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CHAPTER I 
 

The Structural and Compositional Dynamics of Oak Forests, with 

Special Reference to the Crosstimbers 

 

The Crosstimbers offer an opportunity for long-term research regarding changes 

in forest species composition.  Within a given forest, structure may vary through time 

(Oliver and Larson 1996).  Stands with a similar structure through time (i.e. steady state) 

tend to have a large quantity of seedlings and saplings and few old stems (Oliver and 

Larson 1996).  As time passes, the saplings increase in both height and diameter and are 

replaced by new recruits.  In contrast, if a forest stand newly develops in an area (or when 

a stand recovers following disturbance), mortality due to interstem competition, or 

thinning, may occur (Peet and Christensen 1980, Oliver 1981).  Many trees compete for 

light and other resources with the trees nearest them, and gradually the stem number in a 

given area decreases as the trees age.  Diameter distributions of a thinning stand are often 

unimodal, with a high concentration of young, small stems, and few to no large ones.  

The stems within such a stand are often all of the same age (called single age), 

originating from a large recruitment event.   

Once density-dependent mortality thins the stand to an equilibrium number of 

trees, diameter distributions are often bimodal or more commonly reverse-J (Oliver and 
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Larson 1996, Clark et al. 2005, Li et al. 2008, Bragg et al. 2012).  In reverse J 

distributions, the number of stems declines as a function of size class.  Abundant small 

stems are typically suppressed in the understory. The understory trees either die or are 

‘released’ after the death of a canopy tree and then grow relatively quickly (Peet and 

Christensen 1987).  Because forests with reverse-J and bimodal distributions exhibit 

continuous recruitment, such forests are typically mixed age stands (Clark et al. 2005, 

Bragg et. al 2012). 

Once attaining a bimodal or reverse-J diameter distribution, forest structure is 

usually maintained (Kucbel et al. 2012).  In this phase, mortality events within the stand 

that decrease the stem number and basal area are balanced by recruitment and growth of 

smaller stems.  This is perhaps the most basic definition of a stand maintaining itself.  

Studies on the mechanisms of this balance often include models such as gap dynamics 

and catastrophic cycles (Oliver and Larson 1996, Olano and Palmer 2003).  However, the 

connection between a reverse-J or bimodal diameter structure and a steady state forest 

does not hold for every forest type (Lowenstein et al. 2000) 

Forest structure is also in part determined by its species composition.  The species 

that are found within the forest affect the dynamics of recruitment, basal area increment, 

diameter distributions (Li et al. 2008).  Many forests undergo changes is species 

composition over time, which also changes their structure.  Based on location and initial 

species composition, a forests structure and composition may change in predictable ways. 

This change in species composition through time is known as succession (Connell and 

Slayter 1977, Oliver and Larson 1996, D’Amato et al. 2008). 
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Succession may be occurring in Quercus forests in North America (and 

elsewhere) as many oak forests are in a state of flux (Abrams 1996, 2003).  Many 

Quercus forests are experiencing a shift in species composition that often leads to 

replacement by other species (Abrams 2003, Alexander and Arthur 2010).  In these 

forests, recruitment of Quercus does not compensate for its loss (Abrams 2003, Rynicker 

et al. 2006, Holzmueller et al. 2011), and more mesic species such as Acer are moving 

into the canopy and becoming dominant (Abrams 1996, Rodewald and Abrams 2002).  

This change in composition alters many aspects of the forest, including nutrient 

availability, ecosystem services such as wildlife habitat, and hydrology (Rodewald and 

Abrams 2002, Alexander and Arthur 2010).  The change to more mesic species may be 

successional, or a result of fire suppression and climate change (Abrams 1996, DeSantis 

et al. 2011). 

The Crosstimbers is a xeric, Quercus-dominated forest, forming a north-south 

ecoregion extending from Kansas to central Texas (Küchler 1964).  Although it is an oak 

dominated system, it does not appear to be successional, and has not been subject to fire 

suppression (Stahle 2002, Shirakura at al. 2006, Allen et al. 2009, Allen and Palmer 

2011). 

The two dominant oak species in the Crosstimbers are blackjack oak (Quercus 

marilandica) and post oak (Quercus stellata).  The Crosstimbers represents the western 

edge of the range for both species.  Quercus stellata is a member of the white oak group 

(Quercus section Quercus) and can live up to ~400 years, sometimes achieving heights of 

25m (Nixon 1997).  Q. marilandica is a member of the red oak group (Quercus section 

Lobatae), and has a typical lifespan of ~150 years, reaching heights of 15m (Nixon 
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1997). Neither species is considered particularly valuable commercially due to their slow 

growth and inaccessible locations, and as a result many areas of Crosstimbers have not 

been disturbed by harvesting (Therrell and Stahle 1998, Stahle 2002). 

Because of this, Crosstimbers forest may be the most undisturbed forest in the 

eastern United States (Therrell and Stahle 1998, Stahle 2002, Bragg et al. 2012).  Its 

presence is closely tied to edaphic factors: forest is most likely to be found on sandstone-

derived soils, while prairies are more often found on limestone-derived soils (Therrell 

and Stahle 1998, Francaviglia 2000).  The Crosstimbers frequently borders tallgrass 

prairie, where it forms both closed-canopy stands and a mosaic of savanna and glades. 

Crosstimbers forest forms an ecotone between the eastern hardwood forest of the 

eastern United States and the western prairies (Küchler 1964, Dykstehuis 1948, DeSantis 

et al. 2011).  As an ecotone, the Crosstimbers, can be especially vulnerable to stressors 

like drought (Risser 1995, DeSantis et al 2011).  These stresses can cause changes in 

vegetation composition and structure (Risser 1995).  Changes in ecotones can be used as 

harbingers of coming change (DeSantis et al. 2011).  

