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ABSTRACT

With the introduction of competition in the electric power industry, generation asset 

planning must change.  In this changed environment, energy companies must be able to 

capture the extrinsic value of their asset operations and long-term managerial flexibility 

for sound planning decisions.  This dissertation presents a new formulation for the 

generation asset planning problem under market uncertainty, in which short-term 

operational and long-term coupling constraints associated with investment decisions are 

simultaneously reflected in the planning process.
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CHAPTER 1

INTRODUCTION

As the electricity market reform moves towards market competition in the United States 

and other countries, “generation expansion planning” has become “asset valuation”.  The 

challenges associated with asset valuation are related to the presence of a market that, 

even if partially liquid, introduces additional opportunities for possible interactions 

between operational and financial strategies. 

Under regulation, market presence was not significant (or non-existent) and investment 

decisions made by generation companies were for the most part, passed on to the 

consumers through rate adjustments.  In those times, the objective of generation 

expansion planning was to satisfy reliability requirements and then to find the most 

economical plan of adding generation capacity to the existing generation system.  The 

term “economical” is understood here as minimization of investment, operational and 

maintenance costs.  The methods of generation expansion analysis used then, whether 

deterministic or not, were always based on reliability and were a function of the future 

system demand, i.e,. load.

Early methods of generation planning [1] included reliability criteria such as the planning 

reserve margin and the capacity reserve margin.  The planning reserve margin is defined 
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as the difference between the installed capacity and the peak load divided by the peak 

load, while the capacity reserve margin is the difference between the installed capacity 

and the peak load divided by the installed capacity.  The procedure then consists of 

finding the capacity addition plan that is most economical towards reaching the defined 

reliability criterion.  In an alternate model, the definition of customer damage functions 

[2] allowed the capacity addition problem to be addressed as a more general economic 

problem [3]: the optimal reliability level is determined as a function of the generation 

investment and operational costs, and the economic cost of interruption.  In a simpler 

version, a model in which cost characteristics are assumed for unserved energy (or 

unserved demand) can drive strategic decision planning: this type of model is also known 

as the unserved energy method. 

When described as above, the generation capacity planning problem is usually presented 

as a one-stage decision-making problem.  In reality, generation capacity planning must 

involve sequential time-related decisions that play a key role in determining the optimal 

planning strategy.  For instance, when using a method that models customer damage 

function, one must remember that the costs of interruption are a function of the time of 

occurrence (time of day, season of year) and the duration of the interruption.  Another 

example is that the lead-time required to have a potential new generation plant 

operational can result in choosing a more expensive alternative, given the reliability 

constraint target.  Consequently, the capacity expansion problem should be formulated as 

a multi-stage mathematical programming problem.  In that regard, the generation 

expansion usually takes the form of a dynamic programming problem, a formulation 
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often very difficult to solve.  Over the years, various techniques have been applied to 

suggest a more reasonable approach to this mathematical problem, amongst which are:

- state enumeration: the technique, consists of enumerating all the possible 

strategies and selecting the one with the best outcome.  This technique proves 

efficient when used with small systems offering few candidate strategies;

- state tree truncation: based on the state enumeration techniques, heuristics are 

included to intentionally reduce the size of the decision space that must be 

searched, reducing the computation time for solution convergence;

- linear programming: the linear programming formulation is the first mathematical 

formulation of the generation expansion problem [33].  With this formulation, all 

the variables in the problem must be continuous, which sometimes results in 

suggesting that planners should purchase (or sell) fractions of generating capacity.  

This difficulty is generally solved by rounding up the affected variables into 

appropriate integers, possibly causing sub-optimality;

- decomposition algorithms such as Benders’ decomposition or Lagrange 

multipliers are often used to address the dynamic programming formulation.

In long term planning, uncertainty should be reflected in the assessment of the planning 

strategies.  Under regulation and no market, sources of uncertainty included demand 

growth, fuel costs and unplanned outages for installed capacity.  Again here, there are 

four general approaches to that mathematical problem [4]:

- the deterministic equivalent approach: this approach assumes that the forecasted 

values of uncertain variables is 100% reliable,
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- the scenario approach, where only ‘critical’ scenarios are built, each leading to a 

specific expansion plan.  The challenge in this case is to find the plan which best 

satisfies all scenarios,

- the stochastic optimization approach, which recognizes the need of building the 

best plan on the average, given the random behavior of the uncertain variables [5],

- the simulation approach, which usually involves Monte Carlo runs [6].

The restructuring of electric power markets in recent years in the U.S and other countries 

has for main objective to improve efficiency through the introduction of competition.  In 

a competitive environment, generation companies will look at capacity planning from a 

profit maximization perspective, rather than minimization of costs [7].  This change 

comes naturally as the role of central coordinator of regional planning to satisfy capacity 

adequacy and reliability would no longer be the primary responsibility of the generation 

companies.  As a result, generation companies’ operational and investment strategies will 

be driven towards maximizing market opportunities [8].  Under competition, planning 

managers need to be aware of the various uncertainties that could affect the value of their 

potential investment strategies. These uncertainties include: market price of electricity 

(energy and ancillary services) and fuel, locational price caused by uncertainty in 

available transmission capacities, market structure and environmental constraints.  

The presence of the market uncertainty, while a source of financial opportunity for asset 

owners and managers, introduces additional components of risk that strategic planning 

cannot ignore.  Therefore, in determining the planning value of a generation plant, 
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significant attention must be paid to market price uncertainty, or volatility as it is 

commonly known [9].  A brief description of the risk components that an energy 

company can face is found in [10].  The generation expansion problem under a market is 

also known as the generation valuation problem.  Generation asset valuation efforts can 

be grouped in two categories:

- financial models [29]: these models use existing financial techniques to value 

physical generation assets.  The solution often comes as a closed-form expression 

with assumed parametric distributions of market uncertainty.  One advantage with 

these models is their simplicity of use.  However, the complexity of the electricity 

market has shown that in general, the generation portfolio optimization problem 

cannot be solved via a closed-form expression.  This limits the use of financial 

models, which can still be used for practical benchmark purposes,

- mathematical programming models [33],[40]: these models recognize the 

complex nature of generation portfolio optimization and try to adapt their 

proposed scheduling technique to the market uncertainty.  While these models 

recognize the need for some scheduling method, they generally differ on how to 

model market uncertainty.  The main difference between most of the methods in 

this category, aside of the portfolio coordination algorithm they may use, lies in 

the representation of market uncertainty. 

Given the coming changes in market environment and the natural oligopolistic nature of 

the electrical power industry, some [11], [12] have looked at the generation capacity 

problem from a game theory or strategic behavior perspective.  While these methods 
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provide valuable insight on market structure impact, none explicitly takes into account 

the dynamic short-term constraints associated with generation plants operations, nor the 

long-term coupling constraints associated with possible changes in the make-up of the 

generation portfolio being managed during the planning horizon.  In this dissertation, we 

quantify the impact of market price uncertainty in the planning value of a generation 

plant under competition, given the physical constraints of the plant and its strategic 

investment coupling constraints such as time-to-build and technology learning effect, 

when facing residual demand.  Although out of the scope of the current work, it is the 

author’s belief that the methodology presented in this dissertation can be included within 

a more systematic analysis of market strategic behavior as described in [11], where the 

planning value of each market participant (generation company) is determined via an 

iterative process.

Generation asset planning should be performed with models capable of reconciling the 

physical constraints associated with the energy delivery process.  Unless these constraints 

are fully represented and considered, hedging and risk measures cannot be adequately 

assessed.  The physical delivery requirements of electricity contracts represent the 

heaviest obstacle in modeling generation assets through standard financial valuation 

methods.  Some of the important physical constraints include:  

- minimum up-time: once a generation unit is brought on-line, it must stay on-line 

for at least a specified time,

- minimum down-time: once a generation unit is brought off-line, it must stay off-

line for at least a specified time,
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- startup/shutdown costs: bringing a generation unit on(off)-line causes additional 

costs, in terms of fuel and/or O&M costs,

- must-on, must-off periods: they represent time for which the hourly status of the 

generation unit is specified in advance, mainly because of electrical requirements 

and other maintenance constraints, 

- transmission limitations: generation supply and end-users are connected through a 

physical network, which can be congested at times, adding additional constraints 

to the physical delivery process,

- time-varying incremental heat-rate and capacity/dispatch limits.

When coupled with the life cycle of a generation plant, the existence of market 

uncertainty offers asset management additional investment flexibility in terms of valuing 

that plant.  In the management science literature, typical long term strategic alternatives 

[13] for a facility at some point in time are: selling the plant (or part of it), expanding the 

capacity of the plant, reducing the size of the plant, and keeping base-operations plan for 

the plant as is.  When market interaction exists, financial alternatives such as long term 

forwards or option contracts should be included as well.

At this point, it is worth clarifying the terms ‘strategic investment plan’ and ‘strategic 

alternative’ as these will be used extensively throughout the rest of the dissertation:

- a strategic alternative is a unique (energy) portfolio configuration.  Naturally, two 

strategic alternatives are different in the composition of their respective portfolio 

make-up;
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- a strategic investment plan is defined as the time sequence of strategic alternatives 

within the planning horizon.

An example of strategic alternatives is the expansion of a generation plant capacity into a 

2x1 plant: the expanded plant represents a new strategic alternative, when compared to 

the plant’s size prior to the capacity expansion, which in turn is a different strategic 

alternative.  The time sequence consisting of changing from a simple cycle installed 

capacity plant to a 2x1 combined cycle installed capacity plant is an example of a 

strategic investment plan.  While mostly associated with some capital investment (e.g. 

expanding the generation plant capacity from a simple cycle to a 2x1 combined cycle) or 

reward (e.g. selling the plant to a third party), a strategic investment plan does not always 

incur capital costs/rewards when a change in strategic alternatives occurs.  An example 

would be a strategic alternative described by a generation plant whose energy production 

can be directly sold into the energy market, compared to a strategic alternative in which 

part of the generation plant output could be sold through a 10-year forward contract.  

Finally let’s note that although different in their portfolio configuration, it is possible for 

non identical strategic alternatives to return identical operational benefits over time as 

they could use identical operational strategies.

In an uncertain market, assets planners should understand how to value all strategic 

alternatives, and determine the risk profile associated with each of them.  As the life of a 

generation plant represents a time line through which several strategic alternative 

decisions can be taken, additional value can come from the possible time combination of 

these strategic alternatives [14]; these state changes or regime switches are subject to 
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long-term constraints such as investment costs, contract minimum execution period, 

delays from construction time, etc.  Unfortunately, the impact of the interactions of the

strategic alternatives over the lifetime of a generation plant under an uncertain market is 

not well documented in the competitive power industry literature.  This shortcoming can 

be attributed to the absence of proper tools to undertake such analysis.

From a managerial/investment perspective, the problem of generation valuation/planning 

is two-fold:

1) understand and capture the value of each strategic alternative,

2) discover and quantify the managerial flexibility that could result from coupling 

these alternatives.

In the electric power industry, authors seem more interested in the first part of the 

planning problem, sometimes at the expense of not thoroughly addressing the second one, 

thus providing only part of the answer to this complex problem.

The major contribution of this research is the development of a new long-term generation 

planning method under uncertainty.  This method departs from the existing ones in that 

the short-term operational and long-term strategic coupling constraints are 

simultaneously reflected in the planning mechanism, while uncertainty is captured 

through Monte Carlo simulation.  The proposed method can be summarized as a two-step 

process for long term portfolio investment decisions.  In the first step, a chronological 

operational portfolio optimization technique coupled with Monte Carlo simulation is used 

to determine the value of each of the considered strategic alternatives, given the strategic 
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alternatives that have been defined.  This valuation technique captures the short-term 

constraints associated with generation operations.  Monte Carlo is used as an efficient 

technique to describe uncertainty and each scenario realization is associated with the 

operational flexibility of asset managers, as seen in practice.  When compared to 

multinomial tree simulations, Monte Carlo simulation carries the advantage of being 

easily adaptable to various stochastic market price models and can generate simulated 

paths without too much computational burden.  Then through a new planning problem 

formulation, the results from the previous step will be used towards the multi-stage 

coordination of existing strategic alternatives to determine the extrinsic value of the 

investment project.  In the proposed long term planning algorithm, long term constraints 

associated with strategic changes are captured and help identify the optimal investment 

decisions.  

The rest of this dissertation consists of three additional chapters.  In Chapter 2, the 

problem of optimal portfolio execution is presented.  The physical characteristics and 

time related constraints of the portfolio instruments (i.e. generators, energy forward 

contracts, and energy option contracts) play an important role in determining the optimal 

portfolio execution plan for a given strategic alternative.  First, the energy portfolio 

execution problem will be presented as a deterministic unit commitment problem, and an 

algorithm will be described for a market-based problem.  As future market conditions are 

subject to changes, the operational value of a strategic alternative becomes uncertain.  

