in 

prairie ecosystems (Linneman & Palmer 2006), as in my study. Likewise, in previous 

studies of forest systems, vegetation cover declined to a greater extent than species 

richness concurrent with litter accumulation associated with fire suppression 

(Provencher et al. 2001b; Hiers et al. 2007).  One reason for greater sensitivity of 

cover than richness with increasing litter could be related to the persistence of seed 

under litter layers (Wearne and Morgan 2006). The effects of dense J. virginiana 

canopies on seed dispersal are unknown. Seed collisions with J. virginiana foliage 

may unequally distribute the seed rain, contributing to declines in understory richness 

and density under J. virginiana. Alternatively, J. virginiana might act as seed traps, 

similar to other woody plants such as shrubby Ericaceae spp. (Bullock & Moy 2003).  

 Decreasing richness with increasing proximity to J. virginiana is intuitive and 

evident from my study. However, the use of small-scale plots such as in my study 

may not completely capture species richness differences among categories due to the 

rarefaction effect (Palmer et al. 2000). This effect describes the inherent link between 

vegetation density and species richness. Since herbaceous cover is consistently low 

near J. virginiana, species richness data in this habitat may not be complete. The 

appearance of herbaceous litter as a significant variable in predicting richness may 

also be an artifact of the rarefaction effect because the amount of litter may have an 

incidental linkage with species richness. 

 My findings of lower temperature, higher relative humidity and lower soil 

temperature under J. virginiana in forest systems are expected due to increased 

shading and litter accumulation and consistent with studies focusing on J. virginiana 

in prairies (Norris et al. 2001; Smith & Johnson 2003; Linneman & Palmer 2006; 

McKinley 2006; McKinley et al. 2008, Pierce & Reich 2009). Absolute differences in 

relative air humidity and temperature among habitat categories were small and 

inconsistent with changes in herbaceous cover and species richness leading us to 

speculate that differences in temperatures and relative humidity among categories 

play a relatively minor role in determining plant richness and productivity.  

 Later successional species, including many tree species, usually have larger 

seed size and greater energy stores. Several authors argue that this is a characteristic 
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that permits these species to penetrate dense litter mats during germination and 

establishment (Grime 1979; Tao et al. 1987). However, Quercus spp., which have the 

largest seeds in this study, were not well represented under or near J. virginiana. 

Given the even distribution of the Quercus spp. overstory throughout my study areas, 

this was somewhat unexpected. The avoidance of Quercus spp. in areas dominated by 

a J. virginiana midstory may relate to soil pH. The maximum tolerable soil pH for Q. 

marilandica is 5.6 (USDA, NRCS 2008a). In my study, I found soils near J. 

virginiana trunks less acidic (above 6.0) than soils farther away from trunks. Previous 

studies also found that the J. virginiana increases soil pH (Coile 1933; Spurr 1940; 

Read & Walker 1950; McBain 1983) and ascribed the increase to the high calcium 

content of J. virginiana leaves and litter. Recent declines of Q. marilandica 

recruitment in the region (Bruner 1931; Johnson & Risser 1975; Hoagland et al. 1999) 

may in part be related to increases in soil pH associated with the development of a J. 

virginiana midstory. Soil pH preferences for Q. stellata (pH 4.8-7.0, USDA, NRCS 

2008a) and Q. muehlenbergii (pH 6.5-7.0+, Limstrom 1965) have a wider range than 

those for Q. marilandica. If indeed J. virginiana has a negative effect on Quercus spp. 

recruitment, the increasing abundance of the species will not only affect the 

understory, but eventually may affect the forest overstory. 

 The presence of vines in the understory beneath J. virginiana may be 

explained by their ability to survive in low light environments. Vines which use 

tendrils to climb, including Parthenocissus quinquefolia, Smilax spp. and Vitis spp. 

are well adapted to grow in environments with low PPFD (Carter & Teramura 1988). 

The presence of vine species under the J. virginiana may however also be explained 

by their tolerance to thick litter layers. The vines in my study are characterized by 

large seeds, which may increase germination success (Facelli & Pickett 1991). The 

few species of forbs that I found in dense J. virginiana areas are all species that grow 

and flower early in the spring when light levels in the understory are higher because 

the canopies of overstory trees have not yet fully developed. Even though they are 

shade tolerant (Weaver 1954; Buss 1956; USDA, NRCS 2008a), the grasses 

Dichanthelium oligosanthes and Elymus canadensis, both declined with increasing 

proximity to J. virginiana. Many grass species found in the study areas and adjacent 

prairies (e.g. Andropogon gerardii, Chasmanthium latifolium, Schizachyrium 

scoparium) reproduce asexually. As such, the species may be able to persist under J. 

virginiana, regardless of the potential effects on seed germination. However, 
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conditions of increased litter and lower light probably decrease crown sizes and cover 

of these grasses which may contribute to the greater decline in understory cover than 

species richness with proximity to J. virginiana. In southern Wisconsin, 

Dichanthelium oligosanthes was the only grass species under J. virginiana in prairies 

(McBain 1983). McBain observed that other grasses were not present around the 

species, even after removal of the trees and suggested allelopathic effects of littter as a 

possible explanation. Likewise, I propose that the decline of shade-tolerant 

graminoids close to J. virginiana was related to litter rather than light availability. 

 J. virginiana has tolerance for a wide range of pH, soil moisture, light levels 

and other environmental factors (Lawson & Law 1983; Eggemeyer et al. 2006). I 

found J. virginiana seedlings in all habitat categories, but most commonly under 

mature conspecifics. This finding is consistent with another study on the closely 

related J. ashei (Van Auken et al. 2004) that found seedlings occurred in all habitats 

within a Juniperus woodland. However, J. ashei seedlings were most common in 

direct vicinity of mature J. ashei trees (Jackson & Van Auken 1997; Van Auken et al. 

2004) due to a combination of dispersal constraints and higher mortality farther away 

from the parent tree.  

 A well-developed J. virginiana midstory will make the forest more resistant to 

surface fires, more susceptible to crown fires, and decrease the ability to implement 

prescribed burning. Increasing J. virginiana abundance in the midstory of Cross 

Timbers forests is related to decreasing fire frequency because the species is not able 

to survive fires that cause crown scorch and does not sprout following topkill (Engle 

& Stritzke 1995). On the contrary, Quercus stellata is a fire-tolerant species and is the 

natural dominant species in the Cross Timbers which historically had a fire return 

interval of approximately 10 years (Abrams 1992; Guyette et al. 2002). Overall, fire 

suppression has led to increases in fire-sensitive, shade-tolerant species throughout 

the eastern United States, at the expense of fire-tolerant heliophytes. This process of 

forest ‘mesophication’ (Nowacki and Abrams 2008) is illustrated by the increasing 

presence of J. virginiana biomass and related declines in herbaceous biomass. 

Reductions in understory productivity further facilitate J. virginiana encroachment 

because fine fuel accumulation is a direct function of understory productivity. As J. 

virginiana is largely immune from surface fire once it reaches 2 m in height (Bidwell 

et al. 2002), the accumulation of a J. virginiana midstory becomes permanent unless a 

crown fire occurs, which has a high risk to people and property. Crown fires are 
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historically uncommon in the Cross Timbers but are becoming more common due to 

the inclusion of the highly flammable J. virginiana (Bidwell et al. 2000). Therefore, 

to maintain the ecological integrity of the Cross Timbers forest and maintain forests 

that are resistant to catastrophic crown fires, prescribed burning should be 

implemented to reduce J. virginiana encroachment. Once J. virginiana encroachment 

reaches a point where herbaceous biomass (fine fuels) declines, more expensive 

mechanical treatments are necessary.    

 The long term community- and ecosystem-level effects of midstory 

development in otherwise more open forest ecosystems are largely unknown. My 

study and several others indicate a decline of forest understory communities with 

midstory encroachment and indicate that litter is the most likely candidate for 

explaining variation in understory vegetation (Provencher et al. 2001a; Hiers et al. 

2007). In the Cross Timbers, the development of a midstory through encroachment 

resulting from anthropogenic fire suppression not only affects the herbaceous 

community but also the regeneration and future composition of the overstory 

community and has consequences for ecosystem function and resilience to 

disturbance. The increasing human influence on pyric frequency can have strong 

effects on forest structure and biodiversity in fire-dependent forested ecosystems 

wherever there is a potential for the release of fire-sensitive woody species.   
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Table 1: Means (±1 S.E.) of stand structure, canopy, micrometeorological  

and soil variables.  