Through much of Oklahoma, the Crosstimbers are changing species composition 

(DeSantis 2011, Burton et al. 2010).  However, in some areas Quercus remains dominant 

(Therrell and Stahle 1998, Francaviglia 2000, Arévalo 2002, Clark and Hallgren 2005, 

DeSantis et al. 2010).  As such, the Crosstimbers present an opportunity for long term 

study regarding changes in Quercus forest in myriad conditions.  However, to study 

change we must know the past and current state of the Crosstimbers. 
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Unlike other Quercus forests in North America, previous research in the 

Crosstimbers forests have not generally included certain descriptive statistics for all 

stems within the stand (i.e. diameter distributions, basal area calculations, tree heights, or 

ages) and/or they focus on relatively small areas with few stems.  This prevents a 

thorough understanding of the dynamics that create and maintain the structure and 

composition of the Crosstimbers.  Most studies of the Crosstimbers have focused on old 

growth stands (Therrell and Stahle 1998, Stahle 2002, Clark et al. 2002, Clark and 

Hallgren 2003, Clark et al. 2005, DeSantis et al 2010, Bragg et al. 2012), or on 

disturbance within a Crosstimbers stand (Shirakura et al. 2006, Burton et al. 2010, Myster 

and Malahy 2010).  Little long-term work and detailed study of the Crosstimbers 

composition and structure has been conducted (except see DeSantis et. al 2010).  Without 

a basic understanding of the structure and function of this forest, the opportunity to study 

changes regarding oak forests and climate change is greatly diminished. 

 In my work, I use data from a long-term permanent plot of Crosstimbers forest to 

begin addressing these issues.  In 1998, José Ramón Arévalo and Michael W. Palmer at 

Oklahoma State University set up a 4ha long term research plot, consisting of ~7,600 

stems, in a stand of Crosstimbers located at the Tallgrass Prairie Preserve (TGPP) in 

Osage County, Oklahoma (Figure 1.).  I began working in this forest stand in 2008.  

Owned by the Nature Conservancy, the TGPP consists of ~15,400ha of land in Osage 

County, Oklahoma.  The research plot lies on a western facing slope (3-25%), with 

Niotaze-Darnell complex soils and a sandstone shoulder running north-south through the 

center of the plot (Bourlier et al. 1979).  The stand has several open areas (Figure 2), and 

some washes that run down the slope.  This land was a former ranching operation in the 
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1900’s until 1989 when the Nature Conservancy purchased it (Allen et al. 2009), and the 

stand is fairly close to the original ranch house.  The Conservancy uses a patch-burn plan 

that involves any given area burning approximately once every 3 years (Hamilton 2007), 

so I can infer that the site has likely burned at least seven times in the last 23 years.  This 

burn frequency is within the range of variation of the fire regime over the past three 

centuries (Allen and Palmer 2011). 

Here, I describe this forest stand in both 1998 and 2008 using diameter 

distributions, stem density, and basal area.  I document the changes that occurred over the 

10-year period between sampling and resampling, including mortality rates and growth.  I 

measure heights and took increment cores of a subset of trees within the stand to 

determine stand age.  Using these data, I ask the following questions: Is the stand in a 

steady state? What is the stand’s age, structure, and species composition?  What 

differences are there, if any, in size-specific growth and mortality of the two dominant 

species, Q. stellata and Q. marilandica? How do these results compare to other Quercus 

forests?  
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Figure 1. Study Site 

Photograph taken from the bottom of the southwest-facing slope. Both the northeast and 
southwest sides of the study plot are bordered by prairie. Photograph by K. McGrath 
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Figure 2. Gap within the stand 

An opening within the stand, taken during leaf off in November 2011.  This photograph 
also shows the typical rocky sandstone found in Crosstimbers forest. Photograph by K. 
McGrath
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CHAPTER II 
 

 

A Decade of Change in a Crosstimbers Forest Stand in Osage 
County, Oklahoma 

 

 

Introduction 

 

The Crosstimbers are a part of the Quercus-dominated forests that spread 

throughout the eastern United States (Abrams 1992).  Quercus is the single most 

abundant tree genus in the northern hemisphere, and has great economic and 

environmental importance (Arno 1995).  Oak forests in the United States have been 

undergoing structural and species composition changes (Abrams 1992, 1996, 2003, 

Zaczeck et al. 2002, Alexander and Arthur 2010, Fan et al. 2011, Holzmueller et al 

2011).  Some of these changes include ‘mesophication’, a change in the species 

composition where oaks are failing to recruit and species composition is shifting toward 

more mesic tree species such as Acer saccharum (Abrams 1996, Nowacki and Abrams 

2008, Alexander and Arthur 2010).  Climate change is also playing a role in changing 

forest species composition and mortality, due to droughts and heat stress (Alexander and 

Arthur 2010, Koepke et al. 2010, DeSantis et al. 2011, Heyder et al. 201l). 
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These changes in structure and species composition are indicated by changes in 

mortality and recruitment of trees, which species occupy the most basal area, and changes 

in diameter distributions.  Forests that are maintaining themselves will typically be in a 

steady state, with recruitment balancing mortality and fairly constant basal area and 

diameter distributions (Oliver and Larson 1996).  In contrast, forests that are past 

establishment but not yet in steady state or have experienced a catastrophic disturbance 

might be undergoing thinning (i.e.- density dependent mortality of stems).  These stands 

will typically be gaining basal area while losing stem density, and diameter distributions 

will change over time (Oliver and Larson 1996, Peet and Christensen 1987).   

Unlike many of the oak forests in North America, some areas of the Crosstimbers 

show little change in species composition (Stahle and Therrell 1998, Stahle 2002, 

Arévelo 2002, Shirakura et al. 2006, Clark and Hallgren 2003, Clark et al 2005., Bragg et 

al 2012).  Very little is known about the dynamics of Crosstimbers forest, which may be 

the largest system of relatively undisturbed forest in the eastern United States and has 

many areas of old growth (Therrell and Stahle 1998, Stahle 2002, Clark et al. 2005, 

Bragg et al. 2012).  Adapted to fire, the Crosstimbers are composed almost exclusively of 

post oak (Quercus stellata) and blackjack oak (Quercus marilandica).  It is a xeric forest 

composed of a mosaic of savannas, glades, and forest stands forming a north-south 

ecoregion that extends from Kansas to central Texas (Dyksterhuis 1948, Arévalo 2002). 

