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INTRODUCTION 

The thesis was written in two chapters.  The first chapter “Fire Frequency Effects 

on Structure and Composition of Forest” was submitted to Natural Areas Journal for 

publication.  This manuscript was coauthored with Stephen W. Hallgren and Michael W. 

Palmer.  Both coauthors contributed to the development of the research questions, 

statistical analysis, and discussion of the manuscript.  The manuscript is in the process of 

revision and some of the journal’s reviewer suggestions have been integrated into the 

thesis chapter.  The second chapter “Fire Frequency Effects on Understory Plant 

Functional Groups and Diversity” will be submitted for publication in an appropriate 

scientific journal. 

Humans have been utilizing fire for at least 1.9 million years (Wrangham et al. 

1999).  Their use of fire has likely altered and shaped many ecosystems since that time.  

Since the last glaciation 10,000 years ago, many of North America’s ecosystems have 

developed with the presence of anthropogenic fire.  Much of the extant vegetation has 

resulted from not only geological and climatological constraints, but also fire restrictions 

(Axelrod 1985, Pyne 1997, Bond et al. 2005, Nelson et al. 2006, Bowman et al. 2009).  

Ecosystems such as the midwestern savannas of the United States may be entirely 

anthropogenic in origin (Guyette and Cutter 1991, McEwan and McCarthy 2008).
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The aboriginal use of fire was interrupted with European settlement.  Fire 

suppression became important for the protection of pioneers’ property and their way of 

life.  The exclusion of fire from this fire dependent ecosystem has now had a history of 

at least a century.  More recently there are concerns that the ecosystems are changing 

due to fire suppression and would benefit from the reapplication of prescribed fire.   

One of these ecosystems of concern is the ecotone of the southern Great Plains 

and Central Hardwood Forest.  On a coarse scale this ecotone contained a mosaic of 

tallgrass prairie, savannas, bottomland hardwoods, and xeric oak forests prior to 

European settlement (Bruner 1931).  The complex of oak forests and prairie is locally 

referred to as the Cross Timbers Forest.  This Cross Timbers Forest is largely dominated 

by blackjack oak (Quercus marilandica), post oak (Q. stellata), and black hickory (Carya 

texana), with the first two being more prominent in the west and the latter two in the 

east where it intergrades into the oak/hickory forests of the Central Hardwood Forests 

(Rice and Penfound 1959, Fralish 2002, USDA NRCS 2006).  In addition to soil properties 

and precipitation, fire likely had an important role in shaping this diverse mosaic of 

forests and prairie across Kansas, Oklahoma, and Texas (Johnson and Risser 1975, Engle 

et al. 1996).  Since European settlement and removal of fire from the Cross Timbers 

landscape, these forests have experienced changes in tree density and species 

composition (Johnson and Risser 1975, Abrams 1986, DeSantis et al. 2009). 
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Recently land managers and biologists have begun reintroducing fire to restore 

historic conditions, improve wildlife habitat, suppress invasive species, and recover 

biodiversity in this ecoregion.  In the 1980s many of the wildlife management areas 

administered by the Oklahoma Department of Wildlife Conservation established 

prescribed burning programs in order to reestablish historic plant communities and 

benefit game species’ habitat.  The growing interest in using fire to help manage fuels 

and create healthier ecosystems has been hindered by lack of knowledge of the fire 

regimes prior to European settlement and many unknowns relating the impacts on 

vegetation composition and structure following the return of fire to stands where 

burning has long been excluded. 

Species-rich communities of vegetation have been found at intermediate 

intensities of disturbance resulting in a unimodal response of richness to disturbance 

intensity.  “Intermediate Disturbance Hypothesis” is the phrase coined to name this 

relationship between species diversity and disturbance (Grime 1973, Connell 1978).  The 

Intermediate Disturbance Hypothesis has been tested in a variety of conditions in order 

to predict the levels of disturbance that result in the highest species diversity with 

outcomes that suggest extensive and complex species and environmental interactions 

(Roxburgh et al. 2004).  This hypothesis predicts that the highest species diversity will be 

at levels of disturbance that maintain opportunities for species that require disturbance 

for establishment, while minimizing the loss of species that are sensitive to the 

disturbance.  Under low levels of disturbance, competitive or K-selected species will 

achieve dominance, excluding less competitive species.  Levels of disturbance that are 
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too high will reduce the dominance of highly competitive species to more resistant 

and/or r-selected species (Grime 1973, Connell 1978, Huston 1979). 

The “Most Frequent Fire Hypothesis” has been recently been described to 

explain understory diversity in forests of the southeastern United States (Glitzenstein et 

al. 2003).  This hypothesis predicts that the highest vascular plant species diversity will 

occur at the highest fire frequency permitted by natural production of fuels.  The Most 

Frequent Fire Hypothesis provides a basis for management strategies in southern 

longleaf pine forests (Pinus palustris) (Glitzenstein et al. 2003).  A comparison of the 

Most Frequent Fire Hypothesis and the Intermediate Disturbance Hypothesis may 

provide insights concerning effects of disturbance intensity and frequency on biological 

diversity.   

Increases in overstory heterogeneity caused by very frequent fire regimes may 

increase species diversity by amplifying resource heterogeneity.  Higher diversities of 

understory species may occur in areas of broken canopy cover simply because of high 

plant resource heterogeneity, allowing grassland species to occur interspersed with 

forest species (Leach and Givnish 1999).  Additionally, caution is necessary when 

interpreting richness or diversity indices, as an increase in diversity could simply be a 

result in an increase in plant density (Magurran 2003).  Both the Intermediate 

Disturbance Hypothesis and Most Frequent Fire Hypothesis will be utilized to evaluate 

this study’s relevance to disturbance theory. 
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The overall objective of this project was to provide new knowledge about the 

effects of fire frequency on forest stand structure and composition that could be used to 

improve management prescriptions for xeric oak forests.  Specific questions concerned 

the effects of fire frequency on woody plant size distribution and species richness of 

plant functional groups.  The research was conducted on the Okmulgee Wildlife 

Management Area (OWMA) in east central Oklahoma.  The OWMA encompasses a 

broad range of habitat types; from tallgrass prairie to bottomland hardwood timber.  Of 

the over 4,000 hectares, 75 percent of the OWMA is relatively undisturbed upland 

hardwood forest.  The OWMA has been subjected to prescribed burning to improve 

wildlife habitat and community diversity for over twenty years.  It was broken into 15 

different fire treatment units, all of which have a different fire history.  I selected eight 

fire treatment units for this study based on similar time since last burn, topography, 

soils, forest cover, and differing fire frequencies.  The fire frequencies of the selected 

treatments ranged from zero to five fires per decade. 
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CHAPTER 1: FIRE FREQUENCY EFFECTS ON STRUCTURE AND COMPOSITION OF XERIC 

OAK FORESTS 

ABSTRACT 

We investigated the effects of 20 years of dormant season fire over a range of 

frequencies on the composition and structure of woody plants in a xeric oak forest at 

the western limit of the eastern deciduous forest.  Twenty 0.01 ha plots were randomly 

located in each of eight management units with fire frequencies ranging from zero to 

five per decade and the density of saplings and shrubs (height ≥ 1.4 m and dbh < 5 cm), 

small trees (5 cm ≤ dbh < 10 cm) and large trees (dbh ≥ 10 cm) was measured.  The 

cover of woody regeneration (height < 1.4 m) was measured on four 1 m2 sub-plots 

within each plot.  Regeneration cover was not affected by fire frequency.  Increasing fire 

frequency had a strong negative effect on species richness of saplings and shrubs and no 

effect on small and large tree species richness.  While oak sapling density was not 

affected by fire frequency, the density of non-oak saplings and shrubs was strongly 

reduced by fire frequencies greater than two per decade.  Consequently at high fire 

frequencies Quercus stellata and Q. marilandica saplings dominated and at low fire 

frequencies Ulmus alata and Carya texana saplings dominated.  Although 20 years of 

treatment may not have been long enough to show fire frequency effects on canopy 
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trees, the effect on species composition of saplings was strong which may have long-

term consequences for forest canopy composition.  These results suggest that without 

at least two fires per decade the species richness of these forests will increase and oak 

dominance will diminish.   

 

INTRODUCTION 

Prior to European settlement, the fire return interval was two to eight years in 

the upland oak (Quercus spp.) forests of the south-central United States (Cutter and 

Guyette 1994, Brown and Smith 2000, Stambaugh and Guyette 2006).  This frequency of 

fire was likely anthropogenic in origin and used by aboriginal people to increase desired 

plant species for food or game (Guyette and Cutter 1991, Pyne 1997, Guyette et al. 

2002).  In the last century land development and industrialization has led to the removal 

of fire from the landscape (Pyne 1996, 1997).  Since that time, many of these forests 

have experienced great changes in species composition and density (Rice and Penfound 

1959, Desantis et al. 2009).  Fire may be the important relation in these compositional 

changes in the upland forest.   

Prescribed fire is recommended as a management tool to reduce competition by 

fire intolerant species and promote regeneration of oak species (Van Lear et al. 2000, 

McShea and Healy 2002).  In as few as five years, prescribed fire can alter small tree 

composition in midwestern oak forests (Blake and Schuette 2000).  Over twenty years of 

prescribed fire can reduce both the stem density and basal area of oak forests, creating 
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open woodland or savanna like conditions dominated by larger oak individuals (Huddle 

and Pallardy 1996, Peterson and Reich 2001).  Long-term data, with a range of fire 

frequencies, would provide land managers with valuable information on the frequency 

of fire that is needed for maintaining oak dominance while not reducing oak 

regeneration.   

