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Chapter 1

About the Casimir Effect

1.1 Introduction

Since the beginning of the Casimir effect, the equivalence between the action at a
distance between molecules (the van der Walls forces) and the local action of fields was
established; the van der Walls interaction could be interpreted as a manifestation of
the zero-point energy of the quantized fields.

In this fashion, Casimir calculated the interaction between neutral parallel conduct-
ing plates (1948). Let’s say in the ideal case, when there are no real photons or any
charges on the plates, only the disturbance of the vacuum of the electromagnetic field
due to the boundaries is causing the interaction. The result of his calculation was a
positive force between the plates, meaning that the plates attract each other [1].

However, not much importance was given to this effect until Boyer completed his
calculation in 1968 [2]. Hoping to find an attractive force due to the vacuum fluctua-

tions as suggested by Casimir in [1], he computed the Casimir force for a conducting



sphere. The surprise came when he found that the self-energy in this case was repulsive.
This was a very unexpected result and since then, nobody has been able to predict the
outcome of the Casimir effect of a particular geometry without an explicit calculation.
There is no general algorithm to predict the sign of the force.

The result for the sphere (as well as the parallel plates) has been reproduced several
times and extended to the case of a dielectric sphere [3, 4], which result in the dilute
limit is in perfect agreement with the one coming from the sum of the van de Walls
interactions [5, 6].

The case of the cylinder has also been considered for the situation where the speed
of light is the same on the inside and the outside of the body. However the case when c
is differing on both media is more intractable. After the result obtained from the sum
of the van der Walls interaction [7] it has been a challenge to be able to reproduce the
zero Casimir energy for this configuration from the perspective of the fluctuations of
the fields. That is the goal of the next pages.

We will give a brief overview of the Casimir effect and the zero-point energy but it
is not the goal of the author to give a review of the subject; for that there are excellent
sources [8, 9, 10, 11, 12].

The experimental development of the Casimir effect has been slower than the the-
oretical one. Different factors have made it a challenge to verify the existence of the
Casimir force. These forces are very small and depend on the distance. For two parallel

plates separated by a distance a, the force per unit area is given by

7% he _ _
F= ~510g1 = ~130x10 TMm?a " (1.1)



The small distances required imply high sensitivity in the experimental techniques and
great accuracy in any measurement.

The first attempt to experimentally verify the results found by Casimir in 1948
took place ten years later. Sparnaay [13] set an experiment to measure the Casimir
force between two parallel metal plates using a technique based on a spring balance.
This was the first indication of the attraction force between the plates even though the
precision of the measurements was not good enough and the results could be considered
somewhat inconclusive. The first review reporting experimental developments in the
Casimir effect was done by Sparnaay himself and Sarlemijn [14].

The first experiment considered successful in the new generation of experimental
techniques was carried out by Lamoreaux [15]. He used a torsion pendulum and flat
plates coated with Cu and Au. The results of this experiment were very successful;
even though temperature corrections where not considered, there was no doubt left on
the existence of the Casimir force. For details about this and several other experiments

you can refer to the last part of the review by Bordag et al. [9].

1.2 The zero-point energy

Historically [16] the concept of zero-point energy first appeared with Max Planck in
1911. He hypothesized that the emission of radiation is discrete and the unit of emitted

energy is hv. The average energy of a harmonic oscillator at temperature 7" was given

by
_ h h
E@w,T) == + -, (1.2)
2 err — 1



where h is the Planck constant and v is the frequency. This implied the existence of
an energy of the harmonic oscillator at zero temperature. It was later, by means of
the Heisenberg uncertainty principle in quantum mechanics, that the same idea would
appear again, this time arising as a consequence of the theory itself. In quantum
physics the uncertainty principle expresses a limitation on the accuracy of simultaneous
measurement of observables

ApAq > —. (1.3)

N | St

This relation arises between any two observable quantities defined by non-commuting

operators such as position and momentum,

[p,q] = ? (1.4)

Its immediate consequence is the inability in determining the state of a particle with
precision in classical terms; trying to determine the position of a particle makes its
momentum more uncertain. This gives rise to a discrete harmonic oscillator spectrum

of energy

1
E, = hw(n+§) n=0,1,2,..., (1.5)

which ground state n = 0 has non-zero energy'. It reflects the fact that if the particle is
confined in a region of space (by the effect of a potential for example) by the uncertainty

principle, its momentum cannot have a definite value, in particular the momentum

h

TAp’ and therefore the energy cannot vanish in any state.

cannot be zero since Aq ~

The value of the ground state level has been called the zero-point energy.

!The constant spacing between successive levels, Aiw = hv is exactly what Planck had postulated.



This energy is indeed infinite since we are summing over an infinite number of
states. However, it has always been considered as irrelevant since it is a constant and
we can only measure changes in energy due to transitions between different quantum
states. A simple shift in the origin of the energy is enough to disregard this infinity
in the ground state. The spontaneous emission that Planck had hypothesized can be
regarded as induced by the zero-point oscillations of the electromagnetic field; a purely
quantum phenomenon.

We encounter the same in quantum field theory, this time in regard with the quan-
tum fluctuations of the fields at each point. The ground state contribution of the
energy %hw, when summed over all modes, gives infinite energy. This is known as an
ultraviolet divergence. The way to deal with this infinity in QFT is by renormaliza-
tion techniques based on the idea described above that only differences in energy are
measurable within a quantum system. However, it may be that the system is subject to
external conditions or boundaries and the value of the frequency w depends upon them.

When you confine the space between two parallel plates the modes of the fluctu-
ations of the fields change, creating some pressure on the plates that gives rise to a
measurable force; this effect is known as the Casimir Effect. The geometry of the
boundary (parallel plates in the above example) plays an important role since it de-
termines the new frequency states. The appearance of the new modes gives rise to
a measurable energy after subtracting counterterms such as the ground-state energy
of the fields in the absence of the boundary. For example, in the case of the parallel
plates, the modes normal to the surface get discretized originating a vacuum energy

density inside the plates that differs from that of the outside producing an attractive



net force between the plates. If we talk about a conducting sphere, the same effect
creates a repulsive force.
Later we will see in a detailed way how to deal with this kind of calculation in a

cylindrical topology.

1.3 Approaches

We can compute the Casimir effect in many different ways. The most immediate one
is to calculate half the sum of all the energy modes of the ground state subject to a

particular topology and with the appropriate boundary conditions,

Eo= ) %hw (1.6)

modes

obviously this is very divergent and therefore it seems clear that we need to find a
procedure to regulate the vacuum energy.

There is not a consistent general-renormalization technique for removing the diver-
gences occurring from the computation of the energy in a compact space subject to
boundary conditions. For each specific geometry one has to develop a particular renor-
malization procedure. Next, we will briefly mention different mathematical methods
to remove divergences in the Casimir calculations and illustrate them for the case of
the self energy of the dielectric cylinder. Special attention is given to the calculation
where the source theory is applied. By the use of the Green’s functions we will derive
the general expression for the dielectric cylinder with the speed of light differing on

the inside and outside and the particular case for the dilute cylinder. The Green’s



functions give us the vacuum expectation value of the product of the fields that allows
us to calculate the energy momentum tensor. Divergences appear because we need
to compute expressions at the same space-time point; however, this approach gives a
physically unambiguous understanding of the problem and after regulation we are able
to subtract the finite contribution and identify the divergences. A whole section will

be devoted to this.

1.3.1 The zeta function technique

This is essentially based on the definition of the Riemann zeta function,

C(s):Z% Res > 1. (1.7)

An extensive study of the zeta-function can be found in [17]. In order to use this regu-
larization technique we need to know the spectrum of the case under consideration. For
simplicity, let’s consider a scalar field in certain dimension N, satisfying the differential
equation,

P, (7) = An®n(z), (1.8)

where n is the set n = ny,ng,...,ny with n; = 1,2,3,... and z is the N-dimension

spatial coordinates x = (z1, z, ....,zx). The operator P is,

P =P, +V(z), (1.9)

with P, an elliptical differential operator in the spatial coordinates, for example the

Laplacian.



If one is able to solve the differential equation
(Pa + V(24)) @n(zn) = An@n(zn), (1.10)

the vacuum energy takes the form,

i
Ey = 5;/\", (1.11)

where A,, = A, ...+, for the special case when the differential equation is separable
in Cartesian coordinates. The above energy is in general very divergent but it can be

regulated as 2

Eo(s) = gZA;S. (1.12)

This is the spectral zeta function which we can compute in the allowed region and
then, by analytic continuation, extend the definition of the zeta function ((s) to the

whole complex plane. We can conclude then that the vacuum energy is

(s = —1). (1.13)

To make this more transparent, let’s assume we can separate the differential equation
in Cartesian coordinates and that we are interested in just one direction, let’s say in
the z-direction. In this case we can Fourier transform the rest of the components so

that

O(z) = /00 _dks elkrx) g (2). (1.14)

0o (2m)N

2We require that A,, never takes the value 0.




and the vacuum energy would now read,

dky, ..., dky 1
Z/ NI — SR A+ A (1.15)

where k2 = k? + k3 + ... + k%_,, and @(2) satisfies

(= 4 V() ) 6la) = Ao (116

The energy Ej as it reads above diverges badly, therefore we regulate it. One way is

using the zeta function. For that we do:

dk,...dk .
Z/ et R+ )T (1.17)

We should be able to compute that integral by making use of the change k2 — k2 \,,,

and using polar coordinates. We write then,

dk
Eo(s) = —Z/ L (K + 1) PAN D2/

dNQ = N-2(7.2 —s/2\(N—1-5)/2
— Z Emr dky kY 2 (KT + 1) 7°72A0 , (1.18)
0

where (dk,) = dkidks...dky 1. We arrive at a generalized zeta-function expression,

s) Y AN, (1.19)

For example, for the case of the parallel plates with Dirichlet boundary conditions,



A= ”Z’f where a is the separation between the plates. For N = 3, equation (1.18)

becomes,

= C(s—2), (1.20)

a?=5 6

that evaluated at s = —1 and using ((—3) = 1/120, we find that the energy per unit
area is
h w?

Ey=——— . 1.21
0 a3 720 (1.21)

Casimir used an exponential regulator e’ with small w to find the exact same value
for the energy.

As noted above, in order to compute the mode summation we need to know what
the eigenfrequencies for the specific case of interest are. Later we will see in detail
how to calculate the function that gives us these for an infinite dielectric cylinder in
a medium with permittivity and permeability €', i’ while in the inside of the cylinder
those are €, i1, but for now we will just give the expression for the special case where the
surrounding medium is vacuum, ¢’ = 1, ¢’ = 1. With this topology, the eigenfrequencies

of the electromagnetic oscillations are given by the roots of the equation [18]

fm(k,,w) =0, (1.22)
where
m?k2w? N

10



D = eNaJ (Aa)H,,(Na) — AaH] (Na)J,,(Na), (1.23b)

-l
Il

pNad, (Aa)Hp(Na) — AaH], (N a)Jm(Aa). (1.23c¢)

and

N =epw® — k.2, (1.24)

with the equivalent expression for ' with ¢’ =1 and p' = 1.
In the above A = —%, the D, D correspond to the transverse magnetic and electric
modes respectively and J,, and H,, are Bessel function with H,, being the Hankel

function of the first kind and m =0, +1,+£2, ....

From (1.24) it is straight-forward to see that the frequencies are given by

w=a"'y® + k)2, y=Na, (1.25)

and an easy expansion of x = Aa in terms of (¢ — 1) allows us to write

22 =y*+ (e — 1)(¥* + k2a?). (1.26)

Because of the presence of the Bessel functions, each root w of (1.23a), characterizing
the natural modes of propagation, has two indices. Each Bessel function of index m
has an infinite number of discrete p. Therefore any root of (1.23a) can be designated
as wmp and has dependence on k,. The Casimir energy per unit length can then be

given by

B[ dk,
B= 5/00 - %wm,p(lﬂz). (1.27)

11



We can regulate this expression by adding a power (—s) to the sum,

h [ dk, _
E(s) = 5/ o Zwm’p(kz)
oo -

hoo [ dk, 2 2 2\—%
= g0 [ Sk, ) R (1.28)

m,p

so that the Casimir energy is expressed in terms of the zeta function
E(s) o« ((s/2 = —1/2). (1.29)

One of the sums in (1.28) can be turned into an integral by virtue of the argument

principle,

where the contour of integration C is chosen so that it encloses all the positive zeros

dk,
2T

— 2 4 a3 2
zm:m/cdy(y +ha) g In (Y, k), (1.30)

of f,, in terms of y.