Next, a method to assess the extrinsic operational value of a strategic alternative is 

described by effective combination of the Monte Carlo simulation and the robustness of 
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the optimal operational portfolio algorithm.  In Chapter 3, the problem of generation 

planning is presented.  In its formulation, the time interactions of the various strategic 

alternatives along with the other long term constraints are included.  Using a dynamic 

programming algorithm that reflects sequential time decisions and the operational results 

from the previous chapter, a methodology for the planning valuation of a generation plant 

is developed.  The methodology presented in this chapter is first applied towards a 

deterministic market environment.  Then following a Monte Carlo simulation, it is 

adjusted to represent the planning value under uncertainty.  Finally, the conclusion and 

future recommendations on this research are presented in Chapter 4.
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CHAPTER 2

STRATEGIC ALTERNATIVE OPTIMAL OPERATIONAL VALUATION

II.1 Introduction

During the life cycle of a generation plant, strategic investment plans options can be 

exercised to improve its market profitability.  By defining a strategic investment plan as a 

time combination of various strategic alternatives, the valuation of a given strategic 

investment plan is determined by the optimal execution of its strategic alternatives 

sequence.  In other words, the value of this individual strategic investment plan is in 

direct correlation with that of its strategic alternatives, and the timing of their 

implementation.

Formally, the valuation of a strategic alternative is equivalent to solving for an 

operational energy portfolio optimization problem in which the portfolio configuration 

represents the strategic alternative, and for which the time horizon is the time period 

through which the strategic alternative is active.  Unlike the load (or price) duration 

curve-based method used in long term analysis with traditional models, the strategic 

operational solution methodology outlined in this chapter uses a chronological-based 

problem formulation that takes into account the time-dependent physical constraints 

relative to generation plant operations.  The problem of operational energy portfolio 

optimization is known in the literature as unit commitment problem.  In the unit 
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commitment problem, we seek to determine the optimal time sequence of bringing assets 

off-line and deactivating contracts, as well as the optimal time sequence of bringing 

assets on-line and exercising contracts, and determining at what level these resources 

should be allocated (or dispatched) to contribute to the optimal operational execution of 

the portfolio.  While under regulated days the optimal operational execution of a portfolio 

was defined by minimizing total operational costs, it is defined as maximizing total 

operational profits under market environment.  The latter definition of optimal 

operational portfolio execution will be used throughout this chapter.  This chapter can be 

divided in two parts: a discussion of deterministic unit commitment and a presentation of 

operational valuation under uncertainty. 

II.2 Deterministic Strategic Operational Valuation

With the growing importance of optimal portfolio management in an evolving energy 

industry, the unit commitment problem has attracted significant interest within the last 

fifteen years or so.  Under regulation and before market competition, the market structure 

and the natural monopolies created at the time did not encourage energy companies 

(electric utilities for the most part) to look at the unit commitment problem with scrutiny.  

At that time, the unit commitment problem in many electric utility companies was 

addressed through heuristics, or semi-heuristics methods.  As the market evolved towards 

a more competitive structure, it became more obvious that generation asset optimization 

for operations would be key to remaining profitable within the industry.  As a result, 
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research in asset operational optimization generated significant interest both from the 

worlds of academia and the industry.

Aside from heuristics, research in deterministic operational asset optimization has 

essentially known three major development paths: the dynamic-programming based 

methods; the Lagrangian-based methods; and, the more recent sequential bidding-based 

methods.  By viewing the short-term unit commitment problem as an optimal system 

state configuration problem to solve, the dynamic programming based approach consists 

of enumerating all system states (on/off combinations) over the short-term and finding 

the optimal path for the studied portfolio.  The dynamic programming approach can be 

assimilated to a brute force method and suffers from “the curse of dimensionality”, as the 

number of possible system states over the studied time window grows exponentially with 

the number of positions in the portfolio.  In an effort to reduce the impact of the 

dimensionality problem, various schemes have been introduced to the original dynamic-

programming based approach, leading to less computationally intensive methods, such as 

the dynamic-programming sequentially truncated (DP-SC) method [15].  However, 

truncation can not only result in sub-optimal solutions, it can also eliminate the path of 

feasible solutions.  In the early 1980’s, Merlin and Sandrin found that by decomposing 

the unit commitment  problem into as many optimizing sub-problems as there are market 

instruments (or positions) in a portfolio, it becomes more efficient to coordinate the 

optimal portfolio execution through price signals [16].  This method, better known as the 

Lagrange Relaxation (LR) method, considerably improves the computational time 

required to solve a deterministic unit commitment problem.  Unfortunately, the 
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Lagrangian relaxation method can suffer from oscillation problems when several option-

like positions in the analyzed portfolio are identical.  By the late 1980’s, Fred Lee 

suggested a new approach to solving the unit commitment problem.  By combining the 

strengths of both dynamic programming and Lagrangian relaxation methods, Lee proved 

that quality unit commitment solution could be found without carrying the burdens of 

extensive computation time found in dynamic programming methods, and by avoiding 

the oscillation traps of the Lagrangian relaxation method.  This new approach called 

sequential bidding unit commitment, consists of given an initial solution, sequentially 

selecting positions and their optimal commitment strategy, through sound economic 

guidance, to fulfill in the most economic fashion the portfolio’s target obligations and 

profit opportunities.  In the publication where the sequential-based unit commitment 

method was first introduced [17], a complex algorithm is presented and describes the 

sequential selection process.  Sequential based unit commitment is extensively used in 

the industry.

In the treatment of the unit commitment problem in this chapter, transmission congestion 

is ignored.  Another assumption is that the only traded electricity product is the electrical 

energy, with no ancillary services products defined.

II.2.1 Notation

Let us consider the following notation for the unit commitment problem

t: time index (hour).  

T: time to horizon for the simulation period.
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i, j, w, m: portfolio position index.

Ω : set of portfolio supply positions.

Κ : set of portfolio demand positions.

(t)u i : commitment status at time t for portfolio position i, Κ∪Ω∈∀i .

iSUC : start-up cost for portfolio position i, Κ∪Ω∈∀i .

iSDC : shut-down cost for portfolio position i, Κ∪Ω∈∀i .

(t)iτ : at the beginning of time t, (t)iτ  is read as the amount of time (number of 

hours) that portfolio position i has been on-line (>0), or off-line (<0), 

Κ∪Ω∈∀i .

(t)Pmaxi : maximum energy to be allocated at time t to portfolio position i, 

Κ∪Ω∈∀i .

(t)Pmini : minimum energy to be allocated at time t to portfolio position i, 

Κ∪Ω∈∀i .

(t)Pi : energy allocation for portfolio position i, at time t, Κ∪Ω∈∀i .

iMUP : minimum-up time for portfolio position i, Κ∪Ω∈∀i .

iMDN : minimum-down time for portfolio position i, Κ∪Ω∈∀i .

(t)Si : cost incurred for a change in availability status between time t and (t-1), 

for portfolio position i, Κ∪Ω∈∀i .  (t)Si  can be expressed as:

iiiiiii SDC(t)]u[11)(tuSUC1)](tu[1(t)u(t)S ⋅−⋅−+⋅−−⋅= .(1)

F(.): revenue/cost curve associated with a portfolio position.  For a supply 

position, F(.) is a cost curve while for a demand position, F(.) is a revenue 

curve.  For convexity purposes, the cost curve associated with a demand 



17

position is assumed to be convex, while that of a demand position is 

concave.  In our presentation, we will use a quadratic function to represent 

a revenue/cost curve; that is, for any portfolio position i, 

(t)P(t)a(t)P(t)a(t)a(t)][PF 2
ii2,ii1,i0,ii ⋅+⋅+= , (2)

where: (t)a i0, , (t)a i1,  and (t)a i2,  are parametric descriptors at time 

t for cost/revenue profile for portfolio position i, Κ∪Ω∈∀i .

II.2.2 Problem Formulation

The optimal operational portfolio execution problem over a time period T is equivalent to 

solving a unit commitment problem in which, operational decisions must be made at each 

time t, such that the total operational benefits over period T are maximized.  This 

problem can be mathematically formulated as:

Problem I




 


 +⋅−−⋅∑ ∑∑
= ∈∈∈∀Κ∈∀

∈∀∈∀

T

1t Ωi
iiii

Κj
jjjj

T}{1,...,t,j(t),P(t),u
T}{1,...,tΩ,i(t),P(t),u

(t)}S(t)][PF(t){u(t)}S(t)][PF(t){uMax
jj

ii

(3)

subject to:

T}{1,...,t,(t)P(t)u(t)P(t)u
Κj

jj
Ωi

ii ∈∀⋅=⋅ ∑∑
∈∈

, (4)

T}{1,...,tΚ,Ωw(t),Pmax(t)u(t)P(t)Pmin(t)u wwwww ∈∀∪∈∀⋅≤≤⋅ , (5)
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T}{1,...,tΚ,Ωw

otherwise{0,1},(t)u

0,1)(tτ1)-(MDN-if0,(t)u

1,MUP1)(tτ0if1,(t)u

w

www

www

∈∀∪∈∀











∈
<−<=

−<−<=
(6)

The objective function in Problem I can be reformulated in a way that gives it a more 

decomposable form.  This is achieved by rewriting Problem I into Problem II as:

Problem II










 +⋅−


 −⋅ ∑ ∑∑ ∑
∈

=

=∈

=

=∈∀∈∀
∈∀∈∀ Ωi

1T

1t
iiii

Kj

1T

1t
jjjj

T}{1,...,tΚ,j(t),P(t),u
T}{1,...,tΩ,i(t),P(t),u

(t)}S(t)][PF(t){u(t)}S(t)][PF(t){uMax
jj

ii

(7)

subject to:

T}{1,...,t,(t)P(t)u(t)P(t)u
Κj

jj
Ωi

ii ∈∀⋅=⋅ ∑∑
∈∈

, (8)

T}{1,...,tΚ,Ωw(t),Pmax(t)u(t)P(t)Pmin(t)u wwwww ∈∀∪∈∀⋅≤≤⋅ , (9)

T}{1,...,tΚ,Ωw

otherwise{0,1},(t)u

0,1)(tτ1)-(MDN-if0,(t)u

1,MUP1)(tτ0if1,(t)u

w

www

www

∈∀∪∈∀











∈
<−<=

−<−<=
(10)

In sequential bidding based methods, the general algorithm procedure consists of 

determining an initial solution upon which each portfolio’s position contribution is 

carefully evaluated.  Once the evaluation has been performed, the most appropriate 

candidate position is selected, and the process is repeated until some convergence 
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criterion is reached.  In Tseng [18], the evaluation and candidate selection processes are 

performed through a downward commitment sequence.  Our research [19] has shown that 

an upward commitment sequence when appropriately implemented, could produce a 

solution quality that is at least as good as that of the downward commitment sequence.  In 

either case, the overall solution flow chart is the same as outlined in Figure 2.1.

Problem II (or Problem I) is a time varying optimization problem that involves 

continuous and integer variables.  It can be viewed as a two-stage problem: the need to 

determine the optimal commitment status strategy for each portfolio position and, given 

the portfolio positions commitment status strategy adopted at each time interval t, the 

need to determine the optimal resources allocation strategy for each portfolio position 

committed at time t.  In other words, Problem II consists of a commitment strategy sub-

problem and a dispatch strategy sub-problem.  In the next section, a detailed solution 

mechanism is presented.
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Figure 2.1: Flow Chart for Upward/Downward Unit Commitment Method.
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The solution algorithm presented in the section below is designed towards a market-based 

optimization problem, where each asset commitment strategy can only be justified by 

market opportunity.  The interested reader can refer to the above mentioned references 

for obligation-based problems.

II.2.3 A Market-Based Deterministic Unit Commitment Method

For a market-based problem and, assuming a linear price curve response on the market 

sale opportunity, with no restricted hourly depth, and no minimum hourly sale 

requirement, the problem formulation can be further simplified.  We can easily observe 

that the set of demand positions will be reduced to only one position (market sale) while 

the total hourly energy contribution from the supply positions will match the total hourly 

market energy sale.  Under these conditions, constraint (8) needs not be explicitly 

mentioned in the constraint set, and Problem II is reformulated as:

Problem III










 +⋅−


 ⋅ ∑ ∑∑ ∑ ∑
∈

=

=∈

=

= ∈∈∀∈∀
∈∀∈∀ Ωi

1T

1t
iiii

Kj

1T

1t Ωi
ijj

T}{1,...,tΚ,j(t),P(t),u
T}{1,...,tΩ,i(t),P(t),u

(t)}S(t)][PF(t){u}(t)]P[F(t)u{Max
jj

ii

(11)

subject to:

T}{1,...,tΩ,i(t),Pmax(t)u(t)P(t)Pmin(t)u iiiii ∈∀∈∀⋅≤≤⋅ , (12)
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T}{1,...,tΩ,i

otherwise{0,1},(t)u

0,1)(tτ1)-(MDN-if0,(t)u

1,MUP1)(tτ0if1,(t)u

i

iii

wii

∈∀∈∀











∈
<−<=

−<−<=
(13) 

T}{1,...,tK,j1,(t)u j ∈∀∈∀= (14)

For notation clarity, we will use index j to represent the market sale from the demand 

position set K.  Also, since in practice market sale revenue is represented through a 

revenue function in which (t)a j0, =0, the objective function (11) under a linear market 

response curve can be rewritten as:










 +⋅−


 ⋅ ∑ ∑∑ ∑
∈

=

=

=

= Ω∈∈∀∈∀ Ωi

1T

1t
iiii

1T

1t i
ij,1

T}{1,...,tΩ,i(t),P(t),u
(t)}S(t)][PF(t){u)t(P)t(aMax

ii

(15)

where:

(t)a j1,  represents the energy market price at time t

After re-arranging the terms in (15) and removing (14) accordingly, the open market-

based unit commitment problem can be presented as:

Problem IV

[ ] 
 +⋅−⋅∑∑

Ω∈

=

=∈∀∈∀
∈∀∈∀

i

1T

1t
iiiiij,1

T}{1,...,tΚ,j(t),P(t),u
T}{1,...,tΩ,i(t),P(t),u

(t)}S(t)][PF(t){u)t(P)t(aMax
jj

ii

(16)

subject to:

T}{1,...,tΩ,i(t),Pmax(t)u(t)P(t)Pmin(t)u iiiii ∈∀∈∀⋅≤≤⋅ , (17)
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T}{1,...,tΩ,i

otherwise{0,1},(t)u

0,1)(tτ1)-(MDN-if0,(t)u

1,MUP1)(tτ0if1,(t)u

i

iii

wii

∈∀∈∀











∈
<−<=

−<−<=
(18) 

The formulation of Problem IV contains no coupling constraints between the supply 

positions in Ω .  With the newly defined objective function (16), Problem IV is a set of 

individual commitment problems, each of them consisting of determining the optimal 

commitment/dispatch strategy for a given supply position in Ω , when subject to a market 

revenue stream.  For a given supply position Ω∈i , the single commitment formulation is 

defined by:

Problem V

[ ] 
 +⋅−⋅∑=

=∈∀

1T

1t
iiiiij,1

T}{1,...,t(t),P(t),u
(t)}S(t)][PF(t){u)t(P)t(aMax

ii

(19)

subject to:

T}{1,...,t(t),Pmax(t)u(t)P(t)Pmin(t)u iiiii ∈∀⋅≤≤⋅ , (20)

T}{1,...,t

otherwise{0,1},(t)u

0,1)(tτ1)-(MDN-if0,(t)u

1,MUP1)(tτ0if1,(t)u

i

iii

wii

∈∀











∈
<−<=

−<−<=
(21)

Although it still carries a commitment decision and a dispatch problem schema, Problem 

V is a further reduced version of a network flow problem that must obey, for each supply 



24

position in Ω , the state transition constraints defined in (21).  The network flow optimal 

route can be determined by application of a dynamic programming algorithm for which 

the stage representation is the time index and the state representation at any stage is the 

set of possible on/off line hours that could be inherited from the previous stage. While the 

feasible commitment path can be addressed through the state transition diagram as a 

function of both the minimum-up and minimum-down times of the evaluated portfolio 

position [20], the dispatch problem is solved for each system state of positive on-line 

hours through the first-order derivation [21] of the argument of the objective function 

(19), leading  to:

[ ]
}T,...,1{t,i,

1)t(u

)t(maxP)t(P)t(minP

0(t)}S(t)][PF(t){u)t(P)t(a
)t(dP

d

i

iii

iiiiij,1
i

∈∀Ω∈∀













=

≤≤

=+⋅−⋅

(22)

or

}T,...,1{t,i,

1)t(u

(t)a2

(t)a(t)a
(t);Pmaxmin ;(t)Pminmax(t)P

i

i2,

i1,j1,
iii ∈∀Ω∈∀






=











 ⋅
−= (23)

Once Problem V is solved for each supply position, the solution to the objective function 

of Problem IV is the sum of all the objective functions for each Problem V, as the final 

portfolio execution strategy in Problem IV is the collection of all the individual execution 

strategies determined in each Problem V.  From that perspective, we can derive a solution 



25

flow chart in the case of a market-based optimization problem as a special case of the 

flow chart derived in Figure 2.1 as shown in Figure 2.2.

Figure 2.2: Flow Chart for a Market-Based Unit Commitment Problem.
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- Initialize the selection counter.
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determine, for each time instance, the optimal portfolio execution 
strategy.

Stop
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II.2.4 An Example

An asset manager, whose portfolio consists of 2 generation units, a simple cycle unit ‘150 

Mw Gas’ and baseload unit ‘400 Mw Coal’, is interested in determining their optimal 

commitment and dispatch strategy for the upcoming week.  Electricity and fuel market 

prices forecasts for that week are provided in Tables 2.4 and 2.5.  The production fuel 

used by each asset is indexed to the corresponding fuel market.  The operational 

constraints for each generating asset can be found in Tables 2.1 and 2.2.

‘150 Mw Gas’ unit ‘400 Mw Coal’ unit

Pmin (Mw): 100 150

Pmax (Mw): 150 400

MUP (hrs): 8 72

MDN (hrs): 8 72

(1)τ  (hrs): -50 124

Startup Cost ($): 4000 7000

Table 2.1: Generation Units Operating Characteristics.

‘150 MW Gas’ unit ‘400 Mw Coal’ unit

Breakpoint ID Mw

AHR 

(Mbtu/Mw) Breakpoint ID Mw

AHR 

(Mbtu/Mw)

1 90 8.322 1 125 11.04

2 100 8.237 2 188 10.247

3 115 8.153 3 250 9.950

4 135 8.081 4 313 9.839

5 160 8.031 5 375 9.820

6 437 9.856

7 500 9.928

Table 2.2: Generation Units Average Heat Rate Information.



27

Upcoming Week Market Prices
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Figure 2.3: Upcoming Week Energy Market Prices.

After simulation, the optimal scheduling of the assets for the upcoming week leads to a 

portfolio performance of $90,197.39, summarized by portfolio instrument in Table 2.4.  

Gas Market Coal Market

Fuel Price ($/Mbtu): 5.6 4.321

Table 2.3: Upcoming Week Fuel Market Prices.

Total Energy 

Allocation (Mwh)

Total 

Revenue ($)

Average 

Revenue ($/Mwh)

‘150 Mw Gas’ unit: 8,050 -383,524.80 -47.64

‘400 Mw Coal’ unit: 40,758.8 -1,760,708 -43.20

Market Sales: 48,808.8 2,234,431 45.78

Table 2.4: Case Summary.
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Energy Allocation(MWH)
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Figure 2.4: Optimal Generation Schedule for ‘150 MwGas’ and ‘400 Mw Coal’ Units.
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HE01 HE02 HE03 HE04 HE05 HE06 HE07 HE08 HE09 HE10 HE11 HE12

Mon. 29.5 26.031 29.007 21.589 29.017 34.62 46.714 55.587 41.935 45.887 49.614 50.022

Tue. 34.004 30.998 32.465 34.363 32.229 36.087 52.514 53.514 50.757 51.493 50.849 48.133

Wed. 35.482 33.142 33.84 33.471 33.481 41.033 46.683 51.176 48.868 51.145 54.168 49.287

Thu. 32.362 34.353 35.164 33.132 32.167 36.231 44.886 52.024 37.177 38.188 44.243 38.852

Fri. 34.332 34.497 29.654 29.141 33.922 35.235 48.766 45.356 39.852 46.683 53.382 49.369

Sat. 34.497 36.682 35.81 34.866 34.497 33.819 34.589 35.174 52.412 48.677 53.099 50.216

Sun. 35.03 34.055 31.767 32.65 32.957 33.255 33.296 33.768 34.117 40.099 41.936 39.699

HE13 HE14 HE15 HE16 HE17 HE18 HE19 HE20 HE21 HE22 HE23 HE24

Mon. 47.653 43.334 36.646 34.931 46.346 37.575 55.199 48.613 54.454 44.172 34.332 34.322

Tue. 44.774 39.321 36.207 35.319 35.155 39.372 49.685 41.333 43.467 42.681 40.15 34.486

Wed. 47.868 54.413 48.235 41.925 44.049 41.649 49.553 49.062 52.789 47.357 38.909 33.748

Thu. 38.831 48.644 40.302 40.057 43.436 39.291 44.09 39.679 47.347 43.365 34.712 33.614

Fri. 47.674 47.796 45.06 38.535 48.583 49.399 50.012 51.319 52.136 49.522 37.01 35.82

Sat. 52.196 52.022 49.898 44.973 46.05 52.484 53.335 50.452 43.249 40.078 34.609 34.055

Sun. 29.212 30.649 32.845 33.973 40.981 69.886 68.429 55.859 53.428 38.827 33.204 33.04

Table 2.5: Upcoming Week Hourly Energy Market Prices.
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HE01 HE02 HE03 HE04 HE05 HE06 HE07 HE08 HE09 HE10 HE11 HE12

Mon. 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Tue. 0.00 0.00 0.00 0.00 0.00 0.00 150.00 150.00 150.00 150.00 150.00 150.00

Wed. 0.00 0.00 0.00 0.00 0.00 0.00 150.00 150.00 150.00 150.00 150.00 150.00

Thu. 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Fri. 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 150.00 150.00 150.00

Sat. 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 150.00 150.00 150.00 150.00

Sun. 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

HE13 HE14 HE15 HE16 HE17 HE18 HE19 HE20 HE21 HE22 HE23 HE24

Mon. 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Tue. 150.00 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Wed. 150.00 150.00 150.00 100.00 150.00 100.00 150.00 150.00 150.00 150.00 0.00 0.00

Thu. 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Fri. 150.00 150.00 150.00 100.00 150.00 150.00 150.00 150.00 150.00 150.00 0.00 0.00

Sat. 150.00 150.00 150.00 150.00 150.00 150.00 150.00 150.00 0.00 0.00 0.00 0.00

Sun. 0.00 0.00 0.00 0.00 0.00 150.00 150.00 150.00 150.00 100.00 100.00 100.00

Table 2.6: Upcoming Week Optimal Schedule (Mw) for ‘150Mw Gas’.
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HE01 HE02 HE03 HE04 HE05 HE06 HE07 HE08 HE09 HE10 HE11 HE12

Mon. 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Tue. 0.0 0.0 0.0 0.0 0.0 0.0 -10,759.9 -6,759.9 -6,759.9 -6,759.9 -6,759.9 -6,759.9

Wed. 0.0 0.0 0.0 0.0 0.0 0.0 -10,759.9 -6,759.9 -6,759.9 -6,759.9 -6,759.9 -6,759.9

Thu. 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Fri. 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -10,759.9 -6,759.9 -6,759.9

Sat. 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -10,759.9 -6,759.9 -6,759.9 -6,759.9

Sun. 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

HE13 HE14 HE15 HE16 HE17 HE18 HE19 HE20 HE21 HE22 HE23 HE24

Mon. 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Tue. -6,759.9 -4,612.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Wed. -6,759.9 -6,759.9 -6,759.9 -4,612.7 -6,759.9 -4,612.7 -6,759.9 -6,759.9 -6,759.9 -6,759.9 0.0 0.0

Thu. 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Fri. -6,759.9 -6,759.9 -6,759.9 -4,612.7 -6,759.9 -6,759.9 -6,759.9 -6,759.9 -6,759.9 -6,759.9 0.0 0.0

Sat. -6,759.9 -6,759.9 -6,759.9 -6,759.9 -6,759.9 -6,759.9 -6,759.9 -6,759.9 0.0 0.0 0.0 0.0

Sun. 0.0 0.0 0.0 0.0 0.0 -10,759.9 -6,759.9 -6,759.9 -6,759.9 -4,612.7 -4,612.7 -4,612.7

Table 2.7: ‘150 Mw Gas’ Hourly Total Operating Cost ($/hr).
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HE01 HE02 HE03 HE04 HE05 HE06 HE07 HE08 HE09 HE10 HE11 HE12

Mon. 150.00 150.00 150.00 150.00 150.00 150.00 400.00 400.00 340.37 400.00 400.00 400.00

Tue. 150.00 150.00 150.00 150.00 150.00 150.00 400.00 400.00 400.00 400.00 400.00 400.00

Wed. 150.00 150.00 150.00 150.00 150.00 301.62 400.00 400.00 400.00 400.00 400.00 400.00

Thu. 150.00 150.00 150.00 150.00 150.00 150.00 400.00 400.00 150.00 185.76 400.00 209.89

Fri. 150.00 150.00 150.00 150.00 150.00 150.00 400.00 400.00 245.75 400.00 400.00 400.00

Sat. 150.00 150.00 150.00 150.00 150.00 150.00 150.00 150.00 400.00 400.00 400.00 400.00

Sun. 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

HE13 HE14 HE15 HE16 HE17 HE18 HE19 HE20 HE21 HE22 HE23 HE24

Mon. 400.00 397.72 150.00 150.00 400.00 160.23 400.00 400.00 400.00 400.00 150.00 150.00

Tue. 400.00 226.69 150.00 150.00 150.00 228.53 400.00 315.70 400.00 370.95 258.72 150.00

Wed. 400.00 400.00 400.00 339.94 400.00 328.63 400.00 400.00 400.00 400.00 211.93 150.00

Thu. 209.13 400.00 266.11 254.20 400.00 225.63 400.00 239.55 400.00 398.99 150.00 150.00

Fri. 400.00 400.00 400.00 198.50 400.00 400.00 400.00 400.00 400.00 400.00 150.00 150.00

Sat. 400.00 400.00 400.00 400.00 400.00 400.00 400.00 400.00 394.23 0.00 0.00 0.00

Sun. 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 2.8: Upcoming Week Optimal Schedule (Mw) for ‘400 Mw Coal’.
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HE01 HE02 HE03 HE04 HE05 HE06 HE07 HE08 HE09 HE10 HE11 HE12

Mon. -6,888.7 -6,888.7 -6,888.7 -6,888.7 -6,888.7 -6,888.7 -16,990.3 -16,990.3 -14,446.7 -16,990.3 -16,990.3 -16,990.3

Tue. -6,888.7 -6,888.7 -6,888.7 -6,888.7 -6,888.7 -6,888.7 -16,990.3 -16,990.3 -16,990.3 -16,990.3 -16,990.3 -16,990.3

Wed. -6,888.7 -6,888.7 -6,888.7 -6,888.7 -6,888.7 -12,839.8 -16,990.3 -16,990.3 -16,990.3 -16,990.3 -16,990.3 -16,990.3

