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CHAPTER  I 
 

PATTERNS OF GENETIC DIVERSITY IN BLACK BEARS (URSUS AMERICANUS) 

DURING A RANGE EXPANSION INTO OKLAHOMA 

Abstract 
 

By the early 1900s, black bears (Ursus americanus) were extirpated in Oklahoma and 

nearly extirpated in Arkansas.  The translocation of 254 individuals from Minnesota and 

Canada in 1958–1968 led to the restoration of black bears in Arkansas by the mid-1990s.  

Black bears are currently dispersing west across ridges of the Ouachita Mountains from 

Arkansas into areas in southeastern Oklahoma devoid of bears since 1915.  It is rare that 

quality habitat is within dispersal range of a large population of bears due to increasing 

loss of suitable habitat.  Natural recolonization during range expansion is valuable as a 

potential tool for management of wildlife populations in the absence of adequate funding 

and public support.  Genetic monitoring of this event provides an opportunity to examine 

the unique characteristics of expanding populations.  We collected hair samples 

noninvasively from 128 hair snares set at a frequency of 1 trap per 23 km2 across the 

3,420 km2 study area.   We collected 1,166 hair samples during 24 weeks in June–August 

2004, 2005, and 2006.  Of the 498 (42.7%) samples from which we were able to extract 

DNA, 332 (66.7%) were sexed and genotyped at ≥ 7 of 10 microsatellite loci.  Of those, 

161 (48.5%) were unique individuals with a male-biased sex ratio of 1.7:1, and 52 

(32.3%) were recaptures.  The remaining 119 (35.8%) were duplicate samples.  Genetic 

diversity in this population (HE = 0.82) was similar to its source population in Arkansas 

(~0.75) and other large black bear populations (~0.79).  No negative effects from 

inbreeding or reduced population size were evident, and maintenance of gene flow from 



the source population in Arkansas should preserve high levels of genetic diversity.  

Hardy-Weinberg and linkage disequilibrium in the sample suggested recent admixture of 

dispersing bears with individuals representing other gene pools.  Bears were aggregated 

in the southeastern portion of the study area close to the source population and colonized 

a larger portion of the southern (Kiamichi) mountain ridge than the northern (Ouachita) 

mountain ridge.  Incorporation of genetic and demographic data is critical to an 

understanding of population status and development of a successful management plan for 

this large carnivore species.   

Keywords:  black bear, microsatellites, noninvasive DNA, Oklahoma, population 

genetics, range expansion, recolonization, Ursus americanus  

Introduction 

Due to anthropogenic forces such as habitat fragmentation and unregulated 

hunting, many large carnivores in North America experienced local extirpation during the 

latter half of the 19th century.  For example, black bears (Ursus americanus) now inhabit 

approximately 30% of their historic range (Laliberte & Ripple 2004).  More specifically, 

black bears in the southeastern U.S. exist in small, geographically isolated populations 

(Schoen 1990; Servheen 1990; Freedman et al. 2003), occupying only 5–10% of their 

historic range (Dobey et al. 2005), but they are slowly expanding into areas of their 

former range.  Recolonizations by large carnivores are rare (Forbes & Boyd 1996; 

Hellgren et al. 2005), and their genetic and demographic ramifications are not well 

understood (Vernesi et al. 2003; Excoffier 2004).  Recolonizing populations often 

possess unique genetic characteristics relative to permanent populations (Forbes & Boyd 

1997).  For example, admixture of remnant and introduced individuals may provide a 
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source of novel genetic variation to existing populations (Williams et al. 2002), 

metapopulations (Gaggiotti et al. 2004), or species (Williams et al. 2002).  However, in 

many cases, recolonization events lead to heterozygote deficiency and reduced allelic 

diversity because they result from founder events that may profoundly affect genetic 

characteristics for hundreds of generations (Nichols & Hewitt 1994).  Because levels of 

heterozygosity are hypothesized to have direct consequences for individual and 

population fitness (Mitton & Grant 1984; Allendorf & Leary 1986; Frankham et al. 2002; 

Hansson and Westerberg 2002) and population sustainability (Hansson and Westerberg 

2002), genetic information can be useful to wildlife biologists working to successfully 

restore native carnivore populations to previously occupied ranges. 

Field-based evidence (Skeen 1997a; 1997b; Bales et al. 2005) indicates that black 

bears are expanding their range westward from Arkansas into areas of southeastern 

Oklahoma devoid of  bears since the early 1900s (Tyler 1989).  This range expansion is 

the result of an aggressive reintroduction effort initiated by the Arkansas Game and Fish 

Commission in response to the near extirpation of black bears from Arkansas by the 

1940s (Smith & Clark 1994).  The Arkansas population rapidly grew to > 2,500 

individuals (Smith & Clark 1994) and began westward expansion into areas of 

southeastern Oklahoma by the late 1980s (Skeen 1997a; 1997b; Smith et al. 1990; Bales 

et al. 2005).  The Ouachita Mountains in southeastern Oklahoma run in an east-west 

direction, and bears likely disperse west across corridors provided by mountain ridges (as 

in Virginia, Lee & Vaughan 2003), because roads and farms serve as barriers to north-

south dispersal in this area (Clark & Smith 1994).   
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Long-distance dispersal promotes genetic subdivision in expanding populations 

via small colonization events and may result in admixture of genetically distinct 

individuals (Nichols & Hewitt 1994).   Long-distance dispersers of both sexes can 

promote gene flow on the periphery of an expanding population’s range.  Range 

expansions also may occur via founder events (Excoffier 2004) or via slow range 

expansion involving an expansion front of several individuals (Swenson et al. 1998).  As 

a consequence, clusters of individuals ahead of the expansion front may be characterized 

by altered genetic characteristics (Ibrahim et al. 1996), much like the colonization pattern 

observed in the gray wolf (Canis lupis; Valière et al. 2003).  Brown bears (U. arctos) in 

Sweden are exhibiting the latter type of range expansion (Swenson et al. 1998).     

Dispersal in black bears is male-biased (Bunnell & Tait 1981; Rogers 1987a; Lee 

& Vaughan 2003; Schwartz & Franzmann 1992), and promotes gene flow (Avise 1995; 

Dixon et al. 2006) and connectivity (Dixon et al. 2006) via long-distance dispersal 

(Rogers 1987a).  In contrast, female black bears rarely disperse (Rogers 1987a; Schwartz 

& Franzmann 1992), expanding slowly via the establishment of subadult female home 

ranges adjacent to their mother’s home range (Rogers 1987b), but are capable of long-

distance movements (Hellgren et al. 2005).   

Advancements in PCR technology now permit genetic analyses to be performed 

on noninvasive hair samples that may possess only picogram amounts of DNA (Morin et 

al. 2001; Durnin et al. 2007), and population abundance of bears has been successfully 

estimated in several studies via noninvasive analysis (Taberlet et al. 1997; Mowat & 

Strobeck 2000; Poole et al. 2001; Bittner et al. 2002; Boulanger et al. 2002; Boerson et al. 

2003; Apps et al. 2004; Lorenzini et al. 2004; Romain-Bondi et al. 2004; Triant et al. 
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2004; Belant et al. 2005; Solberg et al. 2006).  Noninvasive sampling prevents injury to 

handlers, reduces trauma to animals associated with live-trapping (Waits & Leberg 1999) 

and results in larger and more even sampling and thus more accurate information about a 

population (Mace et al. 1994; Banks et al. 2003; Beier et al. 2005; Zhan et al. 2006).  

Additionally, genetic marks are advantageous over traditional marks, such as eartags, 

because they are permanent (Palsbøll et al. 1997; Waits & Leberg 1999; 2000; Eggert et 

al. 2003; Beier et al. 2005).   

However, noninvasive sampling is not without its potential problems.  Lower 

concentrations of DNA present in samples may magnify genotyping errors such as allelic 

dropout (the most common and problematic error; Smith et al. 2000; Miller et al. 2002; 

Frantz et al. 2003; Sefc et al. 2003; Flagstad et al. 2004; McKelvey & Schwartz 2004a; 

Roon et al. 2005) or false alleles (Callen et al. 1993; Foucault et al. 1996; Taberlet et al. 

1996; Goossens et al. 1998; Taberlet & Luikart 1999; Morin et al. 2001; Miller et al. 