This energy turns out to be zero as predicted by the derivation from the Van der
Walls interaction, and the details for computing the above integral can be seen in great
detail in [19]. The same calculation for the case where the speed of light is the same

in both media, inside and outside the cylinder, was calculated in [7].

12



1.3.2 The Heat kernel technique

The heat equation was first derived by Fourier in the theory of heat flow. The diffusion

equation reads

vy = kV% (1.31)

with certain initial and boundary conditions. If we have a differential operator P so
that Pv+ 0,v = 0, formally e F? is a fundamental solution of that differential equation
with boundary conditions v(z,0) = §(0) and it is called the heat kernel of the operator
P.

If the eigenfunctions ¢, (z) of P form a complete set, with eigenvalues \,, the heat

kernel can be written as

K(z,a';t) = ¢nlz) gy (a)e P, (1.32)
satisfying the equation
(% +P>K(~T,x';t) =0, (1.33)

with initial conditions K (z,y;0) = §(x — y), that describes the diffusion of heat from
a point source at some time zero. The global heat kernel is the trace of the local heat

kernel.

K(t) ~ TrK(x,x';t):/de(x,x;t), (1.34a)

Kit) = Y e (1.34b)

n

13



This is an spectral function invariant of the operator P and it defines other spectral
functions like the zeta-function. These two are related by

C(s) = % /000 dtt*"'K(t), Res> g, (1.35)

where d is the dimension.

The heat kernel is a very powerful tool. In particular the asymptotic expansion of
the global heat kernel is of great importance. The coefficients of such an expansion are
spectral invariants of the differential operator that describe the asymptotic properties
of the spectrum. It should be made clear that the Casimir energy cannot be calculated
from a heat kernel expansion® however, the divergent part of the regulated vacuum
energy is associated with the heat kernel coefficients of the asymptotic expansion. If

we expand the heat kernel for small ¢t we get,

K(t) = 2 anpt"?, (1.36)

n

where the a,/; are the heat kernel coefficients and they are related to the correspondent

coefficients for the local heat kernel expansion,
anjo = Trap o(z, ). (1.37)

This coefficients are functions of the geometric properties of the topology, like volume

or surface, and its derivatives. More details can be found in [9] or in a differential

3The cylinder kernel however can predict the Casimir energy [20].

14



geometry textbook to get a more mathematical approach. We are interested in as
since in three dimensions the vanishing of this coefficient makes the vacuum energy of
a massless field be unique. A general expression for the heat kernel coefficients can be

found from (1.36) and (1.35),

tn2 = (47)%?  lim <5—(d_"))r(s)g(s), (1.38)

s d=n) 2

for n integer number. In three dimensions (d = 3) when n = 4 we have s — —1. If a,
is not zero, the zeta function has a pole at that particular value of s and the problem is
unsolved; notice that we need ((—1/2) to get the Casimir energy, see equation (1.29).

To illustrate this we go back to the case of the dilute dielectric cylinder. The heat
kernel coefficients for this case are calculated in [21]. A way to regulate the Casimir
energy is by subtracting the Minkowski contribution of the entire space. The energy

in (1.27) can be renormalized by

o Z /_ Z dk, %[wmp(kz) — G ()], (1.39)

where w,,, are the eigenfrequencies of the electromagnetic oscillation with a cylindrical
topology, and wy,, are the eigenfrequencies without the boundaries; those of the entire
Minkowski space of either medium. As we did in the previous section, we can turn this

sum into an integral,

B = 50 [ 5 Zm [ vt + 2yt 2 i)

¢(s/2). (1.40)

N St
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the heat kernel coefficients are given by the residues of the zeta function,

an = (47r)3/2ResS:%_nF(s)C(s). (1.41)

Bordag et al. calculate ay from the rotated version of (1.40) by using the asymptotic

expansion of the modified Bessel functions and what they get is

ag = ————=(g — 1)?, (1.42)

the coefficient ay of the heat kernel expansion starts as O((e — 1)?).
The fact that the dilute approximation gives a; = 0 in second order in € — 1 means

that the value of the Casimir energy in this order is unique and finite.

1.4 Derivation for the Casimir Energy for a Dielec-

tric Cylinder

The following is the work of Kimball A. Milton and myself [22]; we calculate the Casimir
pressure on the walls of an infinite circular dielectric-diamagnetic cylinder with electric
permittivity ¢ and magnetic permeability p inside the cylinder and surrounded by
vacuum with permittivity 1 and permeability 1 so that ey # 1. We will show that
the corresponding Casimir energy per unit length is divergent as expected but, for
u =1, the finite coefficient of (¢ —1)?/a? in the expansion for the dilute approximation
yields the surprising zero result found by summing the van der Waals energies between
the molecules that make up the material [7]. The latter calculation was verified by a

16



perturbative calculation by Barton [23].

Although there should be divergences in the energy proportional to (¢ — 1)%a and
(e — 1)?/a, the coefficient of (¢ — 1)?/a? is unique and finite as we have stated above,
consequence of having the coefficient as = 0 in the heat kernel expansion [21].

We will first calculate the dyadic Green’s functions that will allow us to compute
the one-loop vacuum expectation values of the quadratic field products. This enables
us to calculate the vacuum expectation value of the stress tensor, the discontinuity of
which across the surface gives the stress on the cylinder. We detail the calculation
of the bulk Casimir stress, which would be present if either medium filled all space
and must be subtracted from the stress found previously. Finally, the case of a dilute
dielectric cylinder is considered and by detailed analytic and numerical calculations,
it is shown that the Casimir stress vanishes both in order € — 1 and (¢ — 1)2. The

significance of divergences encountered in the calculation is discussed.

1.4.1 Green’s Function Derivation of the Casimir Energy

In a medium of constant electric permittivity ¢’ and magnetic permeability ' we insert
an infinitely long cylinder of radius a with permittivity and permeability € and pu. The
product of these parameters is different than that of the outside parameters. There
are no real charges of any kind present in the problem, p = J = 0 and since we work

at a fixed frequency we can Fourier transform the electric and magnetic fields,

E(r,t)z/ ;l—:E(r,w)e_M, (1.43a)
B(r,f) = / g—‘;B(r,w)e—iwt, (1.43b)



and the corresponding Maxwell’s equations are

V X E =iwpH, V-D=0, (1.44a)

VxH=—iweE, V-B=0. (1.44D)

In order to write down the Green’s dyadic equations, we introduce a polarization
source P. The first equation in (1.44b) and the second one in (1.44a) get then changed

to,

VxH = —iweE —iwP, (1.45a)

V-D = -V-P. (1.45b)

The linear relation of polarization source with the electric field defines the Green’s
dyadic as

B(z) = / (da")T(z, o) - (). (1.46)

Since the response is translationally invariant in time, we also introduce the Fourier

transform of the dyadic at a given frequency w,

I(z,z') = /_00 d—wexp [—iw(t —t")|T(r, ', w). (1.47)

oo 2m

We can then, by simple substitution in (1.45a) and (1.44a), write the dyadic Maxwell’s

equations in a medium characterized by a dielectric constant € and a permeability u,

18



both of which may be functions of frequency:

VT —iwp® = 0

-V X ®—iwel' = iwld(r—r').

(1.484a)

(1.48b)

Since it is more convenient to have divergenceless Green dyadics, we redefine the elec-

tric Green’s dyadic in the following way,

so that the dyadic Maxwell’s equations can now be written

1
VxI—iwu® = -V x1, V-®=0,
3

-V x ® —iwel’ = 0, V.-T=0.
and where the unit dyadic 1 includes a three-dimensional ¢ function,
1=16(r—1').
The corresponding second order equations are

1
(V2 + w?ep)T’ = _EV x (V x 1),

(V2 +’ep)® = iwV x 1.

19
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(1.50a)

(1.50b)

(1.51)

(1.52a)

(1.52b)



Quantum mechanically, these Green’s dyadics give the one-loop vacuum expectation

values of the product of fields at a given frequency w,

(BOER) = (Trv) (1.53)
(Hr)H()) = —?w;ﬁ?xf(r,r')x(v_'. (1.53b)

Notice that from (1.48a) the magnetic dyadic is the cross product of V and the electric
dyadic.

Thus, from the knowledge of the classical Green’s dyadics, we can calculate the
vacuum energy or stress.

Since the TE and TM modes do not separate, we cannot use the general waveguide
decomposition of modes into those of TE and TM type. However we can introduce the
appropriate partial wave decomposition for a cylinder, in terms of cylindrical coordi-

nates (7,0, z):

M) = 3 /_:%{(Vxz)fm(r;k,w)xmk(e,z)

m=—0o0

+ éV x (V x i)gm(r;k,w)xmk(e,z)}, (1.54a)

2erio) = Y [ ST x ik ).

m=—0o0

- ;—iV x (V x Z)fm(T;k,w)ka(H,z)}, (1.54b)

20



where the cylindrical harmonics are

x(0, 2) = ——e™elk?, (1.55)

and the dependence of f,, etc. on r’ is implicit. Notice that these are vectors in the

second tensor index. Because of the presence of these harmonics we have

Vxi - f0- ég =M, (1.56a)
r or

Vx(Vxz) — fik—(,f _0™ s, = N, (1.56b)
T T

in terms of the cylinder operator

dpp = — oo — (1.57)

It is trivial to see that the divergence of (1.54a) and (1.54b) is zero, satisfying imme-
diately two the the dyadic Maxwell’s equations. Now, if we use the Maxwell equation

(1.50b) we conclude®

gm = Om, (1.58&)

(dm = k) o = —w’pifm. (1.58b)

4The ambiguity in solving for these equations is absorbed in the definition of subsequent constants
of integration.

21



More elaborate work is needed to get a condition form the other Maxwell equation

(1.50a). Using the above we can write (1.50a) as

2 / { g w—MkQ) = - k?)Ngm} s (6.2) =

Z/ g{iwu./\fgm +€Mfm}xmk(0,z) + éV X 1 : (1.59)

if we multiply the above by f027r [%5, d0dzx,,.(0, z) and apply

27 [ee]
/ / 402" 100, 2) xouk (0 2) = 275 (k — KB (1.60)
0 —00
we find

! ) .
——N(dm — K+ wue) frn — LM(dm — k* + wue) g, =

/ " / A0z (0,2) (V % 1) 8(r —r)3(0 — 0)5(z — =), (1.61)

where the delta functions are now made explicit. By dotting this expression with z we
notice that 2.M = 0 and 2N = —d,, and after a little manipulation we get to the

fourth order differential equation:

r Y] /_wzlu /*1 ERRAYE 't
d,,ﬂ)mfm(r,r,0,2)——‘S M =6(r —rxr (6, 2)). (1.62)
r

If we now dot it with (Vx2), we don’t get a contribution from AN and we learn that
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a similar equation holds for g,,:
1
A D& (157", 0", 2") = —iwN"™*=86(r — ') x5, (0, 2'), (1.63)
T

where we have made the second, previously suppressed, position arguments explicit
and the prime on the differential operator signifies action on the second primed argu-

ment. The Bessel operator appears,

Dy = dp + N2, N = wleu — k2. (1.64)

In order to solve those equations, we separate variables in the second argument,

f'm(r, r') =

| —|

1 s
M F, (r, 7' k,w) + aNI*Fm(T, r's k, w)} Xoe(@,2),  (1.65a)

gm(ra I") =

| —

N"™*Go(r, 1" k,w) — iM™* G (r, 1" K, w)] Xei(0, 7)),  (1.65Db)

1
w

where we have introduced the two scalar Green’s functions F;,, G,,, which satisfy

2
1
dp Do Fon (1, 7") = %;w—r'), (1.66a)
1
A DG (1, 1') = w2;6(r—r'), (1.66b)

while F,, and G,,, are annihilated by the operator d,,, D,

dpn D F(r, ") = dyy D G(r, ") = 0. (1.67)
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The Green’s dyadics have now the form:

ad < dk d,, — k2
o I e G

m=—0o0

_ 2 .
+ lMNl* _dm k Fm(T, 7'/) + N % LGm(T, 7'/)
w w2 w?e
+ %SNM'*ém(r, ') }ka 0, 2)x5. (0,2, (1.68a)

o) = > [ %{‘iMN'*Gm(r,m—iMM'*ém<r,r’>

m=—0o0

— £./\f./\ft’*Fm(r, r') — %NN,*Fm(T, r')}
Wit w2

Xka(ea Z)X:nk(el,zl)‘ (168b)

In the following, we will apply these equations to a dielectric-diamagnetic cylinder
of radius a, where the interior of the cylinder is characterized by a permittivity ¢ and
permeability p, while the outside is vacuum, so € = u = 1 there. Let us consider the
case that the source point is outside, ' > a. If the field point is also outside, r, ' > a,
the scalar Green’s functions F',G'  F' G' that make up the above Green’s dyadics
(we designate with primes the outside scalar Green’s functions or constants) obey the
differential equations (1.66a), (1.66b), and (1.67) with e = u = 1. To solve these fourth-
order differential equations we introduce auxiliary Green’s functions Gy, \©(r, ') and
G (1),

dyDpF' = 0*dnGE,  dpDmF' = w?dnGE (1.69)

and similar expressions for G&'(@) satisfying (m # 0)
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! ! 1
dmgg(G)(T,’f'l) = —6(’/’—7‘,), (]_7(]&)

dnGE @ (7,1 = 0, (1.70D)

which therefore have the general form

Im|
! ! 1 1 T
F'(G") ! _ I1F(G) (! _ <
gm (T:T ) - am (T )7«|m| 2|m| (7">> ) (1718‘)
o o 1
GF@ () = oF@ (TI)W’ (1.71Db)

where r.(rs) is the lesser (greater) of r, v/ and we discarded a possible r/™ term
because we seek a solution which vanishes at infinity. Thus F',, G! . F" and G’ satisfy

the second-order differential equations

DnF), = wGF,  D,Gl, =w’Gs, (1.72a)
DnF! = WGE. DG =wGS. (1.72b)

Now, from (1.72a) and the first identity in (1.64) we can write the above as (\? =
w? — k?)