One concern of ecologists today is the conversion of oak forests to more shade 

tolerant or mesic forest species, i.e. a “mesophication” of oak forests (Nowacki and 

Abrams 2008).  Scientists acknowledge the decline of this genus within much of its pre-

colonial range (Abrams 2003, Hart et al. 2008, Kabrick et al. 2008).  As the primary mast 

producing species in the region, oak species are a valuable resource for wildlife species 

(McShea and Healy 2002).  Fire intolerant species such as redcedar (Juniperus virginiana 

L.) and elm (Ulmus spp.) may provide value for cover; however, they do not provide the 

important food resources needed by game species.  In general, intolerant species 

eventually succeed the oak species following fire suppression; however, on xeric sites, 

such as the upland forests of Oklahoma, oak might not be replaced by late successional 

species (Abrams 1992, 2003, Nowacki and Abrams 2008).   

In this study, we addressed the effects of fire frequency on xeric old-growth oak 

forests of the Cross Timbers of Oklahoma, which is on the westernmost edge of the 

Central Hardwood Forest.  We hypothesize that increasing fire frequency will suppress 

woody regeneration of fire intolerant saplings and shrubs, while having few affects on 

the trees and saplings of fire tolerant species.   
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METHODS 

Study Area 

The study was conducted on the Okmulgee Game Management Area (OGMA), a 

portion of the Okmulgee Wildlife Management Area managed by the Oklahoma 

Department of Wildlife Conservation.  The 2,400 hectare OGMA is located 

approximately 55 km south of Tulsa, Oklahoma.  The climate is humid subtropical with a 

mean annual temperature of 16.1° C and mean daytime highs of 33.9° C in July to mean 

lows of -3.9° C in January.  The area receives approximately 111 cm of precipitation 

annually; however, precipitation can be highly variable with a range of 54.5 cm to 156.2 

cm annually (Oklahoma Climatological Survey 2005). 

The study was limited to the Hector-Endsaw complex soil which represented 

approximately 75 percent of the OGMA.  This soil type was characterized as well-

drained, non-arable, shallow stony fine sandy loam with bedrock at a depth of about 30 

cm on hill or mountain topography of 5-30 percent slopes (Sparwasser et al. 1968). 

The OGMA is on the western limit of the Central Hardwood Forest ecoregion 

(Fralish 2002).  It is primarily forested and was classified as the Quercus stellata 

Wangenh. – Quercus marilandica Muenchh. forest type (Duck and Fletcher 1945), 

locally referred to as the Cross Timbers forest.  Historically, the topography and soil type 

of the upland sites in the OGMA limited the conversion of the forest to agriculture, 

leaving much of the oak forest relatively undisturbed.  The Okmulgee Wildlife 

Management Area may contain one of the largest continuous tracts of protected old 
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growth Cross Timbers forests remaining (Stahle 2007).  The growth rates of upland oak 

species are low on upland xeric sites; however, large individuals of Q. stellata are not 

uncommon throughout the management area.  The location of this site on the western 

periphery of the Central Hardwood Forest allowed for a unique study of effects of fire in 

an oak forest landscape where extremes of drought and temperature are common. 

The OGMA has been subjected to prescribed fire since the late 1980s.  There was 

no record of fire occurrence prior to the beginning of prescribed fire, although wild fires 

may have burned some parts of the OGMA.  The OGMA was divided into units ranging 

from approximately 100 to 600 ha and each unit was burned on its own schedule.  There 

were some wild fires during this period that were included in the count.  This led to a 

range of fire frequencies among units from 0 to 5 fires per decade.  All fires, both wild 

and prescribed, occurred during the dormant season in February and March of each 

year.  They were all low intensity surface fires. 

Sampling Design 

Eight treatment units were selected that ranged in size from 58 to 385 ha    

(Table 1).  Twenty 100m2 (0.01 hectare) plots were randomly located within each unit 

using the random point tool in ArcCatalog (ESRI 2007; Figure 1).  No plots were allowed 

within 10 m of clearings including roads, rights of way, firebreaks, and wildlife food 

plots.  We used a Trimble Geo XT GPS unit with the Wide Area Augmentation System 

(WAAS) for sub-meter accuracy to locate each of the plots.  Once a plot point was 

located, one of the four directions, southwest, southeast, northwest or northeast, was  
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Table 1 | Year and month of prescribed fires by units.  *Indicates arson set fire occurring 
outside of management prescriptions.   

 

Year 
Burn Unit 

1 2 3 4 6 7 10 13 

2008    Mar Mar    
2007 Feb Feb       
2006         
2005   Feb Feb  Feb Mar*  
2004  Mar  Mar     
2003 Mar      Mar  
2002    Feb Feb    
2001 Mar   Feb   Mar  
2000 Feb Feb Mar      
1999 Feb        
1998 Feb        
1997 Feb  Feb  Feb    
1996      Feb Feb  
1995 Feb        
1994  Mar  Mar   Mar  
1993 Mar    Mar    
1992  Feb  Feb   Feb  
1991   Feb      
1990         
1989 Feb        
1988         

Total Fires 10 5 4 7 4 2 6 0 

Fires per 
Decade 5.0 2.5 2.0 3.5 2.0 1.0 3.0 0.0 

Years Since 
Last Fire 1 1 3 0 0 3 3 20+ 
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Figure 1 | Location of the Okmulgee Game Management Area, Okmulgee, Oklahoma and 20 
sample plots within each of eight treatment units. 
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selected at random for orientation of the square plot and the four sides of the plot were 

laid out with a compass in the cardinal directions.  Within each 100 m2 plot, we 

measured the diameter of all woody plant stems at breast height (dbh, 1.4 m).  Saplings 

and shrubs were > 1.4 m tall and < 5 cm dbh, small trees were ≥ 5 cm and < 10 cm dbh, 

and large trees were ≥ 10 cm dbh.  Cover of tree and shrub seedlings and sprouts < 1.4 

m tall was estimated by species in four 1 m2 sub-plots nested within each corner of the 

100m2 plots.  We visually estimated foliar cover within a modified square plot frame 

using the Braum-Blanquet cover scale (Kent and Coker 1992).  Nomenclature for woody 

plant species follows the PLANTS database (USDA NRCS 2008). 

Data Analysis 

The experimental unit was the burn unit and 20 sub-sample plots were taken 

within each one.  Stem density and basal area (m2 ha-1) at breast height were calculated 

for data from the 100m2 plots.  Regression analysis was used to determine the relation 

of seedling and sprout cover, basal area of trees, and density of saplings, small, and 

large trees to fire frequency and time since last fire.  We conducted principal 

components analysis (PCA) on each of these three classifications of square-root 

transformed woody stem densities in CANOCO version 4.5 (ter Braak and Šmilauer 

2002). 
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RESULTS 

Seedling and Sprout Cover 

There was no relation between fire frequency and seeding and sprout cover for 

any species (P < 0.10, data not shown).  The mean plot richness of seedling and sprout 

species ranged from 5.2 to 7.1 and was not significantly related to fire frequency or time 

since last fire (P < 0.10).  Twenty-two tree and ten shrub species less than 1.4 m in 

height were found throughout the treatment units (Appendix I).  

Saplings & Shrubs 

Sapling density of all species varied greatly, from 1,465 stems ha-1 in the non-

burned unit to 230 stems ha-1 in the most frequently burned treatment unit (Table 2, 

Appendix IV ).  Oak saplings ranged in density from 310 to 45 stems ha-1 with no clear 

relationship with fire frequency; however, non-oak species had a strong negative 

response to fire frequency (Figure 2).  Total treatment and mean plot richness of 

saplings and shrubs both decreased with increased fire frequency (Figure 3).  The sapling 

tree species most highly associated with lower fire frequencies were Ulmus alata 

Michx., Prunus mexicana Wats., and Carya texana Buckl. (Figure 4).  Axis 1 of the PCA 

generally reflected the fire frequency of the treatment units.  The fire treatment units 

greater than one fire per decade were located close to one another on the first axis.  

PCA also showed the treatment with a fire frequency of three and a half fires per 

decade differed from the other treatments on axis 2 (Figure 5). 
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Table 2 | Basal area, density, richness, and mean plot richness of the surveyed treatments at 
the Okmulgee Game Management Area.  * Indicates a significant regression with fire 
frequency (P < 0.05). 

 Treatment Unit 13 7 3 6 2 10 4 1 

 

Fire Frequency 

(fires/decade) 0 1 2 2 2.5 3 3.5 5 

 

Mean Basal Area 

(m2/ha) 25.2 22.3 25.8 24.6 27.3 23.9 26.7 22.7 

Saplings/ 

Shrubs 

(< 5 cm dbh) 

*Stem Density  

(Stems/ha) 1465 1040 280 315 320 385 335 230 

*Treatment 

Richness 

(Sp./Treatment) 15 9 12 10 11 10 7 6 

* x  Plot Richness 

(Sp./100m2) 3.7 2.8 1.3 1.4 1.7 1.9 1.9 1.2 

Small Trees 

(≥ 5 < 10 cm 

dbh) 

Stem Density  

(Stems/ha) 385 270 410 415 305 310 380 500 

Treatment 

Richness 

(Sp./Treatment) 5 6 6 6 4 5 6 7 

x  Plot Richness 

(Sp./100m2) 2 1.6 1.7 1.6 1.4 1.5 1.7 1.7 

Large Trees 

(≥ 10 cm 

dbh) 

