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Chapter 1  

Introduction 

1.1 Sorghum transformation  

1.1.1 Sorghum transformation protocol improvements 

Plant biotechnology challenges the age-old agricultural practices of plant genetic 

improvement, especially in the field of genetic transformation. Gene transfer techniques 

allow the incorporation of beneficial genes for specific agronomic traits into diverse crop 

species (Vaeck et al. 1987). Genetic transformation allows plant breeders to get new 

improved varieties by installing desired foreign genes such as insect resistance and 

pathogen resistance genes into the commercial lines in a shorter period of time than 

traditional breeding methods (Amoah et al. 2001; Gao et al. 2000; Hilder et al. 1987). As 

previously reported, many of the world’s most important crops like wheat (Triticum 

aestivum) (Cheng et al. 1997), maize (Zea Mays L.) (Ishida et al. 1996) and rice (Oryza 

sativa) (Hiei et al. 1994) have already been engineered with increased resistance to 

insects and diseases. 

 There are only a few reports on sorghum (Sorghum bicolor L. Moench) transformation 

and almost all of these experiments were conducted to deliver foreign marker genes into 

plant cells (Jeoung et al. 2002). Although sorghum regeneration (Cai et al. 1987) and 

transformation has been reported (Casas et al. 1993a), no agronomically useful transgenic 

sorghum cultivar has been developed. The reason that sorghum transformation is lagging 
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behind other major crops is partly due to difficulties associated with its tissue culture and 

the lack of efficient protocols for transformation (Huang 2005). 

Development of an efficient plant regeneration system is the first critical step for a 

successful sorghum transformation system. Microprojectiles, Agrobacterium and pollen-

mediated transformation have all been studied for sorghum transformation. Although 

Agrobacterium, a natural engineer, may be a better system for DNA delivery in higher 

plants, including graminaceous monocots (Ishida et al. 1996; Schlappi and Hohn 1992), 

microprojectile bombardment may be a better mechanism for grass species including 

sorghum. Microprojectile bombardment has been developed for sorghum transformation 

(Casas et al. 1993b), which apparently has some advantages, considering it has no 

specification in plant genotypes or target tissues.           

A commercial sorghum line Tx430 was used in several transformation studies, (Casas 

et al. 1993a; Casas et al. 1997; Howe et al. 2006), and proved to be amenable to genetic 

transformation. Thus, Tx430 should be an ideal plant genotype for the study of sorghum 

transformation. Tx430 is a widely used greenbug-susceptible fertility restorer sorghum 

line (Miller 1984), while Tx2737 is a greenbug biotype C-resistant fertility restorer line 

(Johnson et al. 1982.), so both genotypes were chosen for the development of a 

successful transformation system. 

Transgenic fertile sorghum plants were obtained by microprojectile bombardment of 

immature embryos and shoot tips (Casas et al. 1993a; Girijashankar et al. 2005). 

Immature tissues, including inflorescences and immature embryos, have proved to be the 



 3

most suitable sources of morphogenic structures in cereals (Maddock et al. 1983; Rout 

and Lucas 1996). Meanwhile, inflorescence cultures have many advantages over 

immature embryos (Amoah et al. 2001). Plant cells may lose their competence at an early 

stage. If the immature inflorescences are collected as soon as the flag-leaf comes out, 

they will probably have more ability to regenerate. 

Selectable marker genes are normally used to select the transformed explants. Case et 

al. (1993) used bialaphos as the selection agent. A novel mannose sorghum 

transformation selection system has also been reported recently (Gao et al. 2005). 

Antibiotics, like geneticin and paromomycin, were used as the selectable markers in 

sorghum transformation in a recent report (Howe et al. 2006). Based on Howe’s study, 

hygromycin and kanamycin might also be used as selectable markers in sorghum 

transformation.  

While some sorghum transformations have been reported, the transformation rate has 

been low, and few of the gene constructs used for sorghum transformation carried 

additional agronomical value. In this study, we decided to develop a highly efficient 

sorghum transformation and regeneration system by using a commercial sorghum line 

and microprojectile bombardment with kanamycin as the selectable marker.  

1.1.2 Antimicrobial transgenic sorghum  

Sorghum is the fifth most important cereal crop in the world. Sorghum is not only used 

to produce food, but can also be an importance source of animal feed and fodder, 
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especially in dry areas (Sharma 1993). Sorghum is now also considered an important 

feed-stock for ethanol production (Rains et al. 1993). Development of new sorghum 

cultivars has to date been relying on traditional breeding methods (Able et al. 2001). 

Most of the world’s important crops have already been engineered with increased 

resistance to insects and diseases (Cheng et al. 1997; Hiei et al. 1994; Ishida et al. 1996), 

while sorghum is lagging behind. To date, there are no agronomically useful transgenic 

sorghum cultivars.  

Pathogenic bacteria and fungi can cause important diseases in crop plants. For 

example, bacterial stripe (Pseudomonas andropogoni) and bacterial spot (Pseudomonas 

syringe) are two important sorghum diseases caused by bacteria (Frederiksen and 

Odvody 2000). Disease resistant plants have their own mechanisms for defending against 

pathogens, but through genetic transformation, the pathogen resistance of crops can be 

greatly improved. Plants have many defense mechanisms to protect themselves from 

pathogenic organisms, like the ability to produce many kinds of antimicrobial proteins 

(Turrini et al. 2004). One group of plant antimicrobial proteins is the cysteine-rich 

peptides group, which includes thionins (Bohlmann and Apel 1991), lipid-transfer 

proteins (LTPs) and defensins (Broekaert et al. 1995). Defensins, found in mammals, 

insect, and plant systems, are cysteine-rich cationic proteins active against bacteria, fungi 

and enveloped viruses (Broekaert et al. 1995). Antimicrobial peptides, like plant 

defensins, have been used for effective and sustained control of fungal and microbial 

pathogens in modern agriculture (Gao et al. 2000). Though there are many reports about 
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using plant antimicrobial peptides to develop transgenic crops, there has been no previous 

demonstration using a gymnosperm peptide to develop disease resistant crops.  

When studying the genetic mechanism of host resistance in loblolly pine, antimicrobial 

properties were found in the tissue and a novel type of antimicrobial peptide was 

characterized based on the sequence; this peptide was named PtAMP. This AMP has 

conserved domains and multiple disulfide bridges that are believed to be the 

corresponding part of cysteine-rich AMPs from animals and plants. PtAMP showed the 

ability to inhibit the growth of a number of pathogenic organisms as described by Huang 

et al in 2003. Developing transgenic Pt-AMP tobacco plants is the first step to study the 

antimicrobial function of PtAMP in vivo. PtAMP-transgenic tobacco plants might have 

enhanced pathogen resistance. Like other plant antimicrobial peptides, PtAMP could be 

used to develop disease resistant crop plants (Topping 1998). In this report, the PtAMP 

gene, which was isolated from the tissue of loblolly pine, was used to genetically 

engineer pathogen resistant sorghum. Expression of the PtAMP gene under the control of 

a promoter will be analyzed. The efficiency of PtAMP sorghum against bacterial diseases 

will be evaluated. 

1.1.3 Antifungal transgenic sorghum 

Sorghum is an important cereal crop in the world. Several fungal pathogens cause 

some important diseases in sorghum. Previously improvement of disease resistance in 

sorghum  mainly relied on traditional breeding (Able et al. 2004). Plant biotechnology, 
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especially plant transformation, has been widely used in crop development for disease 

resistance. Some plant species produce a wide range of proteins that can inhibit the 

growth of pathogenic microorganisms. Plant chitinase plays an important role in host 

defense against fungi because the chitin hydrolysis enzyme can degrade the cell walls of 

fungi (Cramer et al. 1985; Lamb et al. 1989; Dixion and Lamb 1990; (Schlumbaum et al. 

1986). Thus, the plant chitinase gene is a promising tool for crop disease improvement 

(Grison et al. 1996). There are three classes of chitinase genes: basic chitinase; acidic 

chitinase; lysozyme homogenous chitinase (Metraux et al. 1998). 

The rice (Oryza sativa L.) RCH10 gene could also be induced by a fungal cell wall 

elicitor in suspension cultured cells. The rice RCH10 not only encodes a basic chitinase 

gene, but also might encode an acidic chitinase gene (Zhu and Lamb 1991). 

The RCH10 chitinases accumulate mostly in roots, and a few accumulated in leaf and 

stem tissues (Zhu and Lamb 1991). The plasmid Ct contains a rice chitinase RCH10 

gene. This gene could be used to develop fungus resistant sorghum.  

1.1.4 Gene expression under phloem specific promoters in transgenic 

sorghums and development of greenbug resistant sorghum  

  Sorghum ranks fifth in importance among cultivated cereal crops. The aphid 

greenbug (Schizaphis graminum) has been reported as one of the major pests of sorghum 

since 1968 (Porter et al. 1997). It causes damage that costs tens of millions of dollars 

annually in the USA (Park et al. 2005). Until present, most farmers used insecticides to 
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kill greenbugs, but insecticides can cause harmful contamination to the environment and 

many are costly. An alternative aphid control is to enhance sorghum’s resistance to 

greenbugs without using chemicals. 

Greenbug management on sorghum has relied on conventional breeding methods, 

which have become an important component of the sorghum improvement program. It is 

important to develop more effective ways to improve sorghum resistance (Park et al. 

2005) as the traditional methods cannot overcome the difficulty of natural barriers (i.e. 

sexual incompatibility) and the narrow genetic variability (limited gene pool) of sorghum 

(Huang 2005). Currently, plant biotechnology utilizing plant transformation is a 

promising tool as the most effective way to overcome these barriers. Greenbugs always 

feed on phloem (Porter et al. 1997). So, it is better if the foreign greenbug resistant genes 

are specifically expressed in the phloem. The plasmid of SUC2 contains an A. thaliana 

AtSUC2  gene promoter -GUS fusion which can direct the gene expression specifically in 

the phloem. The plasmid SUC2 contains both the reporter gene uidA, encoding beta-

glucuronidase (GUS) and the selectable marker Kanamycin gene (Truernit and Sauer 

1994; Zhao et al. 2004). Plasmid CO1 contains a CoYMV (Commelina yellow mottle 

virus) GUS gene fusion. This CoYMV promoter can also direct gene expression 

specifically to the phloem (Medberry et al. 1992). 

The objective of our project is to study gene expression in sorghum using phloem 

specific expression promoters (both SUC2 and CO1 vectors contain the phloem specific 

promoters). For this purpose, some transgenic SUC2 and CO1 sorghum plants, which 
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could be used to study and compare gene expression in sorghum under these kinds of 

promoters by using GUS staining, were obtained (Thomma et al. 2002). Since greenbugs 

feed on the phloem of sorghum, these kinds of promoters can be used to develop anti-

greenbug transgenic sorghum plants in the future. Snowdrop lectin (Galanthus nivalis 

agglutinin; GNA) is toxic to lepidopteran, while safe to human and animals. It has been 

cloned into the pholem-specific promoter and used for the development of transgenic 

crops with improved host defense against other insects (Gatehouse et al. 1997). Recent 

work in Dr. Huang’s lab demonstrated novel greenbug resistance genes in resistant 

sorghum. Some of the host defense  genes have been identified in greenbug resistant 

sorghum lines using microarray methods (Park et al. 2005). 

