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Abstract:  

Switchgrass (Panicum virgatum L.), a native C4 perennial species, is being 
developed as a major cellulosic crop for biofuel feedstock production in the U.S. 
However, no information is available on mating behavior of plants under open pollinating 
conditions in the field. Accordingly, the objective of this study was to quantify selfing 
and outcrossing rates of switchgrass plants grown in the field. Two small (NL94 C2-3 
and SL93 C2-3), each having five parents, and two large (NL94 C3 and SL93 C3), each 
having 26 parents, lowland switchgrass breeding populations field established with three 
replications were used in the experiment. Ten seedlings from open-pollinated seeds of 
each parent in each replication per year were planned to grow in a greenhouse at the 
Agronomy Research Station, Oklahoma State University. In 2010, DNA samples were 
isolated from 1700 progeny of 62 seed parents while DNA samples were extracted from 
773 progeny of 42 parents in 2011. Sixteen Simple Sequence Repeat (SSR) markers were 
used to identify breeding origins of the progeny plants as compared with respective seed 
parents. Among 2473 progeny examined over two years, only one plant of SL 4×4 was 
identified to be selfed, indicating an extremely high outcrossing rate of 99.96%. The 
findings should help to better understand the sexual reproduction characteristics of 
lowland switchgrass and the identified selfed progeny could be useful in inbred line 
development. 
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CHAPTER I 
 

 

INTRODUCTION 

Switchgrass (Panicum virgatum L.) is a warm-season perennial grass native to 

North America. Switchgrass has numerous benefits as a bioenergy feedstock crop and it 

is widely used in soil and water conservation, as a pasture grass and for hay production 

(Rinehart, 2006). In recent two decades, switchgrass research has been intensified due to 

its potential use for bioenergy feedstock production. 

Increasing oil prices and growing concerns on climate change drive investment in 

research on finding new energy sources. Bioenergy is an alternative source of energy that 

is produced from crops such as sugar cane and corn, or environmentally friendly 

perennial grass species, such as switchgrass (McLaughlin et al., 1999). Biofuels from 

biomass have the potential to reduce the consumption of fossil oil. The Bioenergy 

Feedstock Development Program (BFDP) at Oak Ridge National Laboratory was 

developed to evaluate and select the promising feedstock as sources of bioenergy for 

national energy needs (Martinez-Reyna and Vogel, 2008).  

In the 1990s, the U.S. Department of Energy selected switchgrass as a herbaceous 

model for sustainable bioenergy development (Martinez-Reyna and Vogel, 2008). 

Switchgrass has advantages over annual crops for cellulosic biomass production because 

it does not have the annual establishment requirements with associated economic and net 
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energy input. The species is distributed across a wide geographic range demonstrating its 

wide adaptation. It tolerates diverse growing conditions on marginal quality land and 

requires low water and fertility input (McLaughlin et al., 1999). 

To improve the economic value of switchgrass as a biomass energy crop, it is 

crucial to develop new cultivars with greater biomass yields (McLaughlin et al., 1996). 

To date most of the switchgrass cultivars released are improved populations or synthetic 

cultivars that were developed using breeding methods that utilize additive genetic 

variation (Taliaferro, 2002). Research has been conducted to determine whether heterosis 

occurs for improving biomass yield in first generation single- and double-cross progeny 

populations (McLaughlin et al., 1999).   

Heterosis is the biological phenomenon that exhibits F1 hybrid superior 

performance over its parents. It has been observed in many crops and the utilization of 

heterosis has contributed tremendously to the increased productivity in maize and rice 

(Garcia et al., 2008; Zhou et al., 2012). Heterosis has been reported in switchgrass 

(Martinez-Reyna and Vogel, 2008; Vogel and Mitchell, 2008). Inbred lines are expected 

to play a fundamental role in breeding heterotic cultivars in switchgrass. Switchgrass is 

an allogamous species (Talbert et al., 1983). One recent experiment indicates the 

presence of self-incompatibility mechanisms leading to producing very little or no seed 

when self-pollinated (Martinez-Reyna and Vogel, 2002). However, many perennial 

species often are not completely outcrossing, exhibiting some selfing traits (Schemske 

and Lande, 1985). Taliaferro and Hopkins observed a selfing rate of less than 1% in 

switchgrass (Taliaferro and Hopkins, 1996; Taliaferro et al., 1999). Liu and Wu (2011) 
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reported that in 456 progeny from the NL94, 279 progenies (61.2%) resulted from self-

fertilization in a growth chamber environment.  

A mating system describes the way in which a given population reproduces 

sexually and it plays an important role determining how to transfer genetic information 

from one generation to the next (Brown and Allard, 1970). The primary mating systems 

in plants include outcrossing, selfing, and apomixsis (Jarne and David, 2008).  

Traditional methods of assessing the mating system have been based on observations on 

various features of floral morphology, on the behavior of pollinators, or on the results of 

controlled crosses (Shaw et al., 1981). However, the information derived from these 

methods is inadequate for quantitative estimates of mating-system parameters and is 

unable to provide direct measures of success of matings in populations. In the last three 

decades, plant geneticists began to use molecular marker tools to obtain quantitative 

estimates of mating system parameters. 

Microsatellite, alternatively known as simple sequence repeat (SSR), has become 

a useful molecular tool in various aspects of molecular genetic studies in the past decade, 

including assessment of genetic diversity, genetic linkage mapping, QTL analysis, and 

marker-assisted selection in important crops, such as cotton (Liu et al., 2000), barley 

(Zietkiewicz et al., 1994), wheat (Zhou et al., 2008) and sorghum (Hash et al., 2003). 

SSR markers are repeats of short nucleotide sequences, usually equal to or less than six 

bases per core repeat in length, that vary in number. SSR markers are highly 

polymorphic, abundant, easy to use, and have become an important marker system in 

switchgrass genetic diversity studies (Narasimhamoorthy et al., 2008) and genetic linkage 
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mapping (Liu et al., 2012; Okada et al., 2010). A large number of SSR markers have been 

developed in switchgrass (Tobias et al., 2006; Tobias et al., 2008; Wang et al., 2011). 

