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CHAPTER I 
 

 

INTRODUCTION 
 

1.1.  Shortleaf Pine 

Shortleaf pine (Pinus echinata Mill.), a medium sized tree species, is also known as 

Southern Arkansas soft pine or yellow pine depending upon locale. The shortleaf pine is 

native to south-central and southeastern states in the U.S. It is the state tree of Arkansas  

(ODAFS, 2000). The bark of the shortleaf pine tree is brown to dark brown colored. 

Needles occur in clusters of 2 or 3 and the size of needles is about 3 inches to 8 inches 

long.  The height of the tree is about 50-100 ft. with short, spreading branches forming a 

pyramidal shaped crown that opens with age. It is considered as one of the four major 

commercially valuable conifers in the southeastern United States. Shortleaf pine has 

second largest standing volume among the four southern pines.   The tree is important for 

timber, lumber production, millwork and many other structural materials. Even the 

taproots are useful in making pulpwood. Shortleaf pine is commonly grown on non-

industrial private ownership in Oklahoma and Arkansas.  Shortleaf pine forests are also 

managed by some industrial private owners in the region such as Deltic Farm and Timber 

and Plum Creek.  Shortleaf pine is a major component of the shortleaf pine-bluestem 

grass ecosystem which was the pre-settlement forest type in much of 
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western Arkansas and southeastern Oklahoma. The shortleaf pine-bluestem grass 

ecosystem is now being restored on a portion of Ouachita National Forest. 

 

Shortleaf pine can be found in a wide range of soil and site conditions (Lawson, 1990). 

Compared with other southern pines, shortleaf pine has the largest range of occurrence 

covering more than 440,000 square miles (Willett, 1986). According to Lawson (1990) 

shortleaf pine is distributed in  22 states ranging from  southeastern New York and New 

Jersey west to Pennsylvania, southern Ohio, Kentucky, southwestern Illinois, and 

southern Missouri; south to eastern Oklahoma and eastern Texas; and east to northern 

Florida and northeast through the Atlantic Coast States to Delaware (Figure 1). Shortleaf 

pine grows best on deep, well-drained soils having fine sandy loam or silty loam textures. 

 
Figure 1.  Shortleaf pine distribution in the U.S. 

Source: http://www.nearctica.com/trees/conifer/pinus/Pechin.htm 

 

http://www.nearctica.com/trees/conifer/pinus/Pechin.htm�
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In 1986, Smith reported that the largest shortleaf pine forest in the world is in the 

Ouachita Mountains of Arkansas and Oklahoma. Wide distribution and great commercial 

value of this species call for accurate estimation of growth and yield, which in turn calls 

for accurate prediction of future survival of shortleaf pine. 

 

1.2.  Purpose of the Study 

The purpose of this study is to investigate the important independent variables and to 

develop an annual survival equation for individual shortleaf pine trees. Iteratively 

reweighted nonlinear regression was used to get the best estimates of the parameters. A 

nonlinear mixed model was also applied to investigate the model performance.  
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CHAPTER II 
 

 

MANUSCRIPT I 
 

 

ESTIMATING THE PROBABILITY OF SURVIVAL OF INDIVIDUAL SHORTLEAF 

PINE (Pinus echinata Mill.) TREES 
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Abstract 

An individual tree survival model was developed for shortleaf pine (Pinus echinata Mill.) 

trees. Prediction of the probability of survival of an individual tree is essential when 

considering growth and yield of a stand. Data for this study were from more than 200 

permanently established plots on even-aged natural shortleaf pine stands that were 

located in the Ozark and Ouachita National Forests. Plots were established during the 

period of 1985-1987. Plots have been remeasured every 4, 5 or 6 years, and individual 

tree survival or mortality was recorded at each measurement. These plots were selected to 

represent a range of ages, densities and site qualities. Logistic regression was used to find  

the best sets of significant predictor variables in which the response variable was a binary 

variable ‘1’  for the survival tree and ‘0’ for the mortality tree. Significant variables found 

in predicting the survival were mid-period basal area per acre (Mid-BA), inverse of ratio 

of quadratic mean diameter to diameter at breast height (DBH) (DRINV), their 

interaction and square of DBH. Parameters of the logistic equation were estimated using 

iteratively re-weighted nonlinear regression. A nonlinear mixed-effects approach was 

also applied to investigate the plot level effect on the model. Model performance was 

evaluated using chi-square goodness-of-fit test, and it was found that the model worked 

better while estimating the parameters using iteratively reweighted non linear regression 

than with the nonlinear mixed model. This individual tree survival model can be used to 

predict the annual survival rate of individual trees of even-aged shortleaf pine forests 

located in Ozark and Ouachita National Forests and in the surrounding regions.
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2.1.  Introduction 

2.1.1.  Individual Tree Survival/Mortality Model 

Growth and yield are important factors in forest management.  Accurate and reliable 

growth and yield information supports better forest management. An individual-tree 

modeling approach is one of the better methods available for predicting growth and yield 

as it provides essential information about particular tree species; tree size, tree quality and 

tree present status. An equation for estimating the probability of individual tree survival 

is important for management of shortleaf pine forests on a sustainable basis. Individual 

tree survival models simulate survival and growth of individual trees in a forest stand. 

They are important in predicting the growth and yield of trees and forests and in 

determining the development pattern of stand. 

 

A survival model is a major component of the Shortleaf Pine Stand Simulator (SLPSS) 

(Huebschmann, 1998) which has been developed for even-aged natural shortleaf pine 

forests.  SLPSS includes a prediction equation for probability of tree survival which is 

based on repeatedly measured plots permanently located in the Ozark and Ouachita 

National forests which have diverse ages, site qualities and densities. Other important 

components of SLPSS model include an individual tree basal area growth model (Hitch, 

1994) and a compatible height prediction and projection system for shortleaf pine trees in 

even-aged natural stands (Lynch and Murphy, 1995). 

 

Annual survival equations predict the probability that a tree survives the following year. 

It is difficult to fit the annual survival equation to the data that were measured repeatedly 
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at  intervals longer than one year (Cao, 2000). However it is essential to build a good 

forest growth model from periodically measured data to obtain a good estimate of 

survival/mortality probability. Individual–tree survival/mortality models have been 

developed for various species in different forest types and in various site conditions. The 

most commonly used regression model to estimate the survival/mortality of individual 

tree  is the logistic model (Cao, 2000). Use of the logistic function is often found to be a 

good approach compared to other regression models for the survival/mortality of an 

individual tree as well as for stand level survival. 

 

2.1.2.  Logistic Model 

Regression methods have long been an important tool for explaining the relationship 

between a response variable and one or more explanatory variables. Sometimes, the 

dependent variable can take only one of two discrete values in which case the logistic 

regression model provides one of the better options for modeling the relationship between 

the binary (0 or 1) dependent variable and the independent variables (Hosmer et al., 2000; 

Neter and Maynes, 1970). In this study the dependent variable is binary i.e. if the subject 

tree survives to the end of the measurement period then the dependent variable is 

indicated by ‘1’ and if the tree does not survive it is indicated by ‘0’.  

 

Kutner et al. (2004) listed some potential problems that would be encountered by 

applying ordinary regression methods to a binary dependent variable. Some of them are 

discussed below: 
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1. Non- normality of error terms: Unlike the situation for the error term in a general 

linear regression model, the assumption of a normal error term is not appropriate 

when the dependent variable is binary. 

2. Non-constancy of error variance: The assumption of a constant error variance is not 

satisfied when the dependent variable is ‘0’ or ‘1’. 

3.  Limitation of response function: The mean response is forced to be between ‘0’ and 

‘1’, that is,0 ≤ E[Y] ≤ 1, where E[Y] is the mean response function. 

 

Hamilton (1986) specified the advantages of the logistic function as: 

1. The logistic function provides a good description of the probability of survival or 

mortality. A variable transformation may be required to get the best outcome. 

2. The logistic function can be used with iteratively reweighted nonlinear regression or 

equivalently maximum likelihood estimation can provide optimal estimates of 

regression parameters. 

 

When using logistic regression the sum of squared errors (SSE) between the dependent 

variable and model prediction is minimized (Lynch et al., 1998).  