Thu. -6,888.7 -6,888.7 -6,888.7 -6,888.7 -6,888.7 -6,888.7 -16,990.3 -16,990.3 -6,888.7 -8,238.9 -16,990.3 -9,168.1

Fri. -6,888.7 -6,888.7 -6,888.7 -6,888.7 -6,888.7 -6,888.7 -16,990.3 -16,990.3 -10,579.4 -16,990.3 -16,990.3 -16,990.3

Sat. -6,888.7 -6,888.7 -6,888.7 -6,888.7 -6,888.7 -6,888.7 -6,888.7 -6,888.7 -16,990.3 -16,990.3 -16,990.3 -16,990.3

Sun. 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

HE13 HE14 HE15 HE16 HE17 HE18 HE19 HE20 HE21 HE22 HE23 HE24

Mon. -16,990.3 -16,891.3 -6,888.7 -6,888.7 -16,990.3 -7,271.8 -16,990.3 -16,990.3 -16,990.3 -16,990.3 -6,888.7 -6,888.7

Tue. -16,990.3 -9,824.8 -6,888.7 -6,888.7 -6,888.7 -9,897.5 -16,990.3 -13,419.4 -16,990.3 -15,740.3 -11,098.4 -6,888.7

Wed. -16,990.3 -16,990.3 -16,990.3 -14,428.7 -16,990.3 -13,956.0 -16,990.3 -16,990.3 -16,990.3 -16,990.3 -9,247.6 -6,888.7

Thu. -9,138.8 -16,990.3 -11,395.5 -10,917.2 -16,990.3 -9,783.2 -16,990.3 -10,332.7 -16,990.3 -16,946.4 -6,888.7 -6,888.7

Fri. -16,990.3 -16,990.3 -16,990.3 -8,727.5 -16,990.3 -16,990.3 -16,990.3 -16,990.3 -16,990.3 -16,990.3 -6,888.7 -6,888.7

Sat. -16,990.3 -16,990.3 -16,990.3 -16,990.3 -16,990.3 -16,990.3 -16,990.3 -16,990.3 -16,740.5 0.0 0.0 0.0

Sun. 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Table 2.9: ‘400 Mw Coal’ Hourly Total Operating Cost ($/hr).
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HE01 HE02 HE03 HE04 HE05 HE06 HE07 HE08 HE09 HE10 HE11 HE12

Mon. 4,407.2 3,884.6 4,333.3 3,234.2 4,377.2 5,193.4 18,698.8 22,190.5 14,265.9 18,372.3 19,840.7 20,003.2

Tue. 5,130.4 4,672.8 4,843.3 5,164.9 4,836.5 5,415.7 28,843.5 29,435.6 27,922.3 28,332.9 27,963.9 26,471.5

Wed. 5,326.0 4,972.0 5,070.7 5,012.5 5,050.1 12,405.6 25,692.7 28,148.5 26,879.6 28,167.1 29,741.3 27,105.9

Thu. 4,849.5 5,126.3 5,255.6 4,973.9 4,809.4 5,426.9 17,934.1 20,767.5 5,571.7 7,089.6 17,665.9 8,164.4

Fri. 5,143.6 5,205.1 4,441.3 4,359.1 5,120.6 5,280.9 19,477.7 18,111.7 9,772.9 25,692.7 29,313.0 27,147.3

Sat. 5,205.1 5,538.3 5,407.0 5,222.5 5,205.1 5,047.6 5,171.9 5,295.0 28,824.1 26,764.3 29,218.6 27,636.1

Sun. 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

HE13 HE14 HE15 HE16 HE17 HE18 HE19 HE20 HE21 HE22 HE23 HE24

Mon. 19,031.7 17,207.9 5,524.7 5,254.9 18,548.9 6,034.6 22,132.3 19,457.4 21,793.4 17,671.4 5,143.6 5,160.0

Tue. 24,666.9 12,855.3 5,398.6 5,293.1 5,273.7 9,032.9 19,869.0 13,071.7 17,405.6 15,832.0 10,402.3 5,179.6

Wed. 26,291.2 29,884.8 26,550.9 18,448.1 24,188.9 17,873.8 27,268.8 27,001.3 29,005.1 26,042.8 8,254.0 5,062.9

Thu. 8,091.2 19,415.5 10,709.4 10,164.1 17,372.1 8,879.1 17,641.8 9,507.1 18,933.0 17,274.4 5,186.5 5,023.3

Fri. 26,226.4 26,286.7 24,758.1 11,507.3 26,718.1 27,127.9 27,513.7 28,189.3 28,700.0 27,189.9 5,548.7 5,362.5

Sat. 28,657.0 28,636.0 27,449.8 24,725.3 25,308.5 28,865.2 29,364.5 27,781.2 17,019.9 0.0 0.0 0.0

Sun. 0.0 0.0 0.0 0.0 0.0 10,491.7 10,232.9 8,327.3 7,971.5 3,878.4 3,350.8 3,286.2

Table 2.10: Market Sale Hourly Total Revenue ($/hr).
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II.3 Strategic Operational valuation under Uncertainty

Among the various drivers that can impact the operational value of a portfolio based on 

their random occurrence and evolution over time, the quantity and price (electricity and 

fuel) risks seem to be predominant over short- and long- term periods.  Quantity risk is 

the risk that a specific contract quantity (purchase or sale) deviates from its expected 

forecast, and has been studied extensively in the power industry, with primary application 

in the analysis of avoided costs.  In [22], Chiang performs the risk assessment on a load 

based energy portfolio performance, given load uncertainty.  For its part, price risk and 

especially electricity price risk has only recently attracted interest in the power system 

literature.  This is naturally explained by the fact that efforts towards market competition 

are recent.  In the rest of this chapter and dissertation, market risk for electricity is 

considered as the most influential risk driver.

II.3.1 Long Term Electricity Price Process

Unlike quantity risk, there is no strong historical pattern for electricity market prices.  As 

a result, various price models have been proposed to describe their random behavior.  

One generally accepted representation that will be used in this work is the diffusion 

model following geometric Brownian motion (GBM).  Under this assumption, electricity 

price movements can be described through the stochastic [23] differential equation:

t].dwrice(t),Pb[t].dtrice(t),Pa[)t(ricePd += (24)
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where:

rice(t)P is the price process as function of time,

t]rice(t),Pa[   is the drift of the market price process )t(icePr ,

w is the standard Brownian motion,

t]rice(t),Pb[  is the rate of change of the market price process )t(icePr .  This term 

describes the volatility of the market prices. 

In order to model the electricity market price behavior described in (24), data estimates or 

forecasts for the drift and volatility terms need to be available, as well as the expected 

prices forecast.  However, the absence of long term contracts and the low market liquidity 

make the estimation of these parameters a challenge for long term planning.

II.3.1.1Volatility in Electricity Markets

Volatility can be estimated via two methods [24]: the implied volatility method and the 

historical-based volatility method.  With the absence of a liquid market, the latter is 

usually preferred in the description of the electric energy price process.  It is also 

important to notice that volatility in the electric power price process is more likely to be 

time dependent as it reflects the season of the year, day of the week, and even the peak 

hour of the day of electricity use.  For instance, it is usual to see that the volatility of 

electrical energy price is smaller in off-peak hours than in peak hours.  Similarly, energy 

price volatility on a shoulder (off-peak) month is usually smaller than in a peak month.  

The seasonality or time dependence of the volatility structure for electricity prices, also 
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known as volatility term structure, is one of the unique characteristics of the electricity 

commodity [25].  The other parameter to estimate in our price model is the drift term in 

(24), which leads to the problem of long term electricity price forecast.

II.3.1.2Long Term Price Forecast in Electricity Market: a Price Growth Model

As mentioned earlier, the electricity market is only fairly liquid from a mid-term 

perspective.  Currently in the US, the electricity energy futures market does not trade for 

a time period longer than 18 months.  In investment problems, the planning horizon can 

sometimes be more than 10 years, which requires that price forecast for that period be 

performed in order to undertake the analysis.  In this section, we present a 2-phase price 

forecast process.  The 2-phase price forecast process is a method through which historical 

prices are marked to futures prices, after forecast futures prices have been derived using a 

price growth model.

Phase 1: electricity futures market quotes are available through a small time window (18 

months in the U.S).  For long term planning purposes, market prices must be forecasted 

over the period through which market quotes are not available, namely the remaining 

planning horizon.  In that regard, it is not unreasonable to use a price growth model to 

generate further yearly price profiles.  A typical model to implement is a growth model 

for price projection in which future prices over a delivery period are characterized by a 

yearly total growth.  In the case of a geometric growth model, such price model is 

described as follows:
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where:

t is time (hour) index within a year,

k is the year index,

kb  is the model parameter for price projection in year k,

ktpg  is the estimated total price growth in year k .

Figure 2.5 shows a complete 25-year peak price projection for the month of January, 

using a yearly price growth of 2.54%.  The projection schema is based upon the daily 

peak definition described in Table 2.11.

Day of Week On-Peak Period Off-Peak Period

Mon through Fri: HE07 through HE22 HE01 through HE06, HE23, HE24

Sat, Sun: - HE01 through HE24

Table 2.11: Daily Peak Definition.
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Figure 2.5: On/Off-Peak Price Forecast for January.

Phase 2: using historical prices and futures quotes (both available and forecasted), 

determine the projected futures prices over the quote horizon.  One problem that arises is 

that the historical prices are known on an hourly base while the futures quotes are 

typically given on an average on-peak and/or off-peak format.  To determine the 

projected hourly futures prices, the historical price information needs to be compiled on 

the same average on/off-peak format, and after same-day matching, the projected price is 

computed as:

)x,t(icePr
)x,t(icePr

)y,t(icePr
)y,t(icePr ⋅= (26)

where:
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t is the time index (hour)

x is the historical time horizon index

y is the projected time horizon index

)y,t(icePr is the projected price in time horizon y for time index t

)x,t(icePr  is the historical price in time horizon x for time index t

)y,t(icePr  is the futures price for time horizon y for time index t

)x,t(icePr  is the average historical price for peak period at time t

As an example, let us consider NEPOOL market area and its historical market price data 

for January 2002.  If we consider the futures prices information for January 2004 to be 

22.64 $/mwh on off-peak hours and 30.41 $/mwh on on-peak hours, Figure 2.6 shows the 

projected price profile for January 2004, following the peak hours definition in Table 

2.11.
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Figure 2.6: Hourly Marked-to-Market Price Projection for January 2004.

II.3.1.3Price Growth Model and Supply-Demand Dynamics

The growth price model presented in (26) can be used in accordance with some general 

econometric parameters.  While attractive, one inconvenience is that as defined, 

expression (26) does not capture the time related dynamics of capacity supply-demand 

relationship.  For example, Figure 2.5 assumes a non-decreasing growth in prices while 

market dynamics suggest that the growth in prices, if caused by a deficient supply curve, 

would trigger additional capacity to be built and installed, further reducing the effective 

price growth, at least in the year following excess capacity installment.  Rather than a 

shortcoming, this really suggests that the price growth model can be modified 

accordingly to include such market dynamics, if the data are available.  Newbery [26] 
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explicitly factors the impact of strategic behavior into the forecast of electricity market 

prices in the U.K.  The approach which takes root in [27], uses the concept of supply 

function equilibrium and illustrates the oligopolistic nature of the electric power market.  

While these models provide insight to understanding the impact of the oligopolistic 

nature of the electric power industry in terms of pricing, they also for the most part 

assume that the various market participants (generation companies) exhibit identical 

supply curves, which is an unrealistic assumption.

II.3.2 Strategic Operational Valuation: Limitations of Option Pricing Approach

Under market-based conditions, a generation power plant can be modeled as a call 

option: generate and sell power when price signals are strong, or shut-down otherwise.  

This explains why option pricing theory initially appeared to be an adequate valuation 

methodology for merchant plants and analysts.  Under the assumption that the energy 

price process follows (24), the Black-Scholes closed-form solution [23] is sometimes 

suggested for market valuation of a generation plant.  Unfortunately, the Black-Scholes 

solution does not recognize the very nature of a generation spark-spread capability, and 

when applied in circumstances where both fuel and electricity prices are uncertain, it 

would fail to recognize that a generation plant is really an option to exchange electric 

power for fuel, which itself is typically indexed to some market.  The closest financial 

closed-form solution that integrates the spark-spread capability is attributed to Margrabe 

[28], who developed an extension of the Black-Scholes formula for spark-spread based 

derivatives.
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Whether through the use of the Black-Scholes formula or other closed-form formulations, 

these valuation approaches fall short [29] from capturing the operational flexibility of a 

generation plant because they fail to consider the path-dependent nature of the asset to 

value.  These shortcomings can lead to the overvaluation of generation plants, 

particularly for peaking plants.  As presented earlier in this chapter, a generation asset’s 

operations must be optimized within the full acknowledgment of its time variant 

parameters as well as its time dependent constraints.  As such, the portfolio optimization 

problem under uncertainty, also known as stochastic unit commitment problem can only 

be efficiently addressed through simulation-based valuation methods rather than with 

financial based closed-form analytical expressions.