To estimate mating system parameters, progeny array approach (PAA) is 

commonly used which is based on the comparison of band pattern between maternal 

plant and progeny. To date no information is available on mating behavior of switchgrass 

plants under open pollinating conditions in the field. Accordingly, the objective of this 

study was to quantify selfing and outcrossing rates of lowland switchgrass plants grown 

in the field and to identify the selfed progeny which would be valuable for switchgrass 

inbred line development. 
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CHAPTER II 
 

 

REVIEW OF LITERATURE 

Significance of switchgrass for bioenergy 

With the increase in oil prices and concerns about environmental issues, the 

United States of America has invested significant resources to develop biofuels as fuel 

substitutes of gasoline for sustainable development and national energy security.  Ethanol 

is the most widely used liquid biofuel and can be produced from feedstock sources, such 

as sugar, starches or from cellulosic biomass. The production and use of ethanol for fuel 

is an effective way to decrease the dependency on fossil oil and reduce greenhouse gas 

emission (Demirbas, 2007). According to the advantages of bioethanol, many countries 

are dedicated to conducting research and innovating advanced technology towards the 

conversion from cellulosic biomass to ethanol. In 2005, total world ethanol production 

was 12.2 billion gallons, 70% of which was produced by the US and Brazil (Martines-

Filho et al., 2006). In Brazil, about 4.2 billion gallons of ethanol are made annually from 

sugar cane (Goldemberg, 2007). The current biofuels industry in the US is based almost 

entirely (98%) on conversion of corn to ethanol (Petrulis et al., 1993). Numerous studies 

indicated that the conversion of corn into ethanol energy was negative (Pimentel and 

Patzek, 2005). It takes a lot of energy to convert corn into ethanol, such as irrigation, 
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fertilizer, pesticide, and herbicide (Patzek et al., 2005). Moreover, ethanol production 

using corn grain required 29% more fossil energy than the ethanol fuel produced 

(Pimentel and Patzek, 2005). In addition, growing large amounts of corn necessary for 

ethanol production needs substantial cropland suitable for food production and is 

questioned to cause new problems (Varvel et al., 2008).  

Ethanol or other biofuels can be made from cellulosic materials such as wood, 

grass and wastes as well (Lynd et al., 1991). The National Bioethanol Program aims to 

develop technology, which can produce ethanol from the sugars in cellulose and 

hemicelluloses. This provides a promising future for a wide range of feedstock materials 

to be supplementary with current ethanol production from corn and even better to be a 

substitute for corn to produce the ethanol. The Biomass Feedstock Development Program 

at Oak Ridge National Laboratory (ORNL) funded by US-DOE initiated a series of 

research in 1992 to develop switchgrass as a major cellulosic biomass energy feedstock 

(Sanderson et al., 1996). 

Biological characteristics of switchgrass 

Switchgrass is a perennial species that is native to North America and it has 

grown in the Great Plains for centuries. The plant grows 3 to 10 feet tall with an 

extensive root system (Mitchell et al., 2012). Once established, well-managed 

switchgrass for biomass should have a productive life of 10 years or longer (Garland, 

2010). It is traditionally planted for pasture and hay production, soil and water 

conservation and wildlife habitat (Mitchell et al., 2012). 
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 Switchgrass is a C4 species, fixing carbon by multiple metabolic pathways with 

high water use efficiency (Koshi et al., 1982; Moss et al., 1969). Switchgrass is adapted 

to a wide geographic range, covering most of the continental U.S., east of the Rocky 

Mountains and extending into Mexico and Canada (Parrish et al., 2008). Natural selection 

combined with environmental variation due to latitude, altitude, soil type, and 

precipitation have resulted in significant genetic and phenotypic variation in switchgrass. 

Switchgrass is a highly polymorphic species, and it has a ploidy series from 2n=2x=18 to 

2n=12x=108 with two major cytotypes, lowland and upland (Porter Jr, 1966). Upland 

types are mainly octoploids (2n=8x=72) and tetraploid (2n=4x=36), typically shorter and 

generally found on upland sites (Sanderson et al., 1996). Lowland switchgrass is tall, 

very robust and found in more moist low areas. Lowland types are predominately 

tetraploids (2n=4x=36) (Barnett and Carver, 1967).  Lowland types have exceptional 

biomass yields and perform well in areas where there is a longer growing season with 

warmer temperatures such as the Southern USA (Bouton, 2007; Porter Jr, 1966). Within 

these two major cytotypes, further subdividing into southern lowlands and northern 

lowlands; southern uplands and northern uplands is also reported according to latitudinal 

adaptation (Casler et al., 2004; Casler et al., 2007).  

Breeding switchgrass for bioenergy feedstock production 

Switchgrass is an outcrossing species and sexually reproduced by seed. Cultivars 

are expected to be either: broad genetic base plant populations; synthetics compromising 

2 to 12 selected parent plants; or F1 hybrids (Taliaferro et al., 2000). To improve 

economic value of switchgrass as a biomass energy crop, many efforts were made to 

maximize potential biomass yields (Sanderson et al., 1996). Initial switchgrass cultivar 
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development focused on accession or ecotype collections, screening the performance and 

geographic adaptation in field trials and then releasing the best accession population as a 

new cultivar (Vogel, 2004). 

More research activities were performed to develop experimental synthetic 

cultivars using elite parent plants from breeding populations (Taliaferro, 2002). It is 

technically feasible to produce F1 hybrids, however, no commercial F1 hybrid 

switchgrass cultivar has been produced (Taliaferro et al., 2000). Martinez-Reyna and 

Vogel (2008) reported the hybridization in switchgrass spaced plants between ‘Kanlow’, 

a lowland tetraploid and ‘Summer’, a upland tetraploid. Research on tissue culture 

techniques for clonal reproduction of parent plants also accelerates the breeding process 

for desired or selected genotypes. A previous study reported a micropropagation 

procedure was developed with nodal segments and produced hundreds of plantlets from a 

single parent plant of switchgrass in a period of three months (Alexandrova et al., 1996). 