The logistic model is formulated as: 

APOS = [1 + exp {-(β0 + β1 X1 + … + βkXn)}]-1 + ε      (1)     

 

where;  

APOS= annual probability of survival 

X1,X2,…,Xn = set of n predictor variables 

β0 , β1,…, βk   = unknown regression parameters 
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ε = independent identically distributed error term with mean zero  

exp = base of the natural  logarithm 

 

Data from re-measured plots includes multi-year intervals in which tree survival or death 

is observed. Let ‘t’ be such interval over which to observe tree survival / death.  

(Hamilton and Edwards, 1976) and (Monserud, 1976)  described the following model to 

estimate the probability of survival assuming that survival time follows uniform 

distribution over the growth interval. 

Pj
t  = [ 1 + exp {-(β0 + β1 X1j + ...+ βkXnj)}]-t+ εj     (2)  

where; 

Pj
t = the probability that tree j survives a t year period 

t = the number of years in the measurement period, and 

Xij = the value of independent variable Xi for tree j 

εj = independent identically distributed errors with mean zero 

 

The above model predicts the survival probability in different time intervals. When the 

interval t is zero or at the beginning of growth period the probability that the tree survives 

is 1 which means the tree is definitely alive. Conversely,  as  t → +∞ , the probability of 

survival decreases and eventually approaches zero (Yao et al., 2001). In this study 

iteratively reweighted nonlinear regression and nonlinear mixed-effects models were 

used for the estimation of regression parameters. 
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2.1.3.  Mixed-Effects Model  

Models that include both fixed and random effects are mixed models or mixed-effects 

models (Budhathoki et al., 2008a). When the levels of an effect in our experiment 

constitute the whole population then the effect is known as fixed effect. Most models in 

analysis of variance, regression and general linear models (GLM) are fixed effects 

models. On the other hand, an effect is known as random effect when inferences are 

made to entire population and the levels in the experiment are only a sample from that 

population. Through the random-effects modeling, inferences over a wider population 

can be made which is not possible by general linear models (Hanneman, 2010). Mixed-

effects models often perform well and are very flexible in analyzing balanced and 

unbalanced data. These data arise in several areas of investigation and are characterized 

by the presence of correlation between observations within the same group; some 

examples are repeatedly measured data, longitudinal studies, and nested designs (Pinheiro 

and Bates, 2000). Classical modeling techniques that assume independence of the 

observations are not suitable for the data which are grouped. 

 

Mixed models consist of more than one error level and are also known as multilevel 

models, hierarchical model, a nested model, or a random-effects model, depending upon 

the model types. These mixed models can be extended to nonlinear models. In the 

nonlinear mixed-effect modeling approach, both random and fixed effects have nonlinear 

association with response variable (Wolfinger, 1999).  
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2.2.  Literature Review 

2.2.1.  Tree Survival/Mortality 

Survival/Mortality is important factor in predicting growth and yield of trees and forests 

and in understanding the growth pattern of forest stands. Tree sizes, stand density, species 

composition, site quality, and competition among the trees are major components that 

determine mortality (Peet and Christensen, 1987).  Yang (2003) emphasized that tree 

survival/mortality is a major factor in influencing the forest growth and yield, therefore it 

is very important to get the best estimation of tree survival/mortality. According to Lee 

(1971) mortality can be classified as regular and irregular mortality. Tree mortality 

caused by the competition for nutrients, light, and moisture is called regular mortality in 

which crowded, overtopped and suppressed trees eventually die. Competition among 

trees within a stand has significant effects on individual tree survival. An increase in 

basal area per acre/hectare decreases the chance of individual tree survival because of 

increased competition for moisture, sunlight and nutrients (Teck and Hilt, 1990). Lee 

further discussed irregular mortality which is caused by insect, disease, and natural 

disasters such as fire, windfall, and snow. He added that the rate of irregular mortality is 

very difficult to predict and it is necessary to have large number of sample plots and a 

long period of data collection to get the best estimation equations for future tree 

survival/mortality. Hence, either a relatively large number of permanent established 

sample plots or good quality yield tables have been considered  the most reliable sources 

of data to analyze and estimate the tree survival (Deen, 1933; Krauch, 1930). 
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Later Vanclay (1994) classified the causes of tree mortality into three major groups: 

catastrophic, anthropogenic and regular. Catastrophic mortality includes the large scale 

tree mortality, caused by extraordinary events such as floods, storms, and insect-pests.  

Anthropogenic mortality is due to human activities such as harvesting, industrialization, 

and deforestation, and regular mortality is caused by tree age and competition, pests and 

diseases. 

 

Accurate and reliable information about an individual tree mortality/survival is necessary 

in any stand growth system  (Monserud, 1976). The more accurate the estimation of tree 

survival, the more accurate the overall growth prediction system will be, therefore the 

more reliable is the information about tree and stand growth (Allan et al., 2009) .  

According to Monserud (1976) and Hamilton and Edwards (1976), estimation of 

probability of individual tree survival from periodically remeasured data is difficult. This 

probability is often assumed to be constant for the measured interval, which may be 

several years in length. However during this interval there are changes in stand attributes 

such as stand age, density, and site quality as well as individual tree attributes such as 

diameter, height, and crown ratio which may alter the probability of survival. 

 

Murphy (1986) and Clutter et al. (1983) stated that survival/mortality can be modeled at 

two levels; the stand level and at the individual tree level. In stand level models generally 

a few variables are used, and the model usually provides information about survival per 

acre/hectare on a stand-level basis. For example; age, density, site condition might be 

required in stand level survival model (Murphy, 1986). Stand level mortality or survival 
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models estimate the probability of total number of trees dying or surviving in per unit 

area.  These models  utilize stand attributes as predictors (Lee, 1971), whereas individual-

tree level survival models estimate the probability of survival of each tree on the basis of 

individual tree and stand attributes (Monserud, 1976). Additionally Belcher et al. (1982), 

Burkhart et al. (1987), and Zhang et al. (1997) explained that models which predict the 

growth and survival of individual trees in a forest stand are called individual-tree models. 

Specific information about individual tree variables such as tree age, DBH, and crown 

height can be obtained from individual tree growth and survival models.  In individual 

tree forest growth models, these individual tree variables play a major role in predicting 

tree growth and survival. 

 

In one approach to modeling forest mortality, mortality models have been developed at 

stand-level. Using stand-level attributes and estimates for the number of trees per acre at 

several ages, stand-level mortality functions may be developed.  These stand level 

mortality functions may then be used to predict the number of mortality trees per unit 

area (acre or hectare) (Clutter et al., 1983; Ek, 1974; Lee, 1971). Improvement in 

computational techniques and discovery of new methodologies for parameter estimation 

made it possible to apply  mortality models to predict the individual tree mortality 

beginning in the late 1960’s and the 1970’s (Yao  et al., 2001). In individual tree survival 

models probability of survival of each individual tree is estimated whereas in stand level 

survival models, this is not done (Clutter et al., 1983). Hamilton (1974) and Monserud 

(1976) introduced the logistic function to model the individual tree mortality. Since then, 
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logistic regression has been applied for many tree species in many geographic regions to 

model the tree survival or mortality (Hamilton, 1986). 

 

Monserud (1976) explained that the techniques which are used in prediction of forest 

growth and yield are also useful in predicting survival or mortality. Additionally, yield 

tables can also be a major source of information concerning tree survival, since they 

provide information concerning trees surviving at various ages. Lee (1971) indicates that 

linear regression methods where tree age and diameter were used as independent 

variables were used to estimate the probability of survival/mortality using yield tables of 

lodgepole pine.  Neter and Maynes (1970) recommended weighted non-linear regression 

or a multivariate maximum likelihood procedure to get the maximum likelihood 

estimation of the regression parameters of a non-linear function bounded by ‘0’ and ‘1’. 