2002) that can result in overestimation of population abundance (Mills et al. 2000; Waits 

& Leberg 2000; Creel et al. 2003; McKelvey & Schwartz 2004a).  For example, errors 

such as allelic dropout or amplification failure can lead to overestimation of the 

population if the same individual is counted ≥ 1 time (Paetkau 2004).  Studies using 

noninvasive sampling of hair have reported allelic dropout rates from 0% to 31.3% 

(Valiére et al. 2007).   

We used recent advances in PCR technology to characterize a black bear 

population that is expanding into areas of its former range.  Specifically, our objectives 

were to:  1) genotype individuals using nuclear microsatellite and sexing loci to provide a 

minimum estimate of unique genotypes; 2) elucidate genetic characteristics (e.g., levels 
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of diversity, relatedness, and population substructure) of black bears in southeastern 

Oklahoma; and 3) use these data to provide information to wildlife managers regarding 

the status of black bears currently recolonizing Oklahoma.  

Methods 

Study Area. This study was conducted in southeastern Oklahoma in 

approximately 3,420 km2 that included the Ouachita National Forest (ONF) and the 

Ouachita and Kiamichi Mountains and spanned 3 counties:  Latimer, LeFlore, and 

Pushmataha (Fig. 1).  This area contained mountain ridges oriented in an east-west 

direction, resulting in different vegetation communities on north-facing slopes relative to 

south-facing slopes (Clark et al. 1987).  Overall, the area was characterized as pine forest 

(Clark et al. 1994), with oak species (Quercus alba, Q. rubra, and Q. velutina) 

dominating north-facing slopes and shortleaf pine (Pinus echinata) and blackjack oak  

(Q. marilandica) dominating south-facing slopes (Clark et al. 1998).  East-west mountain 

ridges were separated by valleys, with elevations of 300–800 m (Clark et al. 1987).   

Hair Capture.  Hair trapping occurred for 24 weeks in June–August 2004, 2005, 

and 2006.  Permanent baited barbed-wire hair traps (Woods et al. 1999; Bittner et al. 

2002; Boerson et al. 2003; Belant et al. 2005) were set at a frequency of approximately   

1 trap/23 km2 (n = 128) by dividing the study area into a grid of squares measuring       

4.8 km x 4.8 km (Fig. 1).  Female home ranges, conservatively estimated at 21 km2 (95% 

adaptive kernel; Bales et al. 2005), indicated that 0.91 traps were located within each 

female bear home range.  UTM coordinates were recorded for each site using a handheld 

GPS unit (GPS 12; Garmin International Incorporated, Olathe, KS).  Hairtraps were 

designed using the Woods et al. (1999) model.  Hair samples with attached follicles were 
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collected once every 7 to 10 days to prevent possible loss of samples related to weather or 

other unpredictable factors (Foran et al. 1997; Taberlet et al. 1999; McKelvey & 

Schwartz 2004a; Buchan et al. 2005).  Hair samples were removed from barbed wire with 

tweezers, sealed in an envelope, marked with the date, time, site of capture, and barb 

number, and subsequently stored at  -20o C until extraction of DNA (Mowat & Strobeck 

2000) (within 1 to 6 months; Roon et al. 2003).  Barbs were subjected to flame to prevent 

contamination of future samples.   

DNA Extraction from Hair Samples.   DNA was extracted from hair samples via 

the Chelex® forensic method (Walsh et al. 1991) in a room separate from tissue 

extraction or PCR amplification (Taberlet & Luikart 1999; Fernando et al. 2003; Frantz et 

al. 2003; Bonin et al. 2004; Waits & Paetkau 2005).  Hairs were handled with forceps and 

examined under a dissecting microscope for intact follicles.  All equipment contacting 

hair samples was washed between each sample with 95% ethanol and rinsed with 

distilled deionized water (Gagneux et al. 1997).  Depending on the quality of the sample, 

5 to 14 follicles, preferably from guard hairs, were selected to increase DNA 

concentration (Gagneux et al. 1997; Goossens et al. 1998; Taberlet et al. 1999; Poole et 

al. 2001; Goossens et al. 2002; Triant et al. 2004) and aid in successful amplification 

(Bittner et al. 2002).  Hairs were rinsed briefly in distilled deionized water to remove dirt 

and other contaminants.  The follicle end of the hair shaft was cut as close as possible to 

the follicle to avoid the PCR-inhibiting nature of melanin (Gagneux et al. 1997; Taberlet 

et al. 1999) and placed in 200 μl of a 5% Chelex® (BioRad, Hercules, CA) solution that 

was incubated overnight at 56o C.  Samples were vortexed for 10 sec, incubated for 8 min 

at 100o C in a heat block, revortexed for 10 sec, and subsequently spun in a 
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microcentrifuge at 13,000 rpms for 3 min.  A negative control, absent of follicles, was 

included to evaluate if contamination occurred during DNA extraction (Taberlet et al. 

1999; Bonin et al. 2004; Broquet & Petit 2004; Waits & Paetkau 2005).   

Identification of Individual Genotypes.  Individuals were genotyped for 10 (GT)n 

dinucleotide microsatellite loci.  Primers for 7 of those loci (G1A, G10B, G10C, G1D, 

G10L, G10M, and G10X) were developed from black bears (Paetkau & Strobeck 1994) 

and 2 loci (G10J and G10O) from brown bears (U. arctos; Paetkau et al. 1998).  Primers 

for CXX20 were developed from the domestic dog (C. familiaris; Ostrander et al. 1993).   

Fluorescent labeling of primers allowed detection and sizing of microsatellite loci on a 

Perkin-Elmer ABI 3100 Automated DNA Sequencer (Foster City, CA).    

PCR amplifications occurred in an MJ Research, Inc. PTC 100® Programmable 

Thermo Cycler (Bio-Rad Laboratories Inc., Waltham, MA).  Reactions were 15 μl and 

contained 2.5mM MgCl2, 0.1 mM primer pair, 0.5 units Amplitaq Gold® DNA 

polymerase (Applied Biosystems, Foster City, CA), 0.33 mM dNTPs, and 6.0 μl of the 

Chelex extraction.  DNA was vortexed for 10 sec and then centrifuged for 3 min at 

13,000 rpms prior to addition to the PCR (Sloane et al. 2000).  The thermal profile was:  

95o C for 10 min; 45 cycles of 95o C for 30 sec, 46 o C (G10J), 49o C (CXX20, G10M, 

G10O), 50o C (G10X) or 57.5o C (G1A, G10B, G10C, G1D, and G10L) for 30 sec, 72o C 

for 40 sec; 72o C for 10 min; and 4o C for 2 min.  Negative controls were included in PCR 

amplifications and fragment analyses to monitor contamination (Taberlet et al. 1999; 

Bonin et al. 2004: Waits & Paetkau 2005; Adams & Waits 2007).  To 9.5 μl loading 

buffer (0.5 μl of GS-400HD ROX size standard and 9.0 μl of formamide), 0.5 μl of the 

PCR product was added.  Individuals were genotyped at each locus using GENESCAN™ 
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software.  Alleles were assigned by hand to reduce error (Bonin et al. 2004) using 

GENOTYPER™ software.  If the initial PCR amplification produced no product or a 

product that could not be scored with confidence, samples were rerun with a 3.0o C 

reduction in annealing temperature and a 3.0 µl (50%) increase in template (Paetkau 

2003). 

Sexing of Individuals.  Sex was determined via PCR amplification of the 

amelogenin locus using primers for the SE47 and SE48 loci (Ennis & Gallager 1994).  

The SE47 primer was labeled fluorescently to allow detection and sizing of amplified 

products.  Reactions of 20 μl contained 1.4 mM MgCl2, 1.6 units Amplitaq Gold® DNA 

polymerase, 0.2 mM dNTPs, and 2.0 μl of the Chelex® extraction.  The thermal profile 

was:  97o C for 3 min; 35 cycles of 94o C for 60 sec, 60o C for 60 sec, 72o C for 60 sec; 

and 72o C for 10 min.  To 9.5 μl loading buffer (0.5 μl of GS-400HD ROX size standard 

and 9.0 μl of formamide) was added 0.5 μl of the PCR product.  Individuals were 

genotyped at each locus using GENESCAN™ software.  Product sizes were viewed 

using GENOTYPER™ software and were 186 base pairs for males and 242 base pairs for 

females.   