This technique now makes possible rapid development of isolated breeding blocks of 

superior plants for developing narrow genetic base synthetics as well as F1 hybrids 

(McLaughlin et al., 1999).   

Heterosis and inbred lines in switchgrass 

Heterosis or hybrid vigor refers to the performance of progeny that exhibit greater 

biomass, speed of development and fertility compared to both parents (Birchler et al., 

2010). Heterosis has been successfully employed by corn cultivar development resulting 

in high yield and uniform hybrids (Bouton, 2007). Hybrid maize development improves 

farmers’ productivity and helps ensure a reliable, sustainable food supply (Bouton, 2007). 
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Corn hybrid plants are produced by crossing homozygous inbred lines. Homozygosity in 

an inbred line is achieved by repeated inbreeding and in general the inbred line is 

considered genetically pure by the sixth or seventh generation of continuous selfing 

(Troyer, 1986). The selection and production of inbred lines are extremely important to 

provide superior F1 hybrids. Hybridizing inbreds may have the potential to dramatically 

increase the biomass yield of switchgrass. Heterosis has been reported in switchgrass 

(Martinez-Reyna and Vogel, 2008; Vogel and Mitchell, 2008). As switchgrass is a 

naturally outcrossing species, the identification of selfed progeny is important to 

producing inbreds that can be used in the production of heterotic hybrids. However, only 

first generation of selfed progeny was reported in one population (Liu and Wu, 2011). 

Self-incompatibility and mating behavior of switchgrass 

Switchgrass, an open-pollinated species, produced very little or no seed when 

self-pollinated indicating the presence of incompatibility mechanisms. Self-

incompatibility in some grasses is determined by the action of two independently 

segregating polyallelic loci, S and Z. The pollen grain is specified gametophytically by 

the complementary interaction of S and Z genes. A pollen grain will be incompatible with 

a style that has the same alleles (Martinez-Reyna and Vogel, 2002). Mating system is one 

of the major attributes of the reproductive biology of a plant species and it determines 

how genetic information is transferred from one generation to the next generation 

(Schoen and Clegg, 1984). A mating system is a way in which a group is structured in 

relation to sexual behavior, which describes the proportion of matings between related 

individuals or the proportion between unrelated individuals within a population (Barrett, 

2002). Selfing occurs when both the pollen and ovule are produced by the same 
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individual (Dudash and Murren, 2008).The primary mating systems in plants are 

outcrossing, selfing, and apomixsis.  

The mixed-mating model is in a central position in both theoretical and 

experimental investigations in plant population genetics. Mixed-mating model was 

chosen to describe the pattern of gene transmission in plant populations due to several 

reasons (Ritland, 2002). First, inbreeding exists in many plant species and therefore the 

random-mating model is inappropriate. Second, mixed-mating model is simple and only 

requires the estimation of selfing rate and outcrossing rate. Third, mixed-mating model is 

a reasonable description of the reproductive biology in many species (Schoen and Clegg, 

1984). Mixed mating is appropriate in hermaphrodite plant species that reproduce by both 

self- and cross-fertilization and quantitatively describes the basic mating system 

parameters, such as outcrossing, selfing and inbreeding coefficient (Goodwillie et al., 

2005). 

Reliable information on mating system is essential to understand how genotypic 

frequency is transformed over generations and in an evolutionary environment. 

Traditional methods of assessing the mating system have been based on observations on 

various features of floral morphology, on the behavior of pollinators, or on the results of 

controlled crosses experiments (Shaw et al., 1981). However, the information derived 

from these methods is inadequate for quantitative estimates of mating-system parameters 

and is influenced by environmental factors and is unable to provide direct measures of 

mating type in populations.  
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Conventional plant breeding is time consuming and dependent on environmental 

conditions. Therefore, breeders are extremely interested in new technology that makes 

this procedure more efficient (Korzun, 2002). Molecular markers have been widely 

developed as a genetic tool for plant genotyping and gene mapping; it is also applied to 

investigate the genetic variation of plants in the past few decades. Molecular markers 

provide opportunities to improve the research progress by using a series of novel 

approaches. 

Molecular markers used in experiments to quantify mating systems 

In recent years, different markers systems have been developed and applied to 

investigate the mating systems in a range of plant species. The three most commonly 

used markers in evaluation of mating systems are allozymes, amplified fragment length 

polymorphism (AFLP) and microsatellites (Jarne and David, 2008). Traditionally 

isozymes have been utilized for this purpose (Epperson and Allard, 1984; Politov and 

Krutovskii, 1994). Kittelson and Maron (2000) estimated an outcrossing rate of 0.78 in 

Lupinus Arboreus based on four isozyme loci from 34 maternal progeny arrays of seeds. 

Allozymes at two loci were used for progeny arrays grown from the open-pollinated seed 

to calculate outcrossing rate in alfalfa in easy-to-trip population (0.76), hard-to-trip 

population (0.75) and the CUF101 parent population (0.77) (Knapp and Teuber, 1993).  

AFLPs are dominant markers with two alleles per locus (present/absent) if the 

organism is a diploid, although the probability that different bands actually represent 

alleles of the same locus is generally unknown (Mueller and Wolfenbarger, 1999). These 

limitations might, to a certain extent, be counterbalanced by the large number of loci 
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scored. Muluvi et al. (2004) estimated the outcrossing rate of 0.74 in a mixed mating 

system study of Moringa oleifera using AFLP markers. Muluvi et al. (2010) reported the 

outcrossing rate of 89% in Warburgia ugandensis using the mixed mating model with 

AFLP markers.  

Microsatellites, alternatively known as simple sequence repeat (SSR) markers 

have become a useful molecular tool in various molecular genetic studies in the past 

decade, including assessment of genetic diversity, genetic linkage mapping, 

fingerprinting, and marker-assisted selection (Rakoczy-Trojanowska and Bolibok, 2004). 