Further, novel greenbug resistant loci have also been found by an SSR QTL mapping 

method (Wu et al. 2007). Once the newly identified greenbug resistance genes are 

cloned, they can be used with the phloem specific promoters to develop greenbug 

resistant transgenic sorghum plants in the future. This may be the first study to utilize 

sorghum greenbug resistance genes to develop transgenic sorghum cultivars for greenbug 

management.  

1.2 Tobacco transformation  
Plants can produce many types of antimicrobial proteins to protect themselves from 

pathogenic organisms, such as cysteine-rich peptides (Turrini et al. 2004). A novel type 

of antimicrobial peptide was found in loblolly pine and characterized based on its 

sequence. This peptide was named PtAMP (Huang et al. 2003). The AMP conserved 
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domains and multiple disulfide bridges of PtAMP can be thought of as the corresponding 

part of cysteine-rich AMPs found in animals and plants. The PtAMP protein exhibited 

inhibition of the growth of a wide range of plant pathogenic bacteria and fungi in vitro 

(Huang et al. 2003).  

As an ongoing study of the PtAMP functions in vivo, transgenic tobacco plants will be 

used in this study of PtAMP function. Tobacco (Nicotiana spp., L.) has been a model 

plant for tissue culture and transformation (Nester et al. 2005). Dicotyledons like tobacco 

are widely used in Agrobacterium-mediated transformation. In this study, plasmids of 

AMP and 121 (negative control) were used to develop two different kinds of transformed 

tobacco plants. Constructing the transgenic tobacco plants is the first step to study the 

antimicrobial function of PtAMP in vivo. PtAMP transgenic tobacco plants may have 

enhanced pathogen resistance. Like other plant antimicrobial peptides, PtAMP can be 

used to develop disease resistant crop plants like sorghum in the future (Topping 1998). 

1.3 Thaumatin-like (TL) protein expression in plants encounters 
resistance 

Plants have their inherent mechanisms for resistance to pathogens and many factors are 

involved in those mechanisms: some are preformed, others are inducible 

(Hammerschmidt 1999). Pathogen-related (PR) proteins such as chitinase, osmotins, and 

β-1,3-glucanase, are defined as proteins that are encoded by the plant genome and 

induced specifically in response to infections by pathogens such as fungi, bacteria, or 

viruses, or by adverse environmental factors (Breiteneder 2004). PR proteins are divided 
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into several families. The PR-5 family has amino acid sequence similarities to thaumatin 

proteins, which are sweet and were first found as a mixture of proteins isolated from the 

katemefe fruits (Van der Wel and Loeve 1972). Thaumatin-like proteins (TLP) that 

belong to the PR-5 family are involved in the plant resistance mechanisms. There are 

three classes of thaumatin-like proteins: proteins that are produced in response to 

pathogen infection; osmotic proteins; and plant antifungal proteins (AFPs) which are 

constitutive in plants, especially in seeds (Breiteneder 2004).  

Thaumatin-like proteins, which are involved in pathogen resistance, can be induced by 

a large spectrum of pests (not only insects, but also virus, bacteria and fungi) and stimuli-

like chemicals, wounding, cold stress, etc (Bol et al. 1990; Lotan and Fluhr 1990; Trudel 

et al. 1998). For example, Rhizoctonia solani, the sheath blight fungi, can cause the 

induction of TLPs in rice based on molecular analysis; and two different TLPs involved 

in this response were revealed by western blotting (Velazhahan et al. 1998). A recent 

study showed that salicylic acid (SA) and jasmonic acid (JA) could induce TLPs and β-

1,3-glucanase production in wheat plants at the protein level, and caused system acquired 

resistance (SAR) leading to enhanced resistance to bacterial diseases. The induction level 

was time-dependent (Jayaraj et al. 2004).  

An antifungal thaumatin-like protein was isolated from sorghum leaves in 2002 

(Velazhahan et al. 2002). The aphid greenbug (Schizaphis graminum) might also be an 

inducer of TLPs in sorghum (Hammerschmidt 1999). Although many studies showed the 

induction of TLPs when a plant encounters a stimulus or pathogen, no study has 
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quantatively compared the time-dependent expression of TLPs in different cultivars 

especially between resistant and susceptible cultivars. 

A recent report showed that pathogen related proteins were differentially expressed 

among different cultivars when barley plants interacted with a bacterial pathogen 

(Geddes et al. 2008). There may also be differential expression of TLP in sorghum at the 

cultivar level. Real-time PCR is a quantatively and time-dependent technique that is 

widely used in the molecular world that has proven to be a useful tool in the in-depth 

study of pathogen-related TLPs (Klein 2002). In this study, the real-time PCR technique 

was used to quantatively analyze the expression of TLP at the transcription level of two 

greenbug resistant lines (PI550607 and PI550610), and one greenbug susceptible line 

(Tx7000), when they were infested with greenbug.  

1.4 Rationale 
Plant tissue culture is a prerequisite of plant transformation systems. Tobacco is a 

model plant for tissue culture and transformation, which can be conveniently used to 

validate gene function. The plasmid AMP contains the antimicrobial gene which was 

isolated from the loblolly pine in our lab. The PtAMP gene function in vivo will be tested 

in tobacco first, which should demonstrate the potential of the PtAMP gene for crop 

improvements. 

Sorghum transformation is much more difficult than tobacco transformation, so 

genetic improvement of sorghum has depended on conventional plant breeding methods. 

As a result, sorghum insect management has mainly relied on the development of pest 
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resistant varieties through traditional breeding and improved cultural management 

practices. 

Thaumatin-like protein (TLP) is reported as a defense related response in plants. Real-

time PCR is a method to quantitatively analyze the levels of gene expression during 

different treatment time points. These methods will be used to study sorghum’s TLP gene 

transcription changes when infested by greenbugs. 

1.5 Objectives  
This research project focused on three objectives. The first was to develop transgenic 

plants to test the gene constructs in the model plant tobacco. The second objective, as the 

core project, was to develop disease and greenbug resistant sorghum plants through the 

transgenic approach. To reach the goal, sorghum regeneration and transformation 

methods must be developed first; thus both particle bombardment and Agrobacterium 

infection methods were used in the development of a sorghum transformation system. 

Once a sorghum transformation system was developed, target genes such as disease 

resistance and aphid resistance genes were to be used to produce transgenic sorghum 

plants with improved resistance to sorghum diseases and pests.  

The last research objective was to examine the expression of a defense-related protein 

in sorghum plants. The aphid greenbug is a notorious pest of important crops, including 

wheat and sorghum. According to our preliminary data, greenbug feeding induced the 

expression of thaumatin-like protein (TLP) expression, which is reported as a defense-

related protein. Thus this experiment was designed to analyze the expression of TLP in 
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sorghum plants in response to greenbug attack and to compare its expression in resistant 

and susceptible lines. 
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Chapter 2  

Sorghum Transformation 

2.1 Abstract 
    
   The objective of the study was to develop a protocol for sorghum transformation and 

regeneration, leading to development of transgenic sorghum plants with enhanced 

greenbug resistance. Immature inflorescences were collected as soon as the flag leaves 

appeared and cultivated on a co-cultivation medium for 5 to 14 days prior to 

microprojectile bombardment. Various levels of antibiotic selection were imposed to the 

shoot and root regeneration media to select transformants while shoots and/or roots were 

developing. The GUS gene vector’s selectable marker expression was stably expressed 

not only in propagation calli, but also in regenerated sorghum plantlets. The efficiency of 

regeneration and transformation varied and was affected by the following factors: the 

amount of plasmid DNA that was used for bombardment, the vector that was used to 

deliver genes into the plant genome, the stage of which the immature inflorescences were 

collected, the cultivation length before the explants were bombarded, the ingredients of 

the cultivation medium, especially shoot and root regeneration media, and the selection 

antibiotic selection pressures. Other factors might also affect the transformation 

efficiency, such as the bombardment pressure, the plasmid-coated particles, and the 
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bombardment distance from the rupture disk to the stopping plate. At an optimized 

condition, the sorghum transformation rate could be significantly improved.  
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The investigation of critical factors for sorghum regeneration and transformation is an 

important first step for the development of improved sorghum cultivars. During this 

study, the sorghum regeneration and bombardment transformation protocol was well-

developed and established with sorghum line Tx430.  

From the GUS staining and PCR results, some transgenic sorghum plants were 

obtained. Microprojectile bombardment of immature inflorescences of sorghum Tx430, 

resulted in transgenic sorghum plants carrying the PtAMP (containing the antimicrobial 

gene isolated from loblolly pine) and the rice chitinase gene. In addition, the DNA 

sequences of two phloem-specific promoters (one from Commelina yellow mottle virus 

and the other from the A. thaliana AtSUC2  gene) were also transferred into the sorghum 

genome. These transgenic sorghum plants might express the target genes and could be 

developed into disease resistant cultivars in the future. 

2.2 Introduction 

2.2.1 Transformation method development 

Plant biotechnology challenges the age-old agricultural practices of plant genetic 

improvement, especially in the field of genetic transformation. Gene transfer techniques 

allow the incorporation of beneficial genes for specific agronomic traits into diverse crop 

species (Vaeck et al. 1987). Genetic transformation allows plant breeders to get new 

improved varieties by installing desired foreign genes, such as insect and disease resistant 

genes into the commercial lines in a shorter period of time than traditional breeding 

methods (Amoah et al. 2001; Gao et al. 2000; Hilder et al. 1987). As previously reported, 

many of the world’s most important crops like wheat (Cheng et al. 1997), maize (Ishida 
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et al. 1996) and rice (Hiei et al. 1994) have already been engineered with increased 

resistance to insects and diseases. 

There are only a few reports on the trials of sorghum transformation and almost all of 

these experiments were conducted to deliver foreign marker genes into plant cells 

(Jeoung et al. 2002). Although sorghum regeneration (Cai et al. 1987) and transformation 

have been reported (Casas et al. 1993a), to my knowledge no transgenic sorghum plant 

with agronomically traits has been developed to date. The reason that sorghum 

transformation is lagging behind other major crops is partly due to difficulties associated 

with its tissue culture and partly due to the lack of efficient protocols for transformation 

(Huang 2005).  

Development of efficient plant regeneration protocols is the first critical step for a 

successful sorghum transformation system. Microprojectiles, Agrobacterium, and pollen-

mediated transformation have all been successfully used in sorghum transformation. 