Genotyping Errors.  After initial amplification and 2 repeat amplifications of 10 

microsatellite loci and the amelogenin locus, all samples that failed to amplify at ≥ 7 loci 

(i.e., problematic samples) and at the sexing loci were removed from further analyses 

(Paetkau 2003; Bonin et al. 2004).  We used GENECAP 1.1 software (Wilberg & Dreher 

2004) to examine genotypes differing at between 1–3 loci (Paetkau 2004).  Mismatch 

curves were produced:  1) all amplified genotypes; 2) post-culling genotypes; and 3) the 

final dataset of unique genotypes (Paetkau 2003; 2004).  Additional tests (the examining 
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bimodality (EB) and difference in capture history (DCH) tests) were conducted using 

DROPOUT software (McKelvey & Schwartz 2004a; 2004b; 2005) to determine the 

overall effect of genotyping errors on the elucidation of unique genotypes.  Both tests 

were run for 3 datasets:  1) all amplified genotypes; 2) all useable genotypes; and 3) all 

unique genotypes.  

Probability of Identity (PI, Paetkau & Strobeck 1994), and PIsibs (Evett & Weir 

1998; Taberlet & Luikart 1999; Waits et al. 2001), a more conservative estimate of PI 

incorporating the likelihood that 2 individuals visiting the same trap may be related 

(Donnelly 1995; Taberlet & Luikart 1999; Waits et al. 2001), were calculated using 

GENECAP 1.1 software (Wilberg & Dreher 2004).  Locus-specific PIsibs was estimated 

using GENECAP 1.1 (Wilberg & Dreher 2004).  Use of few (6 to 10; Waits 1999), 

highly polymorphic loci (those with the lowest PI calculation) provides lowest levels of 

error while retaining power to identify unique individuals (Taberlet & Luikart 1999; 

Waits & Leberg 2000; Waits et al. 2001).  Following recommendations by several studies 

to screen all individuals at a single, robust locus, individuals not amplifying at the locus 

with the lowest PIsibs were culled from the dataset (Sloane et al. 2000; Paetkau 2003; 

Scandura et al. 2006). 

The conditional probability that siblings will have the same genotype at > 4 loci 

(Psib; Woods et al. 1999) was calculated with the computer program GENECAP 1.1 

(Wilberg & Dreher 2004).  Similar to other noninvasive studies, the threshold of         

Psib < 0.05 was accepted as an indicator of unique genotypes (Woods et al. 1999; Mowat 

& Strobeck 2000; Boulanger & McLellan 2001; Poole et al. 2001; Mowat & Paetkau 
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2002; Boerson et al. 2003; Mowat et al. 2005) because mean litter size in our study area 

was previously estimated as 2 individuals (Bales et al. 2005). 

Each locus was evaluated for the presence of null alleles, scoring errors, and 

allelic dropout using MICRO-CHECKER 2.2.3 software (Van Oosterhout et al. 2004; 

2005).   Estimation of error rate resulted from comparison between multiple genotypes of 

duplicated samples and recaptured individuals to calculate a per locus and an overall 

genotyping error rate for the study (Palsbøll et al. 1997; Björklund 2005; Hoffman & 

Amos 2005).  To produce an unbiased estimation of observed heterozygosity, loci with 

high null allele frequencies were adjusted by removing 1 allele of homozygous 

individuals (Lebas 2001) identified by MICRO-CHECKER 2.2.3 software (Van 

Oosterhout et al. 2004; 2005).   

Human error (scoring, data input errors, etc.) can be a primary source of error in 

studies such as this (Fernando et al. 2003; Bonin et al. 2004; Hoffman & Amos 2005), 

but it can be reduced by adequate training of personnel and strict guidelines for scoring 

(Fernando et al. 2003).  MICRO-CHECKER 2.2.3 software (Van Oosterhout et al. 2004) 

examined loci that possessed lower than expected heterozygosity for scoring errors 

involving allelic stutter (Smith et al. 1995; Shinde et al. 2003), which is often a factor in 

scoring errors (Hoffman & Amos 2005).  Repeated scoring of alleles produced familiarity 

with specific patterns within loci, and all loci were rescored a minimum of 3 times to 

ensure that scoring error associated with initial training was not a factor.   

Elucidation of Unique Genotypes.  We genotyped individuals using 10 highly 

variable loci (Taberlet et al. 1997; Ernest et al. 2000).  Pairwise comparisons of 

genotypes were performed using Microsoft Access (Redmond, WA), and 3 lists were 
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produced:  1) samples that matched at ≥ 7 loci; 2) samples that matched at 6 loci plus 1 

locus that did not amplify; and 3) samples that matched at 5 loci plus 2 loci that did not 

amplify.  Those matching were compared for sex, sample collection location, and date.  

Sexing of pairwise identical genotypes with different sexes was performed in duplicate to 

further reduce error (Hung et al. 2004), although amplification of the Y chromosome 

amelogenin locus using noninvasive samples was nearly error-free (Bradley et al. 2001; 

Durnin et al. 2007).   

Genotypes that represented identical individuals were input into GIMLET 1.0.1 

(Valiére 2002) to produce consensus genotypes.  Duplicate samples (more than 1 sample 

from the same individual collected from the same trap during the same sampling period) 

were eliminated, and remaining pairs of identical genotypes were deemed recaptures.  A 

minimum census size of unique number of genotypes was identified in the study 

(Pallsbøll et al. 1997; Roon et al. 2005).  A Chi-square analysis was performed to 

determine if the sex ratio differed from 1:1. 

Analysis of Population Genetic Characteristics.  Genetic diversity was measured 

for unique genotypes by calculating total and mean number of alleles per locus, expected 

(HE) and observed (HO) heterozygosity, conformity of each locus to Hardy-Weinberg 

equilibrium (Guo and Thompson 1992), and testing each locus for linkage 

disequilibrium, in ARLEQUIN 2.0 software (Schneider et al. 2000) for all unique 

genotypes.  A sequential Bonferroni correction was performed on all tests of Hardy-

Weinberg equilibrium (Rice 1989) to determine significant differences between HO and 

HE at each locus and tests of linkage equilibrium to determine significantly linked loci at 

p < 0.05.   
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The pairwise relatedness coefficient (R; Queller & Goodnight 1989) was 

estimated using SPAGeDi (Hardy & Vekemans 2002).  We tested for population 

bottlenecks using the results of the Wilcoxon Test 2-Phase Model (Barker 2005) in 

BOTTLENECK 1.2 software (Cornuet & Luikart 1996; Piry et al. 1999).  Data input files 

for the programs ARLEQUIN 2.0, GIMLET 1.0.1, and BOTTLENECK 1.2 were created 

using CONVERT 1.3 software (Glaubitz 2004).  All analyses were performed on datasets 

corrected for null alleles.   

Analysis of Population Genetic Structure. Because the study area was 

characterized by 2 mountain ridges separated by a valley, we hypothesized that cryptic 

population structure based on geographic barriers to gene flow existed in the sample.  An 

analysis of molecular variance (AMOVA, Cockerham & Weir 1993; Weir 1996) was 

performed to test for differences between individuals trapped on the Ouachita mountain 

ridge versus the Kiamichi mountain ridge using ARLEQUIN 2.0 software (Schneider et 

al. 2000).   

We used several Bayesian approaches to explore population subdivision by using 

existing allele frequency data to calculate prior distributions of allele frequencies (Ellison 

1996; Weir 1996).  Preliminary exploration of cryptic population structure was evaluated 

using the program STRUCTURE 2.1 (Pritchard et al. 2000; Falush et al. 2003).  This 

program assigns genotypes to K numbers of clusters based on allele frequencies 

(Pritchard et al. 2000).  Although we hypothesized that K = 2 based upon the 2 mountain 

ridges in our study area, we evaluated results for K = 1 to K = 10 with 10 repetitions, a 

burnin period of 50,000, and MCMC lengths of 100,000 using the admixture model 

(Falush et al. 2003) to produce an unbiased estimate of K.  Runs were conducted with no 
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prior population delineation and population delineation defined by the mountain ridge 

where individuals were captured.  The ∆K statistic (Evanno et al. 2005) was used to 

determine number of clusters in the sample.  Separate runs using the same parameters 

were also conducted for males and females.  Data input files for the program 

STRUCTURE 2.1 were created using CONVERT 1.3 software (Glaubitz 2004).   