Category Total  
BA 

(m²ha-1) 

Mean 
diameter 

(cm) 

Openness 
(%) 

Temp.  
air 

(°C) 

Relative 
humidity 

(%) 

Temp. 
soil 
(°C) 

Vol. soil 
moisture 

(%)  
Open 
 

0 
b 

0  
B 

50.3 ± 1.9 
 a 

35.7 ± 0.2  
a 

54.0 ± 0.9  
b 

23.1 ± 0.1 
 a 

11.4 ± 1.0  
a 

Oak 
 

14.3 ± 0.1 
a 

20.3 ± 3.2  
A 

18.6 ± 0.7 
 b 

34.0 ± 0.2 
 bc 

54.7 ± 0.8 
 ab 

20.8 ± 0.1 
 b 

10.1 ± 0.7 
 bc 

Outer edge 
 

15.2 ± 0.1 
a 

22.5 ± 3.6 
A 

21.0 ± 1.0 
 b 

34.3 ± 0.2 
 b 

53.6 ± 0.9 
 b 

20.8 ± 0.1 
 b 

10.0 ± 0.7 
 bc 

Inner edge 
 

15.6 ± 0.1 
a 

21.0 ± 3.3 
a 

19.4 ± 0.7 
 b 

34.0 ± 0.2 
 bc 

54.6 ± 0.8 
 ab 

20.2 ± 0.1 
 c 

10.3 ± 0.8 
 b 

Trunk 
 

15.7 ± 0.1 
a 

22.9 ± 3.6 
a 

18.9 ± 0.7 
 b 

33.7 ± 0.2 
 c 

55.5 ± 0.7 
 a 

19.3 ± 0.1 
 d 

9.2 ± 0.5 
  c 

Total basal area is the cross sectional area of trees at 1.37 m.  Mean diameter  

is the mean diameter of trees measured at 1.37 m. Openness is the percent of  

sky not obscured by canopies. Lower case letters indicate significant difference  

among categories (Duncan's post hoc, α=0.05). 
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Table 2: Species found in the four forest treatments with their frequencies 

(% of plots). 
Species  

code 
Scientific name G

row
th

 
form

a
 

Frequency 

O
ak 

O
uter 

E
dge 

Inner 
E

dge 

T
runk 

A
ll 

AMPS Ambrosia psilostachya F 15 15 12.5 7.5 12.5 
CABU Carex bushii G 17.5 20 15 10 15.6 
CAOL Carex oligocarpa G 17.5 17.5 15 7.5 14.4 
CECA Cercis canadensis T 5 7.5 7.5 17.5 9.4 
CELA Celtis laevigatus T 7.5 2.5 7.5 15 8.1 
CEOC Celtis occidentalis T 55 55 37.5 50 49.4 
CODR Cornus drummondii S 7.5 2.5 17.5 7.5 8.8 
DIOL Dichanthelium oligosanthes G 30 32.5 15 10 24.4 
ELCA Elymus canadensis G 20 25 15 10 17.5 
ERST Erigeron strigosus F 17.5 12.5 20 10 15.0 
GACI Galium circaezans F 5 10 7.5 7.5 7.5 
GAPU Gamochaeta purpurea F 10 12.5 5 5 8.1 
GECA Geum canadense F 60 37.5 7.5 0 26.3 
GERC Geranium carolinianum F 15 15 7.5 7.5 11.3 
JUVI Juniperus virginiana T 25 30 27.5 40 30.6 
LEVI Lespedeza virginica L 5 10 7.5 7.5 7.5 
MYVE Myosotis verna F 12.5 7.5 10 2.5 8.1 
PAPE Parietaria pensylvanica F 35 40 57.5 47.5 45.0 
PAQU Parthenocissus quinquefolia V 57.5 45 60 62.5 56.3 
QUMA Quercus marilandica T 7.5 15 2.5 0 6.3 
QUMU Quercus muehlenbergii T 12.5 10 10 2.5 8.8 
QUST Quercus stellata T 30 25 12.5 5 18.1 
RHGL Rhus glabra S 17.5 22.5 10 10 15.0 
SACA Sanicula canadensis F 12.5 12.5 2.5 2.5 7.5 
SCPA Scleria pauciflora G 5 0 2.5 2.5 2.5 
SCSC Schizachyrium scoparium G 25 12.5 10 5 13.1 
SILA Sideroxylon lanuginosum T 10 15 5 10 10.0 
SMBO Smilax bona-nox V 40 30 37.5 55 40.6 
SYOR Symphoricarpos orbiculatus S 57.5 22.5 40 27.5 36.9 
ULAM Ulmus americana T 52.5 60 57.5 52.5 55.6 
ULRU Ulmus rubra T 10 5 10 12.5 9.4 
VIRO Vitis rotundifolia V 12.5 32.5 17.5 20 20.6 

All species that occur at least in 5% of plots are represented. Nomenclature  

follows USDA, NRCS, 2008. aAbbreviations for growth forms are: F=forb,  

G=graminoid, T=tree, S=shrub, L=legume,V=vine. 
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Fig. 1: Mean (±1 S.E.) A. direct, B. diffuse, and C. total 

photosynthetic photon flux density (PPFD) measured using  

analysis of canopy photographs. Letters indicate significant  

difference among treatments (Duncan’s post hoc, α=0.05).  
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Fig. 2: Means (±1 S.E.) for soil A. nitrate,  

B. ammonium, C. total nitrogen, and D. pH.  

Letters indicate significant difference among  

treatments (Duncan’s post hoc α=0.05).  
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Fig. 3: Means (±1 S.E.) of A. oak, B. redcedar, C. grass, 

and D. total litter. Letters indicate significant differences  

among treatments (Duncan’s post hoc, P=0.05). 
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Fig. 4: Means (±1 S.E.) of A. spring and B. summer  

vegetation cover, and C. total species richness.  

Letters indicate significant differences among  

treatments (Duncan’s post hoc, α=0.05).  



 68

Redcedar litter mass (g.m-2)

0.00 0.05 0.10 0.15 0.20

Lo
g 

to
ta

l
sp

ec
ie

s 
ric

hn
es

s 
(s

pp
.m

-2
)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

R2=0.078 (P<0.001)
y=0.975-1.128x

Redcedar litter mass (g.m-2)

0.00 0.05 0.10 0.15 0.20

Lo
g 

su
m

m
er

 
ve

ge
ta

tio
n 

co
ve

r 
(%

)

0.0

0.5

1.0

1.5

2.0

2.5

Grass litter mass (g.m-2)

0.00 0.02 0.04 0.06

Lo
g 

to
ta

l 
sp

ec
ie

s 
ric

hn
es

s 
(s

pp
.m

-2
)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Total litter mass (g.m-2)

0.00 0.05 0.10 0.15 0.20 0.25

Lo
g 

su
m

m
er

 
ve

ge
ta

tio
n 

co
ve

r 
(%

)

0.0

0.5

1.0

1.5

2.0

2.5

Diffuse PPFD (mol.m-2d-1)

0 1 2 3

Lo
g 

to
ta

l 
sp

ec
ie

s 
ric

hn
es

s 
(s

pp
.m

-2
)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Direct PPFD (mol.m-2d-1)

0 5 10 15 20 25 30

S
um

m
er

 v
eg

et
at

io
n 

co
ve

r 
(%

)

0

20

40

60

80

100

R2=0.167 (P<0.001)
y=1.432-4.366y

R2=0.032 (P=0.02)
y=0.925+4.742x

R2=0.102 (P<0.001)
y=1.579-3.627x

R2=0.031 (P=0.03)
y=0.813+0.031

R2=0.027 (P=0.05)
y=20.940+0.810x

A. B.

C. D.

E. F.

 

Fig. 5: Linear regressions of significant (α=0.05) variables with species richness and  

summer vegetation cover. Relationships between redcedar litter mass and A. species  

richness and B. summer vegetation cover are on the top, between C. grass litter mass and  

species richness and D. total litter mass and summer vegetation cover are in the center,  

and E. diffuse PPFD and species richness and F. direct PPFD and summer vegetation  

cover are on the bottom. Crosses represent oak plots, circles outer edge, stars inner edge  

and triangles trunk plots. 
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.  
 

Figure 6: A. pCCA biplot of species and categories. Bold letters represent  

treatments as centroids. Sites are included as covariables in blocks.  

Species codes (Table 2) may be slightly offset to increase visibility in  

diagram. First axis (λ=0.103) explains 61.5% of variability in species- 

environmental relation. Second axis (λ=0.050) explains 29.9%. B. biplot 

arrows for passive variables superimposed over the category centroids.

-0.6 1.0

-0
.6

0.
8

AMPS

GAPU
SCSC

SILA
CABU

CAOL

CAUM

CECA

CELA

CEOC

CODR
ELCA

ERST

GACI

GECA

GERC

JUVI

LEVI
MYVE

DIOL PAPE
PAQU

QUMA

QUMU

QUST

RHGL

SACA

SMBO

SYOR

ULAM

ULRU

VIRO

Oak

Outer Edge

Inner Edge

Trunk

pCCA AXIS 1

pC
C

A 
AX

IS
 2

-0.6 1.0

-0
.6

0.
8

OAK

OUTER EDGE

INNER EDGE

TRUNK

NO3

NH4
pH

Total N

Total litter mass

Oak litter

Cedar litter

Grass litter

Direct PPFD

Diffuse PPFD

Total PPFD

Litter cover

pCCA AXIS 1

pC
C

A
 A

X
IS

 2

A. 

B. 

 

 



 70

CHAPTER IV 
 
 

EFFECTS OF JUNIPERUS ENCROACHMENT ON WINTERING BIRD 

COMMUNITY STRUCTURE IN OKLAHOMA CROSS TIMBERS FORESTS 

 

ABSTRACT 

I studied changes in avian wintering community composition, richness, and physiology 

due to encroachment of eastern redcedar (Juniperus virginiana) into the forest midstory 

of Cross Timbers forests in Payne County, Oklahoma, USA. I hypothesized that redcedar 

encroachment brings about changes in forest structure that affect species differentially, 

with insectivorous species showing increased body condition in redcedar-encroached 

forest relative to granivorous birds. I predicted that redcedar encroachment and 

consequent changes in forest structure would decrease avian richness and negatively 

influence species composition. I mist-netted birds and conducted transect counts at six 

sites (3 with >80% redcedar midstory, 3 with <10%) during 2007—2008. I calculated a 

body condition index of birds from morphometric measurements using principal 

component analysis (PCA). In 2008—2009, I conducted point counts in a 30 ha site with 

variable redcedar cover and used canonical correspondence analysis (CCA) to relate 

species abundance to environmental variables. Body condition was negatively correlated 

with redcedar canopy cover for my three focal species. Total species richness in the 30 ha 

site was negatively correlated with redcedar cover. Hermit Thrush and Golden-crowned 

Kinglet abundance was positively correlated with redcedar cover, whereas bark-probing 

birds as a guild showed a negative correlation. Two strong axes emerged from the CCA, 

one related to redcedar versus broadleaf cover, and the other to woody versus herbaceous 

understory cover. My results indicate that food was not limiting to focal species in 

encroached stands, and some species occurred in higher abundance in these stands.  
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However, the effects of redcedar on birds are species dependent, and bark-probing birds 

such as woodpeckers were negatively correlated with redcedar cover, possibly due to 

foraging impediments related to redcedar physical structure. 