These approaches can be applied to estimate the parameters of a logistic function for 

individual tree survival/mortality.  Several other procedures such as neural networks and 

support vector methods (King et al., 2000), nonparametric classifiers (Dobbertin and 

Biging, 1998)  have been used to estimate survival/mortality. Additionally, various 

regression models including linear regression (Keister, 1972; Krumland et al., 1977; Lee, 

1971),  the Weibull distribution function (Somers et al., 1980) and the Richards function 

(Buford and Hafley, 1985)  and logistic regression (Monserud, 1976) have been used to 

predict the probability of individual tree survival/ mortality. Regardless  model type, the 

survival/mortality model should have the best set of important predictor variables with 

the best possible parameter estimates and a model evaluation should be performed (Yao 

et al., 2001). 
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Compared to other methods such as discriminant analysis, probit analysis, or logit 

analysis, Monserud (1976) found a generalized logistic function to have the greatest 

discriminating power for predicting survival or mortality trees. The independent variables 

used in these comparison analyses were tree diameter and diameter increment, 

competition index, and length of growth period. Lynch et al. (1998) used a logistic 

function to develop a survival equation for individual shortleaf pine trees from even-aged 

natural forests. The data used to develop the model were from a permanently established 

plots located in eastern Oklahoma and western Arkansas.  

 

2.2.2.  Nonlinear Mixed-Effect Approach in Forest Modeling  

Lappi and Bailey (1988) found the mixed modeling statistical procedure to be a better 

alternative method of estimation than the conventional methods for site index. They used 

a nonlinear mixed-effects growth curve model to predict heights of dominant trees both at 

the plot level and at the individual tree level. They provided an example of a mixed-

effects model that has a multilevel design where random effects for plots and for trees 

found inside the plots enter linearly into a Chapman-Richards type growth model. Later 

in 2001 Daniel and Bailey generalized the approach of Lappi and Bailey by allowing 

multilevel random effects to enter into the model nonlinearly. Gregoire et al. (1995) 

applied mixed–effects modeling to account for the correlation from grouping in data 

structures that is generally found in forestry problems.  They discussed nonlinear mixed 

models and pointed out the importance of mixed modeling in the forestry sector.  In 

1996, Gregoire and Schabenberger (1996a) developed a model for individual-tree 

cumulative bole volume of sweetgum from east Texas, using a nonlinear mixed-effects 
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approach. Later, they formed a model for cumulative bole volume using the information 

on spatial correlation between sections of a tree bole (Gregoire and Schabenberger, 

1996b).  Lappi (1997) used a mixed-effects approach to develop a model that describes 

the DBH-height relationship. He developed models for plantation forests and natural 

stands of jack pine. 

 

Wolfinger (1999) explained that statistical models that include both fixed and random 

effects of parameters which are associated nonlinearly to the response variable in the 

model have been widely used.  He added that these types of nonlinear mixed models have 

very wide application in nonlinear growth curves and over-dispersed binomial data sets. 

Although these models can occur in various forms, the most common form is considered 

to be a conditional distribution for the response variable in which the random effect is 

given. 

 

Daniel and Bailey (2001) presented the technique for estimating and predicting the 

parameters for forest growth variables using nonlinear modeling methods. In their 

research they incorporated estimation techniques for the variables which are subject to 

nested sources of variability. They considered multilevel nonlinear mixed-effects models 

that are useful for a variety of forestry applications and found that they have more 

advantages in growth and yield prediction than the other linearization based methods.  

Multilevel means the measurements are within trees and trees are nested within sample 

plots. For a two level case such as when the data are collected from number of trees 

within a single plot, it is generally easy to do integration using Gaussian quadrature or 
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some other numerical technique to get the maximum likelihood estimate (Daniel and 

Bailey, 2001). For the two levels case PROC NLMIXED  (Wolfinger, 1999) can be used 

to get an approximation to  the maximum likelihood estimate of the parameters for 

models with tree specific random effects. 

 

According to Lappi (2006) mixed models work better when items in the data sets occur in 

groups. Grouped datasets may contain longitudinal or repeated measurements or can be 

defined as multilevel or block designs (Pinheiro and Bates, 2000). Rose et al. (2006) 

applied a multilevel approach to estimate the probability of survival of individual trees. 

They mentioned that the data from permanently established plots consist of various 

sources of heterogeneity due to multilevel structure and repeated measurements. Trincado 

and Burkart (2006) used mixed models  with the tree-level random effects in a loblolly 

pine individual tree taper model in which they found that violation of the  assumption of 

correlated errors was  mitigated by inclusion of random effects. 

 

A DBH-height relationship for shortleaf pine was developed by (Budhathoki et al., 

2008b) using a mixed effects model method where plots were used as random-effects. 

They concluded that mixed-effects models provide improved parameter estimates when 

partially accounting for spatial and temporal correlation. 
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2.3.  Rationale of the study 

In forest management growth and yield models are of great importance. Prediction of the 

probability of survival of an individual tree is essential when considering growth and 

yield of a stand.  Survival models are important components of forest growth prediction. 

 

In 1970s the first individual tree survival or mortality model which used the logistic 

function was developed by Hamilton (1974). Using the logistic function as mortality 

model for thinned and unthinned mixed conifer stands of northern Idaho was developed 

by (Hamilton, 1986) . Additionally, Avila and Burkhart (1992) developed a survival 

model for loblolly pine trees in thinned and unthinned plantations throughout the area in 

the United States where loblolly pine plantation management is in practice. Similarly Yao 

et al. (2001) developed a mortality model for individual trees such as aspen, white spruce, 

and lodgepole pine using the data from Alberta mixedwood forests. Temesgen and 

Mitchell (2005) formulated an individual tree mortality model for complex stands in 

southeastern British Columbia. They used the generalized logistic model in their study.  

Murphy and Shelton (1996) developed a survival model for individual loblolly pine 

(Pinus taeda L.) in uneven-aged stands. However no significant research work has been 

done in developing an individual tree survival/mortality model especially for shortleaf 

pine in even-aged natural forest system since the work of Lynch et al. (1999a).  

 

Shortleaf pine is economically and commercially a highly valuable species (Lynch et al., 

1999b). It is distributed widely in various forest systems within its natural range. 

Naturally occurring shortleaf pine forests are commonly found on private nonindustrial 

lands and on industrial forestlands of western Arkansas and eastern Oklahoma (Lynch et 
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al., 1999a). Shortleaf pine forests provide habitat for a variety of wildlife species and are 

very important in human uses such as in constructing storage boxes, structural material, 

plywood, and pulpwood.  Because of its wide occurrence and importance it is desirable to 

develop a survival model with the best possible set of independent variables that predicts 

the probability of survival for individual shortleaf pine trees for even-aged natural forests 

of Oklahoma and Arkansas. 

 

The growth and yield equation of uneven-aged shortleaf pine stands developed by 

Murphy and Farrar (1985) only predicts net yields but does not provide specific 

information concerning  the  estimation of survival for shortleaf pine (Lynch et al., 

1999a). According to Gertner (1989) a survival model is needed in a forest growth 

system which predicts the survival of trees on individual basis or on a stand basis. He 

further added that error propagation and budgeting analysis showed that growth 

prediction depends significantly on the underlying mortality/ survival model. 

 

A complete individual tree growth system includes models for variables such as basal 

area increment, height increment, and crown ratio.   Hamilton (1986) emphasized that the 

survival or mortality analysis must be undertaken while developing a growth and yield 

model. Lynch et al. (1998) explained growth and yield information on naturally occurring 

shortleaf pine stands can be obtained from stand-level tables or equations however these 

do not provide sufficient information about probability of survival for individual trees. 

The combination of survival models and individual-tree diameter growth, height growth, 
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and ingrowth allows us to predict forest stand development over time (Avila and 

Burkhart, 1992; Hamilton, 1990; Teck and Hilt, 1990). 

 

Since the work of Lynch et al. (1998) no models for individual tree survival have been 

developed in even-aged shortleaf pine natural stands until the initiation of the current 

project. This research work includes the measured and remeasured data from the plot 

establishment period (1985-1987) until the fourth remeasurement time (Fall 2000-2001). 

Because this research work accounts for a large data set from very long period, it is an 

important source of information to develop a survival model for the shortleaf pine forest 

system of Arkansas and Oklahoma. 

 

This study also focuses on applying a nonlinear mixed-effects model in developing a 

survival model. Many forest growth models have been developed using data from 

permanently established plots. The study also examines the performance of nonlinear 

mixed effects modeling with a plot-level random effect.  