A Markov Chain Monte Carlo (MCMC) algorithm approach was employed by 

GENELAND 1.0.8 (Guillot et al. 2005a; 2005b) and R 2.4.1 software (Ihaka and 

Gentleman 1996) to detect genetic discontinuities along the study-area landscape by 

incorporating specific geographic coordinates of each genotype into the analysis.  The 

MCMC analysis was run 5 times without a priori knowledge of population subdivision.  

The MCMC algorithm was run for 100,000 iterations with no uncertainty of geographic 

coordinates, minimum K = 1, maximum K = 10, using the Dirichlet distribution model of 

independent allele frequencies (Guillot et al. 2005a; 2005b).  A second MCMC algorithm 

was run 10 times for 100,000 iterations with a fixed number of populations that equaled 

the mode found for the previous 5 runs using the Dirichlet distribution model of 

independent allele frequencies.  MCMC algorithms using the same protocols were also 

run for males and females separately. 

A third Bayesian analysis was conducted using TESS 1.0.1 that also incorporates 

geographical information into clustering methods by using hidden Markov random fields 

(HMRFs) to examine allele frequencies across a geographical scale (Francois et al. 2006).  

Analyses were run for all individuals and for females and males only.  For the sample 

with all individuals, we evaluated results for Kmax from 1 to 10 with 10 repetitions of the 

HMRF with no prior population information, and ψ = 0.9. For the sample of females and 
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males only, we set Kmax = 5 with 10 repetitions and ψ = 0.9.  All analyses were run with 

30,000 sweeps and a burnin period of 20,000. 

Further investigation of gene flow was evaluated using the protocol outlined in 

Frantz et al. (2006).  Matrices were created using unique genotypes in SPAGeDi 1.2 

(Hardy & Vekemans 2002): 1) a matrix of pairwise kinship coefficients (Loiselle et al. 

1995) and 2) a matrix of the natural log of pairwise Euclidean distances.  Additionally, 

binary matrices were created by allocating 0 values to individuals sharing sex or 

mountain ridge, respectively, and values of 1 to pairs of individuals of opposite sex or 

different mountain ridge to test for demographic or physical effects on gene flow in this 

sample (Frantz et al. 2006).  Simple and partial Mantel tests were conducted on all 

possible combinations of matrices using program ZT (Bonnet & Van de Peer 2002). 

To test for isolation by distance, we examined the relationship between the 

pairwise kinship coefficient and the natural log of pairwise Euclidean distance.  Distance 

classes were chosen to provide equal sample sizes between classes (Aspi et al. 2006).  

Mean kinship coefficients for each distance class were compared with the overall 

population mean to determine significant differences at each distance class (Aspi et al. 

2006) and for males and females.  To examine spatial patterns based upon allele 

frequencies (Manel et al. 2003), a principal components analysis was conducted on 

individual genotypes using PCA-GEN 1.2 software 

(http://www2.unil.ch/popgen/softwares/pcagen.htm) for the entire sample, females only, 

and males only. 
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Results 

Hair Capture, Extraction, and Amplification.  There were 2,766 sampling 

opportunities for hair capture (99 traps x 9 sampling sessions [2004], 125 traps x 7 

sampling sessions [2005], and 125 traps x 8 sampling sessions [2006]).  We collected 

1,166 hair samples from 94 different traps during the study; 314 (26.9%) were collected 

from 59 of 99 traps (59.6%) in June–August 2004, 336 (28.8%) were collected from 60 

of 125 traps (48%) in June–August 2005, and 516 (44.3%) were collected from 80 of 125 

traps (64%) in June–August 2006.  Of the 1,166 collected samples, 668 (57.3%) excluded 

samples possessed ≤ 4 follicles, and 498 (42.7%) produced DNA.  A total of 166 (33.3%) 

culled samples failed to meet controls established for the study.  Of the remaining 332 

(66.7%) extracted samples, 130 (39.2%) amplified at all 10 microsatellite loci and the 

sexing loci, 116 samples (34.9%) amplified at 9 loci and the sexing loci, 53 samples 

(16%) amplified at 8 loci and the sexing loci, and 33 samples (9.9%) amplified at 7 loci 

and the sexing loci. 

Estimation of Error Rate.  Examination of 1-MM through 4-MM pairs produced 

3 mismatch curves (Fig. 2).  Analyses in DROPOUT software (Schwartz et al. 2006) 

indicated error in the dataset for all amplified genotypes (n = 464) and all useable 

genotypes (n = 237), but not for the dataset containing all unique genotypes (n = 161) 

(Fig. 3).  When examining all 3 datasets, the DCH test indicated no significant addition of 

individuals to the sample as loci were added, an indicator that error rates were equal at all 

loci.   

Calculation of PIsibs revealed that the minimum number of loci used to elucidate 

individual genotypes was 7 (Fig. 4).  At 7 loci, this study had a PIsibs < 0.0001 and a     
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PI = 2.42 X 10-10 .  Single-locus PIsibs for the 7 loci were 0.33–0.36 (Table 1).   A 

sufficiently low PI (PI < 0.0001–0.001; Waits et al. 2001) indicates that markers used are 

powerful enough to elucidate unique genotypes.  To eliminate addition of erroneous 

duplicate genotypes, the result of poor-quality samples (Mills et al. 2000), the 3 loci with 

the highest PIsibs calculation (G1A, G10B, and G10O) were removed from the final 

dataset (Waits et al. 2001).  Individuals not amplifying at the 2 loci with the lowest PIsibs 

(G10J (0.314) and G10X (0.315)) were culled from the dataset because the PIsibs 

statistics of the 2 loci were not different from each other. All unique genotypes possessed 

Psib < 0.004.     

Null alleles were found at 4 loci (G1D, G10J, G10L, and G10X) and no incidence 

of false alleles or allelic dropout was detected by MICRO-CHECKER 2.2.3 software 

(Van Oosterhout et al. 2004; 2005).  Lack of adjacent-allele heterozygotes, an indicator 

of scoring error due to stuttering, was found at 1 locus (G10L).  Per locus error rates 

calculated using pairwise comparisons of all duplicated (e.g., both duplicate samples and 

recaptures) genotypes were 1.7% for allelic dropout, 0.9% for stutter, and 0.3% for false 

alleles, resulting in an overall per locus error rate of 2.9% for the study (n = 148).  

Population Characteristics.  To ensure that the sexing protocol was appropriate 

when applied to black bears, we correctly determined sex for 36 hair samples collected 

from captured individuals of known sex. Of 275 useable genotypes, 161 (58.6%) were 

unique genotypes.  Of 114 identical genotypes, 52 (45.6%) were recaptures and 62 

(54.4%) were duplicate samples.  Unique genotypes captured each season were:  1) 74 

(46%) during summer 2004 (44 M: 30 F; 4 recaptures) captured at 32 (32.3%) of 99 

traps; 2) 58 (36%) during summer 2005 (39 M: 19 F; 22 recaptures) captured at 33 
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(26.4%) of 125 traps; and 3) 29 (18%) during summer 2006 (19M: 10 F; 26 recaptures) 

captured at 26 (20%) of 125 traps.  The 161 unique genotypes were represented by a 

male-biased sex ratio of 1.7:1 (χ2 = 11.48; df = 1; p < 0.005; 102 M: 59 F).  Of those, 100 

(62.1%) were captured initially on the Kiamichi mountain ridge and possessed a male-

biased sex ratio of 1.6:1 (χ2 = 5.76; df = 1; p < 0.025; 62 M: 38 F), whereas the remaining 

61 unique genotypes (37.9%) initially captured on the Ouachita mountain ridge possessed 

a male-biased sex ratio of 2.9:1 (χ2 = 12.52; df = 1; p < 0.005; 38 M: 14 F).     

Population Genetic Characteristics.  To minimize errors in assignment, all 

subsequent genetic analyses were conducted using 161 unique genotypes and the 7 most 

powerful loci (Table 1; Fig. 4) corrected for null alleles.  Mean observed heterozygosity 

(HO) (± SD) was 0.81 (± 0.039) and ranged from 0.766 to 0.868, and mean expected 

heterozygosity (HE) (± SD) was 0.82 (± 0.022) and ranged from 0.78 to 0.843 (Table 1).  