2
GE') = —\2(F!, — =

2
w
dm (Fry — 5 m N2

m AI?

G, (1.73)

and the same holds for G’ , F!, and G",. The solutions to these equations are Bessel

functions:
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w27r

2
W Lp R
F’ — —g = A{m (’I",)Hm()\lr) — EZ

m A[Q m

T N1 ) Hp(N'rs), (1.74)

while G!, obeys a similar expression with the replacement F' — G 5. Similarly, from
(1.72b)

~ 2 -~ ~
B %g;;; = AT () Hp(N7), (1.75)

and for é;n replace F' — G. Here, to have the appropriate outgoing-wave boundary
condition at infinity, we have used H,,(\'r) = H{ (7).

The dependence of the constants on the second variable 7' can be deduced by
noticing that, naturally, the Green’s dyadics have to satisfy Maxwell’s equations in
their second variable. Thus, by imposing the Helmholtz equations in the second variable

together with the boundary conditions at 7" = oo, it is easy to see that

1
U (') = a4 U H(X'T), (1.76a)
r m
1
An(r') = Af o + By Hu(N'T'), (1.76b)
7'- m
and with similar relations for a/¢(r'), A%(r'),a/S(+'), and so on. Then, the outside
Green’s functions have the form
w? [ a¥ w2 1 fro\™
' ' _ v ™m IF 10 —m| _ ¥ <
E (r,r) = E {rllml + b, Hy,(N'r )] r C —2|m\ <r>)
AIF 2
+ [T,g + B;me()\'r')] H,,(\'r) — %%Jm()\'Q)Hm(A’g),
(1.77)

5Notice that in principle we could also have a term proportional to J,,, (A'r), but it doesn’t happen
because of boundary conditions. The primes represent functions or coordinates outside the cylinder
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while G! has the same form with the constants a/f", o/F') A’F" B'F replaced by /%, b/¢ A'C

and B!Y respectively. The homogeneous differential equations have solutions

2

¢

a/F

rilm|

/F

E! (r,r") =

'|m\

+ b'FH (/\'r')] roiml 4

+ BFH,, (A'r’)] H,(\r), (1.78)

while in é;n we replace af — a’é, etc.
When the source point is outside and the field point is inside, all the Green’s
functions satisfy the homogeneous equations (1.67) with e, u # 1, and then, following

the above scheme we have that
dnGh = dnGf = dnGr, = dyG5 = 0, (1.79)

and

Gl (r,r') = ai(r')r'mh (1.80)

since now 7 can be 0. Also D,,F,,, = w?GF and a expression similar to (1.73) holds.

We find that®

UJ2

F, — e

—GF = AP (r')J, (A1), (1.81)

G, F, and G, have the same form, and the constants a” ('), AE ('), etc. follow the

pattern in (1.76a) and (1.76b). Now, we may write for r < a,7" > a

2 F

w
)\2 /|

Fp(r,r') = + BEH, (N | T (M), (1.82)

r!lm|

AF
+ bFHm(/\'r’)] riml 4 [

and similarly for G,,, Fin, G, with the corresponding change of constants. In all of

6Now we have the J,,,(\r) since it is convergent at r = 0 and the Hankel function is missing.
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the above, the outside and inside forms of A are given by

N? = w? — k?, N = w?ue — k*. (1.83)

The various constants are to be determined, as far as possible, by the boundary
conditions at 7 = a. The boundary conditions at the surface of the dielectric cylinder
are the continuity of tangential components of the electric field, of the normal compo-
nent of the electric displacement, of the normal component of the magnetic induction,
and of the tangential components of the magnetic field (we assume that there are no

surface charges or currents):

E; is continuous, eFE, is continuous,

H; is continuous, wuH, is continuous. (1.84)

These conditions are redundant, but we will impose all of them as a check of consistency.

In terms of the Green’s dyadics, the conditions read

.1 S 0, (1.85a)
2T’ S 0, (1.85b)
o S 0, (1.85¢)
f.pud S 0, (1.85d)
f.® S 0, (1.85¢)
7@ S 0. (1.85f)



We can also impose the Helmholtz equations (1.52a) and (1.52b). From those we learn

that the coefficients of terms with powers of r are related in the following way

't +a'% = 0, (1.86a)
1G ki
b — (sgnm);b = 0, (1.86b)
1G k IF
b’ — (sgnm);b = 0, (1.86¢)

for the Green’s dyadics outside the cylinder and equivalent expressions for the inside
(no primes). To illustrate this we apply the i component of the magnetic Helmholtz
equation (in a similar manner it can be seen that all components of the second or-
der differential Maxwell’s equations hold), (V? + w?su)®g = 0. Plugging in the 06

component of ® (equation (1.68b)) and using (1.82) we find,

k d [ S
Z | - l'm"Z,[,m+bGHm<A'r'>]r'm'-1—i\m|;[‘f’;;+
T\T

- o [ al ie m2k?
G 1! m|—1 s F 10 |m|—1
by Hy(N'r )} T kar’ [ ol T+ b, Hpy(N'r )] R
i bF Hy(Nr') | 7/mI=1 e, 1.87

From here we obtain expression for the inside constants; the equivalent conditions of

those found in equations (1.86a),(1.86¢) and (1.86¢) for the outside,

SaF —af = o, (1.88a)
W
G ek i
b” + (sgnm)——b" = 0, (1.88b)
pw
G ek r
b” + (sgnm)——b" = 0, (1.88¢c)
pw



where we have introduced the abbreviations for any constant K

N k N
K¥ = K¥ — (sgnm)—K7*, K¢ =KC— (sgnm)%KG, (1.89)
w

and the same for K'F and K'C (the outside). Then, from the boundary conditions we
can solve for the remaining constants. Notice that, due to the tensorial character of the
Green’s dyadics, each of the above six boundary conditions (1.85a), (1.85b), (1.85¢c),
(1.85d), (1.85¢), (1.85f) are in fact three equations corresponding to the three prime

coordinates. For example, from (1.85a) we obtain,

1d,—k* 0 -
s I* —m i I*F o
Z/ { w2 (97“M w w2 8TN "

1 1
Lk, - —mkM’*G }
we

Wk T
-k*0 1d
*FI I*FI
Z/ { w2 87“M w w2 N
1 mk .. 1mk .~
ETN’ G J—MI G }kaxmk‘(ﬁ_ (190)

This is a vector equation in the prime argument and to solve for the constants we have

to look at the different components of the equation. The Z’' component gives us

ldw—k*0 W = 1 mk
Ly —
w Wiy 87"( drn) w2 ( dm)GmL“
l1d, —k* 0 - 1 mk
- ) AL Yol 1.91
w UJ2 ar( d ) wg r ( dm)Gm|a—|— ( 9)

The §' component is,

30



- a a,ftm T T 5 . " ;7 tm ———Gm
w?u  Or or' w Wiy or r! w2 r 7
1mk8~| B d—kQQQ _ldn —k22mk~
we r orl Ma- wiy oror ™ w w2 or o ™
1 mkmk _, 1mk 0 ~
— ey e 1.92
w2 r o7 Gm+w r Or! m|“+’ ( )

and the # component,

dm—k23imF 1d, —k* 0. 813, Lmk 0

- a. , tm T a va,4'm ik— Gm

w2y or r! w W o ort w?e or! *

~ _ .2 : 1 _ .2

Lmkimeg | G KOy, 1 dn ﬁlkiF;n+
we r 7! w2y orr ™ w w2 or or
1 mk. 0 1 mkim
— k—G' -G . 1.93
G2 o wor o m|a+ (1.93)

Manipulating these equations we will be able to group the coefficients of r/~I™I+1,

OHn(N1) o g H(X'T)
7"

7 and extract the three equations:

—eXaJ!, (Aa)BE — m—kJ (Aa)BS = —NaH! (Na)BF

mk ') BS + mkw T
" B¢ -
H (Na) SR

Im(Na), (1.94a)

mke = m2k?

—e|m|AaJ! (Aa) AL + AaJ' ! ()AL + ﬁJm(Aa)Affl

ik a) A€ = —\m|xaH;n(xa)A;§ mk = NaH, ' (Na)AF

we
m2k?

w2

m|m|k

+—g Hn(Na) AT — == m(Na)AC, (1.94Db)

elaJ! (Aa)BE + m—fJ (A\a)BE = XaH! (Na)BF
w

2

mk 5
_Y TN (N ——H,,(Na)B°. 1.94
DN Nald) (Na) + - (Na)Bj,; ( c)
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The same mechanism can be applied to the rest of the boundary conditions. The three

equations following from (1.85b) are:

A\ H,(Na) w?m Ju(Na)

BS = ~ | |BS=" - 1.

m 8()\> [ m () A221 Jn(ha) |’ (1.95a)
2 '
¢ w,a _ _(NY Ha(Na) G W oG
Im|A mkAm = 5<)\) 7,.0) [\m|Am mkAm], (1.95b)
. N\? Hy(Na) 6

B¢ = 6(?) ¥ EAa))B"?’ (1.95c¢)

and those coming from (1.85c) are:

; =k
me?J,(Aa) BE + anJ;n(Aa)Bg = mH,,(Na)BY + aXaH,'n(Xa)B;fj
w

kw m
_ ! ! ! 1.
G 21)\ aJ;, (Na), (1.96a)
2 r kK 1 G ! IF w? m 1
e“mdy,(Aa)B,, + —AaJ], (Aa)B,, = mH,,(XNa)B,, — mﬁme()\ a)
w i
+§A'aH;n(A'a)B;§. (1.96b)
. k2
e2m?J,,(\a) AE — wewm(mmf; - LT' XaJ! (Aa)AC
~ k- -
+m7k)\aJ,'n()\a)Affl =m?H,(Na)AE — % m(Na) A,
2 k .
— \m\Zk NaH! (Na)AC + mj)\'aH;n()\'a)A;f, (1.96¢)
w

From the set of equations involving the magnetic part ®, we find that (1.85d) gives
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pmJ,(Aa)BE + %AaJ;n(Aa)BfL = mH,,(\Na)B/S
w

w? T

k .
- ! Y ! ! BIF 1.
mys —2iJm()\ a)+ w/\ aH,, (Na)B,,, (1.97a)

~ k ~
—pumJm(Aa)BE — %AaJ;n(Aa)B}; = —mH,,(Na)BS

kw m k

et ! ! ! - ! HI ! BIF 1
+)\’22A al;,(Na) — w)\a m(Na)B,, (1.97b)
um|mlk G 2 ¢ €gkm

Jm(Aa)AS — pm?J,,(Ma)AS — ——\aJ! (Ma)AL
w

5|m‘k2 1 i _ mmlk ' I1G 2 ! 1G

+ Aad, (M)A, = THm(A a)A;T —m H,(Na)A,,
k k? 2

—m—X H' (Na)AF |m‘ Y NaH! (Na)AE. (1.97¢)

By imposing (1.85e) we get the conditions

k
AaJ! (Aa)BE + %J (\a)BE = NaH! (Na)BS
mk ! ! ! ! !
+ 2 H(Xa) B — EQ—)\ aJ! (Na), (1.98a)
k e m?k
IR 0a)AC 4 maad? (ha)AC + TRE S ey AT
w Wi
2 - ~
—w,fm(mmfn = |m|k T NaH! (Na)A'C + mNaH! (Na)AS
w?p
2 2 .
LR (Ve ATE me(Xa)A'g , (1.98b)
w
/ el mke ! TR 1G
Aad, (Aa)B,. + o ——Jm(Xa)BE = NaH! (Na)BC
wmk 'y mk L\ ot F
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And finally (1.85f) gives us

BF

AE 4 EMA@
w m

BF

T ol ol
N TN TN
N R IR ST
N N N
[\&] [\"]

T

3

>

)

N

)

|

By combining these equations we find the remaining constants, but the equations

are not all independent. First, from (1.95b), (1.99b), (1.94b) and (1.96¢) we learn that

the coefficients of terms involving Bessel functions and 7'~/™ cancel among themselves

in a way such that the ones from the outside do not mix with those from the inside:

(1.100a)

(1.100Db)

The same can be found if we use (1.98b) and (1.97c) instead of (1.94b) and (1.96¢).