 

A major goal of this study is to apply the logistic model and estimate the parameter 

through the iteratively reweighted nonlinear regression modeling approach in developing 

a survival model of individual trees and to improve the methods for obtaining parameters 

of individual tree survival equations from periodic measurements. Although the model is 

developed for predicting individual tree survival of shortleaf pine, the method applied 

should readily adaptable to other species. 
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2.4.  Objectives 

The major objective of the study was to develop an equation that can be used to estimate the 

survival probability of naturally-occurring, even-aged shortleaf pine trees. Additionally, 

specific objectives were to find the best set of independent variables for predicting 

individual tree survival, to apply the logistic function to model the probability of survival, 

to apply the nonlinear mixed modeling approach to examine its performance on fitting 

the model and finally to validate the model. 
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2.5.  Materials and Methods 

2.5.1.  Study Area 

Study plots are located in the Ozark and Ouachita National forests in western Arkansas 

and southeastern Oklahoma as indicated on Figure 2 below. 

 

 
Figure 2. The study area. 

Source: An Individual-Tree DBH-Total Height Model with Plot Random-Effects for Shortleaf Pine- 

PowerPoint presentation – Dr. Thomas B. Lynch 

 

2.5.2.  Data 

Lynch et al. (1998) explained that until 1985 the major sources of data for the growth and 

yield of naturally occurring shortleaf pine forests were from fully stocked plots or from 

unmanaged stands.  Considering this, during the period of 1985-1987, the Department of 

Forestry (now part of the Department of Natural Resource Ecology and Management) at 

Oklahoma State University and USDA Forest Service Southern Research Station at 

Monticello, Arkansas collaboratively established growth and yield plots in even-aged 

OK AR 
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natural shortleaf pine stands that were located in the Ozark and Ouachita National 

Forests.  These plots were selected to represent a range of ages, densities and site 

qualities. The resulting sample of  over 200 plots were permanently established in 

shortleaf pine natural stands located in the Ozark and Ouachita National Forests and were 

distributed from areas north of Interstate Highway 40 near Russellville in western 

Arkansas to near Broken Bow in Southeastern Oklahoma. Measurements of individual 

shortleaf pine tree total height, crown height, and diameter at breast height (DBH) were 

taken and were used to develop a shortleaf pine survival model.  Plots have been 

remeasured in every 4 to 6 years, and individual tree survival or mortality was recorded at 

each measurement. 

 

Growth plots were established considering a design criteria that includes basal area 

(ft2/acre), Site index (ft at age 50 yrs), and Age (yrs) as design variables. The following 

stand properties described by Rose (1998) were considered as a guide while establishing 

the growth plots: 

1. Natural forest stand that consists of at least 70% of basal area occupied by 

Shortleaf pine and trees with at least 0.6 inches DBH. 

2. Stands having healthy dominant and codominant trees with a maximum range in 

age of no more than 10 years. 

3. Variation in site index should be less than 10 feet. 

4. Even-aged stands with no more than two age classes per plot. 

5. No harvesting in the last 5 years. 
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Table 1 below shows class midpoints and ranges for basal area (ft2/acre), site index (total 

height in feet at age 50 years) and age (plot age in years) which were used as design 

variables for the study. Four classes of basal area, age and site index were established. 

The original design specified three plots in each combination of age, site index, and basal 

area, however, this was not accomplished for all combinations.  Additional plots from a 

thinning experiment previously established by Frank Freese of the USDA Forest Service 

Southern Forest Experiment Station were incorporated into the study. 

 

Table 1.  Design variables with class midpoints and ranges for plots located in 
natural, even-aged shortleaf pine forests in western Arkansas and southeastern 
Oklahoma (Lynch et. al. 1998). 
Design Variable  Class midpoint         Class range 

Basal area (ft2/ac)   30    16-45 

60    46-75 

90    76-105 

120    106-135 

Site Index (ft at age 50 yr )   <56    <56 

60    56-65 

70    66-75 

>75    >75 

Age (yr)    20    11-30 

40    31-50 

60    51-70 

                                             80    71-90 
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2.5.3.  Growth Plot 

Each sample measurement plot is circular with a radius of 57.2 feet and 0.2 acres in size 

(Figure 3). Each plot is surrounded by a 33-foot isolation boundary. The outer boundary 

has been painted with white bands on trees just outside the boundary. A buffer strip 33 

foot wide bordering the isolation boundary perimeter was constructed to eliminate edge 

effect.  The same silvicultural treatments have been applied to isolation strip as to the 

measurement plot. The boundary of the buffer strip is marked by blue-painted bands on 

trees just outside the boundary. This boundary often also surrounds a group of adjoining 

plots.  

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 

Figure 3. Natural, even-aged short leaf pine growth plot. 
Source: An Individual-Tree DBH-Total Height Model with Plot Random-Effects for Shortleaf Pine- 

PowerPoint presentation – Dr. Thomas B. Lynch 
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The study plots were chosen using aerial photographs and field reconnaissance.  Figure 4 

shows the study plot locations within the study area. 

 

Figure 4. Location of study plots in western Arkansas and southeastern Oklahoma. 

Five milacre plots were established within each growth plot for understory measurement. 

Figure 5 depicts 5-milacre subplots within a net growth plot. 

 
Figure 5. 5-milacre sub plots within a net growth plot. 
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Each growth plot was thinned from below to a predetermined residual pine basal area at 

plot establishment and chemical herbicide was applied to control competing vegetation. 

For every tree in a plot, tree number and breast height (4.5 feet above the ground) were 

marked and DBH (inches) was measured. Total height (feet) and height to the base of the 

live crown (feet to bottom live branch) were recorded for a specified sample of trees in 

each DBH class on the measurement plot. Each of the measured trees were classified as 

dominant, co-dominant, intermediate, or suppressed. Increment cores were used to  

Determine the age of trees and a Suunto Clinometer was used to measure height. 

 

2.5.4.  Growth plot measurement schedule 

The first baseline measurement was obtained from fall 1985 to fall 1987 during the 

period of plot establishment.  The azimuth and distance of each tree from the center of 

plot were recorded.  At the initial measurement, each tree was labeled with a number. 

DBH was measured, and the DBH measurement point was marked. 

 

From fall 1990 to fall 1992 the first remeasurement was performed. Tree height, DBH, 

live crown were measured crown class was determined, damage codes were recorded and 

trees were re-painted and numbered. The second remeasurement was carried out during a 

period from fall 1995-fall 1997. Again, DBH, height, live crown, were measured and 

crown class was determined. Also numbers and boundaries were re-painted and damage 

codes were recorded. At this time many plots were marked for thinning to their original 

establishment densities, while some were left unthinned. Thinning was performed in the 

designated plots prior to the next growing season. During fall of 2000, the third 

remeasurement was performed. There was strong ice-storm in December, 2001 which 



28 
 

damaged many trees. For the purposes of this study, only trees showing no ice damage 

were used.  The fourth remeasurement was conducted during the period from fall of 2006 

until winter, 2008. 

 

2.5.5.  Statistical Analysis 

The survival data were modeled by Equation 2 using the SAS/ LOGISTIC procedure 

(SAS Institute, Inc. 2007).  “A usual logistic regression model, proportional odds model 

and a generalized logit model can be fit for data with dichotomous outcomes, ordinal and 

nominal outcomes, respectively, by the method of maximum likelihood (Allison, 2001)”.  

A stepwise procedure in PROC LOGISTIC was used to select the best set of predictor 

variables. 

The following SAS statements were used to perform logistic regression: 

 

PROC LOGISTIC DATA=LOGISTIC; 

MODEL SURV(EVENT='1')=   Mid-BA PERIOD DRINV DBHSQ Mid-BA*DRINV 

Mid-BA*DBHSQ DRINV*DBHSQ Mid-BA*DRINV*DBHSQ/ 

SELECTION=STEPWISE SLENTRY=0.05 SLSTAY=0.05; 

RUN; 

 

The model statement includes the response variable and the independent (explanatory) 

variables. SURV is dependent variable and event=’1’ indicates that the model is for 

survival trees which are coded as 1, while mortality trees are coded as zero. Mid basal 

area per acre (Mid-BA), time period (PERIOD), inverse of ratio of quadratic mean 
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diameter to DBH (DRINV), square of DBH (DBHSQ) and their combinations were used 

as independent variables. The SELECTION statement specifies the variable selection 

method. SLENTRY and SLSTAY represent respectively, level of significance for 

entering and removing the variables which was 0.05. 