Allelic diversity (A) was 11.3 ± 1.8 alleles per locus, with a range of 9 to 15 alleles per 

locus, with 79 total alleles in the sample (Table 1).  Using an adjusted α = 0.007 as a 

cutoff for significance, HO was less than HE for 3 loci (G10C, G1D, and G10L), greater 

than expected for 2 loci (G10M and G10X), and as expected for 2 loci (CXX20 and 

G10J) (Table 1).  The overall sample was in Hardy-Weinberg equilibrium (χ2 = 0.007;    

df = 8; p > 0.05).  At the adjusted α = 0.002, linkage disequilibrium was present in 13 of 

21 pairs (61.9%) of loci (CXX20, G10C; CXX20, G1D; G10C, G10L; G10J, G10L; 

G1D, G10J; CXX20, G10M; G10L, G10M; G1D, G10M; CXX20, G10X; G10J, G10M; 

G10J, G10X; G10L, G10X; and G10M, G10X).   

Overall mean pairwise coefficient of relatedness (R; Queller & Goodnight 1989) 

(± 95% CI) for the sample was -0.001 ± 0.004.  Mean pairwise R (± 95% CI) for females 
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(-0.018 ± 0.012) was not different than that of males (-0.013 ± 0.007; tcalc = 0.628;          

df = 2823; p = 0.265).  The mean ln(pairwise Euclidean distance) (± 95% CI) of females 

(9.15 ± 2.18; 9.41 ± 0.01 km) was lower than that of males (9.51 ± 1.88; 13.49 ± 0.01 

km; tcalc = 5.998, df = 2604; p < 0.001).  Overall mean ln(pairwise Euclidean distance)   

(± 95% CI) for the sample was 9.39 ± 0.03 (12.02 ± 0.001 km).  Results of partial and 

simple Mantel tests indicated that bears closer together were more related to each other  

(r = -0.016; p < 0.001; Fig. 5), and females possessed nearly twice as strong a negative 

relationship (r = -0.09; p < 0.001) when compared to males (r = -0.04; p < 0.002). 

The ln(pairwise Euclidean distance) of bears on the Ouachita mountain ridge 

(9.03 ± 0.10; 8.37 ± 0.001 km) was larger than that of bears on the Kiamichi mountain 

ridge (8.8 ± 0.8; 6.63 ± 0.002 km; tcalc = 3.898, df = 4402, p < 0.001).  Mean pairwise R 

did not differ between the Ouachita mountain ridge (-0.019 ± 0.011) and the Kiamichi 

mountain ridge (-0.009 ± 0.006; tcalc =1.544, df = 3128, p = 0.061).  Recent bottlenecks 

were detected for the overall sample (p < 0.008), females (p < 0.04), males (p < 0.02), 

and individuals trapped initially on the Kiamichi mountain ridge (p < 0.004), but not for 

individuals trapped initially on the Ouachita mountain ridge (p = 0.344).   

The mean pairwise kinship coefficient of individuals captured close together 

(0.011; 0–6.7 km apart) was higher than the population mean (0; tcalc = 3.316; df = 1819; 

p < 0.001), whereas the mean pairwise kinship coefficient of individuals captured       

9.2–11.2 km apart (-0.009) was lower than the population mean (tcalc = 1.934; df = 1826; 

p = 0.027), and the mean pairwise kinship coefficient of individuals captured 18.2–37.9 

km apart (-0.009) was lower than the population mean (tcalc = 2.016; df = 1470;                

p = 0.022) (Fig. 5).  The mean pairwise kinship coefficient of females (0.025;               
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tcalc = 3.062; df = 352; p < 0.001) and males (0.015; tcalc = 2.617; df = 558; p < 0.005) 

caught closer together (0–6.7 km apart) were higher than the overall population mean. 

Population Genetic Structure.  Results of the AMOVA indicated the highest 

source of variation (99.49%) was within populations.  Calculation of ∆K indicated a 

possible mode at K = 2 for the run with no prior population information (Fig. 6).  For      

K = 2 populations, mean q-intervals for individuals resulted in no definitive population 

assignments (Manel et al. 2004).  Calculated mean q-intervals for individuals over the 10 

runs at K = 3 clusters using mountain ridge of original capture for each individual 

resulted in 94 of 100 individuals assigned correctly with > 95% Ln PD ( X | K ) to the 

Kiamichi mountain ridge, with 54 of 61 individuals assigned correctly > 96%                

Ln PD ( X | K ) to the Ouachita mountain ridge, and 6 remaining unassigned.  The 

remaining 6 individuals were assigned using the leave-one-out procedure in 

GENECLASS2 software (Piry et al. 2004) with the partial Bayesian approach of Rannala 

& Mountain (1997) and exclusion probabilities calculated via the method of Paetkau et 

al. (2004) simulating 1000 genotypes and a threshold of p ≤ 0.001.   This analysis 

produced no definitive assignments for the 6 genotypes.  Calculation of ∆K for females 

indicated a possible mode at K = 2 clusters, but mean q-intervals resulted in no definitive 

assignment of any genotypes.    

Results of GENELAND 1.0.8 indicated a mode at K = 1 for the initial runs when 

number of populations was not set (e.g. K = 1 to K = 10).  Males also possessed a mode at 

K = 1.  For females, a mode of K = 2 was found in 2 of 5 runs when the initial number of 

populations was not set (e.g. K = 1 to K = 5).  We then ran the MCMC algorithm an 

additional 10 times each with a fixed K = 2 for the dataset and compared the runs for 
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similarity.  For females, the mean log posterior probability was -1430.78 (range of -

1430.5–-1431.1), but no landscape heterogeneity was detected.  TESS 1.0.1 indicated      

K = 4 when all individuals were included (Fig. 7(a)), K = 3 for females only (Fig. 7(b)), 

and K = 4 for males only (Fig. 7(c)). 

Some evidence for barriers to gene flow based upon demographics was found 

because pairs of individuals on each mountain ridge were more related to each other than 

to individuals on opposite mountain ridges (r = 0.015; p < 0.05) and pairs of individuals 

sharing sex were more related than pairs of individuals of opposite sex (r = 0.015;           

p < 0.05).  Pairs of females were more related to one another than to males (r = 0.742;     

p < 0.001).   

The PCA returned a random spatial pattern for the entire sample (37.6% of the 

variation explained by the first 2 axes), for females only (52.2% of the variation 

explained by the first 2 axes), and for males only (41.4% of the variation explained by the 

first 2 axes).  

Discussion 

Elucidation of Unique Genotypes.  Error was minimized by using microsatellites 

≤ 205 base pairs in length (Hare et al. 1996; Wattier et al. 1998; Taberlet et al. 1999; 

Woods et al. 1999; Banks et al. 2002; Palomares et al. 2002; Buchan et al. 2005; 

Hoffman & Amos 2005; Petit et al. 2005; Scandura et al. 2006; Broquet et al. 2007) and 

by using only hair samples with ≥ 5 follicles (Miller et al. 2002; Triant et al. 2004). 

However, errors are nonrandomly distributed among samples and loci (Taberlet et al. 

1996; Gagneux et al. 1997; Goossens et al. 1998; Morin et al. 2001; Björklund 2005; 

Buchan et al. 2005: Pompanon et al. 2005; DeWoody et al. 2006; Broquet et al. 2007; 
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Hausknecht et al. 2007).  For example, Lorenzini et al. (2004) reported an error rate of 

23% in the CXX20 locus in an Italian brown bear population.  In our study, 2 of 7 loci 

accounted for 49.9% of the calculated allelic dropout error (CXX20 (28.8%) and G10X 

(21.8%)), but G10X possessed the 2nd lowest and CXX20 the 4th lowest PIsibs 

calculation (Table 1), and therefore both were deemed necessary to elucidate unique 

genotypes in this population.  The duplicated genotypes (n = 148; unique n = 40) used to 

estimate error may therefore have represented a nonrandom sample of genotypes (Sloane 

et al. 2000; Parsons 2001; Lucchini et al. 2002; Hedmark et al. 2004; Scandura 2005; 

Scandura et al. 2006; Soulsbury et al 2007) that produced a biased estimation of the error 

rate (Scandura et al. 2006).  The majority of errors associated with these duplicated 

genotypes were excluded from the study by manual determination and inclusion of their 

consensus genotypes in the study.   

Tests in the software DROPOUT and mismatch curves, both of which are highly 

reliable methods of determining the incidence of duplicate genotypes incorrectly 

considered unique (Paetkau 2003; 2004; McKelvey & Schwartz 2004a; 2004b; 2005; 

Schwartz et al. 2006), clearly indicated no such phenomenon.  These tests show that our 

conservative protocols virtually eliminated any significant scoring error.  The assumption 

that genotypes identified as matching at ≥ 7 loci and at the sexing loci were identical 

provided a conservative means of elucidating unique genotypes (Palsbøll et al. 1997; 

Paetkau 2003; Hoffman & Amos 2005; Waits & Paetkau 2005).   