 

KEYWORDS Migratory birds, Body condition index, Eastern redcedar, Oklahoma, 

Cross Timbers  

 

INTRODUCTION 

Forest birds are highly responsive to changes in forest structure and diversity of forest 

microhabitat (James and Wamer 1982, Engstrom et al. 1984, Urban and Smith 1989, 

Provencher et al. 2002). Eastern redcedar (Juniperus virginiana L.) is a coniferous tree 

native to eastern North America that has become increasingly abundant in the prairies 

and forests of the southern Great Plains in recent decades (Engle et al. 2000) primarily 

because of anthropogenic fire suppression. 

 The effects of woody encroachment, including eastern redcedar encroachment, on 

prairie birds also have been well documented (Chapman 1996, Coppedge et al. 2001, 

Coppedge et al. 2004, Grant et al. 2004). Eastern redcedar encroachment in prairies 

increases avian species richness as shrubland and woodland birds such as Northern 

Cardinal (Cardinalis cardinalis L.) and Carolina Chickadee (Poecile carolinensis 

Audubon) expand their range due to development of woody cover. Certain neotropical 

migrants that depend on shrub cover in prairies may also benefit from redcedar 

encroachment (Coppedge et al. 2001). However, the integrity of avian communities has 

suffered with the intrusion of eastern redcedar into prairies. Typical grassland species 

such as Grasshopper Sparrow (Ammodramus savannarum Gmelin) and Western 

Meadowlark (Sturnella neglecta Audubon) decline with redcedar encroachment, possibly 

due to changes in ‘visual cues that indicate unsuitable habitat’ (Chapman 1996).  

 In Cross Timbers forests of northern Texas, Oklahoma, and southern Kansas, 

eastern redcedar can form dense midstories under a canopy of dominant post (Quercus 

stellata Wangenh.) and blackjack oak (Q. marilandica Münchh.) (Engle and Stritzke 

1995). The increase of redcedar in these forests represents an alteration of forest structure 

because a dense midstory of a coniferous, evergreen tree replaces a fairly open midstory 
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with scattered deciduous shrubs. Structural changes in vegetation are more important in 

defining forest bird community composition and richness than changes in the species of 

vegetation present (Dickson et al. 1993, Sutter et al. 1995, Herkert 1997) and the 

formation of a dense redcedar midstory may be important in this respect. In addition to 

the changes in visual cues associated with redcedar encroachment, increases in redcedar 

reduce understory vegetation biomass (Smith and Johnson 2003, Linneman and Palmer 

2006, Van Els et al. Chapter III). Reduced understory productivity and diversity can 

reduce foraging efficiency of ground-foraging birds (Rodewald and Smith 1998). 

However, the effects of eastern redcedar on bird assemblages through alterations in forest 

structure may not solely be negative. The dense structure of redcedar-encroached forests 

may offer increased cover and may harbor more insect prey (Norberg 1978, Danks 1991). 

In forests and woodlands, the most marked effects of tree species on bird species 

composition have been noticed between coniferous species and broadleaf trees (Franzreb 

1978). Eastern redcedar differs from deciduous angiosperms in that it bears conelets 

(‘berries’) which form an important food source for some bird species in winter 

(Horncastle et al. 2004) and because its persistent foliage provides visual and thermal 

protection in the winter.  

 The effects of an eastern redcedar midstory development in forests on bird 

communities have not received much attention compared to the effects of redcedar 

encroachment on prairies and grassland birds. However, changes in forest bird 

communities may be important and may affect a large geographical area. Cross Timbers 

forest, where redcedar encroachment is particularly prevalent, occupies approximately 

79,000 km2 (Kuchler 1964) and represents an important breeding area for many forest 

bird species, but also, due to their relative southern location for temperate forests, an 

important wintering area for several North American short-distance migrants. The effects 

of forest structure on behavior and distribution of birds may be particularly pronounced 

during winter, when climatic and nutritional stresses are greater than during any other 

time of year (Desrochers et al. 1988, McNamara and Houston 1990). Redcedar is the only 

abundant evergreen tree species in most of the Cross Timbers forests. This accentuates 

habitat structure differences in winter between forests made up of only deciduous species 

and those with a coniferous midstory. Winter conditions are thus ideal for investigating 
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spatial distribution, habitat selection and the resulting physical effects on forest-dwelling 

birds. , 

 The objectives of this study were to determine the effects of increasing redcedar 

encroachment on wintering bird community composition, structure, and physiology in 

Cross Timbers forests of central Oklahoma. I hypothesized that a denser structure in 

forests due to redcedar encroachment negatively affected species that favor open forests 

or savannas while species associated with dense forest structure increase with redcedar 

abundance. To investigate the influence of redcedar encroachment on avian physiology, I 

selected three focal species and hypothesized that Yellow-rumped Warblers (Dendroica 

coronata L., mainly insectivorous/berry-eating) and Red-breasted Nuthatch (Sitta 

canadensis L., mainly insectivorous, eats conifer seeds in wintering habitat) would show 

higher body condition in redcedar-encroached forest than in forests with little redcedar, 

whereas Dark-eyed Juncos (Junco hyemalis L., mainly granivorous) would show lower 

body condition. I also predicted that, based on habitat selection, insectivorous and berry-

eating species would be more abundant in redcedar-encroached forest than granivorous 

and omnivorous species.       

  

METHODS 

Study sites 

I conducted this study at seven locations in western Payne County, Oklahoma. The study 

locations lay at the western edge of the Cross Timbers forest which forms an ecotone 

between the tallgrass prairie and eastern broadleaf forests. All locations had a variable 

overstory of Quercus stellata and Q. marilandica, which are the dominant tree species in 

the area. Some had a variable midstory of Juniperus virginiana. I excluded large gaps and 

forest edge. Additional tree species included Q. muehlenbergii Engelm., Sideroxylon 

lanuginosum Michx., Celtis occidentalis L., C. laevigata Willd. and Ulmus americana L. 

Understory vegetation in winter was characterized by vines such as Smilax bona-nox L., 

Vitis rotundifolia Michx.. Parthenocissus quinquefolia L., the woody shrub 

Symphoricarpos orbiculatus Moench. and the senesced grasses Schizachyrium scoparium 

(Michx.) Nash. and Dichanthelium oligosanthes Gould.  
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Study 1 - Effects of redcedar encroachment on physical condition and abundance   

I sampled a ~2 ha circular location (80 m radius) at each of six sites from Oct.–Mar. 

2007–2008. Three of these six locations had a dense redcedar midstory (>80% relative 

cover, i.e. 80% of sky obstructed by redcedar cover) with a small broadleaf component 

(36.1150, -97.1949; 36.1017, -97.2070; 36.1175, -97.2126) and the other three had low 

relative redcedar cover (<10%) with a high broadleaf component (36.1113, -97.1920; 

36.1083, -97.2107; 36.1076, -97.2273).  

I used mist nets to capture wintering songbirds in Oct—Mar 2007—2008, a time 

span suitable for sampling wintering birds in most of North America (Kricher 1975). At 

each banding station, I operated four mist nets (6 m, 30 mm mesh) spaced approximately 

20 m apart. I did not clear vegetation to accommodate a standard array and used available 

space between trees for net placement. By doubling the height of net poles, I placed one 

net higher (approximately 5 m to the top of the net), to capture birds near canopy level 

(Bonter et al. 2008). The other three nets were placed at ground level. To increase capture 

rates by attracting foraging flocks, I broadcast calls of wintering songbirds through a 

battery-powered speaker attached to an MP3 player. I captured birds during the 3 hrs 

after dawn or before dusk. I adjusted my sampling to correct for seasonal variation in 

sunrise and sunset. I sampled each of six sites ten times (once every two weeks). Rainy 

and windy conditions (>10 kph) were avoided.  

I immediately weighed captured birds in a cloth bag using a spring scale 

calibrated to the weight of the bag (±0.5 g), and marked them with USFWS numbered 

metal bands. I visually estimated subcutaneous fat deposits on a 0-3 scoring system 

(Helms and Drury 1960). I also determined unflattened wing chord using a ruler (±1 mm) 

and tarsal length and culmen length using dial calipers (±0.1 mm). I sexed and aged birds 

considering morphometric characteristics and plumage details (Pyle 1997).  

I analyzed capture data for three focal species (Yellow-rumped Warbler, Dark-

eyed Junco, and Red-breasted Nuthatch) of which I captured at least ten individuals. I 

calculated body condition indices from tarsal length, culmen length and wing chord using 

regression and Principal Components Analysis (PCA) in order to create a useful body 

condition statistic for comparison between forests with variable amounts of redcedar and 

among species. For this purpose, residuals (i.e. deviation of an individual’s mass given 
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morphometric measurements) were used as a body condition index (Rodewald and 

Shustack 2008a, 2008b). I calculated differences in body condition index and 

subcutaneous fat between forests with much and little redcedar using T-tests, and 

differences in gender and age using Pearson’s Chi-square tests. For comparison between 

forest types, I assumed that most species in my study were sedentary in winter, as has 

been shown for several species included in this study or related species (Kilham 1958, 

Condee 1970, Salomonson and Balda 1977, Enoksson and Nilsson 1983, Brown et al. 

2002). However, I recognize that some species move locally, especially early and late in 

the season. I used SPSS version 16.0 (SPSS 2007) statistical software for these tests, with 

α=0.05.  