Stem Density  

(Stems/ha) 645 715 775 690 860 630 585 740 

Treatment 

Richness 

(Sp./Treatment) 5 7 4 5 7 6 8 7 

x  Plot Richness 

(Sp./100m2) 2.1 2.3 1.6 2.1 2.4 2.6 2.1 2.1 
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Figure 2 | Effect of fire frequency on sapling density of oak (Quercus) spp. and 
non-oak tree and shrub species.  Error bars represent standard error.  Solid line 
indicates significant exponential regression. 
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Figure 3 | Effect of fire frequency on total plot richness and mean plot 
tree species richness.  Error bars represent standard error.  Solid lines 
indicate significant linear relations. 
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Figure 4 | Stem density of species of saplings and shrubs (< 5 cm dbh), trees (≥ 5 cm dbh), and 
Basal Area of Trees (≥ 5 cm dbh) in three treatment units.  Woody species include; CATE – 
Carya texana, FRAM – Fraxinus americana, PRME – Prunus mexicana, QUMA – Quercus 

marilandica, QURU – Q. rubra, QUST – Q. stellata, QUVE – Q. velutina, SILA – Sideroxylon 

lanuginosum, ULAL – Ulmus alata, VAAR – Vaccinium arboreum.   Other saplings for 2.5 fires 
per decade include;  CELA – Celtis laevigata Willd., CEOC2 – Cephalanthus occidentalis L., and 
RHGL – Rhus glabra.  Other saplings for 0 fires per decade include; CREN – Crataegus 

engelmannii Sarg., CRVI – Crataegus viridis L., RHGL, SILA, VIRU – Viburnum rufidulum Raf., 
and JUVI  - Juniperus virginiana. 
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Figure 5 | Principal components analysis of stem densities of saplings, small trees, and large 

trees within the OGMA treatments.  Treatment samples are represented by circles and 

number corresponds to the fire frequency (fires per decade) of the treatment.  Species not 

defined in figure 4 but present in figure 5 include; CECA – Cercis canadensis L., CATO – Carya 

tomentosa (Poiret) Nuttall , CRCR – Crataegus crus-galli L., DIVI – Diospyros virginiana L., ILDE 

– Ilex deciduas Walter, PRSE – Prunus serotina Ehrh., MORU – Morus rubra L..  Species that 

that were only sampled once, throughout the study, were removed from the PCA figure. 
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Trees 

Small and large tree densities, basal area, and species composition showed no 

relation to fire frequency (Table 2, Figure 4).  There was not a significant relationship 

between fire frequency and entire treatment richness or plot richness (Figure 3).  Fire 

frequency had a greater impact on the species composition of saplings than trees 

(Figures 4 & 5).  Prunus mexicana appeared to be increasing into the tree size 

distribution with reduced fire (Figure 4).  Neither axis in PCA appeared to show a 

particular pattern in the placement of species or samples by fire frequency (Figure 5).   

 

DISCUSSION 

One of the major findings of our study was that periodic low intensity fires were 

necessary to maintain dominance of oak species even in xeric forests at the ecotone 

between the southern Great Plains and the Central Hardwood Forest.  In the absence of 

fire, mesophytic species intolerant of fire appeared to replace oak.  Although oak sapling 

density was not affected by fire frequency from zero to five fires per decade, when fire 

frequency was less than two per decade the abundance of fire intolerant species 

common to mesic eastern forests increased sharply.  Several of these species were 

capable of growing to tree size in the canopy and it may take longer than twenty years 

to see this happen.  These results were evidence that mesophication as proposed for 

eastern deciduous forests may also occur in the much drier and relatively species poor 

western forests (Nowacki and Abrams 2008).  This is an important finding, as there was 



 
 

21 
 

doubt that fire intolerant species would eventually succeed oak species in the absence 

of fire, because of the droughty conditions and lack of replacement species (Abrams 

1992, 2003).   

The reintroduction of fire into this forest did not affect cover of tree and shrub 

regeneration of any species.  The lack of oak sapling response to fire frequency was 

surprising.  Oaks are considered fire-adapted; they produce a large root system early 

and are capable of persistent resprouting after top-kill (Abrams 1996, Clark and Hallgren 

2003).  As early successional, shade-intolerant, and fire-tolerant species they are 

believed to benefit from fire (Clark 1993, Abrams 2003, McDonald et al. 2003).  The two 

dominant oaks in these stands, Q. stellata and Q. marilandica, are well known to be 

moderately resistant to top kill from fire and to increase sprouts after fire (Penfound 

1963, Powell and Lowry 1980).  It is possible that frequent fires stimulated sprouting of 

the oaks but the bottleneck caused by slow growth under a closed canopy and droughty 

conditions combined with frequent fire prevented their growth into the sapling size > 

1.4 m at high fire frequencies (Rice and Penfound 1959, Abrams 1992, Russell and 

Fowler 2002).  In contrast, low fire frequencies may have resulted in restricted oak 

sapling production due to competition from the additional species that grew there.  The 

shade-tolerant fire-sensitive species found to thrive at low fire frequencies may have 

reduced the understory light enough to impede oak development (Loftis 1990, Lorimer 

et al. 1994). 
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There were over 15 relatively minor tree species in sapling and tree size classes, 

in addition to the abundant Ulmus alata and Carya texana, that appeared to be 

intolerant of fire and capable of increasing at low fire frequencies.  These species could 

be expected to increase in density on the lower fire frequency units in the future, as 

understory saplings replace the dominant trees.  Species from these genera have been 

found to increase in other oak forest locations in the absence of fire or anthropogenic 

disturbance (Dorney and Dorney 1989, McClain et al. 1993, Abrams 1996, Rentch and 

Hicks 2005).  The sapling species at this site most likely to grow into the forest canopy 

based on expected maximum height included: Carya texana, C. tomentosa, Celtis 

laevigata, Diospyros virginiana, Fraxinus americana, Gleditsia triacanthos L., Juniperus 

virginiana, Sideroxylon lanuginosum, and Ulmus alata (Little 2002).  The lack of 

abundance in the current canopy may be the result of a fire free or infrequent fire 

period not being long enough for the species to grow into the canopy.  This process of 

species replacement may be slower in the xeric forests of the Cross Timbers. 

Our results suggest biennial winter burning can control the density of fire 

intolerant woody shrubs and saplings but not oak saplings.  These findings were 

consistent with those of other studies conducted in oak forests under more mesic 

conditions.  Hickory (Carya spp.), southern red oak (Quercus falcata Michx.), post oak 

(Q. stellata), water oak (Q. nigra L.), and willow oak (Q. phellos L.) saplings were not 

suppressed after 30 years of no burning, periodic winter and summer burning, and 

annual winter burning in a mesic pine-grass forest (Waldrop et al. 1992).  In contrast, 

these same hardwoods declined sharply under annual summer burning over the same 
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period.  These results support the findings that winter burns may control how large 

hardwood sprouts will grow but only summer burns will control the number of sprouts 

(Waldrop et al. 1992, Komarek 1974).   

While the primary factor limiting species other than oak at this site may be 

climatic, fire regimes appear to play an important role in oak dominance.  Non-oak 

species in the sapling size classes have been greatly reduced in density by two decades 

of frequent fire.  However, this length of time has been insufficient to reveal the impact 

of fire regimes on the composition of larger size classes.  More complete understanding 

of the effects of fire frequency in these forests would benefit from study of annual 

burning, growing season burning, and periods of treatment longer than 20 years.
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CHAPTER 2: FIRE FREQUENCY EFFECTS ON THE DIVERSITY OF UNDERSTORY PLANT 

FUNCTIONAL GROUPS 

ABSTRACT 

This study examined the effects of long-term prescribed fire at varying 

frequencies on understory vascular plant cover and species diversity in an upland oak 

forest of eastern Oklahoma.  Twenty 0.01 ha plots were randomly located in each of 

eight management units with fire frequencies ranging from zero to five per decade.  All 

woody plants ≥ 1.4 m in height were sampled on the 0.01 ha plots and cover of 

understory woody regeneration and herbaceous plants < 1.4 m tall was estimated on 

four 1 m2 sub-plots nested in each corner of the 0.01 ha plots.  Frequent fire increased 

the abundance of herbaceous species while having no significant effect on understory 

woody plants.  Diversity of understory vascular plant species had a strong positive 

relation with fire frequency.  The lack of herbaceous species with negative responses to 

frequent fire suggests that this ecosystem was adapted to fire or other forms of 

disturbance.  This information should help forest managers utilize fire at different 

frequencies to increase landscape heterogeneity, manage wildlife habitat, and promote 

biodiversity in these upland forests.
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INTRODUCTION 

Since the latter part of the Pleistocene ten to fifteen thousand years ago, human 

beings through their use of fire have shaped ecosystems of the North American 

continent (Delcourt 2004).  In the absence of the once high diversity of Pleistocene 

megafauna many of North America’s tallgrass prairies and  savannas require fire or 

another form of anthropogenic disturbance to maintain herbaceous dominance, as 

precipitation is adequate for the development and dominance of woody plant species 

(Gleason 1913, Cowles 1928, Abrams 1986, Bond and Keeley 2005, Bond et al. 2005, 

Martin and Greene 2005).  These ecosystems are highly dependent on the unique 

human tool of fire.  Many species of oak (Quercus spp.) rely on physiological 

adaptations to frequent fire or other disturbance to maintain dominance over fire 

intolerant species (Abrams 1992, Van Lear et al. 2000, McShea and Healy 2002, Nowacki 

and Abrams 2008).  In forested regions frequent fire will greatly increase the 

herbaceous component of forest understories with varying impacts on overstory oak 

trees (Waldrop et al. 1992, Van Lear et al. 2000, Peterson et al. 2007).   

Throughout the southern tallgrass prairie and western portions of the Central 

Hardwood Forest frequent fires have been almost exclusively the result of human land 

use (Pyne 1996, 1997, Guyette et al. 2002).  Because of the many uses of fire by 

aboriginal people, it is certain that fire regimes in both time and place varied 

tremendously.  The regime of fires set by local people would have varied according to 
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topography, vegetation, and local population density creating a diverse mosaic of fire 

regimes on the landscape (Guyette and Cutter 1991, Pyne 1997, Guyette et al. 2002). 