 

2.5.5.1.  Likelihood Function 

The likelihood function is a function of the parameters of a statistical model that plays a 

key role in inferential statistics.  It indicates how likely an observed sample is from a 

particular population.  For the logistic model the log -likelihood function is stated as: 

Case 1 - Simple Logistic Model: 

Loge L ( β0 , β1) = ∑n
i=1 Yi(β0 + β1Xi) - ∑n

i=1 loge [1+exp (β0 + β1Xi )]  (3) 

Case 2- Multiple Logistic Model: 

The log-likelihood function for multiple logistic regression is an elaboration of log-

likelihood function of simple logistic regression in (3) (Kutner et al., 2004): 

Loge L (β) = ∑n
i=1 Yi (Xi′ β) - ∑n

i=1 loge [1+exp(Xi′ β)]     (4)  

where, Xi′ β =β0 + β1Xi1 + β2Xi2 +…+ βp-1Xi,p-1 

β′ = [β0, β1…, βp-1]  

Yi = a binomial (0 or 1) dependent variable 

 

2.5.5.2.  Method of Maximum Likelihood Parameter Estimation 

Kutner et al. (2004) described the maximum likelihood estimates of the parameters as the 

values of parameters that maximize the log-likelihood function. The maximum likelihood 

estimate method is very useful in estimating the parameters when the dependent 

(response) variable is 0 or 1.  Ragavan (2008) stated for a large sample size the 
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distributions of maximum likelihood estimators are approximately normal, and the 

estimators are asymptotically unbiased estimators. The SAS/LOGISTIC procedure uses a 

numerical procedure such as Newton Raphson to find the maximum likelihood estimates 

of parameters for the logistic function (Kutner et al., 2004). 

 

2.5.5.3.  Iteratively Reweighted Least Squares 

Iteratively reweighted nonlinear regression was used in this study to satisfy the regression 

assumption homogeneity of variance. Since survival is a binary or Bernoulli random 

variable, it has variance P(1-P) where P is the probability of success or survival.  

Therefore, the appropriate weight is defined as the inverse of the variance Pt( 1-Pt) where 

‘P’ is annual probability of survival from the logistic model  and ‘t’ is the number of 

years in the measurement period. The model is raised to the power of ‘t’  to obtain the 

probability of survival  for a measurement interval of ‘t’ years for remeasurement plots 

measured at intervals longer than one year. Maximum likelihood estimates are obtained 

when the above weight is used. 

 

McCullagh and Nedler (1989) recommended iteratively re-weighted regression as an 

effective procedure to find the maximum likelihood estimates for the survival model in 

Equation 2. Monserud and Flewelling (2002) stated that weighted least squares methods 

minimize the weighted sums of error squared, using weights that are inversely 

proportional to the estimated variance. It is shown by McCullagh and Nelder (1983) 

when the weighted sums of squares are minimized, the maximum likelihood estimates are 

obtained. 
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The following statement was invoked in SAS/STAT software version, 9.2 (SAS Institute 

Inc. 2007) to perform iteratively reweighted nonlinear regression. This procedure 

estimates the parameters in Equation 2 where X1=Mid-BA, X2 = DRINV, X3 = DBHSQ 

and X4=Mid-BA*DRINV and n=k=4. 

 

PROC NLIN DATA=NLIN NOHALVE METHOD=MARQUARDT; 

MODEL SURV= (1/ (1+exp (-(b0 + b1*Mid-BA + b2*DRINV + b3*DBHSQ 

+ b4*Mid-BA*DRINV))))**PERIOD; 

PARMS b0= -1.711 b1= -0.0147 b2=0 b3= -0.0000134 b4=0; 

_WEIGHT_= ((MODEL.SURV)*(1-MODEL.SURV))**(-1); 

OUTPUT OUT = CHITEST1 PREDICTED = PRESURV; 

where 

PARMS : identifies starting values for parameter estimates  

MODEL: defines the algebraic relationship between the dependent and independent 

variables (the mean function). 

OUTPUT OUT=CHITEST is the output data set name which contains results of the 

estimation procedure and other statistics calculated for each observation. 

PREDICTED=PRESURV provides the predicted (expected) value for survival 

probability for each observation. 

 

PROC NLIN is the major SAS procedure for nonlinear (or curvilinear) regression 

analysis. The NLIN procedure fits nonlinear regression models and estimates the 

parameters by nonlinear least squares or weighted nonlinear least squares (SAS Institute 

http://support.sas.com/documentation/cdl/en/statug/63033/HTML/default/statug_nlin_sect015.htm�
http://support.sas.com/documentation/cdl/en/statug/63033/HTML/default/statug_nlin_sect013.htm�
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Inc. 2007). Estimating parameters in a nonlinear model is an iterative process that 

commences from some starting values provided. For the NLIN procedure the parameters 

and some initial values need to be specified. The homoscedasticity assumption of 

regression can be relaxed by using a weighted residual sum of squares criterion. 

However, the assumption of uncorrelated errors (independent observations) cannot be 

relaxed in the NLIN procedure. 

 

2.5.5.4.  NLMIXED Procedure 

The NLMIXED procedure in SAS (SAS Institute, Inc. 2007) was used to fit the nonlinear 

mixed models. NLMIXED fits the models using likelihood-based methods. The 

procedure also takes into account the random effects in the model. Both fixed and 

random effects are allowed to have a nonlinear relationship to the response variable. 

 

PROC NLMIXED enables one to specify a distribution (binary in this study) for the 

response variable. PROC NLMIXED maximizes an approximation to the likelihood 

integrated over the random effects. Although various types of integral approximations are 

available, Gaussian quadrature and a first-order Taylor series are considered to be the 

principal approximation methods. A variety of alternative optimization techniques are 

available to carry out the maximization; the default is a dual quasi-Newton algorithm. 

It was desired to estimate parameters in the following model, which is similar to Equation 

2 except for the inclusion of the plot-level random effect uk: 

Pjk
t  = [ 1 + exp {-(β0 + β1 X1jk + β2jX2jk + β3jX3jk  + uk)}]-t+ εjk   (5) 

where 

X1j=Mid-BA for tree j on plot k 
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X2j=DRINV for tree j on plot k 

X3j = Mid-BA*DRINV for tree j on plot k  

uk = plot-level random effect distributed normally with mean 0 and variance σ2
u 

εjk = error term with mean zero 

 

The statements used to estimate parameters in the nonlinear mixed model are: 

DATA NLMIXED;  

PROC SORT DATA=NLMIXED out=NLMIXED1; 

BY PLOTID; 

PROC NLMIXED DATA=NLMIXED1 QPOINTS=20 TECH=NEWRAP; 

PARMS b0= 2.1963 b1= -0.0145 b2=4.9246 b3=0 s2u=0.5; 

ETA=b0 + b1*Mid-BA + b2*DRINV + b3*Mid-BA*DRINV +u; 

m=exp (ETA); 

P= ((m/(1+m))**PERIOD); 

MODEL SURV~binary(P); RANDOM u~normal(0, s2u)subject=PLOTID;  

RUN; 

where TECH = NEWRAP invokes a Newton-Raphson optimization. The model 

statement specifies a binary (Bernoulli) distribution with probability P, the RANDOM 

statement defines u to be the random effect with subjects defined by the PLOT variable, 

and the subject=PLOTID option models the random effect that changes with plot 

variable.  
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2.5.6.  Model Evaluation 

Once the fitted response function was obtained, a goodness-of-fit test was conducted to 

check the fitness of the response function. This test is important because a variety of 

inferences and predictions will be based on the fitted response function. 