SSR markers are repeats of short nucleotide sequences, usually equal to or less than six 

bases in length, that vary in number. SSR markers are codominant, are highly 

polymorphic, abundant, and easy to use (Hayden and Sharp, 2001). Using six SSRs, 

Muraya et al. (2011) estimated the outcrossing rates of 12 wild sorghum populations in 

four sorghum growing regions and indicated that wild sorghum in Kenya exhibits a 

mixed mating system and the crossing rate is affected by ecological factors. de Souza et 

al. (2012) estimated the cross-pollination rate using SSRs to support the hypothesis of 

frequent allogamy with high rates of outcrossing in two olive genotypes.  

Previous studies indicated the rate of self-pollination in switchgrass varied greatly 

from less than 1% (Martinez-Reyna and Vogel, 2002; Taliaferro and Hopkins, 1996) 

when its inflorescences were bagged to higher than 60% when two plants were grown in 

a growth chamber (Liu and Wu, 2011). Identification of selfed progenies is very useful to 

develop advanced inbred lines which can serve as parents for F1 hybridization. Liu and 

Wu (2011) confirmed selfed progeny in switchgrass with 12 simple sequence repeat 

(SSR) markers. It is time consuming if a large amount of progeny are genotyped. A 
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duplex PCR protocol of SSR markers sampling much of the switchgrass genome has 

been reported recently (Liu and Wu, 2012). Evidently, a duplex will save approximately 

50% of time as compared with two separate PCR reactions. 

Switchgrass is a perennial tall grass and selected by the U.S. Department of 

Energy as a model herbaceous energy crop. Breeding protocols can affect improvement 

of forage yields of switchgrass. The development of hybrid switchgrass cultivars is 

possible with the laboratory culture techniques and the strong self-incompatibility of 

switchgrass. The homozygous switchgrass inbred lines are extremely valuable to serve as 

parents to produce F1 hybrids. However, since the presence of self-incompatibility in 

switchgrass, it is very challenging to produce the selfed progenies. Selfing rate is 

influenced greatly by ecological and genetic factors. A previous study reported that a NL 

94 population genotype grown in a growth chamber had a self-fertilization rate of more 

than 60% (Liu and Wu, 2011). However, no information is available on mating behavior 

of switchgrass plants under open pollinating conditions in the field.  
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CHAPTER III 
 
 
 

METHODOLOGY 

Experimental site, materials and experimental design 

Switchgrass plantings used in this study were field established at Cimarron Valley 

Research Station at Perkins, Oklahoma. According to Oklahoma Ag Experiment Station 

Field and Research Service Unit website (http://www.oaes.okstate.edu/field-and-research-

service-unit/agronomy-research-station-perkins-1/Cimarron%20soil%20map.pdf/view), the 

soil type was teller fine sandy loam. 

Four lowland switchgrass populations were used in this study: two genetically 

narrow-based populations, SL93 C2-3 (SL93 and SL used interchangeably) and NL94 

C2-3 (NL94 and NL used interchangeably), each population having five parental 

genotypes with 3 replications respectively; and two genetically broad-based populations, 

SL93 C3 and NL94 C3, each comprising 26 parental plants with three replications. All 

southern lowland plants were selections from SL 93 C-1 selection nursery and all 

northern lowland plants were from NL 94 C-1 selection nursery. Both SL93 C-1 and 

NL94 C-1 nurseries were space-planted in separate field plots at Lake Carl Blackwell in 

2001 and selections were made in 2008. Switchgrass parental clones of SL93 C2, NL94 

C2, SL93 C2-3 and NL94 C2-3 populations were prepared in a greenhouse in the winter 

between 2008 and 2009, and transplanted on 1m centers into 
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four experimental plots in the spring of the same year. SL93 C2-3 and NL94 C2-3 were 

planted on April 09, 2009 while SL93 C2 and NL94 C2 were established on April 22 in 

the same year. Therefore, the experimental design was a randomized complete block 

design (RCBD) with three replications.  

Field management 

After transplanting clonal plants into field plots at Perkins, water was 

supplemented to ensure newly grown plants survive. The four plots were fertilized with 

67.5 kg nitrogen/hectare in May of 2009, 2010 and 2011. Weeds were controlled by an 

application of 1.1 kg active gradient of atrazine (pre-emergence herbicide) per ha in 

spring annually. Plant residues in the plots were burned before greening up in February of 

2010 and 2011.  

Seed harvesting, prechill and planting 

Mature inflorescence samples were hand-harvested from each plant for every 

replication in each of the four plots at Perkins on Oct 1, 2010 and November 1, 2011, 

respectively. Each sample consisting of five morphologically mature inflorescences was 

kept in a separate bag in 2010. Leaf tissues for each of the 62 maternal plants were hand 

collected on April 27, 2011. In 2011, since the summer weather was harshly hot and dry, 

consequently seed set in switchgrass was low, 20 mature inflorescences were collected in 

an attempt to get more seeds for the research. After harvest, seeds were dehydrated for 

about 4 weeks at the room temperature. Then seeds were removed from the panicles by 

rubbing and cleaned utilizing a South Dakota Seed Blower (Seedburo Equipment Co., IL, 

USA). Normally, newly harvested switchgrass seeds have a high percentage of 
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dormancy. It is desirable to break the dormancy to achieve a higher germination rate 

(Teel and Barnhart, 2003). According to Haynes et al. (1997), seeds were placed on wet 

white filter papers soaked with a 0.2% KNO3 in pertri dishes and stratified at 4°C in a 

refrigerator for two weeks, which is called prechilled procedure. After the prechill 

treatment, the seeds were respectively sown into black cells containing a soil mix in a 

greenhouse at Agronomy Research Station, Oklahoma State University. Seedlings were 

counted after 7 days, and each of 10 random seedlings from each sample was 

transplanted into one container for further growth in the greenhouse for leaf tissue 

collection. 