While many eastern forests have experienced fire suppression over the last few 

centuries, most Crosstimbers forests have experienced an uninterrupted and frequent fire 

regime (Shirakura et. al. 2006, Allen and Palmer 2011).  Crosstimbers forest is believed 

to have existed in its current form in the southern Great Plains since the beginning of the 
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most recent interglacial period (Francaviglia 2000, Stahle 2002, Clark et al. 2005).  

Crosstimbers species do not readily or frequently colonize disturbed or unburned areas, 

nor is there a known successional phase leading to it or from it (Burton et al. 2010, 

DeSantis et al. 2010).  Some studies indicate shifts in species composition and forest 

structure, including size distribution of the trees, basal area of species present, and age 

distribution (Burton et al 2010, DeSantis et al 2010), often tied to areas where fire 

suppression has occurred, or to severe drought. 

The Crosstimbers are an ecotone, the last forest at the edge of the western prairies 

(Dyksterhuis 1948, Arévalo 2002).  Both of the co-dominant oak species, Q. stellata and 

Q. marilandica, are at the western edge of their range.  As an ecotone, the Crosstimbers 

can be especially sensitive to environmental changes, with stress leading to changes in 

species composition and more mortality events (Risser 1995, Koepke et al. 2010).  

Because of this, studies of structural or species composition changes in the Crosstimbers 

can give us an early idea of what environmental changes, such as climate change might 

have on other oak forests around the world (Koepke et al. 2010, DeSantis et al. 2011).  

To date, few studies have looked for long-term changes in the Crosstimbers (but see 

Stahle 2002, DeSantis et al. 2010) or detailed Crosstimbers stand dynamics. 

The purpose of this study was to document the dynamics of a mapped 

Crosstimbers forest stand from 1998 through 2008.  Based on previous research in the 

Crosstimbers (Dyksterhuis 1948, Therrell and Stahle 1998, Clark et al. 2005), I 

hypothesize the forest stand will display steady state dynamics in which mortality is 

balanced by recruitment, and thus the species composition (type of species present and 

ratio of species) and structure (age and size distribution of stems, basal area of the 
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species) of the stand is maintained (Oliver and Larson 1996, D’Amato et al 2008, Olano 

and Palmer 2003, Bragg et al. 2012).  The Crosstimbers historical presence and non-

successional nature make finding steady state dynamics a reasonable expectation.  If 

indeed the forest is in a steady state, this would indicate the stand is maintaining itself, 

something most Quercus forests throughout North America are not (Elliot and Swank 

1994, Abrams 1996, 2003, Ryniker et al 2006, Alexander and Arthur 2010, Fan et al. 

2011, Holzmueller et al 2011).   

Another possible state might be thinning, the loss of stems based on density-

dependent mortality (Oliver and Larson 1996, Peet and Christensen 1987).  I expect to 

see thinning in stands where almost all stems are much younger than the maximum 

lifespan.  Low recruitment and high mortality of small stems, changing diameter 

distributions over time, and an even age structure provide evidence of thinning.  

Understanding the mechanisms of how Crosstimbers forests are maintaining themselves 

(or not) could help us understand the changes taking place in Quercus forests worldwide. 

My study addressed the following research questions.  (1) What are the dynamics 

of the stand in terms of mortality and recruitment?,  (2) How do size-specific growth and 

mortality vary between the two dominant oak species, Q. stellata and Q. marilandica?,  

(3) Are the dynamics consistent with a forest in steady state or thinning?,  (4) What is the 

age structure of the stand?  
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Methods 

Study Site 

The study site consists of a 200m x 200m (4ha) plot in the Tallgrass Prairie 

Preserve (TGPP) in Osage County, northern Oklahoma.  The TGPP is owned and 

managed by The Nature Conservancy, and consists of ~15,400ha of land, located 

between 36.73˚ and 36.90˚N latitude and 96.32˚ and 96.49˚ W longitude (Allen and 

Palmer 2011).  Average annual rainfall for Osage County is 101cm, with average 

maximum temperature of 22.2˚ C (Allen et al. 2009).  The study plot was placed within a 

stand of Crosstimbers (centered on 36.83˚ N latitude and 96.41° W longitude) on a 

western facing slope (3-25%), with Niotaze-Darnell complex soils (classified as fine, 

smectitic, thermic aquic paleustalfs, with sandstone within a depth of 50.8cm) (Bourlier 

et al. 1979) and a sandstone shoulder running north-south through the center of the plot.  

The Nature Conservancy uses a patch-burn plan that involves any given area burning 

approximately once every 3 years and has controlled the site since 1989, so I can infer 

that the site has burned at least 7 times in the last 23 years (Hamilton 2007).  Burn 

frequencies have been found to be constant over the past three centuries (Allen and 

Palmer 2011). 

Data Collection 

 José Ramón Arévalo established the study plot in 1998.  All stems ≥2.5cm in 

diameter at breast height (DBH, 1.3m above the base) were tagged with an individual 

identification number on an aluminum tag, and their geographic coordinates were 

recorded.  Each tree’s species, DBH (using a DBH tape), and status (alive or dead) were 

also recorded.  In December 2008, I resurveyed the site for growth, mortality, and 
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recruitment.  Any new stems ≥2.5cm were mapped, tagged, and DBH and species 

recorded.    

In 2012, I collected 48 tree cores and 96 tree heights of Q. stellata stems using a 

stratified random sampling design.  I divided the trees into12 size classes of 3cm each 

based on their 1998 DBH, starting at 2.5- 5.4cm and ending with a size class of 35.5-all 

others (due to having few trees above that class).  I randomly selected one tree from each 

size class for each 1ha area of the plot and then collected a core from that tree using an 

increment borer (using standard dendrochronology techniques, Fritts 1976) at breast 

height, for a total of 48 tree cores.  I used a similar sampling design to choose stems to 

quantify for heights.  I measured 2 randomly chosen stems (including the tree I cored) per 

size class in each hectare using a Haglöf Vertex Hypsometer. 