Microprojectile bombardment has been used more in sorghum transformation (Casas et 

al. 1993b). Microprojectile bombardment has some advantages, for example, it has no 

limitation to plant genotypes or target tissues. However, Agrobacterium, a natural 

engineer, may be a better system for higher frequency of DNA delivery in higher plants, 

including graminaceous monocots (Ishida et al. 1996; Schlappi and Hohn 1992).  

There are a few reports of successful transformation using the commercial sorghum 

line Tx430 (Casas et al. 1993a; Howe et al. 2006), so it might be an ideal plant genotype 

for the study of sorghum transformation. Tx430 is a widely used greenbug-susceptible 

fertility restorer sorghum line (Miller 1984), while Tx2737 is a greenbug biotype C-
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resistant fertility restorer line (Johnson et al. 1982.); thus both genotypes were chosen to 

develop a successful transformation system for sorghum. 

Transgenic fertile sorghum plants (Sorghum bicolor L. Moench) were reportedly 

obtained by microprojectile bombardment of immature embryos and shoot tips (Casas et 

al. 1993a; Girijashankar et al. 2005). Immature tissues, including inflorescences and 

immature embryos, have proven to be the most suitable sources of morphogenic 

structures in cereals (Maddock et al. 1983; Rout and Lucas 1996). Meanwhile, 

inflorescence cultures have many advantages over immature embryos (Amoah et al. 

2001). Since inflorescences cells lose their competence at an early stage, the immature 

inflorescences were collected as soon as the flag-leaf appeared to achieve better 

regeneration. 

During transformation experiments, selectable markers are usually used to select 

transformed explants. Case et al. (1993) first used bialaphos as the selection agent for 

sorghum. Later, a novel mannose transformation selection system was also reported in 

sorghum (Gao et al. 2005). Other antibiotics, like geneticin and paromomycin have also 

been used as the selectable markers in sorghum transformation  (Howe et al. 2006). 

Based on Howe’s study, hygromycin and kanamycin might be the effective selectable 

markers for sorghum transformation.  

While some sorghum transformations have been reported, the transformation rate is 

relatively low, and none of the transgenic sorghum had agronomic value. In this study, 

our goal was to develop a highly efficient sorghum regeneration and transformation 

system by using a commercial sorghum line and microprojectile bombardment. We used 

the antibiotic kanamycin as the selection agent. Based on our transformation system, an 
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agronomically useful sorghum cultivar with improved disease resistance could be 

developed.  

2.2.2 Development of antimicrobial sorghum for bacterial diseases  

Sorghum, Sorghum bicolor (L.) Moench, is the fifth most important cereal crop in the 

world. Sorghum cannot only be used to produce food, but can also be an importance 

source of animal feed and fodder, especially in dry areas (Sharma 1993). Sorghum is now 

also considered an important biomass source for ethanol production (Rains et al. 1993). 

The development of a new sorghum cultivar mainly relies on traditional breeding 

methods (Able et al. 2001). To date, most of the world’s important crops have already 

been engineered with increased resistance to insects and diseases (Cheng et al. 1997; Hiei 

et al. 1994; Ishida et al. 1996), while sorghum is lagging behind. Yet there has been no 

successful production of agronomically useful transgenic sorghum cultivars.  

Pathogenic bacteria and fungi can cause some important diseases in crop plants. For 

example, bacterial stripe (Pseudomonas andropogoni) and bacterial spot (Pseudomonas 

syringe) are two important sorghum diseases caused by bacteria (Frederiksen and 

Odvody 2000). Disease resistant plants have their own mechanisms for defending against 

pathogens, but through genetic transformation, the pathogen resistance of crops can be 

greatly improved. Plants have many defense mechanisms to protect themselves from 

pathogenic organisms including the ability to produce many kinds of antimicrobial 

proteins (Turrini et al. 2004). One group of the plant antimicrobial proteins is cysteine-

rich peptides, which includes thionins (Bohlmann and Apel 1991), lipid-transfer proteins 

(LTPs) and defensins (Broekaert et al. 1995). Defensins, found in mammal, insect, and 

plant systems, are cysteine-rich cationic proteins active against bacteria, fungi and 
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enveloped viruses (Broekaert et al. 1995). Antimicrobial peptides, like plant defensins, 

are used for effective and sustained control of fungal and microbial pathogens in modern 

agriculture (Gao et al. 2000). Though there are many reports of using plant antimicrobial 

peptides to develop resistant transgenic crops, there has been no previous demonstration 

of using a gymnosperm peptide to develop resistant crops.  

When studying the genetic mechanism of host resistance in loblolly pine, antimicrobial 

properties were found in the tissue and a novel type of antimicrobial peptide was 

characterized based on sequence; this peptide was named PtAMP. The AMP conserved 

domains and multiple disulfide bridges of PtAMP can be thought of as the corresponding 

part of cysteine-rich AMPs from animals and plants. Therefore, the PtAMP may have the 

potential ability to inhibit the growth of pathogenic organisms (Huang et al. 2003). 

Developing transgenic tobacco plants is the first step to study the antimicrobial function 

of PtAMP in vivo. PtAMP transgenic tobacco plants might have enhanced pathogen 

resistance. Like other plant antimicrobial peptides, PtAMP could be used to develop 

disease resistant crop plants like sorghum (Topping 1998). In this report, PtAMP, which 

was isolated from the tissue of loblolly pine, was used to genetically engineer pathogen 

resistant sorghum. The expression of the PtAMP gene under the control of a promoter 

was analyzed. The efficiency of PtAMP sorghum against bacterial diseases was 

evaluated.  

2.2.3 Antifungal transgenic sorghums 

Plant biotechnology, especially plant transformation, is widely used in crop 

development. Plant chitinase, which is involved in host defense, is a promising tool for 

the crop disease improvement (Grison et al. 1996). Plants can produce a wide range of 
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proteins to inhibit the growth of pathogenic microorganisms; chitinase, a hydrolyzing 

enzyme of chitin, is one example in the defense against pathogen attack (Cramer et al. 

1985; Lamb et al. 1989; Dixion and Lamb 1990). Like plant antimicrobial pepetides, 

plant chitinase could potentially inhibit the fungi growth by attacking and digesting the 

cell wall of fungi (Schlumbaum et al. 1986). There are three classes of chitinase genes: 

basic chitinase; acidic chitinase; lysozyme homogenous chitinase (Metraux et al. 1998).  

  The rice (Oryza sativa L.) RCH10 gene may also be induced by a fungal cell wall 

elicitor in suspension cultured cells. The rice RCH10 gene not only encodes a basic 

chitinase gene, but may also encode an acidic chitinase gene (Zhu and Lamb 1991).  The 

RCH10 chitinase accumulates mostly in plant roots, and with limited  accumulation in 

leaves and stem tissues (Zhu and Lamb 1991). The plasmid Ct contains a rice chitinase 

RCH10 gene.  

This plasmid was used to develop fungal resistant crops, like sorghum, in the future. 

2.2.4 Gene expression under phloem-specific promoters in transgenic 

sorghum and development of greenbug resistant sorghum 

  Greenbug management on sorghum has relied on conventional breeding methods and 

has become an important component of future sorghum improvement. It is important to 

develop more effective ways to improve sorghum resistance (Park et al. 2005). But 

traditional methods cannot overcome the difficulty of natural barriers (i.e. sexual 

incompatibility between species) and the narrow genetic variability (limited gene pool) of 

sorghum (Huang 2005). Currently, plant biotechnology utilizing plant transformation is a 

promising tool and the most effective way to overcome these limitations. Greenbugs 

always feed on phloem (Porter et al. 1997), so it is necessary to express foreign greenbug 
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resistant genes in the phloem. The plasmid of SUC2 contains an A. thaliana AtSUC2  gene 

(2137bp) with a GUS fusion promoter which directs gene expression to the phloem. 

Plasmid SUC2 contains the reporter gene uidA, encoding beta-glucuronidase (GUS) and 

the selectable marker Kanamycin gene (Truernit and Sauer 1994; Zhao et al. 2004). 

Plasmid CO1 contains a CoYMV (Commelina yellow mottle virus) GUS gene fusion 

promoter. This promoter can direct gene expression specifically to the phloem (Medberry 

et al. 1992). This project is to study gene expression using phloem-specific expression 

promoters (plasmids of SUC2 and CO1 contain the phloem-specific promoters) in 

transgenic sorghum. First, I need make some transgenic SUC2 and CO1 sorghum plants, 

and then compare gene expression in sorghum with these promoters by using GUS 

staining (Thomma et al. 2002). Since greenbugs feed on the phloem of sorghum, these 

phloem-specific promoter can be used to develop greenbug resistant transgenic sorghum 

plants.  

Snowdrop lectin (Galanthus nivalis agglutinin; GNA) is toxic to lepidopterans, while 

safe to human and animals. It is used for the development of transgenic greenbug 

resistant crops (Gatehouse et al. 1997). Recent work in Dr. Huang’s lab demonstrated 

novel greenbug resistance genes in resistant sorghum. Greenbug resistant genes have 

been identified using microarray methods (Park et al. 2005). 

Further, a novel greenbug resistant locus was also found by SSR and AFLP methods 

(Wu et al. 2007). The newly identified greenbug resistance genes can be used with the 

phloem specific promoters to develop transgenic sorghum plants. This may be the first 

study utilizing of sorghum greenbug resistance genes to develop transgenic sorghum 

cultivars for greenbug management in field crops. 
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2.3 Materials and Methods 

2.3.1 Plant materials 

Two different grain sorghum lines with different genetic backgrounds were used in this 

research. Tx430 is a sorghum line widely used for transformation, while Tx2737 was 

used as a control in this study. Sorghum plants were grown in a greenhouse at 25 ℃ for 

two to three months after seeding. Immature inflorescences were collected as soon as the 

flag leaf appeared; the head of plant was cut, all the sheaths were removed and the 

immature inflorescences were cut into small pieces and placed onto co-cultivation 

medium. 

2.3.2 Bacterial strains and plasmids 

Four gene constructs were used in this study. 

Plasmid A was  AMP (pBI121-AMP) that contains the reporter gene uidA encoding 

beta-glucuronidase (GUS). It also contains an antimicrobial protein gene (the PtAMP 

gene) that was isolated from loblolly pine (Huang et al. 2003). Plasmid pBI121 

containing no AMP gene was used as a negative control. 

Plasmid B was Ct that contains the GUS gene, a kanamycin resistance gene, and an 

antifungal (chitinase) gene (Zhu and Lamb 1991). 

Plasmid C was CO1 which contains the GUS gene and a kanamycin resistance gene; 

both genes are driven by a phloem-specific expression promoter  (i.e., the Commelina 

yellow mottle virus, CoYMV promoter) (Medberry et al. 1992). 