DNA extraction, polymerase chain reaction and gel electrophoresis 

Total genomic DNA was extracted from 0.15g fresh frozen leaf tissues of each of 

the progenies and their parents using the CTAB method (Wang et al., 2011). DNA 

concentrations were quantified using a NanoDrop DN-1000 Spectrophotometer 

(NanoDrop products, DE, USA). Each DNA working solution was adjusted to a 

concentration of 10ng/µl as the template for PCR. For PCR amplification of the samples 

collected in 2010, the following eight primer pairs (PVGA-1549/1550, PVCAG-

2389/2390, PVCA-615/616, PVCA-815/816, SWW-1622, 5211_B07, PVAAG-

3163/3164, PVGA-1143/1144) (Table 3.1) were used to genotype the maternal plants and 

10 open-pollinated progeny of each maternal plants. In total, 1762 DNA samples 

including 62 parental plants and their open-pollinated progenies with 3 replications were 

genotyped with the eight SSR primer pairs in 2010. With the successful development of 

duplex PCR protocol in our lab (Liu and Wu, 2012), the following eight primer pairs 

(PVCAG-2397/2398, PVCAG-2517/2518, PVCAG-2269/2270, PVCAG-2361/2362, 
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SWW-2622, 5211_B07, PVAAG-3163/3164, PVGA-1143/1144) (Table 3.2) were 

performed on all samples collected in 2011 using the duplex-PCR protocol of Liu and 

Wu (2012). Putative selfed progenies were further genotyped by four additional SSR 

duplexes (PVCAG-2147/2148, SWW-1394, NFSG-112, NFSG-036, PVAAG-3311/3312, 

PVGA-1813/1814, PVCA-893/894, SWW-1615) for accurate identification (Table 3.3). 

In the analysis of the samples collected in 2010, the SSR-PCR amplifications 

were performed according to Wu and Huang (2008). Each reaction of 10.5 µl volume 

consisted of 4.22µl of H2O, 1.0 µl 10×buffer, 0.6µl 25mM of MgCl2, 0.2µl 10mM of 

dNTP, 0.1µl 50U/µl Taq DNA polymerase, 1.34µl 1 pmol/µl forward primer and reverse 

primer each, 0.2µl 1µM IR-M13 primer, and 1.5 µl 10ng/ µl of template DNA. In the 

analysis of the samples collected in 2011, duplex-PCR amplifications were performed in 

a 11 µl final volume consisting of 1.64 µl of H2O, 1µl 10×buffer, 0.96 µl 25mM of 

MgCl2, 0.2 µl 10mM of dNTP, 0.1 µl 50U/ µl Taq DNA polymerase, 1.3 µl Forward 

primer and Reverse primer for each primer pair, 0.2 µl 1 µM IR-M13 primer, and 1.7 µl 

10ng/µl of template DNA (Liu and Wu, 2012). 

PCR reactions were performed in a 96-well PCR plate using a 2720 Thermal 

Cycler (Applied Biosystems, IL, USA) with the following program with an initial 

denaturation of 5 min at 95°C for 1 cycle, 14 cycles of 20s at 94°C, 1 min at 58°C, 30s at 

72°C; 28 cycles of 20s at 94 °C, 1min at 55°C, 30s at 72°C; and a final 10 min extension 

at 72°C. Then the temperature decreased to 4°C. 5.0 µl blue stop solution was added to 

each PCR reaction well, spun down, and denatured for 3 min at 94°C in the 2720 thermal 

cycler (Applied Biosystems, IL, USA). The PCR products from a plate labeled with 
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700nm florescence dye and the other plate labeled with 800nm florescence dye (LI-COR 

Inc., NE, USA) were mixed together.  

For scoring each genotype, the mixed amplified products were separated on 

6.5%KBplus LI-COR gels (LI-COR Inc., NE, USA) with a 64-tooth comb and run at 1500 

volts for 1 hour and 45 min in a LI-COR 4300 DNA Analyzer (LI-COR Inc., NE, USA). 

A DNA marker of 50-350bp size standards (LI-COR Biosciences, Lincoln, NE, USA) 

was also loaded to determine the size of the amplified fragments. Bands were visually 

scored.  

Data analysis  

Progeny array approach is used to identify the selfed progeny based on the 

comparison between maternal parent genotypes and their respective open-pollinated 

progenies. The data were processed in Microsoft Excel and displayed the trend of 

outcrossing rate with eight SSRs from four switchgrass populations in 2010 and 2011 

using bar chart.  
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   Table 3.1 Parameters of eight microsatellite markers used in 2010 
 

 
 

 
 
                                                       
 
 

 

SSR marker ID        Type Repeat motif     LG Position Lmin-max(bp) Primer pmol 

PVGA-1549/1550 gSSR   (GAA)6      1b 83.4 270-280 1 

PVCAG-2389/2390 gSSR    (GAAGG)4-(AGCAGG)4      7b 3.8 240-255 1 

PVCA-615/616 gSSR   (AC)11      4b 71.9 215-230 1 

PVCA-815/816 gSSR   (AC)27      2a 70 305-330 1 

SWW-1622 eSSR   (GCG)n      2b 56.3 240-250 1 

5211_B07 eSSR   (AGC)8      2a 17.2 240-255 1 

PVAAG-3163/3164 gSSR   (ACA)29      5b 63.5 211-293 1 

PVGA-1143/1144 gSSR   (GA)7-(GA)8      5a 29.3 156-195 1 
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      Table 3.2 Parameters of eight microsatellite markers used in 2011 

SSR marker ID Type      Repeat motif      LG Position Lmin-max(bp) Primer pmol 

PVCAG-2397/2398 gSSR         (CAG)12      3b 36.3 161-189        2 

PVCAG-2517/2518 gSSR         (GCT)8      9a 6.9 213-234        2 

PVCAG-2269/2270 gSSR         (CAG)8      4b 0 209-262        0.5 

PVCAG-2361/2362 gSSR         (AGC)8      1b 25.9 268-277        1 

SWW-2662 eSSR         (AGG)n      2b 73.5 178-197        1 

5211_B07 eSSR         (AGC)8      2a 17.2 240-253        1 

PVAAG-3163/3164 gSSR         (ACA)29      5b 63.5 211-293        1 

PVGA-1143/1144 gSSR         (GA)7-(GA)8      5a 29.3 156-195        1 
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Table 3.3 Parameters of additional eight microsatellite markers used for genotyping two putative selfed progeny 
 