II.3.3 Strategic Operational Valuation: a Simulation-Based Approach

For mid- and long-term purposes, the volatility of market prices requires that portfolio 

operational valuation be performed under uncertainty.  The shortfalls of closed-form 

models and the complex nature of the physical delivery process associated with the 

performance of a generation plant make the valuation process more difficult.  Takriti [30] 

relies on a discrete set of generated scenarios to perform portfolio optimization, with 

emphasis on non-anticipativity constraints.  Using a tree-based architecture [31], Tseng 

extended a lattice formulation approach to solve the stochastic unit commitment problem, 

also with the enforcement of non-anticipativity constraints. A similar approach can be 

found in Gardner [32].  These methods bring some conceptual and practical challenges to 

analysts:
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- non-anticipativity constraints are not of practical use in a long term operational 

problem.  In fact, the flexibility in operations is what makes a generation asset 

attractive in a competitive environment.  Thus, portfolio valuation should reflect 

the asset’s capability to anticipate market price movements,

- the lattice structure is equivalent to a web whose size grows exponentially with 

time and become as multi-dimensional as there are price drivers to simulate.  This 

makes the lattice approach not practical for real modeling situations in which 

several risk drivers often describe market uncertainty.  It also limits the time 

horizon over which the analysis can be performed without unreasonable 

computation time.  In Tseng’s paper, the generation asset valuation is performed 

over a short term horizon (1 day).

Under market uncertainty, the portfolio operational optimization problem II can be 

reformulated as:

Problem VI
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where:

{}.E  denotes the expected value operator.

To achieve modeling flexibility considering the set of possible multi-risk driving factors 

in a portfolio operational optimization problem, we propose a Monte Carlo based 

approach to solve Problem VII.  Following the proposed Monte Carlo method, the 

derivation of the market risk drivers samples will lead to a decomposition of problem VII 

such that:

- the sample problem responds to the same algorithmic structure as developed in 

section II.2,

- the set of sample problems generated should cover most of the sample space in a 

more comprehensive way than lattice- or scenario analysis- based approaches 

would,

- the resulting sample distribution of portfolio performance offers insight towards 

the risk profile of the portfolio make-up, an information that proves more helpful 

for portfolio diversification purposes,

- the decomposition of Problem VI offers computational time advantage for multi-

processing configurable computing structures and,
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- the correlation between risk drivers (e.g. market fuel prices and energy fuel 

prices) can be easily implemented when generating sample states for each risk 

driver.

An implementation of the Monte Carlo based approach for stochastic portfolio 

optimization can be summarized in the flowchart below.

Figure 2.7: Flow Chart for Monte Carlo Based Portfolio Optimization Problem.

- Set number of MC_Runs (Monte Carlo runs) to perform,
- Initialize SC (simulation counter) to 1.

SC = MC_Runs ?

Generate a system state configuration to reflect uncertainty in 
market environment.

Given the system sample state:
- perform portfolio optimization as described in section II.2,
- save the operational plan performance results for the current 
system state.

SC = SC + 1

Generate portfolio statistics from saved results.

Stop

Yes

No
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The example below illustrates the described methodology.  The computational results 

were provided by the commercial software GenTrader®, courtesy of Power Costs, Inc.

II.3.4 An Example

Consider the example in section II.2.4.  The asset manager of the 2 generation units ‘150 

Mw Gas’ and ‘400 Mw Coal’ wants to determine the operational market value of these 

assets for next year.  The energy market prices and volatility data for next year are given 

in Tables 2.12 and 2.13, following the peak definition presented in Table 2.11.  The 

market fuel prices are described in Table 2.14.  The present value date and discount rate 

are respectively set to January 01, 2004 and 10%.

Jan. Feb. Mar. Apr. May Jun.

off-peak ($/mwh): 23.24 24.209 27.762 27.587 30.626 36.037

on-peak ($/mwh): 31.222 27.68 38.07 39.959 48.625 54.036

Jul. Aug. Sep Oct. Nov. Dec.

off-peak ($/mwh): 39.476 33.82 39.241 40.422 36.458 26.017

on-peak ($/mwh): 67.259 69.302 51.459 49.836 48.512 33.296

Table 2.12: Monthly Electricity Market Prices Forecast for 2005.

Jan. Feb. Mar. Apr. May Jun.

off-peak (%): 21 21 17.3 17.3 17.9 17.3

on-peak (%): 38.8 38.8 32 32 33 32
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Jul. Aug. Sep Oct. Nov. Dec.

off-peak (%): 16.8 16.8 17.3 15.2 15.2 15.2

on-peak (%): 31 31 32 28.1 28.1 28.1

Table 2.13: Monthly Electricity Market Prices Volatility Forecast for 2005.

Jan. Feb. Mar. Apr. May Jun.

Gas Market ($/Mbtu): 6.89 6.83 6.66 6.03 5.88 5.895

Coal Market ($/Mbtu): 4.321 4.321 4.321 4.321 4.321 4.321

Jul. Aug. Sep Oct. Nov. Dec.

Gas Market ($/Mbtu): 5.93 5.94 5.91 5.92 6.095 6.26

Coal Market ($/Mbtu): 4.321 4.321 4.321 4.321 4.321 4.321

Table 2.14: Monthly Fuel Market Prices Forecast for 2005.

After a simulation of 1,000 market price sample paths, the expected market operational 

value of the assets’ portfolio is $M 19.58, and is summarized by portfolio asset mark-to-

market output in Table 2.15.  The portfolio and individual assets P/L histograms are 

shown in Figure 2.8, 2.9 and 2.10.  As expected, these figures show no negative P/L since 

the operational decisions for each asset are purely market based.

MTM P/L ($M)

MTM P/L 

Standard Deviation ($M)

‘150 Mw Gas’ unit: 4.33 7.05

‘400 Mw Coal’ unit: 15.25 22.87

Total: 19.58 29.91

Table 2.15: Case Summary.
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Figure 2.8: Portfolio P/L Histogram.

Figure 2.9: ‘400 Mw Coal’ P/L Histogram (courtesy of Power Costs, Inc.).
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Figure 2.10: ‘150 Mw Gas’ P/L Histogram (courtesy of Power Costs, Inc.).

II.4 Conclusion

A strategic alternative that describes real asset operations should be valued with tools that 

reflect the constraints that impact its operational performance.  In this chapter, we have 

presented a methodology that can be used to:

- value the deterministic optimal operational performance of any strategic 

alternative.  A general algorithm for optimal operational valuation was presented, and a 

detailed description of the algorithm was presented for market-based operational 

valuation,

- build a more realistic assessment of a strategic alternative operational valuation 

under uncertainty.  The described methodology reflects the operational choice available 
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to the portfolio manager as market conditions evolve.  Furthermore, it reflects the 

constraints associated with physical asset operations.

- determine the risk profile associated with a generation portfolio.  This 

information, which is usually not available with closed-form models, provides asset 

managers with a better risk assessment picture of their asset portfolio.

In long term planning, strategic alternatives interact over time and the state changes 

associated with their implementation is usually subject to long-term constraints such as 

investment costs, time-to-build (for expansion plans), minimum time contract execution, 

etc.  This added layer of complexity when combined with the short-term operational 

constraints of a generation asset portfolio, makes the problem of generation planning 

more difficult.  In the next chapter, a long term planning methodology that addresses all 

these complexities is developed, and tested.
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CHAPTER 3

STRATEGIC INVESTMENT PLANNING: A NEW MODEL

III.1 Introduction

From a long term perspective, the time coupling of different strategic alternatives when 

possible, generates strategic investment plans.  For example, the timeline consisting of 

keeping base operations for the initial 5 years of the plant’s existence, then extending its 

capacity by turning it into a combined cycle on the 7th year, locking the plant revenues 

through an energy forward contract for the following 10 years and, selling the plant at the 

end of the 17th year, describes one of many possible strategic investment plans in the 

lifetime of a generation plant.   Naturally, the planning value of a generation plant must 

reflect the interactions among the various strategic alternatives.  Using the results from 

the operational valuation method described in the previous chapter, a mathematical 

problem formulation to quantify the planning value of generation plant will be derived in 

this chapter, thus capturing both the operational and long term coupling constraints 

associated with planning decisions.  As with the previous chapter, this chapter can be 

divided in two parts: a discussion on the deterministic planning algorithm and a 

presentation of the planning valuation algorithm under uncertainty.

In the current literature, the problem of generation planning valuation is often posed as a 

capacity expansion problem, since inherited from regulation days.  In that regard, the 



53

expression “generation expansion planning” is rather used.  In early generation expansion 

problems, the objective consisted of meeting capacity requirements, i.e, reliability 

requirements, with minimum costs, by choice of the right type and/or timing of capacity 

addition.  The problem of generation expansion planning is one of the most difficult to 

solve in the electric power industry: this difficulty comes from the complex nature of the 

problem, related to regional (single generator, plant, or service territory) and time scopes 

of the undertaken planning horizon.

The original mathematical problem formulation of the electric generation expansion 

planning is attributed to Masse [33].  In this traditional formulation, strategic alternatives 

are defined by capacity technology type (gas-fired plants, hydro plants, coal plants, 

nuclear plants, non-dispatchable plants, etc.) and their size, while strategic investment 

plans would represent their interactions over time.  In his paper, Masse presents a linear 

programming solution to the problem of generation planning.  Further research on the 

subject has put forth the non-linear mixed integer nature of the problem to solve, thus 

prompting for alternate problem formulations.  Such formulations included dynamic 

programming [35] and more recently, decomposition-based approaches [34], [36].

In general, the generation expansion problem usually follows the generic formulation 

defined below:

[ ]CostslOperationaCostsInvestmentMin
HorizonPlanningOver 

+ (40)

subject to:

ies technologallfor periods, timeallfor Capacity,InstalledCapacity UsedTotal ≤ (41)
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periods timeallfor Demand,nergyEEnergy ProducedTotal = (42)

In the generation expansion problem (40)-(42), market uncertainty is non-existent as the 

problem formulation is posed from the perspective of a regulated environment.  With this 

typical problem formulation, it is not unusual to recognize the following characteristics 

with the models currently in use:

- uncertainty is defined in the model as a function of unplanned outages , whether on 

generation plants or transmission lines.  It can also be defined as a finite discrete 

probability function on the energy demand [38],

- the minimum time-step resolution for the planning horizon in the problem 

formulation is typically a year.  With this time-step resolution, the energy demand 

constraint (42) is addressed by solving a load duration curve dispatch problem.  An 

allocation solution often used for this problem relies on the optimal-mix algorithm 

devised by Levin [37].  The algorithm builds a merit-order loading procedure of the 

generation units to meet the energy demand at any time period.  However, the use of a 

load (or price) duration based solution fails to reflect the impact of the time dependent 

operational constraints of generation plants and/or contracts, thus eventually 

preventing the correct investment signals to be captured,

- for simplification of the problem formulation, the time dependency of strategic 

alternatives is often not considered in the problem statement.  Here also, the failure to 

capture the appropriate timing for strategic state changes can result in poor planning 

value estimation and bad investment decisions.
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III.2 Generation Asset Planning: a New Formulation

In a competitive environment, the generation expansion problem formulation must 

change as generation companies must look at planning from a profit maximization 

perspective.  For clarity purposes in the rest of this chapter, the problem of generation 

expansion is presented from the perspective of a single plant.  When the market is liquid, 

the results can be easily extended to a multiple plants system due to the fact that the 

market decouples the planning decisions as each plant expansion problem can be 

analyzed independently of any other.  When the market is not liquid, the planning 

decision for a multiple plants system can still rely on an adaptive schema that would 

guide its optimality on the capability of valuing each individual plant expansion.  The 

newly proposed planning valuation problem formulation differs from the existing 

formulations in the following:

1) the strategic alternatives available to planners under market environment are no 

longer restricted to simple additions or divestiture of capacity.  The market 

environment offers further flexibility such as the leasing of the plant, entering into 

more bilateral contracts, etc.  Such non-capacity related strategic alternatives must 

be modeled accordingly.  Moreover, some of these alternatives have distinct and 

specific characteristics, i.e. a generation plant merchant can enter into a long term 

electric power forward contract with a 5-year duration period only, or a minimum 

5-year duration period, etc,

2) the number of possible strategic alternatives that can be implemented during the 

life cycle of a generation plant is by far much smaller.  Consequently, the 
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coordination of the strategic alternatives over time becomes a more traceable 

problem,

3) strategic alternatives are interrelated by time dependency constraints, further 

complicating the optimal decision that defines the time-sequence of their 

implementation.  An example of such constraints can be that the implementation 

of alternative A should occur only after alternative B has been in activity for least 

k years.  Since the plant expansion problem is a more traceable problem, the time 

dependency constraints between strategic alternatives can be included in the 

problem formulation, in contrast to the more general capacity expansion 

formulation in which they are often excluded,

4) while the objective function in the general capacity expansion problem is to 

minimize both the investment and operational costs over the planning horizon, the 

objective value in a generation plant expansion plan problem is to maximize the 

market value of the plant, regardless of the implemented strategy(ies).

In earlier generation expansion problems, the emphasis was put on the type and the 

timing of possible investment in a specific generation technology.  At that time, 

uncertainty was more a function of load growth and inflation.  With the absence of a 

market, the strategic alternatives and their coupling over time could be addressed within a 

simplified analysis framework [39].  With a market, more strategic alternatives become 

available to planners.  As the number of strategic alternatives grows, the time-sequence 

of their possible interactions becomes more elaborate and intricate.  Consequently, the 
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planning value of a generation plant can be affected by these parameters both in terms of 

its expected results and risk profile.