Plasmid D was SUC2 that contains the GUS reporter gene and a marker kanamycin 

resistance gene. Both genes are driven by the promoter of the AtSUC2  gene which directs 

phloem-specific expression (Zhao et al. 2004). 
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Agrobacterium strain 4404 was used in this study for developing transgenic tobacco 

plants. This disarmed Agrobacterium strain was employed to deliver the binary vectors, 

(i.e., one containing the 121-AMP gene fusion, the other containing the plasmid 121 

only), into plant cells separately. 

2.3.2 Tobacco transformation 

According to the method of Svab et al (1975), Agrobacterium was inoculated on YEM 

medium with 50 mg/ml kanamycin for 1-2 days at 28 °C. Agorbacterium cultures (5 ml) 

were then centrifuged and the upper liquid phase was removed. The Agrobacterium pellet 

was resuspended with 25 mL callus induction medium (CIM) (dilution rate is 1:5). 

Young leaves of tobacco plants were collected and cut into small pieces, and the small 

pieces were immersed in the Agorbacterium solution for 10 minutes at room temperature. 

Filter paper was used to remove the excess Agrobacterium-CIM liquid from the surface 

of tobacco leaves. The tobacco leaves were transferred onto CIM medium for  co-

cultivation with Agrobacterium for 3-5 days in the dark, then transferred to shoot 

induction medium (SIM) (containing timetin 200 mg/L) and subcultured every 2 weeks 

for 2-4 weeks. When shoots formed, the regenerated plantlets were transferred onto root 

induction medium (RIM) (containing timentin 200 mg/L and kanamycin 50 mg/L), after 

4-6 weeks they were transferred to soil and grown in greenhouse. 

2.3.3 Sorghum transformation 

2.3.3.1 Preparation of Microprojectiles  
The microprojectiles were prepared using the method developed by Sanford et al. 

(1993). Sixty milligrams of gold particles (Bio-Rad, 1.0-1.6 µm in diameter) were 

washed once in 70% ethanol, then three times with sterilized water, and then the pellet 
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was resuspended in 1000 µl of 50% glycerol (for deagglomeration of the particles). 

While vortexing, 50 µl aliquots of the mixture were put into 20 sterile screwcaped 

microtubes and stored at -20 ℃ until use.   

For coating DNA onto the microprojectile, the 50 µl of mixture stock were placed on 

wet ice and used within 4 hours. While vortexing, the following components were added 

in order: 10 µl plasmid DNA（0.1 to 1 µg/µl, Amp, CT, SUC2 or CO1), 50 µl CaCl2 (2.5 

M) and 50 µl ice-cold spermidine (0.1 µM, tissue culture grade, base free). The mixture 

was then vortexed for another 2-3 minutes, allowed to settle down for 2-5 minutes, then 

centrifuged at high speed for 2-5 seconds. The supernatant was discarded and the pellet 

was washed with 250 µl absolute ethanol, and then resuspended in 75 µl absolute ethanol. 

The final concentrations of all ingredients in the suspension were: golden particle 40 

µg/µl, plasmid DNA 0.013~0.13 µg/µl, CaCl2 1.5 to 1.6 M and spermidine 63 mM. Ten 

milliliters of the suspension (0.13~1.3 µg of the plasmid DNA and 400 µg of the gold 

particles) was used per bombardment.   

2.3.3.2 Microprojectile bombardment  
Transformation experiments were conducted with the Biolistics PDS 1000/He system. 

Immature inflorescences, which were cultivated on co-cultivation medium for 10-14 

days, were then bombarded with microprojectiles (four kinds of microprojectiles, each 

made from different plasmid). Sterilized filter paper was used to absorb the water from 

the surface of the inflorescences prior to bombardment. The bombardment pressure was 

900 to 1300 psi and the distance from rapture disc to the launch plate was 10 cm to 13 

cm. Ten microliter of coated micoprojectiles were used per bombardment. The biolistic 
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sample chamber and acceleration tube of the PDS- 1000 were cleaned with 95% ethanol. 

During bombardment gas pressure was held at 23-25 psi. 

Following bombardment, immature inflorescences were transferred onto the sorghum 

propagation medium incubated at 25 °C in dark. To develop shoots, the immature 

inflorescences were transferred onto shoot regeneration medium with a period of 16 

hours of light and eight hours of dark everyday and sub-cultivated every two weeks until 

shoots had developed well. Under these conditions, some shoots even developed roots 

after grown on the shoot regeneration medium for four to eight weeks. The regenerated 

plants were then transferred into soil and grown in the greenhouse. Poorly developed or 

unrooted plants were transferred onto root regeneration medium. After the roots were 

well-developed, they were transferred into soil and placed in the greenhouse. Table 2-1 

shows the basic ingredients of each medium. 
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Table 2-1. Sorghum transformation and regeneration medium 
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In order to increase the frequency of shoot and root regeneration, some critical 

ingredients of the media were tested. For shoot regeneration, 0.35 g/L L-proline was 

added to the shoot regeneration medium. Then the concentration of L-proline was 

increased to 0.7 g/L. Additional MES was also added to the medium at a final 

concentration of 0.5 g/L. 

2.3.3.3 Selection agents of transformation (antibiotic selection conditions) 

Kanamycin, ampicillin and hygromycin were used as the selection agents in these 

experiments. Antibiotics were dissolved in water (50 mg/mL) and sterilized by filtration 

and stored at -20 ℃ prior to use. To test the antibiotic’s effect on shoot regeneration, 

kanamycin (50 mg/L) and hygromycin (1.5 mg/L) were first added to the shoot 

regeneration medium (without L-proline and MES, did not have enough time to test the 

one with L-proline and MES).  

To find the best selection condition for development of the transgenic sorghum plants, 

a different group of explants were used. Fifty mg/L of kanamycin was imposed to the 

propagation medium (as selection medium) for two to three weeks, and then decreased to 

25 mg/L for another two weeks. The calli were transferred onto shoot regeneration 

medium with or without selection pressure at a final concentration of 50mg/L. In 

addition, the shoot regeneration medium was supplemented with L-proline and MES at a 

series of concentrations of 0 mg/L, 15 mg/L, and 50 mg/L. 

For the selection of Amp-transformed explants, kanamycin and hygromycin were all 

used. For the selection of CT-transformed explants, CO1-transformed and SUC2-

transformed explants, kanamycin was used for the selection of the transformed calli.  
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2.3.4 GUS assay 

GUS assay was performed to determine the gene delivery into immature 

inflorescences, calli, shoots and leaves (Jefferson et al. 1987). Immature inflorescences, 

calli, shoots or leaves of sorghum and leaves of tobacco were transferred into small tubes 

containing GUS-staining buffer (1 mM 5-bromo-4-chloro-3-indolyl-D-glucuronide [X-

Gluc], 100 mM sodium phosphate buffer pH 7.0, 0.5 mM potassium ferricyanide, 0.5 

mM potassium ferrocyanide, and 0.1% Triton X-100). The tubes were incubated 

overnight at 25 °C, and at room temperature a further 24 h. Explants, especially leaves 

and shoots, were then washed once with sterile distilled water and steeped in 70% ethanol 

overnight to extract any chlorophyll that may be present in the tissues. Explants were 

then examined under a microscope and the ratio of explants producing blue spots per 

treatment and the number of spots per explant was counted and statistically analyzed. 

2.3.5 PCR analysis 

Genomic DNA was isolated from T0 plant (the regenerated plant) leaf samples of 

transformed and control plants of sorghum and tobacco using the CTAB method 

(Sambrook et al. 1989). PCR amplification of a 500 bp DNA fragment of the GUS gene 

was carried out using a pair of gene-specific primers; 412 5’-

CCCTTACGCTGAAGAGATGC-3’ and 413 5’-GGCACAGCACATCAAAGAGA-3’. 

The PCR reaction mixture contained 100 ng of genomic DNA in a final volume of 25 µl 

containing 1× PCR buffer, 10 mM dNTPs, 10 pmol of each primer, and Taq DNA 

Polymerase (2.5 U). Amplification was carried out by the program containing 

denaturation at 94 ℃ for 1 min, annealing at 58.5 ℃ for 1 min, and extension at 72 ℃ for 

1.5 min for 40 cycles. A pre-denaturation step of 2 min and a final elongation and pre-

denaturation step of 2 min, and a final elongation step of 5 min were included. 
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In the case of the gene construct AMP, a 0.3 kb fragment was amplified using the 

forward primer 6936 5’ATGGAAACCAAGCGCTTG-3’ and reverse primer 6937 5’-

TTAGCACTGGATGAAAAAAC-3’. Denaturation was carried out at 94 ℃ for 1 min, 

annealing at 50 ℃ for 1 min, and extension at 72 ℃ for 1.5 min. 

In the case of the gene construct CT, a 0.5 kb and a 1 kb fragments were amplified 

using the forward primer RCH105 5’-AATCAGTCAATCTGTATAC-3’ and the reverse 

primer RCH10MR 5’-TCTGCTGGCAGTAGTCC-3’.  

In the case of the construct Co1, a 0.4 kb fragment was amplified using the forward 

primer 5’-CAGGATATCGGCAAATTGGT-3’ and reverse primer 5’-

TCTTTCGGTGCTTCTTGGAT-3’.  

In the case of the gene construct SUC2, a 0.4 kb fragment was amplified using the 

forward primer 5’-CACGTGTCACGAAGATACCC-3’ and reverse primer 5’-

AGGGTTTTTGGTGGTTGTTG-3’. Denaturation was carried out at 94 ℃ for 1 min, 

annealing at 50 ℃ for 1 min, and extension at 72 ℃ for 1.5 min. 

2.4 Results 

2.4.1 Tobacco transformation 

2.4.1.1 Plant transformation and regeneration of tobacco  
  The tobacco plants were transformed and regenerated on callus induction medium 

(CIM), shoot induction medium (SIM) and root induction medium (RIM) media (Fig. 2-

1, and Fig. 2-2). Tobacco leaves were cut into small pieces and co-cultivated on the CIM 

medium with Agrobacterium for three to five days. Shoot buds developed from the leaf 

pieces following incubation on the SIM medium for one to two weeks (Fig. 2-1). When 
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the shoots were well-developed, the regenerated plants were then transferred onto RIM 

medium to induce roots (Fig. 2-2).  

 

 

Fig. 2-1. Tobacco leaves on shoot-induction medium with shoot buds. Shoot buds from 
the explants came out after co-cultivated on the SIM medium for one to two weeks. 
 

 

Fig. 2-2. Tobacco plants on root-induction medium with well developed shoots and roots.  

2.4.1.2 GUS staining 
The regenerated tobacco leaves were bleached and stained with GUS solution. The 

leaves turned blue after being stained with GUS overnight (Fig. 2-3 and Fig. 2-4), so 

these tobacco plants which regenerated on the kanamycin selection medium and stained 
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blue were transformed; from the antibiotic selection and GUS staining results, about 30% 

percent of the regenerated tobacco plants were transformed. In the case of AMP-

transformed plants, the GUS staining provides the first evidence for the nature of genetic 

transformation in these plants. 