After decades of omission, prescribed fire is returning today as a human tool for 

the management of vegetation throughout North America’s public lands, particularly in 

the southern Great Plains and the Southeast (Pyne 1996).  Because of the recent 

redevelopment of fire practices in southeastern forests, much of the research 

concerning prescribed fire effects on forest vegetation has been relatively short-term, 

and long-term data may be necessary to detect important effects of understory fire 

(Hutchinson et al. 2005, Laughlin et al. 2008).  In addition, many of these studies were 

done in conjunction with mechanical treatments such as harvesting or thinning of 

overstory trees (Masters 1991, Laughlin et al. 2008).  Forest managers utilize mechanical 

treatments to rapidly increase production of fine fuels such as grasses and forbs prior to 

burning.  This rapidly accelerates and alters the effects of applied fire to establish an 

earlier successional stage (Masters et al. 1993, Peterson et al. 2007).  The effect of 

mechanical treatments on grasses and forbs may also be short-term, lasting no more 

than a few years without the application of fire (Baskett et al. 1957, Murphy and 

Ehrenreich 1965, Masters et al. 2006).  However, mechanical treatment may be too 

costly for management budgets or may conflict with societal values, such as the 

preservation of old growth timber.  Land managers are in need of quantitative data to 

support development of prescribed fire as a management tool.   
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The Intermediate Disturbance Hypothesis described by Connell (1978) to explain 

unimodal responses of plant diversity to a gradient of disturbance intensity has now 

been tested in a variety of conditions in order to predict the levels of disturbance such 

as fire that result in the highest species richness (Roxburgh et al. 2004).  The Most 

Frequent Fire Hypothesis predicts that the highest understory plant species diversity will 

occur at the highest fire frequency in which primary productivity and resulting fuels will 

allow (Glitzenstein et al. 2003).  The Most Frequent Fire Hypothesis provides a basis for 

a great deal of the management strategies in southern longleaf pine (Pinus palustris) 

forest management in the southeastern United States (Glitzenstein et al. 2003).   

The overall goal of this research reported here was to determine the effects of 

fire frequency on herbaceous vegetation and provide a basis for improved management 

prescriptions for xeric oak forests.  A major objective was to quantify the effects of fire 

frequency and time since fire on abundance and diversity of herbaceous species.  

Another objective was to determine the effects of fire frequency on environmental 

variables such as overstory canopy cover, litter cover and depth and exposed soil.  The 

response of environmental variables may help explain the response of herbaceous 

vegetation.  Results were evaluated in the context of the Intermediate Disturbance 

Hypothesis and the Most Frequent Fire Hypothesis. 

The research was conducted on the Okmulgee Wildlife Management Area 

(OWMA) where prescribed burns have been conducted for over 20 years at frequencies 

ranging from zero to five per decade.  Although the range of burn frequencies did not 
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include the highest level of disturbance caused by annual burning, the range of fire 

frequencies at the OMWA should be suitable for determining whether increasing 

disturbance frequency affects species diversity. 

METHODS 

Study Area 

This study was located at the Okmulgee State Game Management Area (OGMA) 

in Okmulgee County, Oklahoma (Figure 6).  The primary objective for the OGMA is 

providing habitat for game species and increasing hunting and fishing opportunities for 

license holders.  Like other areas managed by the Oklahoma Department of Wildlife 

Conservation, additional objectives include providing habitat for non-game species and 

maintaining biodiversity. 

The OGMA is primarily forestland; approximately 85 percent of 2,400 hectares is 

upland forest on non-arable soils and rugged topography of 5-30 percent slopes.  Due to 

poor timber value and shallow rocky soils these sites have remained comparatively 

undisturbed (Stahle and Chaney 1994).  The upland forests at OGMA are dominated by 

post oak, Quercus stellata, with subdominants of blackjack oak, Q. marilandica, and 

black hickory, Carya texana (Chapter 1).  Duck and Fletcher (1945) classified this area as 

part of the Post Oak – Blackjack Oak forest type, locally referred to as the Cross Timbers 

Forest.  More recent land type classifications have placed this area into the East and 

Central Farming and Forest Region - Arkansas Valley and Ridges (N-118B) land use type 

(USDA NRCS  2006).   
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Figure 6 | Location of the Okmulgee State Game Management Area (OGMA) and surrounding 
land resource areas.  Modified illustration from USDA NRCS (2006).  OGMA is in a forest 
peninsula at the western edge of the central forest region, surrounded by the lower lying 
mesic Cherokee Prairies. 
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Mean annual temperature for Okmulgee County is 16.1° C; however, 

temperatures have a range of mean highs of 33.9° C in July to mean lows of -3.9° C in 

January.  The area has a humid subtropical climate receiving approximately 111 cm of 

precipitation annually; however, precipitation can be highly variable with a range of 54.5 

cm to 156.2 cm annually (Oklahoma Climatological Survey 2005). 

The study was limited to the Hector-Endsaw complex soil, which represented 

approximately 75 percent of the OGMA.  This soil type was characterized as well-

drained, non-arable, shallow stony fine sandy loam with bedrock at a depth of 

approximately 30 cm on hill or mountain topography of 5-30 percent slopes (Sparwasser 

et al. 1968). 

In 1988, a prescribed burn plan was established for the OGMA with the goal of 

increasing forage production and landscape heterogeneity.  The burn treatment units 

ranged in size from 100 to 600 ha and fire frequencies ranged from zero to five per 

decade (Figure 7).  It was assumed the vegetation was largely the same in all units prior 

to the beginning of treatment.  Within five years the units that were burned showed a 

significant increase in graminoid cover compared to the non-burned treatment (Burton 

1993).  There were no significant differences among the various burn frequencies. 

All fires were carefully documented and set in the months of February and 

March (Table 3).  Prescribed fires were set when relative humidity was between 30 to 50 

percent, temperature < 27° C, and winds < 25 kph; conditions considered ideal by 
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managers for prescribed fire containment.  In March 2005 unit 10 experienced the only 

wildfire  

 

 

 

 

 

 

 

Figure 7 | Okmulgee State Game Management Area prescribed burn treatment units 
and plot locations.  Area included in study contains undisturbed upland forests on the 
Hector-Endsaw complex soil type.  Numbers correspond to burn unit identification 
number. 
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Table 3 | Year and month of prescribed fires by units.  *Indicates arson set fire occurring 
outside of management prescriptions.   

 

Year 
Burn Unit 

1 2 3 4 6 7 10 13 

2008    Mar Mar    
2007 Feb Feb       
2006         
2005   Feb Feb  Feb Mar*  
2004  Mar  Mar     
2003 Mar      Mar  
2002    Feb Feb    
2001 Mar   Feb   Mar  
2000 Feb Feb Mar      
1999 Feb        
1998 Feb        
1997 Feb  Feb  Feb    
1996      Feb Feb  
1995 Feb        
1994  Mar  Mar   Mar  
1993 Mar    Mar    
1992  Feb  Feb   Feb  
1991   Feb      
1990         
1989 Feb        
1988         

Total 
Fires 10 5 4 7 4 2 6 0 

Fires per 
Decade 5.0 2.5 2.0 3.5 2.0 1.0 3.0 0.0 

Years Since 
Last Fire 1 1 3 0 0 3 3 20+ 

 
  



 
 

33 
 

 

during the past 20 years that was outside the prescriptions described above; relative 

humidity was less than 20 percent and wind speeds were in excess of 35 kph.  

Sample Design 

ArcMap was used to map treatment units and randomly locate 20 sample plots 

within each (ESRI 2007; Appendix II, III ).  No sample plots were located within 10 m of a 

firebreak, road or other human caused opening.  I located each plot in the field with a 

Trimble Geo XT® GPS unit utilizing Wide Area Augmentation System (WAAS) for sub-

meter accuracy from June 19 to August 8, 2008. 

After the plot corner was located in the field, a plot stake was spun to randomly 

determine the direction of the corner as southeast, southwest, northeast, or northwest.  

The sides of the plot were measured in each of the cardinal directions using an 

engineering compass to form a 10 x 10 meters (0.01 ha) square (Figure 8).  

Measurements made within each plot included diameter at breast height (1.4 m) of all 

shrubs, saplings, and trees greater than 1.4 meters tall, slope, and aspect.   

Four square 1 m2 sub-plots were nested within each of the four corners of the 

sample plots (Figures 8).  At each sub-plot, I visually estimated the following 

percentages:  exposure of soil, leaf litter, rock, vascular plant functional group, vascular 

plant species, and overstory canopy cover.  I visually estimated ground and plant cover 

within the one meter sub-plots utilizing a customized Braun-Blanquet cover scale (Kent 

and Coker 1992; Figure 9).  A 1m2 PVC plastic frame was marked on each corner with a  
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Figure 8 | Sample plot layout.  Woody plants greater than breast height were 
measured in 10 x 10 m plot and all other vascular plants were sampled within 
four 1 x 1 m nested sub-plots.  

 

 
 

 
Figure 9 | Sub-plot frame design and cover classes.  An assigned cover class 
value of 1 is ≤ 1 %, 2 is > 1 % & ≤ 6 %, 3 is > 6 % & ≤ 25 %, 4 is > 25 % ≤ 50 %, 5 is 
> 50 % ≤ 75 %, and 6 is > 75 %. 
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cover scale increment.  A key was used to identify all plants to species level with the 

exception of a few taxonomic groups which were classified to genus level (Diggs et al. 