In determining the operational value for each strategic alternative in Chapter 2, we used a 

one-hour time increment as the time index, and the valuation process was carried out all 

through the planning period.  This time index resolution carries the advantage of 

reflecting the operational constraints of a generation unit when compared to average 

operational estimates.  However, the time index resolution is often a year in the case of 

planning strategies.  To remain coherent within the problem formulation, it is enough to 

aggregate the hourly operational results and present them in a yearly format, making 

them available in the appropriate format for the planning value problem to be solved.  

The rest of this chapter is divided in two parts: a discussion of generation planning under 

a deterministic environment and a presentation of a planning algorithm under uncertainty.  

Both discussions are take root within the new paradigm described earlier in this section.

III.3 Generation Asset Planning: a New Deterministic Method

III.3.1 Notation

For better clarity in the problem formulation, let us define the following notation:

t: time index (year).
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T: planning period.

i, j, k: strategic alternative indices.

(t)u i : status of strategic alternative i during time period t (0:inactive, 1:active).

)t(w ji, : state change flag to indicate feasibility to move from strategic alternative 

i to strategic alternative j at time t (0: infeasible switching; 1: feasible 

switching).  Two or more strategic alternative cannot be simultaneously 

active within the same year.

(t)iτ : number of time periods (years) that strategic alternative i has been active 

at the beginning of time period t,.

ji,agPeriodL : consecutive number of time periods (years) that strategic alternative i 

has to be active before switching to strategic alternative j. 

)t(OperValuei : present value of the operational profits associated with strategic 

alternative i during time period t.

ji,ICosts (t): present value of the lumped capital costs incurred when changing from 

strategic alternative i active until time period (t-1), to strategic 

alternative j, active at time period t.

jLifecoveR : when a state change activates strategic alternative j, jLifecoveR

represents the estimated life cycle of the given alternative.  This 

parameter is used to evaluate the effective transitional cost/benefit effect 

distributed over the remaining planning period.

jMinUP : minimum number of active periods required for strategic alternative j, 

whenever selected.  An example is a 5-year minimum power sale 

agreement contracted with an energy merchant.
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jMaxUP : maximum number of active periods defined for strategic alternative j, 

whenever selected.  An example is a power sale agreement with an 

energy merchant, for a maximum 10-year activation period.

Ω : set of defined strategic alternatives for the studied generation plant.

III.3.2 Problem Formulation

We can formulate the planning valuation problem of a generation plant as:

Problem VII
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In the formulation of Problem VII, the objective function captures the time sequence of 

yearly market operational values along with the capital costs over the planning horizon 

for the implemented strategic alternatives.  From the problem’s constraint set, constraint 

(44) states that at any time t, there is only one strategic alternative active.  Constraint (45) 

prevents infeasible transition between two different strategic alternatives.  In constraint 

(46), assuming that a strategy transition from j to k is feasible, this transition will not take 

place until alternative j has been active for a minimum of kj,agPeriodL  time periods.  

Constraint (47) indicates that any decision to de-activate strategic alternative j at time t 

must not violate its minimum active period jMinUP , while constraint (48) indicates that 

the active period for strategic alternative j should not exceed its maximum activation 

period, jMaxUP .  These last two constraints are more likely to be encountered when 

considering long term bilateral contracts for a generation plant.

III.3.3 A Dynamic Programming Based Solution

As presented above, the generation planning problem formulation resembles a unit 

commitment problem.  However, the presence of constraint (46) linking the 

implementation of a given strategic alternative to another strategic alternative gives the 

problem a non-decomposable form.  From that perspective, Problem VII can be 

compared to the commitment problem of a complex generation unit in which the 
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configuration states are equivalent to strategic alternatives with inter-temporal 

constraints.  Following that mathematical formulation, the number of possible 

configuration states is a function of the number of strategic alternatives.  A network flow 

problem representation of the problem will still prove useful and a dynamic-

programming (DP) solution approach can be implemented to find the optimal planning 

value of the generation plant.  The proposed dynamic programming structure will consist 

of states and stages defined such that:

- a stage represents a distinct time period t.  For example, a 15-year planning 

horizon will result in a DP structure with 15 stages,

- a state, also called node, represents a strategic alternative implementation along 

with its current activation period.  This definition for a state in this DP structure 

allows the algorithm to easily manage constraints (47) and (48), which are often 

encountered with long-term forward contracts.  This particular definition for a 

state representation departs from the traditional definition [40], where a state 

would consist of a strategic alternative (for instance, a 2x1 capacity addition) with 

no use of the activation period.  In the proposed DP structure, a state at time t also 

contains information about the operational value of the corresponding strategic 

alternative at time t,

- within a given stage, there is no possible arc transition between the defined states, 

in accordance with constraint (44),

- the arc transition between any two states in consecutive stages is possible only if 

constraints (45), (46) and (47) are met.  The transition arc represents a 
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continuation link if the two states represent the same strategic alternative.  

Otherwise, it represents the transition costs/revenues associated with state change.

It should also be noted that the objective function of the planning valuation problem as 

defined in (43) favors a lumped sum representation of the transition costs/revenues, in 

contrast with the annually distributed transition cost/benefit allocation encountered in a 

typical capacity expansion problem.  In order to avoid the end effects that the lumped 

sum representation can cause for state changes in time periods when the remaining 

planning horizon is less than the estimated life cycle of the candidate strategic alternative, 

it is not unreasonable to define the lumped transitional costs/benefit as a function of the 

remaining planning horizon.  By doing so, Problem VII is rewritten as:

Problem VIII
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So far, none of the problem formulations presented above explicitly represent (42) in the 

constraints’ set.  In contrast to the traditional formulation, the supply-demand equilibrium 

requirement will be passed on to the objective function, and is embedded within the term 

)t(OperValuek .  In reality, the term )t(OperValuek  is indicative of the operational 

performance of any strategic alternative k during year t, in which the operational 

performance is determined through an optimization layer similar to the process described 

in Chapter 2.  As such, the computed operational performance is a better assessment of 

the operational value of any given strategic alternative k as it takes into consideration the 

physical constraints that determine the optimal scheduling of a generation plant in a 

short-term horizon.  This value reflects the optimal equilibrium point on the supply-

demand curve.  Consequently, there is no need to explicitly mention constraint (42) in our 

problem formulation.

A flowchart that describes the solution methodology discussed above is presented in 

Figure 3.1.
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Figure 3.1: Deterministic Planning Algorithm Flow Chart.

III.3.4 An Example

A generation manager is interested in planning alternatives over a 20-year planning 

period, starting in 2005 for a 1-unit generation plant. The forecast of yearly market 

average prices for electricity is shown in Figure 3.2, while the weekly price forecast for 

July 2014 is shown Figure 3.3. At any given time, the asset manger can decide sell the 

- Identify the number of strategic alternatives to consider for 
the studied plant.  Index each strategic alternative with 
notation StrAlt[Index]
- Initialize SAC (strategic alternative counter) to 0.

Is SAC equal to number of 
defined strategic alternatives?

Stop

Yes

Given the system forecast conditions, determine the operational 
plan performance for StrAlt[SAC] as described in section II.2

SAC = SAC + 1

Given all operational performance data for the current system 
forecast conditions, determine optimal planning strategy for the 
generation plant, according to DP algorithm presented in section 
III.3.3.

No
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generator’s output forward to the market, and if forecasted market prices are favorable, 

expand the plant’s capacity.  Once the capacity expansion has been realized, there is no 

investment strategy associated with capacity reduction.  The capital cost involved with 

the expansion is $ 559/Kw and the investment life time is 15 years.  For simplification 

purposes, we will assume that when the decision to expand has been made, the expanded 

capacity becomes available at the beginning of the expansion year.  Whether operating in 

its current capacity or in the extended capacity mode, the production fuel of the 

generation unit is assumed to be directly indexed to the gas market.  Finally, the discount

rate for the expansion cost is 10% and the present value date is January 01, 2004.

If in a given year no expansion decision has been made, the following year is subject to 

two possible strategic alternatives, as below.  

strategy 1 or [1x1] - keep the current plant capacity and capture market 

opportunity,

strategy 2 or [2x1] – expand the plant capacity and capture market opportunity.
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Figure 3.2: Average Energy Market Prices for 2005-2024.
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Figure 3.3: Average Gas Market Prices for 2005-2024.
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Figure 3.4: Energy Weekly On/Off-Peak Prices Forecast for July 2014.

In its current capacity mode (1x1), the generation unit can be described as in Table 3.1.

Operational Data Average Heat Rate Data

Pmin (Mw): 100 Breakpoint ID Mw AHR (Mbtu/Mw)

Pmax (Mw): 230 1 90 15.33

MUP (hrs): 8 2 130 12.529

MDN (hrs): 8 3 187 10.614

Initial status (hrs): -50 4 235 9.733

Startup Cost ($): 4000

Var. O&M ($/mwh): 2

Table 3.1: Operational and Average Heat Rate Information for [1x1] Mode.
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When expanded, the plant can actually be operated either in its initial capacity mode 

(with 1 turbine), or in its extended capacity mode (with 2 turbines).  In the extended 

capacity mode, the generation unit operational data can be described as in Table 3.2.

Operational Data Average Heat Rate Data

Pmin (Mw): 220 Breakpoint ID Mw AHR (Mbtu/Mw)

Pmax (Mw): 450 1 210 12.6

MUP (hrs): 8 2 300 10.724

MDN (hrs): 8 3 375 9.856

Initial status (hrs): -50 4 470 9.177

Startup Cost ($): 4000

Var. O&M ($/Mwh): 2

Table 3.2: Operational and Average Heat Rate Information for [2x1] Extended Mode.

Using the commercial software GenTrader®, courtesy of PCI, the yearly operational 

value stream for each strategic alternative is determined as shown in Figure 3.5.



68

Strategic Alternative Operational Performance
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Figure 3.5: Optimal Strategic Operational Value Chart (not discounted).

After simulation of the algorithm described in Figure 3.1, the optimal planning present 

value of the generation unit is computed as $ 47,743,572.  Furthermore, the algorithm 

advises not to expand the plant before January 1, 2020.  The optimal strategic sequence 

details are shown in Table 3.5, where the monetary data are in present value terms.

Year: 2005 2006 2007 2008 2009

Alternative: [1x1] [1x1] [1x1] [1x1] [1x1]

Transition Value ($): 0.0 0.0 0.0 0.0 0.0

Oper. Value ($): 942,542.1 1,728,740.1 2,537,384.8 3,320,233.0 4,067,626.8

Total Value ($): 942,542.1 1,728,740.1 2537,384.8 3,320,233.0 4,067,626.8

Year: 2010 2011 2012 2013 2014

Alternative: [1x1] [1x1] [1x1] [1x1] [1x1]

Transition Value ($): 0.0 0.0 0.0 0.0 0.0

Oper. Value ($): 3,736,346.8 3,450,923.5 3,197,506.0 2,933,033.3 2,692,755.5

Total Value ($): 3,736,346.8 3,450,923.5 3,197,506.0 2,933,033.3 2,692,755.5
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Year: 2015 2016 2017 2018 2019

Alternative: [1x1] [1x1] [1x1] [1x1] [1x1]

Transition Value ($): 0.0 0.0 0.0 0.0 0.0

Oper. Value ($): 2,478,433.3 2,280,440.0 2,097,313.0 1,932,822.9 1,775,621.9

Total Value ($): 2,478,433.3 2,280,440.0 2,097,313.0 1,932,822.9 1,775,621.9

Year: 2020 2021 2022 2023 2024

Alternative: [2x1] [2x1] [2x1] [2x1] [2x1]

Transition Value ($): -7,605,800.0 0.0 0.0 0.0 0.0

Oper. Value ($): 3,804,991.3 3,486,285.3 3,211,905.0 2,955,851.5 2,718,617.5

Total Value ($): -3,800,808.5 3,486,285.3 3,211,905.0 2,955,851.5 2,718,617.5

Table 3.3: Deterministic Optimal Strategic Investment Plan.

Table 3.4 shows the results of planning value for various planning scenarios.  As can be 

seen, an earlier or later expansion than 2020 returns a lower planning value.

Planning Scenario Available Strategic Alternatives Planning Value ($)

1 No choice of strategy 2 at any time 46,088,544

2 Forced choice of strategy 2 in 2009 28,127,250

3 Forced choice of strategy 2 in 2022 47,438,260

4 Yearly choice of strategy 1 or 2 47,743,572

Table 3.4: Planning Scenarios Expected Values (present value).

The example above shows how the proposed algorithm helps detect what the best 

strategic alternatives are and when to implement them.  As will be shown later, the 

proposed algorithm can also be used to perform a relative comparison of the contribution 

of a given strategic alternative to the investment plan P/L.
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III.4 Generation Asset Planning Under Uncertainty

III.4.1 A Monte Carlo based Algorithm: a Screening Method

In a deterministic market environment, the optimal planning of a generation plant can be 

derived by solving Problem VIII with the dynamic programming technique discussed in 

section III.3.3.  The procedure is relatively simple and effective.  Under market 

uncertainty, it becomes important to identify how market price volatility can impact the 

profitability of a portfolio investment strategy, let alone to determine an optimal 

investment strategy.  Our treatment of market price uncertainty and its impact on strategic 

alternatives operational performance was presented in Chapter 2.  Aware of the 

limitations of closed forms solutions for physical assets portfolio optimization, we have 

described how through simulation, it is possible to derive the optimal expected 

operational value of any given strategic alternative.  It was argued that through Monte 

Carlo simulation, the adaptive operational flexibility could be captured in the expected 

operational value.  Similarly, the same argument on long-term optionality could be made 

from a planning perspective.  