 

 

 

Fig. 2-3. GUS staining of a leaf from the AMP-transgenic tobacco plant.  

 

 
Fig. 2-4. GUS staining of a leaf from a plasmid-121 transgenic tobacco plants.  
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2.4.1.3 PCR for transgenic tobacco plants 
PCR analyses were carried out to determine the transfer and the presence of the target 

gene in the GUS positive T0 plants. The expected 500 bp GUS gene amplification band 

was detected (Fig. 2-5). From the PCR results, these regenerated plants proved to be 

transgenic tobacco plants carrying the GUS gene.  

 

Fig. 2-5. PCR product for the GUS gene from genomic DNA of transgenic AMP and 121 

tobacco plants. The product was close to the 500 bp line of l k marker.  The gAMP was 

the genomic DNA from a transgenic AMP tobacco plant; while the g121 was the 

genomic DNA from a transgenic 121 tobacco plant. 1k was the PCR marker. 

 
 

2.4.2 Sorghum transformation 

2.4.2.1 Method development 
In this study, the sorghum regeneration system was considerably improved by using 

immature inflorescences of an elite sorghum line, Tx430. The microprojectile 
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bombardment transformation rate of the target gene was increased from the evidence of 

permanent expression of the GUS gene in the transformed tissues. The current studies 

suggest that transformation frequency can be increased further at optimized conditions. 

2.4.2.2 Plant regeneration and transformation 
  Calli derived from the immature inflorescences of Tx430 were bombarded with DNA 

coated microprojectiles and grown on co-cultivation medium for one month (Fig. 2-6a), 

and then propagated on propagation medium for another month. The calli of Tx430 were 

then transferred to shoot regeneration medium and shoots were regenerated on shoot 

regeneration medium (with 0.7 g/L L-proline and 0.5 g/L MES) without selection 

pressure (Fig. 2-1b,Fig. 2-6c and Fig. 2-6d). Under the culture conditions, some unique 

calli (featured as white and compressed in structure) were developed (Fig. 2-6a), which 

had the ability to regenerate plants. The Fig. 2-6b to Fig. 2-6d shows morphogenetic 

development on the shoot regeneration medium at different development stages: shoot 

initiation, well-developed shoots, and plantlets with fully-developed shoots with roots, 

respectively. Sometimes multiple shoots developed from the base of compact callus 

clusters (Fig. 2-6c, Fig. 2-6d). After roots were induced, the fully-developed plantlets 

were separated and cultured in vitro for further growth. Finally the fully regenerated 

plants were transplanted in sterilized soil in plastic pots (Fig. 2-6d) and grown in the 

greenhouse at 25 ℃. For the AMP transgenic sorghum plants, five were regenerated from 

the same callus; the sixth one was regenerated from another callus. The putatively 

transformed T0 sorghum plants produced seeds.  
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Fig. 2-6a. Callus induced from Tx430 immature inflorescence in vitro and shoots buds 

developed at the base of the compact callus clusters on the shoot regeneration medium. 

 
 
 
 

 
Fig. 2-6b. Shoots development from callus (Tx430 immature inflorescence).  

 

Compress parts of the calli 

Shoot buds 

 

Multiple shoots were 
developed 
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Fig. 2-6c. Regenerated transgenic sorghum plantlets with well-developed shoot and root 

systems in a magenta box on root the regeneration medium. 

 

  

 
Fig. 2-6d. Transgenic PtAMP sorghum plants regenerated from immature inflorescences 

of Tx430.  Each of the individual shoots developed into a mature sorghum plant.  
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2.4.2.3 The effects of plant genotype and explants type on transformation and plant 
regeneration 

Protocols used in this study showed that the sorghum lineTx430 was amenable to in 

vitro propagation. The calli developed from Tx430 explants were able to grow bigger 

clusters and amplified much quickly than Tx2737 on propagation medium (picture not 

taken). These calli exhibited greater potential for transformation and regeneration under 

the regeneration conditions as shown in Table 2-1.   

Two types of explants, immature embryos and immature inflorescences of Tx430, 

were compared for their capacity for regeneration. It was noted that under the defined 

cultivation conditions (given in Table 2-1), immature inflorescences were easier to 

propagate and to regenerate than immature embryos. Thus, immature inflorescences of 

Tx430 proved very useful for genetic transformation in sorghum.  

Immature inflorescences pieces of Tx430 from the lower part of the panicle were more 

responsive to shoot induction under the tissue culture conditions and were able to develop 

into light-colored compact calli. Successful regeneration was limited to these light-

colored parts of the calli (Fig. 2-6b).  

2.4.2.4 The effects of different ingredients on regeneration and genetic 
transformation  

In order to optimize the plant tissue culture and regeneration protocol for sorghum, 

several chemicals that are used as the supplements of tissue culture medium were tested 

for their effects on plant regeneration. From our results, it appeared that L-proline and 

MES can increase shoot and root regeneration of Tx430 immature inflorescences. 

Without L-proline and MES, only small “shoot buds” (picture not taken) developed after 

cultivation on shoot regeneration medium for 3 to 7 days; then the “shoot buds” became 

withered and no further regeneration occurred. These “shoot buds” were unlike the 
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regeneratable shoot buds shown in Fig. 2-6b; they seemed like a morphological alteration 

which was resulted from the expansion of immature inflorescences in vitro that did but 

not involve tissue redifferentiation. 

Further, effects of media on shoot regeneration were observed when the calli of Tx430 

immature inflorescences were incubated on different shoot regeneration media. Shoot 

regeneration was much better on media without L-proline (picture not taken); shoot 

regeneration appeared almost normal but morphogenesis was not normal (picture not 

taken). When incubated on medium with both L-proline and MES, normal shoots 

regenerated and some of the calli even developed into multiple shoots, and roots also 

developed (Fig. 2-6c). 

2.4.2.5 The effects of antibiotics on cell division, morphogenesis, and plant 
regeneration 

The calli of Tx430 immature inflorescences were cultured on propagation medium for 

one month before being exposed to any selection pressure. Under these conditions, the 

calli multiplied with normal appearance. Following this culture period, the calli were 

transferred onto shoot regeneration medium with kanamycin (50 mg/L) and hygromycin 

(1.5 mg/L) as well as without selection pressure to assess the effect of antibiotics on 

callus development and shoot bud differentiation. Interestingly, the cultures exposed to 

kanamycin (50 mg/L) grew even better than those without selection pressure (picture not 

taken), but the morphogenesis of the shoot buds appeared different in morphology; these 

shoot buds were longer and thicker than normal shoot buds and turned white after more 

than two weeks on the medium containing antibiotics, resulting in no regenerated shoots. 

Shoots exposed to hygromycin (0.5, 1.5 mg/L) grew almost the same as shoots without 

selection pressure.  
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  Based on the trial, we developed a strategy for selection of transformed tissues with 

antibiotics. Calli were propagated on the propagation medium with kanamycin (50 mg/L) 

for two weeks (picture not taken); then kanamycin was reduced to 25 mg/L for another 

two to three weeks. Cultures that survived the selection appeared almost normal. The 

only difference from shoots without selection pressure was that those calli which grew 

with selection pressure did not have compressed parts which have the ability to 

regenerate. After 4 to 8 weeks on the propagation medium with selection pressure, those 

calli propagated with selection pressure were transferred onto shoot regeneration medium 

(with L-proline and MES) with the selection pressure of kanamycin (0 mg/L, 30 mg/L 

and 50 mg/L), but no shoot buds or shoots developed. 

2.4.2.6 GUS staining 
Freshly bombarded immature inflorescences, calli and leaves of regenerated sorghum 

plants were collected for GUS staining to evaluate the transfer and expression of the 

reporter gene (i.e. the GUS gene) in putatively transformed sorghum tissues. It is believed 

that some target samples are transformed based upon the expression of the reporter gene 

in plant cells as shown in Fig. 2-7a and Fig. 2-7b. The same experiments were done for 

all bombardment-treated calli with different gene constructs: Amp, CT, CO1, and SUC2. 

The GUS staining results were permanent blue, which provided the evidence that these 

were indeed transgenic sorghum tissue (Fig 2-7b). In Fig. 2-7a, almost the entire callus 

was permanently stained blue, suggesting that the transformation rate was high.  
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Fig. 2-7a. GUS staining of transformed callus. The photograph shows the calli of Tx430 

immature inflorescences that were bombarded with the AMP construct, stained in GUS 

buffer overnight.  

 

Fig. 2-7b. GUS staining of leaves from a regenerated transformed plant from Tx430 

immature inflorescences that were bombarded with the microprojectile prepared with 

AMP DNA. A segment of leaf was stained in GUS buffer over night. 

2.4.2.7 Confirmation of the GUS gene in plant cells by PCR  
To confirm the GUS staining results, PCR was done before the regenerated T0 plants 

were transferred to the greenhouse. Two grams of leaf tissues were collected from each 

regenerated plant. Genomic DNA was isolated from each sample, and PCR was 

performed using the specific primers for the GUS gene. There were 10 regenerated 

plants, including six PtAMP-transformed sorghum plants, three transformed with the Ct 

gene and one transformed with the CO1 construct. The results from the gene specific 
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PCR amplification showed that all of them contained the GUS gene. Fig. 2-8a shows the 

PCR results from four transgenic sorghum T0 plants. As mentioned above, five individual 

PtAMP-transformed sorghum plants (Fig. 2-6d) were regenerated from the same callus 

cluster, and each of them were analyzed by PCR and all of them contained the GUS gene. 

The last regenerated PtAMP sorghum plant, which was regenerated from another calli, 

was also positive for the PCR amplification.  

 

  1k     1     2     3      4 

 

Fig. 2-8a. The gel results of PCR for the GUS gene. Lane 1k is 1 kb marker as a 

molecular standard, lanes 1, 2, 3, and 4 are the PCR products for the GUS gene from the 

DNA of four individual transgenic plants. The PCR product for the GUS gene is about 

500bp in size. 

2.4.2.8 Confirmation of other target genes in transformed sorghum plants 
To further confirm the above PCR results, PCR amplification was done for the target 

genes using the genomic DNA of the four kinds of transformed plants (AMP, Ct, Co1, 

SUC2). As each of the gene constructs carry one target gene and the GUS reporter gene, 

500bp 
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the two foreign genes are closely-linked, residing within the same construct. In general 

they can be co-transformed into the same target plant cell. Fig. 2-8b shows that the Ct 

gene has been introduced with the GUS gene into the same transformed sorghum plants. 

Similarly, the CO1 gene showed the positive in the GUS-transformed plants.  