To determine species richness and composition, a single observer conducted ten 

30 min timed area searches at each circular location during the winter of 2007—2008. All 

observations were completed during the first three hours after sunrise or the last three 

before sundown. During the winter 2008–2009 season, I used modified sampling to 

provide an unbiased estimator of abundance. At each of the six sites, a single observer 

surveyed a 500 m transect on eight separate occasions. Transects bisected the circular 

locations, extending beyond the location into similar habitat (Bibby et al. 2000). The 

observer recorded the position of each bird detected as an orthogonal distance to the 

transect (Emlen 1971) using a rangefinder (Bushnell Co.). Transect counts were 

completed during the first two hours of the morning or the last two hours of the 

afternoon. From the orthogonal distance to transects observed in the field, I calculated a 

detection coefficient based on a lateral distance of 125 m (coefficient of detectability, 

CD125, Emlen 1971) from transects; a method that is suitable for non-vocalizing wintering 

birds. I calculated CD values for both oak-dominated and redcedar-encroached forests, 

assuming that structural differences in the two habitat types would lead to differences in 

detectability. I then applied coefficients of detectability from 2008–2009 data to my 

2007–2008 data to compare inter-annual variation in bird abundance. I only report CD125 

values for species that were detected with greatest frequency in two proximal strips of 30 

m along transects. Larger species such as corvids yielded unrealistic CD125 values 

because they were most frequently recorded at a distance >60 m from the observer, I 

omitted these species from my analysis. 
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Within the six circular locations first sampled in 2007—2008, I measured 

vegetation in one central circular plot (15 m) and four smaller plots (5 m radius) that were 

40 m from the center in each cardinal direction. I measured canopy cover using a digital 

camera with a hemispherical fisheye lens. During late March (leaf-off), I took nine 

hemispherical photographs at each 15 m plot, one at the center, and at 5 m and 10 m 

away from the center in each cardinal direction. I calculated canopy openness and tree 

cover (broadleaf/redcedar as a percentage of total cover) using grayscale and full color 

analyses respectively in WinScanopy and XIScanopy software (Régent Instruments 

2006). In grayscale analysis, the colors in the picture were divided into two groups, black 

(canopy) and white (sky), based on manual categorization of proximity to either color 

extreme. In full color analysis, I set three color classifications and distinguished between 

dark green and rufous brown (redcedar), other greens and browns (broadleaf trees) and 

light colors (sky).    

  

Study 2 – Avian species relationships with redcedar and other environmental variables  

The following year (Oct.–Mar. 2008–2009), I set up 63 plots in one rectangular 30 ha site 

(36°04’, -97°21’). Circular plots had a radius of 20 m and were arranged in a 7 x 9 cell 

grid. All plot centers were located at least 40 m from the forest edge and 60 m from each 

other. Midstory redcedar cover at the 30 ha site varied from 0% to 70%. In the 30 ha site, 

the same observer performed 2 min point counts at all 63 plots. I finished point counts 

within 4 hrs after sunrise. I excluded from analysis birds that flew over and did not make 

use of the habitat.   

 Within the 30 ha site, I took five hemispherical photographs at each grid point, 

one at the center, and one at 12 m away from the center in each cardinal direction. I took 

all pictures in March during leaf-off. In addition, I used a Basal Area Factor (BAF) 10 

angle gauge to estimate tree basal area for each point and I determined height (±10 cm) of 

the three tallest deciduous trees and three tallest redcedars in the count circle using a 

Haglöf Vertex Hypsometer (Haglof Inc.). 

To quantify understory vegetation, I used 20 m transects in each cardinal direction from 

the center of the point count circle. I determined length of vegetation cover by plant 

functional forms (forb, grass, vine, shrub) and length of litter cover along tape measures 
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(± 1 cm) according to the line-intercept method (Canfield 1941). I then translated these 

data into relative cover. At five points spaced at regular 4 m intervals along transects, I 

measured maximum vegetation height and litter depth with a ruler (±1 mm).   

 I performed a series of linear regressions (α=0.05) to determine relationships 

between environmental variables and avian species abundance in my grid count. 

Environmental variables included height, cover and basal area of redcedar and broadleaf 

trees, cover of different functional groups of understory vegetation (senesced grasses, 

senesced forbs, vines, saplings below 1.38 m), and leaf litter. I chose these understory 

variables because there is a negative relationship between redcedar cover and cover of 

herbaceous vegetation (Engle et al. 1987; Linneman and Palmer 2006) and understory 

vegetation may be important to wintering birds in terms of nutrition and cover. I applied 

regressions to both individual species and avian functional groups, including bark-

probers (woodpeckers and nuthatches), leaf litter specialists such as American Woodcock 

(Scolopax minor Gmelin), Spotted Towhee (Pipilo maculatus Swainson), and Rusty 

Blackbird (Euphagus carolinus Mueller); seed-eaters (emberizids and finches), berry-

eaters (i.e., thrushes, Cedar Waxwing [Bombycilla cedrorum Vieillot] and Yellow-

rumped Warbler) and insectivorous birds (wrens, Yellow-rumped Warbler, kinglets). I 

used Canonical Correspondence Analysis (CCA) to examine avian composition in 

relation to all environmental variables (Ter Braak 1986). To ensure randomization of 

location between transect samples I applied toroidal shifts (Diggle 1983). I included only 

species that occurred in more than 5% of all counts to avoid bias of species that occur in 

only one or a few plots with microhabitats which may not be typical for them. I used 

CANOCO for Windows 4.5 (Ter Braak and Šmilauer 2002) for all ordination analyses. 

Furthermore, I calculated Ivlev’s electivity indices (Ivlev 1961) to explore electivity of 

redcedar and broadleaves by all species. The index was traditionally used to calculate 

food preferences (Ivlev 1961), but is used increasingly for habitat selection as well 

(Storch 1993, Blackwell and Krohn 1997). Ei=ri-pi/ri+pi is the equation that defines 

electivity (Ei), where ri represents the percentage of habitat (i) used by a species and pi is 

the percentage of habitat that is available to a species.  
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RESULTS 

Site characteristics 

In the three sites with <10% redcedar cover, Quercus stellata contributed on average 

52.7% to total basal area (BA); Q. marilandica 30.7%, other hardwoods 13.9%, and 

Juniperus virginiana 2.7%. For sites with >80% redcedar cover, J. virginiana contributed 

75.2% to BA, Q. stellata 22.5%, Q. marilandica 1.7% and other hardwoods 0.6%. Total 

basal area varied little between the two site types, and was 24.8 m².ha-1 in high redcedar 

sites and 24.7 m².ha-1 in low redcedar sites. Q. stellata had consistently the greatest mean 

DBH and height (Table 1). 

 

Study 1 - Effects of redcedar encroachment on physical condition and abundance  

I captured 89 individuals of 12 species, of which only Dark-eyed Junco, Yellow-rumped 

Warbler, and Red-breasted Nuthatch could be used to make meaningful comparisons 

between habitats. In calculating body condition indices, the first principal component 

explained 44.5% of variation among Dark-eyed Junco individuals (λ=1.335), 47.2% 

among individuals of Yellow-rumped Warbler (λ=1.416), and 54.3% among individuals 

of Red-breasted Nuthatch (λ=1.630). Dark-eyed Junco (P<0.01), Yellow-rumped Warbler 

(P=0.05) and Red-breasted Nuthatch (P<0.01) captured in forests with a redcedar-

midstory had lower body condition indices than in forests with little redcedar. Pooled 

scores for all winter residents (i.e. excluding year-round species) captured in forests with 

a redcedar-midstory also showed a lower subcutaneous fat score (P<0.05) than those 

caught in forests with little redcedar, but body condition indices did not differ (P=0.48). 

Body condition indices of Dark-eyed Junco (r²=0.31, P<0.01), Red-breasted Nuthatch 

(r²=0.56, P<0.01), and Yellow-rumped Warbler (r²=0.39, P<0.01) were negatively 

correlated with redcedar canopy cover.  

 Body condition index scores pooled for all winter resident species showed an 

increasing trend with the progression of winter in both redcedar-encroached forest and 

forest with little redcedar, as did subcutaneous fat. Dark-eyed Junco (P=0.02) and 

Yellow-rumped Warbler (P=0.04) showed greater fat deposits during the second half of 

winter than during the first half. There was no difference for Red-breasted Nuthatch 

(P=0.16). Genders of Yellow-rumped Warbler (χ
2=1.644, n=19, P>0.10), Dark-eyed 



 79

Junco (χ2=0.269, n=21, P>0.10) and Red-breasted Nuthatch (χ
2=0.351, n=11, P>0.10) 

were equally distributed over the two habitat types. Juveniles and adults of Yellow-

rumped Warbler (χ2=2.011, n=19, P>0.10) and Red-breasted Nuthatch (χ
2=0.196, n=11, 

P>0.10) were equally distributed over habitats, whereas juveniles and adults of Dark-

eyed Junco were not (χ2=3.103, n=21, P=0.04). Adult Juncos were captured more 

frequently (n=8) in redcedar than juveniles (n=3), whereas juveniles (n=6) were more 

frequently caught in deciduous habitats than adults (n=3). 

 

Species abundance 

I applied CD125 values to my count data to obtain avian abundance data. Species 

abundance among the six circular locations was highly variable within as well as between 

the two consecutive winters (Table 2). Tufted Titmouse (Baeolophus bicolor L.) and 

Carolina Wren (Thryothorus ludovicianus Latham) were the only species more abundant 

at the three sites with <10% redcedar, whereas Hermit Thrush (Catharus guttatus Pallas), 

Yellow-rumped Warbler, and Golden-crowned Kinglet (Regulus satrapa Lichtenstein) 

were more abundant in forests with >80% redcedar. Dark-eyed Junco and Golden-

crowned Kinglet showed great inter-annual variation in abundance among sites. The 

abundance trends for these species over the two years did not follow the same trend; 

Dark-eyed Junco was more common in 2007—2008 in both the high and low redcedar 

sites, whereas Golden-crowned Kinglet was more common the next winter in redcedar. 