 

 

SSR marker ID Type       Repeat motif LG Position Lmin-max(bp) Primer pmol 

PVCAG-2147/2148 gSSR              (CAG)7 6b  150.5 285-306          1 

SWW-1394 eSSR              (GGT)n 7a  60.4 194-217          0.5 

NFSG-112 gSSR              (GA)n 8b  48 189-195          0.5 

NFSG-036 gSSR              (GA)n 4a  0 120-167          0.5 

PVAAG-3311/3312 gSSR              (CTT)28 2a  29.6 140-170          0.5 

PVGA-1813/1814 gSSR              (GA)7 5a  72.2 236-276          1 

PVCA-893/894 gSSR              (AC)19 3b  65.3 297-336          1 

SWW-1615 eSSR              (GGC)n 1a  109.8 185-216          1 
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CHAPTER IV 
 

 

FINDINGS 

Seed germination in 2010 and 2011 

The seeds collected in 2010 germinated well, resulting in 1700 half-sib progeny 

with 62 female parents for the genotyping research. However, panicles harvested from 

the same parental plants in 2011 had poor seed set and harvested seeds had low 

germination. Consequently, 773 half-sib progeny of 42 female parents were developed 

(Tables 4.1- 4.4).  

SSR markers for PCR amplification in four populations in 2010 and 2011 

In 2010, eight SSR markers (Table 3.1) that were distributed in different linkage 

groups or the same linkage group (distance>50cM) produced clearly scorable bands with 

approximate sizes as published previously (Figure 4.1). The allele band size range of the 

eight SSR markers was from 156bp (PVGA-1143/1144) to 330bp (PVCA-815/816). In 

2011, with the development of duplex-PCR in switchgrass (Liu and Wu, 2012), four 

duplexes of eight primer pairs (Table 3.2) that positioned on different linkage groups or 

the same linkage group (distance 50>cM) were utilized to amplify the clearly readable 

bands (Figure 4.2). The allele band size range of the 8 SSR markers was from 156bp 

(PVGA-1143/1144) to 277bp (PVCAG-2361/2362). 
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Determination of outcrossed and selfed progeny using SSR markers 

            All SSR markers worked effectively for amplifying target bands in the parents 

and open-pollinated progeny. Band patterns were scored for each parent and their 

progeny. Most of the progenies were judged true progeny if at least one maternal band 

was present. There were 60 progenies judged contaminants if target band was not from 

seed parents, assuming no mutation occurred. 

In genotyping the progeny population of NL94 C2-3 in 2010, the identified 

outcrossing rate was 43.2% with one SSR, increased to 59.5% with two SSRs, 62.2% 

three SSRs, 79.1% four SSRs, 91.9% five SSRs, 96.7% six SSRs, 98% seven SSRs, and 

100% with eight SSRs (Figure 4.3). The identified outcrossing rate of NL94 C2-3 in 2011 

was 66.7% with one SSR and reached to 100% when genotyped with six SSRs (Figure 

4.4). In the 2010 progeny population of SL93 C2-3, the identified outcrossing rate was 

71.4% with first SSR and 100% with three SSRs (Figure 4.5). The identified outcrossing 

rate of SL93 C2-3 in 2011 was 99.2% with five SSRs and remained the same with 

additional three SSRs, indicating one progeny of parent (SL 4×4) was derived from 

selfing (Figure 4.6). Similarly, one progeny of parent (SL 13×6) was identified to be 

selfed in the progeny of SL93 C3 produced in 2010 subsequently the identified 

outcrossing rate was 99.9% with eight SSRs (Figure 4.7); in 2011, the identified 

outcrossing rate of the population accumulated to 100% (Figure 4.8). In population NL94 

C3, the identified outcrossing rate was 100% in both 2010 and 2011, respectively (Figure 

4.9 and Figure 4.10). To be accurate, and make sure the selfed progenies were truly from 

selfing, the two putative selfed progenies with their respective parents, SL 13×6 and SL 

4×4, were re-genotyped with eight SSRs (Figure 4.11). Later, these two selfed progenies 
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were further genotyped by four additional SSR duplexes (i.e. eight SSRs) (Table 3.3) for 

accurate identification and one progeny of SL 4×4 demonstrated truly selfed band 

patterns (Figure 4.12 and Figure 4.13).  

Talbert et al. (1983) reported an average selfed rate of less than 1% when seed 

yields of bagged inflorescences were compared with those of unbagged ones of lowland 

switchgrass plants. Similar results were reported by Taliaferro and Hopkins (1996). 

Martinez-Reyna and Vogel (2002) reported a 0.35% selfing rate in tetraploid plants and 

1.39 % for octoploid plants using a similar bagging method. In this experiment, recently 

available SSR markers were used in the identification of selfing vs. crossing progeny in 

four lowland switchgrass populations under open pollination environments for two years. 

Our result indicated lowland switchgrass plants produced only one selfed progeny out of 

more than 2,400 open-pollinated progeny harvested on 62 different parents. The results 

indicate lowland switchgrass plants produced less selfed progeny when grown in the field 

than bagged inflorescences or when grown in a growth chamber. The results further 

indicated that lowland switchgrass is a complete or near complete outcrossing species in 

open-pollination environments. Martinez-Reyna and Vogel (2002) reported 

prefertilization incompatibility under gametophytic control as responsible for the very 

low selfing rate. More recently, Liu and Wu (Liu and Wu, 2011; Liu and Wu, 2012)  

reported much higher selfing rates when two plants were grown in a growth chamber. 