                            

 
Fig. 2-8b. PCR results for the target genes CO1 and Ct-AMP in transformed regenerated plant 

genomic DNAs.  Lane gCo1 is the PCR result for Co1-transformed sorghum plant using the primers 

designed from the CO1 sequence, the PCR product size is about 400 bp. Lane gCt are the PCR 

products for the CT-transformed plant using Ct-AMP gene specific primers, the PCR products sizes 

are about 400 bp and 1000 bp. 
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2.5 Discussion 

2.5.1 Development of a method for sorghum transformation using immature 

inflorescences 

In order to develop new transgenic sorghum cultivars, the first critical step was to 

develop and establish a highly efficient transformation system. During this study, an 

immature inflorescence-based transformation was successfully developed for sorghum 

using microprojectile bombardment. From the results of the GUS staining and PCR 

analysis, the transformation rate in immature inflorescence is more than 50%. If the 

transformation rate was from 25% to 75%, the antibiotic selection pressure and the 

antibiotic selectable marker, which might result in a negative impact on the environment, 

might not be needed in the future. Once the putatively transformed plants are produced, 

the GUS staining or PCR analysis for the regenerated plants could be used to determine 

whether the regenerated plants are transformed before planting them into the greenhouse.   

The inflorescence-based method proved a useful tool for sorghum transformation. 

However, many factors may affect the frequency of transformation and regeneration 

which lead to the final production of transgenic plants. Those factors that need to be 

further investigated in the future in order to optimize the method are briefly discussed 

here. 

2.5.1.1 Plant genotype and target tissue 
                            The first step for a successful transformation in sorghum is to choose an ideal plant 

genotype and target tissue for gene delivery. The sorghum line Tx430 was chosen as one 

of the lines to test in this study because it showed amenability for transformation in an 

earlier report (Casas et al. 1993a). In this study, Tx430 was easier to regenerate than the 

cultivar Tx2737. Various types of tissues were tested for transformation in sorghum 
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during early efforts. The most widely used target tissue has been immature embryos. In 

cereal crops, like rice and wheat, cells seem to be competent at an early developmental 

stage. Immature tissues like immature inflorescences were proven to be the most suitable 

sources for morphogenesis (Maddock et al. 1983; Rout and Lucas 1996). Rasoco-Gaunt 

and Barcelo’s study in 1999 also showed that immature inflorescences are advantageous 

over immature embryos (Rasco-Gaunt and Barcelo 1999). From the results of this study, 

immature inflorescences were easier in plant regeneration than immature embryos. When 

immature inflorescences were collected immediately before the flag leaves came out, 

transformation frequency was high. 

2.5.1.2 Tissue culture conditions 
  The in vitro culture conditions affect frequency of regeneration and transformation. 

Phytohormones are the most critical regulators for plant tissue culture. Abscisic acid 

(ABA) was reported to improve the quality of calli in rice (Jiang et al. 2006), and 

promoted the calli to produce compressed parts. In this study with sorghum, ABA 

seemed to direct the development of callus type, producing calli with a compact structure. 

It was observed that only the light colored compact calli had the ability to regenerate a 

plant.  

Mannitol and sorbitol, as osmotic regulators are often used in the pre-cultivation 

medium, as they were reported to increase GUS gene transit and stable expression 

(Girijashankar et al. 2005). Like mannitol and sorbitol, L-proline was supplemented in 

the co-cultivation and propagation medium in this study. Whether L-proline has the same 

function of mannitol and sorbitol still needs to be investigated. L-proline is reported to 

promote plant somatic embryogenesis (Armstrong and Green 1985). Rout et al.(1995) 
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also reported that the addition of L-proline to the culture medium promoted development 

of high-frequency somatic embryogenesis and secondary somatic embryogenesis in rice 

(Rout et al. 1995). The L-proline was also believed to promote adventitious shoot 

regeneration from immature embryo in sorghum (in the line Tx430) (Hagio 2002). Based 

on our experiment, an additional 0.7 g/L of L-proline resulted in a high frequency of 

shoot and root regeneration from immature inflorescences in sorghum cultivar Tx430 

(Fig. 2-6c). It is believed that L-proline plays a role in the regulation the osmotic pressure 

of the medium as it absorbs free hormones such as IAA, IBA or NAA from the medium.  

The pH of tissue culture medium affects plant growth and is also critical for plant 

regeneration. The pH of the medium may change under some situations, for example 

after autoclaving, while the explants grew on the medium, etc. MES (Morpholine ethane 

sulphonic acid) is often used as a buffering agent, and it can adjust the Pka value of 6.15 

at 20 °C (Good et al. 1966). The initial pH value of the sorghum transformation and 

regeneration medium was 5.8. From this study, it was determined that an additional MES 

(0.5 g/L) benefited the shoot and root regeneration (Fig. 2-6c). MES and L-proline 

proved useful for shoot and root regeneration in sorghum.  

2.5.1.3 Parameters of the microprojectile bombardment process 
The parameters of the microprojectile bombardment determine a successful 

transformation system. Micoprojectile bombardment has been used for gene delivery in 

sorghum but the frequency of transformation varied (Casas et al. 1993a; Girijashankar et 

al. 2005). Many factors can affect the success of DNA delivery. The bombardment 

pressure, the distance from the rupture disk to the stopping plate, the metal particle, the 

purity and the amount of DNA, the vacuum, and the pellets of the DNA will all affect the 
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transformation rate (Able et al. 2001; Tadessem et al. 2003). In this study, we 

manipulated some parameters, leading to higher transformation rates in some groups; 

some parameters still need to be investigated further.  

From this study, the amount of plasmid DNA might be a critical component for the 

success of gene transfer using bombardment. Varying amounts of plasmid DNA/golden 

particle per bombardment, ranging from 0.2 µg/400 µg to 2 µg/400 µg, were evaluated. 

Lowering the amount of plasmid DNA might increase the transformation rate. Decreasing 

the amount of plasmid might increase the stable delivery of the target gene into the 

sorghum genome. To investigate it in the future, different plasmid amounts could be used 

for bombardment and then place the treated explants on propagation medium for two to 

four weeks, and then assess the gene transfer by GUS staining method. 

For bombardment, we adopted a chamber pressure of 900 psi to 1300 psi, which was 

commonly used in previous studies. But the distance from the rapture disc to the launch 

plate was modified to 10 cm to 13 cm, which was a greater distance than used in previous 

reports. This modification might be one of the factors that improved our transformation 

rate in sorghum.  

2.5.1.4 The selection conditions 
The selection media conditions also affect successful sorghum transformation. There 

are no successful reports of sorghum transformation when using antibiotic selection 

pressure. Kanamycin (15-50 mg/ml), when added to the shoot regeneration medium alone 

(i.e., without L-proline and MES), seemed to benefit plant transformation rates in this 

study (Fig. 2-6). In the future, further studies are needed to confirm the effect of 

kanamycin on shoot regeneration.  
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Hygromycin (0.5-1.5 mg/ml), which was added to the shoot regeneration medium 

(without L-proline and MES) at a low concentration, seemed to not affect the propagation 

of the calli. The reason might be the low concentration of hygromycin, but it did effect 

the regeneration of sorghum explants. The concentration could be increased to 15 mg/L 

to 25 mg/L and L-proline and MES could be added in the future.  

In our selection experiments, Kanamycin (50 mg/L) was added to the propagation 

medium. At this level, the calli developed almost normally but lost regeneration ability 

completely. There may be several reasons for this loss: the selection pressure was too 

high, thus it might be decreased in the future; the materials were too old and did not have 

the potential to regenerate; the quality of the ABA was not good, which was reported to 

promote the calli to produce the compressed and light-colored parts of the calli; the 

antibiotic did affect the future regeneration ability of callus. To solve these problems, 

good quality immature inflorescences, which have the potential to regenerate should be 

used, and several selection pressures should be tried (for example 25, 50 mg/L for 

kanamycin and hygromycin), and a good quality ABA should be used. 

2.5.2 Development of Agrobacterium-mediated sorghum transformation 

Since the regeneration of sorghum Tx430 from immature inflorescences was well 

established, we could also use this regeneration system to develop the methods for 

Agrobacterium-mediated sorghum transformation. 

Agrobacterium can cause the release of phenolics from explants into the medium 

which is harmful for the regeneration of sorghum from calli (Zhao et al. 2000). To solve 

the problem, researchers usually shorten sub-cultivation duration to 5~7 days, and add 

PVPP to co-cultivation and propagation media to prevent the production of phenolics 
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(Gao et al. 2005; Howe et al. 2006). According to Hagio’s report (2002), 1000 mg/L 

PVPP, in combination with 1000 mg/L proline, increased adventitious shoot 

regeneration. Since 100 µM to 200 µM acetosyringone was reported as a critical factor to 

induce transfer of T-DNA into the plant genome (Amoah et al. 2001), we may add 

acetosyringone to the Agrobacterium medium when preparing Agrobacterium for co-

cultivation with plant tissues. Carbencillin is widely used to kill Agrobacterium during 

the propagation of plant callus. It is usually imposed for less than four weeks and does 

not affect the growth of the calli, but as the concentration of carbencillin increases, it can 

decrease potential regeneration ability (Zhang 2004). So, the ideal concentration of 

carbencillin should be 100-150 mg/L. 
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Table 2-2. Media for Agrobacterium-mediated sorghum transformation  
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Agrobacterium strain 4404 is widely used and highly efficient in rice transformation 

(Ignacimuthu et al. 2000), and is also used with sorghum cultivars  

(Gao et al. 2005; Zhao et al. 2000). A recent report showed a rapid and reproducible 

transformation method by using the Agrobacterium strain NTL4 (Howe et al. 2006). Both 

4404 and NTL4 can be used in the future. Bombarding the calli with the microprojectile 

prior to Agrobacterium–plant co-cultivation may also increase the T-DNA delivery of the 

target gene into plant genomes (Bidney et al. 1992). 

Based on a previous report and this study, the suggested protocol of Agrobacterium-

mediated cultivation is set up in Table 2-2. But, we still need to investigate the best 

selection conditions using antibiotics. Also, during autoclaving, sucrose can hydrolyze 

into glucose and fructose and fructose can further hydrolyze and produce harmful 

products in the medium (Hsiao et al. 1991). In order to optimize the regeneration and 

selection conditions, it may be better to filter-sterilized the sucrose in the future.  

2.5.3 Development of antimicrobial transgenic sorghum cultivars 

 Plant antimicrobial genes were used to develop transgenic species which have 

enhanced pathogen resistance (Shah 1997). The novel antimicrobial protein isolated from 

loblolly pine has the ability to inhibit the growth of pathogen microorganisms in vivo 

(Huang et al. 2003). As an ongoing study of the PtAMP peptide, transgenic tobacco 

plants containing the PtAMP gene were developed in this study (Fig. 2-1 to Fig. 2-5). 

Also, putatively transgenic AMP sorghum plants were developed using immature 
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inflorescences (Fig. 2-6 to Fig. 2-8), although characterization of the transgenic plants 

needs to be performed. 