Next we determine the coefficients of functions involving just Bessel functions. From

(1.98¢) and (1.96b) we find using (1.99¢) and (1.95¢) that

g2 mkw

——(1—ep)——x H,,(\Na)BE

(2 25(1—5 )R 12 34V BE
XN/ u KD 7m\ A4 Zm

W 7 Jm(Na) M\ e Jn(ha)
A2 2i H,,(Na)
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all in terms of

F__NWZD

= ———= 1.102
m e E’ (1.102)

found by subtracting £ times equation (1.96b) from (1.98¢c) and using (1.97b)7. The

denominators occurring here are®

- m2k*w? .

E = (1-ep)? O J2(Na)HZ (Na) — DD, (1.103a)
D = &NaJ) (Ma)H,(Na) — AaH] (Na)J,(Aa), (1.103b)
D = pXNaJ (Ma)H,(Na) — MaH' (XNa)Jn(Aa). (1.103c)

The second set of constants is found using (1.97a), (1.94a), (1.99a) and (1.95a):

2 7 mkw

Bl = —?(1—au)M—IDJm(Aa)Hm()\'a)Bg, (1.104a)
5 A\ 1 mkw
BY = —<y> g(l—eu))\/\lefn(Aa)Bg, (1.104b)
271 Ju(Na) M1 Jn(a)
m = % H,(Na) T\N) ZH.(Na) ™ (1.104c)
in terms of

, =

D
BE = —g%g, (1.105)

coming from (1.104b) and (1.96a)°.

7(1.97b) is the same equation as (1.94c), which can easily be seen by using (1.99¢c).

8The denominator structure appearing in Z is precisely that given by Stratton [18] and appearing
in (1.23a).

9By using (1.99a) it can be seen that this equation is the same as (1.98a).
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It might be thought that m = 0 is a special case, and indeed

1 -
—(T—<) —>§lnr—<, (1.106)

> >

but just as the latter is correctly interpreted as the limit as |m| — 0, so the coefficients
in the Green’s functions turn out to be just the m = 0 limits for those given above, so
the m = 0 case is properly incorporated.

It is now easy to check that, as a result of the conditions (1.86a), (1.86b), (1.86¢),
(1.88a), (1.88b), (1.88c), (1.100a), and (1.100b), the terms in the Green’s functions
that involve powers of 7 or 7’ do not contribute to the electric or magnetic fields. So,
even though we are not able to determine all the constants, (notice that there is some
ambiguity in these since they cannot be uniquely determined) it is not an issue since
the energy will be well defined. These constants enter always in the same form and
therefore their individual value is not relevant. As we might have anticipated, only the

pure Bessel function terms contribute.

1.5 Stress on the Cylinder

We are now in a position to calculate the pressure on the surface of the cylinder from

the radial-radial component of the stress tensor

P = <Trr>(a_) - (TrT>(a'+) (1107)
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where
T = 5 [e(E) + EZ — EY) + u(Hj + H: — H7)] . (1.108)

N =

As a result of the boundary conditions (1.84), the pressure on the cylindrical walls

are given by the expectation value of the squares of field components just outside the

cylinder, therefore

-1 E?
e (e B

r=a+ B r—at

TT T

r=a—

(1.109)

-1 H?
+ B <H92 + H? + —T>
2 lu’ r=a-+

These expectation values are given by (1.53a), (1.53b), where the latter may also be

written as
h
v (1.110)

(H(r) H(r')) = —w—u‘l’(r, r') x

It is quite straightforward to write the vacuum expectation values of the fields

occurring here outside the cylinder in terms of the Green’s functions,

h i o= [ dk m?d,, — k?
(E:(r)E(r")) = TFWIZZ—’iTi Z /_Oo%{_ﬁ w2 Fo(r,1)

W

m

(r,r") + —=——=—G.,(r,7)

wr or'  w?

km 0 -, ,
+W§Gm(7¥7“)},

o0 [o'e) 1
M= Z/ %—dmd'm(}’;n(r,r'), (1.111b)

2
00 2T W
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, i BN [Odk( 00 du—k .,
EORE) = e =5 S [ S - g )

w
mk 0 dn, — k? -, m2k? _,
Cwr' o w? Ep(r,r) + w2rr’G (r,r)
mk 0O
— G . 1.111
+ wr or' G (7 )} ( 2

According to (1.110) the magnetic field expectation values can be written as follows,

EORE) = e Y [ = =BG

271 w oo 2T wrr
mk 0 -, , k20 0 _,
— ~22F
* ra’G (ryr )+w87“87" (1)
o j;:/%(d;n - kQ)Fyln(ra TI)}a (1.112&)
(H,(r)H.(r)) = —2—5 Z / %ld d' F' (r,1"), (1.112b)
T
! = 8 ! 2 ! !
() o) = =5 Z [ Saan -G
mk 0 =, ) 2
+ T—B_G (r,r") + - FE! (r,r")
mk 0O _ .
~ 2 gy dm kQ)Fm(T,r)}- (1.112c)

When these vacuum expectation values are substituted into the stress expression (1.109),

and the property of d,, exploited,

dpr ™ =0, d (A1) = =N (A1), (1.113)

(of course, the later formula holds for H,, as well and the same for d], acting on the
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primed coordinate), we obtain the pressure on the cylinder as

p = p-t / / i X° {H’2 (&) T (2) . (£) AN (w20 + F)

47r1 oz i =

2k2 2

+ H! (2")J2 (z)H,, (") [m d ((28 +2)(1 —ep)

T'e
w?e + k? 9 2 2 9
+T(1—e,u)>+x)\)\’<m (k €>+)\')}

— Hp () J2(0) Hn () s\ (0P + )

2
— T ()T} () HE (2 ) AN 2! [%(lﬁu + w?) + A'Qu} }

dk \?
+ h“4m Z / = { SN u)} (1.114)

where x = Aa, ' = Na and the last bracket indicates that the expression there is
similar to the one for the electric part by switching € and y, showing manifest symmetry
between the electric and magnetic parts. In order to simplify this expression, we make

an Euclidean rotation [24],

w—iC A — ik, (1.115)

so that the Bessel functions are replaced by the modified Bessel functions,

Jn(z)Hy(2') — EIm(y)Km(y'), (1.116a)
I (%) Hi () — —%Iln(y)Km(y’), (1.116b)
T iy (0') = == ) K4, (1.116¢)

To(@)H(a®) = 21 (0) Ki), (1.1164)

where y = ka and ¢ = k'a. Then (1.114) becomes
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-1 & o0 B
P = w2 / dc“dk“é{Kﬁ(y')fm(y)f;(y)y(kQaQ—Cza%)

- K00 Kul)| " (= 2+ 01 e

k202 — (202¢ 2 /2 2,2
+ —2C(1 - s,u)2> - y_/ (—12 (k2a2 — C—) + y'2> }
Y Yy \y €

— K, () L2 (y) Ko () ) (K?a® — (Pa’e)

— L) 1, () K3, (v )y {Z—:(k%% —(%a®) + y%} } + (e & p),

(1.117)
where
_ 212420242 N
2 = P R WKL) — e+ AA, (1118
y2y
A = eyl (y)Kn(y) — yK,,(y") Im(y), (1.118b)
A = w/'L () Kn(y) — yK,, ) In(y). (1.118c¢)

This result reduces to the well-known expression for the Casimir pressure when the
speed of light is the same inside and outside the cylinder, that is, when ey = 1. Then,
it is easy to see that the denominator reduces to

(e +1)?
4e

— AA =

[1]:

[1 =& [(InK)T] (1.119)

where £ = (¢ — 1)/(¢ + 1). In the numerator introduce polar coordinates,

v = k*a® + (?d?, ka = ysin 0, Ca = ycosb, (1.120)
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and carry out the trivial integral over . The result is

1 o > d
P=——— dy y? —In (1 - Ey(K,,I,,)'"]? 1.121
ot [ Y A (- €LY, ()

m=—0o0

which is exactly the finite result derived in Ref. [7].

1.6 Bulk Casimir Stress

The expression derived above, (1.117), is incomplete. It contains an unobservable
“bulk” energy contribution, which the formalism would give if either medium, that
of the interior with dielectric constant ¢ and permeability u, or that of the exterior
with dielectric constant and permeability unity, fills all the space [4]. The corresponding

stresses are computed from the free Green’s functions which satisfy (1.66a) and (1.66b),

1
D Frn(r,7") = wg—'u;d(r—r'), (1.122a)
1
A DG (1, 1") = w2;(5(7“—7“'), (1.122b)

therefore

2 |m|
7 wip | 1 r
FT(’?) (7', ’]”I) = EGST?)(T’ ’]’") frmd —W [m <i) + —,Jm()\r<)Hm()\T>) 3 (1.123)

where 0 < r, 7’ < 0.

Notice that in this case, both FY and G are zero and the Green’s dyadics are
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given by

_ 12
T, r';w) = Z / {MM'* (—Lﬂ 5 i )F,(no)(r ')

N '*G£2>(r,r'>}xmk(e,z>xrnk(e',z'), (1124
Q(O)(T,TI;W) = Z / { — —MN,* (7" 7')

- £./\f./\/l""FT(,?)(7", r')}xmk(H, 2)Xoe (@', 2'). (1.124Db)
Wi

It should be noticed that such Green’s dyadics do not satisfy the appropriate boundary
conditions, and therefore we cannot use (1.109), but rather one must compute the
interior and exterior stresses individually by using (1.108). Because the two scalar
Green’s functions differ only by a factor of u/e in this case, for the electric part the
inside stress tensor is

e

T"(’?) ( - 27 Z

* dw de 1 [0 0
i (0)
/oo o / 2 we {87‘ 8r’( dnGire’)

=) ()|

while the outside bulk stress is given by the same expression with A — )\ = w?—k? and

+ : (1.125)

r=r'=a—

e = u = 1. When we substitute the appropriate interior and exterior Green’s functions

given in (1.123) we find a rather simple formula,

Pt =T (a—) — TO(a4+), (1.126)

rr
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Po= 16:2(12 2. / d“’d’f{fﬂn(@ﬂlﬂ(x)+(m2—m2)Jm(x)Hm(a:)

—2?J (2")H],(2') — (2" — mZ)Jm(x')Hm(x')}. (1.127)

After performing the Euclidean rotation, w — i(, we find that the bulk contribution

to the pressure is

& [
P = o > / dCadka{yQI{n(y)K;n(y)—(y2+m2)1m(y)Km(y)

IR ) + (0 + m?)fm(y'ﬂw(y')}. (1.128)

This term must be subtracted from the pressure given in (1.117). Note that P® = 0 in
the special case ey = 1 as it should be.