1999, Yatskievych 1999; Appendix I); therefore, measurements of richness are 

estimations.  Nomenclature for all plant species follows the PLANTS database (USDA 

NRCS 2008).  I measured litter depth at 4 points in the sub-plots using a 150 mm metric 

dial caliper’s depth gauge to the nearest 0.5 cm.  Overstory canopy cover directly over 

the center of each sub-plot was measured using a forest canopy Model-A Spherical 

Densiometer (Lemmon 1956, Nuttle 1997). 

In September of the same year, biomass samples were collected from three 

treatments with zero (unit 13), two and one-half (unit 2) and five (unit 1) burns per 

decade.  One year had elapsed since the last fire for both units that had been burned.  I 

collected biomass from five 200 meter transects in each treatment.  Transects were 

randomly located and consisted of 5 quarter meter square frames spaced 50 meters 

apart.  All plant matter was collected to mineral soil surface from plants < 1.4 meters 

tall.  Living plant matter was classified by functional group, and dead plant matter was 

classified as litter.  Samples were dried at 70° C and weighed. 

Data Analysis 

Species cover data was used to calculate richness, diversity, and evenness 

indices.  Species diversity was calculated using Simpson’s diversity index (1/D) and 

Shannon’s diversity index (H’) (Begon et al. 2006).  The means and standard errors of 

response variables including ground cover, foliar cover, species richness and diversity 
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indices were calculated for each of the eight treatments based on 20 samples per 

treatment.  Basal area (m2 ha-1) was calculated from the dbh measurements.  Foliar 

cover was analyzed by species and functional group.  All plant functional group and 

species cover data values were square-root transformed by plot prior to statistical 

analysis.  The treatment with no fire was excluded from time since last fire analysis.   

Regression analysis was conducted to determine the significance of the relation 

between response variables and both fire frequency and time since last fire by species 

and plant functional group.  When the P value  for the regression was ≤ 0.05 the relation 

was considered significant and when it was > 0.05 and ≤ 0.10 it was considered weakly 

significant.  Analysis of variance was conducted to test for effects of fire frequency on 

biomass and foliar cover at P ≤ 0.05 for zero, two and one-half, and five fires per decade.  

Rare species that only occurred in two or less treatments were not included in species 

response analysis.    

RESULTS 

Forest Structure 

Total basal area ranged from 22.6 to 26.7 m2 ha-1 and was not significantly 

altered by fire frequency (P = 0.8617).  Overstory canopy cover ranged from 88.5 to 95.7 

percent and likewise showed no significant response to fire frequency (P = 0.1702).  The 

lowest percent canopy cover was measured in treatment unit 10 (three fires per 

decade).  This treatment was the only sampled unit to have experienced a wildfire 
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outside of normal prescription conditions and mortality of some fire intolerant species, 

such as Ulmus alata, was apparent.   

Ground Cover 

Ground surface covers responded more strongly to time since last fire than to 

fire frequency (Figure 10).  The effect of time since last fire was significant for exposed 

soil, litter cover, and litter depth (P < 0.05).  Exposed soil, rock, and litter cover were 

strongly affected by time since last fire but not by fire frequency.  Mean litter depth 

ranged from 1.89 cm in the treatment with no fire to 0.54 cm in treatment unit 6 (two 

fires per decade / three months since last fire) and was weakly affected by fire 

frequency (P = 0.0655).  Surface rock cover ranged from 26.4 to 10.1 percent and a 

change in cover was not detected based on fire frequency or time since last fire (P = 

0.890, 0.188 respectively). 

Understory Functional Groups 

Effect of fire frequency on understory vegetation cover varied for each plant 

functional group (Figure 11).  Cover of forbs, both legume and non-legume, significantly 

increased with fire frequency (P = 0.0349, 0.0072 respectively).  Woody plant cover 

ranged from 30.2 to 48.3 percent and showed no significant of fire frequency.  

Graminoid cover ranged from 13.5 to 50.7 percent and showed no significant effect of 

fire frequency.  Woody plant cover did not show an effect of fire frequency; however, it 

is the only plant functional group that increased with time since last fire (P = 0.655,  
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Figure 10 | Fire frequency and time since last fire effects on ground surface cover.  
Points represent observed mean cover for each cover type or mean depth of litter at 
each treatment unit.  Error bars indicate standard error of treatment unit means.  
Solid lines indicate significant linear relationships. 
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Figure 11 | Fire frequency and time since last fire effects on plant understory cover by 
functional group.  Points represent mean cover for each functional group at each 
treatment unit.  Error bars indicate standard error of treatment unit means.  Solid lines 
indicate significant linear relationships. 
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0.023 respectively).  The proportion of total understory cover that was woody was 

negatively affected by increasing fire frequency (P = 0.009) but not time since last fire (P 

= 0.655, data not shown). 

Understory Biomass 

Total understory live vegetation biomass ranged from 371 to 1070 Kg ha-1 and 

showed no significant relation to fire frequency.  Graminoid biomass increased with 

increasing fire frequency (Figure 12).  Cover by functional group of zero, two and one-

half, and five fires per decade responded to fire frequency in a similar way to biomass.  

Graminoid, legumes, and forbs showed significant increases in cover with increasing fire 

frequency. 

Understory Plant Richness 

Over 170 species or genera were found within plots or sub-plots during the 

sampling period.  Mean plot species richness and total treatment richness showed 

increases with fire frequency (Figure 13).  The lowest mean plot richness was 11.35 in 

unit 13, which has had no fires in at least twenty years.  No clear trends were apparent 

for effect of time since last fire on species richness.  Fire frequency appeared to have a 

greater impact than time since last fire on richness. 

Plant Functional Group Species Richness 

Species richness responses to fire frequency depended on plant functional group 

(Figure 14).  Forb richness showed a significant linear increase in mean plot richness  
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Figure 12 |Effect of fire frequency on understory plants by functional group.  a) 
Biomass of treatment units.  b) Cover values of same treatment units.  Error bars 
represent standard error of sample treatment means.  Letters indicate significant 
differences.   
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Figure 13 |Effect of fire frequency on mean plot and total treatment vascular 
plant richness.  Error bars indicate standard error of treatment unit means.  
Solid lines indicate linear relations that were weakly significant. 
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Figure 14 | Effect of fire frequency on functional group species richness.  Error bars indicate 
standard error of treatment unit means.  Solid lines indicate significant linear relationships. 
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with fire frequency.  All herbaceous plant functional groups showed increases in 

richness with increasing fire frequency at either the mean plot level or treatment level.  

Understory woody plant richness was not affected by fire frequency.  None of the plant 

functional groups showed a significant species richness response to time since last fire 

(P > 0.10). 

Understory Plant Species Responses  

The four woody species which occurred in at least 50 percent of the sample plots 

were: Ulmus alata, Rhus aromatica, Parthenocissus quinquefolia, and Quercus stellata.  

None of these species had a measurable response to fire frequency or times since last 

fire (P < 0.05).  The five herbaceous species occurring in 50 percent of the plots included 

the C3 graminoids Danthonia spicata, Dichanthelium linearifolium, and Carex spp. and 

the forbs Solidago ulmifolia and Monarda russeliana.  Both D. spicata and S. ulmifolia 

showed increases in cover with increasing fire frequency. 

When utilizing presence-absence of species within plots, six herbaceous species 

showed increases in abundance with increasing fire frequency.  These species include 

the perennial forbs Solidago ulmifolia, Ruellia spp., Rudbeckia hirta, Penstemon spp., 

and Conyza canadensis and the legume Lespedeza virginica (data not shown).   

When considering species cover values, seven understory plant species had 

positive linear responses to increased fire frequency (Figure 15).  The species were all 

herbaceous species and included: S. ulmifolia, Lespedeza cuneata, L. virginica, Ruellia 

spp., Symphyotrichum patens, Danthonia spicata, and Erigeron strigosus.  The number  
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Figure 15 | Effect of fire frequency on cover of herbaceous species.  Solid 
lines indicate significant linear relationships. 
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of species with positive responses to fire frequency in cover would have increased to 20 

if P < 0.10. 

The five species that declined in presence-absence as time passed since last fire 

included the woody species Crataegus crus-galli, Prunus serotina, and Quercus rubra, 

the graminoid Carex spp., and the legume Amphicarpaea bracteata.  Only one species, 

Rhus glabra, significantly increased in presence after time since last fire.   

The woody species Crataegus grus-galli decreased in cover with time since last 

fire, while the commonly encountered perennial forb Helianthus hirsutus and C4 

graminoid Andropogon gerardii had increasing abundances after time progressed since 

last fire (Figure 16).  Nine species responded to time since last fire, at P < 0.10. 

Only five species occurred exclusively in the treatment with no fire and all these 

species occurred in a single plot within the treatment; therefore, they should be 

considered rare not fire intolerant.  In fact, all are commonly encountered in prairie 

locations that would be considered fire dependent.  The number of rare species was not 

affected by either fire frequency or time since last fire (data not shown). 

Species Diversity 

Understory plant species diversity was greater for more frequently burned 

treatments.  Both the Shannon’s diversity index (H’) and Simpson’s diversity index (1/D) 

responded positively to fire frequency (P = 0.018, 0.005 respectively; Figure 17).  

Responses of diversity to fire frequency were not unimodal but linear.   
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Figure 16 | Effect of time since last fire on species cover.  Solid lines indicate 
significant linear relationships.  
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Figure 17 | Effect of fire frequency on species diversity indices.  
Solid lines indicate significant linear relationships. 
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Simpson’s Index of Diversity and Shannon’s Diversity Index were not linearly correlated 

with time since last fire.  Although richness was highest for the unit which had 

experienced a wildfire in 2005 (Unit 10), species evenness was lowest by Simpson’s 

equitability index (E = 0.17) for this unit.  Equitability was highest for the highest burn 

frequency for both indices (E = 0.27, J = 0.79).  No significant relationship of fire 

frequency or time since last fire for either index of evenness was found (P < 0.10). 