 

2.5.6.1.  Chi-square Goodness-of-Fit Test 

Measures of goodness-of-fit such as the correlation coefficient (r) or coefficient of 

determination (R2) are not appropriately applied to binary variables. Instead, a Chi-square 

test is often used to evaluate the appropriateness of the model (Neter and Maynes, 1970). 

 

After obtaining parameter estimates, comparisons between observed and predicted 

numbers of live and dead trees were made by DBH classes. Two inch diameter classes 

were created to classify the tree based on diameter outside bark measured at DBH. The 

model was evaluated using the χ2 goodness-of-fit test over the predictor variable using 

the data set. The χ2 model evaluation process was formulated as: 

 

Hypothesis formulation for model evaluation 

H0 : E [Y] = { 1 + exp (-Xi′ β) }-1   Model fits well 

H0 : E [Y] ≠ {1 + exp(-Xi′ β) }-1     Model does not fit well 

 

Test Statistic 

χ2 = ∑c
j=1 ∑1

k=0
   ( Ojk – Ejk )2  /  ( Ejk ) 

where 
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Oj1 = Observed number of surviving trees in diameter class j 

Oj0 = Observed number of mortality trees in diameter class j 

Ej1 =Number of surviving trees in diameter class j expected from the model 

Ej0 =Number of mortality trees in diameter class j expected from the model 

c= number of diameter classes 

 

Decision Process 

If   χ2 
calculated   ≥ χ2

tabulated (1-α, c-2)  Reject H0
  

If   χ2 
calculated   ≤ χ2

tabulated (1-α, c-2)  Failed to Reject H0
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2.6.  Results and Discussion 

2.6.1.  Logistic Regression and Parameter Estimation using Iteratively Reweighted 

Nonlinear Regression 

Stepwise variable selection procedure in logistic regression using SAS PROC LOGISTIC 

(SAS Institute, Inc. 2007) was used to obtain the best set of independent variables. The 

following variables were significant at alpha level 0.05: mid basal area per acre (Mid-

BA), time period (PERIOD), inverse of ratio of quadratic mean diameter to DBH 

(DRINV), square of DBH (DBHSQ) and their interaction terms. All 2 way and 3 way 

interaction among the variables were found significant.  Table 2 provides the information 

about the variables selected using stepwise logistic regression. Other variables such as 

DBH, square root of DBH, 1/DBH,  square of DBH/basal area, dominant height, plot age, 

site index and crown ratio were examined , however, they were either found to be 

insignificant, or they did not contribute to improvement in the chi-square test used for 

final model evaluation.  

 

Table 2.  Significant variables and their parameter estimates using logistic 
regression with PROC LOGISTIC. 

Parameter DF Estimate 
Standard 

Error 
Wald Chi-

Square 
Pr > 

ChiSq 
Intercept 1 7.4237 0.9353 63.0014 <.0001 
Mid-BA 1 -0.089 0.00639 193.9688 <.0001 
PERIOD 1 0.4552 0.0878 26.8969 <.0001 
DRINV 1 -4.6564 1.022 20.7568 <.0001 
DBHSQ 1 -0.0672 0.00941 50.9055 <.0001 

Mid-BA*DRINV 1 0.0812 0.00786 106.7127 <.0001 
Mid-BA*DBHSQ 1 0.000704 0.00008 76.4281 <.0001 
DRINV*DBHSQ 1 0.055 0.0091 36.5027 <.0001 

Mid-BA*DRINV*DBHSQ 1 -0.0006 0.000076 63.4838 <.0001 
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Table 3 below provides information concerning the variables used for the analysis 

including number of observations of each variable, their mean, minimum value, 

maximum value and standard deviation.   

 

Table 3.  Summary statistics of the significant variables used to fit parameters to 

logistic survival model. 

Variable  Number Mean Minimum Maximum 
Standard 
deviation 

Mid-BA (ft2/acre) 599 86.02 16.09 186.59 35.75 

DRINV 20283 0.97 0.13 2.67 0.24 

DBHSQ (inch 
squared) 20283 82.58 1.21 645.16 76.47 

 

Although logistic regression was used to help suggest a best set of independent variables, 

parameters estimated through logistic regression cannot be used to estimate annual 

probabilities of survival because the measurement periods in this study were all longer 

than one year, and differed in length. Since the remeasurement periods were 4, 5 or 6 

years for this study, parameters of significant variables were estimated using iteratively 

reweighted nonlinear regression in a logistic model raised to the power of period length.  

These measurement period lengths require the use of Equation 2 in which period length is 

variable.  PROC LOGISTIC does not allow variable period lengths.  Estimates of the 

parameters are shown in the Table 4 below. Parameter estimates given in Table 4 

maximize the log likelihood function presented in Equation 4.  
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Table 4.  Parameter estimates for the significant variables using iteratively 
reweighted nonlinear regression for a logistic model. 

Variable Parameter Estimate 
Standard 

Error     95% Confidence Limits 

Intercept β0 9.791 0.7907 8.2412 11.3409 

Mid-BA β1 -0.0741 0.00575 -0.0853 -0.0628 

DRINV β2 -4.0594 0.918 -5.8587 -2.2601 

DBHSQ β3 -0.0025 0.000947 -0.00431 -0.0006 

Mid-BA× DRINV β4 0.0736 0.00684 0.0602 0.087 
 

2.6.2.  Model formulated using Logistic Regression and Iteratively Reweighted 

Nonlinear Regression 

The final model formulated to estimate the annual probability (t=1) of survival of 

individual shortleaf pine trees is: 

APOS= (1/ (1+ (exp-(9.791 – 0.0741 × Mid-BA - 4.0594 × DRINV 

 – 0.0025 × DBHSQ + 0.0736 × Mid-BA × DRINV))))    (6) 

where APOS is the annual probability of survival.  

The interaction between mid-basal area per acre (Mid-BA) and inverse of ratio of 

quadratic mean diameter to DBH (DRINV) was found significant in iteratively 

reweighted nonlinear regression. The interaction effects represent the combine effects of 

these two variables on the response variable or on the survival probability of each 

individual tree. The addition of interaction term in the model drastically changes the 

interpretation of all of the coefficients. Since the interaction term is significant the main 

effect due to Mid-BA and DRINV cannot be independently interpreted.  The impacts on 

the survival probability of one of the two variables depend on the level (value) of the 
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other variable. The interaction effects indicate the effect of Mid-BA on survival 

probability is different on different values of DRINV and vice-versa. Hence the unique 

effects of Mid-BA is not limited to β1 (-0.0741) but also depends on the values of β4 and 

DRINV. The unique effect of Mid-BA is represented by everything that is multiplied by 

Mid-BA in the model: β1 + β4*DRINV i.e. Mid-BA (– 0.0741 + 0.0736 *DRINV). 

Similarly the unique effect of DRINV is represented by DRINV (-4.0594 + 0.0736  

× Mid-BA). 

 

Moreover, the sign of the coefficients of one of the variables, DRINV or Mid-BA, 

changes depending upon the value of the other independent variable. The coefficient of 

Mid-BA depends upon the value of DRINV. The following formulation can be used to 

determine when DRINV implies a positive or negative sign associated with Mid-BA: 

Mid-BA (– 0.0741 + 0.0736 *DRINV) =0 

DRINV . When DRINV is greater than 1 then the coefficient of Mid-BA is 

positive and when the value of DRINV is smaller than 1 then the coefficient of Mid-BA 

is negative.   

 

Furthermore, the following formulation determines when a value of Mid-BA  would 

imply a positive or negative coefficient of DRINV: 

DRINV (- 4.0594 + 0.0736 × Mid-BA) = 0 

Mid-BA (ft2/acre). Hence, the coefficient of DRINV is positive when Mid-

BA is greater than 55 and is negative when Mid-BA is less than 55. 
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Higher density forest stands with the mid-basal area per acre greater than 55 ft2 result in a 

positive coefficient of DRINV. When the coefficient of DRINV is positive, the survival 

probability of each individual tree is increased with increase in DRINV.  According to 

Monserud and Sterba (1999) the DBH of a tree provides significant information about the 

tree’s size. They explained that large DBH trees have high survival rates because this size 

increases the strength of the tree for competing for sunlight, nutrients and other 

requirements of growth. From the final model in this study DBH has the same role in 

predicting an individual tree survival when basal area is above 55 ft2/acre. Under these 

circumstances when the DBH of a tree is smaller that makes the inverse of ratio of 

quadratic mean diameter to DBH is smaller than 1 which in turn decreases the probability 

of survival for that tree. 