In the following, we are going to be interested in dilute dielectric media, where
u=1and [¢ — 1| < 1. This suggests that we can expand in powers of (¢ — 1). To do

that we notice that from (1.83) and z = Aa, 2’ = Na we can write the rotated ones,

y: = CCa’pe + k*a® = 22, (1.129a)

y? = Ca® + k2 =% (1.129b)

The inside parameters can be expressed in terms of the outside ones, 22 = y?+(?a?(s —
1), so that we can expand,'®
1(%a? 1¢%at

~ =2 (e=1)—=2(e =12 +.. 1.130
R e e e Rt (1.130)

10Notice that for convenience we are changing the notation, from here we are referring to (2a?ue +
k2a? as 22 and the equivalent expression for outside as y2.
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Consequently the modified Bessel functions can be expanded as,

1(2%a?
1¢%at m?\ 1%t
1 2.2 1 2
L@ ~ L)+ E- 035 =L+ (14 5) 1) -
4t m? + 3 2 2m?
12— -1 I 1+ =1, ,
€ )8y2[ <+ y? )’”(y)+y< 2) (y)]
(1.131b)
where we have used the modified Bessel equation,
" ]' ! m2

I"(y) = —;Im(y) 1+ I (y)- (1.132)

The same expansion is true for the Hankel function K,,(xz). When we expand the

integrand in (1.128) in this manner, the leading terms yield

h o oo 9]
pt — ~ e Z / dka/ dga{(e—1)<2a2lm(y)Km(y)

1 Q(Ca)4
1(5 —-1) ”

i mawK@@W+4x@—1ﬁﬂ. (1.133)

When we introduce polar coordinates as in (1.120) we find,

h o0 fe's) 2
pbo— ~ oo Z / dyy3/ dH[(s—l)COSQHIm(y)Km(y)
m°a e —oco 0 0

(-1
4

+

y cos 0Ly (y) K (y)] + O((e — 1)3)] : (1.134)
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P = _Wizw*m:zoo/ooodyyg[(e—1)Im(y)Km(y)

N 3(e —1)2

T En®)] +O((— 1)) (1135)

1.7 Dilute Dielectric Cylinder

We now turn to the case of a dilute dielectric medium filling the cylinder, that is, set
pu = 1 and consider € — 1 as small. We can then expand the integrand in (1.117) in
powers of (¢ — 1) and, because the expression is already proportional to that factor,

we need only expand the integrand to first order. Let us write it as
(e—1)h /°° /00 = N
P~-— d dk — 1.1
167m3a* J_ Ga oo am:z_:oo AA’ (1.136)

where we have noted that the (¢ — 1)2 in Z (1.118a) can be dropped. Expanding the

numerator and denominator according to

N=NO4(Eec-1)ND+. ..,  AA=1+(E-1)AD 4. . | (1.137)

we can write

_(e=Dh [*> o0 oo o -
P~ omsat /_wdca/_oodk“ > INO4(e—1)(NO-NOAW) 4+ 1 (1.138)

m=—0Q
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where

NO = —(kKa® - ) K], (y) 1, (y)
- (B0 -t + 7] K0, (1.139)
N = <222(1+ y2)<k2a2—c2a2)Kﬁ<y>Ifn<y)
4-2 2
> (ka” = Ca®) K (y) I ()
C2 2
o [y (k2a? §2a2)+y2} K2 ()12 (y)

2 2 2 m2
_ C—“ (1 + %) [?(lc2 2 - (%) +y2] Ko () In(y)

o) e o
() K (y) 17, (y)

+ [y*¢a” = Ca?(kKa” — (*a®) | Ko (y) K3 () L () 17, ()

x K

; [y<2a2 ; %(k - <2a2>] Kn)KL)I2(),  (1.130b)
AW = 2L ) K0} + ) Kon() — T () )
e (1 . T;—) I () K1), (1.139¢)

When we introduce polar coordinates as in (1.120), the possible angular dependent

terms that we encounter are:

k*a®> — y?sin®#, (1.140a)
C%a® — y?cos?é, (1.140D)
(K*a® — (*a®) — y*(1 —2cos?h), (1.140¢)
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C?a*(k*a® — (*a*®) — y*cos®(1 —2cos?) = y*(cos? @ — 2cos*f), (1.140d)

C?a*k*a® — y*cos®Osin? 0 = y*(cos® § — cos* f), (1.140e)

so that the only angular integrals occurring are the trivial integrals,

2T
/ df cos® § =, (1.141a)
y 27
/ dfsin®0 = T, (1.141Db)
o 2
df cos* 0 = T (1.141c)

0

Then, the straightforward reduction of (1.138) is

P~ 87ra4 Z/ dy{ () In(v)

m=—00

- = DG SR

+ K L2 Knly) + K20 L2 (0)

- k2EY (14 5) + Kz Y (1+25) (1-25)

+ K2, ()1, (y) I (y) (1 + 2—;2) - Kfn(y)f;g(y)g (1 — ﬁ) } }

292
(1.142)

The leading term in the pressure,

J21C0 N 87T2a48_1 Z/ dyy*K. I.(y), (1.143)
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can also be obtained from (1.117) by setting ¢ = p = 1 everywhere in the integrand,
and the denominator Z is then unity. This is also exactly what is obtained to leading
order O[(e —1)!] from the bulk stress (1.135). Thus the total stress vanishes in leading
order:

P — P =0[(e —1)?, (1.144)

which is consistent with the interpretation of the Casimir energy as arising from the

pairwise interaction of dilutely distributed molecules.

1.8 Evaluation of the (¢ — 1)? term

We now turn to the considerably more complex evaluation of the (¢ — 1) term in

(1.142).

1.8.1 Summation method

As a first approach to evaluating this second-order term, we first carry out the sum on

m by use of the addition theorem

Ko(kP) = Y ™K, (kp)In(kp)), p> 7, (1.145)

m=—0oQ

where P = \/ p? + p? — 2pp’ cos(¢ — ¢'). Then by squaring this addition theorem and
applying suitable differential operators, in the singular limit o’ — p we obtain the

following formal results:

48



> K2 (kp)I2(kp)

m=—0o0

> mPK(kp)I7, (kp)

m=—00

> m*K2 (kp) I (kp)

m=—0o0

> K2 (kp)In(kp) I}, (kp)

m=—0o0
o0

> mP KL (kp)In(kp) 11, (kp)

m=—0o0
o

> KR (kp)IZ(kp)

m=—0o0

> mPK7 (kp)Ia(kp)

m=—0o0
o

> Ln(kp) I, (kp) K72 (kp)

m=—0oQ

o0

> LA(kp) K (kp)

m=—0o0

¢

z

in?? _
sin 5

X [Ko(z) sin? g - M} :

Ko(2)

z

]2.

(1.146h)

(1.146i)

Here z = 2kpsin £, and we recognize that in this singular limit (which omits delta

2

functions, i.e., contact terms) terms with I, and K, interchanged in the sum have the

same values. (For further discussion of this, see Ref. [19].)

When we put this all together, we obtain the following expression for the pressure
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at second order:

@ _ (-1 2ﬂd¢{K'2 ) + K§(2)(1 — 4/2%)
P T 409672 a4/ / sin® ¢/2

(1-8/2)Ki(2) —2(1+3/2°) K¢ (2) K2(2)
sin® ¢/2 16z‘lsin2 (;5/2}

(e—1)2 [*"d¢ 5 66 20
= 724 - N 6 - N 4 - R 2 . (1.147)
1536072a* J, 27 |sin®¢/2  sin®¢/2  sin®¢/2

+2

Of course, the ¢ integrals in (1.147) are divergent. However, we will regulate them by

continuing from the region where the integrals converge:

[ oo (3) =505

which is valid for Res > —1. We will take the right side of (1.148) to define the angular

), (1.148)

NI [po
o \+

integral for negative s. Then we see that those integrals vanish when s = —2n where
n is a positive integer. Thus, this analytic continuation procedure says that the result
(1.147) is zero. As for the bulk term, the addition theorem (1.145) implies that the y

integral in the second term in (1.135) reduces to

Z/ dyy" ( (y))'=/ooodyy4%l<o(0)=o. (1.149)

m=—0o0

This argument is exactly that given in Ref. [8] to show that the Casimir energy of
a dilute dielectric-diamagnetic cylinder with ey = 1 vanishes. However, it is not very
convincing, because it seems to show no relevance of cancellations between various
terms in the expressions for the pressure. That relevance will be established in the

method which follows.
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1.8.2 Numerical analysis

We now turn to a detailed numerical treatment of the second-order terms in (1.142)
and (1.135). Tt is based on use of the uniform asymptotic or Debye expansions for the

Bessel functions, m > 1:

I.(y) ~ ﬁtlﬂem" (1 + kzo::l “;f,?) , (1.150a)
Knly) ~ \/%tlﬂe_m" (1+§;(—1)k“£f:)>, (1.150D)
I' (y) ~ \/217r—m%t1/26m" (1 + g; “fé,?) : (1.150c)
K' (y) ~ — %%t_lﬂe_m" (1 + g(—n’““ﬁ)) , (1.150d)

where y = mz and t = 1/+/1 + 22. (The value of 7 is irrelevant here.) The polynomials

in ¢ appearing here are generated by

up(t) = 1, wo(t) =1, (1.151a)
welt) = %tQ(l — )l (1) + % /0 Cdr (1 - 5 up(z),  (L15ID)
Uk(t) = ’U,k(t) + t(tZ - 1) (%uk_l(t) + tufc_l(t)) . (1151C)

If we use the above expansions of the modified Bessel functions we can write the

second-order expression for the pressure as

(e —1)?
- 167T2a4 / Y ol 152
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where the prime means that the term m = 0 is counted with half weight. The explicit

form for ¢,,(y) can be immediately read off from (1.142) and (1.135), and the prime

on the summation sign means that the m = 0 term is counted with half weight. We

have recognized that the summand is even in m. Let us subtract and add the first five

terms in the uniform asymptotic expansion for g,,, m > 1:

1 1
~ o ) — i (1.153)
k=1
where z = y/m and
4+ 22
= ——— 1.154
—8 + 82% + 2*
_ 1.154b
fZ(Z) 825(1 +22)7/2 ’ ( )
16 — 8427 4 842* — 162° — 528
= 1.154
f3(Z) 162(1 + 222)6 ’ ( 5 C)
—64 + 102422 — 18642% + 5042% — 928
= 1.154d
fa(2) 642(1 + 22)13/2 ’ ( )
fi(2) = 64 — 241622 + 118082* — 1569625 + 685628 — 555210 — 15212
° B 64z(1 + 22)? '
(1.154e)

We note that when these functions are inserted into (1.152) in place of g,,, the first

three fi give divergent integrals, logarithmically so for f; and f3, and linearly divergent

for fy. We also note the crucial fact that

/00 dz 2" f4(z) =
0
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which means that (1), which would indicate an unremovable divergence, does not
occur in the summation over m. This is the content of the proof that the Casimir energy
for a dilute dielectric cylinder is finite in this order, given by Bordag and Pirozhenko

[21]. We also note that when the divergent part is removed from the f, integration we

/OOO dz (z4f2(z) - %) =0. (1.156)

The suggestion is that this term may be simply omitted as a contact term. (But see

again get zero,

below.)
However, the two logarithmically divergent terms, corresponding to f; and fs, give
finite contributions, because they are multiplied by formally zero values of the Riemann

zeta function. The first one may be regulated by a small change in the power:

o= o [ 1 1 <3)
2—s 4—s — o — - = =
lﬂ%mzlm /0 dz2 7 fi(z) = lim 2 (=24 5) - = =155 (1.157a)
The f3 term gives similarly
lim EOO 'm™* /00 dz 27 f3(2) = ¢'(0) L S In 2. (1.157b)
5—0 o 0 16 32

Although it would appear that a finite term would emerge from f,, that term vanishes

because remarkably

/00 dzz* Inz fy(2) = 0. (1.158)
0
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The f5 term is completely finite:

=1 [ 1972
i dz 2* =, 1.159
n; m?/O #2070 (1459

Following the above prescription, we arrive at the following entirely finite expression

for the pressure on the cylinder:

(e —1)2 ¢(3) 5 1972
P = _ 2 2
3om2a4 | 1672 T 32 25T T 7680

5

+ 22/000 dy y* [gm(y) — ﬁz #fk(y/m)]

k=1

+ /Ooo dyy* [go(y) - 11—6% - %fs,(y)] } (1.160)

Here in gy we have subtracted a linearly divergent term, which when combined with

that removed in (1.156) gives
1 o0
: Z'/dy' (1.161)
m=0

We regard this, rather cavalierly, as a contact term, which we simply omit. In the next
section we will give the correct treatment of this f, term. All that remains is to do the
integrals numerically. We do so for m from 0 through 4, after which we use the next

nonzero term in the uniform asymptotic expansion,

oo

= [ 1 1 209 1
Z/O dz 2! [ﬁfﬁ(z) + mﬁ(z)} = TEIB12 2= i’ (1.162)
m=5 m=>5

because, again, the integral over fg vanishes.