 

DISCUSSION 

The results of this study demonstrated that twenty years of prescribed fire in this 

oak dominated forest had very little impact on the overstory component while 

significantly increasing herbaceous vegetation cover, biomass, and diversity.  This 

suggests low light under dense canopy cover is likely not the only factor limiting 

understory herbaceous plants.  Other studies have found understory plant diversity may 

be maximized at intermediate levels of canopy cover which provides high plant resource 

heterogeneity (Leach and Givnish 1999).  In contrast, the current study found plant 

diversity to respond directly to an increase in fire frequency alone where there were no 

observable differences in canopy cover or basal area.  Light resource heterogeneity does 

not appear to be involved in the significant increase in plant diversity at this study site.  

This is the first study to show a significant response to fire frequency of understory plant 

composition in xeric oak forests.   
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Litter consumption by repeated burning could explain in part the increases in 

herbaceous vegetation by creating a more favorable environment for germination and 

establishment of plants.  Reduced litter may increase germination success by increasing 

mineral soil surface temperatures during spring months and reducing potential physical 

barriers to seed deposition, hypocotyl development, and seedling emergence (Sydes 

and Grimes 1981, Facelli and Pickett 1991b).  The obstacles created by woody plant 

litter may give woody plants a competitive advantage over herbaceous plants during 

establishment in forest understories (Facelli and Pickett 1991a).  In xeric longleaf pine 

(Pinus palustris) woodlands herbaceous vegetation was more severely impacted by 

litter deposition and subsequent forest floor development than by overstory canopy 

cover and midstory tree density (Hiers et al. 2007). 

Burning may indirectly affect herbaceous plants though its large immediate and 

beneficial effects on availability of plant nutrients.  The availability of macronutrients 

such as potassium and phosphorus can increase in the mineral soil due to their release 

from organic material and deposition into the soil (Grove et al. 1986, Lynham et al. 

1998).  However, the fate of phosphorus due to volatilization is not well studied (Neary 

et al. 2005).  Although total nitrogen in the litter layer is reduced by volatilization during 

heating by surface fires, after low intensity fires it has been found that a portion of 

nitrogen stored in the litter is converted to plant available nitrogen (NH4-N) and 

deposited into the mineral soil (Covington and Sackett 1986, Kutiel and Naveh 1987, 

Neary et al. 2005).  The release of mineral bases in ash may generate a more favorable 

environment for free living nitrogen-fixing bacteria with higher nutrient availability and 
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pH (Barbour et al. 1987).  By-products of incomplete combustion, such as charcoal, may 

also increase nutrient retention capacity by improving exchange capacity (Glaser et al. 

2002). 

Secondary impacts of frequent litter removal by fire may include the destruction 

of secondary plant chemicals such as tannins and the concomitant reduction in their 

impacts on nutrient cycling.  Tannins deposited into the mineral soil by decomposing 

woody plant litter may limit N mineralization by binding proteins of decomposing plant 

matter thus decreasing microbial efficiency and reducing decomposition rates (Basaraba 

and Starkey 1966, Kalburtji et al. 1999, Kraus et al. 2003, Talbot and Finzi 2008). Tannins 

have been found to reduce N-fixation in certain plants (Schimel et al. 1998).  The 

reduction in the capacity for legumes to fix nitrogen in these nitrogen limiting soils 

would greatly affect their abundance in an environment with few fires.  In nutrient poor 

soils herbaceous species may have more difficulty becoming established relative to 

persistent long lived woody sprouts.  The impacts of tannins in soil ecosystems may be 

capable of modifying forest successional pathways and general ecosystem function 

(Kraus et al. 2003). 

An increase in herbaceous vegetation may have resulted from the reduction of 

saplings and shrubs at the higher fire frequencies (Chapter 1).  In the absence of fire 

shrubs and saplings may have a more amensalitive interaction with herbaceous species 

for light resources, with herbaceous species being negatively impacted.  Conversely, 

saplings may not be excluding herbaceous vegetation directly by light interception but 
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indirectly by increasing litter deposition (Hiers et al. 2007).  When fires are frequent 

understory saplings and shrubs may be more competitive with herbaceous species for 

light resources because they have the same stature.  However, the competitive effects 

of herbaceous vegetation on woody plants may be slight or insignificant (Knoop and 

Walker 1985).  The density of many woody plants, such as Crataegus crus-galli, may not 

be altered by frequent fire, as most readily re-sprout and may simply be moved from 

the sapling or shrub class to the smaller sprout and seedling vegetation class following 

fires. 

The interaction of fire and herbivory has not been well studied in forested 

ecosystems and its impacts on forest vegetation have not been appreciated (Laughlin et 

al. 2008).  Browse may become more palatable and nutrient rich immediately after a fire 

(Reich et al. 1990, Van de Vijver et al. 1999, Ferwerda et al. 2006).  This may cause 

grazing and browsing populations to move and congregate in recently burned areas 

(Fuhlendorf and Engle 2001, 2004, Fuhlendorf et al. 2009).  The perennial sunflower 

(Helianthus hirsutus), a highly palatable species for white-tailed deer (Odocoileus 

virginianus), was not found to significantly increase with fire frequency, while strongly 

increasing with time since last fire.  If this species were heavily browsed in the units with 

recent and frequent burns, this may explain why we could not detect an increase with 

fire frequency.  I observed many instances where plants, particularly newly emergent 

forbs such as H. hirsutus, were browsed.  Preference for more palatable species such as 

forbs which greatly increased with more frequent fire may have important impacts on 

regeneration of less desirable woody species such as oaks (Bryant et al. 1981).  When 
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production of herbaceous plants is low on landscapes were fire is absent oak 

regeneration may be suppressed by deer because they cannot find enough preferred 

forage.  The fire-floral-faunal interactions in forest ecological studies are deserving of 

further study. 

I found that vascular plant richness significantly increased up to the highest fire 

frequency of five fires per decade.  This could be viewed as support for the Most 

Frequent Fire Hypothesis because the highest burn frequency produced the highest 

diversity of understory plants, but higher burn frequencies were not tested at the 

OGMA.  Plant species richness and diversity in a Minnesota oak forest and savanna 

increased with fire frequency up to 5 fires per decade and then decreased at higher 

frequencies.  That maximum diversity occurred at an intermediate fire frequency was 

taken as support for the Intermediate Disturbance Hypothesis (Tester 1989, Peterson 

and Reich 2008).  The results of the current study are inconclusive in supporting either 

of the two hypotheses, as the study did not include fire frequency higher than five fires 

per decade.  Herbaceous fuel production was likely to be adequate for increased 

burning frequencies in units that had a history of frequent fire (Table 3, personal 

communication B. Burton).  Additional fires per decade could either continue to increase 

understory vegetation diversity at this site (Glitzenstein et al. 2003) or reduce diversity 

as more frequent fire may begin to remove species, particularly woody species (Grime 

1973, Peterson and Reich 2008). 
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The results of this study show that herbaceous diversity can be managed over 

time with long-term fire management prescriptions.  While the results of timber 

thinning to remove canopy cover can produce more immediate responses (Engle et al. 

2006, Masters et al. 2006), long-term management of forests with prescribed fire can 

meet many management objectives without the high costs of mechanical or chemical 

treatments of overstory vegetation.  
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OVERALL CONCLUSIONS & IMPLICATIONS FOR MANAGEMENT 

 

The findings of this research lead to the conclusions that frequent low-intensity 

fire is necessary to maintain both the dominance of fire tolerant oak species and the 

high biodiversity of herbaceous plants.  Fire-intolerant shrub and sapling density and 

richness increase as fire frequency is reduced from zero to five fires per decade.  More 

specifically, the following conclusions are supported: 

• Twenty years of low intensity fire at a frequency of five per decade is not 

sufficient for the reduction in tree density and canopy cover of existing stands. 

• Frequent low intensity fires in the range of two to five per decade are sufficient 

to maintain oak overstory dominance, as this frequency will control fire-sensitive 

woody shrubs and saplings while not reducing the density of oak saplings that 

eventually grow into the canopy. 

• Herbaceous species in the xeric oak forests appear to be well adapted to periodic 

low intensity fire, as many species showed a positive response and none showed 

a negative response to fire frequency.  

• Landscapes with a diverse mosaic of forest understories can be produced by 

prescribe burning at varying frequencies and times since last fire.  
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APPENDICES 

APPENDIX I | Summarized list of upland vascular plants identified at Okmulgee Game 
Management Area.  All species, unless otherwise indicated, were collected within the sample 
plots placed in the upland forest.  Bold type scientific names indicate species that occurred in 
more than 10 percent of the sample plots.  “§” U.S. Department of Agriculture PLANTS Symbol 
(NRCS 2008).  “sp. or spp.” indicates that species that were taxonomically impractical to 
identify due to developmental stage and are lumped to genus level.  “†” indicates species that 
are lumped to genus level; however, do not likely contain other species listed below in the 
same genus.  “‡” Crataegus engelmannii was documented as occurring in the 100 m2 plots; 
however, C. engelmannii and C. crus-galli are not distinguished from each other for the 
understory 1 m2 sub-plots due to difficulties with differentiation and were recorded as the 
latter.  “*” indicates a species that may deserve noting; however, it was not recorded within a 
plot due to growth habit, rarity, etc.  