 

On the other hand, when DRINV is less than 1 the coefficient of Mid-BA is negative. 

And, when the coefficient Mid-BA is negative then increase in basal area in a stand 

causes the probability of survival of individual shortleaf pine trees to decrease. The sign 

of the DBHSQ indicates that the survival probability is reduced with increasing DBHSQ, 

if other variables are held constant.   

 

2.6.3.  Correlation Matrix  

Table 5 below shows strong correlation between b1 (coefficient of Mid-BA) and b2 

(coefficient of DRINV), b1 and b4 (coefficient of Mid-BA*DRINV) and b2 and b4 . The 

highest correlations are highlighted below. This shows a possible multicollinearity 

problem in the independent variables. Despite the high correlation the interaction variable  
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Mid-BA*DRINV contributed to a substantial reduction in the chi-square statistic used to 

evaluate model fit, therefore it was decided to retain this interaction variable even though 

correlations with other variables in the model were high. 

 Table 5.  Correlation matrix for coefficients in a shortleaf pine survival model. 

 b0 b1 b2 b3 b4 

b0 1 -0.9742 -0.9547 0.16964 0.91415 

b1 -0.9742 1 0.93471 -0.101 -0.9576 

b2 -0.9547 0.93471 1 -0.3455 -0.957 

b3 0.16964 -0.101 -0.3455 1 0.20451 

b4 0.91415 -0.9576 -0.957 0.20451 1 

 

2.6.4.  Model Evaluation using chi-square goodness-of-fit test 

The test was used to evaluate how well the logistic model fits observed data. The test 

involves comparison of expected versus observed number of survival and mortality trees. 

Hypothesis: 

H0: E [Y] = (1/ (1+ (exp-(9.791 – 0.0741 × Mid-BA - 4.0594 × DRINV 

 – 0.0025 × DBHSQ + 0.0736 × Mid-BA × DRINV)))) The logistic model 

fits well for the observed survival and mortality data 

H1: E [Y] ≠ (1/ (1+ (exp-(9.791 – 0.0741 × Mid-BA - 4.0594 × DRINV 

 – 0.0025 × DBHSQ + 0.0736 × Mid-BA × DRINV)))) The logistic model 

does not fit well for the observed survival and mortality data  

Test Statistics:  

χ2
calculated = 23.41 

χ2
tabulated (1-α, c-2) = χ2

0.95, 11   = 19.68 where α = 0.05 
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p-value is 0.0154 which is smaller than α = 0.05. 

Decision: χ2
calculated

  ≥ χ2
tabulated (1-α, c-2) , Reject the Null Hypothesis. 

Conclusion: It was found that the logistic model formulated in Equation (6) does not fit 

well for the observed survival and mortality data at 5% level of significance. 

 

However, at alpha level of 0.01 χ2
tabulated (1-α, c-2) = χ2

0.99, 11   =24.73. In this case the 

calculated value is less than the tabulated value hence failed to reject the null hypothesis. 

Also the p-value is bigger than α = 0.01 hence failed to reject the null hypothesis that the 

model fits well. 

 

The chi-square values for survival for each diameter class are very low according to 

Table 6 below. However this is not the case for mortality. Therefore, it can be observed 

that the model for individual tree survival rates fits better than the model for mortality. 

Total survival chi-square value for over all diameter classes is 1.2711 which can be 

considered as low.  

 

On the other hand chi-square values for mortality for some diameter classes such as 2, 6,  

8, 14 etc. seem to be very high. For example, chi-square values for diameter classes 6 and 

8 are 3.48181 and 6.29232 respectively which are quite high (Table 6). Total chi-square 

value for mortality for over all diameter class is 22.13761 which is very large compared 

with the total chi-square value from survival model. The model is rejected by the 

goodness-of-fit test at the significant level of 0.05 because of these high mortality results 

in some of those diameter classes. 
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Examination of the table below and Figure 6 demonstrates that the number of surviving 

trees are in increasing order from diameter class 2 to diameter class 6 and are gradually 

decreasing in higher diameter classes and much less in 18, 20 and so on. The chi-square 

values in Table 6  represent survival and mortality chi-square value for 4, 5 or 6 years 

since the data are from measurement intervals of 4,  5 or 6 years. 

 

Table 6.  Observed survival and mortality and expected survival and mortality by 2-
inch DBH class with chi-square values for the plot remeasurement period from a 
logistic model fitted by iteratively reweighted nonlinear regression.  

Diameter 
Class 

Total 
Trees 

Survived Mortality  
Observed 

No. 
Expected 

No. 
Chi. 

Square 
Observed 

No. 
Expected 

No. 
Chi. 

Square 

2 1451 1109 1138.74 0.77683 342 312.258 2.83295 

4 3869 3582 3583.63 0.00074 287 285.374 0.00927 

6 3886 3791 3770.99 0.10619 95 115.011 3.48181 

8 3320 3265 3242.99 0.14943 55 77.013 6.29232 

10 2801 2740 2735.32 0.00799 61 65.675 0.33282 

12 2271 2211 2221.01 0.04516 60 49.985 2.00657 

14 1541 1496 1506.72 0.07622 45 34.283 3.3499 

16 706 686 689.3 0.01579 20 16.7 0.65189 

18 299 294 291.46 0.02208 5 7.537 0.85376 

20 110 109 106.87 0.04247 1 3.131 1.44996 

22 24 24 23.23 0.02584 0 0.775 0.77472 

24 4 4 3.9 0.00232 0 0.095 0.09511 

26 1 1 0.99 0.00004 0 0.007 0.00653 

Total 20283 19312 19315.15 1.2711 971 967.844 22.13761 
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Figure 6 reveals that the observed numbers of live trees are very close to the expected 

(predicted) numbers of live trees for each diameter class. Conversely, Figure 7 shows 

substantial differences in observed and expected numbers of mortality trees. Observed 

numbers of mortality trees are higher than the expected numbers in some DBH classes 

such as in 2, 12 and 14 diameter classes. And, observed numbers of mortality trees are 

less than the expected numbers in DBH classes such as 6, 8 and 10. Since there is not 

much fluctuation in observed and expected number of survival trees (Figure 6), it can be 

concluded that the model for survival behaved better than the model for mortality.  

 

 

Figure 6. Observed and expected number of surviving shortleaf pine trees for each 
2-inch diameter class for the remeasurement interval from a logistic model fitted by 
iteratively reweighted nonlinear regression. 
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Figure 7. Observed and expected number of shortleaf pine mortality trees for each 
2-inch diameter class during the remeasurement interval from a logistic model fitted 
by iteratively reweighted nonlinear regression. 

 

2.6.5.  Logistic Regression and Parameter Estimation using a Nonlinear Mixed 

Model 

Independent variables used in the nonlinear mixed model were Mid-BA, DRINV and the 

interaction of Mid-BA and DRINV.  The combination of these two variables and their 

interaction term provided smaller chi-square values compared with the other variables. 

The variable DBHSQ used in PROC NLIN was not used in PROC NLMIXED because it 

resulted a high chi-square value which made the model more insignificant. The 

“Parameter estimates” Table 7 below indicates high significance of the two fixed-effects 
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the plot effect. The sign of the coefficients have to be interpreted in carefully in light of 
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the fact that the interaction effect was significant, as in the iteratively re-weighted 

nonlinear regression model discussed previously. Furthermore, the variance of the 

random parameter (σ2
u ) has a high t-value and very a low p-value indicating the 

significant plot level effect.  

 

Table 7.  Parameters, their maximum likelihood estimates, standard errors and 
inferential statistics - nonlinear mixed procedure. 