54



When all the above is included, to 6 decimal places, we obtain

—1)?
P = (36272)4(—0.007612 + 0.287168 + 0.024417 — 0.002371 — 0.000012
m™>a

— 0.301590) = 0.000000, (1.163)

where the successive terms come from (1.157a), (1.157b), (1.159), the numerical inte-
gral over the first 4 subtracted g,,s (m > 0), the remainder (1.162), and the numerical
integral over the subtracted gy, respectively. This constitutes a convincing demonstra-
tion of the vanishing of the Casimir pressure in this case. It is similar to the numerical
demonstration [7] of the seemingly coincidental vanishing of the Casimir energy for a

dilute dielectric-diamagnetic cylinder, obtained by expanding (1.121) to order &2.

1.8.3 Exponential regulator

Although the calculation in the previous subsection is quite standard, and undoubt-
edly correct, the reader might rightly object that zeta-function regulation has been
employed, and infinite terms simply omitted. Therefore, and to make contact with
known results, let us insert a regulator to make all the sums and integrals completely
finite. It would be best, as in Ref. [25], to insert such a regulator before rotating the
frequency in the complex plane. However, this is much more complicated here than
in that reference; and because the expressions here are formally much more divergent,

the regulator adopted there appears insufficient. It will suffice for the present purposes
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to simply insert by hand an exponential regulator into the expression (1.152):

167 a4

— 1)
Preg = G / dy y* gm (y)e ™, (1.164)

where 6 — 0+ at the end of the calculation. Then it is easy to repeat the calculation

of the previous subsection. One has only to carry out the sum

. —omz 1
D e = —r (1.165)

m=1

Then the f; term, instead of (1.157a), is

o0 21 137 ((3)
o _Br B 1.1
/0 2 hE) e 1 Re 1o (1160

The fy term has no finite part:

d 1 1
—/0 42 o) = 1) (1.167)

where the reader should note that no ad hoc subtraction as in (1.156) has been em-

ployed. The evaluation of (1.167) uses the fact that

/oo dz 22 fo(2) = 0. (1.168)

The f3 term is, instead of (1.157b),

oo 1 1 3150 5
dz 2* e = — In2n. 1.169
/0 22 15(7) <e6z—1 T3¢ > Tg1020 T3 T (1.169)
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Here we have subtracted a term from the m = 0 contribution:

/ dyy* [go(y) - §f3(y)} e % = —0.301590 + T (1.170)
0

The divergent term here cancels that in (1.167), and the finite part is the value of
the last integral in (1.160). Thus we recover exactly the same numerical result (1.163)

found in the previous subsection, plus two divergent terms

(e—1)% (137* 3157w
Py = - . 1.171
d 327204 \ 3203~ 81926 ( )

The form of the divergences is exactly as expected [21, 23]. In particular, there is no

1/6? divergence, because of the identity (1.168).

1.8.4 Interpretation of divergences

In the previous section we computed divergent contributions to the Casimir pressure
for a dilute cylinder. For simplicity, we chose an exponential regulator with a small
dimensionless parameter 6 — 0+4. How do we interpret these terms? It is perhaps
easiest to imagine that § as given in terms of a proper-time cutoff, 6 = 7/a, 7 — 0+.
Then if we consider the energy, rather than the pressure, the divergent terms have the
form

al L1

Ediv = 63; + 615;. (1172)

Here L is the (large) length of the cylinder. Thus, the leading divergence corresponds

to an energy term proportional to the surface of the cylinder, and it therefore appears
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sensible to absorb it into a renormalized surface energy which enters into a phenomeno-
logical description of the material system. The 1/7 divergence is more problematic. It
is proportional to the ratio of the length to the diameter of the cylinder, so it seems
likely that this would be interpretable as an energy term referring to the shape of the
body. If one could compute the Casimir energy of an extremely elongated ellipsoid,
we would expect an energy term proportional to the ratio of curvatures. (Of course,
a cylinder has zero curvature.) This appears to be exactly of the form of a surface
integral [26]

/dSK)]_K/Q, (1173)

in terms of the principal curvatures x;, ¢ = 1,2. Such terms are well known not to
contribute to the observable energy. Had a divergent term proportional to =2 appeared
in the pressure, it would have implied a divergent energy of the form ey(In a)/72, which
would have been impossible to remove. (For the dielectric sphere the situation is
simpler, in that divergences are all associated with positive powers of the sphere’s
radius [5].)

In any case, although the structure of the divergences is universal, the coefficients of
those divergences depend in detail upon the particular regularization scheme adopted.
In contrast, the term proportional to (¢ — 1)?/a? is unique. Thus, of course, it could
not have been any other than that zero value given by the van der Waals calculations

[7]-
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1.9 Conclusions

Since the beginning of the subject, the identity of the Casimir force with van der Waals
forces between individual molecules has been evident [27, 1]. It is essentially just a
change of perspective from action at a distance to local field fluctuations. So it was no
surprise that the retarded dispersion force between molecules, the Casimir-Polder force,
could be derived from the Lifshitz force between parallel dielectric surfaces [28, 29].
However, the identity is not really that trivial, because both the van der Waals and
the Casimir energies contain divergent contributions. This is particularly crucial when
one is considering the self-energy of a single body rather than the energy of interaction
of distinct bodies. Thus it was nontrivial when it was proved that the Casimir energy
of a dilute dielectric sphere [5] coincided with that obtained by summing the van der
Waals energies of the constituent molecules [6].

When it was shortly thereafter discovered that the sum of van der Waals forces van-
ished for a dielectric cylinder [30, 7] it was universally believed that the corresponding
Casimir energy, in the dilute approximation, must also vanish. This result was verified
by a perturbative calculation [23]. Here we have proved this by a full Casimir calcula-
tion. The importance of this finding is difficult to evaluate at this point; a zero value
suggests some underlying symmetry, which is certainly far from apparent. It probably
has technological implications, for example in the physics of nanotubes.

The nature of divergences in such Casimir calculations is still under active study
[31, 20, 10]. The universality of the finite Casimir term makes it hard not to think it

has some real significance. As an example of how subtle interpretation of divergences
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can be, we recall that it has now been proved that the total Casimir energy for electro-
magnetic modes interior and exterior to an arbitrarily shaped smooth infinitesimally
thin closed perfectly conducting surface is finite [32]. This is hard to reconcile with the
existence of local divergences in the energy density near the surface proportional to
(k1 — K2)?. Presumably, these divergences belong to the surface itself and have nothing
to do with the global Casimir energy [20, 10]. But the open questions are profound
and challenging. Outgoing work on this matter by Milton, Wagner and myself has just

been submitted [33].
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Chapter 2

About P7-Symmetric Quantum

Theories

2.1 Introduction

Traditionally, a quantum system is defined by a Hermitian Hamiltonian; we borrow
the notion of Hamiltonian from classical mechanics and we quantize it. The position

and momentum of the particle become operators,
H(z,p) > H(X,P)=H(z — X,p — P), (2.1)

and ordering becomes important since X and P do not commute. The dynamics of

the quantum system is then defined by the Schrodinger equation

ih L 0(0) = HIu (o), (2.2
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where [1(t)) is a vector state representing the state of a particle and can be expanded

on a basis of orthonormal eigenvectors |a;)

b)) =) cilt)|aw), (2.3)

i

with eigenvalues E;,

The eigenvalues F; are just numbers, they are the result of measuring the Hamiltonian
operator and they represent the energy of the state |;). Experimentally these energy
levels can be observed and measured. In order to assure that the eigenvalues are real

numbers we impose the condition on the Hamiltonian that this is Hermitian,

H=H" (2.5)

The hermiticity condition restricts the number of Hamiltonians which can possibly
manifest in nature as we know it so far, and excludes any complex Hamiltonian.

Despite this, in the late 1970’s!, some people observed that a non-Hermitian Hamil-
tonian of the kind

H=P?+iX? (2.6)

had real eigenvalues [1, 2]. This finding didn’t create a revolution at the time since
the price they had to pay for it seemed to be too high. A Hamiltonian of the kind

(2.5) possesses orthogonal eigenvectors, (a;|a;) = d;; where |a;) is considered to be

!Even years before that, there had been some interest [1].
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normalized, however the eigenstates of (2.6) are not mutually orthogonal and the time
evolution generated by the Hamiltonian is not unitary. These negative features resulted
in the non-Hermitian Hamiltonians being disregarded even though they were giving a
real spectrum.

It was almost twenty years later [3], in 1996, when Bender and Milton applied the
delta expansion to the kind of Hamiltonians in (2.6), and in 1998 Bender et al. noticed
that the non-Hermitian Hamiltonians with real spectrum, all had space-time reflection
symmetry [4]. They called it PT-Symmetric Quantum Mechanics.

The operators P, parity reflection, and 7, time reversal, are defined by the trans-

formations:

P x— —x, p— —p, i— i, (2.7a)

T : x—x, P — —p, i— —i. (2.7b)

What Bender et al. observed was that the Hamiltonian in (2.6), even though it is not
invariant under P transformations or 7 transformations independently, it is indeed

invariant under the combination PT,

P : H=P +iX® — H” = P2 —iX?, (2.8a)
T : H=P?+iX® — H" = P? —iX?, (2.8b)
PT : H=P?+iX® — H”" = P? +iX? (2.8c¢)
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They throughly studied several cases. For example, the harmonic oscillator?

H = p* +1* (2.9)

has PT symmetry and well-known real eigenvalues, E, = 2n + 1. If we

e add iz to (2.9) the resultant Hamiltonian does not break P7T symmetry,

P’ + 2 +iz — p* + (—z)® + (i) (~z) = p* + 2° + iz, (2.10)

and it has indeed real eigenvalues, E,, = 2n + 5/4.

e add iz — = we get a Hamiltonian that is not P7 invariant,

pP+ri+iz—o— p’+ a2 +iz+ o, (2.11)

and its eigenvalues are not real, E, = 2n + 1+ 1.

This is a good motivation for further studying whether this symmetry can define a
well-behaved quantum theory. If that is the case, we should be able to guarantee that
when substituting the mathematical-looking condition of Hermiticity H = H' by the
more physical condition of P7-Symmetry, H = H?7, the spectrum of the system

under consideration remains real and has unitary time evolution.

2We will write small letters for momentum and position but it is implicit that these are operators
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2.2 Foundations of the P7-Symmetric Quantum Me-

chanics

A new theory of quantum mechanics should reflect all the characteristics of a quantum

theory that has a Hermitian Hamiltonian. In particular,

1. The state of a particle is represented by a vector in the Hilbert space. The
eigenvalues of the Hamiltonian H |¢,,) = E,|¢) are the energy levels of the system,
they are real and form a complete set in the Hilbert space of physical state vectors.
A norm should be well-defined in the Hilbert space so that the probability of a

particle |«) to have energy E, is a positive real number,

P(En) o [(tu]@)[* > 0. (2.12)

2. The time evolution operator should be unitary, so that the norm is preserved in

time. For a state that undergoes a time translation U = U(t,ty) we can write,

o) — Ula). (2.13)

In ordinary quantum mechanics the time evolution of the inner product would

be

(Blay — (BIUTUa) = (Bla), (2.14)

where U' is the adjoint of the operator U; (f,Ug) = (U'f, g) for any f and g

in the Hilbert space. In P7T-symmetric theories it should be true that the time
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evolution operator U is such that

(Bla) = (BIUTTUlar) = (o), (2.15)

for certain UP7 yet to be defined and such that it will ensure that the probability

remains constant in time.

3. The Hamiltonian incorporates the symmetries of the theory. If the physical sys-
tem is symmetric under transformations carried by the operator O, this commutes

with the Hamiltonian, [H, O] = 0, and has the same eigenvectors.