Under uncertainty, the generation planning problem presented in Problem VIII must be 

reformulated.  The new formulation essentially affects the objective function as seen 

below.
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Problem IX
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{}.E  denotes the expected value operator.

In Chapter 2, market price uncertainty was described through the derivation of multiple 

scenarios using Monte Carlo technique.  Through the Monte Carlo decomposition 
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technique, one could compute the expected operational value of any strategic alternative, 

and subsequently its standard deviation, after detailed simulation in each market price 

path.  That same approach will be implemented for the investment valuation and 

derivation of the planning value of a generation plant described in Problem IX’s 

formulation.  In the proposed approach, the planning value of a generation plant is 

determined through the following sequence:

- enumerate the strategic alternatives that represent the possible changes over the 

long term,

- identify the market risk drivers susceptible of impacting the operational value of 

the above mentioned alternatives,

- using Monte Carlo technique, generate the system (market) sample states that 

represent the market uncertainty,

- for each system sample state, perform a long term operational valuation for each 

strategic alternative as described in section II.2,

- given the long term operational valuation results above, derive the plant optimal 

investment plan for each system sample state as described in section III.3.3,

- given all the system sample states optimal investment plans, determine the 

planning value of the generation plant.

The sequence described above is summarized in Figure 3.6.  In that flowchart, note how 

the methodologies implemented to capture the impact of uncertainty and the hourly 

portfolio optimization schema outlined in Chapter 2 both integrate the building block of 

the proposed algorithm.  This algorithm inherently captures the constraints associated 
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with the implementation of a strategic alternative as much as it captures the physical 

operational constraints associated with the hourly operational economics of the various 

strategic alternatives, all of which in an uncertain market environment.  The combination 

of these short term operational and long term planning constraints in the proposed 

algorithm allows us to appropriately determine the strategic planning value of a 

generation plant. The underlined valuation methodology is flexible enough to perform a 

robust analysis in the presence of multiple risk drivers.  

III.4.2 A Formulation Including Capacity Payments

The term )t(OperValuek  is a function of the electricity price structure used during time 

period t.  If the electricity market prices used to determine )t(OperValuek  include an 

energy and a capacity components, the term )t(OperValuek  represents the rewards 

associated with capacity built up until year t.  However, the electricity price structure 

used to determine )t(OperValuek  does not always include a capacity component.  In that 

case, the generation planning problem described in Problem IX might not favor changes 

towards capital-required strategic alternatives.  This is explained by the fact that the 

stream of )t(OperValuek  data that such alternatives would generate over the planning 

horizon could not be sufficient to recover investment costs.  A broader discussion on the 

subject of justifying capacity payments or markets can be found in [41].  Further 

discussion on the subject is outside the scope of the current work: in this section, the 

latest generation planning problem formulation is appropriately modified when the 

electricity price structure is characterized by an energy and a capacity components.
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Figure 3.6: Flow Chart for Planning Algorithm Under Uncertainty.

- Identify the number of strategic alternatives.  Index each 
alternative with notation StrAlt[Index],
- Set number of MC_Runs (Monte Carlo runs) to perform,
- Initialize SC (simulation counter) to 1.

SC = MC_Runs ?

SC = SC + 1

Generate statistics from saved results and determine the planning 
value for the plant.

Stop

Yes

No

Given the system sample state:
- determine operational plan performance for StrAlt[SAC] as 
described in section II.2,
- save StrAlt[SAC]  performance for current system state.

Is SAC equal to number of 
defined strategic alternatives?

SAC = SAC + 1

Given all operational performance data for the current system 
sample state configuration:
- determine optimal planning strategy for the generation plant, 
according to DP algorithm presented in section III.3.3,
- save planning results for current system state.

Yes

No

- Generate a system sample state configuration to reflect 
uncertainty in market environment for the current run.
- Initialize SAC (strategic alternative counter) to 0.
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In practice, the capacity component of the electricity market price which is reflective of 

the eventual capacity deficiency in the market environment would mostly exhibit a 

seasonal pattern.  A reasonable assumption is that there exists a monthly shape for 

capacity prices: for example, in markets where the installed capacity is close to the 

predicted demand, capacity prices are non-zero during peak months, and are rather 

negligible in other months.  By using a monthly capacity reward in the problem 

statement, Problem IX can be rewritten as:

Problem X
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{0...T}t,k{0,1}(t)u k ∈∀Ω∈∀∈ (73)

where:
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k

kj,
kj, +⋅= (74)

{}.E  denotes the expected value operator,

m is the month index in year t,

kc  is the flag that indicates that strategic alternative k is a capacity based 

alternative,

)m(CapValuek  is the capacity reward for strategic alternative k during month m 

and is a function of the monthly capacity price )m(icePrCap , the relative 

capacity size addition kCapMW  caused by its implementation and how long it 

applies for during the month mNumHours .  We can write:

mkk NumHoursCapMW)m(icePrCap)m(CapValue ⋅⋅= (75)

By modifying the objective function as in (67), it was shown that the capacity adequacy 

problem can be included in the general planning formulation without changing the 

structure of the solution flow process.  The solution flow process flexibility can also be 

extended towards a multi-commodity electricity market, where several products (energy, 

responsive reserves, regulation, etc) play a more important role in determining the 

operational benefits of a given strategic alternative.
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III.4.3 Generation Planning Under Uncertainty with a Non-Adaptive Price Model

This section presents the results of the planning methodology presented in Figure 3.6 

when the price process follows a GBM model, assuming there is no anticipation of price 

movements given the current information.  In other words, the planning problem is 

looked at from the perspective that the price process follows a yearly GBM process and 

the prices occurrence for a given year does not impact the uncertainty for the following 

year.  This assumption is often used in a simplified framework.  When that is the case, the 

solution to the stochastic differential equation (24) is described as:

t
2

tt zt]
2

1
[)ln(Pr +⋅σ⋅−µ= (76)

where:

t is the time index,

ln(.) is the logarithm operator,

tPr  is the energy price value at time t,

µ  is the mean of energy price in the ln(.) domain,

tσ  is the volatility of price at time t,

tx  is a random variable that follows N(0,1),

ttt xtz ⋅⋅σ=
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Expression (76) is itself a random variable that follows )t,t]
2

1
([N t

2
t ⋅σ⋅σ⋅−µ , with 

N(.) describing a normal process.

To say that prices are independently generated from one year to the next means that the 

tz  variables are independently generated for each year t.  If n is the total number of price 

paths to be constructed through the Monte Carlo based algorithm described in section 

III.4.1, the tz  variables will be generated according to the following procedure:

Step 1: for each time index t, generate independently random values tx  where 

tx follows N(0,1).

Step 2: for each generated tx  at time t, multiply tx by tt ⋅σ  so that

ttt xtz ⋅⋅σ= (77)

III.4.3.1 An Example

Let us consider the planning problem presented in III.3.4.  After consulting with a third 

party, the asset manager is told that electricity prices over the next 20 years will follow a 

GBM process with the volatility data as shown in Table 3.5.  The on/off-peak time 

periods are defined according to Table 2.10.  Again, If in a given year no expansion 

decision has been made, the following year is subject to six possible strategic 

alternatives, as below.  

strategy 1 or [1x1] - keep the current plant capacity and play the market,
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strategy 2 or [2x1] – expand the plant capacity and play the market.

Jan. Feb. Mar. Apr. May Jun.

off-peak (%): 21 21 17.3 17.3 17.9 17.3

on-peak (%): 38.8 38.8 32 32 33 32

Jul. Aug. Sep Oct. Nov. Dec.

off-peak (%): 16.8 16.8 17.3 15.2 15.2 15.2

on-peak (%): 31 31 32 28.1 28.1 28.1

Table 3.5: Electricity Market prices Volatility Structure.

The Monte Carlo simulation is carried over 1,000 market price paths (the detailed 

samples outputs are too voluminous to be included in this dissertation).  Using the 

commercial software GenTrader®, the operational performance over the planning horizon 

for each strategy can be computed, as shown in the P/L histograms in Figure 3.7 and 3.9.

Figure 3.7: [1x1] Strategic Operational P/L (face value) Histogram.
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Figure 3.8: [2x1] Strategic Operational P/L (face value) Histogram.

Using the results of the strategic operational performances as inputs to the algorithm 

described in Figure 3.6, the optimal expected planning value for the generation unit is 

determined to be $ 267,449,657.  The planning value P/L histogram distribution is shown 

in Figure 3.9.  Note that there is no negative P/L as the study case is purely market based, 

even though expanding the plant requires some capital investment, such decision would 

only be taken when the overall benefits exceed the required investment.  
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Figure 3.9: Planning (present value) P/L Histogram.
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In addition to the P/L distribution histogram, it is possible for the asset manager to obtain 

the frequency of the recommended expansion plan during the planning period.  

According to Figure 3.10, the most recommended years of expansion are 2006, 2007 and 

2008.

Distribution of  Year in which Unit is Expanded
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Figure 3.10: Expansion Plan Recommendation Histogram.

The results of the simulation under various planning scenarios are summarized in Table 

3.6.

Planning

 Scenario

Available

 Strategic Alternatives

Planning 

Value ($M)

Standard 

Deviation ($M)

1 No choice of strategy 2 at any time 162.48 104.17

2 Forced choice of strategy 2 in 2009 237.65 199.25

3 Forced choice of strategy 2 in 2022 177.17 121.81

4 Yearly choice of strategy 1 or 2 267.45 198.65

Table 3.6: Planning Scenarios Expected Values (present value).
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III.4.4 Planning Under Uncertainty with an Adaptive Price Model

In the results presented in the previous section, the planning results suffer from the non-

anticipation of price movements.  As presented, these results are not in accordance with 

results that a price decision tree would produce.  The obvious disadvantage is due to the 

assumption of having time-uncorrelated sample paths.  In reality, a reasonable decision 

maker would factor in the current price information to adjust for future forecast.  In other 

words, a decision maker would like to think of a price process as being close to that of a 

decision tree (Figure 3.11).  Unfortunately, a planning analysis based upon a decision tree 

can be computationally prohibitive.  For instance, a 20-year planning problem with one 

risk driver in a 3-branch tree translates into generating 3,486,784,401(=320) price scenarios 

overall.

Figure 3.11: A 3-Branch Tree Scenario Generation with one Risk Driver.
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In order to keep the computational time reasonable, it is possible to use a Monte Carlo 

based schema as described in the previous chapters and sections, and still capture the 

natural time-correlation dependency required in the price process.  

When the Brownian process is correlated over time, it means tz  variables are correlated 

over time.  In that case, expression (76) needs to be adjusted to reflect conditional 

expectation and variance in the price model, as suggested below.

1tt

2

1tt1tt zt]
2

1
[)ln(Pr)ln(Pr −−− +⋅σ⋅−µ=− (78)

where:

t is the time index,

ln(.) is the logarithm operator,

tPr  is the energy price value at time t,

µ  is the mean of electricity price in the ln(.) domain,

1tt −σ  is the conditional volatility of price at time t, given the expected volatitilty 

at time t-1,

tx  is a random variable that follows N(0,1),

1ttz −  is the conditional movement of price at time t, given the observed price 

movement at time t

ttt xtz ⋅⋅σ=
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 In order to reproduce what would happen with a binomial tree price model, tz over time 

must be defined through its conditional mean and variance:

a) 1tzz zmean 1tt −=− ,

b) 1tt1tt varianceestimatedvarianceestimatedvariancelconditiona −− −= .  

This way, the sample variance of tz will always remain [ t2
t ⋅σ ].

The tz  variables are generated following the procedure below.

Step 1: for each time index t, generate independently random values tx  where 

tx follows N(0,1).

Step 2: at t=1, create tz  such that it follows )t,0(N t ⋅σ .  This is done by 

applying



=

⋅⋅σ=
1t

xtz ttt (79)

Step 3: for subsequent time indices ( 1t ≠ ), create the conditional realizations of 

tz .  This is done by applying




≠

⋅−⋅σ−⋅σ+= −−
1t

x))1t(()t(zz t
2

1t
2

t1tt (80)
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Note: the analytical correlation between two consecutive time realizations of tz  is given 

by:

t

1t

t

1t
z,z 1tt ⋅σ

−⋅σ=ρ −
− (81)

III.4.4.1 An Example

A generation plant must serve a 20-year forward sale obligation, starting in 2005.  The 

forecasted market depth over that period is estimated to 100 Mw and 500 Mw for hourly 

purchase and sale respectfully: as shown in Figure 3.12, the market depth is not enough 

to compensate for the growing energy requirement over that period, namely after 2014.  

In the original contract negotiation, a clause stipulates that any load interruption is subject 

to a $/Mwh 600 penalty.  After research, the new management team believes that 

electricity market over the 20-year period follow a GBM process as shown in Table 3.5.  

Furthermore, these prices are correlated over time according to (81).  To minimize the 

penalty associated with load interruption, the asset management team is presented with 

the two following planning options:

- a 150 Mw capacity addition.  This capacity addition can be effective within a 

year.  The capital cost and life time for that investment are estimated to be $/Kw 

559 and 15 years respectfully,

- 3 incremental additions of ‘60 MW CT GAS’ each.  Although the first addition 

can be implemented without any time delay restriction, management fears that 

any additional capacity addition would be effective only 2 years after the previous 
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one, due to permit allocation and other budget restrictions.  Each 60 Mw capacity 

addition capital cost is valued over a 5-year life time, while the estimated 

investment cost is $/Kw 700.  A standard description of a ‘60MW CT GAS’ can 

be found in Table 3.7.  