PLANTS§ Scientific Name Common Name Group 

ACALY Acalypha sp. Copperleaf Forb 
ACSA2 Acer saccharinum Maple, Silver Woody 
AGROS2 Agrostis sp. Bentgrass Graminoid 
ALLIU Allium spp. Wild Onion Forb 
AMPS Ambrosia psilostachya Ragweed, Common Forb 
AMTR Ambrosia trifida Ragweed, Giant Forb 
AMAR5 Ampelopsis arborea Peppervine Woody 
AMBR2 Amphicarpaea bracteata Hogpeanut, American Legume 
ANGE Andropogon gerardii Big Bluestem Graminoid 
ANDRO2 Andropogon spp.† Bluestem Graminoid 
ANVI2 Andropogon virginicus Broomsedge Bluestem Graminoid 
ANPA9 Antennaria parlinii Parlin's Pussytoes Forb 
ARCA Arabis canadensis Sicklepod Forb 
ASVE Asclepias verticillata Whorled Milkweed Forb 
ASPLE Asplenium sp. Spleenwort Fern Forb 
BABR2 Baptisia bracteata Longbract Wild Indigo Legume 
BOCU Bouteloua curtipendula Sideoats Gramma Graminoid 
BROMU Bromus spp. Brome Graminoid 
CARA2 Campsis radicans Trumpet Vine Woody 
CAREX Carex spp. Sedge Graminoid 
CAAL27 Carya alba (tomentosa) Mockernut Hickory Woody 
CATE9 Carya texana Black Hickory Woody 
CELA Celtis laevigata Sugarberry Woody 
CEOC Celtis occidentalis Common Hackberry Woody 
CEOC2 Cephalanthus occidentalis Buttonbush Woody 
CECA4 Cercis canadensis Eastern Redbud Woody 
CHAS Chaetopappa asteroides Arkansas Leastdaisy Forb 
CHFA2 Chamaecrista fasciculata Partridge Pea Legume 
CHLA5 Chasmanthium latifolium Fishing Pole Grass Graminoid 
CIAL2 Cirsium altissimum Tall Thistle Forb 
CLMA4 Clitoria mariana Butterfly Pea Legume 
COCA Cocculus carolinus Carolina Moonseed Forb 
COCY Coelorachis cylindrica Cylinder Jointtail Grass Graminoid 
COCA5 Conyza canadensis Horseweed Forb 
COREO2 Coreopsis spp. Golden Tickseed Forb 
CRCR2 Crataegus crus-galli‡ Cockspur Hawthorn Woody 
CREN Crataegus engelmannii Cockspur Hawthorn Woody 
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CRVI2 Crataegus viridis Green Hawthorn Woody 
CYEC2 Cyperus echinatus Globe Flatsedge Graminoid 
DASP2 Danthonia spicata Poverty Oatgrass Graminoid 
DELA2 Desmodium laevigatum Tick Trefoil Legume 
DIAC2 Dichanthelium acuminatum Tapered Rosette Grass Graminoid 
DICL Dichanthelium clandestinum Deertongue Graminoid 
DILI2 Dichanthelium linearifolium Slimleaf Panicgrass Graminoid 
DISP2 Dichanthelium sphaerocarpon Roundseed Panicgrass Graminoid 
DICHA2 Dichanthelium spp. Rosette Grass Graminoid 
DIVI5 Diospyros virginiana Persimmon Woody 
ECPA Echinacea pallida Coneflower, Pale-purple Forb 
ELMO2 Eleocharis montevidensis Sand Spikerush Graminoid 
ELCA3 Elephantopus carolinianus  Elephantsfoot Forb 
ELCA4 Elymus candensis Canada Wildrye Graminoid 
ELVI3 Elymus virginicus Virginia Wildrye Graminoid 
ERAGR Eragrostis spp. Lovegrass Graminoid 
ERHI2 Erechtites hieraciifolia Burnweed  Forb 
ERST3 Erigeron strigosus Prairie Fleabane Forb 
ERTE7 Erigeron tenuis Slinderleaf Fleabane Forb 
FRAM2 Fraxinus americana White Ash Woody 
FRPE Fraxinus pennsylvanica* Green Ash Woody 
GAVO Galactia volubilis Milkpea Legume 
GACI2 Galium circaezans Wood's Bedstaw Forb 
GAPI2 Galium pilosum Hairy Bedstaw Forb 
GAPU3 Gamochaeta purpurea Purple Everlasting Forb 
GLTR Gleditsia triacanthos Honeylocust Woody 
GYDI Gymnocladus dioicus Kentucky Coffeetree Woody 
GYAM Gymnopogon ambiguus Bearded Skeletongrass Graminoid 
HEHI2 Helianthus hirsutus Rough Sunflower Forb 
HIGR3 Hieracium gronovii Hawkweed Forb 
HYHY Hypericum hypericoides St. Andrew's Cross Forb 
HYPU Hypericum punctatum Spotted St. Johnswort Forb 
ILDE Ilex decidua Deciduous Holly Woody 
JUVI Juniperus virginiana Eastern Redcedar Woody 
LACA Lactuca canadensis Canada Lettuce Forb 
LETE Lechea tenuifolia Narrowleaf Pinweed Forb 
LECU Lespedeza cuneata Sericea Lespedeza Legume 
LEPR Lespedeza procumbens Trailing Lespedeza Legume 
LERE2 Lespedeza repens Creeping Lespedeza  Legume 
LEVI6 Lespedeza violacea Violet Lespedeza Legume 
LEVI7 Lespedeza virginica Slender Lespedeza Legume 
LIATR Liatris sp. Blazing Star Forb 
LIME2 Linum medium Stiff Yellow Flax Forb 
MATEL Matelea sp. Milkvine Forb 
MIMOS Mimosa nuttallii Sensitivebriar Legume 
MORU Monarda russeliana Redpurple Beebalm Forb 
MORU2 Morus rubra Red Mulberry Woody 
MUHLE Muhlenbergia sp. Muhly Grass Graminoid 
OXST Oxalis stricta Yellow Woodsorrel Forb 
OXVI Oxalis violacea Violet Woodsorrel Forb 
PAOB6 Packera obovata Roundleaf Ragwort Forb 
PAFA3 Paronychia fastigiata Hairy Forked Nailwort Forb 
PAQU2 Parthenocissus quinquefolia Virginia Creeper Woody 
PALU2 Passiflora lutea Yellow Passion Flower Forb 
PENST Penstemon spp. Beardtongue Forb 
PHEME Phemeranthus sp. Fameflower Forb 
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PHAM4 Phytolacca americana Pokeweed Forb 
PLOC Platanus occidentalis Sycamore Woody 
POLYG4 Polygonum spp. Knotweed Forb 
PRME Prunus mexicana Mexican Plum Woody 
PRSE2 Prunus serotina Black Cherry Woody 
PSOB3 Pseudognaphalium obtusifolium Rabbit-tobacco Forb 
PTNU Ptilimnium nuttallii Laceflower Forb 
QUMA3 Quercus marilandica Blackjack Oak Woody 
QUMU Quercus muehlenbergii Chinkapin Oak Woody 
QURU Quercus rubra Northern Red Oak Woody 
QUSH Quercus shumardii* Shumard Oak Woody 
QUST Quercus stellata Post Oak Woody 
QUVE Quercus velutina Black Oak Woody 
RHAR4 Rhus aromatica Fragrant Sumac Woody 
RHCO Rhus copallina Winged Sumac Woody 
RHGL Rhus glabra Smooth Sumac Woody 
ROSA5 Rosa spp. Wild Rose Woody 
RUBUS Rubus spp. Blackberry Woody 
RUHI2 Rudbeckia hirta Black-eyed Susan Forb 
RUELL Ruellia spp. Wild Petunia Forb 
SAAN Sabatia angularis Rosepink Forb 
SACA15 Sanicula canadensis Black Snakeroot Forb 
SCSC Schizachyrium scoparium Little Bluestem Graminoid 
SCPA7 Scutellaria parvula Skullcap Forb 
SEVA4 Securigera varia Crownvetch Legume 
SEMA11 Senna marilandica* Maryland Senna Legume 
SILA20 Sideroxylon lanuginosum Chittamwood Woody 
SMILA2 Smilax spp.  Greenbiar Woody 
SOCA3 Solanum carolinense Horsenettle Forb 
SOPT7 Solanum ptycanthum West Indian Nightshade Forb 
SOLID Solidago spp.† Goldenrod Forb 
SOUL2 Solidago ulmifolia Elmleaf Goldenrod Forb 
SPOB Sphenopholis obtusata Prairie Wedgescale Graminoid 
SPORO Sporobolus spp. Dropseed Graminoid 
SYOR Symphoricarpos orbiculatus Buckbrush Woody 
SYLA3 Symphyotrichum laeve Smooth Blue Aster Forb 
SYOO Symphyotrichum oolentangiense Skyblue Aster Forb 
SYPAP2 Symphyotrichum patens  Late Purple Aster Forb 
TEVI Tephrosia virginiana Goat's Rue Legume 
TECA3 Teucrium canadense Canada Germander Forb 
TORA2 Toxicodendron radicans Poison Ivy Woody 
TRADE Tradescantia spp. Spiderwort Forb 
TRFL2 Tridens flavus Purpletop Tridens Graminoid 
TRPE4 Triodanis perfoliata Venus' Looking-glass Forb 
ULAL Ulmus alata Winged Elm Woody 
VAAR Vaccinium arboreum Farkleberry Woody 
VERBE Verbena sp. Vervain Forb 
VEVI3 Verbesina virginica White Crownbeard Forb 
VERNO Vernonia spp. Iron Weed Forb 
VIRU Viburnum rufidulum Rusty Blackhaw Woody 
VIOLA Viola spp. Violet Forb 
VITIS Vitis spp. Grape Woody 
WOOB2 Woodsia obtusa Cliff Fern Forb 
ZAAM Zanthoxylum americanum* Pricklyash Woody 
    

 



 

 

APPENDIX II | Sample plots and numbers, p
on 2008 aerial photo.  Red lines outline sampled area on Hector
photo courtesy of Oklahoma Geographic Information Council.  
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Sample plots and numbers, prescribe burn treatment units, and sampled area
on 2008 aerial photo.  Red lines outline sampled area on Hector-Endsaw soil complex.  Aerial 