In the new theory, the Hamiltonians under consideration commute with P7 since

the space-time reflection symmetry is preserved,

[H,PT] =0. (2.16)

Traditionally if (2.16) is satisfied, both operators have the same eigenfunctions.
However, the fact that P7 is not a linear operator® imposes an extra condition, the
PT -Symmetry of the Hamiltonian must be unbroken (more details below). This assures
that the eigenfunctions of H are simultaneously eigenfunctions of the operator P7 and
it guarantees the existence of a real energy spectrum. In [5] the proof goes like: Since

H has unbroken P7 -symmetry, the operators H and P7 have the same eigenstates,

Hi = Ev, and simultaneously P71 = A\, (2.17)

3Notice that 7 changes i into —i
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and ) is of the form €! since recalling that (P7)? = 1 and multiplying the second

equation in (2.17) by PT we get,

1=X\), therefore =€l (2.18)

Now it is trivial to see that the energies E are real. If we multiply P7 from the left

to the first equation in (2.17) and use (2.16) we find,

eFy = E*e%p,  then  F =FE" (2.19)

As an example of the importance of the unbroken P7 -symmetry, let’s look at the
Hamiltonian,

H = p? + 2%(ix)", (2.20)

where € is a real number. This Hamiltonian is analyzed in detail by Bender et al. in [6].
It turns out that for € > 0 the eigenfunctions of H are also eigenfunctions of P7, which
is illustrated in the above reference for the cases when ¢ = 1,2, 5 and for the general
case of —1 < € < 0. However, when ¢ < 0 the Hamiltonian spontaneously breaks
the PT symmetry and, even though the two operators commute with each other,
their eigenfunctions are not all simultaneously the same for H and P7. Moreover,
the energy of these eigenfunctions is complex. This implies that a transition occurs at
e = 0, below this value complex values of the energy start appearing [6]. The transition
point happens to be the harmonic oscillator. The spontaneous breaking of P7 and the

appearance of complex eigenvalues can have important consequences. In [7] they show
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that this feature is a manifestation of an explicit breaking of supersymmetry.
For an unbroken P7-symmetric Hamiltonian, the completeness condition of the

eigenfunctions ¥, (x) of real argument z reads as,

o0

> (=1)"pn(@)tn(a’) = 6(z — 2). (2.21)

n=0

This result has been confirmed numerically with excellent accuracy [8, 9]. The natural
way to extend the definition of inner product of two functions from the Hermitian

formulation to the P7T-symmetric formulation would be:

(o (@), () = / Az [PT b (2)] o (2). (2.22)

with PT 4, (2) = [¥m(—2)]" = ¥ (z), since the phase can be absorbed into the eigen-

function. However, with respect to this inner product we have,

(Y (@), ¥n(2)) = (=1)"Snm- (2.23)

In other words, the eigenstates are orthogonal to each other only if m # n. With this
formulation it seems that the energy eigenvalues span the Hilbert space into eigenstates
half of which the norm is positive and half negative. This means that the norm defined
by PT in (2.22) is indefinite and it is not acceptable from the probabilistic point of
view of a good quantum theory.

We resolve this problem by observing that associated with the P7 norm there exist

an additional symmetry since there are equal number of positive and negative norm
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states. To give a measure of this signature of the PT norm states we introduce a
new operator C. The construction of C is in terms of the energy eigenstates of the

Hamiltonian,

Clx,y) =Y ¥n(2)tbm(y)- (2.24)

If we can obtain the linear operator C, we can define, for two arbitrary functions f(z)

and ¢(z), a new inner product with positive define signature,

(f(2), g(x)) = / dz [CPT f(2)] 9(x). (2.25)

2.3 The C operator

In the last part of the previous section we learn that the C operator is of fundamental
importance in order to construct a consistent P7-symmetric theory [10]. From the

construction of the C operator in (2.24) we can deduce several of its properties:

e The eigenvalues of C are +1.

Cinte) = [ dyClo.)bals) = [ dn > vm@imints) (220
using (2.23) we find that
Cthy(z) = (—1) (). (2.27)
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e C commutes with the Hamiltonian.

= E(=1)"Yn(z) — (=1)"En(z) = 0. (2.28)
e C commutes with PT .4

C,PTYn(x) = Cip(z) —PT(—1)"y(z)

= (—1)"¢Yn(z) — (—1)"¢,(z) = 0. (2.29)

Once we have constructed the operator C we can define an inner product that is

constant in time and positive definite,
(f(2),9(z)) = /C dz [CPT f(x)] g(z). (2.30)
like in (2.25). And in terms of CPT the eigenstates 1, (X) are complete under
;d;n(a:)[C'Pszn(y)] =6(z —y). (2.31)

It is interesting to notice that the inner product defined in this way depends on the
choice of the Hamiltonian, making it in this way a dynamical characteristic. Notice

that since CPT commutes with the Hamiltonian H, the eigenstate 1y(z) evolves in

4Remember that the phase can be absorbed in the eigenstate
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time in the ordinary way,

Ui(x) = e (), (2.32)

and its norm with respect to (2.25) is preserved in time.

(o) = / dz[CPT v (a)] (z)
— / d2[CPTe o (2)]e= o (2)
- /C d CPT oo ()]e= b () = (1o, o). (2.33)

The main difficulty in the construction of the operator C is that you need to compute
all of the energy eigenstates. This is not an easy task in quantum mechanics and it
makes it impossible to generalize for a quantum field theory, where we do not have an
equivalent Schrodinger equation for eigenstates. A more reasonable way to calculate C
is by making use of the properties above [11].

By solving the Schrédinger equation of the P7T -symmetric Hamiltonian

H = H0+€H1

1 1
= §p2 + 5:1:2 + dex®, (2.34)

the operator C is calculated in [12] in a perturbative way up to order three in powers of
e. They calculate the eigenfunctions and construct the C operator like in (2.24). The

result they find can be expressed as an exponential

C = e“P, Q=eQ +Q;+... (2.35)
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where () real function of z and p and P the parity operator.The good news is that this
can be generalized to quantum field theory® .

This representation of C is very convenient because it allows us to construct the
operator just from the commutation relations with the Hamiltonian and it makes it
possible to extend the concept to QFT. If we assume we can construct (2.35) the
operator () must be such that C satisfies the appropriate conditions, (2.27), (2.28) and
(2.29). In [11] this is applied to the case of quantum field theory with cubic interaction,
and in [13] the C operator for a PT-symmetric quantum electrodynamics is calculated.

We look for C of the form

C = e“P, (2.36)

subject to the mentioned conditions. Then

e (2 =1, then we can write

1 = Q@R PeREP)P — (Q@:p) Q(=2:—p) (2.37)

and conclude that

Q(ﬂi,p) = —Q(—QT, _p)' (238)

e [C,PT] = 0. Therefore e9PPT = PTe?P and since P? = 1 if we multiply by

T form the right and apply 72 = 1, we get

eQ@p) — pTRER)PT

= Qo) (2.39)

5The above series is constructed with only odd powers of € since as it is noted in [11] the Qa,’s
can be derived from equations arising from @2, 1, Q2n—3,---Q1-
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since () is real.

e [C,H| = 0 This condition depends on the Hamiltonian of the system since we
remember that H has to be invariant under the product P7 but not necessarily

under parity itself. To first order in €, for the Hamiltonian in (2.34) we have,

0 = [GQP, (H0+€H1)]

= [eQiP, Ho] + [P, eH:]. (2.40)

In the last equality the first commutator is,

(1P, Hy| = [Q1, Ho| P, (2.41)

where we have used the fact that P commutes with H,. Noticing that H; anti-
commutes with P,

[P, Hi] = —2H,P, (2.42)

we conclude that,

(@1, Ho] = 2H;. (2.43)

We can find similar expressions for all the ()s,.1 by substituting the expansion

of @ in (2.40) and grouping coefficients of e.

We can summarize by saying that Q is odd with respect to both P and 7T, since the
first condition tells us that 1 = e?Pe®P and multiplying this equation by e~%, we have

that e=@ = Pe¥P and therefore Q = —PQP.
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From the second condition e?P7T = PTe?. If we multiply by P from the left
and consider that 72 = 1 and Q is odd with respect to P we have that PeQPT =

Te¥; e @ = Te?T. That is to say
Q=-TQT, (2.44)

and the relation with the Hamiltonian is determined by the dynamics of the system
itself.
The calculation of the operator C for a quantum field theory with cubic interaction

is presented in [11], where the complex field Hamiltonian is
L, 1 o, L oo . 3
H= [ dx 5T T §(V¢x) +gH Oy +ieds |, (2.45)

in some dimension D. This quantum field theory has already appeared in the literature
in studies of the Lee-Yang edge singularity [14] and in the Reggeon field theory [15].
The construction of the C operator for the i¢3 field theory shows that this quantum
field theory is a fully acceptable unitary quantum theory and not just an interesting
but unrealistic mathematical curiosity.

Furthermore, an exact construction of the C operator [16] was carried out for the
Lee model, a cubic quantum field theory in which mass, wave-function, and coupling-
constant renormalization can be done exactly [17]. The construction of the C operator
for the Lee model explains a long-standing puzzle. It is known that there is a critical
value of the renormalized coupling constant g for the Lee model and that when g exceeds

this critical value, the unrenormalized coupling constant becomes pure imaginary, and
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hence the Hamiltonian becomes non-Hermitian. As a consequence, a ghost state having
negative Hermitian norm appears when g > g.i, and the presence of this ghost state
causes the S matrix to be nonunitary. By constructing the C operator we can reinterpret
the Hilbert space for the theory. By using a CP7 inner product, the ghost state now
has a positive norm and the Lee model becomes a consistent unitary quantum field
theory. This physical reinterpretation of the Lee model was anticipated by F. Kleefeld
in a series of papers [18].

Next we show the construction of a unitary P7 -symmetric Quantum Electrody-

namics [13].

2.4 PT-Symmetric Quantum Electrodynamics

In [13] we examine PT-symmetric quantum electrodynamics, a very interesting non-
Hermitian quantum field theory. Unlike the scalar i¢® field theory, P7T-symmetric
quantum electrodynamics possesses many of the features of conventional quantum elec-
trodynamics, including Abelian gauge invariance. The Hamiltonian for quantum elec-
trodynamics becomes non-Hermitian if the unrenormalized electric charge e is taken
to be imaginary. However, if one also specifies that the potential A* in such a theory
transforms as a pseudovector rather than a vector, then the Hamiltonian becomes P7T
symmetric. The construction of the C operator provides strong evidence that P7T-
symmetric quantum electrodynamics is a viable and consistent unitary quantum field
theory.

While P7T-symmetric quantum electrodynamics is similar to an i¢? field theory
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because its interaction Hamiltonian is cubic and its coupling constant is pure imagi-
nary, this quantum field theory is especially interesting because, like a PT-symmetric
—¢* scalar quantum field theory in four dimensions, P7T-symmetric electrodynamics is
asymptotically free [19]. The only asymptotically free quantum field theories described
by Hermitian Hamiltonians are those that possess a non-Abelian gauge invariance; PT
symmetry allows for new kinds of asymptotically free theories that do not have to
possess a non-Abelian gauge invariance.

In order to formulate a Lorentz covariant quantum field theory one begins by spec-
ifying the Lorentz transformation properties of the quantum fields under the proper
orthochronous Lorentz group. (For example, one can specify that the field ¢(x, t) trans-
forms as a scalar). In addition, one is free to specify the transformation properties of
the fields under parity reflection. (For example, one can specify that ¢(x,t) transforms
as a scalar, so that it does not change sign under P, or that it transforms as a pseudo-
scalar, so that it changes sign under P). Having fully specified the transformation
properties of the fields, one then formulates the (scalar) Lagrangian in terms of these
fields.

A non-Hermitian but P7T-symmetric version of electrodynamics can be constructed
by assuming that the four-vector potential transforms as an azial vector [20]. As a con-

sequence, the electromagnetic fields transform under parity reflection like

P: E-E, B—--B, A=A A" A (2.46)

as opposite to their transformation properties in the ordinary quantum electrodynamics
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where under P, E — —E, B — B, A — —A, and A° — A°. Under time reversal, the

transformations are assumed to be conventional:

T7: E—SE, B—-B, A——-A, A" A% (2.47)

The Lagrangian of the theory then possesses an imaginary coupling constant in order

that it be invariant under the product of these two symmetries:

L= 3PP Fy + 390950, + gmapty® + iepiy i A, (2.48)

The corresponding Hamiltonian density is then

H = 5(E” + B”) + 4" [y*9" (=iVi +iedy) + m7°] ¢, (2.49)

The electric current appearing in both the Lagrangian and Hamiltonian densities, j# =

pTy0y#4), transforms conventionally under both P and 7

Pir(x, )P = (—x, 1), (2.50a)

Ti*(x, )T = (x, —1). (2.50b)

Just as in the case of ordinary quantum electrodynamics, P7T-symmetric electro-
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dynamics has an Abelian gauge invariance. In this paper we choose to work in the
Coulomb gauge, V- A = 0, so the nonzero canonical equal-time commutation relations

are

{a(x,1), ¥} (y, 1)} = Sud(x—y), (2.51a)

AT(x), ET(¥)] = —i [@- - —] 5(x—y), (251b)

where T' denotes the transverse part,
V-AT=V . -E"=0. (2.52)

In the following, the symbols E and B represent the transverse parts of the electro-
magnetic fields, so

V.-E=V-B=0. (2.53)

2.5 Calculation of the C Operator

As in quantum-mechanical systems and scalar quantum field theories, we seek a C
operator in the form [11]

C =P, (2.54)

where P is the parity operator, and our objective will be to calculate the operator @)

21].
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Because C must satisfy the three defining properties

c? = 1, (2.55a)
[C,PT] = 0, (2.55b)
[C,H] = 0, (2.55¢)

we know that @) has to satisfy (2.3) and (2.44). In particular we infer from Eq. (2.55a)
that

PP =1, Q=-PQP, (2.56)

and because PT = TP and 72 = P? =1, we infer from (2.55b) that

0=e?PPT —PTe“P =eT — Te ©, (2.57)

then

Q=-TQT. (2.58)

The two equations (2.55a) and (2.55b) can be thought of as kinematical constraints on
Q.