I visually examined aerial photographs from four separate time points (1954, 

1966, 1991 from the USGS Soil Conservation Service survey, and a 2012 image from 

Google Earth) to determine gross changes in structure and extent of tree cover. 

Analysis 

I analyzed diameter distributions for Q. marilandica and Q. stellata in both 1998 

and 2008.  I calculated mortality and changes in basal area (basal area in m2 = 

0.00007854 x DBH2).  I also examined growth rate as a function of 1998 DBH and 

mortality by 1998 DBH size classes. Tree cores were aged using standard 

dendrochronological techniques (Fritts 1976) with the aid of a dissecting scope.  Only 

present rings were used in the age estimation. I subtracted years from trees cored in 2011 

and 2012 to calculate 2008 age.  Because the cores were derived from a size-class 
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stratified random sample, they represent a biased age distribution.  For example, very 

large and very small stems are overly represented in the sample.  Therefore, I corrected 

the age distribution by weighting age classes according to the diameter distribution of 

Quercus stellata.  Quercus stellata composed 89% of the stems in the stand in 1998, and 

92% of stems in 2008. 

Results 

Overall Stand Structure 

In 1998 there were a total of 7,620 stems in the 4ha plot (1905 stems ha-1).  The 

majority (6,772) of stems were Q. stellata.  There were 842 stems of Q. marilandica, and 

only 6 stems of other species (Fraxinus, Prunus, and Celtis).  No Juniperus virginiana, 

which commonly increases in unburned Crosstimbers (van Els et al. 2010), were found 

within the stand.  When resampled in 2008, the stand had experienced a drastic loss of 

stems, but an overall increase in basal area (Table 1) and an increase in average stem 

diameter (Figures 1 and 2); this pattern is consistent with a stand undergoing thinning. 

We were unable to locate only 301 stems out of the original 7,620.  

Aerial photos (not shown) indicate no clear signs of disturbance nor changes in 

the extent of forest cover.  However, the images varied in resolution, time of year 

sampled (and hence the status of the foliage), and lighting; thus I cannot offer any 

conclusive interpretation from these images other than a lack of great change. 
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Basal Area and Recruitment 

 Q. marilandica lost basal area over the decade, while Q. stellata gained basal area 

(Table 1).  Q. marilandica recruited two stems into the 2.5cm diameter class, while Q. 

stellata recruited 3 stems. 

Diameter Growth 

Confidence intervals for both species growth rates overlapped, showing no 

significant difference in the size-specific growth rate between species (Figure 3).  For Q. 

marilandica, stem diameter distribution shifted toward larger stems over the decade.  The 

majority of Q. marilandica stems in 1998 were between 3.76 and 6.25cm DBH, while in 

2008 the majority of stems were between 6.26 and 8.75cm DBH (Figure 2).  Average 

growth rate was highest for stems with diameters up to 20cm, at which point it began to 

decrease (Figure 3, dashed line).  For Q. stellata, stem diameter distribution also shifted 

toward larger stems over the decade.  Most stems in 1998 were between 6.26 and 8.75cm 

DBH; in 2008 the majority of stems fell between 8.76 and 11.25cm DBH (Figure 1).  

Average growth of Q. stellata stems tended to increase with increasing diameter (Figure 

3, solid line). 

Mortality 

Both species exhibited high mortality at the smallest classes, exceeding 70% for 

the smallest stems (Figure 4), consistent with thinning.  Q. marilandica exhibited 

significantly higher mortality than Q. stellata at all size classes except the very smallest, 

when it was comparable to Q. stellata, and at 24cm DBH, potentially due sample size 

(only 9 stems of Q. marilandica in that size class exist in the stand).  Q. marilandica 
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exhibited a U-shaped mortality function, with maximum survivorship at 11cm DBH, and 

mortality approaching 60% at large diameters (Figure 4).  This may reflect Q. 

marilandica’s shorter lifespan.  In contrast, Q. stellata’s decadal mortality remained close 

to zero at larger diameters.  Over the decade and across size classes, Q. stellata 

experienced 20% mortality, while Q. marilandica experienced 40.9%. 

Stand Age and Height of Quercus stellata 

 In 1998, the vast majority of Q. stellata stems in the stand (4641) were estimated 

to be between 40-49 years old.  In 2008, the majority of stems in the stand (3097) were 

estimated to be between 50-59 years old.  There were an estimated ~18 stems over 100 in 

2008 (Figure 5). Based on subtracting current ages to 1998 age estimations and the stand 

diameter distribution in 1998, it appears the stand became more mixed age over the 

decade-long period.  The relationship between age and diameter was plotted (Figure 6), 

as was the relationship between diameter and heights (Figure 7). 

Discussion 

This Crosstimbers forest stand is decidedly not in steady state, neither with 

respect to species composition nor forest structure.  Species composition, if trends 

continue, is moving toward monodominance of Q. stellata.  The structure of the stand is 

losing stem density but gaining basal area and average stem size.  The stand is moving 

toward a more mixed-aged structure, but is still unimodal in its age distribution; most of 

the stems were recruited in the 1960’s, with smaller periods of recruitment both before 

and after.  Recruitment appears to have lessened greatly around the 1980’s. 
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 The observations presented here suggest that the stand is successional in nature, 

and/or is recovering from a significant stand-wide disturbance.  Successional stands are 

seen as transitory in time, with specific species compositions that change as the stand 

ages (Connell and Slayter 1977).  However, with the near absence of stems of other 

species (as might be found in forests undergoing mesophication (Nowacki and Abrams 

2008), it is unclear what the forest could be succeeding to, except a stand dominated 

completely by Q. stellata.  My results also suggest a stand undergoing ‘thinning’, that is, 

undergoing interstem competition (Peet and Christensen 1987, Oliver and Larson 1996).  