Operational Data Average Heat Rate Data

Pmin (Mw): 40 Breakpoint ID Mw AHR (Mbtu/Mw)

Pmax (Mw): 60 1 30 11.667

MUP (hrs): 6 2 35 11.096

MDN (hrs): 4 3 40 10.696

Initial status (hrs): -5000 4 45 10.399

Startup Cost ($): 2500 5 50 10.167

Var. O&M ($/Mwh): 2 6 55 9.991

7 60 9.861

Table 3.7: Operational and Average Heat Rate Information for ‘60 MW CT GAS’.

Note that the production fuel for generation operations is indexed to the gas market.  The 

asset manager is only interested in choosing one of these investment policies.  The 

discount rate and present value date for the analysis are 10% and January 01, 2004 

respectfully.  If no expansion decision has been made in a given year, the following year 

is subject to the following strategic alternatives:

strategy 1 or [Base Plan] – keep the plant as 1x1 (see section III.3.4 for 

operational and heat rate information),
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strategy 2 or [Base Plan as CC] – expand the plant capacity by turning it into a 

2x1 (see section III.3.4 for operational and heat rate information),

strategy 3 or [Base Plan + 60 Mw] – add 60 Mw capacity to the current plant 

capacity,

strategy 4 or [Base Plan + 120 Mw] – add 120 Mw capacity to the current plant 

capacity,

strategy 5 or [Base Plan + 180 Mw] – add 180 Mw capacity to the current plant 

capacity.

The Monte Carlo simulation is carried over 1,000 market price paths.  As with the 

previous example, the detailed samples outputs are too voluminous to be included in this 

dissertation.  If the management team decides not to consider any investment option over 

the 20-year period, the planning value of the generation plant is determined by the plant’s 

operational flexibility: the expected planning P/L is $M 162.5.  Similarly, if the 

management team decides to consider the combined cycle plant expansion as its only 

investment option over the 20-year period, the planning value of the generation plant is 

determined by both the operational flexibility (whether using 1CT or 2CTs) and the long 

term flexibility on the expansion decision: the expected planning P/L is $M 256.4.  

Finally, if the management team decides to consider one or more incremental capacity 

additions as well as the combined cycle expansion as investment options over the 20-year 

planning period, the planning value of the plant is determined by the operational 

flexibility of each of the then selected strategic alternatives as well as their optimal 

implementation time sequence: in the case of 3 incremental capacity additions, the 
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expected planning P/L is $M 269.7.  The results of all these planning scenarios, through a 

detailed application of the algorithm described in Figure 3.6 are summarized in Table 3.8.

Planning 

Scenario

Yearly Available 

 Strategic Alternatives

Planning

 Value ($M)

Intrinsic 

Value ($M)

Standard 

Deviation ($M)

1 strategy 1 only 162.54 101.06 129.21

2 strategies 1 or 2 256.36 110.55 280.38

3 strategies 1, 2 or 3 261.11 111.76 279.13

4 strategies 1, 2, 3 or 4 269.66 112.90 276.83

5 strategies 1, 2, 3, 4 or 5 278.81 112.90 300.38

Table 3.8: Expected Planning Values (present value).
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Figure 3.12: Expected Interruptible Energy in Case of no Expansion.

Although the results in Table 3.8 reflect the long-term flexibility associated with the time 

interactions of several investment options, the expected planning P/L does not provide an 
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insight as to the recommended expansion year(s), nor does it expose the sensitivities 

associated with choosing one alternative over another.  In fact, such information can only 

be obtained by further analysis of the detailed outputs from the considered planning 

scenario.

Table 3.9 shows the relative recommendations on implementing incremental capacity 

additions rather than expanding the plant into a combined cycle plant at once.  As can be 

seen, it is recommended to use incremental capacity additions once the total capacity 

addition is at least 120 MW.  For instance, if the management team decides to consider 2

incremental capacity additions as well as the combined cycle expansion as investment 

options over the 20-year planning period, at least 67% of the recommended investment 

plans will involve 1 incremental capacity addition, in contrast to 47% when only a 60

MW incremental addition is considered.  This difference is explained by the additional 

benefits that another 60 MW capacity addition would provide (at least 63% of the 

investment plans involve 2 incremental capacity additions), thus reducing the frequency

on the combined cycle recommendation (25% in planning scenario 4 rather than 44% in 

planning scenario 3).  In Table 3.10, the P/L contribution of each strategic alternative is 

assessed in each planning scenario.

Planning 

Scenario 2

Planning 

Scenario 3

Planning 

Scenario 4

Planning 

Scenario 5

BasePlan as CC: 91.30% 44.50% 25.60% 5.50%

BasePlan + 60 MW: - 47.40% 67.30% 90.90%

BasePlan + 120 MW: - - 63.40% 87.00%

BasePlan + 180 MW: - - - 38.60%

Table 3.9: Capacity Addition Recommendation Frequency.
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Planning 

Scenario 2

Planning 

Scenario 3

Planning 

Scenario 4

Planning 

Scenario 5

BasePlan as CC: 75.14% 56.10% 44.58% 5.35%

BasePlan + 60 MW: - 34.59% 8.44% 6.87%

BasePlan + 120 MW: - - 42.01% 40.70%

BasePlan + 180 MW: - - - 43.86%

Table 3.10: Strategic Alternatives Contribution to the Expected Planning P/L.

The information provided in Tables 3.9 and 3.10 is not enough to determine the 

appropriate schedule for the expansion timeline: we need to look at the detailed outputs 

from the various results.  When no incremental capacity addition is considered as an 

investment option, the combined cycle expansion recommendation favors three 

expansion periods: 2005-2008, 2012-2014, and 2019 through 2022.  When one or more 

incremental capacity additions are considered as investment options, the combined cycle 

expansion is recommended mostly during the 2005-2008 period.  On the other hand, the 

first incremental capacity addition (BasePlan + 60 MW) is recommended during the 

2005-2006 period, and more specifically by 2006.  The second incremental capacity 

addition (BasePlan + 120 MW) is recommended during 2007, 2008 and 2010.  Finally, 

the third incremental capacity addition (BasePlan + 180 MW) is recommended during 

2009-2010.  Figures 3.13 through 3.16 show when each recommended strategic 

alternative is initially activated, for each planning scenario.
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Strategic Alternatives Implementation Timeline - Planning Scenario 2
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Figure 3.13: Recommended Expansion Timeline for Planning Scenario 2.

Strategic Alternatives Implementation Timeline - Planning Scenario 3

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024

Expansion Year

F
re

q
u

en
cy

 (
%

)

BasePlan as CC BasePlan + 60 MW BasePlan + 120 MW BasePlan + 180 MW

Figure 3.14: Recommended Expansion Timeline for Planning Scenario 3.
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Strategic Alternatives Implementation Timeline - Planning Scenario 4
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Figure 3.15: Recommended Expansion Timeline for Planning Scenario 4.

Strategic Alternatives Implementation Timeline - Planning Scenario 5
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Figure 3.16: Recommended Expansion Timeline for Planning Scenario 5.
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As illustrated through the above example, the planning valuation methodology developed 

in this chapter can help compute the expected long term value of a generation portfolio.  

This value helps capture the extrinsic value associated with planning as shown in Table 

3.8.  The model can also serve as an efficient tool to determine the adequate timeline for 

optimal investment planning.
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CHAPTER 4

CONCLUSION

In the United States, the electrical sector is not the first to undergo market reform.  

Telecommunications and natural gas are examples of industries that have been 

restructured towards market openness.  Market models, financial instruments and 

methods of valuing commodities related to the specific industries are known and 

available.  However, their application to the electrical energy industry in planning studies 

has produced mixed results.  This can essentially be attributed to the following 

characteristics of the underlying commodity:

- Electricity is an essential commodity for most customers and it cannot be stored, 

at least not for the quantities at which it is traded in the market,

- Due to the physical delivery requirements associated with the traded contracts, 

electricity derivatives must be priced through a fair assessment of the physical 

production process, a non-feasible task with current financial models.

On the other hand, the traditional engineering planning models are not suited to value 

market based asset portfolios, and like their financial counterparts they do not capture the 

short-term operational constraints associated with strategic valuation, nor do these 

models take into consideration the time dependencies that often characterize long term 

strategic changes.
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In this dissertation, a new approach to electric generation planning is proposed, 

formulated and implemented.  The proposed method copes with uncertainty by 

acknowledging the adaptive nature of the decision makers as uncertainty unfolds.  Also, 

it simultaneously captures the impact of the short-term operational and long-term 

dynamic coupling constraints of the candidate strategic alternatives in determining the 

optimal strategic investment plan while uncertainty unfolds.  Thus, the method captures 

the extrinsic value due to operational flexibility and long term adaptive decision making.  

Through its innovative formulation, the proposed method can be used to address 

generation planning under various market structure environments such as pure 

competition, partial competition or total regulation.  From a technical standpoint, the 

proposed method is conceived as a simulation model that intricately combines a two-

layer interdependent optimization schema, each solved by a different algorithmic 

approach.

In the first part of this dissertation, a review of generation planning is presented and the 

shortcomings of the currently available methods are described.  Amongst others, these 

shortcomings include the failure to thoroughly reflect assets short-term operational 

constraints in overall operational valuations, the inability to capture the flexibility 

associated with changing the course of action (whether in operations and/or planning 

decisions) as uncertainty unfolds, and the inability to handle the time dependencies that 

couple the implementation sequence of multiple strategic alternatives.  Furthermore, the 

introduction of market competition brings an additional level of complexity in the 
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problem formulation.  All these inadequacies require that the generation planning 

problem be studied under a new paradigm.

In the second part of this dissertation, the problems of strategic optimal operational 

valuation and market uncertainty formulation are presented and addressed.  After a 

detailed formulation of the strategic operational valuation problem also known as the unit 

commitment problem, a general solution algorithm based on the upward commitment 

method is discussed, with specific implementation for a market-based strategic 

alternative operational problem, where each market instrument is valued individually.  

The 2-generation unit deterministic case study in Chapter 2 shows how the short-term 

operational time dependent constraints drive the optimal decision of the commitment 

sequence while the static constraints affect the optimal dispatch level of each generation 

asset.  In the later part of the chapter, the problem of market uncertainty is presented.  

Since decision makers should be able to adjust their course of action as uncertainty 

unfolds, it appears appropriate to describe market uncertainty through Monte Carlo 

sampling.  Contrary to standard financial models, the stochastic strategic alternative 

operational valuation method presented in this dissertation reflects the short-term 

constraints associated with assets operations, thus providing a more realistic operational 

value.  Building on the results of the deterministic strategic operational valuation 

algorithm, a Monte Carlo based algorithm is presented and tested on the previous study 

case.  In addition to the flexibility in adding multiple risk drivers without hindrance to the 

structure or the efficiency of the solution algorithm, the proposed methodology allows 

computing additional statistics otherwise not available with standard financial models, 
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further providing decision makers with a better representation of their strategic 

alternatives risk profiles.  

In the third part of this dissertation, the problem of long term strategic decision is 

addressed under a new formulation for generation planning.  The new formulation 

departs from the traditional engineering models in that it poses the problem from a 

market opportunities maximization perspective, embeds the supply-demand constraint 

within the objective function argument, and includes the time dependencies associated 

with the strategic alternatives implementation within its general framework.  Afterwards, 

a dynamic programming (DP) based solution algorithm is developed, and initially tested 

against a deterministic long term problem formulation in Chapter 3.  The introduction of 

the time dependencies within the stages/states structure of the DP algorithm allows an 

efficient coordination of the time dependent strategic alternatives coupling constraints, 

when they exist.  Furthermore, the computed operational value of each strategic 

alternative in the DP algorithm reflects the short term operational constraints of the 

studied assets as the valuation is performed dynamically through the hourly chronological 

unit commitment algorithm described in Chapter 2.  With the effective combination of 

the short and long term constraints, the planning value obtained through the deterministic 

planning algorithm provides decision makers with adequate investment signals, as shown 

in the deterministic planning example presented in Chapter 3.  Taking advantage of the 

modularity structure of the derived DP algorithm, a Monte Carlo sampling technique is 

added to the initial DP planning algorithm in order to address the generation planning 

problem under uncertainty.  As argued earlier, the flexibility in changing the course of 
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action as uncertainty unfolds should provide decision makers with better decision signals 

between the competing strategic alternatives.  In addition to the expected, intrinsic and 

extrinsic planning values, the Monte Carlo based planning algorithm also provides 

decision makers with other statistics such as the standard deviation, the histogram of the 

planning profits, the cumulative distribution of the planning profits, and the relative 

frequency of implementation timing for the different competing strategic alternatives.  

As competition and further deregulation become more effective in the United States and 

elsewhere, generation asset planning must be studied with new tools.  While these tools

need to adapt to the new market environment, they must also factor in the operational and 

long term constraints associated with realistic generation asset planning.  This 

dissertation has presented a generation planning model that can be used towards such

realistic assets planning in the new market structure as seen in developed countries.  The 

proposed model is also flexible enough to have practical applications in emerging and 

developing energy markets, and the initial results are encouraging.  While the proposed 

model has put emphasis on a single-plant planning problem, it is the author’s belief that it 

can be extended towards a more systematic planning tool.  If pursued, the extended 

research should provide system planners with a comprehensive and coherent model that 

can undertake the true valuation of generation assets from operations to planning, all 

within a unified framework.
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