 This study possessed a low false allele error rate; this is not surprising because 

false alleles are rarely an issue in PCR amplifications using noninvasive samples 

(Hedmark & Ellegren 2005), and actually may be higher in studies using traditional blood 
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and tissue samples (Fernando et al. 2003).  Use of dinucleotide microsatellites can 

potentially increase incidence of false alleles because these markers are more prone to 

slippage during PCR amplification (Goosssens et al. 1998; Fernando et al. 2003).  

Moreover, use of a large number of highly polymorphic loci may compound error rates 

(Hoffman & Amos 2005).  However, false alleles also likely would contribute to a pattern 

of overall excess heterozygosity but this was found in only 2 of 7 loci in our study and 

analyses using MICRO-CHECKER 2.2.3 software (Van Oosterhout et al. 2004) indicated 

no false alleles when data from all individuals were included in the estimate.   

Heterozygote deficiencies found at several loci in the present study also could 

indicate genotyping error (e.g., Xu et al. 2002).  Goossens et al. (1998) used noninvasive 

samples from Alpine marmots (Marmota marmota) to estimate error rates due to allelic 

dropout, which decreased from 14% when using 1 hair follicle to 0.3% when using 10 

hair follicles.  However, rates as high as 13% were found when using DNA extracted 

from blood samples (Jeffery et al. 2001), and Flagstad et al. (1999) found no difference 

between allelic dropout rates of blood and fecal samples of sheep, indicating that allelic 

dropout is not a problem unique to noninvasive studies.  Ideally, per locus error rates 

should be ≤ 0.01 (Roon et al. 2005).  Errors due to allelic dropout affect only a few loci 

(Björklund 2005), and a significant heterozygote deficit would be caused only by a large 

amount of this type of error in our sample (Paetkau 2003).  Error estimation involving 

repeat amplification of 5% of random samples (e.g. Bellemain & Taberlet 2004; Bonin et 

al. 2004) may have provided a less biased estimation of error rate, but a truly random 

sampling was impossible in this study due to the limited volume (200 µl) of initial 

sample.   
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The male-biased sex ratio is not surprising, considering dispersal of black bears is 

male-biased and usually involves subadult males that may travel great distances (up to 

200 km; Elowe & Dodge 1989) to establish a home range (Rogers 1987a; Schwartz & 

Franzmann 1992; Beckmann & Berger 2003) and that male-biased sex ratios are common 

in studies of black bears (e.g., LeCount 1982; Doan-Crider and Hellgren 1996; 

Beckmann & Berger 2003).  Traps set at a frequency of 1 per female home range could 

also lead to a capture bias skewed toward males (Clarke et al. 2000).  Females with cubs 

may possess lower capture probabilities because cubs limit a female’s movement 

(Boulanger et al. 2004), further compounding the effect.  Although a higher density of 

traps would have been ideal (e.g., Boerson et al. 2003), limited human and material 

resources precluded this in our study (e.g., Bittner et al. 2002).   

Previous genetic studies have revealed capture heterogeneities between samples 

based on quality and/or quantity of DNA.  Environmental conditions, including heat, 

moisture, and UV radiation, can contribute to degradation of hair samples before 

collection and extraction (Foran et al. 1997; McKelvey & Schwartz 2004a; Buchan et al. 

2005; Ball et al. 2007; Jeffery et al. 2007).  Certain individuals may leave hair samples on 

traps based purely upon biological factors affecting rate of hair loss (Creel et al. 2003) or 

differences in amount of tissue shed (Lukacs & Burnham 2005b), which may depend on 

stage of hair growth (Jeffery et al. 2007).  Larger individuals may shed larger follicles 

that result in a higher concentration of DNA (Woods et al. 1999).  Individuals also can 

differ in number of hair samples deposited (Piggott et al. 2006).  Finally, differences in 

sizes and number of hair follicles extracted cause variation in sample DNA concentration 

(Goossens et al. 1998). 
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Comparison of genotypes to DNA extracted from ear tissue of 22 known bear 

captures in 2004–2006 produced only 3 (13.6%) matching individuals, indicating that 

more bears exist than were sampled in the study area (e.g., Triant et al. 2004).  The 

census size of 161 (102 M:59 F) provides a minimum conservative estimate of unique 

genotypes (Palsbøll et al. 1997; Roon et al. 2005; Kalinowski et al 2006; Hedmark & 

Ellegren In Press) for the study area, given the strict protocols used and limited duration 

of sampling.  Although overestimation of unique genotypes was a concern, per locus 

error rates of 2.9% were well below several reported values for studies using hair 

extraction (0–31.3%, Valiére et al. 2007) and also below the threshold of 5% that is 

implicated by simulation models to overestimate populations by >10% (Waits 2004).  

New methods proposed are specifically designed to provide population estimates 

from genotypic data elucidated from noninvasive samples (Lukacs & Burnham 2005a; 

Miller et al. 2005; Petit & Valiére 2006; Solberg et al. 2006).  Capture-mark-recapture 

methods can be applied to these data that are more robust to violations of assumptions of 

equal catchability because black bear demographic structure and the nature of 

noninvasive samples violate such assumptions.  Because this process is prone to error, we 

recommend such methods be used in the future to accurately estimate abundance and 

other demographic parameters of this population (Lukacs & Burnham 2005b).  Sound 

and informed management decisions should be based on reliable estimates of 

demographic characteristics of the population, including size, age structure, and rate of 

growth. 

Genetic Characteristics of the Population.  This expanding population of black 

bears exhibited high levels of genetic (ours 0.81; ~0.79, Paetkau & Strobeck 1998) and 

          25



allelic (ours 11.3; A = 7.8, Paetkau & Strobeck 1998) diversity typical of large, stable 

black bear populations (Waits 1999; Garner et al. 2005).  The source population in 

Arkansas exhibited a similar level of heterozygosity in 2 independent studies (0.73, 

Warrillow et al. 2001; 0.75, Csiki et al. 2003).  More specifically, for the 2 loci shared by 

the studies (G10C and G10L), HE = 0.796 in the source population (Csiki et al. 2003) was 

comparable to HE = 0.82 in the Oklahoma sample.  Allelic diversity (A) was much lower 

in the source population (3.6, Csiki et al. 2003) than in the present sample (11.3).  

Specifically, our sample shared 37.5% of G10C alleles and 27–36.4% of G10L alleles 

found in the source population (Warrillow et al. 2001; Csiki et al. 2003).  This 

discrepancy could simply be the result of large differences in sample size that caused 

lower allelic diversity in the Arkansas sample because rare alleles would not be 

represented in a small sample size, but also can indicate admixture in the sample. 

Because Csiki et al. (2003) concluded that populations in Arkansas were derived 

from source bears in northeastern Minnesota, further investigation of the genetic diversity 

in that population is warranted.  Their study found A = 5.4 and HE = 0.77 in the 

Minnesota population, and HE = 0.65 for the 2 loci shared by the 2 studies (n = 10, Csiki 

et al. 2003).  Warrillow et al. (2001) also found an overall HE = 0.77 in the Minnesota 

population (n = 36).  Levels of diversity in the present study are therefore similar to both 

hypothesized source populations.  Gray wolves naturally recolonizing areas of Montana 

and the Italian Alps retained levels of genetic diversity similar to that of their source 

populations (Forbes & Boyd 1996; Lucchini et al. 2002), which was attributed to high 

levels of dispersal preventing a bottleneck or founder events (Forbes & Boyd 1996).   
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No physical linkage exists between loci used in this study (Paetkau & Strobeck 

1994, 1995; Paetkau et al. 1999). Therefore, the significant linkage disequilibrium found 

in 61.9% of pairs of loci and significant heterozygote deficiencies at 42.9% of loci may 

indicate that inbreeding levels are higher than expected by random.  However, large 

levels of inbreeding likely would produce excess homozygosity at all 7 loci (Triant et al. 

2004), and therefore effects of nonrandom mating were not strong in this study.  Rather, 

the observed heterozygote deficiency could be result of undetected null alleles.     