Other species showed inter-annual variation only in one site type, Tufted Titmouse and 

Carolina Chickadee were more common at sites with <10% redcedar in 2007—2008 than 

in the following winter and Ruby-crowned Kinglet (Regulus calendula L.) was more 

abundant at sites with >80% redcedar in 2007—2008 than the next winter. Abundance of 

Yellow-rumped Warbler and Hermit Thrush showed little inter-annual variation at either 

site type. 

 
Study 2 - Species relations with redcedar and other environmental variables  

Total species richness was negatively correlated with relative redcedar canopy cover 

(R²=0.09, P=0.02), and declined from about 15 species at 0% encroachment to 12 species 

at 90% encroachment. No relationship between redcedar cover and overall abundance 
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(number of individuals/plot with 40 m diameter) (P=0.22) was found. Of all individual 

species in the study, regression showed significant, positive correlations between 

redcedar cover and abundance of Hermit Thrush (R²=0.14, P=0.002) and Golden-

crowned Kinglet (R²=0.26, P<0.001), and negative correlations between redcedar canopy 

cover for Fox Sparrow (Passerella iliaca Merrem, R²=0.18, P=0.001), Red-bellied 

Woodpecker (Melanerpes carolinus L., R²=0.31, P<0.001), Red-headed Woodpecker (M. 

erythrocephalus L., R²=0.23, P<0.001) and White-breasted Nuthatch (Sitta carolinensis 

Latham, R²=0.20, P<0.001) abundance. Cumulative regressions of ‘bark probing’, berry-

eating and insectivorous bird abundance (Fig. 1) also yielded significant relationships 

with redcedar cover.  

 Canonical correspondence analysis identified two strong axes (Fig. 2). The main 

axis was related to a gradient of redcedar encroachment in broadleaf forest. The other 

axis explained only less than half of the variation of the first axis and was related to 

woody understory cover (mostly vines) versus herbaceous understory cover (mostly 

grasses). Species were mostly found in the central area of the CCA diagram, away from 

the environmental centroids. This area lay approximately halfway between the redcedar 

and broadleaf centroids, confirming that most species I found were generalists. However, 

species points of most woodpeckers, Rusty Blackbird, and White-breasted Nuthatch were 

closer to the broadleaf centroid than to the redcedar centroid, whereas the opposite was 

true for Hermit Thrush and Golden-crowned Kinglet. Spotted Towhee and Carolina Wren 

were located relatively close to the vine centroid. When I placed greater than mean 

species abundance points in a diagram with redcedar and broadleaf cover on the x and y 

axis respectively (Fig. 3), most resident species, except three bark-probers, were centered 

at a redcedar/broadleaf proportion of 20-40%/20-40%. 

 Yellow-rumped Warbler and Dark-eyed Junco showed weak electivity for low 

broadleaf and low redcedar cover, while Hermit Thrush and Golden-crowned Kinglet 

showed weak positive responses to high redcedar cover and strong positive responses to 

low broadleaf cover (Fig. 4). Red-bellied and Red-headed woodpeckers showed a strong 

negative response to medium and high redcedar cover. 
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DISCUSSION 

Body condition differences with different amounts of redcedar cover  

Body condition indices of Yellow-rumped Warblers, Red-breasted Nuthatches, and Dark-

eyed Juncos, as well as subcutaneous fat of all winter resident species, were lower for 

birds wintering in forests with a midstory of redcedar relative to birds in forests with little 

redcedar. In general, wintering bird abundance is positively related to resource 

availability (Pulliam and Brand 1975, Dunning and Brown 1982, Meehan et al. 2004). 

Intuitively, lower body fat does not correspond with the relatively high abundance of 

some species in redcedar-encroached habitat. However, several studies have reported that 

body fat was inversely related to food availability (Rogers 1987, Rogers and Smith 1993, 

Strong and Sherry 2000) indicating that redcedar-encroached forest may offer increased 

nutrition for the species with lower body condition relative to forests without redcedar. 

Birds in low quality habitats may respond to an increased potential of sudden food 

shortage by maintaining high body fat, whereas birds in higher quality habitat, where the 

possibility of a sudden food scarcity event is lower, do not have the need to store excess 

fat. Lower fat levels in wintering birds also go hand-in-hand with lower vulnerability to 

predation (Lima 1986) and lower metabolic energy demands (Meehan et al. 2004), which 

may be an increased advantage for certain bird species wintering in redcedar-dominated 

habitats.  

 There may be important thermal and nutritional advantages to wintering in forests 

with a dense redcedar component. Juniper berries are a common to exclusive nutrition 

source for many wintering bird species (Phillips 1910, Paddar and Lederer 1982), and 

redcedar berries can be an excellent food source. Redcedar berries provide a combination 

of high protein and energy content (Smith et al. 2007). Their high protein content 

contrasts with acorns and other fruits of non-leguminous angiosperms (Short and Epps 

1976) found in the Cross Timbers. Redcedar berries may represent an important source of 

protein for birds during winter, when the availability of other sources of protein such as 

insects becomes more sporadic. In contrast with oaks and other broadleaves, redcedar 

berries as a food source are available to birds throughout fall and the winter season 

(Phillips 1910). Borgmann et al. (2004) showed that fruit-bearing shrubs determined 

Yellow-rumped Warbler abundance and that warblers actively track fruit abundance. In 
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contrast, the potential nutritional advantage of redcedar to woodpeckers and other species 

may be negligible because they do not generally consume redcedar berries. 

 Redcedar stands also may provide thermal refuge for wintering birds. Conifer 

stands had increased ambient temperatures compared to stands of deciduous trees during 

cold winter weather (Petit 1989) and were therefore favored by birds during adverse 

weather conditions. Black-capped Chickadee (Poecile atricapillus L., Odum 1942) and 

American Robin (Turdus migratorius L.) are known to roost in dense conifer foliage in 

winter, although energy saved by the latter compared to roosting in the open was only 4% 

(Walsberg and King 1980). Lower body mass in wintering birds is directly related to 

higher ambient temperature (Lima 1986). Redcedar may thus serve as a foraging or 

roosting refuge for birds on cold days.  

 Yellow-rumped Warblers captured in areas with >80% redcedar cover during my 

last 10 sampling days in February/March had fat scores ≥2 which was higher than earlier 

in the winter (n=3). This may be caused by premigratory hyperphagia, a period of 

increased nutritional intake just before migration (Odum 1960). Mean body mass, fat and 

body index data for the species would suffer from a positive bias, if these late individuals 

had increased levels of subcutaneous fat due to a brief period of premigratory 

hyperphagia. However, even with these saturated individuals, Yellow-rumped Warblers 

captured in areas with >80% redcedar were still leaner than birds from the mainly 

deciduous habitat. Moreover, hyperphagia would confirm that areas with large amounts 

of redcedar offer increased foraging potential, due to the possibility for birds to put on 

mass in a limited amount of time. No difference was noticed between fat deposits in the 

last two weeks of the capture period and the previous month for any other species 

indicating that most species did not exhibit premigratory hyperphagia.  

 No differences were found in gender of Dark-eyed Junco, Yellow-rumped 

Warbler and Red-breasted Nuthatch in forests with much and little redcedar. I did, 

however, detect age differences; adult juncos were more common in redcedar-dominated 

forest, whereas the opposite was true for broadleaf-dominated forests. Considering that 

birds may select redcedar-encroached habitat because of nutritional advantages, this may 

indicate that subordinate juvenile birds are driven out of the redcedar-encroached habitat 

by the adults. Although it is well established that gender influences wintering distribution 
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of Dark-eyed Juncos (Ketterson and Nolan 1976), age may also be a crucial factor in 

defining junco distribution. Age determines rank in Yellow-eyed Juncos (Junco 

phaeonotus palliatus) (Moore 1972) and is one of the determinants in establishing 

dominance as defined by interactions between wintering Dark-eyed Juncos (Ketterson 

1979).  

 I do not have data on body condition for several species that were more abundant 

in forests with little redcedar encroachment, including woodpeckers. This lack of data 

prevents us from investigating body condition differences between species of guilds with 

highly differentiated foraging and roosting strategies. Differences among wintering avian 

guilds in fat deposition can be significant (Rogers 1987) and these may affect generalized 

conclusions about body condition in relation to nutrient availability and the resulting 

habitat quality.  

 

 

Species distribution and abundance differences  

Parallel to declines in avian species richness with encroachment by redcedar in grasslands 

(Chapman 1996), I found a small decrease in total number of species in forests with 

increased redcedar cover. However, it seems that the compositional shift in species 

recorded by Chapman in prairies, whereby prairie specialists are replaced by woodland 

generalists at low redcedar encroachment levels, does not occur for wintering birds in 

redcedar-encroached forests. The less frequent migratory species showed a greater spread 

over different combinations of redcedar/broadleaf composition than did resident species. 

Similar to this, Holmes and Robinson (1981) showed that uncommon and edge-of-range 

species depended on specific tree species more than common species for foraging. This 

agrees with my finding that most resident species and the most abundant migratory 

species relied on a habitat that contained a mix of redcedar and broadleaf trees, which 

may be an indication of the generalist foraging behavior of these species.  

 In contrast, I observed a negative correlation between redcedar and bark-probing 

birds based on the results of the CCA, the redcedar/broadleaf diagram, and by electivity 

indices. Red-cockaded Woodpeckers (Picoides borealis) select taller stems in forests 

with midstory vegetation than in forests without a midstory or in forest gaps (Rudolph et 
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al. 2002). Also, most wintering birds are highly responsive to temperature differences 

caused by changes in incoming solar radiation or wind and move to lower forest strata 

with denser substrates when conditions are unfavorable. Female Downy Woodpeckers 

and White-breasted Nuthatches however did not participate in this vertical migration and 

instead selected the leeward side of large-diameter stems to protect themselves from the 

cold (Grubb 1977). The exact mechanisms that drive this avoidance of lower-level 

vegetation of bark-probing species are unknown but may be related to lower foraging 

potential and mobility in areas with dense foliage. Redcedar may thus cause both resident 

and migratory woodpeckers and nuthatches to avoid lower forest strata. Additionally, the 

deciduous forest, mainly composed of oaks in my region, may be beneficial to the 

physical condition of woodpeckers and other species because of greater stem size for 

cavity nesting or due to more cavities offering nocturnal insulation than in redcedar-

encroached forest (Kricher 1975).  