The higher self-fertilization rate likely resulted from the absence of pollen produced from 

other switchgrass plants of the same ploidy level (Liu and Wu, 2011). 
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Table 4.1 Seedling list of NL94 C2-3 in 2010 and 2011 

 

 

 

 

 

 

 

 

 

 

 

 

LU ID Nursery   ID Rep                      Progeny 

   

2010 2011 
1   1 10 10 
2 NLL3×7 2 10 10 
3 

 

3 10 10 
4 

 

1 10 0 
5 NLL4×18 2 10 0 
6 

 

3 10 0 
7 

 

1 10 10 
8 NLL7×1 2 10 0 
9 

 

3 10 0 
10 

 

1 10 7 
11 NLH41×4 2 10 0 
12 

 

3 10 0 
13 

 

1 10 0 
14 NLH66×12 2 10 0 
15   3 10 10 

     

  

Total: 150 57 
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Table 4.2 Seedling list of SL93 C2-3 in 2010 and 2011 

 

  

 

 

 

 

 

 

 

 

 

 

LU ID Nursery ID Rep   Progeny 

   

2010 2011 
16   1 10 10 
17 SL4×4 2 10 10 
18 

 

3 10 10 
19 

 

1 10 10 
20 SL13×6 2 10 10 
21 

 

3 10 5 
22 

 

1 10 10 
23 SL18×23 2 10 0 
24 

 

3 10 10 
25 

 

1 10 10 
26 SL27×14 2 10 10 
27 

 

3 10 0 
28 

 

1 10 10 
29 SL28×16 2 10 10 
30   3 10 10 

     

  

Total: 150 125 
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 Table 4.3 Seedling list of SL93 C3 in 2010 and 2011 

LU ID Nursery ID  Rep   Progeny  
 

LU ID Nursery ID Rep     Progeny 

   

2010 2011 
 

      2010 2011 
31   1 10 10 

 

70 
 

1 0 0 
32 SL1×10 2 10 10 

 

71 SL20×18 2 10 0 
33 

 

3 0 0 
 

72 
 

3 0 0 
34 

 

1 0 0 
 

73 
 

1 10 10 
35 SL4×4 2 0 10 

 

74 SL21×12 2 10 10 
36 

 

3 0 10 
 

75 
 

3 10 10 
37 

 

1 10 10 
 

76 
 

1 10 0 
38 SL4×13 2 10 10 

 

77 SL23×28 2 10 10 
39 

 

3 10 10 
 

78 
 

3 10 0 
40 

 

1 10 10 
 

79 
 

1 10 5 
41 SL6×28 2 10 10 

 

80 SL25×13 2 10 10 
42 

 

3 10 10 
 

81 
 

3 10 10 
43 

 

1 10 10 
 

82 
 

1 10 10 
44 SL7×11 2 10 0 

 

83 SL27×14 2 10 0 
45 

 

3 10 10 
 

84 
 

3 10 10 
46 

 

1 10 10 
 

85 
 

1 10 0 
47 SL8×25 2 10 10 

 

86 SL28×16 2 10 0 
48 

 

3 10 10 
 

87 
 

3 10 10 
49 

 

1 10 10 
 

88 
 

1 10 0 
50 SL10×27 2 10 10 

 

89 SL29×5 2 0 0 
51 

 

3 10 10 
 

90 
 

3 10 10 
52 

 

1 10 10 
 

91 
 

1 10 10 
53 SL10×30 2 10 0 

 

92 SL30×3 2 10 0 
54 

 

3 10 10 
 

93 
 

3 10 0 
55 

 

1 10 0 
 

94 
 

1 10 10 
56 SL12×1 2 10 0 

 

95 SL31×5 2 10 10 
57 

 

3 10 0 
 

96 
 

3 10 0 
58 

 

1 10 0 
 

97 
 

1 10 10 
59 SL12×20 2 10 10 

 

98 SL31×16 2 10 10 
60 

 

3 10 10 
 

99 
 

3 10 10 
61 

 

1 10 10 
 

100 
 

1 10 0 
62 SL13×6 2 10 10 

 

101 SL31×22 2 10 10 
63 

 

3 10 10 
 

102 
 

3 10 0 
64 

 

1 10 0 
 

103 
 

1 10 0 
65 SL18×23 2 10 10 

 

104 SL32×25 2 10 10 
66 

 

3 10 10 
 

105 
 

3 10 10 
67 

 

1 10 10 
 

106 
 

1 10 0 
68 SL19×2 2 10 10 

 

107 SL34×23 2 10 0 
69   3 10 10 

 

108   3 10 10 

  
      

  

Total: 710 505 
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Table 4.4 Seedling list of NL94 C3 in 2010 and 2011 

LU ID Nursery ID Rep       Progeny  LU ID Nursery ID Rep  Progeny 
      2010 2011       2010 2011 

109 1 10 10 148 1 10 10 
110 NLH6×8 2 10 0 149 NLL7×1 2 10 0 
111 3 10 5 150 3 10 0 
112 1 10 0 151 1 10 0 
113 NLH13×11 2 10 0 152 NLL7×10 2 10 0 
114 3 10 0 153 3 10 0 
115 1 10 0 154 1 10 0 
116 NLH27×2 2 10 0 155 NLL11×14 2 10 0 
117 3 10 0 156 3 10 0 
118 1 10 10 157 1 10 0 
119 NLH30×1 2 10 0 158 NLL17×9 2 10 0 
120 3 10 10 159 3 10 0 
121 1 0 0 160 1 0 0 
122 NLH41×4 2 10 0 161 NLL18×17 2 10 0 
123 3 10 0 162 3 10 0 
124 1 10 10 163 1 10 0 
125 NLH51×4 2 10 0 164 NLL24×17 2 10 0 
126 3 10 1 165 3 10 0 
127 1 10 7 166 1 10 0 
128 NLH59×6 2 0 0 167 NLL25×12 2 10 0 
129 3 10 0 168 3 10 0 
130 1 0 0 169 1 10 0 
131 NLH66×12 2 0 1 170 NLL26×8 2 10 0 
132 3 10 0 171 3 10 0 
133 1 10 0 172 1 10 0 
134 NLL1×8 2 10 0 173 NLL26×24 2 0 0 
135 3 10 0 174 3 0 0 
136 1 10 6 175 1 10 0 
137 NLL1×14 2 10 2 176 NLL27×27 2 0 0 
138 3 0 0 177 3 10 0 
139 1 10 0 178 1 10 0 
140 NLL2×2 2 10 0 179 NLL30×27 2 10 4 
141 3 10 0 180 3 10 0 
142 1 10 0 181 1 10 0 
143 NLL3×7 2 10 0 182 NLL33×9 2 10 0 
144 3 10 0 183 3 10 0 
145 1 10 0 184 1 10 0 
146 NLL4×18 2 10 0 185 NLL34×25 2 10 0 
147   3 10 0 186   3 10 10 