MICRO-CHECKER calculates null allele frequencies by using only genotypes that are 

not missing any data, thus only 49.1% of genotypes (n = 79) provided a representative 

sample that may have been biased toward high-quality samples. 

Single or multiple founder events could have occurred in Oklahoma, given 

patterns of colonization in bear populations that may involve a few solitary individuals 

establishing home ranges in an area (Smith & Clark 1994; Kojola & Laitala 2000).  

Founder events can result in genetic bottlenecks that, depending upon number of 

generations perpetuated, can promote inbreeding depression and genetic drift.  Such 

founder events are supported by the detection of ≥ 1 recent bottleneck, significant linkage 

disequilibrium (Houlden et al. 1996), and significant heterozygosity excess (Forbes & 

Boyd 1996) found at 2 loci.  This range expansion by a large population of black bears in 

Arkansas should not be as vulnerable to inbreeding depression and genetic drift as 

smaller, isolated populations (Frankham et al. 2002).  Levels of allelic diversity provide 

evidence against any recent bottlenecks because allelic diversity is reduced more quickly 

during such events than levels of heterozygosity (Allendorf 1986; Cornuet & Luikart 

1996; Leberg 2002).  The L-shaped distribution of allele frequencies found in all tests for 
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bottlenecks indicates presence of many rare alleles that result from rapid population 

expansion (DeYoung et al. 2003; Vernesi et al. 2003) or admixture of individuals from 

different gene pools.     

Hardy-Weinberg disequilibrium, linkage disequilibrium (Slatkin 1994; Falush et 

al. 2003), and high levels of allelic diversity may indicate that the sample contains 

individuals from > 1 gene pool (Hansen et al. 2001; Lance et al. 2003).  This area of 

range expansion may therefore contain individuals resulting from the admixture of the 

gene pool of the Arkansas population, which began its rapid expansion into Oklahoma in 

the 1980s, and bears that established residency in Oklahoma via individual dispersal 

events believed to have begun sometime in the 1960s (McCarley 1961).  Warrillow et al. 

(2001) concluded that the population of black bears in the Ouachita Mountains of 

Arkansas was an intergrade population between the American black bear and the 

Louisiana black bear (U. a. luteolus); the source population could therefore represent an 

admixture of different gene pools of the black bear.  Additionally, bears from the 

northern Arkansas (Ozark) population may have contributed genes to the sample.  Male 

and female black bears are both capable of long-distance dispersal across many habitat 

types, even a seemingly inhospitable matrix (Beckmann & Lackey 2004; Proctor et al. 

2004; Hellgren et al. 2005), and dispersing black bears follow corridors provided by 

natural landscape features (Lee & Vaughan 2003).   

Swenson et al. (1998) found that an expanding brown bear population in Sweden 

was characterized by a female-biased core area and an expansion front consisting mainly 

of natal males.  Our findings provided support for a female-biased core area because 

~53% of females were trapped at approximately 6% of traps (n = 8) located in the 
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southeastern corner of the study area.  These same traps provided ~31% of male captures 

and 38.5% of total captures for the study.  Bales et al. (2005) concluded that a large 

proportion of the expanding population resided in the southeastern portion of the study 

area because it represented the highest-quality available habitat in the region.   

The Oklahoma population shared several characteristics with Swenson et al.’s 

(1998) expanding brown bear population in Sweden.  For example, the 1:1 sex ratio      

(χ2 = 0.016; df = 1; p < 0.75; 32 M: 31 F) in the hypothesized core area contrasted with 

an overall male-biased sex ratio in the sample.  Rapidly expanding bear populations are 

expected to possess a female-biased sex ratio, which would be expected if males were 

dispersing from natal areas (White et al. 2000); therefore, the southeastern corner of the 

study area may be transforming to a region possessing a female-biased sex ratio.  The 

Oklahoma population also appears to be rapidly expanding west across the Kiamichi 

mountain ridge from this area, as indicated by the smaller geographic distance between 

pairs of individuals on this ridge (6.63 km) than on the Ouachita mountain ridge         

(8.10 km; tcalc = 4.18; df=4447; p < 0.001).  Also, 69% of captures during the study (147 

of 213) occurred on the Kiamichi mountain ridge.  Finally, the Ouachita mountain ridge 

possessed a male-biased sex ratio of 2.9:1, nearly double the number of males as that 

within the sample or those trapped on the Kiamichi mountain ridge, a strong indicator 

that males existed in a population expansion front. 

Fortunately, the present sample showed little evidence of negative effects often 

associated with range expansions.  Spatial distribution could encourage inbreeding 

(Garnier et al. 2001) in this population where the majority of individuals (~57%) were 

trapped within 15 km of the Arkansas state line.  Black bears in Oklahoma are 
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characterized by a 14% annual growth rate (Bales et al. 2005), and rapid rates of growth 

combined with population expansion may reduce effects of genetic drift (Vernesi et al. 

2003; Zenger et al. 2003).  Polyandry in black bears could increase the effective size of a 

population (Sugg & Chesser 1994), thus contributing to higher levels of heterozygosity in 

founding populations (Spencer et al. 2000; Winters & Waser 2003).    

Bears, like other large carnivores, are a highly mobile species and therefore 

should not be sensitive to landscape features (e.g., Geffen et al. 2004).  However, 

isolation by distance may occur as bears disperse west across the study area.  Isolation by 

distance is expected in recolonizing populations that stem from a single source population 

(Pamilo 2004) and can indicate fine-scale spatial genetic structure (Vekemans & Hardy 

2004) of socially distinct groups of individuals (Sacks et al. 2005).  In the present study, 

pairs of males trapped 0–6.8 km apart were more related than random pairs of 

individuals, whereas related females were often captured at the same traps (data not 

shown).  In addition, at the closest geographic distance class (0–6.8 km apart), 3rd 

distance class (9.2–11.2 km apart), and 8th distance class (28.2–32.9 km apart), the mean 

pairwise kinship coefficients of individuals were different from that of individuals in the 

entire population (Aspi et al. 2006).  Isolation by distance also was indicated by            

Ln Pr ( X | K ) values reaching an asymptote (Fig. 5; Frantz et al. 2006).  These results 

indicate that related bears of both sexes are spatially aggregated, but pairs of females are 

closer together (9.90 km) than pairs of males (13.36 km; tcalc = 5.998; df = 2604;              

p < 0.001).   

Former habitats are colonized slowly because successful recolonization of 

requires resident females (Onorato et al. 2004), and female dispersal is generally a slow 
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process.  Moreover, expanding populations likely exhibit very different patterns of 

dispersal than stable, continuous populations and may include dispersal of a larger 

number of females than expected (Swenson et al. 1998; Støen et al. 2006).  Gene flow is 

promoted between areas when related males disperse and unrelated males immigrate 

(Rogers 1987a; LeCount 1991).  Isolation by distance in female black bears is expected 

to result from female philopatry (Campbell & Strobeck 2006), but is surprising in males, 

and could indicate a nonrandom spatial pattern.  The majority of both female and male 

movement in this population appears to be incremental as shown by the high kinship 

coefficients at spatially proximal traps and also because 50% of recaptures occurred at 

the same trap, with 54% of these within the same season. 

Values of relatedness of bears in Oklahoma were near 0, indicating high levels of 

gene flow from unrelated immigrants into the area (Onorato & Hellgren 2001).    

Adequate habitat corridors (such as mountain ridges) can promote male immigration 

from proximal populations to new areas (White et al. 2000; Dixon et al. 2006).  In high-

density areas, males may disperse shorter distances to lower the possibility of inbreeding 

and competing with close relatives (Proctor et al. 2004; Støen et al. 2006).  Subadult male 

black bears in Virginia (yearlings to three year olds) moved an average of 11.6 to 15.7 

km from their natal ranges, presumably large enough distances to avoid inbreeding and 

competition with kin (Lee & Vaughan 2003), although the authors suggest 80 km as the 

upper boundary for the distance of natal male dispersal in the eastern states.  However, 

male movement alone may not prevent differences in allele frequencies between areas 

(Purdue et al. 2000) and actually can contribute to demographic autonomy when 

combined with female philopatry (Prout 1981; Chesser 1991; Avise 1995).   
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Management Implications.  Bears in Oklahoma exhibit high levels of genetic 

diversity, which are hypothesized to help populations persist when changes in the 

environment are brought about by anthropogenic forces or stochastic events (Frankham et 

al. 2002; Hansson and Westerberg 2002).  Because Arkansas black bears serve as the 

source population for the individuals currently occupying southeastern Oklahoma (Smith 

& Clark 1994; Bales et al. 2005), we believe that adequate gene flow to support long-

term population viability is not of concern for bears in Oklahoma.   