 The weak positive statistical relationships between redcedar cover and 

insectivorous and frugivorous species were largely a result of the inclusion of Hermit 

Thrush and Golden-crowned Kinglet, as their abundance patterns were related to redcedar 

and corresponded with results from the CCA. Electivity indices however showed that 

these species’ distributions are not defined by the selection of redcedar habitat, but more 

so by the avoidance of high broadleaf cover. Wintering Hermit Thrushes are at least 

locally more abundant in stands of pine than in broadleaf stands (Brown et al. 2002) and 

wintering Golden-crowned Kinglets are range-wide more abundant in moist, coniferous 

forests than in broadleaf-dominated forests (Lepthien and Bock 1976). There seem to be 

similarities between breeding habitat and wintering habitat structure for both of these 

species, which may have an effect on these species’ abundance patterns in redcedar-

encroached forests. Yellow-rumped Warbler also was more common in redcedar-

encroached sites during both winters. However, theses individual abundance patterns did 

not correspond with outcomes from the CCA analysis and with the location in Fig. 3, 

where the species is located at points of equal redcedar/broadleaf cover. Electivity indices 

show that Yellow-rumped Warbler avoids closed redcedar-encroached and broadleaf-

dominated forests. Yellow-rumped Warbler thus seems to respond to redcedar 

encroachment on a fine scale, but not on a broad scale. As long as there is sufficient 
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broadleaf cover, this species does not show any changes in abundance with increasing 

redcedar.   

  There was considerable annual variation in species abundance, with 2007—2008 

clearly showing greater numbers and richness of birds than 2008—2009. Red-breasted 

Nuthatch was common in 2007-2008 and nearly absent in 2008—2009, which indicated 

that 2007-2008 was part of an invasion winter for this and perhaps other species. Most 

species, however, exhibited no inter-annual abundance changes between redcedar-

encroached forest and forest with little redcedar. Although I only have data for two years, 

this may mean that the distribution of species over the two habitat types may be fairly 

consistent among different winters, although changes in abundance across habitats may 

be present.    

 The effects of redcedar encroachment on wintering forest birds are variable and 

species-specific. Body condition data in this study may give us some clues as to why 

certain species react positively or neutrally to redcedar, but a greater sample size and 

measurements from more species would be valuable to further explore the impacts of 

redcedar on avian forest communities. However, redcedar in forests has the potential to 

alter avian species composition and abundance patterns. While generalist forest species 

may show no abundance changes, the structural changes that redcedar brings to Cross 

Timbers forests may come to the benefit of certain insectivorous and frugivorous 

migrants and at the expense of both resident and migratory woodpeckers. As redcedar 

continues to increase in Cross Timbers forest stands, populations of conservation priority 

species that use these stands should be carefully monitored. 
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Table 1: Mean basal area, diameter at breast height, and tree height (±S.E.) of three sites 

with <10% redcedar cover and three with >80% cover. DBH=Diameter at Breast Height. 

Tree species Sites with <10% redcedar cover Sites with >80% redcedar cover 
Basal Area 
(m².ha-1) 

DBH 
(cm) 

Height 
(m) 

Basal Area 
(m².ha-1) 

DBH 
(cm) 

Height 
(m) 

J. virginiana 0.66±0.16 25.91±5.96 5.61±0.75 18.57±0.08 29.29±1.57 7.05±0.18 
Q. stellata 13.07±0.03 36.06±1.19 8.49±0.24 5.56±0.15 36.58±4.37 8.40±0.58 
Q.marilandica 7.61±0.04 34.65±1.85 7.50±0.40 0.42±0.09 18.47±4.87 3.31±0.61 
Others 3.45±0.04 24.88±1.79 6.14±0.36 0.15±0.03 31.67±7.58 5.65±0.85 
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Table 2: Mean species abundances (±S.E.) along transects 500 m in length and  

covering a lateral area of 125 m at sites with variable amounts of redcedar cover  

for the winter seasons of 2007—2008 and 2008—2009. *Represents no  

observations. Avian species abbreviations throughout text follow four-letter alpha  

codes proposed by Pyle and DeSante (2006). CACH=Carolina Chickadee, 

CARW=Carolina Wren, DEJU=Dark-eyed Junco, ETTI=Tufted Titmouse, 

GCKI=Golden-crowned Kinglet, HETH=Hermit Thrush, MYWA=Yellow-rumped  

(Myrtle) Warbler,NOCA= Northern Cardinal, RCKI=Ruby-crowned Kinglet. 

Species 
abundance 

 

Relative redcedar cover (%) 
7.6              8.2            8.7 81.2 87.2 92.7 

CACH 2008 9.7±0.5 16.8±0.7 26.8±2.4 9.6±1.1 6.8±1.6 5.5±0.6 
CACH 2009 1.9±0.3 0.8±0.1 4.1±1.1 4.1±0.8 1.4±0.3 0.7±0.6 
CARW 2008 3.1±1.3 6.3±0.3 3.1±0.3 2.7±0.3 1.8±0.3 2.7±0.3 
CARW 2009 * 0.6±0.4 2.5±0.2 1.3±0.8 1.3±0.2 0.9±0.6 

DEJU 2008 28.7±2.5 23.9±2.6 11.4±0.5 20.2±4.3 34.3±1.4 20.3±2.7 
DEJU 2009 0.6±0.6 1.8±1.5 3.0±2.5 7.6±2.5 10.2±1.9 12.7±2.1 
ETTI 2008 8.1±0.8 8.9±0.8 12.9±2.6 5.6±0.7 5.0±0.8 2.2±0.2 
ETTI 2009 1.1±0.1 0.4±0.3 4.0±1.1 1.6±0.5 1.3±0.3 0.6±0.4 
GCKI 2008 5.0±2.0 3.3±0.0 5.8±2.5 8.3±0.7 6.7±1.0 5.0±0.5 
GCKI 2009 * 1.7±0.6 * 1.7±0.6 1.7±0.6 18.3±1.4 
HETH 2008 1.0±0.0 * * 6.7±0.4 3.3±0.0 3.3±0.0 
HETH 2009 1.0±0.2 2.1±0.9 3.1±0.3 5.9±0.6 * 1.7±0.3 
MYWA 2008 7.7±0.2 5.9±0.8 6.5±1.8 39.2±2.8 37.2±2.2 44.8±4.4 
MYWA 2009 7.5±1.8 8.6±1.6 3.2±1.3 32.0±1.6 28.5±1.9 11.7±1.4 
NOCA 2008 2.1±0.7 1.7±1.0 1.7±0.3 3.5±0.2 2.1±0.2 2.4±0.5 
NOCA 2009 * * 0.4±0.1 2.1±1.3 1.0±0.2 0.7±0.1 
RCKI 2008 8.8±0.5 12.6±1.0 11.3±0.8 53.3±1.5 21.7±0.5 10.0±1.0 
RCKI 2009 2.1±0.7 3.1±1.0 1.7±0.4 5.0±1.0 * 2.8±0.9 
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Figure 1: Significant regressions (α=0.05) of A. 

bark-probing birds, B. insectivorous birds, and C. 

berry-eating birds with relative percentage redcedar  

cover.  
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Figure 2 : CCA biplot of species and environmental variables.The first axis (λ=0.148) 

explains 47.8% of variation in species-environment relationship. The second axis 

(λ=0.058) explains 18.8%. Species codes: AMCR=American Crow, AMRO=American 

Robin, BLJA=Blue Jay, CACH=Carolina Chickadee, CAWR=Carolina Wren, 

CEDW=Cedar Waxwing, DEJU=Dark-eyed Junco, DOWO=Downy Woodpecker,  

ETTI=Tufted Titmouse, FOSP=Fox Sparrow, GCKI=Golden-crowned Kinglet, 

HAWO=Hairy Woodpecker, HETH=Hermit Thrush, MYWA=Yellow-rumped (Myrtle) 

Warbler, NOCA=Northern Cardinal, NOFL=Northern Flicker, PUFI=Purple Finch, 

RCKI=Ruby-crowned Kinglet, RBWO=Red-bellied Woodpecker, RHWO=Red-headed 

Woodpecker, RSHA=Red-shouldered Hawk, RUBL=Rusty Blackbird, SPTO=Spotted 

Towhee, WBNU=White-bellied Nuthatch, YBSA=Yellow-bellied Sapsucker. 
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Figure 3 : Abundance centers (# individuals ≥mean for all points) of A. 

year-round residents and B. wintering residents in relation to cover of  

eastern redcedar and broadleaf species (±S.E.). Species codes: AMRO= 

American Robin, BLJA=Blue Jay, CACH=Carolina Chickadee, CAWR= 

Carolina Wren, CEDW=Cedar Waxwing, DEJU=Dark-eyed Junco,  

DOWO=Downy Woodpecker, ETTI=Tufted Titmouse, FOSP=Fox  

Sparrow, GCKI=Golden-crowned Kinglet, HAWO=Hairy Woodpecker,  

HETH=Hermit Thrush, MYWA=Yellow-rumped (Myrtle) Warbler,  

NOCA=Northern Cardinal, NOFL=Northern Flicker, RCKI=Ruby-crowned  

Kinglet, RBWO=Red-bellied Woodpecker, RHWO=Red-headed  

Woodpecker, RUBL=Rusty Blackbird, SPTO=Spotted Towhee,  

WBNU=White-bellied Nuthatch, YBSA=Yellow-bellied Sapsucker. 
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Figure 4 : Ivlev's electivity indices for select species' responses to A. three  

levels of redcedar cover and B. three levels of  broadleaf cover. Positive  

values indicate that habitat was used more than expected based on  

availability, whereas negative values show less use. 
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CHAPTER V 
 
 

CONCLUSION 

 

In this thesis are two studies of similar structure, both focusing on the influence of eastern 

redcedar encroachment (Juniperus virginiana L.) in Oklahoma Cross Timber forests on 

biodiversity. The effects of redcedar midstory encroachment on species richness and 

percent cover of understory vegetation were investigated in Chapter III, while the impacts 

on avian species richness and composition were studied in Chapter IV.  