The tobacco transformation work was designed to develop transgenic tobacco in order 

to check the in vivo function of the PtAMP protein. The tobacco plants were regenerated 

(Fig. 2-1 to Fig. 2-2) and were either AMP-transformed tobacco or 121-transformed 

tobacco plants (Fig. 2-3 to Fig. 2-5). To further confirm the nature of integrated 

transformation, Southern blot analysis and functional analysis of the PtAMP protein in 

vivo and in vitro are needed.  

Developing transgenic antimicrobial sorghum was one of the research aims of this 

project. The transformed sorghum plants have been regenerated (Fig. 2-6). The results 

from PCR analysis indicate these plants are genetically transformed (Fig. 2-7 to Fig. 2-8). 

Testing the gene function of the AMP peptide first in tobacco will help us developed 

transgenic sorghum. If the PtAMP peptide has antimicrobial ability in tobacco, it might 

be also used as a source for sorghum disease development. The target bacterial pathogens 

would be Pseudomonas syringe and Pseudomonas andropogoni, which can cause 

important sorghum diseases (Frederiksen and Odvody 2000). 

2.5.4 Development of other transgenic sorghum cultivars 

Based on the developed biolistic transformation method, we can develop transgenic 

sorghum cultivars. 

Plant antimicrobial peptides are powerful tools to enhance plant pathogen disease 

resistance by genetic transformation. One focus of the current project is the AMP 

construct that contains an antimicrobial gene (PtAMP gene) which has been isolated from 

loblolly pine. In addition, the rice disease resistance chitinase gene (Zhu and Lamb 1991) 
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is being used in sorghum transformation research. It is anticipated that these two genes 

are promising for developing disease resistant sorghum plants. 

It is important to direct expression of the defense genes to the correct destination. For 

example, greenbugs attack host plants by feeding on phloem tissues of a plant. Thus for 

the best result, aphid resistance genes should be directed by a phloem-specific promoter. 

In this study we were testing two phloem-specific promoters, the promoter of the A. 

thaliana AtSUC2  gene (Zhao et al. 2004) and the Commelina yellow mottle virus, 

CoYMV promoter (Medberry et al. 1992). The Galanthus Nivalis Agglutinin (GNA) 

gene has been widely used in crop development for insect-resistance. The GNA gene may 

be toxic to aphid greenbugs but not harmful to animals and humans (McCaffertya et al. 

2008) . It is worthwhile to develop gene constructs, having the GNA directed by the 

phloem-specific promoter, to achieve development of greenbug resistance sorghum 

cultivars. 
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Chapter 3  

Differential expression of thaumatin-like protein in sorghum 

infested with greenbug 

3.1 Abstract  
 

This study was designed to quantatively analyze the expression of thaumatin-like 

protein (TLP) at the transcriptional levels in different sorghum lines when they were 

infested with greenbug. Three sorghum lines, Tx7000, PI550607 and PI550610, were 

used. RNAs from the different sorghum lines which were infested with greenbugs at 

different infestation times were isolated; RNA was reverse transcribed into cDNA and 

the RT-PCR products were separated by agrose gel. Then, real-time PCR data were 

analyzed by using the 2-∆∆Ct method, which relies on comparison of the TLP gene 

expression to the β-actin reference gene and the expression of TLP gene in target 

samples against reference samples. The results show that the transcriptional levels of 

the TLP were increased and the increased levels were time-dependent. For the 

susceptible line, the threshold cycle changes (2-∆∆Ctn) of the TLP’s transcripts increased 

several thousand fold at 120 hpi（hours post infestation）, while for the two resistant 

sorghum lines, the 2-∆∆Ctn  value increased but less than one hundred fold.   
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3.2 Introduction 
 

Plants have their inherent mechanisms for resistance to pathogens and many factors are 

involved in those mechanisms: some are preformed and some are inducible 

(Hammerschmidt 1999). Pathogen-related proteins (PRs) like chitinase, osmotins, and β-

1,3-glucanase are defined as proteins that are encoded by the plant genome and induced 

specifically in response to infections by pathogens such as fungi, bacteria, or viruses, or 

by adverse environmental factors (Breiteneder 2004). PR proteins are divided into several 

families. The PR-5 family has amino acid sequence similarities to thaumatin proteins, 

which are sweet and were first found as a mixture of proteins isolated from the katemefe 

fruits (Van der Wel and Loeve 1972). These thaumatin-like (TL) proteins belong to the 

PR-5 family and some are involved in plant resistant mechanisms. There are three classes 

of thaumatin-like proteins: proteins produced in response to pathogen infection, osmotic 

proteins and plant antifungal proteins (AFPs) which are constitutive in plants, especially 

seeds (Breiteneder 2004).  

Thaumatin-like proteins, which are involved in pathogen resistance, can be induced by 

a large spectrum of pests (not only insects, but also virus, bacteria and fungi) and stimuli-

-like chemicals, wounding, cold stress, etc (Bol et al. 1990; Lotan and Fluhr 1990; Trudel 

et al. 1998). For example, Rhizoctonia solani , the sheath blight fungal, caused the 

induction of TLPs in rice, based on molecular analysis, and two different TLPs involved 

in this mechanism were revealed by western bloting (Velazhahan et al. 1998). A recent 
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study showed that, salicylic acid (SA) and jasmonic acid (JA) could induce TLPs and β-

1,3-glucanases in wheat plants, and cause system acquired resistance (SAR) leading to 

the enhanced resistance to bacterial diseases. The induction level was time-dependent 

(Jayaraj et al. 2004).  

An antifungal thaumatin-like protein was isolated from sorghum leaves in 2002 

(Velazhahan et al. 2002). The aphid greenbug (Schizaphis graminum), one of the major 

pests of sorghum (Sorghum bicolor L. Moench), might be an inducer of this TLP in 

sorghum (Hammerschmidt 1999; Porter et al. 1997). Although many studies are about 

TLP’s production when plants encounter outside stimulus, no study has quantatively 

compared the time-dependent expression of TLPs in different sorghum cultivars, 

especially between resistant cultivars and susceptible ones to greenbugs. 

A recent report showed that pathogen related proteins were differentially expressed 

among different cultivars when barley plants interacted with their bacteria pathogen 

(Geddes et al. 2008). It is reasonable to expect similar differential expression of TLP in 

sorghum at the cultivar level. Real-time PCR is a quantative and time-dependent 

technique that is widely used in the molecular world. It is a promising tool for the in-

depth study of TLP-related pathogen response (Klein 2002). For this study, RT-PCR and 

relative real-time PCR technique were used to quantatively analyze the expression of 

TLP at the transcription level of greenbug in resistant lines PI550607 and PI550610, and 

one greenbug susceptible line Tx7000, when they were infested with greenbug biotypes I.  
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3.3 Materials and methods 

3.3.1 Plant material and growth conditions 

  Three sorghum (Sorghum bicolor (L.) Moench) lines were used in this study: Tx7000, 

PI550607 and PI550610. Tx7000 is a greenbug-susceptible line, while PI550607 and 

PI550610 are greenbug-resistant lines. Each sorghum line was grown in five individual 

pots, which were designed for the time-dependent study. For each pot, fifteen to twenty 

seeds were added into the soil and covered with a thin layer of soil. Sorghum plants were 

grown in pots at 20-25 ℃ for a week in a greenhouse. 

3.3.2 Greenbug infestation 

Aphid greenbugs (Schizaphis graminum) (type I) were used in this study. Each pot of 

plants was infested with fifteen to twenty greenbugs at the same age and at the same time 

except the control plants. Each infested plant was covered with a plastic cage. Control 

plants which were not infested with greenbugs (0 hpi; hpi means hours post-infestation) 

were collected as soon as the other sorghum seedlings were infested with greenbug. The 

collected leaves were covered with foil paper and put into liquid nitrogen as soon as 

possible, then stored at -80 ℃. The infested plants were collected at different post-

infestation times: 12, 24, 72, and 120 hpi (hours post-infestation). The greenbugs were 

brushed off the leaves before storage.  
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3.3.3 RT-PCR and Real-time RT-PCR 

3.3.3.1 Extraction of mRNA  

RNAs of the different sorghum lines from the different infestation durations were 

isolated. Tissue was homogenized with Trizol reagent (Invitrogen) and RNAs were 

separated by chloroform, precipitated, washed, and dissolved in DEPC water. 

3.3.2.2 RT-PCR (reverse transcription-polymerase chain reaction)  

Five micrograms of the total cellular RNA of each sample was heat-denatured at 65 °C 

for 5 min with 10x buffer (Invitrogen) and used as template for reverse transcription 

(RT). RT reactions were performed using 50 U Superscript II reverse transcriptase 

(Invitrogen) at 42 °C for 60 min in the presence of  5x first strand buffer (Invitrogen), 0.5 

mM dNTP, 10 mM DTT, 40 U RNaseOut (Invitrogen) and 12.5 ng random primers 

(Invitrogen). A 1:5 dilution of the RT reaction product was used for quantitative RT-PCR 

(Q-RT-PCR) analysis.  

The 1:5 diluted cDNA products were amplified by PCR. The PCR running mix was 18 

µl dH2O, 2.5 µl 10X PCR buffer, 1.5 µl 25 mM MgCl2, 1.0 µl dNTP (2.5 mM), 0.5 µl 

forward primer, 0.5 µl reverse primer, 0.2 µl Taq enzyme, 1.0 µl cDNA. PCR was run 

with the following program: 95 °C, 3 min; 94 °C, 5 min; 58 °C, 0.5 min; 72 °C, 1 min; 72 

°C, 5 min for 30 cycles. The PCR fragments were fractionated on a 0.3 % agarose gel. 

3.3.2.3 Quantative real-time PCR and threshold cycle analysis 
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Quantative real-time PCR was carried out with the instruction of Takara Co. at a final 

volume of 15 µl. cDNA was diluted to the ratio of 1:10, TLPs and ß-actin forward and 

reverse primers were used to further quantatively analyze the transcriptional levels of the 

TLP gene. The reaction mix was as follows: 7.5 µl Takara mix, 3.0 µl cDNA（cDNA 

dilution 1:10）, 1.5 µl 25 µM forward primer, 1.5 µl 25 µM reverse primer. Annealing 

temperature was 58 ℃ for both the actin gene and the TLP gene. The running cycle was 

40 times and set up as: 95 ℃ 10 sec, 55 ℃ or appropriate temperature, 58 ℃ 30 sec, 72℃ 

30 sec, repeat for 40 times, 95 ℃ 1 min, 55 ℃ 1min, 55 ℃ 10 sec, 4 ℃ hold. The threshold 

cycle data were collected and analyzed by using the 2-∆∆CTn method (Livak and 

Schmittgen 2001).  