In this phase, stems are competing for resources, and many stems die while the survivors 

become larger.  Few to no new stems are recruited, so there is no balance for the high 

mortality rates.  

Age Distribution of Quercus stellata 

In 2008 both species have unimodal diameter distributions often associated with 

even-aged stands, rather than reverse-J or bimodal distributions, that might be indicative 

of uneven-aged or mature stands (Figures 1 and 2) (Bragg et al. 2012, but see Lowestein 

et al. 2000).  The age distribution of Q. stellata is also unimodal (Figure 5). Q. stellata 

stems that are predominantly 50-59 years old make up the majority of stems, meaning 

most of the trees in stand were established in the late 1950’s and early 1960s.  This is 

consistent with some literature that indicated Quercus forests recruit after drought events 

(Clark and Hallgren 2003, Galiano et al 2010).  The area suffered drought in the early 

1950’s (NOAA NESDIS 2012).  Aerial photos from the 1950s and 1960s do not show an 

observable difference in tree cover, but were taken at different altitudes and time points.  
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Stems recruited during this period would have been below the canopy and thus not 

visible. 

Mortality and Recruitment    

The U-shaped mortality curve I found in Q. marilandica is consistent with much 

of the literature (Olano and Palmer 2003, Vieilledent et al. 2009, Hurst et al. 2011) for 

both young and old hardwood forests.  The smallest stems in our study had only about a 

10% survival rate in the studied decade.  This is most likely due to competition for 

resources, especially light, as neither species is shade tolerant (Dyksterhuis 1948, Nixon 

1997).  The lower mortality for intermediate diameters presumably corresponds to trees 

with healthy canopies undergoing active photosynthesis.  Other studies in the region 

(Shirakura et al. 2006, Burton et al. 2010, DeSantis et al. 2010) also indicate a 

widespread decline in Q. marilandica relative to Q. stellata.  In upland forests in the 

Ozark highlands, Fan et al. (2011) found similar high rates of mortality for black and red 

oaks compared to white.  Thus, the change in this stand may be reflecting a regional 

decrease in members of the red oak group. 

The increase in mortality for larger stems of Q. marilandica is likely attributed to 

two non-exclusive sources: (1) aging/ senescence and (2) being more susceptible to 

disturbances such as windthrow and ice damage (Yang et al. 2003).  Larger stems of both 

species are likely to be older and reaching the end of their lifespans.  However, the 

majority of stems Q. stellata stems in this stand are less than 100 years old (Figure 5).  

While Q. marilandica’s lifespan is ~150, Q. stellata’s is much longer, ~400yrs (Nixon 

1997).  This could explain the lack of as drastic an uptick in mortality at larger sizes for 
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Q. stellata.  In addition, larger trees with more surface area and a larger canopy are often 

more vulnerable to mechanical damage via disturbances like wind and ice (Hurst et al. 

2011).  Q. marilandica is known for retaining its lower and dead limbs, and as a member 

of the red oak group has been found to be more susceptible to wind disturbances 

(Shirakura et al. 2006).  This could also explain, in part, the far higher mortality of large 

Q. marilandica compared to large Q. stellata. 

Whereas I was unable to find traces for a few of the trees tagged in 1998 (301 

stems were missing out of the 1695 that died), the vast majority of dead trees were 

standing dead or had fallen onto the forest floor.  Only rarely were there obvious signs of 

charring due to fire, and thus (especially since charred wood tends to persist) it is unlikely 

that fire represented an important direct cause of mortality for either species.  The 

Crosstimbers forest is unique among other Quercus forests in that its fire history has been 

found to be fairly consistent through time (Shirakura et al 2006, Allen and Palmer 2011).  

In fact, recurring fire plays a key role in maintaining the Crosstimbers (Hamilton 2007, 

Burton et al 2010, DeSantis et al 2010, DeSantis et al 2011).  This likely means that the 

lack of recruitment in this stand is again indicative of thinning, rather that the presence of 

fire.  

Stem Density and Basal Area 

Stem density decreased for both species, but there was an overall increase in basal 

area over the decade due to growth of Q. stellata, a white oak. Similar changes in stem 

density and basal area were documented in the Ozark Hills oak forests of Illinois by 

Holzmueller et al. (2011).  In their study of oak forest composition under no cutting and 
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light harvesting, they found in both treatments an increase in the basal area of white oak 

(Q. alba, a member of the Quercus section Quercus), and a loss of stem density and basal 

area in black (Q. velutina) and northern red oak (Q. rubra), members of Quercus section 

Lobatae.  Unimodal diameter distributions, low recruitment, and similar basal area values 

have also been found in Quercus gambelii communities in Lincoln National Forest Park 

in New Mexico, another xeric forest dominated by oaks (Ryniker et al. 2006). 

Growth 

Our observed pattern of lower growth rates for small trees is also consistent with a 

stand undergoing thinning.  Younger/smaller trees are suppressed until they reach a 

certain size, and are then released due to the mortality of a neighbor (Oliver and Larson 

1996).  Growth then slows (or appears to slow with cm/decade) due to age and eventual 

mortality (Oliver and Larson 1996, Kucbel et al. 2012).  However, it is worth noting that 

a given diameter increment gain in a large tree corresponds with a much larger increase 

in basal area than it does for a small tree, so a decline in diameter growth at larger 

diameters is largely expected even for healthy trees. 

Conclusions 

Like many Quercus forests, I found a lack of recruitment of Quercus stems.  I 

also found a shift in species composition in the loss of members of the red oak group, a 

trend seen by others working in the Crosstimbers (DeSantis et al 2010, Shirakura et. al 

2006, Myster and Malahy 2002) and other North American Quercus forests (Nowacki 

and Abrams 2008, Alexander and Arthur 2010).  I did not, however, find evidence of 

mesophication in this area (an influx of more mesic species such as Acer saccharum) of 
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the Crosstimbers (unlike DeSantis et al 2010). This is potentially due to the continuous 

presence of fire at the Tallgrass Prairie Preserve.  In contrast, areas of the DeSantis et al. 