 In Chapter III, I found that both total species richness and total percentage cover 

of vegetation declined with increasing levels of redcedar encroachment. The main factor 

contributing to these decreases seemed to be the increase of redcedar leaf litter, as shown 

by means of simple regression and canonical correspondence analysis (CCA). A decrease 

in photosynthetic photon flux density (PPFD) associated with increases in redcedar 

canopy cover also may have contributed to changes in understory species richness and 

cover. Most species, including forbs and graminoids showed lower abundance in areas 

directly adjacent to redcedar trunks compared to other areas in the forest farther away 

from redcedar. Some tree seedlings and vines did not follow this pattern of frequency 

distribution and were most common directly under redcedar. I suggested that species that 

showed declines with redcedar cover did so mainly because of germination inhibition 

resulting from these species inability to penetrate thick litter layers due to a lack of 

sufficient energy stores in seeds. Shade-intolerant species such as certain forbs and 

grasses were less abundant under redcedar possibly due to decreases in PPFD. Species 

that were more abundant in the direct vicinity of redcedar likely had mechanisms to cope 

with thick litter layers, including larger energy stores in larger seeds. Vines had climbing 

or trailing mechanisms to reach areas in the forest with higher PPFD. Oak (Quercus spp.) 

seedlings were least abundant under redcedar and increased in a gradient away from 



 99

redcedar. Soil chemistry changes may be partly responsible for this decrease, as at least 

one species’ pH tolerance levels are below the soil pH under redcedar. Changes in 

understory vegetation composition associated with redcedar encroachment may cause 

long-term alterations in forest structure as germination and growth of some overstory 

species such as oaks may be inhibited by increased redcedar litter loads. Declines in 

vegetation cover leads to diminished fine fuel loads in Cross Timbers forests, which may 

reduce fire frequency and promote further spread of the fire-intolerant redcedar, possibly 

at the expense of fire-tolerant structural dominants such as oaks.   

 In Chapter IV, I found that redcedar midstory encroachment altered wintering bird 

physiology, abundance and composition in forests. Body condition of three focal species, 

Yellow-rumped Warbler (Dendroica coronata), Dark-eyed Junco (Junco hyemalis) and 

Red-breasted Nuthatch (Sitta canadensis), was lower in birds captured in redcedar-

dominated forest than in broadleaf-dominated forest. Avian species richness was 

negatively associated with increased redcedar canopy cover. Abundance of two species, 

Golden-crowned Kinglet (Regulus satrapa) and Hermit Thrush (Catharus guttatus) was 

positively related to redcedar cover, whereas woodpeckers and White-breasted Nuthatch 

(Sitta carolinensis) as a functional group of bark-probing birds showed a negative 

relationship. CCA revealed that an increasing gradient of redcedar canopy cover was 

mainly responsible for changes in avian community composition, and secondarily 

understory vegetation composition. Changes in forest structure associated with redcedar 

encroachment may be mainly responsible for changes in avian communities and 

physiology. Species that are linked to dense coniferous habitat during the breeding season 

also were most common in redcedar-encroached habitat in winter. Species related to open 

forests or savannas such as some woodpeckers may respond negatively to denser forest 

structure caused by redcedar increases because of impediments to foraging. Low body 

condition of birds captured in redcedar coupled with high abundance may indicate that 

redcedar for many species forms suitable habitat, as birds do not build up body condition 

to cope with unpredictable food scarcity.   

 The effects of redcedar on forest biodiversity are highly variable; while some taxa 

or groups of taxa show reduced numbers or disappear with an increase in redcedar, other 

taxa show no reaction or are positively affected. Changes in community composition and 
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abundance of one group of taxa may affect another group of taxa. Changes in forest 

understory vegetation associated with redcedar encroachment probably have effects on 

avian communities as well; reductions in vegetation cover may decrease forage and cover 

for birds. If redcedar promotes its own spread at the expense of broadleaf trees by 

reducing fine fuels, bird communities may change more drastically than described in 

Chapter IV. Bird and plant species (and other taxa) that respond negatively to the 

development of a redcedar midstory may not be able to persist once redcedar becomes the 

main component of forests. It would be valuable to monitor not only the effects of 

redcedar midstory development on taxa other than birds or understory plants. A long-

term study assessing the impacts of the spread of redcedar in forests on all taxa would 

truly reveal the magnitude of changes in biodiversity due to fire suppression and resulting 

redcedar encroachment. The two studies presented in this thesis, as well as the suggested 

research, may be applicable anywhere woody midstory encroachment occurs in forests; a 

field of study that will likely gain importance as growing human populations increasingly 

impact forest disturbance dynamics.
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APPENDICES 

Appendix 1: Species found in the four forest treatments with their abundances 

(% cover of total sampling area per category). 
Scientific name G

row
th

 
form

a
 

Abundance (%) 

O
pen 

O
ak 

O
ut 

In 

T
runk 

Achillea millefolium F 0.15 0 0 0 0 
Ambrosia psilostachya F 4.18 0.38 0.85 0.15 0.23 
Amorpha canescens L 0.08 0 0 0 0 
Andropogon gerardii G 1.98 0 0.40 0 0 
Antennaria parlinii F 0 2.13 0 0 0 
Asclepias syriaca F 0.23 0.08 0 0 0 
A. viridis F 0.08 0 0 0 0 
Baptisia australis L 0.23 0 0 0 0 
Boehmeria cylindrica F 0 0.15 0.15 0.08 0 
Botrychium virginianum Fe 0 0.08 0 0 0 
Bouteloua curtipendula G 0.08 0 0 0 0 
B. gracilis G 1.03 0 0 0 0 
Bromus japonicus G 3.70 0.08 0.95 0 0 
Callirhoe alcaeoides F 0.08 0 0 0 0 
Carduus nutans F 0.15 0 0 0 0 
Carex bushii G 0.53 0.93 2.30 0.85 0.08 
C. oligocarpa G 0 0.85 0.68 0.38 0.15 
C. umbellata G 1.98 1.30 2.15 1.78 0.53 
Celastrus scandens V 0 0.40 0.08 0 0.40 
Celtis laevigatus T 0.15 0 0.30 0.63 0.30 
C. occidentalis T 0 1.73 0.98 1.35 2.20 
Cercis canadensis T 0 0.95 0.48 0.63 0.23 
Chamaecrista fasciculata L 0.48 0 0 0 0 
Chasmanthium latifolium G 0 1.95 0.15 0 0 
Chenopodium album F 0.08 0.08 0.08 0 0 
Chrysopsis pilosa F 0.78 0 0 0 0 
Convolvulus arvensis F 0 0.08 0 0 0 
Cornus drummondii T 0.08 0.78 0.23 0.23 0.15 
Croton capitatus F 0.75 0 0 0 0 
C. glandulosus F 0.75 0 0.23 0 0 
Cyperus lupulinus G 0.45 0 0.08 0.08 0 
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Desmanthus illinoiensis  L 0.53 0.08 0.08 0 0 
Desmodium laevigatum F 0.38 0.08 0.23 0.08 0 
Dichanthelium oligosanthes G 8.20 2.13 5.65 5.98 0.30 
Diodia teres F 0.08 0 0 0 0 
Elymus canadensis G 0.30 1.55 1.55 0.70 0.15 
Eragrostis curvula G 0 0 0.08 0 0 
E. lugens G 1.18 0 0 0 0 
Erigeron strigosus F 5.03 0.30 0.75 0.53 0.23 
Eriochloa contracta G 0.55 0.23 0.63 0.48 0 
Festuca arundinacea G 1.78 0.15 0.75 0.23 0.15 
Galium aparine F 0.08 0.40 0.08 0 0 
G. circaezans F 0.40 0.30 0.55 0.08 0.30 
Gamochaeta purpurea F 0.45 0.30 0.23 0.23 0 
Geranium carolinianum F 0.15 0.53 0.30 0.45 0.08 
Geum canadense F 0.08 2.48 1.15 0.75 0.23 
Glecoma hederacea F 0.48 0.15 0 0.08 0.08 
Grindelia papposa F 0.08 0 0 0 0 
Hordeum pusillum G 0.08 0 0 0 0 
Hypericum hypericoides F 0 0 0.08 0 0 
Juncus interior G 0.15 0 0 0 0 
Juniperus virginiana T 0.23 0.45 0.38 0.68 0.60 
Lactuca serriola F 0.15 0.48 0.08 0.08 0 
Lathyrus pusillus L 0.15 0.45 0.23 0.53 0.38 
Lespedeza cuneata F 2.60 0.88 0.48 0.15 0.08 
L. procumbens F 3.00 0 0.30 0.15 0.08 
L. virginica F 0.75 0.23 0.38 0.30 0 
Liatris squarrosa F 1.05 0.15 0.30 0 0 
Melilotus officinalis F 0.30 0 0.15 0 0 
Morus rubra T 0.40 0.08 0.15 0.08 0 
Myosotis verna F 0.08 0.38 0.08 0.15 0.70 
Opuntia humifusa C 0.08 0.15 0.08 0.08 0 
O. macrorhiza C 0 0.08 0 0 0 
Oxalis acetosella F 0.30 0 0.23 0.30 0.08 
Panicum virgatum G 0.08 0.08 0.55 0 0 
Parietaria pensylvanica F 4.95 5.88 10.08 4.70 1.23 
Paronychia fastigiata F 0.60 0 0.38 0.08 0.08 
Parthenocissus quinquefolia V 0.08 2.05 2.30 1.50 1.80 
Pascopyrum smithii G 0 1.15 0.83 0.83 1.63 
Paspalum setaceum G 0.15 0 0 0 0 
Physalis longifolia F 0.08 0 0 0 0 
Phytolacca americana F 0.08 0.48 0.95 0.08 0 
Plantago major F 0.68 0.15 0.38 0.23 0.08 
Prunus angustifolia S 1.00 0 0.15 0 0 
P. mexicana S 0.88 0 0 0 0 
Quercus marilandica T 0 0.88 0.15 0.23 0 
Q. muehlenbergii T 0 1.98 0.48 0.38 0 
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Q. stellata T 0.15 1.58 1.10 1.15 0.63 
Rhus glabra S 0.30 0.70 1.18 1.00 0.23 
Robinia pseudoacacia T 0.70 0.48 0 0 0 
Rubus sp. S 0.08 0.08 0.15 0.08 0.15 
Ruellia humilis F 0.40 0 0.08 0.08 0 
Sanicula canadensis F 0.15 0.38 0.30 0.15 0.08 
Sapindus drummondii T 0 0.23 0.08 0.08 0.08 
Schizachyrium scoparium  G 33.20 1.65 5.15 3.15 0 
Schrankia nuttallii L 0.15 0.15 0.08 0.08 0 
Scleria pauciflora G 0 0.15 0.08 0 0.08 
Setaria gracilis G 0.40 0 0 0 0 
Sideroxylon lanuginosum S 0.08 0.63 0.15 0.15 0.53 
Smilax bona-nox V 1.35 0.60 0.93 0.60 0.60 
S. rotundifolia V 0.08 0.75 0.15 0.85 1.28 
Solidago missouriensis F 0.08 0 0 0 0 
Sonchus oleraceus F 2.68 0 0.08 0 0 
Sorghastrum nutans G 0.08 0 0 0 0 
Sorghum halepense G 0.30 0 0 0 0 
Symphoricarpos orbiculatus S 0.08 7.60 3.55 3.63 1.08 
Taraxacum officinale F 0.30 10.63 6.48 4.18 0.53 
Teucrium canadense F 0.15 0.08 0.48 0.08 0 
Toxicodendron rydbergii S/V 0 0.08 0.55 0.15 0 
Tradescantia occidentalis F 1.58 0.55 0.55 0 0 
Tragopogon pratensis F 0.08 0.08 0.08 0 0 
Triodanis perfoliata F 0.30 0 0 0 0 
Ulmus americana T 0.15 0.23 0.78 0.93 0.38 
U. rubra T 0.15 1.83 2.40 1.90 1.13 
Verbascum thapsus  F 0.08 0 0.08 0 0 
Viola sororia  F 0 1.25 0.23 0.45 0.60 
Vitis rotundifolia V 0.08 0.15 0.23 0.38 0.40 