The third equation (2.55¢), which can be thought of as a dynamical condition on
@, allows us to determine () perturbatively. If we separate the interaction part of the

Hamiltonian from the free part,

H = Hy + eH,, (2.59)
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and seek () in the form of a power series

Q=eQi+eQs+---, (2.60)

then the first contribution to the () operator is determined by
[Ql; H()] == 2H1 (261)

To use Eq. (2.61) to determine the operator (), we construct the most general
nonlocal ansatz for the operator (J; in terms of the sixteen independent Dirac tensors.
There is no condition of gauge invariance on this operator because we have chosen to

work in the Coulomb gauge. There are sixteen tensor functions in principle, which we

take to be defined by

Q = /dxdde{ (/8 (x,y,2)E*(x) + f*(x,y,2) B*(x)] ¥ (y)7°7'9(2)
+ 95 (x,y,2) E*(x) + ¢ (x,y,2) B*(x)] 1 (y)7"7 % (2)
+ [P (x,y,2) E*(x) + hE (x,y,2) B* (%) ¥ (y)7°(2)
+ [15 (%, y,2) " (x) + 72 (x, ¥, 2) B*(x)] ¥ (y)7"4(2)
+ [F(x,y,2) B (x) + FE(x, y,2) B* (x)]| ¥ (3)7°7°7'¢ (2)
+ [Gh(xy,2)B*(x) + GE (x,y,2) E*(x)] ¥ (y)7 ¢ (2)
+ [Hi(x,y,2)B*(x) + H: (x,y,2) B*(x)] ¥ (y)¥(2)

+ [} (x,y,2)B*(x) + J¥(x,y,2) E* (x)]w*(y)v%lw(z)}- (2.62)
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In Eq. (2.62) we have taken into account the fact that the electric and magnetic fields
are transverse, V-E = V . B = 0 [see Eq. (2.53)]. The parity constraint (2.56) is
already satisfied by this form of () because f., g+, ---, are respectively even and odd

functions:

f:l:(xa y, Z) = :tf:l:(_xa -y, _Z)' (263)

For example, the first term in (2.62) is proportional to ¥ (y)y°v!(z), which is a vector
and therefore it changes sign under parity. If this term is multiplied by the electric
field (that does not change sign under P) the coefficient has to be an even function, f,.
But if it is multiplied by the magnetic field that changes sign under P the coefficient
has to be an odd function f_. We will see that with this construction the time-reversal
constraint (2.58) is automatically satisfied by @ in (2.62).

The solution of Eq. (2.61) is obtained by using the canonical commutation relations

(2.51a) and (2.51b), to find the required commutators. These imply that

[Ek(x),% / deQ(w)] = / dw [E*(x), B"(w)] B'(w), (2.64a)

since B!(w) is a c-number. Using B"(w) = €™ V™A"(w) we have,

200, [awrrw)] = [ w9 [0, 4"

2
VIVk
V2

_ mn / dw B (w)V™i(0" — YV )5(x — w).

(2.64b)

The second term in the parenthesis does not contribute because it is multiplied by ™",

85



then the above becomes,

ielm”/del(w)V";‘(S(x —w) = —iGZmn/dWBl(W)V;nd(X - W)

= —ie"mV" Bl (x) = i(V x B)y(x) (2.64c)

Doing the same for [B¥(x), 1 [ dwE?(w)] we find

[Ek(x),% / deQ(w)] = i(V x B)p(x), (2.65a)
[B’“(x),% / dsz(w)] = iV x E)(x), (2.65D)

Let’s look at the Dirac part now. There are two terms,

[ dy 2oty 20 TG, [ aw st PV

/ dy dz[(Vi + VV)(y, 200! (y){T, 11"} (2)

DN | .

+ (Vi = V)oly, 2)¢' (y) [T, */*]v(2)], (2.65c¢)

[ [ v dzoty. 210 )00, m [ awitwnuw)
—m / dy dz By, 2y ()T, " (2). (2.65d)

When we use this to compute (2.61), we find that there are sixteen resulting equations

for the tensor coefficients, which break up into two independent sets of eight equations
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each. The following lists the coefficients of each Dirac tensor:

W (¥)7° 70 (2)

U (y)7*¢(2)

P ()7 (2)

W (y)7Y° " (z)

U1 (¥)7°¢(2)

¢%i(V X B)y — ¢"i(V X E), —i(V; = V) [JME* + J¥ B*]
—2m [hS E* + hEB*] =0 (2.66a)
hEi(V x B), — h*i(V X E), —i(Vi + V}) [F*EF + FF B]
—2m [¢" E¥ + ¢* B¥] = 0 (2.66b)
Mi(V x B)j, — j*i(V X E), +i(V; — V}) [G* E* + G* B¥]
temp (Vi + VY) [JE"ER + JimBY — 2m [fYE* + f¥ B
=0 (2.66¢)
FHi(V x B)y — Fi(V X E) + (V2 = Ve [ E
+fFmBE] — (Vi + V)[R EF + hEBF] =0 (2.66d)
G*i(V x B), — GEi(V X E)j, +i(Vi — V) [§*E* + j¥ BF]
=0 (2.66€)
JHi(V x B), — J¥i(V x E) —i(Vi — VY) [¢" B* + g% B¥]
temp(VE+ VY) ¥ EF + j5mB*] =0 (2.66f)
HYi(V X B), — HYi(V x E), +i(Vi + V) [f*'E* + f¥B*]
=0 (2.66g)
*i(V x B)y, — fMi(V x E), +i(Vi + VY) [H*E* + H* B¥]
+emp (Ve — VY) [FF™E* + F{™B*| — 2m [j§'E* + j* B¥]

= —2i6(x — y)i(x — z) =

o3 (V X B)(x). (2.66h)

87



Since there is only one inhomogeneous term, this means that the coefficients that satisfy
the set of equations with no driving term must vanish. These are f_, g, h_,j, F G, H |
and J,. The remaining equations are most conveniently written in momentum space,

where the Fourier transform is defined by

flp) = / dx e f(x). (2.67)

If the momenta corresponding to the coordinates x,y, z are p, q,r, then as a result
of translational invariance there is an overall momentum-conserving delta function,
which sets p+ q+r = 0. Using dyadic notation, it is not hard to show that these

equations are, in terms of the two independent vectors p and t =r — q, given by

pxg +J_-t—2mh, = 0, (2.68a)
pxh, +F, - p+2mg_ = 0, (2.68b)
pxj.—iJ_xp—G_t—2mf, = 0, (2.68¢c)
pxF, —h,p+if, xt = 0, (2.68d)
pxG_+j_-t = 0, (2.68¢)
pxJ_ —gt+ij_xp = 0, (2.68f)
pxH, +f -p = 0, (2.68g)

. - . 2
pxf, —iF, xt—H,p+2mj_ = Pl X P. (2.68h)
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We may take all the coefficient tensors to be transverse to p in the first index,

p-f.=0 p-F,=0, p-g =0, (2.69)

and so on, which is consistent with the transversality of the electric and magnetic
fields appearing in the construction (2.62) of @);. This property then allows us to solve
Egs. (2.68d), (2.68¢), (2.68f) and (2.68g) for F,, G_, H,, and J_ in terms of f,, §_,

ﬁ+, and :]:,:

F, = ]% (—p x hyp+ip x £, x t) , (2.70a)
G. = ]%p X j_ -t (2.70b)
J_ = _2% (pxg_t—ip X j_ xp), (2.70c)
H, = ]%p x f, - p. (2.70d)

The remaining four equations then imply that

pPXg_ (p2 — t2) +ip X j_ - (pxt)— 2mp21~1+ = 0, (2.71a)
ipxf,-(pxt)—2mp’§. = 0, (2.71b)
pXxj - (pp—tt) —ipXg pxXt— 2m;1)2f'+ = 0, (2.71c)

px £, - [(tt — 1t%) — (pp — 1p?)] +ip x hyp x t +2mp”] = 2(1 x p).
(2.71d)

Equations (2.71b) and (2.71a) allow us to solve immediately for _ and h, in terms
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of j_ and f,:

_ 1

g = sz xf, - (pxt), (2.72a)
- - N

b = o [pxi x4 @Rt xe)| @)

and then from Egs. (2.71¢) and (2.71d) we obtain two equations for j_ and f,:

T o (pxt)(pxt)] _
P X j_ - (tt — pp) + 2mp°f, - [1 + 2y =0, (2.73a)
2 _ 2

pxF, - [(tt—lﬂ) — (pp— 1) + B (o x )b x t)]

+omp?i - [1 L x42§§2>< t)} —2(1xp). (2.73b)

From Eq. (2.73a) we see that

f. - (txp)=0. (2.74)

Then we can solve Eq. (2.73a) for f; in terms of j_, which when substituted into

Eq. (2.73b) yields an equation that can be solved easily for j_.

In this way it is straightforward to solve for all the coefficient tensors. In terms of

the denominator

A = 4m?*p* + k2, (2.75)
where k = p x t, the nonzero tensor coefficients in (); are
F,o= 2ok (2.76a)
+ - pzAp p’ -
~ 2
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j_ = Xl X p, (276C)
JI_ = —ij_, (2.76d)
- 2
h, = —Z’k, (2.76e)
g = 0, (2.76g)
~ 4dm

Note that the parity constraint (2.63) is satisfied because the + quantities are even
under p — —p, t — —t, while the — quantities are odd. The time-reversal constraint
(2.58) is satisfied because of the presence of 7 in F,, J_, and h,, owing to 7 being an
antiunitary operator. The odd functions undergo another sign change under 7 because

all momenta change sign [see Eq. (2.67)].

2.6 Conclusion

We have no doubt that the P7 symmetric quantum theories are rather unconventional,
however the interest in such theories is increasing. This new kind of quantum theories
opens new and interesting possibilities. The theory is relatively new, still under de-
velopment and deeper understanding is necessary specially in its quantum field theory
version. The P7T-symmetric theories are rather dynamical theories since the funda-
mental definitions, like the norm or inner product, depend on the Hamiltonian of the
theory itself.

One of the keys for developing a successful P77 -symmetric theory is the construction
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of the C operator. It can be constructed perturbatively in quantum field theories. In
particular, we have showed how to calculate it in P77 quantum electrodynamics. With
the construction of the first-order term in the () operator and thus the leading approx-
imation to the C operator, we provide convincing evidence that the P7T-symmetric
quantum electrodynamics originally proposed in Ref. [20] is unitary and that this con-
struction enables us to obtain a unitary S matrix for the theory. Therefore, there can
be little doubt that such a P7T-symmetric theory is self-consistent and one should now
investigate whether such a theory may be used to describe natural phenomena. Indeed,
this theory provides an interesting test of Gell-Mann’s Totalitarian Principle, which

states that “Everything which is not forbidden is compulsory” [22].
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Appendix A

About other wonders

Nadear

Aunque anochezca estaré pescando

y ti podras venir a verme

a conversar con el rio

tu o cualquiera que entre mis sombras
distinga mi sombra

bajo la luz de la luna acariciando el rio.

Mecido por el canto del biiho

no dormiré

aunque aparezca en mi semblante
el principio azul

de la bella durmiente

es que fabrico suefios
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en mi factoria de papel

junto al rio.

Lo que hago alli es no esperarte
no esperar

fluir con el agua

con la facilidad de la sonrisa

fluir y mirar

la cabellera de la vida

c6mo en silencio inunda mi mirada
como me lleva

incesantemente aqui sentado
mojandome en el rio

el rio, el rio.

Javier Sanz Seral
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