It is important to note that there is a distinct possibility that this study did not 

sample cubs, and genetic data does not provide information on age structure.  Concurrent 

live trapping in different portions of the study area has taken place and will continue in 

summer 2007, but ages are yet to be determined for these individuals.  Bales et al. (2005) 

found that a large portion (~40%) of their trapped individuals in southeastern Oklahoma 

were 1–3 years of age, indicating that many individuals are not yet sexually mature 

(Rogers 1987b) and therefore are not contributing to the gene pool.  Several males and 2 

females captured in the western portions of the study area may be subadults incapable of 

reproduction, but indicate potential for population growth in western areas that would 

promote expansion into unoccupied bear habitat in the future.   

Expansion of Oklahoma black bears throughout former ranges will be limited 

only by habitat and anthropogenic effects such as land use and human behavior (Pyare et 

al. 2004).  The study area holds the potential to support a higher density of bears, but as 

bear presence increases in the region, the potential for nuisance activity will increase 

(Bales et al. 2005).  The 2 mountain ridges represent the highest-quality habitat for black 

bears in the area (Hellgren et al. 1998) but are separated by valleys consisting of private 
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land, much of which is dedicated to agricultural processes.  Suitable habitat is a limiting 

factor for this geographic region, and therefore increasing density will result in increased 

contact with humans (Spiker & Bittner 2004) in southeastern Oklahoma.  In general, 

public attitudes are positive when bear populations are low and grow increasingly 

negative as bear sightings and human-bear interactions increase due to increasing bear 

density (e.g., Clark et al. 1991; Bowman et al. 2001).   

Oklahoma is unique in that 95% of its land is privately-owned, a factor that could 

exacerbate negative public attitudes toward bears if nuisance activity increases as it has in 

the southeastern portion of the state (Bales et al. 2005).  Fall foods are critical to several 

aspects of bear population dynamics, including reproduction, and fluctuations in fall food 

availability will drive bears from traditional habitat areas into areas of human occupancy, 

increasing nuisance activity (Clark et al. 1987).  The potential for nuisance activity to 

increase could be intensified by the presence of 11 apiaries with > 143 honeybee (Apis 

species) colonies within the counties encompassed by the study area (M. Woods, 

Department of Agricultural Economics, Oklahoma State University, personal 

communication).  Landowners may change their attitude toward bears after a negative 

experience with a nuisance bear (Clark et al. 1991).   

Management practices should therefore promote a reproductively viable black 

bear population with appropriate densities that are high enough to sustain bear 

populations yet low enough to ensure limited human-bear conflicts (e.g., cultural carrying 

capacity; Davidson 1999).  Cultural carrying capacity is defined as “the maximum 

number of bears in an area that is acceptable to the human population” relative to the 
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conflict between human tolerance versus benefits from bears (Virginia Department of 

Game and Inland Fisheries 2002).   

Our study illustrates the importance of incorporating both genetic and 

demographic data into an understanding of population status and a successful 

management plan for a large carnivore species.  Genetic data can contribute a deeper 

understanding of management units (Moritz 1994; Michaux et al. 2004; Allendorf & 

Luikart 2007; Pallsbøll et al. 2007) and spatial dynamics of a population (Manel et al. 

2003; 2004; Scribner et al. 2005).  Continued genetic monitoring of this unique 

recolonization event will permit detection of intensified isolation by distance, which can 

contribute to differentiation via genetic drift and increased levels of inbreeding (Hardy & 

Vekemans 1999).  In this capacity and others, our genotypes provide permanent genetic 

marks that can be compared with future data to track individual and population trends and 

movement. 
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Table 1. Levels of genetic diversity at 7 microsatellite loci used to genotype black bears 
in Oklahoma.  Shown are number of individuals genotyped at each locus (n), alleles per 
locus, observed heterozygosity (HO), and unbiased expected heterozygosity (HE).  P-
values less than the corrected α = 0.0071 indicate that HO is different from HE. 
 
Locus n Alleles PIsibs HO HE p-value 
       
CXX20 138 12 0.344 0.7681 0.7801  0.040 
G1OC 140 9 0.343 0.8165 0.8297 <0.001 
G1D 111 10 0.339 0.7895 0.8077  0.005 
G10J 118 10 0.325 0.8136 0.8373   0.008 
G10L 126 12 0.324 0.7540 0.8068 <0.001 
G10M 144 11 0.329 0.8681 0.8300  <0.001 
G10X 150 15 0.339 0.8500 0.8428 <0.001 
       
Mean 132.4 11.3 0.335 0.8102 0.8195  >0.050 
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Figure 1.  Study area currently being recolonized by black bears dispersing west into 
Oklahoma from Arkansas.  This area spanned 3 Oklahoma counties (Latimer, Leflore, 
and Pushmataha), and encompasses approximately 3,420 km2 that was divided into a    
4.8 x 4.8 km grid. 
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igure 2.  Mismatch distribution for black bear genotypes consisting of 10 microsatellite 
ci.  Distributions illustrated include: 1) all amplified genotypes (n = 464); 2) all useable 

enotypes (n = 237); and 3) all unique genotypes (n = 161). 
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Distribution of genetic differences between samples
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Figure 3(a).  Distribution of the minimum pairwise differences between black bear 
genotypes consisting of 10 microsatellite loci produced using DROPOUT software for all 
amplified genotypes (n = 464).  Number of samples (y-axis) containing differences in 
number of loci (x-axis) are plotted to determine addition of unique genotypes to the study 
that are actually duplicate genotypes. 
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igure 3(b).  Distribution of the minimum pairwise differences between black bear 
enotypes consisting of 10 microsatellite loci produced using DROPOUT software. for 

all useable genotypes (n = 237).  Number of samples (y-axis) containing differences in 
number of loci (x-axis) are plotted to determine addition of unique genotypes to the study 
that are actually duplicate genotypes. 
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Figure 3(c).  Distribution of the minimum pairwise differences between black bear 
genotypes consisting of 10 microsatellite loci produced using DROPOUT softwarefor al
unique genotypes (n = 161).  Number of samples (y-axis) containing differences in 
number of loci (x-axis) are plotted to determine addition of unique genotypes to the study 
that are actually duplicate genotypes. 
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Figure 4.  Hardy-Weinberg probability of identity (PIrand) and probability of identity 
taking into account related individuals visiting hairtraps together (PIsibs). 
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Figure 5.  Plot of the relationship between the mean natural log of pairwise Euclidean 
distan
c

ce and the mean pairwise kinship coefficient of pairs of individuals in distance 
lasses for all individuals, males, and females.  Values significantly different from the 

mean pairwise kinship of random individuals are marked with an asterisk (*). 
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igure 6.  Results of population genetic structure analysis in STRUCTURE 2.0 indicating 
 numbers of clusters without prior knowledge of area of capture.  The highest value of 
e posterior probability distribution (e.g. prior distributions) of allele frequencies 
nP(D)) indicated K=1 clusters, while Evanno et al.’s (2005) ΔK indicated K=2 clusters 

f individuals. 
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Figure 7(a).  Results of population genetic structure analysis in TESS 1.0.1 for the entire 
sample (n = 161).  Different-colored polygons indicate clusters based on prior 
distribution of allele frequencies in the sample. 
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Figure 7(b).  Results of population genetic structure analysis in TESS 1.0.1 for females 
only (n = 59).  Different-colored polygons indicate clusters based on prior distr
allele frequencies in the sample. 
 
 

 

 

 

 

 

 

 

 

 

 



 
Figure 7(c).  Results of population genetic structure analysis in TESS 1.0.1 for males 
only (n = 102).  Different-colored polygons indicate clusters based on prior distribution 
of allele frequencies in the sample.  
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Findings and Conclusions:  We collected 1,166 hair samples from 128 hair sn
e–August 2004–2006.  Of the 498 (42.7%) samples from which DNA wa
acted, 332 (66.7%) were genotyped, 161 (48.5%) of which were unique 

ividuals with 52 (32.3%) recaptures.  Maintenance of gene flow from the source 

representing other gene pools may have occurred.  Incorporation of genetic
ographic data is essential to understanding population status and to

cessful management plan for this large carnivore.   
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