(2011) study were subject to fire suppression.  These study areas had encroachment of 

Juniperus virginiana. which may have prevented oak recruitment.  Also, their sites in the 

far west may have experienced more severe drought and altered the stand dynamics 

(DeSantis et. al 2011).   

I saw evidence of a large recruitment event (several thousand stems that are 

between 50-59 years old currently) that would have taken place after a widespread 

drought in the 1950’s (NOAA NESDIS 2012)- this increases the connection between 

Quercus recruitment and drought events (Clark and Hallgren 2003, Galiano et al 2010, 

although see Perez-Ramos et al 2010).  Interestingly, aerial photos from the 1950’s and 

1960’s do not indicate a smaller canopy, and photos from the 1990’s do not clearly show 

the larger canopy I might have expected as stems recruited in the ‘50’s and 60’s reached 

crown height. 

In conclusion, the dynamics of this stand appear to be somewhat of a paradox 

with no clear resolution.  A dramatic transition in forest structure, consistent with 

thinning, does not seem to be accompanied by successional change (except for a relative 

increase in Quercus stellata dominance).  The lack of recruits further argues against a 

steady state.  Age distributions imply a stand that is around half a century old, yet older 

aerial photographs imply a closed canopy forest from the period.  This study underscores 

the need for long-term, permanent plot data – as most of my findings could not have been 

inferred from static data.  Resampling the stand in the future will help us better 

understand the nature of structural change in the Crosstimbers.   
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 Table 1.  Stand Statistics 

Mortality, recruitment, and changes in stem density and basal area for Q. stellata and Q. 
marilandica in a 4ha Crosstimbers stand in Osage County, Oklahoma.  There were only 
six stems of other species found within the stand (two of Celtis occidentalis, and one each 
of Fraxinus americana, Fraxinus pennsylvanica, Prunus americana, and Prunus 
mexicana). 
 
  

  

    Q. stellata    Q. marilandica 

1998               2008            1998              2008 

Stem Density (stemsha-1) 1693 1355 210         125 

Basal Area (m2ha-1) 17.93 20.48 2.28        1.72 

Mortality     20.0%         40.0% 

Recruitment (stems ≥2.5cm ha-1)                            0 .75           0.50 
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Figure 1. Diameter distribution of Q. stellata 

Diameter distribution of Q. stellata in 1998 and 2008.
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Figure 2. Diameter distribution of Q. marilandica  

Diameter distribution of Q. marilandica in 1998 and 2008
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Figure 3. Growth rate as a function of diameter for Q. marilandica and Q. stellata 
 
Growth rate as a function of 1998 diameter class midpoint for Q. stellata and Q. 
marilandica. Error bars indicate 95% confidence intervals around the means.
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Figure 4. Mortality as a function of diameter for Q. stellata and Q. marilandica   

Mortality by 1998 diameter class midpoint for Q. stellata (solid line) and Q. marilandica 
(dashed line).  Error bars indicate 95% confidence intervals.
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Figure 5. Estimated age structure of Q. stellata and 2008.  

 

Estimated age structure of Q. stellata stems for 2008 (light grey bars). Estimations are 
based on increment cores collected in a stratified random sample and are corrected for 
diameter distribution. 
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Figure 6.  Stem age and diameter at breast height. 

The relationship between stem age and diameter for 1998 (black squares) and 2008 (grey 
triangles). 
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Figure 7.  Height
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Figure 7.  Height(m) as a function of diameter at breast height (DBH).

Diameter and height relationship of stems selected from stratified random sampling.

10 15 20 25 30 35 40

Diameter at Breast Height (cm)

33 

 

(m) as a function of diameter at breast height (DBH). 

ionship of stems selected from stratified random sampling. 

45 50



 
 

34 

References 

Abrams, M. D. 1992. Fire and the development of oak forests. Bioscience 42:346–353. 
Abrams, M. D. 1996. Distribution, historical development and ecophysiological attributes 

of oak species in the eastern United States. Annales Des Sciences Forestieres 
53:487-512 

Abrams, M. D. 2003. Where has all the white oak gone? Bioscience 53: 927-939 
Alexander, H. D. and M. A. Arthur. 2010. Implications of a predicted shift from upland 

oaks to red maple on forest hydrology and nutrient availability. Canadian Journal 
of Forest Research--Revue Canadienne De Recherche Forestiere 40:716-726 

Allen, M. S., R. G. Hamilton, U. Melcher, and M. W. Palmer. 2009. Lessons from the 
Prairie: Research at The Nature Conservancy's Tallgrass Prairie Preserve. 
Stillwater, Oklahoma: Oklahoma Academy of Sciences. 44pp 

Allen, M. S. and M. W. Palmer. 2011. Fire history of a prairie/forest boundary: more than 
250 years of frequent fire in a North American tallgrass prairie. Journal of 
Vegetation Science 22:436-444. 

Arévalo, J. R. 2002. Distribution of trees and saplings at the edge of cross timbers forests, 
Oklahoma, USA. Natural Areas Journal 22:99-107. 

Arno, J. 1995. The mighty oaks. In: Fine Woodworking Editors (eds.) Wood: the very 
best of fine woodworking.pp. 8–11. Taunton Press, Newtown, CT, US. 

Bourlier, B. G., J. D. Nichols, W. J. Ringwald, P. J. Workman, and S. Clemmons. 1979. 
Soil Survey of Osage County, Oklahoma. Soil Survey of Osage County, 
Oklahoma.:164 pp. 

Bragg, D. C., D. W. Stahle, and K. C. Cerny. 2012. Structural attributes of two old-
growth cross timbers stands in western Arkansas. American Midland Naturalist 
167:40-55. 