           

        

Total: 690 86 
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Figure 4.1 A gel image of SSR primer pair PVGA-1549/1550 genotyping SL93 C3 five parents and respective progeny derived from 
seed samples harvested in 2010. M stands for standard molecular size markers with specific sizes given on the right side of the gel. 
Parent samples are replicated two times (i.e. two gel lanes) and labeled with Nursery ID (see Table 4.3) in red color while individual 
progeny follow their parent samples.  
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Figure 4.2 A gel image of SSR primer pairs PVCAG-2361/2362 and PVCAG-2269/2270 on SL93 C3 five parents and respective 
progeny derived from seed samples harvested in 2011. M stands for standard molecular size markers with specific sizes are given on 
the right side of the gel. Parent samples are replicated two times (i.e. two gel lanes) and labeled with Nursery ID (see Table 4.3) in red 
color while individual progeny follow their parent samples. The upper bands are amplified by PVCAG-2361/2362 and lower bands 
are genotyped by PVCAG-2269/2270. 
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Figure 4.3 Outcrossing rates of 2010 NL94C2-3 progeny identified with eight SSR 

Figure 4.4 Outcrossing rates of 2011 NL94C2-3 progeny identified with eight SSR 
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Figure 4.5 Outcrossing rates of 2010 SL93 C2
markers  

 

 

Figure 4.6 Outcrossing rates of 2011 SL93 C2
markers  
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Figure 4.5 Outcrossing rates of 2010 SL93 C2-3 progeny identified with eight SSR 

 

Figure 4.6 Outcrossing rates of 2011 SL93 C2-3 progeny identified with eight SSR 
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Figure 4.7 Outcrossing rates of 2010 SL93 C3 progeny identified with eight SSR markers 

 

 

Figure 4.8 Outcrossing rates of 2011 SL93 C3 progeny identified with eight SSR markers 
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Figure 4.7 Outcrossing rates of 2010 SL93 C3 progeny identified with eight SSR markers 

 

Outcrossing rates of 2011 SL93 C3 progeny identified with eight SSR markers 
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Figure 4.7 Outcrossing rates of 2010 SL93 C3 progeny identified with eight SSR markers  
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Figure 4.9 Outcrossing rates of 2010 NL94 C3 progeny identified with eight SSR 
markers  

 

 

 

 

 

Figure 4.10 Outcrossing rates of 2011 NL94 C3 progeny identified with eight SSR 
markers  
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Figure 4.9 Outcrossing rates of 2010 NL94 C3 progeny identified with eight SSR 

Figure 4.10 Outcrossing rates of 2011 NL94 C3 progeny identified with eight SSR 
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Figure 4.9 Outcrossing rates of 2010 NL94 C3 progeny identified with eight SSR 

Figure 4.10 Outcrossing rates of 2011 NL94 C3 progeny identified with eight SSR 
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Figure 4.11 A gel image of one progeny of SL 13×6 in 2010 and one progeny of SL 4×4 in 2011 identified to be selfed with eight 
SSRs. M stands for standard molecular size markers with specific sizes are given on the right side of the gel. The left portion of the 
image is the amplification result of SL 13×6 from 2010 with eight SSRs, and the right part of image demonstrates the genotyping 
result of SL 4×4 from 2011 with eight SSRs. Each line under the amplified bands indicates one SSR marker amplifying one parent and 
one progeny DNA samples. Under each SSR, first two lanes are two-replicated parent samples and next two are progeny sample 
replications. 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21 indicate two parent replication samples; 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22 represent 
two-replicated progeny samples. 
 

 
 

 

 

 

 

 

 

 

 

 

 



36 

 

Figure 4.12 A gel image of one progeny of SL 13×6 in 2010 identified to be selfed with initial eight SSRs and to be crossed with eight 
additional eight SSRs. M stands for standard molecular size markers with specific sizes are given on the right side of the gel. Each line 
under the amplified bands indicates one SSR marker amplifying one parent and one progeny DNA samples. Under each SSR, first two 
lanes are two-replicated parent samples and next two are progeny sample replications. 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21 indicate two 
parent replication samples of SL 13×6; 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22 represent two-replicated progeny samples of SL 13×6. 
 
 

 

 

 

 

 

 

 

 

 

 

 

 



37 

 

Figure 4.13 A gel image of one progeny of SL 4×4 in 2011 identified to be selfed with initial eight SSRs and to be further confirmed 
to be selfed progeny with eight additional eight SSRs. M stands for standard molecular size markers with specific sizes are given on 
the left side of the gel. Each line under the amplified bands indicates one SSR marker amplifying one parent and one progeny DNA 
samples. Under each SSR, first two lanes are two-replicated parent samples and next two are progeny sample replications. 1, 3, 5, 7, 9, 
11, 13, 15 indicate two parent replication samples of SL 4×4; 2, 4, 6, 8, 10, 12, 14, 16 represent two-replicated progeny samples of SL 
4×4. 
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CHAPTER V 
 
 
 
 

CONCLUSION 

Switchgrass has been widely recognized as a leading cellulosic perennial for 

bioenergy feedstock production on marginal lands. Its sexual reproduction behavior in 

open-pollinating environments is critical for population improvement and varietal 

development. The present study demonstrated lowland switchgrass plants set near 100% 

outcrossed seed when grown in the field and subjected to open pollination while selfed 

progeny were rare. Although only one, the identified selfed progeny may be valuable in 

inbred line development. The results should be helpful in developing a fuller 

understanding of the reproductive biology of switchgrass. 
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