Variable name Parameter Estimate 
Standard 

Error DF 
t-

Value Pr > |t| Alpha 

Intercept β0    11.2753 0.7044 207 16.01 <.0001 0.05 

Mid-BA β1    -0.0792 0.005229 207 -15.15 <.0001 0.05 

DRINV β2    -5.5501 0.7504 207 -7.4 <.0001 0.05 

Mid-BA DRINV β3    0.08083 0.005812 207 13.91 <.0001 0.05 

Variance component σ2
u 1.1755 0.2233 207 5.26 <.0001 0.05 

 

2.6.6.  Model formulated using logistic regression and the nonlinear mixed 

procedure 

APOS= (1/ (1+ (exp-(11.2753 – 0.0792 × Mid-BA -5.5501 × DRINV+ 0.08083 Mid-

BA DRINV + u))))         (7) 

where; 

=11.2753, = -0.0792, = -5.5501 and = 0.08083 are fixed-effects parameter 

estimates 

σ2
u= variance component which describes the spread of the random coefficient 

u= the random parameter where u ~ N (0, σ2
u) 
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Table 8 shows the results from the chi-square goodness-of-fit test. The test was applied 

using the parameters estimated through the nonlinear mixed model procedure. The total 

number of trees used for this analysis was 20,283 of which 19,312 were observed 

survival trees and 971 were observed mortality trees. The total chi-square calculated 

value is 253.209 which is far more than the chi-square tabulated value 19.68 at the alpha 

level of 0.05 hence rejecting the hypothesis that the model fits well.  

 

Overall the chi-square value for survival which is 17.41 is very much smaller than the 

value for mortality i.e. 235.80. Because of high chi-square values for mortality in certain 

diameter classes such as in classes 2, 4, 10 through 16, the model did not fit well.  
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Table 8.  Observed survival and mortality and expected survival and mortality from 
a logistic model by 2-inch DBH class with chi-square values for the plot 
remeasurement period- nonlinear mixed procedure.  

Diameter 
Class 

Total 
Trees 

Survival Mortality 
Observed 

No. 
Expected 

No.  
Chi. 

Square 
Observed 

No. 
Expected 

No. 
Chi. 

Square 

2 1451 1109 1237.76 13.3943 342 213.241 77.7476 

4 3869 3582 3680.68 2.6454 287 188.325 51.7025 

6 3886 3791 3809.52 0.0901 95 76.478 4.486 

8 3320 3265 3270.36 0.0088 55 49.637 0.5794 

10 2801 2740 2761.15 0.1621 61 39.846 11.2304 

12 2271 2211 2242.18 0.4336 60 28.821 33.7285 

14 1541 1496 1522.47 0.4604 45 18.526 37.8338 

16 706 686 697.85 0.2014 20 8.146 17.25 

18 299 294 295.71 0.0099 5 3.288 0.892 

20 110 109 108.8 0.0004 1 1.197 0.0324 

22 24 24 23.72 0.0034 0 0.284 0.2839 

24 4 4 3.97 0.0002 0 0.031 0.0311 

26 1 1 1 0 0 0.001 0.0012 

Total 20283 19312 19655.17 17.41 971 627.821 235.7988 
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2.7.  Conclusions and Recommendations 

Logistic regression was used to investigate the important variables in estimating the 

probability of survival of individual shortleaf pine trees. Various independent variables 

such as crown class, square root of DBH, square of DBH / mid-basal area, tree dominant 

height, site index, mid-plot age, interaction between Mid-BA and DBHSQ, DBHSQ and 

DRINV etc. were tested in addition to the variables finally selected for use in the model. 

Although some these independent variables were found significant in logistic regression, 

they were found nonessential in nonlinear regression and in estimating annual survival of 

individual shortleaf pine trees. Both iteratively reweighted nonlinear regression and a 

nonlinear mixed model were used in the parameter estimation.   

 

With the parameters estimated through iteratively reweighted nonlinear regression, the 

model evaluation suggested mid-basal area per acre, inverse of ratio of quadratic mean 

diameter to DBH, square of DBH and the interaction between mid-basal area per acre and 

inverse of ratio of quadratic mean diameter to DBH as the best set of independent 

variables. This set of these variables provided less chi-square value compared with other 

sets of the variables. These independent variables were found to be very significant in 

predicting annual probability of survival of a tree. 

 

Nonlinear mixed modeling was applied to investigate effects due to a random parameter 

at the plot level and to evaluate the model performance. Mid-basal area per acre, square 

of DBH and interaction between them were important variables using the nonlinear 

mixed procedure.  The set of these independent variables provided better chi-square 
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estimates than the other sets of the variables. However the total chi-square value was still 

high. The nonlinear mixed modeling suggested that there is significant effect on the 

model due to random parameters for the study. 

 

Although a nonlinear mixed modeling approach was attempted to improve the 

performance of model, the model obtained with logistic regression and the parameter 

estimated from iteratively reweighted nonlinear model was found better in estimating 

survival probability. Both methods of parameter estimation yielded high chi-square 

statistics rejecting the null hypothesis that the model fits well, but the chi-square values 

from the nonlinear mixed model were substantially higher than those from the iteratively 

reweighted regression model. Elevated chi-square values for both models might be due to 

high mortality chi-square values in some diameter classes.  

 

The model below which utilized the parameters estimated through iteratively reweighted 

nonlinear regression was chosen as the final model for this study.  

APOS= (1/ (1+ (exp-(9.791 – 0.0741 × Mid-BA - 4.0594 × DRINV 

 – 0.0025 × DBHSQ + 0.0736 × Mid-BA × DRINV)))) 

The interaction effect of Mid-BA and DRINV was found significant therefore the 

interpretation of main effect due to Mid-BA and DRINV separately is affected by the 

interaction term.  The total coefficient of Mid-BA (that is, the sum of the coefficient for 

the interaction term multiplied by a constant DRINV and the coefficient of the linear 

term) is positive when DRINV is greater than 1 and is negative when DRINV is less than 
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1. On the other hand, the total coefficient of DRINV is positive when Mid-BA is greater 

than 55 ft2/ acre and is negative when Mid-BA is less than 55 ft2/acre.    

 

 Based on the results from the final model, the observed frequencies of individual tree 

survival have no severe deviation from the expected frequencies however; this was not 

the case with the frequencies for mortality trees. Also the chi-square calculated values for 

survival are much less than those for mortality indicating the model fit much better for 

survival.  

 

Further study is recommended using other models with different combinations of 

independent variables that may improve the prediction probability of survival of 

individual shortleaf pine trees. The final model above is considered as a better alternative 

than a constant survival rate and could be selected for use in the Shortleaf Pine Stand 

Simulator (SLPSS) (Huebschmann et al. 1998) which is a distance-independent 

individual tree growth simulator for naturally-occurring shortleaf pine. The model 

provides important information about individual tree survival for the shortleaf pine trees 

found in the eastern Oklahoma and western Arkansas region. 
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Scope and Method of Study:  
Logistic regression was used to obtain the best set of independent variables for prediction 
of individual shortleaf pine tree survival in even-aged natural stands.  Logistic survival 
model parameters were estimated using iteratively reweighted nonlinear regression. A 
nonlinear mixed model was also applied to investigate inclusion of a random plot level 
effect in the survival model. The final logistic individual tree survival model can be used 
to predict the annual survival rate of individual trees of even-aged shortleaf pine forests 
located in Ozark and Ouachita National Forests and in the surrounding regions. The 
logistic model could be selected for use in the Shortleaf Pine Stand Simulator, which is a 
distance independent forest growth simulator for naturally-occurring shortleaf pine trees.  
 
 
Findings and Conclusions:  
Mid-basal area per acre, inverse of ratio of quadratic mean diameter to diameter at breast 
height, their interaction and square of diameter at breast height were found to be 
significant variables in predicting the survival of individual shortleaf pine trees. 
Iteratively reweighted nonlinear regression was used to estimate logistic model 
parameters. Also a nonlinear mixed model was developed and a plot-level random effect 
was found significant. However the model from logistic regression with parameters 
estimated through iteratively reweighted nonlinear regression was considered the best 
final model by comparing the test statistics from the chi-square goodness-of-fit test. The 
goodness-of-fit test rejected the hypothesis that the model fits well. This might be 
because of high mortality chi-square values in some diameter classes. The contribution to 
chi-square from survival is much lower than for mortality indicating that he model fits 
better for survival than for mortality.  
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