Burton, J. A., S. W. Hallgren, and M. W. Palmer. 2010. Fire frequency affects structure 
and composition of xeric forests of Eastern Oklahoma. Natural Areas Journal 
30:370-379. 

Clark, S. L. and S. W. Hallgren. 2003. Dynamics of oak (Quercus marilandica and Q. 
stellata) reproduction in an old-growth cross timbers forest. Southeastern 
Naturalist 2:559-574. 

Clark, S. L. and S. W. Hallgren. 2004. Age estimation of Quercus marilandica and 
Quercus stellata: applications for interpreting stand dynamics. Canadian Journal 
of Forest Research-Revue Canadienne De Recherche Forestiere 34:1353-1358 

Clark, S. L., S. W. Hallgren, D. W. Stahle, and T. B. Lynch. 2005. Characteristics of the 
Keystone Ancient Forest Preserve, an old-growth forest in the Cross Timbers of 
Oklahoma, USA. Natural Areas Journal 25:165-175. 

 



 
 

35 

Connell, J. H. and R. O. Slayter. 1977. Mechanisms of Succession in Natural 
Communities and Their Role in Community Stability and Organization. The 
American Naturalist 111: 1119-1144. 

DeSantis, R. D., S. W. Hallgren, T. B. Lynch, J. A. Burton, and M. W. Palmer. 2010. Long-term 
directional changes in upland Quercus forests throughout Oklahoma, USA. Journal of 
Vegetation Science 21:606-615. 

DeSantis, R. D., S. W. Hallgren, and D. W. Stahle. 2011. Drought and fire suppression 
lead to rapid forest composition change in a forest-prairie ecotone. Forest Ecology 
and Management 261:1833-1840. 

Dyksterhuis, E. J. 1948. The vegetation of the western Crosstimbers. Ecological 
Monographs 18:325-376. 

Elliot, K. J. and W. T. Swank. 1994. Impacts of drought on tree mortality and grwoth in 
mixed hardwood forest. Journal of Vegetation Science 5:229-236 

Fan, Z. F., X. L. Fan, M. A. Spetich, S. R. Shifley, W. K. Moser, R. G. Jensen, and J. M. 
Kabrick. 2011. Developing a stand hazard index for oak decline in upland oak 
forests of the Ozark Highlands, Missouri. Northern Journal of Applied Forestry 
28:19-26. 

Francaviglia, R. V. 2000. The cast iron forest : a natural and cultural history of the North 
American Cross Timbers. Pages 276.  Corrie Herring Hooks series ; no. 43. 
University of Texas Press, Austin.  

Fritts, H. 1976. Tree Rings and climate. Academic Press. 567 pgs. 
Galiano, L. J. Martinez-Vilalta, and F. Lloret. 2010. Drought-induced multifactor Decline 

of scots pine in the Pyrenees and potential vegetation change by the expansion of 
co-occurring oak species. Ecosystems 13:978-991 

Hamilton, R.G. 2007. Restoring heterogeneity on the tallgrass prairie preserve: applying 
the fire–grazing interaction model. In: Masters, R.E. & Galley, K.E.M. (eds.) 
Proceedings of the 23rd Tall Timbers fire ecology conference: fire in grassland 
and shrubland ecosystems. pp. 163–169. Tall Timbers Research Station, 
Tallahassee, FL, US. 

Heyder, U., S. Schaphoff, D. Gerten, and W. Lucht. 2011. Risk of severe climate change 
impact on the terrestrial biosphere. Environmental Research Letters 6:1-8 

Holzmueller, E. J., J. W. Groninger, C. M. Ruffner, and T. B. Ozier. 2011. Composition 
of oak stands in the Illinois Ozark Hills 2 decades following light harvesting and 
no cutting. Northern Journal of Applied Forestry 28:50-53. 

Hurst, J. M., R. B. Allen, D. A. Coomes, and R. P. Duncan. 2011. Size-specific tree 
mortality varies with neighbourhood crowding and disturbance in a montane 
Nothofagus Forest. Plos One 6. 

Koepke, D. F., T. E. Kolb, and H. D. Adams. 2010. Variation in woody plant mortality 
and dieback from severe drought among soils, plant groups, and species within a 
northern Arizona ecotone. Oecologia 163:1079-1090 



 
 

36 

Kucbel, S., M. Saniga, P. Jaloviar, and J. Vencurik. 2012. Stand structure and temporal 
variability in old-growth beech-dominated forests of the northwestern 
Carpathians: A 40-years perspective. Forest Ecology and Management 264:125-
133. 

Lowenstein, E. F., P. S. Johnson, and H. E. Garrett. 2000. Age and diameter structure of a 
managed uneven-aged oak forest. Canadian Journal of Forest Research. 30: 1060-
1070 

Nixon, K. C. 1997. Quercus In: Flora of North America Editorial Committee, eds. 1993+. 
Flora of North America North of Mexico. 16+ vols. New York and Oxford. Vol. 
3, pp. 356-357. 

NOAA, National Oceanic and Atmospheric Administration, 2010. Satellite and 
Information Service, U.S. Department of Commerce, NOAA, NESDIS and 
NCDC. http://www7.ncdc.noaa.gov/CDO/CDODivisionalSelect.jsp# Accessed 
July 2010. 

Nowacki, G. J. and M. D. Abrams. 2008. The demise of fire and "Mesophication" of 
forests in the eastern United States. Bioscience 58:123-138 

McEwan RW and BC McCarthy. 2008. Anthropogenic disturbance and the formation of 
oak savanna in central Kentucky, USA. Journal of Biogeography 35: 965-975. 

Olano, J. M. and M. W. Palmer. 2003. Stand dynamics of an Appalachian old-growth 
forest during a severe drought episode. Forest Ecology and Management 174:139-
148. 