Nomenclature follows USDA, NRCS, 2008. aAbbreviations for growth forms are:  

C=cactus, F=forb, Fe=fern, G=graminoid, T=tree, S=shrub, L=legume, V=vine. 
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Appendix 2: List of wintering bird species observed in  

research sites during sampling. Nomenclature follows  

Pyle and DeSante (2006). Species followed by asterisk  

were found in or directly under redcedar. 

Scientific name English name 
Accipiter cooperii Cooper’s Hawk 
A. striatus* Sharp-shinned Hawk 
Aix sponsa Wood Duck 
Baeolophus bicolor* Tufted Titmouse 
Bombycilla cedrorum* Cedar Waxwing 
Buteo lineatus Red-shouldered Hawk 
B. jamaicensis Red-tailed Hawk 
Cardinalis cardinalis* Northern Cardinal 
Carduelis pinus* Pine Siskin 
C. tristis American Goldfinch 
Carpodacus mexicanus House Finch 
C. purpureus* Purple Finch 
Catharus guttatus* Hermit Thrush 
Certhia americana Brown Creeper 
Colaptes auratus* Northern Flicker 
Colinus virginianus Northern Bobwhite 
Corvus brachyrhynchos American Crow 
Cyanocitta cristata* Blue Jay 
Dendroica coronata* Yellow-rumped Warbler 
D. pinus* Pine Warbler 
Euphagus carolinus* Rusty Blackbird 
Geococcyx californianus* Greater Roadrunner 
Haliaeetus leucocephalos Bald Eagle 
Junco hyemalis* Dark-eyed Junco 
Loxia curvirostra Red Crossbill 
Melanerpes carolinus* Red-bellied Woodpecker 
M. erythrocephalus Red-headed Woodpecker 
Melospiza lincolnii* Lincoln’s Sparrow 
M. melodia Song Sparrow 
Molothrus ater* Brown-headed Cowbird 
Passerella iliaca* Fox Sparrow 
Picoides pubescens* Downy Woodpecker 
P. villosus* Hairy Woodpecker 
Poecile carolinensis* Carolina Chickadee 
Regulus calendula* Ruby-crowned Kinglet 
R. satrapa* Golden-crowned Kinglet 
Sayornis phoebe Eastern Phoebe 
Scolopax minor American Woodcock 
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Sialia sialis* Eastern Bluebird 
Sitta canadensis* Red-breasted Nuthatch 
S. carolinensis White-breasted Nuthatch 
Sphyrapicus varius* Yellow-bellied Sapsucker 
Spizella pusilla* Field Sparrow 
Strix varia Barred Owl 
Sturnus vulgaris* Eurasian Starling 
Thryomanes bewickii* Bewick’s Wren 
Thryothorus ludovicianus* Carolina Wren 
Toxostoma rufum* Brown Thrasher 
Troglodytes troglodytes Winter Wren 
Turdus migratorius* American Robin 
Vermivora celata* Orange-crowned Warbler 
Zenaida macroura* Mourning Dove 
Zonotrichia albicollis White-throated Sparrow 
 

 

 

 

 
 



 

  

VITA 

 
Paul van Els 

 
Candidate for the Degree of 

 
Master of Science  

 
 
Thesis:    EFFECTS OF JUNIPERUS VIRGINIANA ENCROACHMENT ON PLANT 

AND AVIAN DIVERSITY IN OKLAHOMA CROSS TIMBERS FORESTS    
 
 
Major Field:  Natural Resource Ecology and Management 
 
Biographical: 

   
 
Education: 
Completed the requirements for a Master of Arts in Spanish Language at 
Radboud University, Nijmegen, Netherlands in April, 2005.  
 
Completed the requirements for the Master of Science in Natural Resource 
Ecology and Management at Oklahoma State University, Stillwater, Oklahoma 
in July, 2009. 
 
Professional: 
Teacher of Spanish at Volksuniversiteit Uden/Veghel, Uden, Netherlands, 
during 2002—2004. 
 
Naturalist/bird guide at Sani & Sacha Lodges, Sucumbíos province, Ecuador, 
during 2005—2006.   

 
   



 

  
ADVISER’S APPROVAL:   Rodney E. Will 
 
 
 

 

Name: Paul van Els                                          Date of Degree: July, 2009 
 
Institution: Oklahoma State University                 Location: Stillwater, Oklahoma 
 
Title of Study: EFFECTS OF JUNIPERUS VIRGINIANA ENCROACHMENT ON 

PLANT AND AVIAN DIVERSITY IN OKLAHOMA CROSS 
TIMBERS FORESTS  

 
Pages in Study: 105                       Candidate for the Degree of Master of Science 

Major Field: Natural Resource Ecology and Management 
 
Scope and Method of Study: I studied changes in understory vegetation and avian 

communities due to eastern redcedar (Juniperus virginiana) encroachment into 
the forest midstory of oak dominated Cross Timbers west of Stillwater in central 
Oklahoma. I compared vegetation in forest gaps, oak dominated forest without 
redcedar, at the inner and outer edge of redcedar trees and near redcedar tree 
trunks (200 plots total). I compared avian communities and avian physiology 
among six circular-shaped sites, three of which had <10% redcedar cover and 
three of which had >80%. I also compared communities in 7x9 grid of points in a 
30 ha rectangular site.  

 
Findings and Conclusions: Species richness (11 to 6 spp. m-2) and cover (53.3 to 12.7%) 
 declined with proximity to redcedar trunks. While these declines were correlated 
 with both increases in litter mass and decreases in photosynthetic photon flux 
 density (PPFD), regression analysis indicated that richness (R²=0.078) and cover 
 (R²=0.177) were best explained by redcedar litter mass. My study indicates that 
 litter is the main determinant of understory vegetation declines associated with 
 midstory encroachment in fire-suppressed forests. Decreases in herbaceous litter 
 loads which historically contributed to the accumulation of fuel beds will have a 
 positive feedback effect for further redcedar encroachment. Declines in oak 
 recruitment that were related to increasing redcedar abundance and consequent 
 increases in litter loads may lead to changes in overstory composition. Body 
 condition was negatively correlated with redcedar canopy cover for my three 
 focal species. Total species richness was negatively correlated with redcedar 
 cover (r²=0.09, P=0.02). Results indicated that food was not limiting to focal 
 species in encroached stands, and some species occurred in higher abundance in 
 these stands However, the effects of redcedar on birds are species dependent 
 as bark-probing birds such as woodpeckers were negatively correlated with 
 redcedar cover, possibly due to foraging impediments related to redcedar physical 
 structure. 
 