The fold change in expression of the TLP gene was calculated using the ∆∆Ct method 

with the levels of the β-actin gene RNA as an internal control. The parameter CT 

(threshold cycle) was defined as the fractional cycle number at which the fluorescence 

passes the fixed threshold. Threshold cycle change: ∆Ctn=∆CtnTLP-∆Ctnactin, (at the time 

point of 0hpi, the threshold cycle of the TLP gene is TnTLP, the threshold cycle of the actin 

gene is Tnactin, the threshold cycle difference of the TLP gene and the actin gene at the 

time point of n hpi is ∆Ctn). Threshold cycle changes compared to the control sample is -

∆∆Ctn-0= ∆Ctn -∆Ct0 (at the time point n, the changes of the threshold cycle difference of 

TLP gene and actin gene at n time point compared to 0 time point). The threshold cycle 

fold change is 2-∆∆Ctn, which can describe the multiplication number of each sample 

compared to the control. 
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Whereas ∆Cttarget = Ctcontrol - Cttreatment and ∆Ctreference = Ctcontrol - Cttreatment 

Ratio = 2-∆∆Ct    

Whereas ∆∆Ct = ∆Ctreference - ∆Cttarget 

3.4 Results and Discussion 
Three sorghum lines were infested with greenbugs and examined for the transcription 

level of TLP and ß-actin by using the RT-PCR techniques. DNA agrose gel analysis of 

the real-time products revealed that the transcripts of TLPs increased and ß-actin 

decreased for all three sorghum lines. The content TLP of the susceptible line Tx7000 

elevated much more markedly than the resistant lines PI550607 and PI550610; while the 

substance of ß-actin of Tx7000 declined more when compared to the other two lines 

(Fig.3-1).  
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Fig. 3-1. RT-PCR DNA gel showing the transcriptional induction of thaumatin-like 
protein (TLP) of three sorghum lines when infested with greenbug at different treatment 
times.  The infestation times were 0, 12, 24, 72, 120 hpi; hpi means hours post-infestation. Tx7000 
was a greenbug- susceptible line; PI550607 and PI550610 were greenbug resistant lines.  
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Table.3-1. Real-time PCR threshold cycle analysis of three different sorghum lines when infested with 
greenbugs. The times of collection since infestation are indicated on the top; Tx7000 is a greenbug-
susceptible line, while PI550607 and PI550610 are greenbug-resistant. Ct is the threshold of the 
fractional cycle number at which the fluorescence passes the fixed threshold. Thaumatin-like proteins 
and ß-actin gene primers were used in this study. Ctn is the threshold cycle value of each sample. 
∆Ctn is the threshold cycle difference of the TLPs gene and the ß-actin gene of each sample. -∆∆Ctn-
0=∆Ctn-∆Ct0 means the decreased amount of threshold cycle of each sample compared to the control 
plant (0 hpi).  
 
 0 hpi 12 hpi 24 hpi 72 hpi 120 hpi 

Tx7000 CtnTLP 28.26 20.85 21.25 19.27 18.94 
Ctnactin 23.98 24.51 25.70 26.94 27.12 
∆Ctn=CtnTLP-Ctnactin 4.28 -3.66 -4.45 -7.67 -8.18 
-∆∆Ctn-0=∆Ctn-∆Ct0 0 7.94 8.73 11.95 12.46 
2-∆∆Ctn 1 245.51 424.61 3956.48 5634.22 

PI550607 CtnTLP 25.07 24.48 22.26 23.65 20.88 
Ctnactin 22.72 25.14 21.79 27.60 25.18 
∆Ctn=CtnTLP-Ctnactin 2.35 -0.66 0.47 -3.95 -4.30 
-∆∆Ctn-0=∆Ctn-∆Ct0 0 3.01 1.88 6.30 6.65 
2-∆∆Ctn 1 8.055 3.68 78.79 100.43 

PI550610 CtnTLP 26.96 23.19 23.87 22.98 24.69 

Ctnactin 23.32 22.55 22.64 24.23 27.26 
∆Ctn=CtnTLP-Ctnactin 3.64 0.64 1.23 -1.25 -2.57 
-∆∆Ctn-0=∆Ctn-∆Ct0 0 3.00 2.41 4.89 6.21 
2-∆∆Ctn 1 8 4.73 29.65 74.03 
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The threshold cycle analysis using real-time PCR further confirmed the PCR gel 

results. Upon analysis of the real-time PCR threshold cycle (CT) data, the induction of 

the TLP’s transcriptional levels of three sorghum lines increased, which gave further 

confirmation of the relative real-time PCR gel results. The induction of TLP for the three 

sorghum lines was time-dependent; as the infestation time increased,  the amount of TLP 

increased. At the 120 hpi, the threshold cycle fold changes of Tx7000 was several 

thousand compared to the 0 hpi, while the threshold cycle fold change of PI550607 and 

PI550610 was around one hundred. The preformed amount (∆CtnTLP) of TLPs of Tx7000 

was lower than PI550607 and PI550610, while the inducted amount was much higher 

than the other sorghum lines. From the -∆∆Ctn-0 value, PI550607 was almost the same 

but slightly higher than PI550610. The induction level of PI550607 is a slightly more 

than PI550610. For the susceptible line, the threshold cycle fold change (2-∆∆Ctn) of TLP’s 

transcripts increased several thousand fold at 120 hpi, while for the two resistant sorghum 

lines, the 2-∆∆Ctn  value increased, but only around one hundred fold (Table3-1).  
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Fig. 3-2. Threshold cycle fold changes of thaumatin-like protein (TLP) at the transcriptional level in three 

sorghum lines when infested with greenbugs. Tx7000 is greenbug-susceptible, while PI550607 and 

PI550610 are greenbug-resistant lines. The Y-axis values are the calculation amounts of 2-∆∆Ctn  of each 

sample.   
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  The threshold cycle fold changes were most in the sorghum line Tx7000 which was a 

greenbug-susceptible line. The curves of PI550610 and PI550607, which are greenbug-

resistant lines, were more reduced than the Tx7000, and almost the same (Fig 3.2). 

Infestation of sorghum plants with greenbugs increased the transcriptional level of TLPs 

in three sorghum lines when ß-actin was used as the reference gene; as the infestation 

time increased, the induction level increased.  

3.5 Discussion 
Thaumatin-like proteins are reported to be associated with plant defense systems. 

When plants encounter chemical, wounding, pathogens, or other kinds of challenges, the 

production level of TLP will increase (Velazhahan et al. 1999). Our study shows that 

TLP could also be induced when sorghum plants are infested with greenbug; and as the 

infestation duration increased, more TLP transcripts were produced (Fig. 3-2).  

From this study, the insects acted as an inducer of the resistant system and the 

induction levels varied based on cultivars. It is well known that insect viruses, bacteria 

and fungi are inducers of various resistant systems (Bol et al. 1990; Lotan and Fluhr 

1990). The aphid greenbug (Schizaphis graminum), which is one of the major pests of 

sorghum (Sorghum bicolor L. Moench) since 1868 (Porter et al. 1997), is shown to also 

be an inducer of TLP in sorghum.  

The induction levels of TLP have cultivar differences（Fig. 3-1, Table 3-1） . 

PI550607 possesses a high level of resistance to greenbug biotypes C and E (Katsa et al. 

2002) While PI550610 has shown a little higher level of antibiosis, its TLP induction 
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level just a little different from that of PI550607 (Bowling and Wilde 1996). Our results 

indicated that with a more susceptible sorghum line, Tx7000, more TLP transcripts were 

produced to protect itself against greenbug damage compared to a more resistant line. 

There was a little difference between the resistant lines of PI550607 and PI550610. Even 

though there still was a slight difference between them; the induction level of PI550610 

was higher than PI550607, which was consistent with the previous hypothesis that the 

more resistant a line was, the less TLP was induced.  

TLPs are not only constitutive or preformed (seed permatins and fruit proteins), but 

also stress-induced (PR-5 proteins and osmotins) (Trudel et al. 1998). Our data indicated 

that the preformed amounts of thaumatin-like protein are different among three sorghum 

lines (Table. 3-1). The resistant sorghum line’s ∆Ct0 values are lower than the susceptible 

line, which indicated that the preformed amount of thaumatin proteins of a resistant 

sorghum line was higher than a susceptible line. At the 12 hpi, the ∆Ct12 value indicated 

that the TLP amount of Tx7000 surpassed PI550607 and PI550610. For the more 

susceptible sorghum line Tx7000, more TLP transcripts were induced to protect itself 

against greenbug damage compared to a more resistant line (Fig. 3-1, Table. 3-2). 

Plants have many natural mechanisms to protect themselves from pathogens 

(Hammerschmidt 1999). Our results showed TLP apparently does play a role in 

attenuating the insect-pathogen response, but did not overcome the natural weak 

resistance and defense system of a susceptible sorghum line. There were more TLP 
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transcripts produced in the susceptible line and the TLP transcription level went higher as 

the infestation duration went longer.  

When insects bite plant leaves, they cause wounding damage to the plants; metal files 

can mimic the insects’ damage to the plants which can help us study the insect-induced 

pathogen system. Other pathogens or stimulus could be used in the future, like bacteria 

inoculation (Pseudomonas andropogoni), SA or JA stimulus, and wounding damage to 

study the effect of TLP levels. 

Based on differences in the induction levels of different sorghum cultivars, we could 

investigate species difference in the future. For example, since the wheat plant has been 

reported to acquire system resistance (SAR) (Jayaraj et al. 2004), we could explore the 

differences of TLP’s insect-induction between sorghum and wheat. 

Real-time PCR is used in the comparison of different genes involved in the same or 

different mechanisms. Many factors are involved in the plant’s natural resistant system 

(Hammerschmidt 1999); TLP is just one factor involved in the induced-resistant 

mechanism. Our results indicate that greenbugs induce TLP production and levels were 

negatively associated with the plant’s natural resistant level. In the future, we could study 

other protein factors combined with TLP （like chitinase or glucanase）as well.   

To summarize, from the one-time results, TLP was related to the  

sorghum-greenbug defense system, and the more susceptible a sorghum line was, the 

more TLP transcripts were produced. However TLP still may not overcome the weak 

resistance of the susceptible lines. 
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Scope and Method of Study:  

This study was attempted to develop transgenic sorghum plants and to analyze expression 
of thaumatin-like (TLP) gene in sorghum plants in response to greenbug feeding. Many 
molecular genetics techniques used in the study included extraction of plasmid DNA, 
PCR, RT-PCR, real-time PCR, southern blot, RNA isolation, reverse transcription and 
Agrobacterium-mediated transformation. 
 

Findings and Conclusions:  

Putatively transformed plants have been produced although they need to be confirmed. 
One of them was transformed with an antifungal gene, and the other was done with an 
antimicrobial gene. In addition, the other two lines were transformed with plasmids 
containing phloem-specific promoters. All of the putatively transformed plants should 
contain the GUS gene. Further experiments are needed to confirm that they are transgenic 
plants containing the genes of interest. In addition, the expression of the TLP gene in 
three different sorghum lines infested with greenbugs was analyzed using the real-time 
PCR method. The results indicated that the TLP expression was elevated in those plants 
in response to greenbug infestation, which may play a role in plant defense against the 
greenbug pest.  