Oliver, C. D. and B. C. Larson. 1996. Forest stand dynamics. 520 p. Wiley, New York. 
Peet, R. K. and N. L. Christensen. 1987. Competition and tree death. Bioscience 37:586-

595. 
Perez-Ramos, I. M., J. M. Ourcival, J. M. Limosin, and S. Rambal. 2010. Mast seeding 

under increasing drought: results from a long-term data set and from a rainfall 
exclusion experiment. Ecology 91:3057-3068 

Risser, P. G. 1995. The status of the science examining ecotones-A dynamic aspect of 
landscapes is the area of steep gradients between more homogeneous vegetation 
associations. Bioscience 45:318:325. 

Rodewald, A.D. and M. D. Abrams. 2002. Floristics and avian community structure: 
Implications for regional changes in eastern forest composition. Forest Science 
48:267:272. 

Ryniker, K. A., J. K. Bush, and O. W. Van Auken. 2006. Structure of Quercus gambelii 
communities in the Lincoln National Forest, New Mexico, USA. Forest Ecology 
and Management 233:69-77 

Shirakura, F., K. Sasaki, J. R. Arévalo, and M. W. Palmer. 2006. Tornado damage of 
Quercus stellata and Quercus marilandica in the cross timbers, Oklahoma, USA. 
Journal of Vegetation Science 17:347-352. 

Stahle, D. W. 2002. The unsung ancients. Natural History 111:48. 



 
 

37 

Therrell, M. D. and D. W. Stahle. 1998. A predictive model to locate ancient forests in 
the Cross Timbers of Osage County, Oklahoma. Journal of Biogeography 25:847-
854. 

van Els, P, R.E. Will, M.W. Palmer, and K.R. Hickman. 2010. Changes in forest 
understory associated with Juniperus encroachment in Oklahoma, USA. Applied 
Vegetation Science 13: 356-368. 

Vieilledent, G., B. Courbaud, G. Kunstler, J. F. Dhote, and J. S. Clark. 2009. Biases in 
the estimation of size-dependent mortality models: advantages of a 
semiparametric approach. Canadian Journal of Forest Research-Revue 
Canadienne De Recherche Forestiere 39:1430-1443. 

Yang, Y. Q., S. J. Titus, and S. M. Huang. 2003. Modeling individual tree mortality for 
white spruce in Alberta. Ecological Modelling 163:209-222 

Zaczek, J. J., J. W. Groniger, and J. W. Van Sambeek. 2002. Stand dynamics in an old-
growth hardwood forest, in southern Illinois, USA, Natural Areas Journal 22:211-
219 

 
  
 

 



 
 

VITA 
 

Kelly Arleen McGrath 
 

Candidate for the Degree of 
 

Master of Science 
 
Thesis:    DECADAL-SCALE DYNAMICS OF A CROSSTIMBERS 

FOREST IN OSAGE COUNTY, OKLAHOMA 
 
 
Major Field:  Botany 
 
Biographical: 
 

Education: 
 
Completed the requirements for the Master of Science in Botany at Oklahoma 
State University, Stillwater, Oklahoma in July, 2012. 

 
Completed the requirements for the Bachelor of Science in Biology at Truman 
State University, Kirksville, Missouri in 2005. 
 
Experience: 

Teaching assistant for: 
  Oklahoma State University 
  Botany 1404 Fall 2009, Spring 2010, Fall 2010, Spring 2012 

• Teach labs 
• Create and grade lab practicals and homework 

  Biology 3034 Fall 2008, Spring 2009, Spring 2011, Fall 2011 
• Prepare and teach labs 
• Create and grade quizzes and papers 

   
 
Professional Memberships: 
 

Ecological Society of America 
Botanical Society of America 



ADVISOR’S APPROVAL:   Michael W. Palmer________  

Name: Kelly McGrath                        Date of Degree: July 2012 
 
Oklahoma State University                                  Stillwater, Oklahoma 
 
Title of Study: DECADAL-SCALE DYNAMICS OF A CROSSTIMBERS ST AND 

IN OSAGE COUNTY, OKLAHOMA 
 
Pages in Study: 37   Candidate for the Degree of Master of Science 

Major Field: Botany 
 

Scope and Method of Study: 
The objective of this research was to answer several questions regarding 

Crosstimbers stand dynamics: 1) What are the dynamics of the stand in terms of mortality 
and recruitment?  (2)How do size-specific growth and mortality vary between the two 
dominant oak species, Q. stellata and Q. marilandica?  (3)Are the dynamics consistent 
with a forest in steady state?  (4)What is the age structure of the stand?  In 1998, José 
Ramón Arévalo placed a rectangular (200m x 200m) plot within an area of forest at the 
Tallgrass Prairie Preserve in Osage County, Oklahoma. All stems ≥2.5cm in diameter at 
breast height (DBH, 1.3m) were tagged with an individual identification number on an 
aluminum tag, and their geographic coordinates were recorded. Each tree’s species, 
diameter, and status (alive or dead) were also recorded.  I resampled the stand in 2008, 
again recording status, changes in DBH, and recruitment of new stems. Using these data, 
I calculated basal area and developed diameter distributions for both time points, and 
measured growth rates and mortality for both species. Using a stratified random sampling 
design I measured the heights of 96 stems across 12 size classes (3cm increments starting 
at 2.5cm DBH). I also used increment bores taken from 48 stems across the same 12 size 
classes to assess the age structure of the stand and examine the relationship between age 
and diameter. 

Findings and Conclusions: 
Over a 10 year period, basal area increased and the number of stems decreased by 

33%, with the majority of those deaths in Quercus marilandica stems. Only five stems 
have been recruited into the stand.  The diameter distribution for both species in both 
years was unimodal, with the majority of stems in the smaller size classes. The peak of 
the diameter distributions shifted toward slightly larger stems (from 7.5cm DBH to 10cm 
DBH) during the 10 year study period. Growth rate is greatest for stems of medium size 
(between 15-25cm DBH).  Age analysis of the stand revealed a relatively even-aged 
stand. There is a positive relationship between height and diameter much scatter.  
Diameter generally increases with age, although age can vary drastically within size 
classes.  Dynamics indicate that this forest stand is undergoing thinning of stems. 