Oklahoma Geographic Information Council.   

and sampled areas 
Endsaw soil complex.  Aerial 
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APPENDIX III |List of randomly located plots within the Okmulgee Game 
Management Area.  I randomly assigned plot numbers and sampled in order to 
minimize effects of date of sample.  The UTM coordinates below utilize the following 
coordinate system: NAD (1983) Zone 15 North.  Start corner refers to the corner of the 
plot in which the UTM coordinate refers.  
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1 001 6/21 NE 5 200 223940 3950208 3 072 7/01 SE 6 150 223235 3947188 

002 6/26 NE 1 40 223970 3948672 073 7/08 SW 8 260 223477 3946804 

003 7/01 SE 8 60 224203 3950517 074 6/19 NE 7 220 223034 3946667 

004 7/05 SE 6 290 223766 3949879 075 7/12 NE 4 10 223086 3946855 

005 7/06 SE 5 310 223977 3948324 076 7/16 SE 2 140 223764 3948066 

006 7/16 NW 12 100 224086 3949356 077 6/19 NW 7 225 223030 3946746 

008 7/16 NE 12 260 224425 3949528 079 7/25 SE 5 150 223765 3948072 

010 7/18 SW 11 70 224077 3950614 080 7/16 SE 4 130 223759 3948102 

012 7/25 NE 9 90 224097 3948960 081 7/22 NW 11 230 223189 3946689 

013 7/24 NW 10 310 223825 3949624 085 7/18 SW 10 170 223742 3947982 

015 7/24 NE 24 350 223617 3949561 086 7/28 NE 7 220 223093 3946692 

017 7/25 NE 13 320 224241 3949156 088 8/02 SE 6 200 223097 3947122 

018 7/24 SW 14 280 223732 3949655 091 8/02 NW 6 80 223399 3947332 

019 8/01 SE 6 240 224349 3948545 092 7/28 SW 7 210 223117 3946689 

020 8/01 SW 4 210 223809 3950338 094 8/02 SW 2 300 223275 3947028 

021 8/04 NW 5 360 224366 3949485 095 8/02 SW 6 240 223825 3948006 

022 8/08 NW 8 290 224233 3948711 097 8/02 NW 5 220 223008 3946788 

024 8/08 NE 4 330 224335 3948913 098 8/02 NW 5 20 223109 3946838 

027 8/08 SE 3 210 223803 3950339 100 8/07 SW 4 30 223003 3946887 

029 8/08 SE 6 140 223854 3950601 103 8/07 SE 4 310 223096 3946952 

2 036 6/22 NE 2 100 224829 3947336 4 106 6/22 NE 24 250 224271 3950025 

037 7/08 SW 9 360 224712 3947348 107 6/26 NE 28 20 224888 3949590 

038 7/02 SE 5 220 225172 3948387 109 7/11 NW 5 290 224345 3949762 

039 7/06 NE 11 10 224725 3947595 110 6/26 NW 32 20 225337 3949574 

040 7/08 NW 4 340 224607 3947352 111 7/11 SE 10 30 224886 3949465 

041 7/21 NE 9 20 225209 3948000 115 7/02 NE 8 30 224601 3949062 

042 7/08 SE 8 230 224846 3947174 117 7/06 NE 7 280 224553 3949393 

043 7/21 SW 5 180 224855 3948375 118 7/15 NW 9 20 225304 3949469 

044 7/26 NE 5 30 224682 3947351 119 7/25 SW 3 320 225129 3949314 

046 7/26 NW 4 10 224974 3947330 121 7/31 NE 3 80 224432 3949797 

048 7/26 NW 28 230 224489 3947213 122 7/25 NE 10 10 224877 3949478 

049 7/26 NE 3 30 224360 3947998 123 7/25 SE 6 320 224837 3949409 

050 7/26 NE 8 250 225014 3947441 124 7/31 NW 6 290 224684 3948988 

051 8/01 SW 7 160 224706 3948318 125 7/25 SW 5 310 225027 3949327 

053 8/01 SW 4 260 225091 3947871 126 7/31 SW 7 30 224533 3949060 

054 8/06 NE 5 270 225585 3947749 128 7/31 SE 19 50 224466 3949775 

055 8/06 NE 4 280 225224 3947766 129 8/04 SW 4 330 224359 3949777 

057 8/06 NE 9 50 225250 3947900 131 8/08 SW 5 320 225019 3949290 

058 8/08 SW 4 300 224886 3947367 134 8/08 SW 11 40 225398 3949444 

060 8/08 SW 5 260 224891 3947235 138 8/08 NW 8 340 224286 3950045 
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6 176 7/01 NW 5 120 224183 3947016 10 246 6/21 SE 2 180 223656 3950832 

178 7/01 SW 6 110 224057 3946674 247 6/21 SW 5 200 223646 3950944 

179 7/01 SE 7 60 224214 3946813 248 7/05 SW 8 40 223873 3951748 

180 7/11 SE 2 240 224273 3947739 249 7/12 SE 4 210 223719 3950928 

181 7/06 NW 9 130 224389 3947529 252 7/05 NE 25 360 223588 3951709 

182 7/12 SW 6 30 223501 3945720 253 7/05 NE 5 360 223945 3951731 

183 7/22 SW 6 90 223753 3945805 257 7/18 SE 4 180 223468 3951137 

184 7/18 SW 2 80 223918 3947537 258 7/24 SW 8 310 223911 3951647 

186 7/22 SE 24 120 223513 3945924 262 8/05 SW 4 180 223318 3951082 

189 7/22 NE 8 90 223352 3945815 264 8/05 SE 15 350 223309 3950985 

190 7/28 NE 35 90 224230 3947098 265 8/05 SW 7 310 223113 3951321 

191 7/28 SW 5 80 224165 3946821 266 7/24 SW 12 270 223398 3951498 

192 8/02 SW 6 60 223875 3947205 267 7/24 NE 12 60 224138 3951954 

194 7/28 SW 3 80 224122 3946705 268 7/24 NE 2 190 223708 3951373 

196 7/28 NE 3 170 223876 3946557 270 8/05 NW 4 350 223415 3950932 

197 8/02 SW 6 150 224004 3946595 271 8/05 NE 3 20 223623 3950950 

198 8/02 NW 20 110 224491 3947768 272 8/05 SE 5 360 223410 3950940 

199 8/02 NE 10 90 224184 3947151 273 8/05 NW 5 290 223148 3951343 

200 8/07 NE 5 140 224117 3946542 275 8/05 SE 7 70 223804 3951687 

201 8/07 NE 10 30 223984 3947391 277 8/05 NE 5 140 223627 3951451 

7 142 7/11 SE 8 10 223283 3949738 13 281 7/02 SW 15 170 225312 3945752 

143 8/01 NE 6 40 223426 3949171 283 7/15 NW 8 130 225726 3949055 

144 8/01 SE 12 20 223611 3949023 284 7/15 NE 20 160 225438 3949142 

211 6/24 NW 5 130 222305 3949742 285 7/02 SW 3 280 224881 3946038 

212 6/24 NE 2 320 221883 3949303 286 7/08 SW 8 270 224659 3946036 

213 6/24 NW 15 120 221674 3949284 287 7/02 NW 10 90 225796 3946988 

214 7/11 SE 11 330 223231 3949612 289 7/21 SE 5 320 225751 3946231 

215 7/17 NE 8 270 223098 3949960 291 7/26 NW 6 220 225383 3946558 

216 7/17 NW 28 30 223053 3948547 292 8/06 SE 3 260 224803 3945886 

217 7/17 SE 5 320 223294 3950179 293 8/06 SW 10 60 225944 3948153 

218 7/23 NE 8 90 222369 3949710 294 8/06 NE 21 240 224737 3945884 

220 7/23 NW 9 160 221549 3949220 295 7/15 SE 13 140 225245 3949170 

223 7/23 NE 8 10 221526 3948667 298 8/06 NE 8 200 225245 3946622 

226 7/23 SE 8 290 221931 3948751 299 8/06 NW 6 200 224983 3946644 

229 7/23 SE 6 320 223164 3948359 300 8/06 NE 9 310 225099 3946246 

234 8/04 NW 26 210 222728 3949318 316 6/21 SW 17 230 222921 3945465 

236 8/04 SE 9 30 222736 3949519 317 7/12 NE 14 290 223126 3946016 

237 8/04 NW 25 60 222344 3949139 318 7/17 NW 24 300 222877 3946171 

238 8/04 SE 6 20 221939 3949430 319 8/07 NW 8 130 223319 3945634 

239 8/04 NE 11 20 222527 3949228 320 8/07 NW 9 70 223213 3945937 
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APPENDIX IV |Select photographs of various treatment units.  The images were taken in order 
to illustrate structure and composition changes due to fire frequency.  All figures were taken 
on relatively level ground near a sample plot. 
 

 
 
 

 
 

 
Treatment Unit 13 – No fires in over twenty years.  Photograph taken 6/26/2008 near plot # 
295. 
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Treatment Unit 7 – One fire per decade, three years since last burn.  Photograph taken 

6/24/2008 near plot # 212. 
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Treatment Unit 3 – Two fires per decade, three years since last burn.  Photograph taken on 

8/02/2008 near plot # 088. 
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Treatment Unit 2 – Two and one half fires per decade, one year since last burn.  Photo taken 

7/08/2008 near plot # 040. 
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Treatment Unit 10 – Three fires per decade, three years since last burn.  Photo taken 

7/12/2008 near plot # 249. 
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Treatment Unit 1 – Five fires per decade, one year since last burn.  Photo taken 8/01/2008 

near plot # 020.
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